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Abstract. We make two contributions to the study of theory combina-
tion in satisfiability modulo theories. The first is a table of examples for the
combinations of the most common model-theoretic properties in theory
combination, namely stable infiniteness, smoothness, convexity, finite wit-
nessability, and strong finite witnessability (and therefore politeness and
strong politeness as well). All of our examples are sharp, in the sense that
we also offer proofs that no theories are available within simpler signatures.
This table significantly progresses the current understanding of the vari-
ous properties and their interactions. The most remarkable example in this
table is of a theory over a single sort that is polite but not strongly polite
(the existence of such a theory was only known until now for two-sorted
signatures). The second contribution is a new combination theorem show-
ing that in order to apply polite theory combination, it is sufficient for one
theory to be stably infinite and strongly finitely witnessable, thus showing
that smoothness is not a critical property in this combinationmethod. This
result has the potential to greatly simplify the process of showing which
theories can be used in polite combination, as showing stable infiniteness
is considerably simpler than showing smoothness.

Keywords: Satisfiability modulo theories · Theory combination ·
Theory politeness

1 Introduction

Theory combination focuses on the following problem: given procedures for deter-
mining the satisfiability of formulas over individual theories, can we find a pro-
cedure for the combined theory? One of the foundational results in this field
is in Nelson and Oppen’s paper [9], where the authors show how to combine
theories with disjoint signatures as long as they are both stably infinite, i.e., for
every quantifier-free formula that is satisfied in the theory, there is an infinite
interpretation of the theory that satisfies it.

With the introduction of stable infiniteness was born the notion of identifying
model-theoretic properties that enable theory combination. It soon became clear,
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however, that this first step was insufficient, since some important theories with
real-world applications (like the theories of bit-vectors and finite datatypes) turned
out not to be stably infinite. Early attempts to find alternatives for stable infinite-
ness in theory combination included the introduction of gentle [5], shiny [12], and
flexible [7] theories. We focus here on the notion of politeness, which forms the basis
for theory combination in the state-of-the-art SMT solver cvc5 [1].

First considered in [10], polite theories were originally defined as those theo-
ries that are both smooth and finitely witnessable. Both notions are much harder
to test for than stable infiniteness, but once a theory is known to be polite, it
can be combined with any other theory, even non-stably-infinite ones.

A small problem in the proof of the main result of the paper was corrected in
later work [6]. This paper introduces a slightly different, more strict, definition
of politeness, together with a correct proof showing that polite theories can be
combined with arbitrary theories. Following [4], we refer to theories satisfying
the new definition as strongly polite, which is defined as being both smooth and
strongly finitely witnessable; with that in mind, we call theories satisfying the
earlier definition simply polite.

For some time, it was not known whether there exists a theory that is polite
but not strongly polite. Then, in 2021 Sheng et al. [11] provided an example.
This suggests the need for a more thorough analysis of properties such as stable
infiniteness, smoothness, finite witnessability, and strong finite witnessability, as
they appear to interact with each other in sometimes surprising or unforeseeable
ways. We add to this list convexity, which was shown to be closely related to
stable infiniteness in [2].

In this paper, we provide an exhaustive analysis, with examples whenever
possible, of whether and how these properties can coexist. Some combinations
are obviously impossible, such as a strongly finitely witnessable theory that is
not finitely witnessable; the feasibility of other combinations is more elusive; for
instance, it is initially unclear whether there can be a one-sorted, non-stably-
infinite theory that is also not finitely witnessable (we show that this is also
impossible). A main result is a comprehensive table describing what is known
about all possible combinations of these properties.

During the course of filling the table, we were also able to improve polite
combination: by making the involved proof slightly more difficult, we can simplify
the main polite theory combination result: we show that in order to combine
theories, it is enough for one theory to be stably infinite and strongly finitely
witnessable; there is no need for smoothness. This result simplifies the process
of qualifying a theory for polite combination, as showing stable infiniteness is
considerably simpler than showing smoothness.

The paper is organized as follows. Section 2 defines the basic notions we will
make use of throughout the paper. Section 3 proves several theorems showing
the unfeasibility of certain combinations of properties. Section 4 describes the
example theories that populate the feasible entries of the table. Section 5 offers
a new combination theorem. And finally, Sect. 6 gives concluding remarks and
directions for future work.1

1 Due to space limitations, proofs are included in an appendix to [13].
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Fig. 1. Cardinality Formulas. −→x stands for x1, . . . , xn.

2 Preliminary Notions

2.1 First-Order Signatures and Structures

A many-sorted signature Σ is a triple formed by a countable set SΣ of sorts, a
countable set of function symbols FΣ , and a countable set of predicate symbols
PΣ which contains, for every sort σ ∈ SΣ , an equality symbol =σ (often denoted
by =); each function symbol has an arity σ1 × · · · × σn → σ and each predicate
symbol an arity σ1×· · ·×σn, where σ1, . . . , σn, σ ∈ SΣ and n ∈ N. Each equality
symbol =σ has arity σ × σ. A signature with no function or predicate symbols
other than equalities is called empty.

A many-sorted signature Σ is one-sorted if SΣ has one element; we may refer
to many-sorted signatures simply as signatures. Two signatures are said to be
disjoint if they share only sorts and equality symbols.

We assume for each sort in SΣ a distinct countably infinite set of variables,
and define terms, literals, and formulas (atomic or not) in the usual way. If s is a
function symbol of arity σ → σ and x is a variable of sort σ, we define recursively
the term sk(x), for k ∈ N, as follows: s0(x) = x, and sk+1(x) = s(sk(x)). We
denote the set of free variables of sort σ in a formula ϕ by varsσ(ϕ), and given
S ⊆ SΣ , varsS(ϕ) =

⋃
σ∈S varsσ(ϕ) (we use vars(φ) as shorthand for varsSΣ

).
A Σ-structure A is composed of sets σA for each sort σ ∈ SΣ , called the

domain of σ, equipped with interpretations fA and PA of the function and
predicate symbols, in a way that respects their arities. Furthermore, =A

σ must
be the identity on σA.

A Σ-interpretation A is an extension of a Σ-structure that also interprets
variables, with the value of a variable x of sort σ being an element xA of σA; we
will sometimes say that an interpretation B is an interpretation on a structure
A (over the same signature) to mean that B has A as its underlying structure.
We write αA for the interpretation of the term α under A; if Γ is a set of terms,
we define ΓA = {αA : α ∈ Γ}. We write A � ϕ if A satisfies ϕ. A formula ϕ is
called satisfiable if it is satisfied by some interpretation A.

We shall make use of standard cardinality formulas, given in Fig. 1. ψσ
≥n is

only satisfied by a structure A if |σA| is at least n, ψσ
≤n is only satisfied by

A if |σA| is at most n, and ψσ
=n is only satisfied by A if |σA| is exactly n. In

one-sorted signatures, we may drop σ from the formulas, giving us ψ≥n, ψ≤n

and ψ=n.
The following lemmas are generalizations of the standard compactness and

downward Skolem-Löwenheim theorems of first-order logic to the many-sorted
case. They are proved in [8].



Combining Combination Properties 525

Lemma 1 ([8]). A set of formulas is satisfiable iff each of its finite subsets is
satisfiable.

Lemma 2 ([8]). If a set of formulas is satisfiable, there exists an interpretation
A which satisfies it and where σA is countable whenever it is infinite, for every
sort σ.

A theory T is a class of all Σ-structures that satisfy some set of closed
formulas (formulas without free variables), called the axiomatization of T which
we denote as Ax(T ); such structures will be called the models of T , a model being
called trivial when σA is a singleton for some sort σ in SΣ . A Σ-interpretation
A whose underlying structure is in T is called a T -interpretation. A formula is
said to be T -satisfiable if there is a T -interpretation that satisfies it; a set of
formulas is T -satisfiable if there is a T -interpretation that satisfies each of its
elements. Two formulas are T -equivalent when every T -interpretation satisfies
one if and only if it satisfies the other. We write �T ϕ and say that ϕ is T -valid
if A � ϕ for every T -interpretation A. Let Σ1 and Σ2 be disjoint signatures;
by Σ = Σ1 ∪ Σ2, we mean the signature with the union of the sorts, function
symbols, and predicate symbols of Σ1 and Σ2, all arities preserved. Given a
Σ1-theory T1 and a Σ2-theory T2, the Σ1 ∪ Σ2-theory T = T1 ⊕ T2 is the theory
axiomatized by the union of the axiomatizations of T1 and T2.

2.2 Model-Theoretic Properties

Let Σ be a signature. A Σ-theory T is said to be stably infinite w.r.t. S ⊆ SΣ if,
for every T -satisfiable quantifier-free formula φ, there exists a T -interpretation
A satisfying φ such that, for each σ ∈ S, σA is infinite. T is smooth w.r.t. S ⊆ SΣ

when, for every quantifier-free formula φ, T -interpretation A satisfying φ, and
function κ from S to the class of cardinals such that κ(σ) ≥ |σA| for every σ ∈ S,
there exists a T -interpretation B satisfying φ with |σB| = κ(σ), for every σ ∈ S.

Theorem 1. Let Σ be a signature, S ⊆ SΣ, and T a Σ-theory. If T is smooth
w.r.t. S, then it is also stably infinite w.r.t. S.

For a finite set of sorts S, finite sets of variables Vσ of sort σ for each σ ∈ S,
and equivalence relations Eσ on Vσ, the arrangement on V =

⋃
σ∈S Vσ induced by

E =
⋃

σ∈S Eσ, denoted by δV or δE
V , is the quantifier-free formula given by δV =

∧
σ∈S

[ ∧
xEσy(x = y) ∧

∧
xEσy ¬(x = y)

]
, where Eσ denotes the complement of

the equivalence relation Eσ.
A theory T is said to be finitely witnessable w.r.t. the set of sorts S ⊆

SΣ when there exists a function wit, called a witness, from the quantifier-free
formulas into themselves that is computable and satisfies for every quantifier-
free formula φ: (i) φ and ∃−→w .wit(φ) are T -equivalent, where −→w = vars(wit(φ))\
vars(φ); and (ii) if wit(φ) is T -satisfiable, then there exists a T -interpretation
A satisfying wit(φ) such that σA = varsσ(wit(φ))A for each σ ∈ S. T is said
to be strongly finitely witnessable if it has a strong witness wit, which has the
properties of a witness with the exception of (ii), satisfying instead: (ii′) given
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a finite set of variables V and an arrangement δV on V , if wit(φ) ∧ δV is T -
satisfiable, then there exists a T -interpretation A satisfying wit(φ) ∧ δV such
that σA = varsσ(wit(φ) ∧ δV

)A for all σ ∈ S.
From the definitions, the following theorem directly follows:

Theorem 2. Let Σ be a signature, S ⊆ SΣ, and T a Σ-theory. If T is strongly
finitely witnessable w.r.t. S then it is also finitely witnessable w.r.t. S.

A theory that is both smooth and finitely witnessable w.r.t. (a set of sorts)
S is said to be polite w.r.t. S; a theory that is both smooth and strongly finitely
witnessable w.r.t. S is called strongly polite w.r.t. S. For theories over one-sorted
empty signatures, we have the following theorem from [11]:

Theorem 3 ([11]). Every one-sorted theory over the empty signature that is
polite w.r.t. its only sort is strongly polite w.r.t. that sort.

A one-sorted theory T is said to be convex if, for any conjunction of literals
φ and any finite set of variables {u1, v1, ..., un, vn}, �T φ →

∨n
i=1 ui = vi implies

�T φ → ui = vi, for some i ∈ [1, n].
Given a one-sorted theory T , its mincard function takes a quantifier-free

formula φ and returns the countable cardinal min{|σA| : A is a T -interpretation
that satisfies φ}.2

Throughout this paper, we will use SI for stably infinite, SM for smooth,
FW for finitely witnessable, SW for strongly finitely witnessable, and CV for
convex.

3 Negative Results

If it were possible, we would present examples of every combination of proper-
ties using only the one-sorted empty signature, which is the simplest signature
imaginable.

Of course, this is not always possible: smooth theories are necessarily sta-
bly infinite, and strongly finitely witnessable theories are obligatorily finitely
witnessable. But there are several other connections we now proceed to show,
which further restrict the combinations of properties that are possible.

In Sect. 3.1, we show that, under reasonable conditions, a convex theory must
be stably infinite, while the reciprocal is also true over the empty signature. In
Sect. 3.2, we show that over the empty one-sorted signature, theories that are not
stably infinite are necessarily finitely witnessable (a somewhat counter-intuitive
result, since we usually look for theories that are, simultaneously, smooth and
strongly finitely witnessable) and, more importantly, that stably-infinite and
strongly finitely witnessable one-sorted theories are also strongly polite.

2 Note that this definition was generalized in two different ways to the many-sorted
case in [4] and [10]. However, for our investigation, the single-sorted case is enough.
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3.1 Stable-Infiniteness and Convexity

Convexity is typically defined over one-sorted signatures. Here we offer the fol-
lowing generalization to arbitrary signatures.

Definition 1. A theory T is said to be convex w.r.t. a set of sorts S ⊆ SΣ if,
for any conjunction of literals φ and any finite set of variables {u1, v1, ..., un, vn}
with sorts in S, if �T φ →

∨n
i=1 ui = vi then �T φ → ui = vi, for some i ∈ [1, n].

If we assume, as it is often natural to, that our theories have no trivial models,
then convexity implies stable infiniteness. This is true for the one-sorted case,
as proved in [2], but also for the many-sorted case as we show here. The proof is
similar, though here we need to account for several sorts at once. In particular,
the proof relies on Lemma 1.

Theorem 4. If a Σ-theory T is convex w.r.t. some set S of sorts and, for each
σ ∈ S, �T ψσ

≥2, then T is stably infinite w.r.t. S.

Reciprocally, we may also obtain convexity from stable infiniteness, but only
over empty signatures.

Theorem 5. Any theory over an empty signature that is stably infinite w.r.t.
the set of all of its sorts is convex w.r.t. any set of sorts.

As we shall see in Sect. 4, this result is tight: there are theories over non-empty
signatures that are stably infinite but not convex.

3.2 More Connections

We next present more connections between the properties. First, over the one-
sorted empty signature, a theory must be either stably infinite or finitely wit-
nessable.

Theorem 6. Every one-sorted, non-stably-infinite theory T with an empty sig-
nature is finitely witnessable w.r.t. its only sort.

The following theorem shows that for one-sorted theories, strong politeness
is a corollary of strong finite witnessability and stable infiniteness (rather than
smoothness).

Theorem 7. Every one-sorted theory that is stably infinite and strongly finitely
witnessable w.r.t. its only sort is smooth, and therefore strongly polite w.r.t. that
sort.

Generalizing this theorem to the case of many-sorted signatures is left for future
work.

Finally, by combining previous results, we can also get the following theorem,
which relates stable infiniteness, strong finite witnessability, and convexity.
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Fig. 2. A diagram of combinations over a one-sorted, empty signature: gray regions
are empty.

Theorem 8. A one-sorted theory T with an empty signature that is neither
strongly finitely witnessable nor stably infinite w.r.t. its only sort cannot be con-
vex.

To summarize, while Theorem 4 is restricted to structures with no domains
of cardinality 1, the remaining theorems of this section are not restricted to
such structures. Theorem 5 applies to empty signatures, Theorem 7 applies to
one-sorted signatures, and Theorems 6 and 8 apply to signatures that are both
empty and one-sorted. Put together, we see that many combinations of properties
for theories over a one-sorted empty signature are actually impossible. This is
depicted in Fig. 2, in which all areas but the white ones are empty. For example,
Theorem 6 shows that the area outside the SI and FW circles (representing
theories that are neither stably infinite nor finitely witnessable) is empty, as every
theory (over an empty one-sorted signature) must have one of these properties.
Similarly, Theorem 8 further shows that within the CV (convex) circle, even
more is empty, namely anything outside the SI and SW circles.

4 Positive Results

We now proceed to systematically address all possible combinations of stable-
infiniteness, smoothness, finite witnessability, strong finite witnessability, and
convexity.

The results are summarized in Table 1. Each row corresponds to a possible
combination of properties, as determined by the truth values in the first five
columns. For example, in the first row, the entries in the first five columns are
all true, indicating that in this row, all theory examples must be stably-infinite,
smooth, finitely witnessable, strongly finitely witnessable, and convex. The rest
of the columns correspond to different possibilities for the theory signatures:
either empty or non-empty, and either one-sorted or many-sorted. Again, looking
at the first row, we see four different theories listed, one for each of the signature
possibilities.

Some entries in the table list theorems instead of providing example theories.
The listed theorems tell us that there do not exist any example theories for these
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entries. For example, lines 3 and 4 cannot provide examples over a one-sorted
empty signature because of Theorem 3.

When an example is available, its name is given in corresponding cell of the
table. The theories themselves are defined in Sect. 4.1 to 4.4. The examples on
lines 25, 27 and 31 must have at least one structure with a trivial domain (i.e.,
a domain with exactly one element) because of Theorem 4.

Lines 9, 10, 13, and 14 cover theories that are stably infinite and strongly
finitely witnessable but not smooth. We call these unicorn theories because we
could not find any such theories, nor do we believe they exist, but (ignoring the
obvious cases ruled out by Theorems 2, 5 and 7) we have no proof that they do
not exist.

Definition 2. A unicorn theory is stably infinite and strongly finitely witness-
able but not smooth.

Theorem 7 shows that there are no one-sorted unicorn theories. We believe it
may be possible to provide a generalization of the upwards Löwenheim-Skolem
theorem to many-sorted logic in such a way that it would prove the non-existence
of unicorn theories, which leads to the following conjecture:

Conjecture 1. There are no unicorn theories.

Before defining the theories of Table 1, we introduce the following signatures.

Definition 3. Σ1 is the empty one-sorted signature with sort σ, Σ2 is the empty
two-sorted signature with sorts σ and σ2, and Σs is the one-sorted signature with
a single unary function symbol s.

We now describe the theories: Sect. 4.1 describes the theories that are over the
empty one-sorted signature; Sect. 4.2 then continues to the next column, describ-
ing theories over many-sorted empty signatures. Some build on the theories of the
previous column, but some are also new. Section 4.3 describes the next column,
one-sorted theories over a non-empty signature. Here, we use two constructions
to generate new theories from previously introduced ones. One construction adds
a function symbol to an empty signature (in a way that preserves all proper-
ties), and the second preserves all properties but convexity, making it possible
to construct non-convex examples in a uniform way. We also present new theo-
ries when the constructions are not sufficient. Finally, Sect. 4.4 describes theories
over non-empty many-sorted signatures.3

3 Proofs that each theory has the claimed properties can be found in the appendix
to [13].
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Table 1. Summary of all possible combinations of theory properties. Shaded cells
represent impossible combinations. In line 26: n > 1; in line 28: m > 1, n > 1 and
|m − n| > 1.

Empty Non-empty
SI SM FW SW CV One-sorted Many-sorted One-sorted Many-sorted No

T

T

T
T

T T≥n (T≥n)
2 (T≥n)s ((T≥n)

2)s 1
F Theorem 5 (T≥n)∨ ((T≥n)

2)∨ 2

F
T T2,3 Tf (Tf )s 3
F

Theorem 3 Theorem 5 T s
f (T2,3)∨ 4

F
T

T 5
F

Theorem 2 6

F
T T∞ (T∞)2 (T∞)s ((T∞)2)s 7
F Theorem 5 (T∞)∨ ((T∞)2)∨ 8

F

T
T

T Unicorn 9
F

Theorem 7 Theorem 5 Theorem 7 Unicorn 10

F
T T ∞

even (T ∞
even)

2 (T ∞
even)s ((T ∞

even)
2)s 11

F Theorem 5 (T ∞
even)∨ ((T ∞

even)
2)∨ 12

F
T

T 13
F

Theorem 2 14

F
T Tn,∞ (Tn,∞)2 (Tn,∞)s ((Tn,∞)2)s 15
F Theorem 5 (Tn,∞)∨ ((Tn,∞)2)∨ 16

F

T

T
T

T 17
F 18

F
T 19
F

Theorem 1

20

F
T

T 21
F

Theorems 1 and 2 22

F
T 23
F

Theorem 1 24

F

T
T

T T≤1 (T≤1)
2 (T≤1)s ((T≤1)

2)s 25
F T≤n (T≤n)

2 (T≤n)s ((T≤n)
2)s 26

F
T Theorem 8 T odd

1 T �=
odd (T odd

1 )s 27
F T〈m,n〉 (T〈m,n〉)

2 (T〈m,n〉)s ((T〈m,n〉)
2)s 28

F
T

T 29
F

Theorem 2 30

F
T T ∞

1 T �=
1,∞ (T ∞

1 )s 31
F

Theorem 6 T ∞
2 T �=

2,∞ (T ∞
2 )s 32

4.1 Theories over the One-Sorted Empty Signature

Table 2. Σ1-theories

Name Axiomatization

T≥n {ψ≥n}
T∞ {ψ≥k : k ∈ N}
T ∞
even {¬ψ=2k+1 : k ∈ N}

Tn,∞ {ψ=n ∨ ψ≥k : k ∈ N}
T≤n {ψ≤n}
T〈m,n〉 {ψ=m ∨ ψ=n}

Table 3. Σ2-theories

Name Axiomatization

T2,3 {(ψσ
=2 ∧ ψ

σ2
≥k

) ∨ (ψσ
≥3 ∧ ψ

σ2
≥3) : k ∈ N}

T odd
1 {ψσ

=1} ∪ {¬ψ
σ2
=2k : k ∈ N}

T ∞
1 {ψσ

=1} ∪ {ψ
σ2
≥k

: k ∈ N}
T ∞
2 {ψσ

=2} ∪ {ψ
σ2
≥k

: k ∈ N}

The axiomatizations for theories over the one-sorted empty signature Σ1 are
given in Table 2. We briefly describe them here.
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For each n > 0, T≥n includes all structures with domains of cardinality at
least n; T∞ is the theory including all structures whose domains are infinite;
T ∞
even has structures with either an even or an infinite number of elements in

their domains and was defined in [11], where it was proved to be finitely wit-
nessable, but neither smooth nor strongly finitely witnessable. The proofs justify-
ing Table 1 show additionally that it is stably infinite and convex. Tn,∞ contains
those structures whose domains have either exactly n or an infinite number of
elements; T≤n includes all structures with at most n elements in their domains;
and for positive integers m and n, T〈m,n〉 has structures whose domains have
either precisely m elements, or precisely n elements. This completes the first
column of theory examples.

Example 1. The theory T≥n admits all considered properties, while T〈m,n〉
admits only finite witnessability.

4.2 Theories over the Two-Sorted Empty Signature

We next introduce the theories over empty two-sorted signatures. For many
cases, we can simply add a trivial sort to one of the theories defined in Sect. 4.1.
When this is not possible, we introduce new theories.

Adding a Sort to a Theory. Any Σ1-theory can be used to generate a Σ2-
theory simply by adding the sort σ2 to the signature (without changing the
axiomatization). This is formalized as follows:

Definition 4. Let T be a Σ1-theory. (T )2 is the Σ2-theory axiomatized by
Ax(T ).

Lemma 3. A Σ1-theory T is stably infinite, smooth, finitely witnessable,
strongly finitely witnessable, or convex w.r.t. {σ} if and only if (T )2 is, respec-
tively, stably infinite, smooth, finitely witnessable, strongly finitely witnessable,
or convex w.r.t. {σ, σ2}.

Using Definition 4 and Lemma 3, we can populate many lines in the second
column of examples by extending the corresponding theory from the previous
column.

Example 2. (T≥n)2 is a theory over two sorts, σ and σ2, whose structures must
have at least n elements in the domain of σ (but have no restrictions on the
size of the domain of σ2). As seen in the first line of Table 1, T≥n admits all the
considered properties. By Lemma 3, so does (T≥n)2.

Additional Theories over Σ2. On some lines, e.g., line 3, there is no Σ1-theory
to extend. In such cases, we cannot use Definition 4 to construct a many-sorted
variant.

We introduce the theories shown in Table 3 to cover these cases. The theory
T2,3 contains two kinds of structures: (i) structures whose domains both have at
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least 3 elements; and (ii) structures with exactly two elements in the domain of
σ and an infinite number of elements in the domain of σ2. The theory T odd

1 has
structures with exactly one element in the domain of σ and either an odd or an
infinite number of elements in the domain of σ2. The theory T ∞

1 is similar: it has
structures with exactly one element in the domain of σ and an infinite number
of elements in the domain of σ2. Finally, T ∞

2 is similar to T ∞
1 except that its

structures have exactly 2 elements in the domain of σ.

Example 3. The theory T2,3 was first defined in [4] and later used in [11], where
it was proved to be polite (and therefore smooth, stably infinite, and finitely
witnessable) without being strongly polite (and therefore not strongly finitely
witnessable). The justification proofs for Table 1 show that T2,3 is convex as
well.4

4.3 Theories over a One-Sorted Non-empty Signature

We continue to the next column, with one-sorted non-empty signatures.
Section 4.3 shows how to construct non-empty theories from one-sorted theo-
ries over the empty signature, while preserving all their properties. In Sect. 4.3,
we provide a similar construction which generates non-convex theories from the
theories in the first column of examples. And in Sect. 4.3, we introduce addi-
tional theories not captured by the above constructions. Two of these theories
are described in more detail in Sect. 4.3.

Extending a Theory with a Unary Function Symbol While Preserv-
ing Properties. Whenever we have a theory over an empty signature, we can
construct a variant of it over a non-empty signature by introducing a function
symbol and interpreting it as the identity function. This extension preserves all
the properties that we consider. This is formalized as follows.

Definition 5. Let Σn be an empty signature with sorts S = {σ1, . . . , σn}, and
let T be a Σn-theory. The signature Σn

s has sorts S and a single unary function
symbol s of arity σ1 → σ1, and (T )s is the Σn

s -theory axiomatized by Ax(T ) ∪
{∀x. [s(x) = x]}, where x is a variable of sort σ1.

Lemma 4. For every theory T over an empty signature Σn with sorts S =
{σ1, . . . , σn}: T is stably infinite, smooth, finitely witnessable, strongly finitely
witnessable, or convex w.r.t. S if and only if (T )s is, respectively, stably infinite,
smooth, finitely witnessable, strongly finitely witnessable, or convex w.r.t. S.

We use the operator (·)s in various places in Table 1 in order to obtain examples
in non-empty signatures from existing examples over Σ1 and Σ2.

Example 4. (T≥n)s is a one-sorted theory, whose structures have at least n ele-
ments and interpret the function symbol s as the identity. As seen above, T≥n

admits all the considered properties. By Lemma 4, so does (T≥n)s.
4 We thank Oded Padon for raising the question of whether there exists a theory that

is polite and convex, but not strongly polite.
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Making a Theory Non-convex. The last general construction that we present
aims at taking a theory and creating a non-convex variant of it while preserving
the other properties we consider. This can be done with the addition of a single
unary function symbol s. To define such a theory, we make use of the formula
ψ∨ from Fig. 3. Intuitively, ψ∨ states that in an interpretation A in which it
holds, sA(sA(a)) must equal either sA(a) or a itself; in other words, either a =
sA(a) = sA(sA(a)), a = sA(sA(a)) �= sA(a), or a �= sA(a) = sA(sA(a)), as
shown in Fig. 4.

Fig. 3. The formula ψ∨ for non-convex theories.

This is especially useful for defining non-convex theories, since (s2(x) = x)∨
(s2(x) = s(x)) is valid in the theory, but neither s2(x) = x nor s2(x) = s(x) is.
Notice, of course, that non-convexity is only possible when there are at least two
elements available in the domain – otherwise, all equalities are satisfied.

Fig. 4. Possible scenarios when ψ∨ holds.

Definition 6. Let T be a theory over an empty signature with sorts S =
{σ1, . . . , σn}. Then (T )∨ is the Σn

s -theory axiomatized by Ax(T ) ∪ {ψ∨}.

Lemma 5. Let T be a theory over an empty signature Σn with sorts S =
{σ1, . . . , σn}. Then: (T )∨ is stably infinite, smooth, finitely witnessable, or
strongly finitely witnessable w.r.t. S if and only if T is, respectively, stably infi-
nite, smooth, finitely witnessable, or strongly finitely witnessable w.r.t. S. In
addition, if T has a model A with |σA

1 | ≥ 2, (T )∨ is not convex with respect to
S.

Example 5. The theory (T≥n)∨ is one-sorted, and its structures have at least n
elements. they interpret the symbol s in a way that satisfies ψ∨. In particular, for
each element a of the domain, one of the scenarios from Fig. 4 holds. According
to Lemma 5, since T≥n admits all properties, (T≥n)∨ admits all properties but
convexity.
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Additional Theories over Σs. Whenever there is a Σ1-theory with some
properties, we can obtain a Σs theory with the same properties using one of the
techniques above. To cover cases for which there is no corresponding Σ1-theory,
we use the theories presented in Table 4 and described below.

Table 4. Σs-theories

Name Axiomatization

Tf {[ψ=
≥f1(k)

∧ ψ �=
≥f0(k)

] ∨
∨k

i=1[ψ
=
=f1(i)

∧ ψ �=
=f0(i)

] : k ∈ N \ {0}}
T s
f Ax(Tf ) ∪ {ψ∨}

T �=
odd {ψ=1 ∨ [¬ψ=2k ∧ ∀ x. ¬(s(x) = x)] : k ∈ N}

T �=
1,∞ {ψ=1 ∨ [ψ≥k ∧ ∀ x. ¬(s(x) = s)] : k ∈ N}

T �=
2,∞ {[ψ=2 ∧ ∀ x. (s(x) = x)] ∨ [ψ≥k ∧ ∀ x. ¬(s(x) = x)] : k ∈ N}

We start with T =
odd , T =

1,∞, and T =
2,∞, deferring the discussion on Tf and T s

f

to Sect. 4.3. The theory T =
odd has structures A with either an infinite or an odd

number of elements and with the property that if A is not trivial, then sA(a) �= a

for all a ∈ σA. The theory T =
1,∞ has all structures A that either: (i) are trivial;

or (ii) have infinitely many elements and for which sA(a) �= a for each a ∈ σA.
Similarly, T =

2,∞ has structures A that either: (i) have exactly two elements and
interpret s as the identity; or (ii) have infinitely many elements and interpret s
in such a way that sA(a) �= a for all a ∈ σA.

On the Theories T f and T s
f . We now introduce the theories Tf and T s

f . The
importance of these theories is that both of them are one-sorted theories that
are polite but not strongly polite (the first is also convex and the second is not).
Their existence improves on the result of [11], which introduced a two-sorted
theory that is polite but not strongly polite (namely T2,3).

For their axiomatizations, we use the formulas from Fig. 5, in which s is a
unary function symbol. ψ=

≥n (ψ=
=n) states that a structure A has at least (exactly)

n elements a satisfying sA(a) = a; similarly, ψ =
≥n (ψ =

=n) states that a structure
A has at least (exactly) n elements a satisfying sA(a) �= a.

Further, the axiomatization requires a function f from positive integers to
{0, 1} that is not computable with the property that for k > 0, f maps half of
the numbers in the interval [1, 2k] to 1 and the other half to 0. The existence of
such a function is formalized below. We start by defining counting functions f0
and f1.

Definition 7. Let f : N \ {0} → {0, 1}. For i ∈ {0, 1} and n ∈ N, fi(n) is
defined by: fi(n) = |f−1(i) ∩ [1, n]|.
Intuitively, f0(n) counts how many numbers between 1 and n (inclusive) are
mapped by f to 0 and f1(n) counts how many are mapped to 1. Because f(n)
always equals 0 or 1, it is easy to see that for every n > 0, n = f1(n) + f0(n).
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Fig. 5. Cardinality formulas for signatures with a unary function symbol s. −→x stands
for x1, . . . , xn, p(x) for s(x) = x, and δn for

∧
1≤i<j≤n ¬(xi = xj).

Lemma 6. There exists a function f : N \ {0} → {0, 1} such that f(1) = 1 with
the properties that: f is not computable; and, for every k ∈ N \ {0}, f0(2k) =
f1(2k).

Example 6. The constant function that assigns 0 to all positive integers satisfies
neither the first nor the second condition of Lemma 6. The function that assigns
0 to even numbers and 1 to odd numbers satisfies the second condition, but not
the first. Of course, any non-computable function satisfies the first condition. An
example could be found by a function that returns 1 if the Turing machine that
is encoded by the given number halts and 0 otherwise, under some encoding.
Finding a function that admits both conditions is more challenging.

Let f be some function with the properties listed in Lemma 6. We can now
define Tf over Σs (note that f itself is not a part of the signature, but is rather
used to help define the axioms of Tf ). Tf consists of those structures A that
either (i) have a finite cardinality n, with f1(n) elements satisfying sA(a) = a,
and f0(n) elements satisfying sA(a) �= a (and thus A satisfies ψ=

≥f1(k)
∧ ψ =

≥f0(k)

for k ≤ n, and ψ=
=f1(n)

∧ψ =
=f0(n)

and hence
∨k

i=1[ψ
=
=f1(i)

∧ψ =
=f0(i)

] for all k ≥ n);
or (ii) have infinitely many elements, with infinitely many elements satisfying
each condition, sA(a) = a and sA(a) �= a (and thus A satisfies ψ=

≥f1(k)
∧ ψ =

≥f0(k)

for all k ∈ N). Note that the description is well-defined because an element must
always satisfy either sA(a) = a or sA(a) �= a, but never both or neither of these.
The theory T s

f is similar to Tf , but in addition to Ax(Tf ) its structures must
also satisfy ψ∨.

Remark 1. The construction of T s
f from Tf is very similar to the general con-

struction of Definition 6. However, the corresponding result, Lemma 5, accord-
ing to which all properties but convexity are preserved by this operation, is only
shown in Lemma 5 for cases where the original signature is empty, which is not
the case for Tf . Obtaining T s

f from Tf is not done by adding a function sym-
bol, but rather by changing the axiomatization of the already existing function
symbol. While we do prove that T s

f has the required properties, a general result
in the style of Lemma 5 for arbitrary signatures, with the ability to preserve an
existing function symbol instead of adding a new one, is left for future work.
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Example 7. Let An be a Σs-model with domain {a1, . . . , an} such that: sAn(ai)
equals ai if 1 ≤ i ≤ f1(n), and a1 if f1(n) < i ≤ n (the second condition may be
void if n = 1). Then An is a model of both Tf and T s

f .
If κ is an infinite cardinal, let Aκ be a Σs-model with domain A ∪ {an : n ∈

N \ {0}} (where A is a set of cardinality κ disjoint from {an : n ∈ N \ {0}}) such
that sAκ(ai) = ai for each i ∈ N \ {0}, and sAκ(a) = a1 for each a ∈ A. Then
Aκ is a model of both Tf and T s

f .

To show that Tf is smooth and finitely witnessable, we construct, given a
Tf -interpretation. another Tf -interpretation by (possibly) adding two disjoint
sets of elements to the interpretation, one whose elements will satisfy s(a) = a,
and one whose elements will satisfy s(a) �= a.

To show that it is not strongly finitely witnessable, we use the following
lemmas, which are interesting in their own right. According to the first, the
mincard function of Tf is not computable.

Lemma 7. The mincard function of Tf is not computable.

The second lemma that is needed in order to prove that Tf is not strongly
finitely witnessable, is quite surprising. As it turns out, for quantifier-free formu-
las, the set of Tf -satisfiable formulas coincides with the set of satisfiable formulas.
That is, even though the definition of Tf is very complex, it induces the same sat-
isfiability relation, over quantifier-free formulas, as the simplest theory possible
– the theory axiomatized by the empty set (or, equivalently, all valid first-order
sentences).

Lemma 8. Every quantifier-free Σs-formula that is satisfiable is Tf -satisfiable.

Note that Lemma 8 does not hold for quantified formulas in general. For example,
the formula ∀x. s(x) �= x is satisfiable but not Tf -satisfiable: because f(1) = 1,
every Tf -interpretation A must have at least one element a with sA(a) = a.

Using Lemma 7 and 8, it is possible to show that Tf is not strongly finitely
witnessable:

Lemma 9. Tf is not strongly finitely witnessable.

The idea of the proof of Lemma 9 goes as follows: assume for contradiction
that there is a strong witness wit. The mincard function for Tf can then be
defined as

mincard(φ) = min{|V/E| : E ∈ eq andwit(φ) ∧ δE
V is Tf -satisfiable}, (1)

where eq is the set of all equivalence relations E on V = vars(wit(φ)), being
the corresponding arrangements denoted by δE

V . Clearly, the sets V and eq can
be effectively computed. Also, by Lemma 8, testing for the Tf -satisfiability of
quantifier-free formulas is decidable. Together with our assumption that wit is
computable, we get that the mincard function of Tf is computable, which con-
tradicts Lemma 7.

The arguments for T s
f are very similar, and require minor changes in the

corresponding proofs for Tf .
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Remark 2. We remark on the connection between the results regarding Tf and
T s

f , and those of [3]. What we show here is that Tf (T s
f ) is polite but not

strongly polite. Figure 1 of [3] summarizes the relations between these two prop-
erties for the one-sorted case. It shows that polite theories that are axiomatized
by a universal set of axioms, and whose quantifier-free satisfiability problem is
decidable, are strongly polite. While Tf is decidable for quantifier-free formulas
(this is a corollary of Lemma 8), its presentation here is definitely not as a uni-
versal theory. On the other hand, [3] also shows that decidable polite theories
for which checking if a finite interpretation belongs to the theory is decidable
are also strongly polite. However, it is undecidable, given an interpretation, to
check whether it belongs to Tf (and T s

f ): such an algorithm would lead to an
algorithm to compute f as well. Thus, the theories Tf and T s

f are polite, but
do not meet the criteria for strong politeness from [3]. And indeed, they are not
strongly polite.

4.4 Theories over Many-Sorted Non-empty Signatures

For the last column of Table 1, all possible theories can be obtained from theories
that were already defined, using a combination of Definitions 4 to 6, and so there
is no need to present additional theories specifically for many-sorted non-empty
signatures.

Example 8. Line 1 includes the theory ((T≥n)2)s, obtained from (T≥n)2 using
Definition 5, where the latter theory is obtained from T≥n using Definition 4.
This theory admits all properties, including convexity. To obtain a non-convex
variant, the theory ((T≥n)2)∨ is constructed in a similar fashion, using Definition
6 instead of Definition 5.

With many-sorted non-empty signatures, we can always find an example for
each combination of properties, except for those that are trivially impossible due
to Theorems 1 and 2 (i.e., theories that are strongly finitely witnessable but not
finitely witnessable and theories that are smooth but not stably infinite). This
is nicely depicted by Fig. 6. Theorems 1 and 2 are represented in this figure by
the location of the circles: the circle for smooth theories is entirely inside the
circle for stably infinite theories, and similarly for strongly finitely witnessable
and finitely witnessable theories. Then, for every region in this figure, the right-
most column of Table 1 has an example, the sole exception being the region that
represents unicorn theories.

Remark 3. For non-empty signatures, we chose to include functions rather than
predicates. This is not essential as we can replace function symbols by predicate
symbols by including the sort of the result of the function as the last component
of the arity of the predicate, and then adding an axiom that forces the predicate
to be a function.
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5 Polite Combination Without Smoothness

Polite combination of theories was introduced in [10]. There, it was claimed that
in order to combine a theory T with any other theory using polite combination, it
suffices for T to be smooth and finitely witnessable (that is, polite). Later, in [6],
this condition was corrected, and it was shown that in fact a stronger requirement
is needed from T : it has to be smooth and strongly finitely witnessable (that is,
strongly polite) to be applicable for the combination method.

Given that weakening strong finite witnessability to finite witnessability
results in a condition that does not suffice, it is natural to ask whether there is
any other way to weaken the required conditions for polite combination. Rather
than weakening strong finite witnessability to finite witnessability, here we con-
sider another option: weakening the smoothness condition to stable infiniteness.
Thus, the main result of this section is that polite combination can be done for
theories that are stably infinite and strongly finitely witnessable, even if they
are not smooth.

Fig. 6. A diagram of the various notions studied in this paper. (Color figure online)

Our contribution can be understood by viewing Fig. 6, ignoring the circle that
represents convexity (a property unrelated to the current section). [6] shows
that polite combination can be done for the purple region, which represents
smooth and strongly finitely witnessable theories. [6] also presented an example
showing that expanding the same combination method to the blue region, which
represents smooth and finitely witnessable theories, results in an error. Here we
instead expand polite combination to the red region, which represents stably
infinite and strongly finitely witnessable theories. Now, the red region, if not
empty, is only populated by unicorn theories (see Sect. 4). If such theories do not
exist, the result follows immediately. Until this is settled, however, we provide a
direct proof, regardless of the existence of unicorn theories.

The next theorem shows that polite theory combination can be done for
theories that are not necessarily strongly polite (smooth and strongly finitely
witnessable), but rather that are simply stably infinite and strongly finitely wit-
nessable.
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Theorem 9. Let Σ1 and Σ2 be disjoint signatures with sorts S1 and S2; let T1

be a Σ1-theory, T2 be a Σ2-theory, and T = T1⊕T2; and let φ1 be a quantifier-free
Σ1-formula and φ2 a quantifier-free Σ2-formula.

Assume that T2 is stably-infinite and strongly finitely witnessable w.r.t. S =
S1∩S2, with strong witness wit. Let ψ = wit(φ2), Vσ = varsσ(ψ) for every σ ∈ S
and V =

⋃
σ∈S varsσ(ψ). Then the following are equivalent:

1. φ1 ∧ φ2 is T -satisfiable;
2. there exists an arrangement δV over V such that φ1 ∧ δV is T1-satisfiable and

ψ ∧ δV is T2-satisfiable.

It relies heavily on the following lemma, that proves that stable infiniteness and
strong finite witnessability imply a weaker notion of smoothness. In this weaker
notion, uncountable domains in the original structure A are reduced to countable
ones, and the function κ, that dictates the cardinalities of models, is assumed to
never assign an uncountable cardinal to any of the sorts.

Lemma 10. Let Σ be a signature with S ⊆ SΣ, and T a theory over Σ. If T is a
stably-infinite and strongly finitely witnessable theory, both w.r.t. the set of sorts
S, then: for every quantifier-free Σ-formula φ; T -interpretation A that satisfies
φ; and function κ from SA

ω = {σ ∈ S : |σA| ≤ ω} to the class of cardinals such
that |σA| ≤ κ(σ) ≤ ω for every σ ∈ SA

ω , there exists a T -interpretation B that
satisfies φ with |σB| = κ(σ) for every σ ∈ SA

ω , and |σB| = ω for every σ ∈ S\SA
ω .

The proof of Theorem 9 goes as follows: first, we make the infinite domains
corresponding to shared sorts of a model A of φ1 ∧ δV at most countable, by
applying Lemma 2. We then proceed similarly to the proof of the polite com-
bination method in [6]: decrease a model B of ψ ∧ δB by using wit as a strong
witness; and then make the cardinalities of the shared sorts in B equal those of
A (which are at most countable), by using Lemma 10.

This result greatly improves the state-of-the-art in polite theory combination,
which requires proving that one of the theories is both smooth and strongly
finitely witnessable. Thanks to this theorem, proving smoothness can be replaced
by proving stable infiniteness, which is typically a much easier task.

6 Conclusion

As mentioned, there are two main contributions offered in this paper, both asso-
ciated with the theme of theory combination. In Sect. 4, we provide a table with
examples for almost all the combinations of stable infiniteness, smoothness, con-
vexity, finite witnessability, and strong finite witnessability known not to be
impossible. Section 3 provides theorems proving the sharpness of the examples
provided. The second contribution is a new combination theorem, according to
which polite theory combination can be done without smoothness, provided we
have instead stable infiniteness.

Many ideas for future work rise from the studies here presented. A first
direction would be to settle the question of whether unicorn theories exist: if
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they do not, a proof would probably involve an interesting generalization of
the upward Löwenheim-Skolem theorem for many-sorted logic and would imply
that strongly polite theories are just simply stably-infinite and strongly finitely
witnessable theories, thus greatly simplifying the proof of Theorem 9; if unicorn
theories do exist, one wonders if they can be combined in some meaningful
way. Another direction of future work involves considering other model-theoretic
properties in our table, such as shininess, gentleness, flexibility, and so on, as well
as the effect of taking proper subsets of sorts for signatures containing more than
one sort.
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