Skip to main content

Climate Change and Environmental Infectious Diseases in Russia: Case Studies in Temperate and Arctic Climate

  • Chapter
  • First Online:
Climate Change and Human Health Scenarios

Part of the book series: Global Perspectives on Health Geography ((GPHG))

  • 215 Accesses

Abstract

This chapter is dedicated to the experience of medico-geographical analysis of certain climate-related diseases’ spread in Russia at the end of the 20th century and the beginning of the 21st century using the case of Tularemia and Anthrax. The role of climate change as a trigger factor causing the advancing spread of diseases has been analyzed. The potential change in ranges due to predicted climate warming was studied according to climate model INM-CM5.0. A series of maps was compiled to identify the territories prone to suitability changes for the infection foci for the period up to 2100. It was determined that regions with temperate and arctic climate may become vulnerable to the emergence of climate-related diseases in the course of environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Carlson, C. J., Albery, G. F., Merow, C., Trisos, C. H., Zipfel, C. M., Eskew, E. A., Olival, K. J., Ross, N., & Bansal, S. (2022). Climate change increases cross-species viral transmission risk. Nature, 607, 555–562. https://doi.org/10.1038/s41586-022-04788-w

  • Egorov, V. A., Bartalev, S. A., Kolbudaev, P. A., Plotnikov, D. E., & Khvostikov, S. A. (2018). Land cover map of Russia derived from Proba-V satellite data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 15, 282–286. https://doi.org/10.21046/2070-7401-2018-15-2-282-286

  • Evengard, B., Destouni, G., Kalantari, Z., Albihn, A., Björkman, C., Bylund, H., Jenkins, E., Koch, A., Kukarenko, N., Leibovici, D., Lemmityinen, J., Menshakova, M., Mulvad, G., Nilsson, L. M., Omazic, A., Pshenichnaya, N., Quegan, S., Rautio, A., Revich, B., RydĂ©n, P., Sjöstedt, A., Tokarevich, N., Thierfelder, T., & Orlov, D. (2021). Healthy ecosystems for human and animal health: Science diplomacy for responsible development in the Arctic. Polar Record, 57(e39), 1–7. https://doi.org/10.1017/S0032247421000589

  • Ezhova, E., Orlov, D., Suhonen, E., Kaverin, D., Mahura, A., Gennadinik, V., Kukkonen, I., Drozdov, D., Lappalainen, H. K., Melnikov, V., Petäjä, T., Kerminen, V.-M., Zilitinkevich, S., Malkhazova, S. M., Christensen, T. R., & Kulmala, M. (2021). Climatic factors influencing the anthrax outbreak of 2016 in Siberia, Russia. EcoHealth. https://doi.org/10.1007/s10393-021-01549-5

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.

    Google Scholar 

  • Georgiades, P., Ezhova, E., Räty, M., Orlov, D., Kulmala, M., Lelieveld, J., Malkhazova, S., Erguler, K., & Petäjä, T. (2022). The impact of climatic factors on tick-related hospital visits and borreliosis incidence rates in European Russia. PLoS ONE, 17(7), 20. https://doi.org/10.1371/journal.pone.0269846

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/JOC.1276

  • https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health

  • Kutz, S. J., Hoberg, E. P., Polley, L., & Jenkins, E. J. (2005). Global warming is changing the dynamics of Arctic host-parasite systems. Proceedings Biological Sciences, 272(1581), 2571–2576. https://doi.org/10.1098/rspb.2005.3285

  • Ma, Y., Vigouroux, G., Kalantari, Z., Goldenberg, R., & Destouni, G. (2020). Implications of projected hydroclimatic change for tularemia outbreaks in high-risk areas across Sweden. International Journal Environmental Research and Public Health, 17, 6786. https://doi.org/10.3390/ijerph17186786

  • Malkhazova, S. M., Mironova, V. A., Orlov, D. S., & Adishcheva, O. S. (2018). Influence of climatic factor on naturally determined diseases in a regional context. Geography, Environment, Sustainability, 11(1), 157–170. https://doi.org/10.24057/2071-9388-2018-11-1-157-170

  • Mora, C., McKenzie, T., Gaw, I. M., Dean, J. M., von Hammerstein, H., Knudson, T. A., Setter, R. O., Smith, C. Z., Webster, K. M., Patz, J. A., Franklin, E. C. (2022). Over half of known human pathogenic diseases can be aggravated by climate change. Nature Climate Change, 12, 869–875. https://doi.org/10.1038/s41558-022-01426-1

  • Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling. Ecography, 37, 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x

  • Pecl, G. T., AraĂşjo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., Clark, T. D., & Williams, S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332). https://doi.org/10.1126/science.aai9214

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259. https://doi.org/10.1016/J.ECOLMODEL.2005.03.026

  • Revich, B., Tokarevich, N., & Parkinson, A. J. (2012). Climate change and zoonotic infections in the Russian Arctic. International Journal of Circumpolar Health, 71, 18792. https://doi.org/10.3402/ijch.v71i0.18792

  • Ryden, P., Sjöstedt, A., & Johansson, A. (2009). Effects of climate change on tularaemia disease activity in Sweden. Global Health Action, 2, 2063. https://doi.org/10.3402/gha.v2i0.2063

  • The register of livestock burial sites (including anthrax-related) in the territory of the Russian Federation. (2012). Ministry of Agriculture of the Russian Federation. In: Surgucheva, L. M., Borovoy, V. N., & Yaremenko, N. A. (Eds.) Rosinformagrotech. ISBN 978-5-7367-0920-5 (In Russian).

    Google Scholar 

  • Volodin, E., & Gritsun, A. (2018). Simulation of observed climate changes in 1850–2014 with climate model INM-CM5. Earth System Dynamics. 9, 1235–1242. https://doi.org/10.5194/esd-9-1235-2018

Download references

Acknowledgements

This research was performed according to the Russian Science Foundation project No. 21-47-00016 and Development program of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University «Future Planet and Global Environmental Change».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Malkhazova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malkhazova, S., Korennoy, F., Orlov, D. (2023). Climate Change and Environmental Infectious Diseases in Russia: Case Studies in Temperate and Arctic Climate. In: Akhtar, R. (eds) Climate Change and Human Health Scenarios. Global Perspectives on Health Geography. Springer, Cham. https://doi.org/10.1007/978-3-031-38878-1_18

Download citation

Publish with us

Policies and ethics