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Abstract. We present a simple calculus for deriving statements about
the local behaviour of partial, continuous functions over the reals, within
a collection of such functions associated with the elements of a finite
partial order. We show that the calculus is sound in general and com-
plete for particular partial orders and statements. The motivation for
this work is drawn from an attempt to foster digitalisation in secondary-
eduction classrooms, in particular in experimental lessons in natural sci-
ence classes. This provides a way to formally model experiments and to
automatically derive the truth of hypotheses made about certain phe-
nomena in such experiments.
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1 Introduction

Formal reasoning using proof rules is a well-established mechanism for explaining
and deriving the truth of statements, both in general-purpose first- and higher-
order logics [2,16] as well as special-purpose logics in arithmetic [5], knowledge
discovery [15], program verification [13] etc. Here we are concerned with the
problem of proving statements about the local “behaviour” of certain real-valued
functions. A proof calculus for such simple statements may be interesting purely
for its logical (meta-)properties. There is, however, also a very concrete motiva-
tion for this work: digitalisation of experiments in natural sciences in secondary-
education classrooms. Studies show how digitalisation can benefit such teaching-
learning environments [10,18], not least by channeling pupils’ interaction through
a software tool to enforce better learning [11].

In classes of natural sciences like biology, physics and chemistry, pupils are
often taught some background knowledge about particular subjects which they
then need to put to the test experimentally. For this, they are given a research
question which typically asks them to discover and formulate a particular phe-
nomenon in form of a so-called hypothesis, and to validate its correctness exper-
imentally. Take for instance as an “experiment” in a physics class the standard
European alternating current at 230V 50Hz. The way that voltage fluctuates
c© The Author(s) 2023
B. Pientka and C. Tinelli (Eds.): CADE 2023, LNAI 14132, pp. 153–169, 2023.
https://doi.org/10.1007/978-3-031-38499-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38499-8_9&domain=pdf
http://orcid.org/0000-0001-6800-7135
http://orcid.org/0000-0002-1621-0972
https://doi.org/10.1007/978-3-031-38499-8_9


154 F. Bruse et al.

over time – in other words: time influences voltage – and voltage induces (resp.
influences) a current, forms the background theory, and a research question
could for instance be: how does the current change over time? We aim to pro-
vide digital technology that can answer such questions automatically in order to
give valid feedback to a pupil about their success in this task.

Formal models for processes from natural sciences have been proposed in the
literature [19], like Petri nets [6,12] or hybrid automata [1,3]. They allow for
precise modelling of experiments; the price to pay is that of undecidability of
model checking already, let alone validity checking. Moreover, they rely on exact
knowledge about the nature of influences in such experiments, and this can often
only be described by differential equations. Hence, determining correctness of a
hypothesis requires sophisticated algebraic or numerical methods.

Here, we model experiments abstractly as influence schemes, that is sets C of
statements about certain parts of an influence, allowing them to be built from
observations for instance. Correctness of a hypothesis H then is the question
of whether H logically follows from C. We provide the framework for modelling
experiments and hypotheses about influences in the form of a simple language
of statements, a formal semantics via collections of partial continuous functions,
and a proof calculus for logical consequence in this language. We show that it is
sound in general, complete for a large and useful class of hypotheses and exper-
iment models, i.e. influence schemes, and that it is polynomial-time decidable.

The completeness proof uses elements that are similar to constructions for
general logics. A key ingredient is normalisation, essentially a saturation process
comparable to the construction of Hintikka or maximally consistent sets, cf. [7,
17]. Another one is the effective construction of countermodels for such saturated
sets, cf. [8,9,14]. The details of these constructions are of course tailored to the
specifics of the mixed discrete-continuous structures here, dealing with properties
of collections of (partial) continuous functions associated with pairs of elements
of some underlying finite partial order.

The paper is organised as follows. Section 2 introduces the mathematical basics
in terms of functions on the reals, statements, influence schemes, hypotheses etc.
Section 3 presents the proof calculus including its soundness. Section 4 begins by
showing that the proof calculus is generally incomplete, as the relatively sim-
ple statements cannot make assertions capturing certain phenomena arising with
functions on the reals. We then develop a restriction on influence schemes and
show that completeness does hold in this case. The full proofs of technical lemmas
are omitted for reasons of space restriction. Section 5 discusses the computational
problem of proof search. Section 6 concludes with remarks on further work.

2 Modelling Influence

Statements and Influence Schemes. In all of the following, V = {a, b, . . .}
denotes a finite set of variables, and we assume that these are partially ordered
by ≤ with < denoting its strict subset.

An interval (of reals) is denoted [x, y] for x, y ∈ Q ∪ {−∞,∞} with x ≤ y.
Abusing standard notation, we write, e.g. [−∞, 10] rather than (−∞, 10] for the
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set of all real numbers z with z ≤ 10, since we only consider intervals that are
closed at rational bounds (for purposes of effective representation) and semi-
open only at infinities. This provides a common notation for intervals and saves
us making case distinctions everywhere, depending on the interval bounds.

A V-statement is a 5-tuple S = (a, I, q, I ′, b), typically written as a I q I′
b,

s.t. a, b ∈ V with a < b, and I, I ′ are intervals in the sense above. I is called the
domain, denoted dom(S), and required to be a non-singleton interval. I ′ is the
range, denoted rng(S). Finally, q ∈ Q := {↗,↘,→,�} is called a behaviour. It
describes a gradient of the influence abstractly as either monotonic, antitonic,
constant or arbitrary. When the variables a, b involved in the statement S are
clear from or irrelevant for the context, we also often simply write I q I′ .

The statement S is used to formalise the assertion “variable ainfluences vari-
able b on the interval I in a way described by q, s.t. varying the value for a in
this interval results in b taking values from the interval I ′.”

A V-influence scheme, or simply influence scheme if V is clear from the con-
text, is a finite set C of V-statements. Intuitively, an influence scheme describes
the way that certain variables influence each other in an abstract way.

Example 1. We build an influence scheme for the AV-voltage experiment. The
relevant variables are t for time, v for voltage and c for current, ordered by t <
v < c. A theory of how voltages alternates over time (in the standard European
alternating 230V/50Hz setting) and how it induces a current at a resistance
of 326 Ω can be formalised as follows. Remember that a scheme is a finite
set of statements like t [0,5] ↗ [0,326] v etc. Each can easily be visualised as a
rectangle in the 2-dimensional plane for the pair of involved variables: horizontal
and vertical edges determine domain and range, and the behaviour can be shown
as a label on the rectangle. A particular influence scheme C with 20 statements
is shown in Fig. 1 as grey rectangles in this way. The behaviours in the graph in
the middle are left out for better visibility; they are all supposed to be ↗.

The orange lines in the graphs of Fig. 1 represent a so-called influence exper-
iment, as it will be explained below. At this point, it can be used to show that
influence schemes as formal models of experiments can be obtained through data
sampling. Note how the borders of the rectangles in the scheme C coincide with
values of the functions represented by the orange lines in most cases.

Note that the scheme C shown in Fig. 1 contains no statements for the pair
(t, c) of variables. This does not mean that time does not influence current in this
scheme: clearly, if time influences voltage, and voltage influences current, then
time executes some influence on current. Hence, a valid question asks whether
the statement H shown as a blue rectangle follows logically from the scheme C in
the sense that whenever time influences voltage and voltage influences current
in the way described by C, does time then also influence current in the way
described by H? We use the letter H for such a statement as it plays the role
of a hypothesis: in logical terms it is just a statement, but from an application
point of view it is special in that it signifies an implicit question after its truth
with respect to a scheme.
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Fig. 1. An influence scheme (grey rectangles), a hypothesis (blue dashed rectangle)
and an influence experiment (orange lines) between time, voltage and current. (Color
figure online)

A Formal Semantics. In order to give a well-defined meaning to the question
whether H follows from C for a given scheme C and hypothesis H, we introduce a
formal interpretation of statements in so-called influence experiments. We need
to recall and define a few technicalities about functions over the reals.

An influence is a function f : R ⇀ R s.t. dom(f) is a non-singleton interval
in the sense above, and f is continuous on its domain in the usual sense. We
write f(x) = ⊥ if x 
∈ dom(f). When composing partial functions we assume
undefined values to be absorbing, i.e. g(f(x)) = ⊥ if f(x) = ⊥.

An influence f is called monotonic, antitonic or constant on [x, y] ⊆ dom(f),
if for all z, z′ ∈ [x, y] with z ≤ z′ we have f(z) ≤ f(z′), respectively f(z) ≥ f(z′)
and f(z) = f(z′). It satisfies the statement S = [x,y] q [x′,y′] , written f |= S,
if the following two conditions are met.

1. f(z) ∈ [x′, y′] for all z ∈ [x, y].
2. q = ↗ and f is monotonic on [x, y], or q = ↘ and f is antitonic on [x, y], or

q = → and f is constant on [x, y], or q = �.

Since every constant function is monotonic and antitonic, and each of these
is also an arbitrary one, we naturally obtain a partial order  on behaviours
that features unique infima and suprema, shown in Fig. 3. Note that, whenever
f |= I q I′ and q  q′ then also f |= I q′ I′ .

We are now ready to define the formal semantics of influence schemes.

Definition 1. Let V be as above. A V-influence experiment is a collection F of
influences, namely one function Fa,b for each pair (a, b) s.t. a < b, altogether
satisfying the following coherence property (CP).

– For all a, b, c ∈ V s.t. a < b, b < c and all x ∈ R: Fa,c(x) = Fb,c(Fa,b(x)).

F satisfies the V-statement S = a I q I′
b, written F |= S, if Fa,b |= I q I′ .

F satisfies the V-influence scheme C, written F |= C, if F |= S for all S ∈ C.
CP together with the absorption of ⊥ in function composition is the reason

for demanding the variables to be partially ordered: Fa,a, for any variable a
would have to be the total identity function to satisfy CP. And then we would
have Fb,a = F−1

a,b for any a, b. Thus, by demanding that Fa,b is only defined
whenever a < b we avoid problems arising with non-invertible functions.
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Example 2. Figure 1 shows a particular time-voltage-current experiment F as
three influences drawn as orange graphs. It represents the way that voltage
alternates in time along a sine curve with amplitude 230 · √

2 ≈ 326 V and
frequency 50Hz. Electric current depends linearly on voltage in this experiment,
with a factor of 1

326 used here suggesting an electrical resistance of 326 Ω. The
coherence property then demands a third influence Ft,c as their composition on
the domain of Ft,v = [0,∞] which is also a sine curve.

Let C be the influence scheme shown in Fig. 1 and introduced in Example 1.
Clearly F 
|= C because F does not satisfy the second (degenerate) rectangle
representing the statement t [3,7] → [264,264] v and neither the fifth representing
t [12,16] ↘ [−310,−192] v. This is because Ft,v is neither constant on [3, 7] nor
antitonic on [12, 16], and because it assumes values outside of the statements’
ranges on these domains, e.g. Ft,v(5) = 326 
∈ [264, 264] and Ft,v(15) = −326 
∈
[−310,−192].

Note that satisfaction of a statement S by an influence f means that the
graph of f enters the rectangle representing S through its left edge and leaves it
only through its right edge, and within this rectangle it displays the behaviour
stated in S. This is the case for instance for the hypothesis H drawn as a blue
rectangle: F |= H indeed. But this does not allow any conclusion to be drawn
about whether H follows from C in any way.

The interpretation of an influence scheme through influence experiments nat-
urally gives rise to a notion of logical consequence: we say that the V-statement
H follows from the V-influence scheme C, written C |= H, if F |= H for all
V-influence experiments s.t. F |= C. Thus, an influence scheme C can be seen
as a finite representation of an (uncountable) number of V-experiments, which
yields the abstract nature of these schemes as mentioned in the introduction.

The semantics also gives rise to a natural notion of equivalence between
schemes: C and C′ are equivalent, written C ≡ C′, if for all F we have F |= C
iff F |= C′. Note that this is the case iff for all hypotheses H we have C |= H
iff C′ |= H. Equivalent schemes can therefore be seen as (possibly different)
descriptions of the same experimental setup, up to a certain amount of impre-
cision determined by the description of the experimental setup through discrete
statements.

3 The Calculus of Influence

The concept of consequence between a scheme and a hypothesis provides the
foundations for a logical approach to modelling experimental setups and cor-
rectness of hypotheses w.r.t. them. Ideally, the consequence relation |= would be
decidable, since this would provide a way to automatically check the correctness
of a hypothesis w.r.t. a given scheme. In this section we develop a proof-theoretic
characterisation of |= in terms of a provability predicate �. Ideally, � would be
sound and complete w.r.t. |=, i.e. a statement would follow from an influence
scheme iff it is provably derivable from it. Then decidability of � (cf. Sect. 5)
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Fig. 2. Proof rules for correctness of a statement w.r.t. an influence scheme C. See
Fig. 3 for the definitions of � and ⊗.

would yield the basis for automatic reasoning about influence in experimental
setups.

Henceforth, let V and a V-influence scheme C be fixed. We say that a V-
statement H is provable w.r.t. C, written C � H, if there is a finite proof for H
in the proof system whose rules are shown in Fig. 2.

We will briefly explain the intuition behind each of them. The rule (F), which
serves as an axiom, essentially states that any statement which is part of the
scheme, follows from it. (G) expresses the fact that experiments are comprised
of potentially partial functions whose domain is always some interval. It states
that any function Fa,b which shows some certain behaviour on the interval [x, y],
and some certain behaviour on the interval [x′, y′] where y < x′, must also be
defined on the interval [y′, x]. However, we cannot determine better bounds than
infinities on its values, nor a non-arbitrary behaviour there.

Rule (T) expresses the transitivity principle laid out in the coherence property
of V-experiments: when a influences b s.t. a-values in I lead to b-values in I1,
and I1 ⊆ I2, and b-values in I2 lead to c-values in I ′, then a-values in I lead
to c-values in I ′. Moreover, the behaviour of the influence from a to c can be
derived from the ones from a to b and from b to c via the multiplication table
for ⊗ shown in Fig. 3.

Rule (I−) expresses weakening of statements w.r.t. the involved intervals.
Any function which maps values from I1 to values in I2 must also do so for
values from a subset of I1, and their range is naturally limited by any superset
of I2. On the other hand, (I+) represents an important strengthening principle:
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Fig. 3. Order � (left) and multiplication ⊗ (right) on behaviours.

any function that maps values from I1 to I ′
1 and values from I2 to I ′

2 must map
values from I1∩I ′

1 to I2∩I ′
2. Note that the rule is only (meaningfully) applicable

if I1 ∩ I ′
1 
= ∅. Moreover, the behaviour on the intersection can be determined

from those on the two involved intervals. For instance, if Fa,b is monotonic on
I1 and antitonic on I ′

1 then it must be both monotonic and antitonic on I1 ∩ I ′
1,

hence, it must in fact be constant there.
Rules (L+↗ )–(R+

↘ ) express further strengthening principles which are appli-
cable in situations where two statements are made about the behaviour of a
function on adjacent intervals. Suppose for instance, that Fa,b maps values from
[x, y] monotonically into [l, u], and values from [y, z] somehow into [l′, u′]. In
particular, we have Fa,b(y) ≤ u since y ∈ [x, y], and Fa,b(y) ≤ u′ since y ∈ [y, z],
i.e. Fa,b(y) ≤ min(u, u′). By monotonicity, for all z′ with x ≤ z′ ≤ y we must
have Fa,b(z′) ≤ min(u, u′) as well. Hence, from the knowledge about the mono-
tonic behaviour of Fa,b on [x, y] and the upper bound on an adjacent interval
to the right of it, we can possibly infer a tighter upper bound on the values of
Fa,b on [x, y]. This is what rule (L+↗ ) does. The other three rules (L+↘ ), (R+

↗ ) and
(R+

↘ ) cover the analogous cases of the behaviour being antitonic or the adjacent
statement being on the other side.

Rule (J) can be used to infer statements about the behaviour of a function
on parts of its domain which are comprised of several intervals. If Fa,b maps
values from [x, y] into I1 with behaviour q, and values from [y, z] into I2 with
behaviour q′, then it maps values from [x, z] into I1 ∪ I2, provided that this is an
interval. Moreover, the behaviour on the larger interval can be determined from
q and q′ by simply taking the supremum w.r.t . This is obviously associative,
which allows us to write sup�(q1, . . . , qn) without ambiguity.

Note that (J) is also a weakening rule: for instance, from S1 = a [0,1] � [0,1] b
and S2 = a [1,2] � [1,2] b we can infer S = a [0,2] � [0,2] b, describing any
influence Fa,b that maps values from [0, 2] to [0, 2], for instance Fa,b(x) = 2− x.
I.e. we have F |= S, but F 
|= S1 and F 
|= S2. Likewise, (Q−) allows the
weakening of behaviours. It states that a function which possesses a certain
behaviour on an interval also possesses any weaker behaviour on this interval.

At last, rule (C) expresses a simple principle: an influence of variable a onto
b whose values can be bounded by a singleton interval, is of constant behaviour.

Example 3. A proof of C � H for the scheme C and the hypothesis H =
t [12.5,15] ↘ [−1.05,−0.5] c shown in Fig. 1 (cf. Example 1) is given in Fig. 4. The
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Fig. 4. Proof of the hypothesis H from the scheme C in Example 1.

subtrees that are abbreviated by vertical dots are very similar to their siblings
and therefore omitted in order to keep the tree small.

The following theorem then guarantees that C |= H holds, too.

Theorem 1 (Soundness). Let C be an influence scheme and S be a statement.
If C � S then C |= S.

Proof. First we observe that all the rules are sound in the sense that if C |= T
for all premises T of some rule, then C |= S for its conclusion S. This is trivial
for rule (F) and can be easily be shown by contradiction for the other 11 rules.
The theorem can then easily be shown by induction on the height of a proof tree
for C � S. ��

4 Completeness for Elementary Diamond-Free Schemes

General Incompleteness. We remark that the calculus of influence is not
complete in general. Consider the variable order a < b < c and the scheme C (in
grey) and hypothesis H (in dashed blue) represented by the following rectangles.

a

b

0 1 2 3
0

1

2

↗
↗

↗

b

c

0 1 2 3
0

1

2 ↗
→

a

c

0 1 2 3
0

1

2 ↘

It seems that H does not follow from C because it demands constant
behaviour of an influence Fb,c on the interval [1, 2] while C only prescribes
monotonic behaviour there. However, we have C |= H indeed for the follow-
ing reason: the combination of S1 = a [1,2] ↗ [1,2] b with b [1,2] ↗ [1,2] c yields
a [1,2] ↗ [1,2] c. Together with a [1,2] ↘ [1,2] c we get a [1,2] → [1,2] c, i.e.
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we must have that Fa,c is constant on [1, 2] for any F with F |= C. Since
Fa,c = Fb,c ◦Fa,b and Fa,b cannot be constant on [1, 2] because of the two state-
ments neighbouring S1, we must indeed have that Fb,c is constant on [1, 2]. Thus,
C |= H but the rules do not support this kind of backwards reasoning (from (a, c)
to (b, c)). Hence, we have C 
� H.

There are two principal ways to go from here: either extend the calculus by
rules formalising this kind of reasoning, or try to achieve completeness for a
restricted class of schemes and hypotheses only. We do the latter; the former
would require a significant extension of the machinery as the example above
shows: backwards reasoning introduces nondeterminism, and in order to resolve
it one needs to take contexts of statements into account. This suggests that
general completeness may only be achieved through a general extension of the
format of rules. Note also that completeness cannot hold for a class of schemes
containing inconsistent ones, where C is said to be consistent if there is some
F s.t. F |= C. The reason is that we have C |= H for any H whenever C is
inconsistent, even when H makes an assertion about variables not occurring in
C in which case it is clear that H cannot be derived from C.

Normalisation. We develop some general machinery that is useful for obtaining
completeness in a restricted case. For a scheme C and variables a, b with a < b
we write Ca,b for the set of statements S ∈ C s.t. S = a I q I′

b for some I, q, I ′.

Definition 2. We call a scheme C separated if for all a, b ∈ V with a < b there
are n ∈ N and x1 < . . . < xn+1 ∈ Q ∪ {−∞,∞}, behaviours q1, . . . , qn and
intervals [l1, u1], . . . , [ln, un] s.t.

Ca,b = { [x1,x2] q1 [l1,u1] , [x2,x3] q2 [l2,u2] , . . . , [xn,xn+1] qn [ln,un] } .

This induces a natural notion of left and right neighbour of a statement T in a
separated scheme, denoted lnb(T ) and rnb(T ) when they exist.

We say that such a separated C is minimal if for all i = 1, . . . , n we have

a) if qi = ↗ then ui ≤ ui+1 and li−1 ≤ li,
b) if qi = ↘ then li ≥ li+1 and ui−1 ≥ uii
c) if qi = → then ui ≤ min(ui−1, ui+1) and li ≥ max(li−1, li+1),

where we set l0 = ln+1 := −∞ and u0 = un+1 := ∞ to avoid case distinctions.
C is called transitive if for all a, b, c ∈ V with a < b < c and all x, y ∈ R

we have the following: if x ∈ I1, y ∈ I2 for some statement a I1 q1 I2 b ∈ C,
and y ∈ I3 for some statement b I3 q2 I4 c ∈ C, then there is a statement
a I5 q3 I6 c ∈ C s.t. x ∈ I5 and I6 ⊆ I4.

C is called normalised if it is separated, minimal and transitive.

So, intuitively, separation and minimality predict that the statements in a
normalised scheme can be arranged as a sequence of horizontally adjacent rect-
angles, for each pair of variables a, b, with no gaps in between, and no statement
can be strengthened further because of its left or right neighbours (compare this
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Fig. 5. A normalisation C∗ (red) of the influence scheme C from Example 1 (Color
figure online) (grey).

to the strengthening rules (L+↗ )–(R+
↘ )). Transitivity means that C is complete in

the sense that whenever it allows Fa,b(x) = y and Fb,c(y) = z for some x, y, z,
then it must also predict the possibility of Fa,c(x) = z.

Lemma 1 (Normalisation Lemma). Let C be a consistent scheme. There is
a normalised scheme C∗ s.t. C∗ ≡ C and for all T ∈ C∗ we have C � T .

Proof. (Sketch) We successively transform C into C∗ using operations that follow
rule applications. (G), (I+) and (I−) (in restricted form) can be used to obtain
separation, (L+↗ )–(R+

↘ ) to ensure minimality, and (T) together with (J) to ensure
transitivity. The trick is then to arrange the process of saturating C by adding
new statements and replacing some with others in a terminating way.

In the following, we will write C∗ to denote a normalised scheme obtained from C
that satisfies the conditions of this lemma. Note that C∗ is not necessarily unique;
for example statements with adjacent domains and equal ranges and behaviours
can be merged using rule (J) or statements can be split w.r.t. to their domain
using (I−) without breaking the conditions of the lemma.

Example 4. Figure 5 shows the result of normalising the scheme C from Exam-
ple 1 (grey rectangles) as a scheme C∗ with 11+25+11=47 statements shown
as red rectangles. It should be clear that the hypothesis H, also depicted here
as a blue rectangle, does indeed follow from C∗: intuitively, it is impossible to
draw an influence experiment into these diagrams as three functions that tra-
verse through the red rectangles in the prescribed ways without also traversing
through the blue rectangle correctly.

Figure 5 suggests the use of the normalisation process for proof construction:
a close inspection of the example proof in Fig. 4 allows the origin of the red
rectangles touched by the hypothesis H to be traced back to the grey ones from
the original scheme.

Countermodel Construction. The following two lemmas contain one of the
main ingredients for obtaining a completeness result: they show how to construct
influences on a particular statement in a normalised scheme piecewise to one that
satisfies all the statements for the same variables in this scheme. Note that this
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does not construct an influence experiment (yet) as it does not show how to
construct influences for other pairs of variables.

We first make an observation about the possibility to satisfy statements in a
normalised scheme by particular influences. A sequence S1, . . . , Sm of statements
Si = a [xi,yi] qi [x

′
i,y

′
i] b is called connected if yi = xi+1, i.e. Si+1 = rnb(Si) for

all i < n. A connector for S1, . . . , Sn is an influence f s.t. dom(f) = [x1, yn] and,
for all i ≤ n, we have that f |= [xi,yi] qi [x

′
i,y

′
i] . Such a connector f is strict

if, additionally, for all i ≤ n we have f 
|= [xi,yi] q
′ [x′

i,y
′
i] for any q′ ≺ qi. It

is range-covering if there are x, y ∈ [x1, yn] such that f(x) = min{x′
1, . . . , x

′
n}

and f(y) = max{y′
1, . . . , y

′
n}. Sometimes, we will need to construct connectors

for single statements S which are simply sequences of length 1 only.

Lemma 2 (Connectors Lemma). Let C be consistent and normalised and
S = a [x,x′] q [y,y′] b ∈ M .

a) Suppose x′′, y′′ ∈ R are given s.t. x < x′′ < x′ and y ≤ y′′ ≤ y′. Then there
is a connector f for S s.t. f(x′′) = y′′.

b) Suppose y′′ ∈ rng(lnb(S)) ∩ rng(S) is given. Then there is a connector f for
S s.t. f(x) = y′′.

c) Suppose y′′ ∈ rng(S) ∩ rng(rnb(S)) is given. Then there is a connector f for
S s.t. f(x′) = y′′.

d) Let S1, . . . , Sn be connected s.t. the behaviour of Si is not → for some i. Then
there is a strict, range-covering connector for S1, . . . , Sn.

Proof. (Sketch) Parts (a)–(c) essentially boil down to a case distinction, depend-
ing on the behaviour q. However, it is relatively easy to observe that the require-
ments in all three cases are always satisfiable by a function that is either linear
or composed of two linear functions on the interval [x, x′], making use of the
intuitive fact that in a rectangle, with two points given on the left and right
edge and one in the middle, it is always possible to draw a (straight) line within
this rectangle from the left point to the middle one, and then continue it to the
right one. Part (d) requires a decomposition of the sequence S1, . . . , Sn according
to their behaviours.

An immediate consequence of this is the possibility to build influences for not
just a single statement in a normalised scheme, but in fact for all the statements
concerning the same pair of variables. This crucially relies on parts (b) and (c)
of Lemma 2.

Lemma 3 (Small Extension Lemma). Let V be a partially ordered set of
variables, a, b ∈ V s.t. a < b, and C be a consistent and normalised V-influence
scheme s.t.

Ca,b = { [x1,x2] q1 I1
︸ ︷︷ ︸

T1

, [x2,x3] q2 I2
︸ ︷︷ ︸

T2

, . . . , [xn,xn+1] qn In
︸ ︷︷ ︸

Tn

} .

Let 1 ≤ j ≤ k ≤ n and f ′ be a connector for Tj , . . . , Tk. Then there is an
influence f s.t. dom(f) = [x1, xn+1], f |= Tj for all j = 1, . . . , n, and f(x) =
f ′(x) for all x ∈ [xj , xk+1].
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Completeness for Elementary Schemes over Diamond-Free Orders.
Let C be a class of pairs of schemes and statements. We say that the calculus of
influence is complete for C if for all (C, S) ∈ C we have: if C |= S then C � S. We
now concentrate on a class that allows for a construction proving completeness,
and which still captures a large class of experiments and hypotheses occurring
in natural sciences, cf. the concluding section for a discussion on that.

We call a pair (a, b) of variables elementary if a < b and there is no c s.t.
a < c < b. Any finite partial order is the (reflexive-)transitive closure of a finite
set of elementary pairs. A statement a I q I′

b is called elementary if (a, b) is
elementary. A scheme C is called elementary if all T ∈ C are elementary.

We say that the partial order ≤ is diamond-free if for all a, b, c, d: if a ≤ b ≤ d
and a ≤ c ≤ d then b ≤ c or c ≤ b. In a finite diamond-free partial order, for
every pair (a, b) with a < b there is a unique sequence c1, . . . , cn for some n ≥ 0
s.t. (a, c1), (cn, b) and (ci, ci+1) for i = 1, . . . , n − 1 are all elementary.

In a diamond-free elementary scheme, all derivable non-elementary state-
ments can be traced back to applications of the transitivity rule (T). Moreover, in
any normalisation of a diamond-free elementary scheme obtained as in Lemma 1,
all non-elementary statements can be traced back to an application of rule (T).

Lemma 4 (Decomposition Lemma). Let C be an elementary scheme over a
diamond-free partial order and C∗ be a normalisation of C obtained via Lemma 1.
Suppose T = a I q I′

c ∈ C∗ such that (a, c) is non-elementary. Then there is b
with a < b < c and S = a I q1 I1 b and S′

1, . . . , S
′
n such that S, S′

1, . . . , S
′
n ∈ C∗,

joining S′
1, . . . , S

′
n via (J) yields S′ = b I2 q1 I′

c, and q = q1 ⊗ q2, I1 ⊆ I2.

The key ingredients are that all non-elementary statements in C∗ are derivable
in C, and the fact that C∗ is normalised, whence a derivation of T in C can be
used to generate a derivation of T in C∗. Note that w.l.o.g. we can assume that
I1 = I2 in the above lemma.

Now let C be an elementary diamond-free scheme. We observe that any influ-
ence experiment that satisfies all statements in C on elementary relations auto-
matically satisfies all derivable statements on non-elementary relations due to
correctness of the rules in the calculus of influence, in particular their observance
of the coherence principle. This yields the following.

Lemma 5 (Sufficiency Lemma). Let C be an elementary and diamond-free
scheme, and let C∗ be a normalisation of C obtained via Lemma 1. Then any
influence experiment that satisfies all elementary statements in C∗ satisfies all
statements of C∗.

The next lemma then contains the heart of the completeness proof. It shows
how to construct counterexamples, in the form of specific influence experiments,
for normalised schemes and hypotheses that appear to state something different
to what is contained in the normalised scheme.

Lemma 6 (Counterexample Lemma). Let C be a consistent, elementary
scheme over a diamond-free partial order and C∗ be a normalisation of C obtained
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via Lemma 1. Let a, b ∈ V s.t. a < b and

C∗
a,b = { [x1,x2] q1 [l1,u1]

︸ ︷︷ ︸

T1

, [x2,x3] q2 [l2,u2]

︸ ︷︷ ︸

T2

, . . . , [xn,xn+1] qn [ln,un]

︸ ︷︷ ︸

Tn

} .

Let H = a [x0,y0] q [l,u] b. If one of the following conditions holds, then there is
an influence experiment F s.t. F |= C∗ but F 
|= H.

a) x0 < x1 or y0 > xn+1.
b) ( i)

⋃j
h=i[lh, uh] 
⊆ [l, u] or ( ii) sup�(qi, . . . , qj) 
 q holds, where i and j are

the (necessarily unique) indices s.t. x0 ∈ [xi, xi+1] and y0 ∈ [xj , xj+1].

Proof. (Sketch) We give a high-level, intuitive idea of the construction. If (a, b)
is elementary, it suffices to find an Fa,b such that Fa,b |= C∗

a,b but Fa,b 
|= J . The
functions for the other elementary relations can be interpreted in an arbitrary
fashion such that Fc,d satisfies C∗

c,d for all (c, d). This is always possible since
C, and hence C∗ is consistent. The interpretations of the non-elementary rela-
tions are then obtained automatically via the coherence principle; note that this
always satisfies any statements on the respective non-elementary relations due
to Lemma 5.

Case (a) is the simpler one. Here, [x0, y0] � [x1, xn+1]. Hence, it suffices to
construct an experiment F s.t. dom(Fa,b) = [x1, xn+1], whence F 
|= H. We need
to ensure F |= C by simply truncating the domain of any influence experiment
that satisfies C. Such an experiment exists since C is consistent.

For case (b), H disagrees with the statements in C∗
a,b in at least one of two

ways: (i) it restricts the values of an experiment at some point x more than the
unique statement Ti in the sequence in C∗

a,b covering x does. Then we pick a
value y that is covered by the vertical interval in Ti but not in H, use Lemma 2
(a) to obtain a connector that runs through this point (x, y) and extend it to an
influence using Lemma 3 to ensure F |= C but F 
|= H. Or (ii) the behaviour
stated in H is strictly stronger than those in the corresponding statements in
C∗
a,b. Then we obtain a strict connector for these statements using Lemma 2 (d)

and extend it accordingly using Lemma 3. Strictness ensures that the influence
Fa,b has the behaviours required by C∗ but not by H, hence F 
|= H as well.

If (a, b) is not elementary, by the decomposition lemma (Lemma 4) there is a
sequence a = c1, . . . , cn = b of elementary relations and a sequence S1, . . . , Sn−1

of statements derivable in C∗ that satisfy the requirements of Lemma 4. We omit
case (a). If we are in case (b) (i), again we pick a point (x, y) not covered by H,
but by the statements in C∗

a,b. We then generate a sequence of points (xi, yi) for
i ≤ n such that x = x1 and yi = xi+1 for all i < n and yn = y. It then suffices to
invoke Lemma 2 (a) and Lemma 3 to complete the individual relations Fci,ci+1

such that they go through the point (xi, yi).
For the case (b) (ii), it suffices to build interpretations of the Fci,ci+1 that

are strict w.r.t. Si. However, for i > 1, the statement Ti might not exist in C∗,
but may only be derivable via (J). We use Lemma 2 (d) to obtain a strict, range-
covering connector for the sequence of statements that derive Si and, again, use
Lemma 3 to complete it into an influence for Fci,ci+1 . Since these connectors are
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range-covering, we obtain a strict interpretation for Fa,b from these intermediate
Fci,ci+1 , which is the desired contradiction. ��
Theorem 2 (Completeness for Elementary Diamond-Free Schemes).
The calculus of influence is complete for the class of consistent and elementary
schemes over diamond-free partial orders, and arbitrary hypotheses.

Proof. Let C be consistent and elementary, its underlying partial order ≤ be
diamond-free. Let C∗ be a normalisation of C obtained via Lemma 1. Hence, C∗

is also consistent. Let H = a [x,y] q I b s.t. a < b and suppose that

C∗
a,b = { [x1,x2] q1 I1

︸ ︷︷ ︸

T1

, [x2,x3] q2 I2
︸ ︷︷ ︸

T2

, . . . , [xn,xn+1] qn In
︸ ︷︷ ︸

Tn

} .

Moreover, by Lemma 1 we have C � Ti for all i = 1, . . . , n.
If x < x1 or y > xn+1 then Lemma 6 (a) would yield a contradiction to

the assumption that C∗ |= H. Thus, there are i and j s.t. x ∈ [xi, xi+1] and y ∈
[xj , xj+1]. Now we must have

⋃j
h=i Ih ⊆ I and sup�(qi, . . . , qj)  q for otherwise

Lemma 6 (b) would yield a contradiction to the assumption that C∗ |= H.
Let T := a [xi,xj+1] sup�(qi,...,qj) Ii∪...∪Ij b. By repeated applications of rule

(J), T is provable from Ti, . . . , Tj , whence C � T . Moreover, H is provable from
T by at most one application of rule (I−) and (Q−) each. So C � H as well. ��

The completeness proof shows that for any consistent scheme there is always
a satisfying experiment that is comprised of stepwise linear functions. One may
argue that this does not capture the heart of functional behaviour in natural
sciences. It is possible, though, to require influences not only to be continuous
but even differentiable (on their domains). To fulfil this requirement, one could
simply use splines of order 3 in the proof of Lemma 2 with their first derivative
being 0 at the left and right edges of each rectangle.

5 Proof Search and Empirical Results

We observe that the consequence relation � between influence schemes and
hypotheses is in fact polynomial-time decidable, using a bottom-up approach.

Theorem 3. The problem of deciding, given a scheme C and a hypothesis H,
whether or not C � H holds, is decidable in time |C|O(1).

Proof. A close inspection of the proof rules shows that rule (I−) can always be
pushed downwards in a proof and successive applications of it can be shortened
to a single one, s.t. C � H iff there is some H ′ which is provable from C without
using rule (I−), but H can be derived from H ′ by a single application of (I−).

Next we observe that all rules except (I−) have the following property: the
bounds of domain and range of the conclusion are bounds of the domain or range
of some premise. This guarantees termination of a simple bottom-up procedure
for proof search: saturate C by applications of all rules other than (I−). The
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number of different statements created this way is bounded by 4·v2 ·b4 = O(|C|6)
where v is the number of variables occurring in C, and b is the number of different
interval bounds occurring in it. For each of these statements, check whether H
can be derived using (I−). This can be done in time polynomial in |C|. ��

An implementation of a proof search tool, written in Python, is publicly
available.1 The repository also contains formalisations of some influence schemes
and examples of statements whose derivability can be checked using the tool. A
deeper look at the implementation details is beyond the scope of this paper and
deferred for space considerations. It uses a more sophisticated top-down proof
search that constructs only the relevant part of the normalisation of a scheme, i.e.
only “around” those statements that can occur in a proof for the given hypothesis
H. This can not only contain statements about other variables due to rule (T)
but also statements further away from H because rules (L+↗ )–(R+

↘ ) can transmit
requirements on underlying influence experiments along the horizontal axis.

6 Conclusion

We presented a simple language for statements about the behaviour of functions
in a collection that can be interpreted as a way that different entities influence
one another. We gave it a formal semantics and devised a proof calculus to char-
acterise the (uncountable) notion of logical consequence that is generally sound
and complete for a large class of schemes that covers typical cases occurring in
the formal modelling of experimental setups from natural science classes.

It remains to be seen whether the calculus can be extended logically (by fur-
ther rules for instance) to completely capture a larger class of influence schemes.

Future work will also comprise a number of extensions of the calculus for the
purpose of obtaining higher expressiveness. Some experimental setups are inher-
ently temporal in the sense that the influence which a asserts on b depends on a
value range of a and a point in time, as in “Yeast grows at temperatures between
15 and 40 ◦during the next five minutes.” We have made a proposal to incorpo-
rate time in [4]. It also incorporates the ability to make refined assertions about
the behaviour of an influence, as in “Voltage increase is at most 65.4 V msec−1.”
This replaces the abstract behaviours ↗ etc. by intervals like [0, 65.4], and the
geometric interpretation of a statement becomes a trapezoid.

Formal statements could also include a third interval denoting time points,
and influence experiments become collections of binary real-valued functions
which interpret cuboids in three-dimensional real spaces. This would also be an
approach to model the combined effect of several variables on another variable,
even if the modeling of time as a special variable is not desired.

Acknowledgement. We thank Shahla Rasulzade for discussions that have led to this
work, and for suggesting to study a temporal extension thereof.

1 https://github.com/SoerenMoeller/influence_solver.
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material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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