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Preface

This volumecontains the proceedings of the 29th InternationalConference onAutomated
Deduction (CADE-29). CADE is the major forum for the presentation of research in all
aspects of automated deduction, including foundations, applications, implementations,
and practical experience. CADE-29 was held on 1–4 July 2023, hosted at the Faculty
of Civil and Industrial Engineering of the Sapienza University of Rome, Italy, and co-
located with the 8th International Conference on Formal Structures for Computation
and Deduction (FSCD). CADE-29 emphasized the breadth of topics that are of inter-
est, including applications in and beyond computer science and mathematics, and the
use/contribution of automated deduction in AI.

The Program Committee (PC) examined 74 submissions this year and decided to
accept 33 of them (28 full papers and 5 short papers or system descriptions). Submissions
were single-blind and each of them was reviewed by at least three PC members or their
external reviewers. The criteria for evaluationwere originality and significance, technical
quality, comparison with related work, quality of presentation, and reproducibility of
experiments.

The program of the conference included three invited talks, two of which were joint
talks with FSCD:

– “Lambda-Superposition: From Theory to Trophy” by Jasmin Blanchette, Ludwig-
Maximilians-Universität München, Germany

– “Nominal Techniques for Software Specification and Verification” by Maribel
Fernandez, King’s College London, UK (joint talk)

– “Can we trust AI?” by Mateja Jamnik, University of Cambridge, UK (joint talk)

A fourth invited talk, “Automated Reasoning with Data,” was given by Moshe Vardi
as recipient of the 2023 Herbrand Award.

The conference hosted several workshops, and one competition on July 4–6:

– ADeMaL: Automated Deduction for Machine Learning
– Vampire 2023: The 7th Vampire Workshop
– ThEdu’23: Theorem Proving Components for Educational Software
– SMT 2023: The 21st International Workshop on Satisfiability Modulo Theories
– CASC 2023: The CADE ATP System Competition

In addition to the best paper awards, three CADE awards were presented at the
conference:

– The 2023 Herbrand Award for Distinguished Contributions to Automated Reasoning,
awarded to Moshe Y. Vardi, Rice University, USA, in recognition of his many foun-
dational contributions to logic and automated reasoning, in particular automata-based
verification methods, constraint solving, and knowledge representation.

– The Thoralf Skolem Award for CADE papers that have passed the test of time by
being the most influential papers in the field, awarded to each of the following papers:
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• “Deciding Combinations of Theories” by Robert E. Shostak, CADE-6 (1982)
• “The TPTP ProblemLibrary” byGeoff Sutcliffe, Christian B. Suttner, and Theodor

Yemenis, CADE-12 (1994)
• “ASATBasedApproach forSolvingFormulas overBoolean andLinearMathemat-

ical Propositions” by Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti,
Artur Kornilowicz, and Roberto Sebastiani, CADE-18 (2002)

• “The Tree Width of Separation Logic with Recursive Definitions” by Radu Iosif,
Adam Rogalewicz, and Jirí Simácek, CADE-24 (2013)

– The Bill McCune PhD Award for a PhD thesis’ substantive contributions to the
field of Automated Reasoning, awarded to Alessandro Gianola, Free University of
Bozen-Bolzano, Italy.

Sincere thanks go to the many people who contributed to the success of CADE-29
— the authors, the participants, the invited speakers, the members of the PC, the external
subreviewers, the general chair, the workshop and tutorial chair, the publicity chair, the
staff at Springer, and the EasyChair team.

CADE-29 gratefully acknowledges the support of the CADE trustees, the board of
the Association for Automated Reasoning, ACM SIGLOG, and the sponsors Amazon
Web Services and Springer.

July 2023 Brigitte Pientka
Cesare Tinelli
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λ-Superposition: From Theory to Trophy

Jasmin Blanchette1,2,3

1Ludwig-Maximilians-Universität München, Munich, Germany
jasmin.blanchette@lmu.de

2Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrüücken,
Germany

3Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

This extended abstract describes work performed in collaboration with Alexander Ben-
tkamp, Simon Cruanes, Visa Nummelin, Stephan Schulz, Sophie Tourret, Petar Vuk-
mirović, and Uwe Waldmann on the design and implementation of λ-superposition, in
the context of the Matroyshka research project.

When I conceived Matroyshka in 2015, my ambition was to develop high-
erorder provers that perform well on higher-order proof obligations originating from
Isabelle/HOL [11] and other proof assistants. Lawrence Paulson had noticed that the
performance on truly higher-order goals left much to be desired and “given the inherent
difficulty of performing higher-order reasoning using first-order theorem provers, the
way forward is to integrate Sledgehammer with an actual higher-order theorem prover,
such as LEO-II” [13]. However, the subsequent integration of LEO-II [4] and Satallax
[7] failed to bring the expected benefits [16]. My hypothesis was that most Isabelle
problems have a large first-order component and the existing higher-order provers were
not optimized for this kind of reasoning.

To obtain higher-order provers that excel at first-order reasoning, I proposed to
start with a highly successful first-order calculus, superposition, and generalize it, as
much as possible, in a graceful way, culminating with a higher-order calculus. Provers
implementing this calculus would combine the strengths of native higher-order provers
and the strengths of the superposition provers that served as Sledgehammer backends:
E [14], SPASS [6], and Vampire [5].

To tackle the challenge of designing this calculus, which we call λ-superposition, we
identified three milestones that we reached in turn.We first designed a superposition-like
calculus for a λ-free, Boolean-free higher-order logic (also called applicative first-order
logic) [1]. This logic supports partial application of function symbols (e.g., f or f a, where
f is binary) and application of variables (e.g., y a). Already at this stage, the first serious
issue arose with the term order that superposition uses to prune the search space. We
were able to work around the issue by introducing a new inference rule called argument
congruence. For this and the other milestones, much of the work went into ensuring
refutational completeness.

For the second milestone, we designed a superposition-like calculus for a logic that
supports λ-abstractions but not interpreted Booleans [3]. One difficulty that arose is
that inferences need to perform higher-order unification. Unfortunately, higher-order

https://orcid.org/0000-0002-8367-0936
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unification is ill-behaved: It is undecidable and can yield a possibly infinite stream of
unifiers. Moreover, due to interactions with the term order, we need to perform full
unification (including flex-flex pairs) [17] and not simply preunification [10].

For the third milestone, we added support for interpreted Booleans [2]. This step
was based on ideas by Ganzinger and Stuber [9]. They showed how to support logical
symbols inside a superposition-like calculus, but fell short of including an interpreted
Boolean type. Thus, we extended Ganzinger and Stuber’s work [12] and used it as the
basis of a graceful generalization to higher-order logic.

Whenever we designed a calculus, we also made sure to implement it in the Zip-
perposition prover [8]. Zipperposition was originally developed by Cruanes to explore
induction, arithmetic, and deduction modulo. It is written in OCaml and is highly exten-
sible. He extended it with a pragmatic higher-order mode with support for λ-abstractions
and extensionality, without any completeness guarantees. This mode formed the basis
for our subsequent work. Empirical evaluations on TPTP and Sledgehammer bench-
marks were initially disappointing, but after some extensive tuning and new ideas for
heuristics, Zipperposition became highly competitive, finishing first in the higher-order
theorem division of the CADE ATP System Competition (CASC) in 2020, 2021, and
2022. Inspired by a similar integration in Leo-III [15] and Satallax, Zipperposition
incorporates E as a backend to tackle first-order subproblems.

We also implemented λ-superposition in the high-performance prover E [18,19]. The
E implementation is pragmatic and sacrifices completeness. For example, the possibly
infinite stream of unifiers is truncated to make it finite, and some of the most explosive
rules of λ-superposition are omitted. Probably because Zipperposition has a portfolio of
modes extensively tuned against the TPTP library and uses a version of E as a backend,
E finished only second in the higher-order theorem division of CASC 2022. On the other
hand, E finished first in the Sledgehammer division of the same competition. Despite
this, the performance improvement over Sledgehammer’s first-order backends is small.
I suspect that Isabelle problems are even more first-order than I thought.

We learned a few other lessons in the process:

• The identification of reasonable milestones was invaluable.
• The completeness proofs gave us some useful guidance as we designed the calculi,

even if it turns out that the best empirical modes are incomplete.
• Another useful guidewas the design goal of achieving, asmuch as possible, a graceful

generalization, preserving the features that make standard superposition successful
on first-order problems.

• Disappointing evaluations can simply mean that more fine-tuning and heuristics are
needed.

• The presence of many complementary modes in a well-tuned portfolio can be as
important as a highly efficient implementation.

Acknowledgment. I thank Alexander Bentkamp, Stephan Schulz, Mark Summer-
field, Petar Vukmirović, and Uwe Waldmann for textual suggestions. This research
has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program (grant No. 713999,
Matryoshka). This research has also received funding from theNetherlandsOrganization
for Scientific Research (NWO) under the Vidi program (project No. 016.Vidi.189.037,
Lean Forward).
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Nominal Techniques for Software Specification
and Verification

Maribel Fernández

Department of Informatics, King’s College London, London, UK
Maribel.Fernandez@kcl.ac.uk

Abstract. In this talk we discuss the nominal approach to the specifica-
tion of languages with binders and some applications to programming
languages and verification.

Keywords: Binding Operator · Nominal Logic · Nominal Rewriting ·
Unification · Equational Axioms · Type Systems

Overview

The nominal approach to the specification of languages with binding operators, intro-
duced by Gabbay and Pitts [20, 21, 28], has its roots in nominal set theory [27]. Its user-
friendly syntax and first-order presentation (indeed, nominal logic [25, 26] is defined as
a theory in first-order logic) makes formal reasoning about binding operators similar to
conventional on-paper reasoning.

Nominal logic uses the well-understood concept of permutation groups acting on
sets to provide a rigorous, first-order treatment of common informal practice to do with
fresh and bound names. Nominal matching and nominal unification [36, 37] (which
work modulo α-equivalence) are decidable and efficient algorithms exist [7, 8, 9, 22],
which are the basis for efficient implementations of nominal rewriting [17–19, 34].

A number of systems (such as Nominal Isabelle [35]) highlighted the benefits of the
nominal approach, which gave rise to elegant formalisations of Gödel’s theorems [24]
and the π -calculus [5] and to advances in programming language semantics [23]. How-
ever, there are still some obstacles to the inclusion of nominal features in programming
languages and verification environments.

In this talk, I will present our current work towards incorporating nominal techniques
into twowidely-used rule-based first-order verification environments: theK specification
framework [30] and the Maude programming language [11, 12].

An important component of rule-based programming and verification environments
is the algorithmused to check equivalence of terms and to solve equations (unification). In
practice, unification problems arise in the context of equational axioms (e.g., to take into
account associative and commutative (AC) operators [6, 13, 14, 32, 33]). The first part of
the talk will discuss notions of α-equivalence modulo associativity and commutativity

Partially funded by the Royal Society (International Exchanges, grant number IES\R2\212106)
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axioms [1], extensions of nominal matching and unification to deal with AC operators
[2], and the use of nominal narrowing [3] to deal with equational theories presented by
convergent nominal rewriting rules.

Another important component of rule-based programming and verification environ-
ments is the type system. In the second part of the talk, I will discuss type systems
for nominal languages (including polymorphic systems [15] and intersection systems
[4]). Dependent type theories, the dominant approach to formalising programming lan-
guages, have been extended with nominal features [10, 29, 31]. A lambda-less nominal
dependent type system is available [16] and we are currently working on a type checker
for this system.

The talk is structured as follows: we will start with the definition of nominal logic
(including the notions of fresh atoms and alpha-equivalence) followed by a brief intro-
duction to nominal matching and unification. We will then define nominal rewriting, a
generalisation of first-order rewriting that provides in-built support for alpha-equivalence
following the nominal approach. Finally, we will discuss notions of nominal unification
and rewriting modulo AC operators and briefly overview typed versions of nominal
languages.

Acknowledgements. I am grateful to my PhD students and co-authors for many fruitful
collaborations.
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Abstract. In the last couple of decades, developments in SAT-
based optimization have led to highly efficient maximum satisfiability
(MaxSAT) solvers, but in contrast to the SAT solvers on which MaxSAT
solving rests, there has been little parallel development of techniques
to prove the correctness of MaxSAT results. We show how pseudo-
Boolean proof logging can be used to certify state-of-the-art core-guided
MaxSAT solving, including advanced techniques like structure sharing,
weight-aware core extraction and hardening. Our experimental evalua-
tion demonstrates that this approach is viable in practice. We are hope-
ful that this is the first step towards general proof logging techniques for
MaxSAT solvers.

Keywords: MaxSAT · core-guided search · proof logging · certifying
algorithms

1 Introduction

Combinatorial optimization is one of the most impressive, and most intriguing,
success stories in computer science. This area deals with computationally very
challenging problems, which are widely believed to require exponential time in
the worst case [21,49]. In spite of this, during the last couple of decades aston-
ishing progress has been made on so-called combinatorial solvers for a number
of different algorithmic paradigms such as Boolean satisfiability (SAT) solving
and optimization [15], constraint programming (CP) [72], and mixed integer pro-
gramming (MIP) [1,16]. Today, such solvers are routinely used to solve real-world
problems with hundreds of thousands or even millions of variables.

While the performance of modern combinatorial solvers is truly impressive,
one negative aspect is that they are highly complex pieces of software, and
it is well documented that even mature state-of-the-art solvers sometimes give
wrong results [2,18,25,37]. This can be fatal for applications where correctness is
a non-negotiable demand. Perhaps the most successful approach for addressing
this problem so far is the requirement in the SAT solving community that solvers
c© The Author(s) 2023
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should be certifying [3,62], meaning that when given a formula a solver should
output not only a verdict whether the formula is satisfiable or unsatisfiable, but
also an efficiently machine-verifiable proof log establishing that this verdict is
guaranteed to be correct. One can then feed the input formula, the verdict, and
the proof log to a special, dedicated proof checker, and accept the result if the
proof checker agrees that the proof log shows that the solver computation is
valid. Over the years, different proof formats such as RUP [43], TraceCheck [14],
DRAT [44,45], GRIT [27], and LRAT [26] have been developed, and for almost
a decade DRAT proof logging has been compulsory in the (main track of the)
SAT competition. However, there has been very limited progress in designing
analogous proof logging techniques for more powerful algorithmic paradigms.

Our focus in this work is on the optimization paradigm that is arguably
closest to SAT solving, namely maximum satisfiability or MaxSAT solving [8,56],
and the challenge of developing proof logging techniques for MaxSAT solvers.

1.1 Previous Work

Since essentially all modern MaxSAT solvers are based on repeated invocations
of SAT solvers, a first question is why SAT proof logging techniques are not
sufficient. While DRAT is a very powerful proof system, it seems that the over-
head of generating proofs of correctness for the rewriting steps in between SAT
solver calls in MaxSAT solvers is too large to be tolerable for practical purposes.
Another, related, problem is that for optimization problems one needs to reason
about the objective function, which DRAT struggles to do since its language is
limited to disjunctive clauses. But perhaps the biggest challenge is that while
modern SAT solving is completely dominated by the conflict-driven clause learn-
ing (CDCL) method [11,59,66], for MaxSAT there is a rich variety of approaches
including linear SAT-UNSAT (or model-improving search) [31,54,68], core-
guided search [4,7,35,67], implicit hitting set (IHS) search [28,29], and some
recent work on branch-and-bound methods [57] (where we stress that the lists
of references are far from exhaustive).

One tempting solution to circumvent this heterogeneity of solving approaches
is to treat the MaxSAT solver as a black box and use a single call to a certify-
ing SAT solver to prove optimality of the final solution found. However, there are
several problems with this proposal. Firstly, we would still need proof logging to
ensure that the input to the SAT solver is a correct encoding of a claim of optimal-
ity for the correct problem instance. Secondly, such a SAT call could be extremely
expensive, running counter to the goal of proof logging with low (and predictable)
overhead. Finally, even if the SAT-call approach could be made to work efficiently,
this would just certify the final result, and would not help validate the correctness
of the reasoning of the solver. For these reasons, our goal is to provide proof logging
for the actual computations of the MaxSAT algorithm.

While some proof systems and tools have been developed specifically for
MaxSAT [19,34,48,53,64,65,69–71], none of them comes close to providing
general-purpose proof logging, because they apply only for very specific algo-
rithm implementations and/or fail to capture the full range of reasoning used in
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an algorithmic approach. A recent work [75] by two co-authors on the current
paper instead leverages the pseudo-Boolean proof logging system VeriPB [76]
to certify correctness of the unweighted linear SAT-UNSAT solver QMaxSAT.
VeriPB is similar in spirit to DRAT , but operates with more general 0–1 linear
inequalities rather than just clauses. This simplifies reasoning about optimiza-
tion problems, and also makes it possible to capture the powerful MaxSAT solver
inferences in a more concise way. VeriPB has previously been used for proof
logging of enhanced SAT solving techniques [17,42] and pseudo-Boolean solv-
ing [38], as well as for providing proof-of-concept tools for a nontrivial range of
techniques in constraint programming [33,41] and subgraph solving [39,40].

1.2 Our Contributions

In this work, we use VeriPB to provide, to the best of our knowledge for the
first time, efficient proof logging for the full range of techniques in a cutting-edge
MaxSAT solver. We consider the state-of-the-art core-guided solver CGSS [47],
based on RC2 [46], and show how to enhance CGSS to output proofs of cor-
rectness of its reasoning, including sophisticated techniques such as stratifica-
tion [6,58], intrinsic-at-most-one constraints [46], hardening [6], weight-aware
core-extraction [13], and structure sharing [47]. We find that the overhead for
such proof logging is perfectly manageable, and although there is certainly room
to improve the proof verification time, our experiments demonstrate that already
a first proof-of-concept implementation of this approach is practically feasible.

It has been shown previously [32,39,52] that proof logging can also serve as
a powerful debugging tool. This is because faulty reasoning is likely to lead to
unsound proofs, which can be detected even if the solver produces correct output
for all test cases. We exhibit yet another example of this—some proofs for which
we struggled to make the verification work turned out to reveal two well-hidden
bugs in RC2 and CGSS that earlier extensive testing had failed to uncover.

Although it still remains to provide proof logging for other MaxSAT
approaches such as (general, weighted) linear SAT-UNSAT and implicit hitting
set (IHS) search, we are optimistic that our work could serve as an important
step towards general adoption of proof logging techniques for MaxSAT solvers.

1.3 Outline of This Paper

After reviewing preliminaries for pseudo-Boolean reasoning and core-guided
MaxSAT solving in Sects. 2 and 3, we explain how core-guided MaxSAT solvers
can be equipped with proof logging methods in Sect. 4. In Sect. 5 we present our
experimental evaluation, after which some concluding remarks and directions for
future research are given in Sect. 6.

2 Preliminaries

We start by a review of some standard material which can be found, e.g., in [20,
38,42]. A literal � over a Boolean variable x (taking values in {0, 1}, which we
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identify with false and true, respectively) is x itself or its negation x, where
x = 1 − x. A pseudo-Boolean (PB) constraint is a 0-1 integer linear inequality
C

.=
∑

i ai�i ≥ A (where .= denotes syntactic equality). When convenient, we
can assume without loss of generality that PB constraints are in normalized
form [10]; i.e., all literals �i are over distinct variables and the coefficients ai

and the degree (of falsity) A are non-negative integers. The set of literals in
C is denoted lits(C). The negation of C is ¬C

.=
∑

i ai�i ≤ A − 1 (rewritten
in normalized form when needed). A pseudo-Boolean formula is a conjunction
F

.=
∧

j Cj of PB constraints. Note that a disjunctive clause can be viewed as a
PB constraint with all coefficients and the degree equal to 1, and so formulas in
conjunctive normal form (CNF) are special cases of PB formulas.

A (partial) assignment ρ is a (partial) function from variables to {0, 1}, which
we extend to literals by respecting the meaning of negation. Applying ρ to a
constraint C yields C�ρ by substituting the variables assigned in ρ by their values,
and for a formula F

.=
∧

j Cj we define F�ρ
.=

∧
j Cj�ρ. The constraint C is

satisfied by ρ if
∑

ρ(�i)=1 ai ≥ A, and ρ satisfies F if it satisfies all C ∈ F , in which
case F is satisfiable. A formula lacking satisfying assignments is unsatisfiable.
We say that F implies C, denoted F |= C, if any assignment satisfying F also
satisfies C.

An objective O
.=

∑
i wi�i +M is an affine function over literals �i to be mini-

mized by (total) assignments α satisfying F . The value (or cost) of an objective O
under such an α, which we refer to as a solution, is O(α) =

∑
α(�i)=1 wi + M .

We write coeff (O, �i) to denote the coefficient wi of a literal �i ∈ lits(O).
The foundation of the pseudo-Boolean proof logging in this paper is the cut-

ting planes proof system [24], which is a method to iteratively derive new con-
straints implied by a pseudo-Boolean formula F . If C and D have been derived
before or are axiom constraints in F , then any positive linear combination of
these constraints can be derived. Literal axioms � ≥ 0 can also be added to any
previously derived constraints. For a constraint

∑
i ai�i ≥ A in normalized form,

division by a positive integer d derives
∑

i�ai/d��i ≥ �A/d�, and we also add
a saturation rule that derives

∑
i min{ai, A} · �i ≥ A (where the soundness of

these rules crucially depends on the normalized form). It is well known that any
PB constraint implied by F can be derived using these rules.

A constraint C is said to unit propagate the literal � to true under an assign-
ment ρ if C�ρ cannot be satisfied unless � is true. During unit propagation on
F under ρ, we extend ρ iteratively by any propagated literals until an assign-
ment ρ′ is reached under which no constraint C ∈ F is propagating or some
constraint C wants to propagate a literal that has already been assigned to the
opposite value. The latter case is called a conflict, since C is violated by ρ′. We
say that F implies C by reverse unit propagation (RUP), and that C is a RUP
constraint with respect to F , if F ∧ ¬C unit propagates to conflict under the
empty assignment. It is not hard to see that F |= C holds if C is a RUP con-
straint, and as a convenient shorthand we will add a RUP rule for deriving new
constraints.
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In addition to deriving constraints that are implied by a formula F , we also
allow deriving so-called redundant constraints C that are not implied by F as
long as some optimal solution is guaranteed to be preserved. This is done by
extending the proof system with a redundance-based strengthening rule [17,42].
We will only need the special case of this rule saying that for a fresh variable z
and for any constraint D

.=
∑

i ai�i ≥ A we can introduce the reified constraints

C⇒
reif(z,D) .= Az +

∑
i ai�i ≥ A (1a)

C⇐
reif(z,D) .= (

∑
i ai − A + 1) z +

∑
i ai�i ≥

∑
i ai − A + 1 (1b)

encoding the implications z ⇒ D and z ⇐ D, respectively. We refer to z as the
reification variable, and when D is clear from context, we will sometimes write
just C⇒

reif(z) for (1a) and C⇐
reif(z) for (1b).

The maximum satisfiability (MaxSAT) problem can be described conveniently
as a special case of pseudo-Boolean optimization. A discussion on the equivalence
of the following and the—more classical—clause-centric definition can be found
in, for instance, [8,55]. An instance (F,O) of the (weighted partial) MaxSAT
problem consists of a CNF formula F and an objective function O written as a
non-negative affine combination of literals. The goal is to find a solution α that
satisfies F and minimizes O(α). We say that such a solution α is optimal for the
instance and that the optimal cost of the instance (F,O) is O(α).

3 The OLL Algorithm for Core-Guided MaxSAT Solving

We now proceed to discuss the core-guided MaxSAT solving in CGSS, which is
based on the OLL algorithm [5,63], and describe the main heuristics used in effi-
cient implementations of this algorithm. Given a MaxSAT instance (Forig , Oorig),
OLL takes an optimistic view and attempts to find an assignment satisfying Forig

in which Oorig equals its constant term (i.e., all literals in lits(Oorig) are false).
If such a solution exists, it is clearly optimal. Otherwise, the solver will extract
a core K, which is a clause such that (i) K only contains objective literals,
i.e., lits(K) ⊆ lits(Oorig), and (ii) Forig implies K, which means that any
solution to Forig has to set at least one literal in lits(K) to true. The cost
w(K,O) = min{coeff (O, �) : � ∈ lits(K)} of a core K is the smallest coefficient
in the objective O of any literal in K. The core K is used to (conceptually)
reformulate the instance into (Fref , Oref ) which has the same minimal-cost solu-
tions. The constant term LB in Oref is a lower bound on the optimal cost of
the instance, and the reformulation is done in such a way that the lower bound
increases (exactly) with the cost of the core K as defined above.

In more detail, the algorithm maintains a reformulated objective Oref (ini-
tialized to Oorig) such that the (non-normalized) pseudo-Boolean constraint

Oorig ≥ Oref
.=

∑

b∈lits(Oorig)

coeff (Oorig , b) ·b ≥
∑

b′∈lits(Oref )

coeff (Oref , b
′) ·b′ +LB (2)
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is satisfied by all solutions of Fref . Note that the constraint (2), which we refer
to as an objective reformulation constraint, implies that the constant term LB
is a lower bound on the optimal cost.

In each iteration, a SAT solver is queried for a solution α to Fref with
Oref (α) = LB . If such an α exists, the constraint (2) yields that Oorig(α) = LB ,
and so α is a minimal-cost solution to (Forig , Oorig). Otherwise, the solver returns
a new core K that requires at least one literal in lits(Oref ) to be set to 1. This
implies that the optimal cost is strictly larger than LB , and the core K is used
for a new reformulation step.

The objective reformulation step adds new clauses to Fref encoding the con-
straints yK,k ⇐

∑
b∈Lit(K) b ≥ k for k = 2, . . . , |K|. The new variables yK,k

are added to Oref with coefficient w(K,Oref ) equalling the cost of K, and the
coefficient in Oref of each literal in K is decreased by the same amount. Finally,
the lower bound LB—the constant term of Oref —is also increased by w(K,Oref ).
Since yK,k encodes that at least k literals in K are true, we have the equality
∑

b∈lits(K) b = 1 +
∑|K|

k=2 yK,k, where the additive 1 comes from the fact that at
least one literal in K has to be true, and the reformulation step is just applying
this equality multiplied by w(K,Oref ) to Oref . Notice that the variables added
during objective reformulation can later be discovered in other cores. In practice,
all implementations of OLL we are aware of encode the semantics of counting
variables incrementally [60]. This means that initially only the variable yK,2 is
defined, and the variable yK,i+1 is introduced only after yK,i is found in a core.

Implementations of OLL for MaxSAT—including the CGSS solver that we
enhance with proof logging in this work—extend the algorithm with a number of
heuristics such as stratification [6,58], hardening [6], the intrinsic-at-most-ones
technique [46], weight-aware core extraction [13], and structure sharing [47].

Stratification extracts cores not over all literals in Oref but only over those
whose coefficient is above some bound wstrat . This steers search toward cores
containing literals with high coefficients, resulting in larger increases of LB . Once
no more cores over such variables can be found, the algorithm lowers wstrat ,
terminating only after no more cores can be found with wstrat = 1. The fact that
no more cores containing only variables with coefficients above wstrat exist is
detected by the SAT solver returning a (possibly non-optimal) solution α. The
minimal cost Oorig(α) of all such solutions gives an upper bound UB on the
optimal cost of the instance, allowing OLL to terminate as soon as LB = UB .

Hardening fixes literals in Oref to 0 based on information provided by the
current upper and lower bounds UB and LB . If for any b ∈ lits(Oref ) it holds
that coeff (Oref , b)+LB > UB , then any solution α with b = 1 would have higher
cost than the current best solution known, and would thus not be optimal.

The intrinsic-at-most-one technique identifies subsets S ⊆ lits(Oref ) of objec-
tive literals such that

∑
b∈S b ≤ 1 is implied, i.e., any solution can assign at most

one literal in S to 0. This is used both to increase the lower bound and to refor-
mulate the objective. If we let wmin = min{coeff (Oref , b) : b ∈ S}, then S implies
a lower bound increase of LBS = (|S| − 1) · wmin . Additionally, we define a new
variable �S by the clause �S +

∑
b∈S b ≥ 1 to indicate if in fact all literals in S
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are true, and introduce it in the reformulated objective with coefficient wmin .
This means that we remove the already known lower bound LBS from Oref and
transfer the possible additional cost wmin from S to the variable �S .

Weight-aware core extraction (WCE) delays objective reformulation, and the
accompanying increase in new variables and clauses, for as long as possible.
When a new core K is extracted by a solver that uses WCE, initially only the
coefficient of each b ∈ lits(K) is lowered and the lower bound LB is increased
by w(K,Oref ). Then the SAT solver is invoked again with the literals, that
still have coefficients above wstrat in Oref , set to 0. When the SAT solver finds
a satisfying assignment extending the assumptions, all objective reformulations
steps are then performed at once. This is correct since the final effect is the same
as if the core would have been discovered one by one and immediately followed
by objective reformulation. Notice that this core extraction loop is guaranteed to
terminate since the coefficient of at least one variable is decreased to 0 for each
new core. Structure sharing is a recent extension to weight-aware core extraction
that makes use of the potential overlap in cores detected in order to achieve more
compact encodings of counting variable semantics.

4 Proof Logging for the OLL Algorithm for MaxSAT

We have now reached a point where we can describe the contribution of this
work, namely how to add proof logging to an OLL-based core-guided MaxSAT
solver, including all the state-of-the-art techniques described in Sect. 3.

In our proof logging routines we maintain the invariants described next. The
reformulated objective Oref is already implicitly tracked by the solver and at all
times it is possible to derive that Oorig ≥ Oref as in (2). We also keep track of
the current upper bound UB on Oorig and best solution αbest found so far. All
cores that have been found and processed are in the set K.

SAT Solver Calls. The CDCL SAT solvers used in core-guided MaxSAT algo-
rithms can support DRAT proof logging, and since the proof format used by
VeriPB is a strict extension of DRAT (modulo small and purely syntactical
modifications) it is straightforward to provide proof logging for the part of the
reasoning done in SAT solver calls, and to add all learned clauses to the proof
checker database.

Each invocation of the SAT solver returns either a new solution α or a new
core K. When a solution α with Oorig(α) < UB is obtained, it is logged in the
proof, which adds the objective-improving constraint

Oorig ≤ UB − 1 (3a)
(which is

∑

b∈lits(Oorig)

coeff (Oorig , b) · b ≥ 1 +
∑

b∈lits(Oorig)

coeff (Oorig , b) − UB (3b)

in normalized form). A technical side remark is that later solutions with cost
greater than UB cannot successfully be logged, since they violate the con-
straint (3a) added to the proof checker database, and so the proof logging rou-
tines make sure to only log solutions that improve the current upper bound.
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If the SAT solver instead returns a new core K, this clause is guaranteed to
be a reverse unit propagation (RUP) clause with respect to the set of clauses
currently in the solver database, and so we can use the RUP rule to add K
to the proof checker database (which contains a superset of the clauses known
by the solver). For our book-keeping, we also add K to the set K. A special
case is that K could be the contradictory empty clause, corresponding to the
pseudo-Boolean constraint 0 ≥ 1. This means that there are no solutions to the
formula.

To optimize the efficiency of proof verification, constraints should be deleted
from the proof when they are no longer needed. Since SAT solver proofs are
only used to prove unsatisfiability this does not cause any issues, but when
certifying optimality we have to be careful in order not to create better-than-
optimal solutions (which could happen if, e.g., constraints in the input formula
are removed). The checked deletion rule [17] ensuring this in VeriPB does not
have any analogue in DRAT , so some care is needed here when translating SAT
solver proofs into the VeriPB format.

Incremental Totalizer with Structure Sharing. Different implementations of OLL
for MaxSAT differ in which encoding is used for the counting variables introduced
during objective reformulation [9,50,51]. The two solvers we consider use total-
izers [9], so we start by explaining this encoding and then show how to provide
proof logging for the clauses added to the proof checker database.

The totalizer encoding for a set I = {�1, . . . , �n} of literals is a CNF formula T
that defines counting variables yI,j for j = 1, . . . , n such that for any assignment
that satisfies T the variable yI,j is true if and only if

∑n
i=1 �i ≥ j. The structure

of T can be viewed as a binary tree, with literals in I at the leaves and with
each internal node η associated with variables counting the true leaf literals in
the subtree rooted at η. The variables yI,j are associated with the root of the
tree.

More formally, given a set of literals I, we construct a binary tree with leaves
labelled by the literals in I. For every node η of T , let lits(η) denote the leaves
in the subtree rooted at η; where it is convenient, we will overload I to also refer
to the root note. For each internal node η, the totalizer encoding introduces
the counting variables Sη = {yη,1, . . . , yη,|lits(η)|}, the meaning of which can be
encoded recursively in terms of the variables Sη1 and Sη2 for the children η1
and η2 of η by the (pseudo-Boolean form of the) clauses

C⇐
η (α, β, σ) .= yη,σ + yη1,α + yη2,β ≥ 1 (4a)

C⇒
η (α, β, σ) .= yη,σ+1 + yη1,α+1 + yη2,β+1 ≥ 1 (4b)

for all integers α, β, σ such that α + β = σ and 0 ≤ α ≤ |lits(η1)|, 0 ≤ β ≤
|lits(η2)|, and 0 ≤ σ ≤ |lits(η)|. We use the notational conventions in (4a)–
(4b) that y�,1 = � for all leaves �, and that yη,0 = 1 and yη,|lits(η)|+1 = 0 for
all nodes η (so that clauses containing yη,0 or yη,|lits(η)|+1 can be simplified to
binary clauses or be omitted when they are satisfied). The clauses C⇒

η (α, β, σ)
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in (4b) are not necessarily added to the clause database of the MaxSAT solver,
but are sometimes included for improved propagation.

We now turn to the question of how to derive the clauses (4a)–(4b) encod-
ing the meaning of the counting variables yI,j in the proof. This is a two-step
process. First, reified pseudo-Boolean (and, in general, non-clausal) constraints
C⇒

reif(yη,j) and C⇐
reif(yη,j) as in (1a)–(1b), encoding that yη,j holds if and only

if
∑

�∈lits(η) � ≥ j, are derived by redundance-based strengthening. Then the
clauses added to the MaxSAT solver are derived from these pseudo-Boolean con-
straints. Although we omit the details due to space constraints, it is not hard to
show that for any internal node η with children η1 and η2, the clauses C⇐

η (α, β, σ)
and C⇒

η (α, β, σ) in (4a)–(4b) can be derived from the constraints C⇐
reif(yη,σ),

C⇒
reif(yη,σ), C⇐

reif(yη1,α), C⇒
reif(yη1,α), C⇐

reif(yη2,β), and C⇒
reif(yη2,β) by standard cut-

ting planes derivations as in [75]. In particular, the certification of these totalizers
can be done incrementally: clauses in the encoding can be derived as the corre-
sponding counter variables are lazily introduced in the OLL algorithm.

This approach is also compatible with structure sharing, where subtrees of
a previously constructed totalizer tree can be reused (to avoid doing the same
work twice). The only constraints from a subtree rooted at η∗ that are needed
when generating another totalizer encoding at a higher level are the constraints
C⇒

reif(yη∗,σ) and C⇐
reif(yη∗,σ) defining the counter variables in the subtree root η∗.

To decrease the memory usage of the proof checker, it can be useful to delete
reification constraints from the proof once we know that they will no longer be
needed. Without structure sharing, for an internal node η, once all clauses that
mention yη,j are created, the constraints C⇐

reif(yη,j) and C⇒
reif(yη,j) will not be

used anymore and can thus be deleted. On the other hand, structure sharing
reuses as many counting variables as possible, even over multiple iterations of
weight-aware core extraction. This means that C⇐

reif(yη,j) and C⇒
reif(yη,j) need

to be retained, even after all clauses in the totalizer encoding for all parents of
node η have been created.

Objective Reformulation. If counting variables yK,i for i = 2, . . . , sK have been
introduced for the core K, then the objective reformulation with respect to K
is derived with the help of the constraint

∑

b∈K

b ≥ 1 +
sK∑

i=2

yK,i (5a)

(or
∑

b∈K

b +
sK∑

i=2

yK,i ≥ sK (5b)

in normalized form). The constraint (5b) can in turn be obtained from the core
clause K and the reified constraints C⇒

reif(yK,j). It is clear that this should be pos-
sible, since the latter constraints define the variables yK,j precisely so that (5b)
should hold, and we refer to Algorithm 5 in [38] for the details. Also, each time
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a new counting variable yK,j is introduced for a core K, we add it to (5b) to
maintain this constraint as an invariant.

To illustrate how this update works, suppose we have a core K
.=

∑n
i=1 bi ≥ 1

for which
∑n

i=1 b +
∑sK−1

i=2 yK,i ≥ sK − 1 has already been derived. The next
counting variable yK,sK is introduced by the reification sK ·yK,sK +

∑n
i=1 bi ≥ sK .

The previous constraint is multiplied by sK − 1 and added to the new reified
constraint, yielding sK ·

∑n
i=1 b+(sK −1)·

∑sK−1
i=2 yK,i+sK ·yK,sK ≥ (sK −1)·sK +1.

Dividing this last constraint by sK results in
∑n

i=1 b +
∑sK

i=2 yK,i ≥ sK , which is
the desired updated constraint.

For a set of extracted cores K, we can derive the objective reformulation
constraint Oorig ≥ Oref by multiplying (5b) for each K ∈ K by the cost w(K,Oref )
of K and summing up all these multiplied constraints. The fact that we have
an inequality Oorig ≥ Oref rather than an equality is due to the incremental use
of totalizers. More specifically, if sK = |lits(K)| would hold for every K ∈ K, it
would be possible to derive Oorig = Oref instead. Here we would like to stress one
subtlety for developing proof logging for OLL: as the algorithm progresses and
more output variables of totalizers are introduced (i.e., the counters sK increase),
the reformulated objective potentially also increases—because of added counted
variables when sK increases we have the inequality Oorig ≥ Onew

ref ≥ Oold
ref . For

this reason, the old constraint Oorig ≥ Oold
ref cannot be used to derive Oorig ≥

Onew
ref after objective reformulation. Instead, we have to derive Oorig ≥ Oref from

scratch each time the solver argues with the reformulated objective. For doing
this we need to have access to the entire set K of cores.

Proving Optimality. When the solver has found an optimal solution and estab-
lished a matching lower bound, optimality is certified in the proof log using a
proof by contradiction from the objective reformulation constraint Oorig ≥ Oref

in (2) and the (normalized form of the) objective-improving constraint Oorig ≤
UB − 1 in (3b). If we add these two constraints and cancel like terms, we get

∑

b′∈lits(Oref )

coeff (Oref , b
′) · b

′ ≥ 1 − UB + LB +
∑

b′∈lits(Oref )

coeff (Oref , b
′) . (6)

Since we have UB = LB when the optimal solution has been found, and since
∑

b′∈lits(Oref )
coeff (Oref , b

′) · b′
cannot possibly exceed

∑
b′∈lits(Oref )

coeff (Oref , b
′),

the constraint (6) can be simplified to contradiction 0 ≥ 1.

Intrinsic At-Most-One Constraints. Certifying intrinsic at-most-one constraints
for a set S ⊆ lits(Oref ) of literals requires deriving (i) the at-most-one constraint
stating that at most one b ∈ S is assigned to 0 by any solution and (ii) constraints
defining the variable �S . Such sets S are detected by unit propagation that
implicitly derives implications bi ⇒ bj in the form of binary clauses bi + bj ≥ 1
for every pair of variables in S. In the proof log, all these binary clauses can
be obtained by RUP steps, after which the at-most-one constraint

∑
b∈S b ≤ 1

(which is
∑

b∈S b ≥ |S| − 1 in normalized form) is derived by a standard cutting
planes derivation (see, e.g., [24]).
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The reified constraints �S ⇐
∑

b∈S b ≥ |S| and �S ⇒
∑

b∈S b ≥ |S| defining
the variable �S (which are �S +

∑
b∈S b ≥ 1 and �S +

∑
b∈S b ≥ |S|, respectively, in

normalized form) are derived by redundance-based strengthening. Note that the
latter constraint does not exist in the MaxSAT solver, but we need it in the proof
in order to derive the objective reformulation for the at-most-one constraint.

Hardening. Formally, hardening corresponds to deriving b ≥ 1 in the proof for
some literal b ∈ lits(Oref ) for which UB < LB + coeff (Oref , b) holds. Such an
inequality b ≥ 1 is implied by RUP if we first derive the constraint (6), since
assigning b = 1 results in (6) being contradicting.

Upper Bound Estimation. A final technical proof logging detail is that some
implementations of the OLL algorithm for MaxSAT—including the Python-
based version of CGSS—do not use the actual cost of the solution found by the
SAT solver as the upper bound UB when hardening. In order to avoid the over-
head in Python of extracting the solution from the SAT solver, an upper bound
estimate UBest is computed instead based on the initial assignment passed to the
SAT solver in the call. Since any valid estimate is at least the cost of the solution
found (i.e., UBest ≥ UB), hardening steps based on UBest can be justified by first
deriving Oorig ≤ UBest − 1, which follows from the latest objective-improving
constraint (3a). However, in order to handle solutions correctly in the proof, the
proof logging routines need to extract the solution found by the solver and com-
pute the actual cost, which means that a Python-based solver will not be able
to avoid this overhead when running with proof logging.

Worked-Out Example. We end this section with a complete, worked-out example
of OLL solving and proof logging for the toy MaxSAT instance (F,O) with
formula F = {(b1 ∨x), (¬x∨ b2), (b3 ∨ b4)} and objective O = 5b1 +5b2 + b3 + b4.

After initialization, the internal SAT solver of the OLL algorithm is loaded
with the clauses of F and the proof consists of constraints (1)–(3) in Table 1.
The OLL search begins by invoking the SAT solver on the clauses in F in order
to check the existence of any solutions. Assume the SAT solver returns the
solution α1 assigning b1 = b3 = b4 = 1 and b2 = x = 0. This solution has
objective value O(α1) = Oorig(α1) = 7 so the algorithm updates UB = 7 and
logs the objective-improving constraint (4) in Table 1 equivalent to Oorig ≤ 6.

Assume the stratification bound wstrat is initialised to 2. Then the solver is
invoked with b1 = b2 = 0 and returns the core K1

.= b1 + b2 ≥ 1, which is added
to the proof as constraint (5). As already mentioned, core clauses are guaranteed
to be RUP with respect to the set of clauses in the SAT solver database, which
are also added to the proof.

For simplicity, we ignore WCE and structure sharing in this example, mean-
ing that the solver next reformulates the objective based on K1 by introducing
clauses enforcing yK1,2 ⇐ (b1 + b2 ≥ 2) for the new counting variable yK1,2. This
is done by (i) introducing the pseudo-Boolean constraints (6) and (7) in Table 1
by reification, and (ii) deriving the clauses corresponding to these constraints.
While the MaxSAT solver only uses the implication (6), the proof also requires
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Table 1. Example proof produced by a certified OLL solver.

id Pseudo-Boolean constraint Justification

(1) b1 + x ≥ 1 input

(2) b2 + x ≥ 1 input

(3) b3 + b4 ≥ 1 input

(4) 5b1 + 5b2 + b3 + b4 ≥ 6 log solution α1

(5) b1 + b2 ≥ 1 RUP

(6) b1 + b2 + yK1,2 ≥ 1 reification

(7) 2yK1,2
+ b1 + b2 ≥ 2 reification

(8) 5b1 + 5b2 + 5yK1,2
≥ 10 (((5) + (7))/2) · 5

(9) b3 + b4 + 5yK1,2
≥ 6 (4) + (8)

(10) yK1,2
≥ 1 RUP

(11) b3 + b4 ≥ 1 RUP

(12) b3 + b4 + yK2,2 ≥ 1 reification

(13) 2yK2,2
+ b3 + b4 ≥ 2 reification

(14) b3 + b4 + yK2,2
≥ 2 ((11) + (13))/2

(15) 5b1 + 5b2 + b3 + b4 ≥ 7 log solution α2

(16) 5b1+5b2+b3+b4+5yK1,2
+yK2,2

≥ 12 (8) + (14)

(17) 5yK1,2
+ yK2,2

≥ 7 (15) + (16), ⊥

constraint (7) corresponding to yK1,2 ⇒ (b1 + b2 ≥ 2). Conveniently, in this
toy example yK1,2 ⇐ (b1 + b2 ≥ 2) is already the clause b1 + b2 + yK1,2 ≥ 1,
so step (ii) is not needed. For the general case, we derive totalizer clauses as
explained in Sect. 4. Conceptually, we now replace 5b1 + 5b2 by 5yK1,2 + 5 to
obtain the reformulated objective Oref = b3 + b3 + 5yK1,2 + 5 with lower bound
LB = 5. The core K1 says that at least one of b1 and b2 must be true, thus
incurring a cost of 5, and yK1,2 is added to the objective to indicate if both of
them incur cost.

Since it now holds that coeff (Oref , yK1,2) + LB = 5 + 5 ≥ 7 = UB , the lit-
eral yK1,2 is hardened to 0. In order to certify this hardening step, i.e., derive
yK1,2 ≥ 1, the proof logger first derives the objective reformulation constraint
5b1 + 5b2 + b3 + b4 ≥ b3 + b4 + 5yK1,2 + 5 enforced by line (8) in Table 1.
The objective-improving and objective reformulation constraints are then added
together to get constraint (9), after which yK1,2 ≥ 1 is obtained by a RUP step.

The next SAT solver call with b3 = b4 = 0 returns as core the input clause
b3 + b4 ≥ 1, and reformulation (lines (11)–(13)) yields Oref = 5yK1,2 + yK2,2 + 6
with LB = 6. Now suppose the SAT solver finds the solution α2 with b2 = b3 =
x = 1 and all other variables set to 0, resulting in the objective-improving con-
straint (15). Since Oorig(α2) = 6 = LB , the solver terminates and reports α2 to
be optimal. To certify that this is correct, another objective reformulation con-
straint (16) is derived, after which the contradictory constraint (17) is obtained
by adding (15) and (16). This proves that solutions with cost less than 6 do not
exist.
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Fig. 1. Running time of CGSS with and
without proof logging.
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Fig. 2. CGSS running time compared to
time required for proof checking.

5 Experimental Evaluation

To evaluate the proof logging techniques developed in this paper, we have imple-
mented them in the state-of-the-art MaxSAT solver CGSS [22,47], which uses
the OLL algorithm and structure-sharing totalizers. We employed VeriPB [76],
extended to parse MaxSAT instances in the standard WCNF format, to verify
the certificates of correctness emitted by the certifying solver.

Our experiments were conducted on machines with an 11th Gen Intel(R)
Core(TM) i5-1145G7 @ 2.60 GHz CPU and 16 GB of memory. Each benchmark
ran exclusively on a single machine with a memory limit of 14 GB and a time
limit of 3 600 s for solving with CGSS and 36 000 s for checking the certificates
with VeriPB. As benchmarks we used all 594 weighted and 607 unweighted
instances from the complete track of the MaxSAT Evaluation 2022 [61], where
an instance (F,O) is unweighted if all coefficients coeff (O, �) are equal. The data
from our experiments can be found in [12].

Overhead of Proof Logging. To evaluate the overhead in solver running time, we
compared the standard CGSS solver [23] without proof logging (but with the
bug fixes discussed below) to CGSS with proof logging as described in this paper.
With proof logging 803 instances are solved within the resource limits, which is
3 instances less than without proof logging (see Fig. 1). Adding proof logging
slowed down CGSS by about 8.8% in the median over all solved instances. For
95% of the instances CGSS with proof logging was at most 36.2% slower. Thus,
the proof logging overhead seems perfectly manageable and should present no
serious obstacles to using proof logging in core-guided MaxSAT solvers.

Overhead of Proof Checking. To assess the efficiency of proof checking, we com-
pared the running time of CGSS with proof logging to the time taken by
VeriPB for checking the generated proofs. The instances that were not solved
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Table 2. Illustration of discovered bug (where yi,k should be read as yKi,k).

#iter Literals considered (wstrat = 2) Core K#iter extracted

1 {bi, ei | i = 1 . . . 5} K1 =
∑5

i=1 bi ≥ 1

2 {ei | i = 1 . . . 5} ∪ {y1,2} K2 = y1,2 + e2 + e4 ≥ 1

3 {ei | i = 1 . . . 3, 5} ∪ {y1,2, y1,3} ∪ {y2,2} K3 = y1,3 + e1 + e2 + e5 ≥ 1

4 {ei | i = 1 . . . 3} ∪ {y1,2, y1,4} ∪ {y2,2, y3,2} K4 = y1,2 + e1 + e2 ≥ 1

5 {ei | i = 1 . . . 3} ∪ {y1,4} ∪ {y2,2, y3,2, y4,2} K5 = e1 + e2 + e3 + y1,4 + y2,2 ≥ 1

6 {e3} ∪ {y1,5} ∪ {y2,3} ∪ {y3,2, y4,2, y5,2} Result is SAT

#iter Oref (after reformulation of K#iter)

0 10
(∑5

i=1 bi
)

+ 11e1 + 14e2 + 11e3 + 3e4 + 2e5 + o1 + o2

1 11e1 + 14e2 + 11e3 + 3e4 + 2e5 + 10y1,2 + o1 + o2 + 10

2 11e1 + 11e2 + 11e3 + 2e5 + 7y1,2 + 3y1,3 + 3y2,2 + o1 + o2 + 13

3 9e1 + 9e2 + 11e3 + 7y1,2 + y1,3 + 2y1,4 + 3y2,2 + 2y3,2 + o1 + o2 + 15

4 2e1 + 2e2 + 11e3 + 8y1,3 + 2y1,4 + 3y2,2 + 2y3,2 + 7y4,2 + o1 + o2 + 22

5 9e3 + 8y1,3 + 2y1,5 + y2,2 + 2y2,3 + 2y3,2 + 7y4,2 + 2y5,2 + o1 + o2 + 24

by CGSS within the resource limits were filtered out, since the running time for
checking an incomplete proof is inconclusive.

VeriPB successfully checked the proofs for 747 out of the 803 instances
solved by CGSS (see Fig. 2); 42 instances failed due to the memory limit and 14
instances failed due to the time limit. Checking the proof took about 3 times the
solving time in the median for successfully checked instances. About 87% of the
successfully checked instances were checked within 10 times the solving time.

Proof checking time compared to solver running time varies widely, but our
experiments indicate that the performance of VeriPB is sufficient in most cases,
and verification time scales linearly with the size of the proof for a majority of
the instances. However, there is room to improve VeriPB, where focus so far has
been on proof logging strength rather than performance. For the instances where
checking is 100 times slower than solving, the main bottleneck is the proof gen-
erated by the SAT solver, which could be addressed by standard techniques for
checking DRAT proofs, and checking logged solutions (when objective improving
constraints (3a) are added) could also be implemented more efficiently.

Bugs Discovered by Proof Logging. Our work on implementing proof logging in
CGSS led to the discovery of two bugs, which were also present in the solver
RC2 on which CGSS is based, but have now been fixed in CGSS in com-
mit 5526d04 and in RC2 in commit d0447c3. The bugs are due to a slightly
different implementation of OLL compared to the description in Sect. 3.

First, when a counting variable yKold ,i for a core Kold appears for the first
time in a later core Knew , the next counting variable yKold ,i+1 is added to the
reformulated objective with coefficient w

(
Knew , Onew

)
rather than w

(
Kold , Oold

)
.

The coefficient of yKold ,i+1 is then further increased when yKold ,i is found in
future cores. Second, rather than computing the upper bound UB from an actual
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solution, CGSS uses a weaker estimate UBest obtained by summing the current
lower bound and the coefficients of all literals b where coeff (Oref , b) < wstrat

(meaning that these literals were not set to 0 in the SAT solver call, and so
could potentially be true in the solution).

The bugs we detected could lead to the solver producing an overly optimistic
estimate UBest < UB . The first way this can happen is when the contributions
of counting variables yK,k in the reformulated objective are underestimated due
to too small coefficients. The second bug is when the coefficient of yKold ,i+1 is
first lowered below wstrat and then raised above this threshold again when yKold ,i

is found in a core. Then CGSS fails to assume yKold ,i+1 = 0 in future solver calls.
These bugs can result in erroneous hardening as detailed in the next example.

Example 1. Given a MaxSAT instance (F,O) with F =
{(∨5

i=1 bi

)
, (o1 ∨ o2)

}
∪

{bi ∨ ei | i = 1, . . . , 5} and O =
(∑5

i=1 10 · bi

)
+ 11 · e1 + 14 · e2 + 11 · e3 + 3 · e4 +

2 · e5 + o1 + o2, assume the stratification bound is wstrat = 2. Table 2 displays
a possible CGSS run for this instance, except that for simplicity we assume
one core extraction per iteration and no use of any other heuristics. The upper
half of the table lists the variables set to 0 in solver calls, the extracted core,
and the lower bound derived from it. The lower half of the table provides the
reformulated objective. Even though the coefficient of yK1,3 is increased to 8
after the fourth core, this variable is not set to 0 in subsequent iterations, which
allows the solver to finish the stratification level after extracting 6 cores with a
solution that sets to true the variables b1, b2, b3, b5, e4, o1, o2, yK2,2 and yK1,i for
i = 1, . . . , 4, and all other variables to false. The cost of this solution is 45.

Now CGSS would incorrectly estimate UBest = LB + 4 = 28, since yK1,3

and yK2,2 (abbreviated as y1,3 and y2,2 in the table) both have coefficient 1 in
the current reformulated objective. This is lower than the cost 45 of the solution
found (and even than the optimum 36), and erroneously allows hardening—
which considers yK1,3 with the correct coefficient 8—to fix yK1,3 = 0, even though
b1, b2 and b3 (and hence also yK1,3) are true in every minimal-cost solution.

In our computational experiments there were cases of faulty hardening, but
all incorrectly fixed values happened to agree with some optimal solution and so
we never observed incorrect results. Proof logging detected the problem, however,
since the derivations of the buggy hardening steps failed during proof checking.
Interestingly, what proof logging did not turn up was any examples of mistaken
claims Oorig ≤ UBest − 1 when the cost of a found solution was estimated. The
issue with mistaken estimates due to faulty stratification was instead discovered
while analyzing and fixing the hardening bug. The moral of this is that even
if all results are certified as correct, this does not certify that the code is free
from bugs that have not yet manifested themselves. However, proof logging still
guarantees that even if the solver would have undiscovered bugs, we can always
trust computed results for which the accompanying proofs pass verification.
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6 Concluding Remarks

In this work, we develop pseudo-Boolean proof logging techniques for core-guided
MaxSAT solving and implement them in the solver CGSS [47] with support
for the full range of sophisticated reasoning techniques it uses. To the best of
our knowledge, this is the first time a state-of-the-art MaxSAT solver has been
enhanced to output machine-verifiable proofs of correctness. We have made a
thorough evaluation on benchmarks from the MaxSAT Evaluation 2022 using the
VeriPB proof checker [17,42], and find that proof logging overhead is perfectly
manageable and that proof verification time, while leaving room for improvement,
is definitely practically feasible. Our work also showcases the benefit of proof
logging as a debugging tool—erroneous proofs produced by CGSS revealed two
subtle bugs in the solver that previous extensive testing had failed to uncover.

Regarding proof verification time, further investigation is needed into the rare
cases where verification is much slower (say, more than a factor 10) than solving.
There are reasons to believe, though, that this is not a problem of MaxSAT proof
logging per se, but rather is explained by features not yet added to VeriPB,
which is a tool currently undergoing very active development. So far, the proof
checker has been optimized for other types of reasoning than the clausal reverse
unit propagation (RUP) steps that dominate SAT proofs. Also, VeriPB lacks
the ability to trim proofs during checking as in [44]. Finally, introducing a binary
proof format in addition to plain-text proofs would be another way to boost
performance of proof checking. But these are matters of engineering rather than
research, and can be taken care of once the proof logging technology as such has
been developed and has proven its worth.

The focus of this work is on core-guided MaxSAT solving, but we would like
to extend our techniques to solvers using linear SAT-UNSAT (LSU) solving (such
as Pacose [68]) and implicit hitting set (IHS) search (such as MaxHS [28,29]).
Although there are certainly nontrivial technical challenges that will need to be
overcome, we are optimistic that our work paves the way towards a unified proof
logging system for the full range of modern MaxSAT solving approaches. Going
beyond MaxSAT, it would also be interesting to extend VeriPB proof logging
to pseudo-Boolean solvers using core-guided search [30] or IHS [73,74], and per-
haps even to similar techniques in constraint programming [36] and answer set
programming [5].
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Abstract. Classically, in saturation-based proof systems, unification
has been considered atomic. However, it is also possible to move unifica-
tion to the calculus level, turning the steps of the unification algorithm
into inferences. For calculi that rely on unification procedures returning
large or even infinite sets of unifiers, integrating unification into the cal-
culus is an attractive method of dovetailing unification and inference.
This applies, for example, to AC-superposition and higher-order super-
position. We show that first-order superposition remains complete when
moving unification rules to the calculus level. We discuss some of the
benefits this has even for standard first-order superposition and provide
an experimental evaluation.

1 Introduction

Unification is a key feature in many proof calculi, particularly those based on
the saturation framework. It acts as a filter, reducing the number of inferences
that need to be carried out by instantiating terms only to the degree necessary.
However, many unification algorithms have large time complexities and produce
large, or even infinite, sets of unifiers. This is the case, for example, for AC-
unification, which can produce a doubly exponential number of unifiers [10], and
higher-order unification, which can produce an infinite set of unifiers [20]. This
motivates the study of how unification rules can be integrated into proof calculi
to allow them to dovetail with standard calculus rules. One way to achieve this
is to use the concept of unification with abstraction [13,17]. The general idea
is that during the unification process, instead of solving all unification pairs,
certain pairs are retained and added to the conclusion of an inference as negative
constraint literals. Calculus-level unification inferences then work on such literals
to solve these constraints and remove the literals in the case they are unifiable.
Note how this differs from constrained resolution-style calculi such as [4,15]
where the constraints are completely separate from the rest of the clause and
are not subject to inferences.

To demonstrate the idea of dedicated unification inferences in combination
with unification with abstraction, we provide the following example.

C1 = f(g(a, x)) �≈ t C2 = f(g(a, b)) ≈ t
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A standard superposition calculus would proceed by unifying f(g(a, b)) and
f(g(a, x) with the unifier σ = {x → b} and then rewriting C1 with C2 to derive
tσ �≈ tσ. Equality resolution on tσ �≈ tσ would then derive ⊥. It is also possible to
proceed by rewriting C1 with C2 without computing σ and instead add the con-
straint literal g(a, x) �≈ g(a, b) to the conclusion to derive t �≈ t ∨ g(a, x) �≈ g(a, b).
A dedicated unification inference could then decompose the constraint literal
resulting in t �≈ t ∨ a �≈ a ∨ b �≈ x. Further unification inferences could bind x
to b, and remove the trivial pairs a �≈ a and t �≈ t to derive ⊥.

In this paper, we investigate moving unification to the calculus level for stan-
dard first-order superposition. Whilst this may seem like a regressive step, as we
lose much of unification’s power to act as a filter on inferences and hence produce
many more clauses, we think the investigation is valuable for two reasons.

Firstly, by showing how syntactic first-order unification can be lifted to the
calculus level, we provide a roadmap for how more complex unification problems
can be lifted to the calculus level. This may prove particularly useful in the
higher-order case, where abstraction may expose terms to standard calculus rules
that were unavailable before. Moreover, we note that in our calculus we do not
turn the entire unification problem into a constraint, but rather a subproblem.
Whilst this may be merely an interesting detail for first-order unification, for
more complex unification problems, such a method could be used to eagerly
solve simple unification subproblems whilst delaying complex subproblems by
adding them as constraints.

Secondly, one of the most expensive operations in first-order theorem provers
is the maintenance of indices. Indices are crucial to the performance of modern
solvers, as they facilitate the efficient retrieval of terms unifiable or matchable
with a query term. However, solvers typically spend a large amount of time
inserting and removing terms from indices as well as unifying against terms
in the indices. This is particularly the case in the presence of the AVATAR
architecture [24] wherein a change in the model can trigger the insertion and
removal of thousands of terms from various indices. By moving unification to
the calculus level, we can replace complex indices with simple hash maps, since
to trigger an inference we merely need to check for top symbol equality and not
unifiability. Insertion and deletion become O(1) time operations. However, for
first-order logic, we do not expect the time gained to offset the downsides of
extra inferences carried out and extra clauses created. Our experimental results
back up this hypothesis (see Sect. 7). Our main contributions are:

� Designing a modified superposition calculus that moves unification to the
calculus level (Sect. 3).

� Proving the calculus to be statically and dynamically refutationally complete
(Sect. 5).

� Providing a thorough empirical evaluation of the calculus (Sect. 7).

2 Preliminaries

Syntax. We consider standard monomorphic first-order logic with equality. We
assume a signature consisting of a finite set of (monomorphically) typed function
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symbols and a single predicate, equality, denoted by ≈. A non-equality atom
A can be expressed using equality as A ≈ � where � is a special function
symbol [18]. Terms are formed in the normal way from variables and function
symbols. We commonly use s, t or u or their primed variants to refer to terms.
We write s : τ to show that term s has type τ . A term is ground if it contains
no variables. We use the notation sn to refer to a tuple or list of terms of length
n. More generally, we use the over bar notation to refer to tuples and lists of
various objects. Where the length of the tuple or list is not relevant, we drop the
subscript. By si we denote the ith element of the tuple sn. Literals are positive
or negative equalities written as s ≈ t and s �≈ t respectively. We use s ≈̇ t to
refer to either a positive or a negative equality. Clauses are multisets of literals.
A clause that contains no literals is known as the empty clause and denoted ⊥.

A substitution is a mapping from variables to terms. We assume, w.l.o.g.,
that all substitutions are idempotent. We commonly denote substitutions using
σ and θ and denote the application of a substitution σ to a term s by sσ.
A substitution θ is grounding for a term s, if sθ is ground. The definition of
grounding substitution can be extended to literals and clauses in the obvious
manner. A substitution σ is a unifier of terms s and t if sσ = tσ. A unifier σ is
more general than a unifier σ′ if there exists a substitution ρ such that σρ = σ′.
With respect to syntactic first-order unification, if two terms are unifiable then
they have a single most general unifier up to variable naming [1].

A transitive irreflexive relation over terms is known as an ordering. The
superposition calculus we present below is, as usual, parameterised by a simpli-
fication ordering on ground terms. An ordering � is a simplification ordering, if
it possesses the following properties. It is total on ground terms. It is compatible
with contexts, meaning that if s � t, then u[s] � u[t]. It is well-founded. Note
that every simplification ordering has the subterm property. Namely, that if t
is a proper subterm of s, then s � t. For non-ground terms, the only property
that is required of the ordering is that it is stable under substitution. That is, if
s � t then for all substitutions σ, sσ � tσ. We extend the ordering � to literals
in the standard fashion via its multiset extension. A positive literal s ≈ s′ is
treated as the multiset {s, s′}, whilst a negative literal s �≈ s′ is treated as the
multiset {s, s, s′, s′}. The ordering is extended to clauses by its two-fold multiset
extension. We use � to denote the ordering on terms and its multiset extensions
to literals and clauses.

Semantics. An interpretation is a pair (U, I), where U is a set of typed universes
and I is an interpretation function, such that for each function symbol f : τ1 ×
· · ·×τn → τ in the signature, I(f) is a concrete function of type Uτ1 ×· · ·×Uτn →
Uτ . A valuation ξ is a function that maps each variable x : τ to a member of
Uτ . For a given interpretation M and valuation ξ, we uses �t�ξ

M to represent the
denotation of t in M given ξ. A positive literal s ≈ t is true in an interpretation
M for valuation ξ if �s�ξ

M = �t�ξ
M and false otherwise. A negative literal s �≈ t

is true in an interpretation M for valuation ξ if s ≈ t is false. A clause C holds
in an interpretation M for valuation ξ if one of its literals is true in M for ξ.
An interpretation M models a clause C if C holds in M for every valuation. An
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interpretation models a clause set, if it models every clause in the set. A set of
clauses M entails a set of clauses N , denoted M |= N , if every model of M is
also a model of N .

3 Calculus

Intuitively, what we are aiming for with our calculus, is that whenever standard
superposition applies a substitution σ to a conclusion with the side condition
“σ is a unifier of terms t1 and t2”, our calculus adds a constraint t1 �≈ t2 to the
conclusion. The calculus then has further inference rules that mimic the steps of a
first-order unification algorithm and work on negative literals. Our presentation
below does not quite follow this intuition. Instead, if the unification problem is
trivial we solve it immediately. If it is non-trivial, we carry out a single step of
unification and add the resulting sub-problems as constraints. Our reasons for
doing this are two-fold.

1. Adding the entire unification problem t1 �≈ t2 as a constraint can lead to a
constraint literal that is larger, with respect to �, than any literal occurring
in the premises. This causes difficulties in the completeness proof.

2. More pertinently, keeping in mind our planned applications to more complex
logics, we wish to show that delayed unification remains complete even when
only selected sub-problems of the original unification problem are added as
constraints. In the context of higher-order logic, for example, this could allow
for the eager solving of simple unification sub-problems whilst only the most
difficult are added as constraints. See Sect. 6 for further details.

Wherever we present a clause as a subclause C ′ and a literal l (e.g. C ′ ∨ l), we
denote the entire clause by the same name as the subclause without the dash (e.g.
we refer to the clause C ′ ∨ l by C). As in the classical superposition calculus,
our calculus is parameterised by a selection function that is used to restrict
the number of applicable inferences in order to avoid the search space growing
unnecessarily. A selection function sel is a function that maps a clause to a subset
of its negative literals. We say that literal l is σ-eligible in a clause C ′ ∨ l if it is
selected in C (l ∈ sel(C)), or there are no selected literals and lσ is maximal in
Cσ. Strict σ-eligibility is defined in a like fashion, with maximality replaced by
strict maximality. Where σ is empty, we sometimes speak of eligibility instead
of σ-eligibility. In what follows, CS is a multiset of literals that we refer to as
constraints.

D′ ∨ f(tn) ≈ t′ C ′ ∨ s[f(sn)] ≈̇ s′
Sup

C ′ ∨ D′ ∨ s[t′] ≈̇ s′ ∨ CS

D′ ∨ x ≈ t′ C ′ ∨ s[f(sn)] ≈̇ s′
VSup

(C ′ ∨ D′ ∨ s[t′] ≈̇ s′)σ
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where σ = {x → f(sn)}, and CS = t1 �≈ s1 ∨ . . . ∨ tn �≈ sn. Both rules share
the following side conditions. Let t stand for either f(tn) or x. For Sup, the
substitution σ mentioned in the side conditions is of course empty.

� t ≈ t′ is strictly σ-eligible.
� s[f(sn)] ≈̇ s′ is strictly σ-eligible if positive and σ-eligible if negative.
� tσ �
 t′σ and s[f(sn)]σ �
 s′σ.
� Cσ �
 Dσ

C ′ ∨ f(tn) ≈ v′ ∨ f(sn) ≈ v
EqFact

C ′ ∨ v �≈ v′ ∨ f(sn) ≈ v ∨ CS
C ′ ∨ u′ ≈ v′ ∨ u ≈ v VEqFact

(C ′ ∨ v �≈ v′ ∨ u ≈ v)σ

for EqFact, CS = t1 �≈ s1 ∨ . . . ∨ tn �≈ sn. For VEqFact, either u or u′ must
be a variable and σ is the most general unifier of u and u′. The side conditions
for EqFact are:

� f(sn) ≈ v be eligible in C.
� f(sn) �
 v and f(tn) �
 v′.

The side conditions for VEqFact are:

� u ≈ v be σ-eligible in C.
� uσ �
 vσ and u′σ �
 v′σ.

The calculus also contains the following resolution/unification inferences. We
refer to these as unification inferences, because each inference represents carrying
out a single step of the well-known Robinson unification algorithm [11].

C ′ ∨ f(sn) �≈ f(tn)
Decompose

C ′ ∨ CS
C ′ ∨ x �≈ t

Bind
C ′σ

C ′ ∨ s �≈ s
ReflDel

C ′

where for Bind, σ = {x → t} and x does not occur in t. For Decompose,
f(sn) �= f(tn) and CS = t1 �≈ s1 ∨ . . . ∨ tn �≈ sn. All three inferences require that
the final literal be σ-eligible in Cσ (for Decompose and ReflDel, σ is empty).
We provide some examples to show how the calculus works.

Example 1. Consider the unsatisfiable clause set:

C1 = f(x, g(x)) �≈ t C2 = f(g(b), y) ≈ t

A Sup inference between C1 and C2 results in clause C3 = t �≈ t ∨ x �≈
g(b) ∨ g(x) �≈ y. A ReflDel inference on C3 results in the clause C4 = x �≈
g(b) ∨ g(x) �≈ y. An application of Bind on C4 with σ = {x → g(b)} results in
C5 = g(g(b)) �≈ y. Another application of Bind, then leads to ⊥.
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Example 2. Consider the unsatisfiable clause set:

C1 = x ≈ c C2 = f(a, c) �≈ t C3 = f(c, c) ≈ t

A VSup inference between C1 and C2 results in clause C4 = f(c, c) �≈ t. A
Sup inference between C3 and C4 results in the clause C5 = t �≈ t∨c �≈ c∨c �≈ c.
A triple application of ReflDel starting from C5 derives ⊥.

Note 1. We abuse terminology and use inference and inference rule to refer both
to schemas such as shown above, as well as concrete instances of such schemas.
Given an inference ι, we refer to the tuple of its premises by prems(ι), to its
maximal premise by mprem(ι), and to its conclusion by concl(ι).

4 Redundancy Criterion

We utilise Waldmann et al.’s framework [25] for proving the completeness of
our calculus. Hence, our redundancy criterion is based on their intersected lifted
criterion. In instantiating the framework, we roughly follow Bentkamp et al. [6].
Let the calculus defined above be referred to as Inf . We introduce a ground
inference system GInf that coincides with standard superposition [3]. That is,
it contains the well known three inferences, Sup, EqFact and EqRes. We refer
to these inferences by GSup, GEqFact and GEqRes to indicate that they are
only applied to ground clauses. Following the notation of the framework, we write
Inf (N) (GInf (N)) to denote the set of all Inf (GInf ) inferences with premises
in a clause set N . We introduce a grounding function G that maps terms, literals
and clauses to the sets of their ground instances. For example, given a clause C,
G(C) is the set {Cθ | θ is a grounding substitution}. We extend the function G
to clause sets by letting G(N) =

⋃
C∈N G(C) where N is a set of clauses.

A ground clause C is redundant with respect to a set of ground clauses N
if there are clauses C1, . . . , Cn ∈ N such that for 1 ≤ i ≤ n, Ci ≺ C and
C1, . . . , Cn |= C. The set of all ground clauses redundant with respect to a set
of ground clauses N is denoted GRedCl(N).

A clause C is redundant with respect to a set of clauses N , if for every
D ∈ G(C), D is redundant with respect to G(N) or there is a clause C ′ ∈ N
such that D ∈ G(C ′) and C � C ′ where � is the strict subsumption relation.
That is C � C ′ if C is subsumed by C ′, but C ′ is not subsumed by C. The set
of all clauses redundant with respect a set of clauses N is denoted RedCl(N).

In order to define redundant inferences, we have to pay careful attention to
selection functions. For non-ground clauses, we fix a selection function sel. We
then let G(sel) be a set of selection functions on ground clauses with the following
property. For each gsel ∈ G(sel), for every ground clause C, there exists a clause
D such that C ∈ G(D) and the literals selected in C by gsel correspond to those
selected in D by sel . We write GInf gsel to show that the ground inference system
GInf is parameterised by the selection function gsel . Let ι be an inference in Inf .
We extend the grounding function G to a family of grounding functions Ggsel
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for each gsel ∈ G(sel). Each function Ggsel maps terms, literals and clauses as
above, and maps members of Inf to subsets of GInf gsel as follows.1

Definition 1 (Ground Instance of an Inference). Let ι be of the form
C1, . . . , Cn  E ∨ CS . An inference ιg ∈ GInf gsel is in Ggsel(ι) if it is of the
form C1θ, . . . , Cnθ  Eθ for some grounding substitution θ. In this case, we say
that ιg is the θ-ground instance of ι. Note that we ignore the constraints in the
definition of ground instances.

A ground inference C1, . . . , Cn, C  E with maximal premise C is redundant
with respect to a clause set N if for 1 ≤ i ≤ n, Ci ∈ GRedCl(N) or C ∈
GRedCl(N) or there exist clauses D1, . . . Dm ∈ N such that for 1 ≤ i ≤ m,
Di ≺ C and D1, . . . , Dm |= E. The set of all ground inferences redundant with
respect to a set N is denoted GRedgsel

I (N).
An inference ι is redundant with respect to a clause set N if for every gsel ∈

G(sel) and for every ι′ ∈ Ggsel(ι), ι′ ∈ GRedgsel
I (G(N)). In words, every ground

instance of the inference is redundant with respect to G(N). We denote the set
of all redundant inferences with respect to a set N as RedI(N).

A clause set N is saturated up to redundancy by an inference system Inf if
every member of Inf (N) is redundant with respect to N .

Note 2. Given the definition of clause redundancy above, the ReflDel infer-
ence can be utilised as a simplification inference. That is, the conclusion of the
inference renders the premise redundant.

5 Refutational Completeness

To prove refutational completeness we utilise the above mentioned framework of
Waldmann et al. [25]. In particular, we use Theorem 14 from the paper to lift
completeness from the ground level to the non-ground level. We bring Theorem
14 here for clarity and to keep the paper self contained. We then present it in
our notation. Let GRed = (GRedgsel

I ,GRedCl) and Red = (RedI ,RedCl).

Theorem 14 (from Waldmann et al. [25]). If (GInf q ,Redq) is statically
refutationally complete w.r.t. |=q for every q ∈ Q and if for every N ⊆ F that
is saturated w.r.t. FInf and Red∩G there exists a q such that GInf q(Gq(N)) ⊆
Gq(FInf (N))∪Redq

I (G
q(N)), then (FInf ,Red∩G ) is statically refutationally com-

plete w.r.t. |=∩
G .

Theorem 14 (from Waldmann et al. in our Notation). If
(GInf gsel ,GRed) is statically refutationally complete w.r.t. |= for every gsel ∈
G(sel) and if for every clause set N that is saturated w.r.t. Inf and Red there
exists a gsel such that GInf gsel(Ggsel(N)) ⊆ Ggsel(Inf (N)) ∪ RedI(Ggsel(N)),
then (Inf ,Red) is statically refutationally complete w.r.t. |=G .

1 When a grounding function Ggsel acts on a clause, literal or term, we commonly
drop the gsel superscript as the selection function plays no role in the grounding of
these.
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Thus, in our context, the set Q is G(sel), the ground inference system GInf q

maps to GInf gsel , the ground redundancy criterion Redq is (GRedgsel
I ,GRedCl)

and the ground entailment relation |=q maps to standard entailment on first-
order clauses. Moreover, the non-ground inference system FInf maps to Inf and
the redundancy criterion Red∩G maps to (RedI ,RedCl). Note, that this final
mapping is not exact, as the criterion Red∩G does not allow for a tiebreaker
ordering, such as the strict subsumption relation, to be utilised in the definition
of non-ground redundancy. However, this mismatch can easily be repaired since
Theorem 16 of the framework paper extends the result of Theorem 14 to the
case where tiebreaker orderings are used.

As our ground inference systems GInf gsel are ground superposition systems,
static refutational completeness with respect to standard entailment and stan-
dard redundancy is a famous result. See for example [2]. What remains for us to
prove in order to apply Theorem 14 and show the static refutational complete-
ness of Inf , is:

1. For every gsel ∈ G(sel), the grounding function Ggsel is a grounding function
in the sense of the framework.

2. For every clause set N saturated up to redundancy by Inf , there exists a
gsel ∈ G(sel) such that GInf gsel (G(N)) ⊆ Ggsel(Inf (N))∪GRedgsel

I (G(N)).
In words, there exists a ground selection function such that every ground
inference with that selection function and premises in G(N) is either the
instance of a non-ground inferences with premises in N or is redundant with
respect to G(N).

Lemma 1. For every gsel ∈ G(sel), the grounding function Ggsel is a grounding
function in the sense of the framework.

Proof. We need show that properties (G1) – (G3) defined by Waldmann et al.
hold for grounding functions. These properties are:

(G1) for every ⊥ ∈ F⊥, ∅ �= G(⊥) ⊆ G⊥;
(G2) for every C ∈ F, if ⊥ ∈ G(C) and ⊥ ∈ (G)⊥ then C ∈ F⊥;
(G3) for every ι ∈ FInf , if G(ι) �= undef , then G(ι) ⊆ RedI(G(concl(ι))).

As properties (G1) and (G2) relate to the grounding of terms and clauses,
and our grounding of these is fully standard we skip these. We prove (G3),
which in our terminology is: for every ι ∈ Inf , Ggsel(ι) ⊆ GRedgsel

I (G(concl(ι))).
This can be achieved by showing that for every ι′ ∈ Ggsel(ι), there exist clauses
C ∈ G(concl(ι)) such that C |= concl(ι′) and for each Ci ∈ C, Ci ≺ mprem(ι′).
In what follows, let θ be the substitution by which ι′ is a grounding of ι.

If CS is the empty set in concl(ι), then concl(ι)θ = concl(ι′) and hence
concl(ι)θ |= concl(ι′). Moreover, concl(ι)θ ∈ G(concl(ι)) and thus concl(ι)θ ≺
mprem(ι′).

On the other hand, if CS is not empty, let u = f(tn) and u′ = f(sn) be the two
terms within prems(ι) from which the constraints are created. By the existence
of ι′, we have that uθ = u′θ, and hence that tiθ = siθ for 1 ≤ i ≤ n. Hence, every
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literal in CSθ has the form t �≈ t and is trivially false in every interpretation.
Thus, we still have concl(ι)θ |= concl(ι′). Moreover, by the subterm property
of the ordering � we have that tiθ �≈ siθ is smaller than the maximal/selected
literal of mprem(ι′) for 1 ≤ i ≤ n and hence that concl(ι)θ ≺ mprem(ι′). ��
Lemma 2. let σ be the most general unifier of terms s and s′, and θ be any
unifier of the same terms. Then for any term t, (tσ)θ = tθ.

Proof. Since σ is the most general unifier, there must be a substitution ρ such
that σρ = θ. Hence (tσ)θ = (tσ)σρ = tσρ = tθ where the second to last step
follows from the fact that σ is idempotent. ��
Lemma 3. For every clause set N saturated by Inf , there exists a gsel ∈ G(sel)
such that GInf gsel (G(N)) ⊆ Ggsel(Inf (N)) ∪ GRedgsel

I (G(N)).

Proof. For every D ∈ G(N) there must exist a clause C ∈ N such that D ∈
G(C). Let � be an arbitrary well-founded ordering on clauses. We let C =
G−1(D) denote the �-smallest clause such that D ∈ G(C). We then choose the
gsel ∈ G(sel) that for a clause D ∈ G(N) selects the corresponding literals to
those selected by sel in G−1(D). Given this gsel , we need to show that every
inference with premises in G(N) is either the ground instance of an inference
with premises in N , or is redundant with respect to G(N).

A Sup inference is redundant if the term t replaced in the second premise
occurs at or below a variable. The proof is exactly the same as in the standard
proof of the completeness of superposition [3], so we don’t repeat it. All other
inferences can be shown to be the ground instance of inferences from clauses
in N .

Let ι ∈ GInf gsel be the following GSup inference with premises in G(N).

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] ≈̇ s′θ
C ′θ ∨ D′θ ∨ sθ[t′θ] ≈̇ s′θ

where G−1(Dθ) = D = D′ ∨ t ≈ t′, G−1(Cθ) = C = C ′ ∨ s ≈̇ s′ and ι fulfils
all the side conditions of GSup. Let σ be any substitution. The literal tθ ≈ t′θ
being strictly maximal in Dθ implies that tσ ≈ t′σ is strictly maximal in Dσ due
to the stability under substitution of �. The literal sθ[tθ] ≈̇ s′θ being (strictly)
eligible in Cθ with respect to gsel implies that sσ ≈ s′σ is strictly eligible in
Cσ with respect to sel . Let p be the position of tθ within sθ and let u be the
subterm of s at p. Since the term tθ does not occur below a variable of C, such
a position must exist. Moreover, u cannot be a variable since if it was tθ would
occur at a variable of C. As θ is a unifier of u and t, it must be the case that
either t is a variable, or u and t have the same top symbol. Further, Dθ ≺ Cθ
implies that Cσ �
 Dσ, tθ � t′θ implies that tσ �
 t′σ, and sθ[t′θ] � s′θ implies
sσ �
 s′σ. Thus, if t is not a variable, there exists the following Sup inference ι′

from clauses D and C.

D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈̇ s′

C ′ ∨ D′ ∨ s[t′] ≈̇ s′ ∨ CS
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We have that (C ′ ∨ D′ ∨ s[t′] ≈̇ s′)θ = concl(ι). That is, the grounding of the
conclusion of ι′ less the constraint literals is equal to the conclusion of ι. Thus, ι
is the θ-ground instance of ι′ as per Definition 1. If t is a variable x, then there
exists the following VSup inference ι′ from clauses D and C.

D′ ∨ x ≈ t′ C ′ ∨ s[u] ≈̇ s′

(C ′ ∨ D′ ∨ s[t′] ≈̇ s′)σ

where σ = {x → u} is the most general unifier of t and u. Thus, we can use
Lemma 2 to show that concl(ι′)θ = concl(ι) and again ι is the θ-ground instance
of ι′.

Let ι ∈ GInf gsel be the following GEqFact inference with premise in G(N).

C ′θ ∨ u′θ ≈ v′θ ∨ uθ ≈ vθ
C ′θ ∨ vθ �≈ v′θ ∨ uθ ≈ vθ

where u′θ = uθ, G−1(Cθ) = C = C ′ ∨ u′ ≈ v′ ∨ u ≈ v and ι fulfils all the side
conditions of GEqFact. Let σ be any substitution. The literal uθ ≈ vθ being
maximal in Dθ implies that uσ ≈ vσ is maximal in Dσ. Since θ is a unifier of u′

and u, at least one of them must be a variable, or they must share a top symbol.
Moreover, uθ � vθ implies that uσ �
 vσ and u′θ � v′θ implies that u′σ �
 v′σ.
If neither u nor u′ is a variable, there exists the following EqFact inference ι′

from C.

C ′ ∨ u′ ≈ v′ ∨ u ≈ v
C ′ ∨ v �≈ v′ ∨ u ≈ v ∨ CS

We have (C ′ ∨ v �≈ v′ ∨ u ≈ v)θ = concl(ι), making ι the θ-ground instance
of ι′ as per Definition 1. If either u of ′u is a variable there exists the following
VEqFact inference ι′ from C.

C ′ ∨ u′ ≈ v′ ∨ u ≈ v
(C ′ ∨ v �≈ v′ ∨ u ≈ v)σ

where σ is the most general unifier of u and u′. Thus, we can use Lemma 2
to show that concl(ι′)θ = concl(ι). Finally, let ι ∈ GInf gsel be the following
GEqRes inference with premise in G(N).

C ′θ ∨ sθ �≈ s′θ
C ′θ

where sθ = s′θ, G−1(Cθ) = C = C ′ ∨ s �≈ s′ and ι fulfils all the side conditions
of GEqRes. Let σ be any substitution. The literal sθ �≈ s′θ being eligible with
respect to gsel in Cθ implies that s �≈ s′ is eligible in C with respect to sel . Since
θ is a unifier of s and s′, at least one of them must be a variable, or they must
share a top symbol. If s = s′, then there exists the following ReflDel inference
ι′ from C.
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C ′ ∨ s �≈ s

C ′

Otherwise we have two options. If either s (or analogously s′) is a variable,
then there is the following Bind inference ι′ from C.

C ′ ∨ x �≈ s′

C ′σ

Otherwise s and s′ must share a top symbol and there is the following
Decompose inference ι′ from C.

C ′ ∨ f(sn) �≈ f(tn)
C ′ ∨ CS

In the first case, we have concl(ι′)θ = concl(ι). In the second case, σ is
the most general unifier of s and s′, so we can use Lemma 2 to show that
concl(ι′)θ = concl(ι). In the last case, we have that C ′θ = concl(ι). Thus in all
cases, ι is the θ-ground instance of ι′. ��

Using Lemmas 1 and 3 we can instantiate Theorem 14 to prove the static
refutational completeness of Inf . There is a slight issue here, as Theorem 14
gives us refutational completeness with respect to Herbrand entailment. That is
N |= M if G(N) |= G(M). We would like to prove completeness with respect
to entailment as defined in Sect. 2 (known as Tarski entailment). This issue can
easily be resolved by showing that the two concepts are equivalent with regards
to refutations which can be achieved in a manner similar to Bentkamp et al.
(Lemma 4.19 of [6]).

Theorem 1 (Static refutational completeness). For a set of clauses N
saturated up to redundancy by Inf , N |= ⊥ if and only if ⊥ ∈ N .

Theorem 17 of Waldmann et al.’s framework can be used to derive dynamic
refutational completeness from static refutational completeness. We refer readers
to the framework for the formal definition of dynamic refutational completeness.

Theorem 2 (Dynamic refutational completeness). The inference system
Inf is dynamically refutationally complete with respect to the redundancy crite-
rion (RedI ,RedCl).

6 Extending to Higher-Order Logic

We sketch how the ideas above can be extended to higher-order logic. This is
ongoing research, and many of the technical details have yet to be fully worked
out. Here, we provide a (very) informal description and then provide exam-
ples. The higher-order unification problem is undecidable and there can exist a
potentially infinite number of incomparable most general unifiers for a pair of
terms [12]. Existing higher-order paramodulation style calculi deal with this issue
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in two main ways. One method is to abandon completeness and only unify to
some predefined depth [22]. Another approach is to produce potentially infinite
streams of unifiers and interleave the fetching of items from such streams with
the standard saturation procedure [7]. Our idea is to solve easy sub-problems
eagerly, such as when terms are first-order or in the pattern fragment [16], and
add harder sub-problems as constraints. We then utilise dedicated inferences
on negative literals to mimic the rules of Huet’s well known (pre-)unification
procedure [12]. We think that inferences similar to the following two, could be
sufficient to achieve refutational completeness.

C ′ ∨ x sn �≈ f tm
Imitate

(C ′ ∨ x sn �≈ f tm){x → λyn. f (z1 yn) . . . (zm yn)}

C ′ ∨ x sn �≈ f tm
Project

(C ′ ∨ x sn �≈ f tm){x → λyn. yi (z1 yn) . . . (zp yn)}

In both rules, each zi is a fresh variable of the relevant type, and x sn �≈ f tm is
selected in C. Project has k ≤ n conclusions, one for each yi of suitable type.
We hope that through a careful definition of the selection function, along with
the use of purification, we can avoid the need to apply unification inferences
to flex-flex literals (negative literals where both sides of the equality have vari-
able heads). Moreover, we are hopeful that the calculus we propose can remain
complete without the need for inferences that carry out superposition beneath
variables such as the FluidSup rule of λ-superposition [7] and the SubVarSup
rule of combinatory-superposition [9].

Example 3. Consider the unsatisfiable clause set:

C1 = f y (x a) (x b) �≈ t C2 = f c a b ≈ t

A Sup inference between C1 and C2 results in clause C3 = tσ �≈ tσ ∨ x a �≈
a ∨ x b �≈ b where σ = {y → c}. Assume that the literal x a is selected in C3.
We can carry out either a Project step on this literal or an Imitate step. The
result of a project step is C4 = (tσ �≈ tσ ∨ (λz. z) a �≈ a ∨ x b �≈ b){x → λz. z}.
Applying the substitution and β-reducing results in C5 = tσ �≈ tσ∨a �≈ a∨b �≈ b
from which it is easy to reach a contradiction.

Example 4 (Example 1 of Bentkamp et al. [7]). Consider the unsatisfiable clause
set:

C1 = f a ≈ c C2 = h (y b) (y a) �≈ h (g (f b)) (g c)

An EqRes inference on C2 results in C3 = y b �≈ g (f b)∨ y a �≈ g c. An Imitate
inference on the first literal of C3 followed by the application of the substitution
and some β-reduction results in C4 = g (z b) �≈ g (f b) ∨ g (z a) �≈ g c. A further
double application of EqRes gives us C5 = z b �≈ f b ∨ z a �≈ c. We again



Superposition with Delayed Unification 35

carry out Imitate on the first literal followed by an EqRes to leave us with
C6 = x b �≈ b ∨ f (x a) �≈ c. We can now carry out a Sup inference between C1
and C6 resulting in C7 = x b �≈ b ∨ c �≈ c ∨ x a �≈ a from which it is simple to
derive ⊥ via an application of Imitate on either the first or the third literal.
Note, that the empty clause was derived without the need for an inference that
simulates superposition underneath variables, unlike in [7].

Example 5 (Example 2 of Bentkamp et al. [7]). Consider the unsatisfiable clause
set:

C1 = f a ≈ c C2 = h (y (λx. g (f x)) a) y �≈ h (g c) (λw x.w x)

An EqRes inference on C2 results in C3 = y (λx. g (f x)) a �≈ g c∨y �≈ λw x.w x.
Assuming that the second literal is selected,2 an EqRes inference results in
C4 = (y (λx. g (f x)) a �≈ g c){y → λw x.w x}. Simplifying C4 via applying the
substitution and β-reducing, we achieve g (f a) �≈ g c. Superposing C1 onto this
clause we end up with C5 = g c �≈ g c from which the empty clause can easily be
derived. Note again, that the empty clause has been derived without recourse to
a FluidSup-like inference.

7 Experimental Results

We implemented the calculus in the Vampire theorem prover [14]. We also imple-
mented a variant of the calculus, that utilises fingerprint indices [19] to act as an
imperfect filter. The completeness proof indicates that a superposition inference
only needs to be carried out when the two terms can possibly unify. Therefore,
we store terms in fingerprint indices, which act as fast imperfect filters for find-
ing unification partners, and only carry out superposition inferences with terms
returned by the index. This restricts, somewhat, the number of inferences that
take place, at the expense of some loss of speed. Thus, it represents a mid-
way path between eager unification and delayed unification. As a final twist, we
implemented a version of the calculus that uses fingerprint indices as well as
solving constraint literals of the form x �≈ t (where x is not a subterm of t) and
t �≈ t eagerly. Thus, in this version of the calculus there is no need for the Bind
and ReflDel rules.

We compared each of these approaches with the standard superposition cal-
culus implemented in Vampire. We refer to the standard calculus as Vampire
and the delayed inference calculus without fingerprint indices by Vampire*.3
We refer to the delayed inference calculus with fingerprint indices by Vampire†.

2 Most orderings would select the first literal. In this case, we can still derive a con-
tradiction, but the proof is longer.

3 Our implementation can be found at https://github.com/vprover/vampire/tree/
delayed-unification. To run the new calculus, use option -duc on. To run the stan-
dard calculus, the option duc is set to off.

https://github.com/vprover/vampire/tree/delayed-unification
https://github.com/vprover/vampire/tree/delayed-unification
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Finally, we refer to the calculus that eagerly solves some constraint literals by
Vampire‡.4

We tested these approaches against each other on benchmarks coming from
CASC 2023 system competition [23]. As our new approach is not currently com-
patible with higher-order or polymorphic input, we restricted the comparison to
monomorphic first-order problems. Namely, we used the 500 benchmarks in the
FNE and FEQ categories. These are monomorphic, first-order benchmarks that
either include equality (FEQ) or do not contain equality (FNE). All benchmarks
in the set are theorems. The results can be seen in Table 1. All experiments were
run on a node cluster located at The University of Manchester. Each node in the
cluster is equipped with 192 gigabytes of RAM and 32 Intel R© Xeon processors
with two threads per core. Each configuration was given 100s of CPU time per
problem and run in single core mode. Vampire was run with options --mode
casc which causes it to use a tuned portfolio of strategies. All other variants
were run with options --mode casc --forced_options duc=on which forces
the use of the new calculus on top of the aforementioned portfolio.

Table 1. Summary of experimental results

Approach Solved Uniques
Vampire 430 110
Vampire* 238 0
Vampire† 255 0
Vampire‡ 322 2

The calculi based on delayed unification perform badly in comparison to
standard superposition. This is unsurprising, as syntactic first-order unification is
already an efficient process. By replacing it with delayed unification, we gain little
in terms of time, but pay a heavy penalty in terms of the number of inferences
carried out. The use of fingerprint indices helps somewhat in mitigating this issue,
but not a great deal. Eagerly solving trivial constraints shows more promise and
is actually able to solve two problems that the standard calculus can not (within
the time limit). These are the benchmarks CSR036+3.p and LAT347+3.p.

8 Related Work

The only other proof calculi that we are aware of that explicitly integrate unifica-
tion rules at the calculus level, are the higher-order paramodulation calculi [8,22]
4 The code for both Vampire† and Vampire‡ can be found at branch https://github.

com/vprover/vampire/tree/delayed-unif-with-fp. Vampire† was built from commit
c04a08feb5db3e7468a1fa and Vampire‡ from commit fa2f139302b6a7a6487e73.
Again, option -duc on is required for the new calculi to run.

https://github.com/vprover/vampire/tree/delayed-unif-with-fp
https://github.com/vprover/vampire/tree/delayed-unif-with-fp
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and lazy paramodulation [21]. However, these calculi are paramodulation calculi
and do not incorporate certain concepts of redundancy so crucial to the success
of superposition provers. Moreover, the completeness proofs for these calculi are
based on very different techniques to the Bachmair & Ganzinger style model build-
ing proofs commonly employed in the completeness proofs of superposition calculi.

There are other calculi that in some form do represent the folding of unifica-
tion into the calculus, but the link between the unification rules and the calculus
is less clear. For example, the recent work by one of the authors of this paper [13]
relating to reasoning about linear arithmetic, moves theory reasoning relating
to a number of equations from the unification algorithm to the calculus level.
A different example, by another of this paper, is the combinatory-superposition
calculus [9] which essentially folds higher-order combinatory unification into the
calculus. In both cases, the relationship between the unification algorithm and
the calculus rules is not obvious.

There are other methods of dovetailing unification with inference rules. For
example, a unification procedure can be modified to return a stream of results.
This stream can be interrupted in order to carry out further inferences and then
returned to later. This is the approach taken by the higher-order Zipperposition
prover [7] in order to handle the infinite sets of unifiers returned by higher-order
unification. Conceptually, this is a very different solution to using constraints,
since the intermediate terms created during unification are not available to the
entire calculus as they are in our approach. Furthermore, from an implementa-
tion perspective, streams of unifiers are a far greater departure from the stan-
dard saturation architecture than the adding of constraints. Unification can also
be partially delayed by preprocessing techniques such as Brand’s modification
method and its developments [5].

As mentioned in the introduction, abstraction resembles the basic strategy
[4,15], where unification problems are added to the constraint part of a clause.
Periodically, these constraints can be checked for satisfiability and clauses with
unsatisfiable constraints removed. However, in the basic strategy, the constraints
do not interact with the rest of the proof calculus. Moreover, redundancy of
clauses can no longer be defined in terms of ground instances, but only in terms
of ground instances that satisfy the constraints. This significantly affects the
simplification machinery of superposition/resolution.

Unification with abstraction was first introduced, to the best of our knowl-
edge, by Reger et al. in [17] in the context of theory reasoning. However, the
concept was introduced in an ad-hoc fashion with no theoretical analysis of
its impact on the completeness of the underlying calculus. Recently, the rela-
tionship between unification modulo an equational theory and unification with
abstraction has been analysed [13] and a framework developed linking the two.
It remains to explore whether the current work can fit into that framework.

9 Conclusion

We have developed a first-order superposition calculus that delays unification
through the use of constraints, and proved its completeness. Whilst the calculus



38 A. Bhayat et al.

does not perform well in practice, we feel that the calculus and its completeness
proof form a template that can be followed to prove the completeness of calculi
that involve unification procedures more complex than syntactic first-order unifi-
cation. For example unification modulo a set of equations E. Some of the crucial
features of our approach are: (1) the carrying out of partial unification and
adding the remaining unification pairs back as constraints, and (2) the ignoring
of constraint literals in the definition of redundant inference. In particular, fea-
ture (1) may well be crucial in taming issues relating to undecidable unification
problems. For example, in higher-order logic where unification is undecidable, it
is common to run unification to a particular depth and then give up if termina-
tion has not occurred. Of course, this harms completeness. With our approach it
should be possible to add the remaining unification pairs back as constraints and
maintain completeness. In the future, we would like to generalise our approach
into a framework that can be used to prove the completeness of a variety of
calculi as long as the unification problem for the underlying terms meets certain
conditions. We would also like to explore instantiating such a framework to prove
the completeness of particular calculi of interest to us such as AC-superposition
and higher-order superposition.
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Abstract. We introduce a calculus for incremental pre-processing for
SMT and instantiate it in the context of z3. It identifies when powerful
formula simplifications can be retained when adding new constraints. Use
cases that could not be solved in incremental mode can now be solved
incrementally thanks to the availability of pre-processing. Our approach
admits a class of transformations that preserve satisfiability, but not
equivalence. We establish a taxonomy of pre-processing techniques that
distinguishes cases where new constraints are modified or constraints
previously added have to be replayed. We then justify the soundness of
the proposed incremental pre-processing calculus.

1 Introduction

Pre-processing is a central ingredient for scaling automated deduction. These
techniques apply targeted global simplification steps that can drastically reduce
the complexity of problems before search techniques that use mainly local infer-
ence steps are invoked. They are used across several solver domains, spanning
SAT, to SMT, first-order automated theorem proving, constraint programming,
and integer programming. With the exception of SAT solvers, prior techniques
do not combine well when new constraints are added incrementally to a pre-
processed state. Solvers have the option to restart pre-processing from scratch.
This model is viable if the overall number of solver calls is small compared to
time spent solving, but is not practical for scenarios where many minor varia-
tions of a set of main constraints are queried. Such scenarios may be found in
applications of dynamic symbolic execution or symbolic model checking.

A procedure to incorporate pre- and in-processing techniques [27] into incre-
mental SAT solvers was introduced in [18], where such incremental in-processing
allowed a dramatic improvement in the performance of bounded model checking
applications. In the case of SAT, the effect of a simplification step is recorded
in a reconstruction stack. Each eliminated clause is saved on that stack together
with a partial assignment, called its witness, that is used to show the redun-
dancy of the eliminated clause. For example, the redundancy of blocked clauses
are witnessed by their blocked literal, a literal that upon all resolvents are tau-
tological [26,32]. The reconstruction stack has two very important roles in SAT
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solvers. First of all, it has all the information that is necessary for model recon-
struction [25]. When the elimination of a clause is not model-preserving, its
witness on the stack tells how to modify or extend any found solution of the
simplified formula such that it then satisfies the removed clause as well. Beyond
that, the reconstruction stack allows to recognize all those previous simplification
steps that are potentially invalidated by an incrementally added new constraint.
For example, literals that were blocked in the global state of the previous clauses
might not be blocked any more in the presence of some new constraints. Finding
these clauses and their cone of influence on the reconstruction stack allows to
undo only the problematic previous simplification steps, thereby allows pre- and
in-processing to be incremental [18].

Motivated by incremental in-processing SAT solvers, our goal here is to pave a
path towards a similar mechanism in the context of SMT solvers. However, SMT
problems extend propositional SAT formulas in several dimensions: the base the-
ory of SMT is the theory of equality over uninterpreted functions and predicates,
SMT formulas may contain quantifiers, and constants and functions that have
interpretations over theories. Concrete cases of incremental SMT pre-processing
was considered in [19]. While most of the formula simplification techniques of
SAT solvers are captured by well studied redundancy properties [23], such a
unified understanding and description of SMT pre-processing techniques is not
yet introduced. Though some redundancy notions of SAT solvers can be directly
embedded or generalized to SMT [30], a notion that appears to capture simplifi-
cations in SMT in many cases is that of a substitution: an uninterpreted constant
or function is defined into a solved form and the constraints are simplified based
on the solution. When new constraints, containing the solved function symbols,
are added after pre-processing, our method distinguishes between simplifications
that allow applying the substitution to the new formula or removing the substi-
tution and re-adding the old constraints that were simplified. We have found it
useful to characterize pre-processing simplifications by the following categories.

Equivalence Preserving Simplifications. Many simplification methods are based
on equivalence preserving simplifications. For example x > x−y+1 simplifies to
y > 1. They are automatically incremental by virtue of not changing the set of
models. Developing equivalence preserving simplifications is a significant area of
research and engineering by itself. A good example is using and-inverter graphs
(AIGs) for simplifying propositional and first-order formulas [24,45]. The main
challenge with developing equivalence preserving simplifications in an incremen-
tal setting is to make them efficient.

Rigid Constrained Simplifications. An important class of simplifications are
based on eliminating variables by finding solutions to them. In the formula
x ≤ y + 1 ∧ x ≥ y + 1 ∧ ϕ[x, y] we can solve for x (or y) by setting x � y + 1
and then substituting in the solution for x into ϕ. The simplified formula is
ϕ[y +1, y]. The set of models of the original formula must all satisfy the equality
x � y + 1. This property allows to reuse the simplification when later adding
a formula ψ[x, y]. It can be added by applying the solution for x: ψ[y + 1, y].



On Incremental Pre-processing for SMT 43

A model of ϕ[y + 1, y] ∧ ψ[y + 1, y] must conversely correspond to a model of
the original formulas ϕ[x, y] and ψ[x, y]. The equality x �→ y + 1 is used in a
model converter to establish the original model. Some pre-processing techniques
translate constraints from one domain to another. For example, formulas over
bounded integers can be solved by translation into bit-vectors. This translation
can be described with a set of equalities where bounded integers are solved for
their bit-vector representation (see later an example in Table 1).

Under Constrained Simplifications. The rigid constrained simplifications already
cover a significant class of pre-processing methods. Allowing incrementally solv-
ing for variables has a profound practical effect on using z3 incrementally in
user scenarios. There is however a larger class of simplifications that also allow
eliminating variables but do not preserve solutions to the eliminated variable.
These simplifications have the same or more solutions for symbols in the orig-
inal formula and we call them under-constrained. For example, the formula
((x � y ∧ y < z + u) ∨ y ≥ z · u) contains x in only one position. It can be
replaced by the formula ((b ∧ y < z + u) ∨ y ≥ z · u) where b is fresh. Similarly
introducing definitions of fresh symbols does not eliminate solutions to sym-
bols in the original formula. Lastly, when removing redundant clauses, the new
formula may have more solutions. Tseitin transformation introduces definitions
that allow removing redundant, non-CNF, formulas.

Over Constrained Simplifications. Symmetry reduction [14,38] and strengthen-
ing using propagation redundancy criteria [37] are prominent examples of sim-
plifications that apply strengthening to reduce the search space. These transfor-
mations are not covered by the classes covered by our main result. We leave it to
future work to examine whether or how to incorporate strengthening: one avenue
is to leverage assumption literals [16] to temporarily enable strengthenings either
as part of pre-processing or during search [39].

Table 1 summarizes the main categories of pre-processing techniques dis-
cussed so far. This paper develops a calculus of incremental pre-processing for
rigid constrained, under-constrained, clause elimination, and introduction of def-
initions. However, it does not discuss further over-constrained simplifications.

In this paper we introduce the concept of simplification modulo substitu-
tions and show that the main SMT pre-processing methods maintain such a
property. Based on that, we show how to apply or revert the effect of previous
pre-processing steps when new formulas are added after simplification.

2 Preliminaries

We assume the usual notions of first-order logic with equality, satisfiability, log-
ical consequence and theory, as described e.g. in [17]. An interpretation M for a
signature Σ (or Σ-model) consists of a non-empty set UM called the universe of
the model, and a mapping ( )M assigning to each variable and constant symbol
an element of UM, to each n-ary function symbol f in Σ an n-ary function fM
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Table 1. Main categories of pre-processing techniques found in SMT solvers. Function
ite is an abbreviation for if-then-else and bv2int is a function that maps a bit-vector
to an integer value.

category example input example output model converter

equivalence x > x − y + 1 y > 1 ε

rigid x � t, ϕ ϕ[t/x] x �→ t

0 ≤ x ≤ 1∧ (x � 1∨ y > 0) xb ∨ y > 0 x �→ ite(xb, 1, 0)

1 ≤ x ≤ 4∧ (x � 1∨ y > 0) b[2] � 0 ∨ y > 0 x �→ 1 + bv2int(b[2])

under F, ((x � t ∧ ϕ) ∨ ψ)
x �∈ FV (ψ), FV (F )

F, (ϕ[t/x] ∨ ψ) x �→ t

F, x ≤ y, x ≤ z, y ≤ u
x, y �∈ FV (F )

F x �→ min(y, z), y �→ u

def-intro (a ∧ b) ∨ c ¬xb ∨ a, ¬xb ∨ b, xb ∨ c ε

redundant F, ¬p ∨ ¬q, p ∨ q
p is positive in F

F, ¬p ∨ ¬q p �→ p ∨ ¬q

over p(x), p(y), p(z) x ≤ y ≤ z
p(x), p(y), p(z)

ε

from Un
M to UM, and to each n-ary predicate symbol p in Σ an n-ary function

from the set Un
M to distinguished values representing true and false. Note that to

keep the presentation simple, we only consider a single universe in the models.
Interpretations extend to terms by composition.

We use the terminology symbols referring to uninterpreted symbols (vari-
ables) and function symbols. Given a model M and a symbol x, the model
M[x �→ a] is exactly the same as M, except that xM = a where a ∈ UM for 0-
ary symbols and a is a function over UM for n-ary function or predicate symbols.

Lemma 1 (Translation Lemma [41]). If F is a formula and t is a term
s.t. no variable in t occurs bound in F , then M |= F [t/x] iff M[x �→ tM] |= F .

Note that we may use λ terms to represent updates to function and predicate
symbols. The interpretation of a λ term is a function.

We denote Skolem symbols for n-ary functions (where n = 0 is possible) that
cannot occur in input formulas. Only pre-processing methods may introduce the
Skolem symbols as a guarantee that they are fresh.

Convention 1 (Variable non-capture). Throughout this paper we assume
that free and bound variables are disjoint, such that when we substitute a term t
for a variable x in formula F , none of the variables in t are captured.

Definition 1 (Labeled substitution). 〈x← t;Ψ〉B represents a substitution of
x by t, justified by the formula Ψ . The label B is either  or ⊥ and it indicates
whether the map x �→ t may be used as an equal replacement of Ψ .

Example 1. The labeled substitution 〈x ← y + 1;x � y + 1〉⊥ represents the
substitution of x by y + 1 justified by the formula x � y + 1. The label ⊥ of
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the substitution indicates that applying the substitution on a formula F where
x � y + 1 is present does not change the set of models of the formula.

Definition 2. Given θ = 〈x1 ← t1;Ψ1〉B1〈x2 ← t2;Ψ2〉B2 . . . 〈xn ← tn;Ψn〉Bn and
an interpretation M, we define the interpretation Mθ as follows:

Mε = M
Mθ〈x← t;Ψ〉B = (M[x �→ tM])θ

Definition 3. Given θ = 〈x1 ← t1;Ψ1〉B1〈x2 ← t2;Ψ2〉B2 . . . 〈xn ← tn;Ψn〉Bn and
a formula F , we define the formula Fθ as follows:

Fε = F

F 〈x← t;Ψ〉Bθ = (F [t/x])θ

Informally, a sequence of substitutions θ is applied to interpretations from
right to left (i.e. backwards), while to formulas from left to right (i.e. forward).
Further, note that the translation lemma generalizes in a straight-forward way
to substitutions.

3 Incremental Pre-processing

In this section we introduce a calculus to describe incremental pre-processing for
SMT based on the following notion.

Definition 4 (Simplification modulo θ). We say that the formula F sim-
plifies to F ′ modulo θ, denoted F �θ F ′ if

– If M |= F then there is a model M′ such that, M′ |= F ′ and M′ agrees with
M on all symbols that are in F or in background theories or not in F ′.

– If M′ |= F ′ then M′θ |= F .

It follows that simplification allows transitive chaining assuming that symbols
are not recycled.

Lemma 2 (Transitivity of simplification). Let F �θ F ′ and F ′ �θ′ F ′′

such that every symbol that is both in F and F ′′ also occurs in F ′ (i.e. old
symbols are not re-introduced). Then F �θθ′ F ′′.

3.1 Simplification Rules

There are several possible situations where the concept of simplification modulo
substitutions can be used to capture potential simplification steps. For example,
a useful special case for simplification modulo θ is when a formula F implies an
equality x � t that can then be turned into a substitution to simplify F .
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Example 2. The formula isCons(x) ∧ F [x] implies ∃h, t . x � cons(h, t), where
h, t are fresh variables (corresponding to the head and tail of a cons list). We may
substitute x by cons(h, t) in F [x] to eliminate x. The literal isCons(cons(h, t)) is
equivalent true and F [cons(h, t)] is a model simplification of the original formula
modulo x � cons(h, t).

There are also useful special cases where a formula F does not imply an
equality x � t, but the same equality may still be used to simplify F .

Example 3. In the formula F := ((x � 3 ∧ x > u) ∨ y > u) ∧ u > z we can
substitute x �→ 3 and retain simplification. The formula F simplifies to F [3/x] :=
(3 > u ∨ y > u) ∧ u > z, but F does not imply x = 3.

There are also cases where substitutions are not suitable to describe the
relation between F and F ′. It is easier to characterize these by the property that
F ′ is a proper subset of F .

Example 4. A blocked clause p∨C can be removed from a set of formulas without
changing satisfiability: F, (p∨C) �p�→p∨¬C F . If we were to substitute p by p∨¬C
everywhere in F it would weaken clauses where p occurs positively.

Finally, it is possible to accomodate cases where pre-processing introduces
definitions, such as through the unfold transformation (see Sect. 6.5), or by
Skolemization and Tseitin transformations.

Example 5. The Skolemization of ∀x . ∃y . p(x, y) is ∀x . p(x, fsk(x)). Here the
original quantified formula is replaced by the Skolemized formula.

We model the pre-processing performed by an SMT solver as a sequence of
abstract states where each state consists of two components: a formula F and
an ordered sequence of labeled substitutions θ. Based on the shown cases, we
formulate the following conditions for applying simplification rules in Fig. 1.

Fig. 1. A calculus for pre-processing in SMT

We formulated the side conditions that allow to identify a minimal set of
conjuncts Ψ of F involved with the solution for x. Note that a simplification
remains valid when adding conjuncts that do not contain x. The Update rule
handles broadly a set of simplifications, including proof rules from DRAT sys-
tems and introduction of definitions and Skolemization. It may be presented in
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forms where Φ or Ψ or the substitution are empty. The substitution x �→ t gener-
ally represents a tuple of symbols x replaced by terms t. To simplify presentation
we only discuss the case where x is a single symbol and we elide rules that pre-
serve equivalence. The Update rule records Ψ so it can later be re-added in case
a new constraint mentions x. This may be overkill when Φ[t/y] = Ψ for y fresh
(in Sect. 4 we will show another rule, Invert, that adds only the equality y � t
in such cases).

Lemma 3. If F ⇒ ∃y . x � t[y], s.t. y �∈ F , x �∈ t, and t is substitutable for x
in F , then F �x�→t F [t[y]/x].

Proof. Let M be an interpretation s.t. M |= F . Then M |= F ∧ ∃y . x � t[y]
and by definition of the satisfaction relation, there must exists an a ∈ UM,
s.t. M[y �→ a] |= F ∧ x � t[y]. Let M′ note M[y �→ a]. From M′ |= F ∧ x � t[y]
follows that xM′

= t[y]M
′

and so FM′
= F [t[y]/x]M

′
. Since M′ |= F , we have

that M′ |= F [t[y]/x]. For the other direction, when M′ |= F [t[y]/x], due to
Lemma 1, M′[x �→ t[y]M

′
] |= F . Hence, F �x�→t F [t[y]/x]. ��

Corollary 1. The side-condition for Rigid implies that F �x�→t F [t/x].

Lemma 4. Assume Ψ ⊆ F, x �∈ F \Ψ and Ψ �x�→t Ψ [t/x], then F �x�→t F [t/x].

Proof. Since x �∈ F , (F \ Ψ) = (F \ Ψ)[t/x], thus (F \ Ψ) �x�→t (F \ Ψ)[t/x].
Then, from Ψ �x�→t Ψ [t/x] follows that F �x�→t F [t/x].

Lemma 3 established that the side-condition for Rigid ensures simplification
modulo θ. We therefore have the following corollaries.

Corollary 2. If a formula F ′ is derived from F by the inferences from Fig. 1,
then it has the property F �x�→t F ′.

The other rules enforce preservation of satisfiability in their side-conditions.

Corollary 3. The rules from Fig. 1 preserve satisfiability.

The transitive application of the simplifications also preserve satisfiability in
a way that extends the notion of simplification modulo a substitution.

Proposition 1. Consider a formula F0 and a state F ‖ θ derived from F0 ‖ ε
using the rules from Fig. 1. Then F0 �θ F .

Proof. It follows as Corollary 2 notes that each application of a rule from Fig. 1
is a simplification modulo and Lemma 2 notes that simplification modulo is
transitive.

Informally, Proposition 1 means that using θ, one can transform any model
of the simplified formula into a model of the original input formula. Note that
the simplified F may contain fresh Skolem symbols that are not occurring in F0.
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3.2 Pre-processing Replay

Rules of Fig. 1 captured possible pre-processing steps that can be applied on
a single SMT problem. We now describe the scenario where we add additional
constraints Φ to a pre-processed state. Without incremental pre-processing we
have the option to conjoin Φ to the original formula F0 and re-run pre-processing.
The goal of incremental pre-processing is to retain as much of the effect of
previous work as possible.

We will show that for pre-processing steps derived by rule Rigid it is possible
to apply the corresponding substitution to Φ directly, while the other simplifica-
tion steps may require to re-introduce formulas that were previously removed.
We call this process of applying the effect of simplifications on a new formula
as pre-processing replay. Figure 2 shows an imperative implementation of pre-
processing replay.

Fig. 2. Algorithm Replay

Our main proposition summarizes the main property of Replay and ensures
that an arbitrary formula Φ can be added mid-stream after pre-processing.

Proposition 2. Let F ‖ θ be a state resulting from pre-processing F0, and let
F ∧ Φ′ ‖ θ′ be a state produced by applying procedure Replay to Φ and θ, then
F0 ∧ Φ is equi-satisfiable to F ∧ Φ′.

To establish Proposition 2 we will introduce a calculus for reverting the
effect of simplifications. It is shown in Fig. 3 and comprises of two rules, one for
adding a formula with a substitution to F , the other both reverts the effect of
a simplification and adds the reverted formula to F . The inferences rely on a
side-condition that the formulas Φ, Ψ are clean relative to the substitution θ.

Definition 5. A formula Φ is clean w.r.t. a substitution sequence θ iff
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Fig. 3. A calculus for reverting pre-processing. Undo reverts a simplification by re-
introducing a constraint. It prunes θ until Add applies for a new constraint Φ.

– θ = ε, or
– θ = 〈x← t;Ψ〉Bθ′, x �∈ Φ and Φ is clean with respect to θ′, or
– θ = 〈x← t;Ψ〉⊥θ′ and Φ[t/x] is clean with respect to θ′.

Thus, intuitively, Φ is clean w.r.t. θ if Φθ uses only Rigid substitutions from θ.
We now establish that formulas that are clean relative to θ can be added

(after substitution) to formulas while maintaining models. The substitution used
in rigid updates corresponds to equalities that are consequences.

Lemma 5. Given a state F ′ ‖ θθ′ derived from the state F ‖ θ and formula Φ
that is clean with respect to θ′, then F ∧ Φ �θ′ F ′ ∧ Φθ′.

Proof. We examine the two directions.

– Let M |= F ∧ Φ. Induction on the length of the derivation from F to F ′

establishes that if M |= F , then there is a corresponding M′ such that
M′ |= F ′ ∧ ∧

(x�→t)∈θ′ x � t: Each time Rigid is applied a new equality is
used for simplification F1[t1/x1]. The equality can be added to the result,
F1[t1/x1] ∧ x1 � t1 without changing satisfiability because x1 does not occur
in F1[t1/x1]. Thus, the resulting model M′ can be constrained to satisfy all
equalities used in rigid substitutions. Since M′ |= Φ already, then M′ |= Φθ′.

– Let M′ |= F ′ ∧ Φθ′. Then from the assumption of simplification modulo θ′,
we get M′θ′ |= F . Lemma 1 ensures M′θ′ |= Φ. Thus, M′θ′ |= F ∧ Φ.

The correctness of the Add rule is now immediate:

Corollary 4. Let F ‖ θ be derived from F0 ‖ ε, and Φ clean with respect to θ,
then F0 ∧ Φ simplifies modulo θ to F ∧ Φθ.

Proof. It follows from Lemma 5.

With Proposition 1 we established that Rigid, Flex and Update maintain
F0 �θ F . We need to show that also for rule Undo. The first step is to establish
that the formula removed by each of the pre-processing rules can be re-added
without affecting simplification.

Lemma 6. Given an inference F ‖ θ =⇒ F ′ ‖ θ〈x← t;Ψ〉B by either of the
rules Rigid, Update, Flex the formula F simplifies to F ′, Ψ modulo ε.

Proof. The proof is by case analysis by the rule that is applied.
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– Flex: Then F ′ = F [t/x], Ψ ⊆ F and therefore F ′ ∧ Ψ = F ∧ Ψ [t/x]. From
the side condition Ψ �x�→t Ψ [t/x] every model of F there is a model of Ψ [t/x]
that agrees with symbols from F . Conversely F ′, Ψ properly contains F and
therefore implies it. Therefore, F �ε F ′, Ψ .

– Update: We want to show that F, Ψ simplifies to F, Ψ, Φ modulo ε. The
premise of Update ensures that for every M |= F, Ψ there is a model agreeing
with M on symbols in F, Ψ , that satisfies F,Φ. Since interpretation of the
symbols in Ψ is unchanged it also satisfies Ψ . Conversely, if M′ |= F, Ψ, Φ,
then already M′ |= F, Ψ and therefore M′ε |= F, Ψ .

– Rigid: We wish to establish that F �ε F ′, Ψ . First observe that F ′, Ψ =
F, Ψ [t/x]. Since Ψ implies the equation ∃y . x � t, every model of F implies
there is a solution to y such that Ψ [t/x] that agrees with the variables in F .
Conversely, if F, Ψ [t/x] is satisfied by M′, then M′ already satisfies F .

Lemma 7. Given F ‖ θ〈x← t;Ψ〉Bθ′ =⇒Undo F, Ψθ′ ‖ θθ′, s.t. F0 �θ〈x←t;Ψ〉Bθ′

F , then F0 �θθ′ F, Ψθ′ holds.

Proof. Given an inference F1 ‖ θ =⇒ F2 ‖ θ〈x← t;Ψ〉B. Lemma 6 establishes
that the formula F1 simplifies to F2, Ψ modulo ε. Lemma 5 establishes that F2, Ψ
simplifies to F, Ψθ′ modulo θ′. Chaining the definition of simplification modulo
transitively establishes the lemma.

With Corollary 4 and Lemma 7 we have then established Proposition 2.
It is worth examining why the side-conditions for simplification modulo are

used. As the following example shows, transformations that only preserve satis-
fiability but strengthen formulas cannot be used easily in an incremental setting.

Example 6. Let F0 be the satisfiable formula x � y ∧ y ≤ z ∧ z � v. In that
formula x, y are equal, and z, v are equal. Lets assume that we simplify via
the solution where the classes are merged (i.e. where y � z). It is satisfiability
preserving. It suggests a transformation that we call Flex†.

x � y ∧ y ≤ z ∧ z � v ‖ ε

x � z ∧ z � v ‖ 〈y←z; (x � y ∧ y ≤ z)〉� Flex†

The resulting state is still satisfiable. Now Undo can be applied without any
problems. The result is still satisfiable, but not equivalent to F0 (does not have
the models where the two equivalence classes are not merged).

x � z ∧ z � v ‖ 〈y←z; (x � y ∧ y ≤ z)〉�

(x � y ∧ y ≤ z) ∧ x � z ∧ z � v ‖ ε
Undo

Adding the constraint y � z − 1 to F0 would be satisfiable, but adding it to our
formula is unsatisfiable.
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4 Simplification Methods

Many simplification methods used in practice during pre-processing are equiv-
alence preserving. These methods include formula rewriting, constant propa-
gation, NNF conversion, quantifier elimination, and bit-blasting. They do not
require the methodology from this paper and have been integral in Z3 since its
inception. We will here discuss main simplification pre-processing routines that
do not preserve equivalence and how they relate to our taxonomy.

4.1 Equality Solving

One of the most useful pre-processing techniques eliminates symbols when they
can be solved, that is, a constraint implies an equality x � t, where t is a
term that does not contain x. Equality solving corresponds to finding unitary
solutions to unification problems modulo theories. Most uses of equality solving
are captured by transformations justified by rule Rigid. In Z3, equality solving
comprises of a two stage process:

1. Extract a set of solution candidates E implied by the current formula ϕ.
2. Extract from E a subset of solutions that can be oriented without introducing

cyclic dependencies.

To elaborate, let E be a set of solution candidates x1 = t1, . . . xn = tn. The
candidates may contain multiple equalities using the same symbol. For example,
E could be x = f(x), x = g(y), y = h(z). We can’t use the solution x = f(x)
because x already occurs in f(x). But we can use the solution x = g(y), y = h(z)
processed in this order as first x is replaced by g(y), then y is replaced by h(z). In
the second stage we extract from E a subset of equalities xi1 = ti1 , . . . , xik = tik ,
where xij are distinct and tij are terms such that xij �∈ tij′ for j ≤ j′. The subset
is in triangular form.

Example 7. We illustrate two application of Rigid for eliminating two symbols
from three equations. The choice of the first two equations is arbitrary. An
alternative simplification could choose to eliminate x and z instead. It is not
possible, however, to eliminate all three variables.

F, x � y + 1, y � z + 1, z � f(x) ‖ θ =⇒Rigid

F [y + 1/x], y � z + 1, z � f(y + 1) ‖ θ〈x←y + 1;x � y + 1〉⊥ =⇒Rigid

F [y+1/x, z+1/y], z � f(z+2) ‖ θ〈x←y+1;x � y + 1〉⊥〈y←z + 1; y � z + 1〉⊥

The set of unification modulo theories facilities used in Z3 is based on extract-
ing simple definitions. Foremost, for a conjunct x � t of ϕ, where x is uninter-
preted, x �= t, include the equality candidate x � t. Other equality candidates are
included from formulas of the form ite(c, x � t, x � s) and arithmetic equalities
of the form x+s � t, such that x � t−s is a solution candidate for x. Note that
solution candidates are not necessarily unique for an equality. The constraint
x + y � t can be used as solution to both x and y. If x has a nested occurrence
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within t, the solution for y, but not x, can be used. Equality solving interacts
with simplification pre-processing: equalities over algebraic data-types can be
assumed to be in decomposed form already since rewriting simplification decom-
poses equalities of the form cons(h1, t1) � cons(h2, t2) into h1 � h2 ∧ t1 � t2.
Equality solving can be extended modulo theories in several directions. Arith-
metical equalities can be extracted from Diophantine equations solving and poly-
nomial equality factorization as part of establishing a Gröbner basis. Equalities
can be extracted from inequalities [6,31], other theories, such as the theory of
arrays allow extracting solutions from equalities store(a, i, v) � t, where a is a
symbol that does not occur in t, i, v, as a � store(t, i, w), together with the con-
straint select(t, i) � v, where w is fresh. We leave a study of the cost/benefits
of these approaches within the context of incremental pre-processing to future
work.

Equality solving is extended to sub-formulas in the following way: When a
positive sub-formula implies an equality x � t and the symbol x does not occur
outside of the sub-formula then x can be replaced by t within the subformula.
The solution is no longer rigid constrained but can be justified by Flex.

Example 8. Suppose x �∈ F, Ψ , then we can use Flex to justify the simplification

F, (x � t ∧ Φ[x]) ∨ Ψ ‖ θ =⇒Flex F,Φ[t] ∨ Ψ ‖ θ〈x← t; (x � t ∧ Φ[x]) ∨ Ψ〉�

4.2 Unconstrained Sub-terms

Symbols that have a single occurrence in a formula may be solved for based on
context. For example, with the formula x ≤ y, y < z, z ≤ u, p(u), q(u), the con-
stant x can be eliminated by using the solution x � y. Then y can be eliminated
by setting y � z − 1, and finally z � u.

Invertibility of unconstrained symbols (see e.g. [7,8]) in an incremental set-
ting for bit-vectors was introduced in [19]. The method implements the following
proof-rule, exemplified for the term x + t, containing the only occurrence of x.

Invert :
F [x + t] ‖ θ =⇒ F [y] ‖ θ〈x←y − t; y � x + t〉� if x occurs uniquely in F

y is fresh

To justify rule Invert in our setting, it suffices to check the condition from
Lemma 6. Alternatively, we can use the generic rule Update when applying
unconstrained simplifications. The rule Invert is more efficient than using
Update because the latter requires adding back an entire conjunction Ψ where
the invertible term x+ t occurs. Invertibility can also be used to justify elimina-
tion of nested definitions. For a definition F ∧((x � t∧Φ[x])∨Ψ) (see Example 8),
where x �∈ F, Ψ can first be rewritten as F ∧ ((x � t ∧ Φ[t]) ∨ Ψ). Then x � t
is invertible because it contains the only occurrence of x. The new constraint is
F ∧ ((y ∧ Φ[t]) ∨ Ψ) where y is a fresh Boolean symbol.
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Invertibility conditions are theory dependent. Figure 4 exemplifies main
invertibility conditions for arithmetic1.

Fig. 4. Invertibility rules for symbols x, x′ that occur uniquely in F ; y is fresh.

Z3 uses a heap ordered by occurrence counts to identify candidates for invert-
ibility. It first processes all symbols with occurrence count 1. If it is possible to
eliminate a symbol with occurrence count 1, the occurrence counts of sub-terms
under the term that gets eliminated are decreased. The elimination process stops
once the heap only contains symbols with occurrence counts above 1.

4.3 Symbol Elimination and Macros

SAT solvers use symbol elimination [15] to simplify clauses. The first-order ver-
sion [11] remains timely in more recent works as well [28]. A predicate p can be
eliminated if it occurs at most once in every clause either positively or negatively.
Clauses that contain p are replaced by resolvents by applying binary resolution
exhaustively, and then remove clauses containing p.

Example 9. We illustrate symbol elimination for the ground case with two
clauses, and F such that p �∈ F , as an instance of the Update rule.

F, p(t) ∨ Φ,¬p(s) ∨ Ψ ‖ θ =⇒Update

F, s �� t ∨ Φ ∨ Ψ ‖ θ〈p←λx . p(x) ∨ (x � t ∧ ¬Φ); p(t) ∨ Φ,¬p(s) ∨ Ψ〉�

The same elimination technique can also be applied to Horn clauses where
p does not occur both in the head and body of any rule. A solution for the
eliminated predicate is a conjunction of the upper bounds for p or a disjunction
of lower bounds for p. It is generally a quantified formula. If the involved clauses
admit quantifier free interpolants, the solution can also be computed using an
interpolant from a solution to the reduced system [4]. Thus, the term t in a
substitution x �→ t may only be computed after an initial model is known.

There are many cases where symbols can be eliminated incrementally and
justified by the Rigid rule:

– Macros ∀x . f(x) � t[x], ∀x . f(x) + s � t are handled as ∀x . f(x) �
t − s, assuming f is not free in s, t. Then replace occurrences f(a) by t[a],
respectively t[a] − s[a].

1 A summary of rules used for other theories can be found online: https://microsoft.
github.io/z3guide/docs/strategies/summary#tactic-elim-uncnstr.

https://microsoft.github.io/z3guide/docs/strategies/summary#tactic-elim-uncnstr
https://microsoft.github.io/z3guide/docs/strategies/summary#tactic-elim-uncnstr
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– Quasi macros ∀x, y . f(x, y, x + y) � t[x, y], then replace f(a, b, c) by ite(c �
a + b, t[a, b], f ′(a, b, c)), assuming f �∈ t.

– Conditional macros ∀x . f(x) � t[x] ∨ C[x], then replace f(a) by
ite(C[a], f ′(a), t[a]), where f �∈ t, C.

– (f(x) � t) ≡ ψ, where f �∈ t, ψ. Then replace f(a) by ite(ψ, t, f ′(a)) and add
the clause ∀x . f ′(x) �� t.

Macro elimination can be extended to ordered structures and in combination
of theories [42]. It has been integral to making quantified reasoning with bit-
vectors [44] practical. We claim that first-order in-processing rules based on
blocked clauses, asymmetric tautology elimination, covered clauses known from
SAT [29] can also be captured by Update. We substantiate the claim with an
example, but leave a comprehensive treatment for future work:

Example 10. Consider the clause C := p(x) ∨ q(x) and F := ¬p(x) ∨ p(f(x)) ∨
r(x),¬p(x) ∨ p(f(x)) ∨ p(g(x)). The variable x is universally quantified. Then
C can be rewritten to p(x) ∨ q(x) ∨ p(f(x)) without affecting satisfiability. The
covered literal p(f(x)) was added to C as it occurs in every resolvent with p(x).
The model for p has to be fixed, however. The model update is a first-order
lifting of the propositional case.

F, p(x) ∨ q(x) ‖ θ =⇒Update

F, p(x) ∨ q(x) ∨ p(f(x)) ‖ θ〈p←λx . p(x) ∨ p(f(x));∀x . p(x) ∨ q(x)〉�

To illustrate unification constraints in model updates, consider the clause C :=
p(h(x)) ∨ q(x) and p′ := λx . p(x) ∨ ∃y . x � h(y) ∧ ¬q(y):

F, p(h(x)) ∨ q(x) ‖ θ =⇒Update

F, p(h(x)) ∨ q(x) ∨ p(f(h(x))) ‖ θ〈p←p′;∀x . p(h(x)) ∨ q(x)〉�

5 Implementation

We have implemented incremental pre-processing as an integral component
of a new SMT solver, part of Z3. It can be enabled by setting the option
sat.smt=true from the command line. It includes simplification by equality
solving, elimination of uninterpreted sub-terms and macro detection as described
in Sect. 42. The primary reason for supporting incremental pre-processing has
been usability. GitHub issues pointing to performance cliffs when switching to
incremental mode are recurrent. A distilled example where pre-processing can
solve formulas is as follows:

Example 11. Consider the benchmark.

(set-option :unsat_core true) (set-option :sat.smt true)
(declare-const exp Int) (push)
(assert (! (= exp 1) :named assumption))
(assert (not (= 2 (^ 2 exp)))) (check-sat) (get-unsat-core)

2 See https://microsoft.github.io/z3guide/docs/strategies/simplifiers for a summary
of simplifiers.

https://microsoft.github.io/z3guide/docs/strategies/simplifiers
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The legacy solver of z3 cannot solve it because it only knows about constant fold-
ing when expanding the definition of exponentiation (the symbol ^). With incre-
mental propagation, the equality (not (= 2 (^ 2 exp))) simplifies to false.

Simplifiers interoperate with user scopes: SMT solvers support scoping using
operations push and pop. All assertions made within a push are invalidated
by a matching pop. To allow simplifiers to inter-operate with recursive function
definitions they track symbols used in the bodies of recursive functions as frozen.
Those symbols are excluded from solving. Similar to CaDiCaL’s implementation
for replaying clauses (see [18]), our implementation of Replay stores the domain
of θ in a hash-set to bypass processing formulas that have no symbols in θ.

6 Related Work

6.1 Pre- and In-processing for SAT and QBF

Pre-processing for SAT has received significant attention with the milestone
work in Satellite [15] and then using notions of blocked clauses [27] and solution
reconstruction [25]. Pre-processing techniques for QBF are discussed for example
in [3,22]. The main pre-processing methods for propositional satisfiability solvers
can be captured using our rule Update (see Example 4 for an instance of blocked
clause elimination simplification). For the case where ¬p∨D is a blocked clause,
the model update is the de-Morgan dual: removing ¬p ∨ D triggers the update
M[p �→ (p ∧ D)M].

The work [18] introduces an inference system that also addresses redundant
clauses and represents model updates using a notion of witness labeled clauses.
The semantic content of the rules used for SAT are captured by Update. How-
ever, we elided tracking redundant clauses in this work. The case for SMT moti-
vate specialized rules Rigid, Flex and Invert.

6.2 Pre-processing for SMT

Pre-processing simplification is integral in all main SMT solvers, including [2,33].
Incremental pre-processing with special attention to bit-vectors was introduced
in [19]. Transformations considered in this thesis can be represented by the Rigid
and Invert rules. Z3 exposes pre-processing simplifications as tactics [13] and
allows users to compose them to suit specific needs of applications.

Invertibility conditions are used in [34] to guide local search. This work con-
siders also a candidate value of all symbols. For example, F [x · t] is invertible to
F [y] if t evaluates to 1.

6.3 Pre-processing for MIP

Pre-solving is terminology for pre-processing for mixed-integer linear program-
ming solvers. There is a significant repertoire of pre-solving methods integrated
in leading MIP solvers. Their effects are well documented in the newer survey
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[1], which provides an updated perspective to [20]. Pre-solving was developed
earlier in [40]. The main methods can be categorized as operating on single rows
(single constraints) or single columns (single variables), multiple rows, and mul-
tiple columns, and use global information about the tableau. They include also
methods known from other domains, such as literal probing also found in SAT
solvers, and symmetry reduction for sparse systems [38]. We are not aware of
under-constrained simplifications used in mainstream MIP solvers. Only symme-
try reduction stands out as outside the scope of incremental pre-solve methods.

Example 12. Pre-processing that combines two rows or combines two columns
relies on efficient indexing [21] to be effective. The two column non-zero can-
cellation method considers the situation where the coefficients to two variables
maintain a high degree of correlation. Consider the following formula

2x + 4y + z ≤ 5 ∧ x + 2y + u ≤ 6 ∧ 3x + y + z ≤ 3 ∧ ϕ where x, y �∈ ϕ.

The coefficients to x, y in the first two inequalities are related by the affine
relation given by λ = 2. In this case the system can be reformulated, justified
by rule Rigid, by introducing a fresh variable v and using the inequalities

2v + z ≤ 5 ∧ v + u ≤ 6 ∧ 3v − 5y + z ≤ 3 ∧ ϕ.

6.4 Pre-processing in First- and Higher-Order Provers

Pre-processing is also an important part of first-order theorem provers. Tech-
niques for creating small clausal normal forms have long attracted attention [35].
Main simplifications [24] are based on detecting definitions similar to what is
described in Sect. 4.3, but with the extra twist of ensuring that simplifications
preserve first-order decidability, such as ensuring that formulas remain within the
EPR fragment. Furthermore a variant of AIGs with nodes representing quanti-
fiers are used to detect shared structure. While [24] is only concerned establishing
preservation of satisfiability we note that the classification as model equivalent
from Sect. 4.3 extends to the cases considered. In-processing inspired by SAT
was pursued for first-order [29,43] and recently for higher-order settings [5].

6.5 Constrained Horn Clauses

Constrained Horn Clauses [4], enjoy a tight connection with Logic Program-
ming where several transformation techniques were developed [10,12], including
incremental consequence propagation [36]. Fold [9] transformations introduce
auxiliary predicates and rules that correspond to replacing a code-block with
an auxiliary procedure. It is justified by Rigid. Unfold transformations can be
justified by Update and correspond to macro elimination.
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7 Summary

We introduced a calculus of pre-processing for SMT. It distinguishes simplifi-
cations that are rigid and so can be applied to new formulas as substitutions.
Other simplified formulas may need to be re-introduced similar to re-introducing
removed clauses in SAT. We examine several of the pre-processing methods stud-
ied in SAT, ATP, MIP and SMT as instances of the calculus. We leave empirical
and algorithmic studies of new pre- and in-processing methods to future work.
Another angle we have left on the table is reconciling pre-processing with in-
processing. For SAT, it was useful to develop a calculus that accounted for both
irredundant and redundant clauses. In our current effort we have set this angle
aside in favour of establishing main properties on replaying substitutions.

Acknowledgment. Thanks to the reviewers for their extensive constructive feed-
back and to Diego Olivier Fernandez Pons for introducing us to MIP pre-solving. The
research was partially funded by the Austrian Science Fund (FWF) under project
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Abstract. Resolution and superposition provers rely on the given clause
procedure to saturate clause sets. Using Isabelle/HOL, we formally ver-
ify four variants of the procedure: the well-known Otter and DISCOUNT
loops as well as the newer iProver and Zipperposition loops. For each of
the variants, we show that the procedure guarantees saturation, given a
fair data structure to store the formulas that wait to be selected. Our for-
malization of the Zipperposition loop clarifies some fine points previously
misunderstood in the literature.

Keywords: Saturation provers · Proof assistants · Stepwise refinement

1 Introduction

Resolution [13] and superposition [2] provers are based on saturation. In a first
approximation, these provers perform all possible inferences between the avail-
able clauses. The full truth, however, is more complex: Provers may delete clauses
that are considered redundant ; for example, with resolution, if p(x) is in the
clause set, then both p(a) and p(x) ∨ q(x) are redundant and could be deleted.

The procedure that saturates a set of clauses—or more generally, formulas—
up to redundancy is called the given clause procedure [10, Sect. 2.3]. It has several
variants. The two main variants are the Otter loop [10] and the DISCOUNT loop
[1]. In this paper, we also consider the iProver [8] and Zipperposition loops [17];
they are variants of the Otter and DISCOUNT loops, respectively.

In its simplest form, the procedure distinguishes between passive and active
formulas. Formulas start as passive. One passive formula is selected as the given
clause.1 Deletions and simplifications with respect to other passive and active
formulas are then performed; for example, if the given clause is redundant with

1 We keep the traditional name “given clause” even though our formulas are not nec-
essarily clauses.
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respect to an active formula, the given clause can be deleted, and if the given
clause makes an active formula redundant, that formula can be deleted. More-
over, simplifications can take place; for example, in a superposition prover, if
the term order specifies b � a, the given clause is b ≈ a, and p(b) is an active
formula, the active formula can be simplified to p(a) and made passive again.

Next, if the given clause has not been deleted, it is moved to the active
set. All inferences between the given clause and formulas in the active set are
then performed, and the resulting conclusions are put in the passive set. This
procedure is repeated, starting with the selection of a new given clause, until the
distinguished formula ⊥ is derived or the passive set is empty.

The main metatheorem about this procedure states that if the given clause
is chosen fairly (i.e., no passive formula is ignored forever), then the active set
will be saturated (up to redundancy) at the limit. As a corollary, if the proof
calculus is refutationally complete (i.e., it derives ⊥ from any inconsistent set),
then the prover based on the calculus will be refutationally complete as well.

We present an Isabelle/HOL [12] formalization of the Otter, DISCOUNT,
iProver, and Zipperposition loops, culminating in a statement and proof of
the main metatheorem for each one. We build on the pen-and-paper saturation
framework developed by Waldmann, Tourret, Robillard, and Blanchette [18,19]
and formalized in Isabelle/HOL by Tourret and Blanchette [16]. The framework
is an elaboration of Bachmair–Ganzinger-style saturation [3, Sect. 4]. Waldmann
et al. include descriptions of the four “loops” as instances of the framework, as
Examples 71, 74, 81, and 82 [19]; our formalization follows these descriptions.

Among the four loops, the oldest one is the Otter loop. It originates from
Otter, a resolution-based theorem prover for first-order logic introduced in 1988
[11]. Otter was the first prover to present the given clause algorithm, in its
simplest form as described above.

The DISCOUNT loop followed a few years later as a byproduct of the DIS-
COUNT system [7], itself built to distribute proof tasks among processors. What
distinguishes a DISCOUNT loop is that it really treats the passive set as passive.
Its formulas serve only as the pool from which to choose the next given clause;
they are never involved in deletions or other simplifications. Another key differ-
ence between the two loops is the decoupling of the scheduling of an inference
and the production of its conclusion, which makes DISCOUNT able to propa-
gate deletions and simplifications to discard inferences before their conclusions
enter the passive set. For example, suppose that, in DISCOUNT, an inference

p(x) ∨ p(a) ¬ p(y) ∨ q(y)

p(x) ∨ q(y)

called ι is scheduled, in a derivation using first-order resolution. Then suppose
that, before ι is realized, p(a) is generated (e.g., as the result of the factorization
of p(x) ∨ p(a)). This triggers the deletion of p(x) ∨ p(a), which has become
redundant. Then ι becomes an orphan inference, since one of its premises is no
longer in the active set. It can be deleted without threatening the procedure’s
completeness. In contrast, in an Otter loop, if ι is scheduled before p(a) is selected
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as the given clause, ι’s conclusion p(x)∨q(y) is directly added to the passive set,
where it can be simplified.

What we call the iProver loop [8] is an extension of the Otter loop with
a transition that removes a formula C if C is made redundant by a formula
set M . This terminology is from Waldmann et al. [19, Example 74]. This rule,
introduced when iProver was extended to handle the superposition calculus [8],
combines an inference step with a step that simplifies the active set.

The last and most elaborate loop variant we present is the Zipperposition
loop. Zipperposition is a higher-order theorem prover based on λ-superposition
[4]. Its given clause procedure is designed to work with higher-order logic. Due to
the explosiveness of higher-order unification, a single pair of premises can yield
infinitely many conclusions. For example, the higher-order resolution inference

p (f (y a)) ∨ q y ¬ p (z (f a))

q (λx. f (. . . (f x) . . .))

where y and z are variables, produces infinitely many conclusions of the form
q(λx.fn x) for n ∈ N. Thus, the passive set must be able to store possibly infinite
sequences of lazily performed inferences. The Zipperposition loop was described
by Vukmirović et al. [17] and by Waldmann et al. [19, Example 82].2 Vukmirović
et al. describe the loop’s implementation in Zipperposition, which we believe to
be correct. In contrast, Waldmann et al. present an abstract version of the loop
and connect it, via stepwise refinement, to their saturation framework, obtaining
the main metatheorem. However, in the latter work, the details are not worked
out. Thanks to the Isabelle formalization, we note and address several issues
such that we now have a first rigorous—in fact, fully formal—presentation of
the essence of the Zipperposition loop including the metatheorem.

Our work is part of IsaFoL (Isabelle Formalization of Logic), an effort that
aims at developing a formal library of results about logic and automated rea-
soning [6]. The Isabelle files amount to about 7000 lines of code. They were
developed using the 2022 edition of Isabelle and are available in the Archive of
Formal Proofs (AFP) [5], where they are updated to follow Isabelle’s evolution.

This work joins a long list of verifications of calculi and provers. We refer to
Blanchette [6, Sect. 5] for an overview of such works. The most closely related
works are the two proofs of completeness of Bachmair and Ganzinger’s resolu-
tion prover RP, by Schlichtkrull, Blanchette, Traytel, and Waldmann [14] and
by Tourret and Blanchette [16] as well as the proof of completeness of ordered
(unfailing) completion by Hirokawa, Middeldorp, Sternagel, and Winkler [9].
Instead of focusing on a single prover, here we consider general prover architec-
tures. Via refinement, our results can be applied to individual provers.

2 Abstract Given Clause Procedures

To prove the main metatheorem for each of the four loops, we build on the
saturation framework. The framework defines two highly abstract given clause
2 Both groups of researchers include Blanchette and Tourret.
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procedures, called GC (“given clause”) and LGC (“lazy given clause”) [19, Sect. 4].
They are formalized in the file Given_Clause_Architectures.thy of the AFP
entry Saturation_Framework [15].

GC is an idealized Otter-style loop. It operates on sets of labeled formulas.
Formulas have the generic type ′f, and labels have the generic type ′l. One
label, active, identifies active formulas, and the other labels correspond to passive
formulas. GC is defined as a two-rule transition system �GC. In Isabelle syntax:

inductive (�GC) :: (′f × ′l) set ⇒ (′f × ′l) set ⇒ bool where
process: N1 = N ∪ M =�⇒ N2 = N ∪ M ′ =�⇒ M ⊆ RedF (N ∪ M ′) =�⇒

active_subset M ′ = ∅ =�⇒ N1 �GC N2

| infer : N1 = N ∪ {(C,L)} =�⇒ N2 = N ∪ {(C, active)} ∪ M =�⇒
L �= active =�⇒ active_subset M = ∅ =�⇒
Inf_between (fst ‘ active_subset N) {C}

⊆ RedI (fst ‘ (N ∪ {(C, active)} ∪ M)) =�⇒
N1 �GC N2

When presenting Isabelle code, we will focus on the main ideas and not
explain all the Isabelle syntax or all the symbols that occur in the code. We
refer to Waldmann et al. [19] for mathematical statements of the key concepts
and to the Isabelle theory files for the formal definitions.

Informally, the transition relation �GC is defined as an inductive predicate
equipped with two introduction rules, process and infer. Both rules allow a tran-
sition from N1 to N2 under some conditions:

– The process rule replaces a subset M of N1 by M ′. This is possible only if
the redundancy criterion (RedF) justifies the replacement and the formulas in
M ′ are all made passive (i.e., the active subset of M ′ is the empty set). This
rule models formula simplification and deletion, but also replacing a passive
label by another, “greater” passive label.

– The infer rule makes a passive formula C active and performs all inferences
between this formula and active formulas, yielding M . Strictly speaking, the
inferences need not be performed at all; it suffices that M makes the inferences
redundant.

The main metatheorem for GC states that if the set of passive formulas is empty
at the limit of a derivation, the active formula set is saturated at the limit.

The lazy variant LGC generalizes the DISCOUNT loop. It operates on pairs
(T,N), where T :: ′f inference set is a set of inferences that have been scheduled
but not yet performed and N :: (′f× ′l)set is a set of labeled formulas. It consists
of four rules that can be summarized as follows:

– The process rule is essentially as in GC. It leaves the T component unchanged.
– The schedule_infer rule makes a passive formula active and schedules all the

inferences between this formula and active formulas by adding them to the T
component.

– The compute_infer rule actually performs a scheduled inference or otherwise
ensures that it is made redundant by adding suitable formulas.

https://www.isa-afp.org/browser_info/current/AFP/Saturation_Framework/Given_Clause_Architectures.html
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– The delete_orphan_infers rule can be used to delete a scheduled inference if
one of its premises has been deleted.

The main metatheorem for LGC states that if the set of scheduled inferences and
the set of passive formulas are empty at the limit of a derivation starting in an
initial state, the active formula set is saturated at the limit.

3 Otter and iProver Loops

The Otter loop [10] works on five-tuples (N,X,P, Y,A), where N is the set
of new formulas; X is a subsingleton (i.e., the empty set or a singleton {C})
storing a formula moving from N to P ; P is the set of so-called passive formulas
(although, strictly speaking, the formulas in N , X, and Y are also passive); Y
is a subsingleton storing the given clause, which moves from P to A; and A is
the set of active formulas. All the sets are finite in practice.

Initial states have the form (N, ∅, ∅, ∅, ∅). Inferences are assumed to be fini-
tary, meaning that the set of inferences with C and formulas from A as premises
(formally written Inf_between A {C}) is finite if A is finite. Premiseless infer-
ences are disallowed.

Otter Loop without Fairness. The first version of the Otter loop, formalized
in Otter_Loop.thy, does not make any fairness assumption on the choice of the
given clause. The guarantee it offers is correspondingly weak: If the sets N , X,
P , and Y are empty at the limit of a derivation starting in an initial state, then
A is saturated. But there is no guarantee that N , X, P , and Y are empty at the
limit. Later in this section, we will show how to ensure this generically.

The transition system �OL for the Otter loop without fairness is as follows:

inductive (�OL) :: (′f × OL_label) set ⇒ (′f × OL_label) set ⇒ bool where
choose_n: C /∈ N =�⇒

state (N ∪ {C}, ∅, P , ∅, A) �OL state (N, {C}, P , ∅, A)
| delete_fwd : C ∈ RedF (P ∪ A) ∨ (∃C ′ ∈ P ∪ A. C ′ · C) =�⇒

state (N, {C}, P , ∅, A) �OL state (N, ∅, P , ∅, A)
| simplify_fwd : C ∈ RedF (P ∪ A ∪ {C ′}) =�⇒

state (N, {C}, P , ∅, A) �OL state (N, {C ′}, P , ∅, A)
| delete_bwd_p: C ′ ∈ RedF {C} ∨ C · C ′ =�⇒

state (N, {C}, P ∪ {C ′}, ∅, A) �OL state (N, {C}, P , ∅, A)
| simplify_bwd_p: C ′ ∈ RedF C, C ′′ =�⇒

state (N, {C}, P ∪ {C ′}, ∅, A) �OL state (N ∪ {C ′′}, {C}, P , ∅, A)
| delete_bwd_a: C ′ ∈ RedF {C} ∨ C · C ′ =�⇒

state (N, {C}, P , ∅, A ∪ {C ′}) �OL state (N, {C}, P , ∅, A)
| simplify_bwd_a: C ′ ∈ RedF (C, C ′′) =�⇒

state (N, {C}, P , ∅, A ∪ {C ′}) �OL state (N ∪ {C ′′}, {C}, P , ∅, A)
| transfer : state (N, {C}, P , ∅, A) �OL state (N, ∅, P ∪ {C}, ∅, A)
| choose_p: C /∈ P =�⇒

state (∅, ∅, P ∪ {C}, ∅, A) �OL state (∅, ∅, P , {C}, A)

https://www.isa-afp.org/browser_info/current/AFP/Given_Clause_Loops/Otter_Loop.html
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| infer : Inf_between A {C} ⊆ RedI (A ∪ {C} ∪ M) =�⇒
state (∅, ∅, P , {C}, A) �OL state (M, ∅, P , ∅, A ∪ {C})

The state function converts a five-tuple into a set of labeled formulas—an equiv-
alent representation that is often more convenient formally. The labels are New
(for N), XX (for X), Passive (for P ), YY (for Y ), and Active (for A, corresponding
to active in GC).

The first nine rules all refine GC’s process rule, whereas the tenth rule, infer,
refines GC’s infer. More precisely: The first rule moves a formula from N to X.
The second and third rules delete or simplify the formula in X. The fourth to
seventh rules delete or simplify other formulas using the formula in X. The eight
rule moves a formula from X to P . The ninth rule moves a formula from P to
Y . And the tenth rule moves a formula from Y to A and performs all inferences
with formulas in A or otherwise ensures that the inferences are made redundant.

Following Waldmann et al., the rules introducing new formulas—namely, the
simplify rules and infer—allow adding arbitrary formulas to the state and are
therefore not sound. Since the metatheorems are about completeness, there is no
harm in allowing unsound steps, such as skolemization. If desired, soundness can
be required simply by adding the assumption N |= N ′ for each step N �OL N ′

in a derivation.
Compared with most descriptions of the Otter loop in the literature, the

above formalization (and Example 71 in Waldmann et al. [19] on which it is
based) is abstract and nondeterministic, allowing arbitrary interleavings of dele-
tions, simplifications, and inferences. By not commiting to a specific strategy,
we keep our code widely applicable: Our abstract Otter loop can be used as
the basis of refinement steps targetting a wide range of deterministic procedures
implementing specific strategies. We will see the same approach used for all the
loops. We note that Bachmair and Ganzinger made a similar choice for their
ordered resolution prover RP [3, Sect. 4].

Otter Loop with Fairness. Below we introduce a fair version of the Otter loop,
called �OLf and formalized in Fair_Otter_Loop_Def.thy. This new version is
closer to an implementation.

inductive (�OLf) :: (′p, ′f)OLf _state ⇒ (′p, ′f)OLf _state ⇒ bool where
choose_n: C /∈ N =�⇒

(N ∪ {C}, None, P , None, A) �OLf (N, Some C, P , None, A)
| delete_fwd : C ∈ RedF (elems P ∪ A) ∨ (∃C ′ ∈ elems P ∪ A. C ′ · C) =�⇒

(N, Some C, P , None, A) �OLf (N, None, P , None, A)
| simplify_fwd : C ′ ≺S C =�⇒ C ∈ RedF (elems P ∪ A ∪ {C ′}) =�⇒

(N, Some C, P , None, A) �OLf (N, Some C ′, P , None, A)
...

| choose_p: P �= empty =�⇒
(∅, None, P , None, A) �OLf

(∅, None, remove (select P ) P , Some (select P ), A)
| infer : Inf_between A {C} ⊆ RedI (A ∪ {C} ∪ M) =�⇒

(∅, None, P , Some C, A) �OLf (M, None, P , None, A ∪ {C})

https://www.isa-afp.org/browser_info/current/AFP/Given_Clause_Loops/Fair_Otter_Loop_Def.html
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The definition of �OLf differs from that of �OL in two main respects:

– The set P is organized as some form of queue, with operations such as select,
which chooses the queue’s next element; remove, which removes all occur-
rences of an element from the queue; and elems, which returns the set of the
queue’s elements. The queue is assumed to be fair, meaning that if select is
called infinitely often, every element in the queue will eventually be chosen
and the limit of P will be empty.

– Simplification (e.g., in simplify_fwd) is allowed only if the simplified formula
C ′ is smaller than the original formula C according to some given well-founded
order ≺S. In practice, simplifications are usually well founded, so this is not
a severe restriction.

Also note that the state is now directly represented as a five-tuple (without the
mediation of the state function), where the subsingletons are of type ′f option,
with values of the forms None and Some C.

Formula Queue. The queue that represents the passive formula set P is for-
malized in its own file, Prover_Queue.thy. The file defines an abstract type of
queue and the operations on it (empty, select, add, remove, and elems). It also
expresses the fairness assumption on the select function:

If a sequence of queue operations starting from an empty queue contains
infinitely many removals of the selected element, then the queue is empty
at the limit.

Moreover, the file contains an example implementation of the queue as a
FIFO queue. This ensures that the abstract requirements on the queue, including
fairness, are satisfiable.

iProver Loop with Fairness. To obtain an iProver loop from an Otter loop,
only one extra rule is needed. The fair version of the iProver loop is formalized
in Fair_iProver_Loop.thy as follows:

inductive (�ILf) :: (′p, ′f)OLf _state ⇒ (′p, ′f)OLf _state ⇒ bool where
ol : St �OLf St ′ =�⇒ St �ILf St ′

| red_by_children: C ∈ RedF (A ∪ M) ∨ M = {C ′} ∧ C ′ ·≺ C =�⇒
(∅, None, P , Some C, A) �ILf (M, None, P , None, A)

The first rule, ol, executes any �OLf rule as an iProver loop rule. The second
rule, red_by_children, replaces a formula C by a set of formulas M that make
it redundant. As M , iProver would use a set of simplified formulas produced by
inferences with C as a premise and formulas from A ∪ {C} as further premises.
The rule is stated in a more general, unsound form.

We prove the main metatheorem first for the iProver loop. Then, since
an Otter derivation is an iProver derivation (in which the second rule,
red_by_children, is not used), the result carries over directly to the Otter loop.
The Isabelle statement, located in Fair_iProver_Loop.thy, is as follows:

https://www.isa-afp.org/browser_info/current/AFP/Given_Clause_Loops/Prover_Queue.html
https://www.isa-afp.org/browser_info/current/AFP/Given_Clause_Loops/Fair_iProver_Loop.html
https://www.isa-afp.org/browser_info/current/AFP/Given_Clause_Loops/Fair_iProver_Loop.html
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theorem fair_IL_Liminf_saturated
assumes
full_chain (�ILf) Sts and
is_initial_OLf_state (Sts ! 0)

shows saturated (Liminf Sts)

Informally, this states that if Sts is a complete �ILf derivation starting in a
state of the form (N,None, empty,None, ∅), then the limit is saturated. The limit
(strictly speaking, limit inferior) is defined by

Liminf Xs =
⋃

i<|Xs|

⋂
j:i≤j∧j<|Xs| Xs ! j

where Xs ! j returns the element at index j of the finite or infinite sequence Xs.
In Isabelle, such sequences are represented by the type ′a llist of “lazy lists.”

This metatheorem is proved within the scope of the passive set queue’s fair-
ness assumption. It is derived from the metatheorem about the transition system
�IL without fairness, which is inherited from the abstract procedure GC.

Proof Sketch. The main difficulty is to show that N , X, P , and Y are empty at
the limit. Once this is shown, we can apply the main metatheorem for GC, which
states that if there are no passive formulas at the limit, the active formula set is
saturated.

Let St0 �IL St1 �IL · · · be a complete derivation, where St i =
(Ni,Xi, Pi, Yi, Ai). If the derivation is finite, it is easy to show that the final
state, and hence the limit, must be of the form (∅,None, empty,None, A), as
desired.

Otherwise, for an infinite derivation, we assume in turn that the limit of N , X,
P , or Y is nonempty and show that this leads to a contradiction. We start with
N . Let i be an index such that Ni∩Ni+1∩· · · �= ∅, which exists by the definition
of limit. This means that Ni, Ni+1, . . . are all nonempty. By invariance, we can
show that Yi, Yi+1, . . . are all empty. Thus, if we have a transition from Stj to
Stj+1 for j ≥ i, it cannot be infer (via ol) or red_by_children. It can be shown
that for the remaining transition rules, we have St i �1 St i+1 �1 · · · , where �1 is
the converse of the lexicographic combination �1 of three well-founded relations:

– the multiset extension ≺≺S of ≺S on entire states—i.e., on unions N ∪ X ∪
P ∪ Y ∪ A;

– as a tiebreaker, ≺≺S on N components;
– as a further tiebreaker, ≺≺S on X components.

Since the lexicographic combination of well-founded relations is well founded,
the chain St i �1 St i+1 �1 · · · cannot be infinite, a contradiction.

Next, we consider the X component. If X is nonempty forever, the only
possible transition rules are deletions and simplifications, and both make the
entire state decrease with respect to ≺≺S. Again, we get a contradiction.

Next, we consider the P component. The fairness assumption for the queue
guarantees that P is empty at the limit, at the condition that the choose_p rule
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is executed infinitely often. Since P is assumed not to be empty at the limit,
choose_p must be executed only finitely often. Let i be an index from which no
choose_p step takes place. We then have St i �2 St i+1 �2 · · · , where �2 is the
converse of the lexicographic combination �2 of two well-founded relations:

– ≺≺S on Y components;
– as a tiebreaker, the relation �1 on entire states.

Again, we get a contradiction.
Finally, for Y , the only two transitions possible, infer and red_by_children,

are to a state where Y is empty afterward, contradicting the hypothesis that Y
is nonempty forever. ��

4 DISCOUNT Loop

The DISCOUNT loop [1] works on four-tuples (T, P, Y,A), where T is the set of
scheduled (“to do”) inferences, P is the set of so-called passive formulas (although,
strictly speaking, any formula in Y is also passive); Y is a subsingleton storing
the given clause; and A is the set of active formulas. All the sets are finite.

Initial states have the form (∅, P, ∅, ∅). Inferences are assumed to be finitary.
We disallow premiseless inferences. Waldmann et al. [19, Example 81] allow
them and let the T component of initial sets consist of all of them. However,
in their “reasonable strategy,” they implicitly assume that T is finite, in which
case premiseless inferences can be immediately performed and replaced by the
resulting formulas inserted in P .

DISCOUNT Loop without Fairness. The first version of the DISCOUNT
loop, formalized in DISCOUNT_Loop.thy, does not make any fairness assump-
tion on the choice of the inference to compute or the given clause. There is no
guarantee that T , P , and Y are empty at the limit, but if they are, then A is sat-
urated at the limit. Here is an extract of the definition, omitting the delete_bwd
and simplify_fwd rules:

inductive (�DL) :: ′f inference set × (′f × DL_label) set ⇒
′f inference set × (′f × DL_label) set ⇒ bool

where
compute_infer : ι ∈ RedI (A ∪ {C}) =�⇒

state (T ∪ ι, P , ∅, A) �DL state (T , P , {C}, A)
| choose_p: state (T , P ∪ {C}, ∅, A) �DL state (T , P , {C}, A)
| delete_fwd : C ∈ RedF A ∨ (∃C ′ ∈ A. C ′ · C) =�⇒

state (T , P , {C}, A) �DL state (T , P , ∅, A)
...

| simplify_bwd : C ′ ∈ RedF {C,C ′′} =�⇒
state (T , P , C, A ∪ {C ′}) �DL state (T , P ∪ {C ′′}, {C}, A)

| schedule_infer : T ′ = Inf_between A {C} =�⇒
state (T , P , {C}, A) �DL state (T ∪ T ′, P , ∅, A ∪ {C})

| delete_orphan_infers: T ′ ∩ Inf_from A = ∅ =�⇒
state (T ∪ T ′, P , Y , A) �DL state (T , P , Y , A)

https://www.isa-afp.org/browser_info/current/AFP/Given_Clause_Loops/DISCOUNT_Loop.html
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The state function converts a four-tuple (T, P, Y,A) into a pair (T,N), where N
is a set of labeled formulas. The labels are Passive (for P ), YY (for Y ), and Active
(for A, corresponding to active in LGC). The rules compute_infer, schedule_infer,
and delete_orphan_infers refine the LGC rules of the same names; the other rules
refine process.

DISCOUNT Loop with Fairness. In the fair version of the DISCOUNT
loop, formalized in Fair_DISCOUNT_Loop.thy, the scheduled inferences and
the passive formulas are organized as a single queue. A state is then a triple
(P, Y,A), where P is the single queue that merges T and P from the above
DISCOUNT loop, and Y and A are as above. Elements of P have the forms
Passive_Inference ι and Passive_Formula C. The select function of P is assumed
to be fair: If select is called infinitely often, every element in the queue will
eventually be chosen and the limit of P will be empty.

The definition of the transition system is as follows:

inductive (�DLf) :: (′p, ′f)DLf _state ⇒ (′p, ′f)DLf _state ⇒ bool where
compute_infer : P �= empty =�⇒ select P = Passive_Inference ι =�⇒

ι ∈ RedI (A ∪ C) =�⇒
(P , None, A) �DLf (remove (select P ) P , Some C, A)

| choose_p: P �= empty =�⇒ select P = Passive_Formula C =�⇒
(P , None, A) �DLf (remove (select P ) P , Some C, A)

| delete_fwd : C ∈ RedF A ∨ (∃C ′ ∈ A. C ′ · C) =�⇒
(P , Some C, A) �DLf (P , None, A)

...
| simplify_bwd : C ′ /∈ A =�⇒ C ′′ ≺S C ′ =�⇒ C ′ ∈ RedF {C,C ′′} =⇒

(P , Some C, A∪{C ′}) �DLf (add (Passive_Formula C ′′) P , Some C, A)
| schedule_infer : set ιs = Inf_between A {C} =�⇒

(P , Some C, A) �DLf

(fold (add ◦ Passive_Inference) ιs P , None, A ∪ {C})
| delete_orphan_infers: ιs �= [] =�⇒ set ιs ⊆ passive_inferences_of P =�⇒

set ιs ∩ Inf_from A = ∅ =�⇒
(P , Y , A) �DLf (fold (remove ◦ Passive_Inference) ιs P , Y , A)

We note the following:

– Inferences are added to P by schedule_infer. An inference can be deleted
by delete_orphan_infers if one of the premises has been removed since the
inference was scheduled.

– The next element from P is chosen by compute_infer or choose_p, depending
on whether it is of the form Passive_Inference ι or Passive_Formula C.

– Formulas are added to P by simplify_bwd.

As with the Otter and iProver loops, the most important result is saturation
at the limit:

https://www.isa-afp.org/browser_info/current/AFP/Given_Clause_Loops/Fair_DISCOUNT_Loop.html
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theorem fair_DL_Liminf_saturated
assumes
full_chain (�DLf) Sts and
is_initial_DLf_state (Sts ! 0)

shows saturated (labeled_formulas_of (Liminf_fstate Sts))

Proof Sketch. The proof amounts to showing that the sets P and Y are empty
at the limit. This is easy to show for finite derivations, so we focus on infinite
ones. We proceed by contradiction. For P , the fairness assumption for the select
function of the queue guarantees that P is empty at the limit, at the condition
that the compute_infer and choose_p rules are collectively executed infinitely
often. Since P is assumed not to be empty at the limit, these two rules must
be executed only finitely often. Let i be an index from which no compute_infer
or choose_p step takes place. We then have St i � St i+1 � · · · , where � is the
converse of the lexicographic combination � of two well-founded relations:

– < on the cardinality of Y components (0 or 1);
– as a tiebreaker, the multiset extension ≺≺S of ≺S on unions P ∪ Y ∪ A.

Since the lexicographic combination of well-founded relations is well founded,
the chain St i � St i+1 � · · · cannot be infinite, a contradiction.

Finally, we consider Y . If Y is nonempty forever, the only possible transitions
make the entire state decrease with respect to �. This yields a contradiction. ��

5 Zipperposition Loop

The Zipperposition loop [17] as described by Waldmann et al. [19, Example 82]
works on four-tuples (T, P, Y,A), where the components have the same roles as
in the DISCOUNT loop: T is the scheduled set, P is the passive set, Y is the
given clause, if any, and A is the active set. For technical reasons, we need to
enrich the state with a ghost component D (“done”), of type ′f inference set ,
resulting in a five-tuple (T,D, P, Y,A). All the sets are finite.

The hallmark of the Zipperposition loop is that it can handle infinitary infer-
ences. We assume that Inf_between A {C} is countable if A is finite. (This
assumption is implicit in Waldmann et al.) To store the infinitely many con-
clusions of an inference, T contains possibly infinite sequences of inferences,
instead of individual inferences. Premiseless inferences are also allowed. Initial
states have the form (T, P, ∅, ∅, ∅), where T contains all the premiseless inferences
of the underlying proof calculus and only those.

The implementation in Zipperposition by Vukmirović et al. [17] deviates from
Waldmann et al. in one important respect: Instead of sequences of inferences,
Zipperposition works with sequences of subsingletons of inferences. The special
value ∅ is returned when no progress is made in computing an inference, to give
control back to the given clause procedure. In the setting of Waldmann et al.,
this special value can be replaced by a tautology (e.g., � or � ≈ �), which the
given clause procedure can delete as redundant.
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Zipperposition Loop without Fairness. The first version of the Zipperpo-
sition loop, formalized in Zipperposition_Loop.thy, does not make any fairness
assumption on the choice of the inference to compute or the given clause. Here
is an extract of the definition:

inductive (�ZL) :: ′f inference set × (′f × DL_label) set ⇒
′f inference set × (′f × DL_label) set ⇒ bool

where
compute_infer : ι0 ∈ RedI (A ∪ {C}) =�⇒

zl_state (T + {LCons ι0 ιs}, D, P , ∅, A) �ZL

zl_state (T + {ιs}, D ∪ {ι0}, P ∪ {C}, ∅, A)
| choose_p: zl_state (T , D, P ∪ {C}, ∅, A) �ZL zl_state (T , D, P ,
{C}, A)
| delete_fwd : C ∈ RedF A ∨ (∃C ′ ∈ A. C ′ · C) =�⇒

zl_state (T , D, P , C, A) �ZL zl_state (T , D, P , ∅, A)
...

| schedule_infer : inferences_of T ′ = Inf_between A {C} =�⇒
zl_state (T , D, P , C, A) �ZL

zl_state (T + T ′, D − inferences_of T ′, P , ∅, A ∪ {C})
| delete_orphan_infers: set ιs ∩ Inf_from A = ∅ =�⇒

zl_state (T + {ιs}, D, P , Y , A) �ZL zl_state (T , D ∪ set ιs, P , Y , A)

The zl_state function converts a five-tuple (T,D, P, Y,A) into a pair (U,N),
where

– U consists of all the inferences contained in T minus those in D (formally
written inferences_of T − D); and

– N is a set of labeled formulas corresponding to P , Y , and A.

We use a multiset for the T component. Waldmann et al. use a set, but this is
not very realistic because an implementation cannot in general detect duplicate
infinite sequences.

The D component addresses a subtle issue in Waldmann et al. If we did not
subtract D in the definition of U , the completeness theorem we would obtain
from the LGC layer above would require the T component to be empty at the
limit. However, a given inference ι might appear in T multiple times and hence
always be present, even if we keep on removing copies of it, if new copies are con-
tinuously added. The issue goes away if we add ι to D whenever we compute it, in
compute_infer—then the inference is not present in U (i.e., inferences_of T−D).
In other words, computing an inference makes it momentarily disappear, even if
there are multiple copies of it in T .

Admittedly, it is not easy to develop a robust intuitive understanding of how
D works, but what matters ultimately is that D allows us to obtain a usable main
metatheorem. The metatheorem states that if the set of scheduled inferences and
the set of passive formulas are empty at the limit of a derivation starting in an
initial state, the active formula set is saturated at the limit. We will also see, via

https://www.isa-afp.org/browser_info/current/AFP/Given_Clause_Loops/Zipperposition_Loop.html
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an additional refinement layer, that the ghost component is truly a ghost and
can be omitted once it has served its purpose.

Zipperposition Loop with Fairness. Unlike the fair DISCOUNT loop, the
fair Zipperposition loop, formalized in Fair_Zipperposition_Loop.thy, keeps T
and P separate. An extract of the Isabelle definition follows:

inductive (�ZLf) :: (′t, ′p, ′f) ZLf _state ⇒ (′t, ′p, ′f) ZLf _state ⇒ bool
where
compute_infer : (∃ιs ∈ t_llists T. ιs �= LNil) =�⇒

t_pick_elem T = (ι0, T ′) =�⇒ ι0 ∈ RedI (A ∪ {C}) =�⇒
(T , D, P , None, A) �ZLf (T ′, D ∪ {ι0}, p_add C P, None, A)

| choose_p: P �= p_empty =�⇒
(T , D, P , None, A) �ZLf

(T , D, p_remove (p_select P ) P , Some (p_select P ), A)
| delete_fwd : C ∈ RedF A ∨ (∃C ′ ∈ A. C ′ · C) =�⇒

(T , D, P , Some C, A) �ZLf (T , D, P , None, A)
...

| schedule_infer : inferences_of ιss = Inf_between A {C} =�⇒
(T , D, P , Some C, A) �ZLf

(fold t_add_llist ιss T , D − inferences_of ιss, P , None, A ∪ {C})
| delete_orphan_infers: ιs ∈ t_llists T =�⇒ set ιs ∩ Inf_from A = ∅ =�⇒

(T , D, P , Y , A) �ZLf (t_remove_llist ιs T , D ∪ set ιs, P , Y , A)

The presence of two queues introduces some complications. Waldmann et
al. [19, Example 82] claim that “to produce fair derivations, a prover needs
to choose the sequence in ComputeInfer fairly and to choose the formula in
ChooseP fairly.” However, this does not suffice: A counterexample would apply
compute_infer infinitely often in a fair fashion, retrieving elements from some
infinite sequences, without ever applying choose_p (whose choice of formula
would then be vacuously fair). The solution is to add a fairness assumption stat-
ing that compute_infer is applied at most finitely many times before choose_p
is applied—or, in other words, that if compute_infer is applied infinitely often,
then so is choose_p. This leads to the following main metatheorem:

theorem fair_ZL_Liminf_saturated :
assumes
full_chain (�ZLf) Sts and
is_initial_ZLf_state (Sts ! 0) and
infinitely_often compute_infer_step Sts −�→
infinitely_often choose_p_step Sts

shows saturated (labeled_formulas_of (Liminf_zl_fstate Sts))

Proof Sketch. Recall that zl_state maps (T,D, P, Y,A) to a pair (U,N). In the
abstract LGC layer, U and the passive subset of N are required to be empty at
the limit. To obtain the same effect in �ZLf , we must show that the sets U , P ,

https://www.isa-afp.org/browser_info/current/AFP/Given_Clause_Loops/Fair_Zipperposition_Loop.html
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and Y are empty at the limit. This is easy to show for finite derivations, so we
focus on infinite ones. We proceed by contradiction.

We start with U . We first show that there must be infinitely many com-
pute_infer steps. Assume that there are finitely many. Then there exists an
index i from which no more compute_infer steps take place. We then have
St i � St i+1 � · · · , where � is the converse of the lexicographic combination �
of four well-founded relations:

– the multiset extension ≺≺S of ≺S on unions P ∪ Y ∪ A;
– as a tiebreaker, ≺≺S on P components;
– as a further tiebreaker, ≺≺S on Y components;
– as a further tiebreaker, < on the cardinality of T components.

We get a contradiction. Having shown that there are infinitely many com-
pute_infer steps, we exploit the queue’s fairness to show that one of these steps
will choose any given inference ι from the queue. Thanks to the D trick, ι will
then momentarily vanish from U , ensuring that it is not in the limit. The same
argument applies for any inference ι, showing that U is empty at the limit.

Next, we show that P is empty at the limit. We start by showing that there
must be infinitely many choose_p steps. Assume that there are finitely many.
Then, by the third assumption, there must be finitely many compute_infer steps
as well. Let i be an index from which no more compute_infer steps take place.
We then have St i � St i+1 � · · · , as above, yielding a contradiction.

Finally, we show that Y is empty at the limit. Let i be an index such that
Yi ∩ Yi+1 ∩ · · · �= ∅. Since a compute_infer step is possible only if Y is empty,
no such steps are possible from index i. Again, we have St i � St i+1 � · · · , a
contradiction. ��

Queue of Formula Sequences. The queue data structure used for the T com-
ponent of the Zipperposition loop needs to store a finite number of possibly infi-
nite sequences of inferences. It is formalized in Prover_Lazy_List_Queue.thy.
It provides the following operations on abstract queue and element types ′q and
′e:

fixes
empty :: ′q and
add_llist :: ′e llist ⇒ ′q ⇒ ′q and
remove_llist :: ′e llist ⇒ ′q ⇒ ′q and
pick_elem :: ′q ⇒ ′e × ′q and
llists :: ′q ⇒ ′e llist multiset

The fairness requirement on implementations of the abstract queue interface
takes the following form:

If a sequence of queue operations contains infinitely many pick_elem steps
and ι is at the head of one of the sequences stored in the queue, then
either the sequence will be entirely removed (by orphan deletion) or ι will
eventually be chosen.
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A syntactically stronger formulation of fairness, where ι may occur anywhere in
a sequence, is derived as a corollary:

If a sequence of queue operations contains infinitely many pick_elem steps
and ι occurs in one of the sequences stored in the queue at some index
in the sequence, then either the sequence (possibly amputated from its
leading elements) will be entirely removed or ι will eventually be chosen.

As a proof of concept, the theory file contains an example implementation of
the queue as a FIFO queue. The proof that this FIFO queue is fair is the most
finicky proof of our entire development.

Zipperposition Loop without Ghost Fields. In the last step of our devel-
opment, we remove the D state component. D is useful to retrieve a usable
main metatheorem for �ZL, but it is not explicitly referenced in the metathe-
orem for the fair variant �ZLf . The resulting transition system �ZLfw, for-
malized in Fair_Zipperposition_Loop_without_Ghosts.thy, operates on four-
tuples (T, P, Y,A). Each transition is identical to the corresponding �ZLf tran-
sition, omitting the D component. The main metatheorem is also essentially the
same.

6 Conclusion

We presented an Isabelle/HOL formalization of four variants of the given clause
procedure, starting from Tourret and Blanchette’s formalization of two abstract
given clause procedures [16]. We relied extensively on stepwise refinement to
derive properties of more concrete transition systems from more abstract ones.

Our main findings concern the Zipperposition loop. We found that the refine-
ment proof is not as straightforward as previously thought [19, Example 82] and
requires a nontrivial abstraction function. In addition, we discovered a fairness
condition—the necessity of avoiding computing inferences forever without select-
ing a formula—that was not mentioned before in the literature, and we clarified
other fine points.
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Abstract. This paper presents and proves totally correct a new algo-
rithm, called QSMA, for the satisfiability of a quantified formula modulo
a complete theory and an initial assignment. The optimized variant of
QSMA implemented in YicesQS is described and shown to preserve total
correctness. A report on the performance of YicesQS at the 2022 SMT
competition is included. YicesQS ran in the LIA, NIA, LRA, NRA, and BV
categories and ranked second for the “largest contribution” award (single
queries). It was the only solver to solve all LRA instances, where it was
about two orders of magnitude faster than the second best solver (Z3).

1 Introduction

Applications of automated reasoning generate formulas involving both quanti-
fiers and symbols defined in background theories. For example, software verifica-
tion needs reasoners that decide the satisfiability of quantified formulas modulo
theories such as data structures and arithmetic (e.g., [20]). Therefore, endowing
SMT solvers with quantifier reasoning (e.g., [3,9,11–14,22]), enriching first-order
theorem provers with built-in theories (e.g., [1,2,19]), and integrating provers
and solvers [7], are major research objectives.

If there is a single background theory T , the T -satisfiability of quantified
formulas can be reduced to that of quantifier-free formulas if T admits quantifier
elimination (QE): for every formula ϕ there exists a quantifier-free formula F
that is T -equivalent to ϕ. Since computing F can be prohibitively expensive
(e.g., exponential in linear rational arithmetic (LRA) and doubly exponential in
linear integer arithmetic (LIA) [8]), QE is not a practical solution.

In this paper we propose a practical solution in the form of a new algo-
rithm called QSMA. In QSMA the computation of quantifier-free model-based
under-approximations (MBU) and model-based over-approximations (MBO) of
quantified formulas embodies a lazy approach to QE, which is tailored for
c© The Author(s) 2023
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T -satisfiability. MBU generates a quantifier-free implicant of the given formula
that is true in the given model. Model(-guided) generalization for linear [12] and
nonlinear real arithmetic (NRA) [17] is an instance of MBU. MBO generates a
quantifier-free implied formula that is false in the given model. Model interpola-
tion for NRA [17] is an instance of MBO.

The QSMA algorithm assumes that the theory T is complete. By its recur-
sive nature, QSMA solves a generalized form of the satisfiability problem, called
quantified SMA (satisfiability modulo theory and assignment): given a formula ϕ
with arbitrary quantification, and an initial assignment to Boolean or first-order
subterms of ϕ, find a theory model of ϕ that extends the initial assignment, or
report that none exists. In addition to QSMA and its total correctness, we present
an optimized variant named OptiQSMA, which preserves total correctness and
is implemented in the YicesQS solver built on top of Yices 2. A report on exper-
imental results from the 2022 SMT competition and a discussion complete the
paper. We begin with a high-level view of QSMA.

1.1 High-Level View of the QSMA Algorithm

The QSMA algorithm works by progressively instantiating quantified variables.
Consider a formula ϕ of the form ∃x̄1.∀x̄2.∃x̄3 . . . F [x̄1, x̄2, x̄3, . . .] where F is
quantifier-free. For example, suppose the theory is LRA, ϕ = ∃x.∀y.∃z.F and
F = z ≥ 0 ∧ x ≥ 0 ∧ y + z ≥ 0. Say that QSMA assigns x←0. Whatever
value is chosen for y, the algorithm can show that ϕ is true in LRA by assigning
z←max(0,−y). If F = z ≥ 0∧x ≥ 0∧y+z ≤ 0, no matter which (non-negative)
value QSMA chooses for x, it can show that ϕ is false in LRA by picking y←1,
because there is no value for z that satisfies z ≥ 0 ∧ z ≤ −1.

For an example that is not in prenex normal form, consider a formula ϕ of
the form ∃x.((∀y1.F1[x, y1]) ⇒ (∀y2.F2[x, y2])), where F1 and F2 are quantifier-
free. QSMA sees the formula as ∃x.((∃y1.¬F1[x, y1]) ∨ (¬∃y2.¬F2[x, y2])), and
then as ∃x.(p1 ∨ ¬p2), where p1 and p2 are proxy Boolean variables for the
quantified subformulas. QSMA assigns values to x, p1, and p2. If p1 is assigned
true, the algorithm tries to extend the assignment with a value for y1 that satisfies
¬F1[x, y1]. If p2 is assigned false, the algorithm tries to show that there is no
value for y2 that satisfies ¬F2[x, y2].

Without loss of generality (¬¬ converts ∀ into ¬∃¬), we consider formulas

ϕ = ∃x̄.F [z̄, x̄, p̄]{pi←∃ȳi.Gi[z̄, x̄, ȳi]}ki=1.

F [z̄, x̄, p̄] denotes a quantifier-free formula where the variables z̄, x̄, and p̄ occur.
Tuples z̄ and x̄ contain the first-order variables occurring free in F . Formula
F is quantifier-free because the quantified subformulas ϕi = ∃ȳi.Gi[z̄, x̄, ȳi] are
replaced by proxy Boolean variables p̄ = p1, . . . pk. Given an initial assignment
to the free variables z̄, we construct a QSMA-tree for ϕ. QSMA starts trying to
satisfy F [z̄, x̄, p̄]. If it fails, it means that ϕ is false under the initial assignment.
If it succeeds, there are two cases. If k = 0, formula ϕ is true under the initial
assignment. If k > 0, the algorithm descends recursively to consider the QSMA-
subtrees for the ϕi subformulas (1 ≤ i ≤ k). If QSMA assigned true to pi, it
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tries to show that ϕi is true. If QSMA assigned false to pi, it tries to show that
ϕi is false. If it succeeds for all QSMA-subtrees, formula ϕ is true under the
initial assignment. For this, the model built by QSMA should satisfy F [z̄, x̄, p̄]∧∧n

i=1(pi ⇔ ϕi). Otherwise, formula ϕ is false under the initial assignment.

2 Preliminaries

A signature Σ is given by a set S of sorts and a set of sorted symbols. Given
a class V = (Vs)s∈S of disjoint sets of sorted variables, Σ[V ]-formulas, Σ-
sentences, and Σ[V ]-interpretations are defined as usual. A Σ-structure is a
Σ[∅]-interpretation. We use x, y, z for first-order variables, p for Boolean ones,
and x̄, ȳ, z̄, and p̄ for tuples of such variables. We also use ϕ and ψ for formulas, F
and G for quantifier-free formulas, M for interpretations, |= for satisfaction and
entailment, = for identity, � for disjoint union, and \ for set difference. FV (ϕ) is
the set of the variables occurring free in ϕ. Slightly abusing the notation, FV (ϕ)
is also treated as a tuple. Implication is written ⇒ and logical equivalence is
written ⇔. If V1 ⊆ V2 (i.e., Vs

1 ⊆ Vs
2 for all s ∈ S), a Σ[V2]-interpretation M2 is

an extension of a Σ[V1]-interpretation M1 to V2, if M2 interprets the variables
in Vs

2 \ Vs
1 for all s ∈ S and is otherwise identical to M1.

A theory T is defined by a signature Σ and a set of Σ-sentences called T -
axioms. A model of T , or T -model, is a Σ-structure that satisfies the T -axioms. A
T [V ]-model is a Σ[V ]-interpretation that is a T -model when the interpretation
of variables is ignored. A theory T is complete, if it is consistent, and for all
Σ-sentences F , either F or ¬F is provable from the T -axioms. In this paper
we deal with a single theory T that has a unique T -model M0, so that the
interpretation of everything except variables is fixed. Therefore T is complete,
for Σ-sentences T -validity, T -satisfiability, and truth in M0 coincide, all T [V ]-
models are extensions of M0, and a T -satisfiability procedure is concerned only
with assignments to variables. Since there are one theory and one signature,
we write formula for Σ[V ]-formula and model for T -model or T [V ]-model. A
conservative theory extension T + of T adds to Σ special constants, called values,
to name elements in the domain of M0 as needed. Conservative means that a
T -satisfiable formula is also T +-satisfiable.

The quantified SMA problem for theory T asks whether M0 |= ϕ for an
arbitrary formula ϕ and an initial assignment of values to the variables in FV (ϕ).
Formulas have the form ϕ = ∃x̄.F [z̄, x̄, p̄]{pi←∃ȳi.Gi[z̄, x̄, ȳi]}ki=1 described in
the introduction, where FV (ϕ) = z̄ and quantified variables are standardized
apart. If FV (ϕ) = ∅, we still have SMA problems when considering subformulas
under an assignment to existentially quantified variables.

3 The QSMA Framework

The QSMA algorithm works with a tree representation of a formula ϕ. A node n
in the tree is labeled with a pair (x̄, F ), where x̄ is a tuple of first-order variables,
called the local variables of n, and F is a quantifier-free formula. The local
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variables are implicitly existentially quantified: they are existentially quantified
variables whose quantifers have been stripped, so that they are locally free, so
to speak, and can be assigned by the algorithm. An arc from a node n to a child
node b is labeled with a Boolean variable p. This Boolean variable stands as a
proxy for the quantified subformula represented by the subtree rooted at node
b. Therefore, the Boolean variable p is also considered a proxy of b itself.

A formula ϕ may have free variables FV (ϕ) = z̄, whose assignment is given
initially as part of the SMA problem instance. These variables are called rigid,
because their assignments do not change during the tree traversal. As the algo-
rithm traverses the tree, the local variables of a node n are rigid from the point
of view of a child node b: their assignments do not change during the traversal
of the subtree rooted at b. Therefore, we represent a formula ϕ as a pair formed
by a tuple of rigid variables and a labeled tree. Slightly abusing the terminology,
we call this pair a QSMA-tree. The root of a tree T is denoted root(T ).

Definition 1 (QSMA-tree). Given ϕ = ∃x̄.F [z̄, x̄, p̄]{pi←∃ȳi.Gi[z̄, x̄, ȳi]}ki=1,
where FV (ϕ) = z̄ and ϕi = ∃ȳi.Gi[z̄, x̄, ȳi], 1 ≤ i ≤ k, the QSMA-tree for ϕ is
the pair G = (z̄, T ), where z̄ is called the tuple of the rigid variables of G, and T
is a labeled tree defined inductively as follows:

– If k = 0, T consists of a single node r labeled (x̄, F [z̄, x̄]);
– If k > 0, for all i, 1 ≤ i ≤ k, let Gi = ((z̄, x̄), Ti) be the QSMA-tree for ϕi,

where root(Ti) is a node bi labeled (ȳi, Gi[z̄, x̄, ȳi]). Then T is the tree with a
new node r labeled (x̄, F [z̄, x̄, p̄]) as root, k outgoing arcs labeled p1, . . . , pk,
and b1, . . . , bk as children.

If subformula ϕi occurs more than once in ϕ, the same proxy variable pi
is used for all occurrences. The ancestors of a node n in T are the nodes on
the unique path from root(T ) to n excluding n itself. If node n in T is labeled
(x̄, F ), its k outgoing arcs are labeled p1, . . . , pk, and x̄1, . . . , x̄m are the local
variables of the ancestors of n, then FV (F ) ⊆ {z̄, x̄1, . . . , x̄m, x̄, p1, . . . , pk}. The
set of the assignable variables at node n is Var(n) = x̄ � {p1, . . . , pk}. The
set of the rigid variables at node n is Rigid(n) = z̄ � x̄1 � . . . � x̄m. Thus,
FV (F ) ⊆ Rigid(n)∪Var(n), Rigid(root(T )) = z̄, and the QSMA-subtree rooted
at node n is Gn = (Rigid(n), Tn). For a node n with label (x̄, F ), the components
of the label are denoted n.x̄ and n.F . The label of the arc from n to a child b is
denoted b.p.

Example 1. Given ∃x.((∀y1.F1[x, y1]) ⇒ (∀y2.F2[x, y2])) from Sect. 1.1, let ϕ =
∃x.((∃y1.¬F1[x, y1])∨(¬∃y2.¬F2[x, y2])) = ∃x.(p1∨¬p2){pi ← ∃yi.¬Fi[x, yi]}2i=1.
The QSMA-tree for ϕ has root r labeled (x, p1 ∨ ¬p2) with left child b1 labeled
(y1,¬F1[x, y1]), right child b2 labeled (y2,¬F2[x, y2]), and arcs from r to b1 and
from r to b2 labeled p1 and p2, respectively. Note how FV (r.F ) ⊆ {x, p1, p2},
Var(r) = {x, p1, p2}, and Rigid(r) = ∅. Also, FV (b1.F ) ⊆ {x, y1}, FV (b2.F ) ⊆
{x, y2}, Var(b1) = {y1}, Var(b2) = {y2}, and Rigid(b1) = Rigid(b2) = {x}.

Example 2. Consider ∀x.((∃y1.(x � 2·y1)) ⇒ (∃y2.(3·x � 2·y2))). A double
negation eliminates the ∀, yielding ¬(∃x.((∃y1.(x � 2·y1))∧ (∀y2.(3·x �� 2·y2)))).
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Again, a double negation eliminates the ∀, producing ¬(∃x.((∃y1.(x � 2·y1)) ∧
(¬(∃y2.(3·x � 2·y2))))). Let ϕ = ∃x.((∃y1.(x � 2·y1))∧ (¬(∃y2.(3·x � 2·y2)))) =
∃x.(p1∧¬p2){p1 ← ∃y1.(x � 2·y1), p2 ← ∃y2.(3·x � 2·y2)}. The original formula
is true in LRA iff ϕ is false in LRA. The QSMA-tree for ϕ has root r labeled
(x, p1 ∧ ¬p2) with left child b1 labeled (y1, x � 2·y1), right child b2 labeled
(y2, 3·x � 2·y2), and arcs from r to b1 and from r to b2 labeled p1 and p2,
respectively. The variable sets of this tree are as in Example 1.

Conversely, given a QSMA-tree G = (z̄, T ), we can associate a formula n.ψ
to any node n in T and hence to the QSMA-subtree Gn = (Rigid(n), Tn).

Definition 2 (Formula at a node). Given a QSMA-tree G = (z̄, T ), for all
nodes n of T , the formula n.ψ at node n is defined inductively as follows:

– If n is a leaf labeled (x̄, F [z̄, x̄]), then n.ψ = ∃x̄.F [z̄, x̄];
– If n has label (x̄, F [z̄, x̄, p̄]) and outgoing arcs labeled p1, . . . , pk, k > 0, con-

necting n to children b1, . . . , bk, let b1.ψ, . . . , bk.ψ be the formulas at b1, . . . , bk.
Then n.ψ = ∃x̄.F [z̄, x̄, p̄]{pi ← bi.ψ}ki=1.

If G = (z̄, T ) is the QSMA-tree for ϕ and r = root(T ), then r.ψ = ϕ.

Example 3. For the QSMA-tree in Example 2, b1.ψ = ∃y1.(x � 2·y1), b2.ψ =
∃y2.(3·x � 2·y2), and r.ψ = ∃x.(p1∧¬p2){p1 ← ∃y1.(x � 2·y1), p2 ← ∃y2.(3·x �
2·y2)} = ∃x.((∃y1.(x � 2·y1)) ∧ ¬(∃y2.(3·x � 2·y2))) = ϕ.

Since the input formula ϕ is represented as a QSMA-tree G = (z̄, T ), the
problem of satisfying ϕ becomes the problem of satisfying G. Therefore, we define
satisfaction of a QSMA-tree next. Slightly abusing the notation, we use |= also
for satisfaction of QSMA-trees.

Definition 3 (Satisfaction of a QSMA-tree). Given a QSMA-tree G = (z̄, T )
with r = root(T ), and an extension M of M0 to Rigid(r) = z̄, M |= G if there
exists an extension M′ of M to Var(r) such that (i) M′ |= r.F , and (ii) for all
children b of r, M′(b.p) = true iff M′ |= Gb.

The QSMA algorithm works by traversing the QSMA-tree G = (z̄, T ), and at
each node n in T it assigns the assignable variables in Var(n) = x̄�{p1, . . . , pk}.
This assignment corresponds to the extension M′ in Definition 3. Let b be a
child of n: the Boolean variable b.p labeling the arc from n to b is a proxy for
the quantified subformula b.ψ of the formula n.ψ. If M′(b.p) = true, the aim of
the algorithm is to show that b.ψ is true, and if M′(b.p) = false, the aim is to
show that b.ψ is false. Therefore Condition (ii) in Definition 3 says M′ |= Gb if
M′(b.p) = true and M′ �|= Gb if M′(b.p) = false. The next theorem shows that
satisfying a formula ϕ and satisfying the QSMA-tree for ϕ correspond.

Theorem 1. For all formulas ϕ with FV (ϕ) = z̄, for all models M extending
M0 to z̄, if G is the QSMA-tree for ϕ then M |= G iff M |= ϕ.

Checking whether M |= G by testing all possible extensions M′ would not do,
because for most theories (e.g., LRA) there is an infinite number of extensions.



QSMA 83

We need a way to weed out large parts of the space of candidate models. Let
�ϕ� denote the set of ϕ’s models. We introduce under-approximations and over-
approximations of ϕ in order to under-approximate and over-approximate �ϕ�.

Definition 4 (Under- and over-approximation). Let ϕ be a formula with
FV (ϕ) = z̄. Quantifier-free formulas U and O with FV (U) = FV (O) = z̄ are,
respectively, an under-approximation and an over-approximation of ϕ, if for all
extensions M of M0 to z̄, M |= U implies M |= ϕ and M |= ϕ implies M |= O.

It follows that �U� ⊆ �ϕ� ⊆ �O�. Let G = (z̄, T ) be the QSMA-tree for ϕ,
and U and O under- and over-approximations of ϕ, respectively. Then, M |= U
implies M |= ϕ which implies M |= G by Theorem 1. Thus, satisfying an
under-approximation is a sufficient condition to have a solution. On the other
hand, M |= ¬O implies M �|= ϕ which implies M �|= G by Theorem 1. By the
contrapositive, if M |= G then M �|= ¬O, that is, M |= O. Thus, satisfying
an over-approximation is a necessary condition to have a solution. In order to
construct such approximations, we assume to have a solver for theory T (and
model M0) offering:

– Model extension: A function SMA such that for all formulas ∃x̄.F [z̄, x̄], where
F [z̄, x̄] is quantifier-free, and all extensions M of M0 to z̄, SMA(F [z̄, x̄],M)
returns either an extension M′ of M to x̄ such that M′ |= F [z̄, x̄], or nil if
there is no such extension.

– Model-based under-approximation: A function MBU such that for all formulas
∃x̄.F [z̄, x̄], where F [z̄, x̄] is quantifier-free, and all extensions M of M0 to
z̄ such that M |= ∃x̄.F [z̄, x̄], MBU(F [z̄, x̄], x̄,M) returns a quantifier-free
formula U [z̄] such that M |= U [z̄] and T |= U [z̄] ⇒ (∃x̄.F [z̄, x̄]).

– Model-based over-approximation: A function MBO such that for all formulas
∃x̄.F [z̄, x̄], where F [z̄, x̄] is quantifier-free, and all extensions M of M0 to
z̄ such that M �|= ∃x̄.F [z̄, x̄], MBO(F [z̄, x̄], x̄,M) returns a quantifier-free
formula O[z̄] such that M �|= O[z̄] and T |= (∃x̄.F [z̄, x̄]) ⇒ O[z̄].

MBU and MBO produce, respectively, an under-approximation and an over-
approximation. Formula U [z̄] is true in model M and implies ∃x̄.F [z̄, x̄], and
hence can be seen as an interpolant between model and formula. It was called
model generalization [12,17], because U [z̄] may have other models in addition to
M. Formula O[z̄] follows from ∃x̄.F [z̄, x̄] and is false in M, and hence can be seen
as a reverse interpolant between formula and model, called model interpolant [17].

4 The QSMA Algorithm and Its Total Correctness

Let G = (z̄, T ) be the QSMA-tree for input formula ϕ with FV (ϕ) = z̄. Given a
model M extending M0 to z̄, the QSMA algorithm determines whether M |= G.
Suppose that U and O are under- and over-approximations of ϕ, respectively.
Picture �U�, �ϕ�, and �O� as bubbles. The �U� bubble is inside the �ϕ� bubble,
which is inside the �O� bubble. The idea of the algorithm is to zoom in on a
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model of ϕ, by progressively weakening U , so that the �U� bubble inflates, and
progressively strengthening O, so that the �O� bubble deflates. The algorithm
operates in this manner for all subformulas of ϕ: for all nodes n of T it maintains
under and over-approximations n.U and n.O of n.ψ, progressively weakening
n.U and strengthening n.O. The weakening of n.U is done by introducing a
disjunction with an MBU. The strengthening of n.O is done by introducing a
conjunction with an MBO. The goal is that M satisfies n.U ∨ ¬n.O. As soon as
M satisfies n.U , we know that M |= Gn. As soon as M satisfies ¬n.O, we know
that M �|= Gn.

Fig. 1. Pseudocode of the main function of the QSMA algorithm

The main function QSMA (Fig. 1) initializes n.U to ⊥ (under-approximation
of all formulas and identity for disjunction) and n.O to � (over-approximation
of all formulas and identity for conjunction) for all nodes n of T . Then QSMA
calls the function subtreeIsSolved (Fig. 2) with arguments root(T ) and M.

Function subtreeIsSolved takes a node n and a model M extending M0 to
Rigid(n) and determines whether M |= Gn. If M |= n.U it returns true; if M |=
¬n.O it returns false (lines 3–5 in Fig. 2). Otherwise (i.e., M |= ¬n.U ∧ n.O), it
enters a loop whose body contains the following steps:

1. Build a formula L as the conjunction of n.F and a formula for every child b
of n, denoted n → b (line 7 in Fig. 2). The shape of the formula for b is better
explained by considering a model of L and hence in the next step.

2. Invoke the SMA function to search for an extension M′ of M to Var(n) such
that M′ |= L (line 8). For all children b of n, b.p ∈ Var(n) and M′ assigns a
Boolean value to b.p. If M′(b.p) = true, the subformula for b in L reduces to
b.O, so that M′ |= L implies M′ |= b.O. Since QSMA seeks to satisfy b.ψ and
�b.ψ� ⊆ �b.O�, it starts at least from a model of b.O. If M′(b.p) = false, the
subformula for b in L reduces to ¬b.U , so that M′ |= L implies M′ |= ¬b.U .
Since QSMA seeks to falsify b.ψ and �b.U� ⊆ �b.ψ�, it starts at least from a
model of ¬b.U . The proof of partial correctness1 of subtreeIsSolved shows
that the existence of an M′ such that M′ |= L is necessary for M |= Gn.

1 See https://mariapaola.github.io/CDSATandQSMA.html for a copy of this paper
with the proofs inserted.

https://mariapaola.github.io/CDSATandQSMA.html
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Fig. 2. Pseudocode of the auxiliary functions of the QSMA algorithm

3. If SMA returns nil, then M �|= Gn; subtreeIsSolved updates n.O to its
conjunction with MBO(L,FV (L) \ Rigid(n),M) (line 10). Since M �|= L, by
MBO’s specification we know that M �|= MBO(L,FV (L)\Rigid(n),M). This
update ensures that M �|= n.O, so that M |= ¬n.O. Then subtreeIsSolved
returns false (line 11).

4. Otherwise, we have an extension M′ that satisfies L and hence n.F , so that
there is potential for M |= Gn. Function solutionForallChildren is invoked
to determine whether this is the case.

5. The function solutionForallChildren calls subtreeIsSolved for every
child b of n. As soon as it finds a child b such that M(b.p) = true and
the call subtreeIsSolved(b,M) returns false, or M(b.p) = false and the
call subtreeIsSolved(b,M) returns true, it returns false, because it found
a QSMA-subtree where candidate model M fails. If this does not happen,
solutionForallChildren returns true.

6. If solutionForallChildren returns true, subtreeIsSolved builds a formula
L′ as the conjunction of n.F and a formula for every child b of n (line 14). If
M′(b.p) = true, the subformula for b in L′ reduces to b.U . If M′(b.p) = false,
the subformula for b in L′ reduces to ¬b.O. The proof of partial correctness
of subtreeIsSolved shows that M′ |= L′ and that M′ |= L′ is a suffi-
cient condition for M |= Gn. Then subtreeIsSolved updates n.U to its
disjunction with MBU(L′,FV (L′) \ Rigid(n),M) (line 15). Since M′ |= L′,
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by MBU’s specification we know that M′ |= MBU(L′,FV (L′)\Rigid(n),M).
This update ensures that M′ |= n.U . Then subtreeIsSolved returns true
(line 16).

7. If solutionForallChildren returns false, the control returns to line 7. Sup-
pose that solutionForallChildren returned false, because it found a child
b of n such that M(b.p) = true and subtreeIsSolved(b,M) returned false.
Then the call subtreeIsSolved(b,M) updated the formula b.O (line 10). Sup-
pose that solutionForallChildren returned false, because it found a child
b of n such that M(b.p) = false and subtreeIsSolved(b,M) returned true.
Then the call subtreeIsSolved(b,M) updated the formula b.U (line 15).
Either way the state has changed, variable L gets a new formula on line 7,
and the subsequent call to SMA will not produce the same model.

Example 4. Apply subtreeIsSolved to the root of the QSMA-tree in Example 1.
Formula L gets p1 ∨ ¬p2. SMA produces an M′ that assigns values to x, p1, and
p2. Suppose that M′ satisfies p1 ∨ ¬p2 by assigning true to p1. In the recursive
call on b1, formula L gets ¬F1[x, y1]. If SMA produces an M′′ that extends M′

with an assignment to y1 such that M′′ |= ¬F1[x, y1], we have a model. Suppose
that M′ satisfies p1 ∨ ¬p2 by assigning false to p2. In the recursive call on b2,
formula L gets ¬F2[x, y2]. If SMA fails to produces an M′′ that extends M′ with
an assignment to y2 such that M′′ |= ¬F2[x, y2], we have a model.

Theorem 2. The function subtreeIsSolved is partially correct: if the precon-
ditions hold and the function halts, then the postconditions hold.

For termination, we begin with the MBU and MBO functions. Let T be LRA
with a theory extension LRA+ that adds constant symbols q̃ for all rational num-
bers q. Consider an MBU function such that MBU(F [z̄, x], x,M) = F [z̄, x]{x←q̃}
and M |= F [z̄, q̃]. This kind of MBU is called generalization-by-substitution [12].
While F [z̄, q̃] is an under-approximation of ∃x.F [z̄, x], this MBU is not a good
choice for termination. By applying MBU repeatedly with an infinite enumeration
of rational constants, the QSMA algorithm could build an infinite sequence of
under-approximations (

∨n
i=1 F [z̄, x]{x←q̃i})n∈N none of which is LRA-equivalent

to ∃x.F [z̄, x]. The next definition excludes such MBU functions, by requiring that
for a given formula and variable tuple (that depends on the formula), MBU can
generate only finitely many formulas.

Definition 5 (Finite basis). An MBU function has finite basis if the set
{MBU(F [z̄, x̄], x̄,M) | M : extension of M0 to z̄ such that M |= ∃x̄.F [z̄, x̄]}
is finite for all quantifier-free formulas F [z̄, x̄] and tuples x̄.

The notion of an MBO function having a finite basis is defined in the same
way with �|= in place of |=.
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Lemma 1. If MBU and MBO have finite basis, for all (possibly infinite) series
of calls {subtreeIsSolved(n,Mi)}i, all satisfying the preconditions and all ter-
minating, formulas n.U and n.O are updated only a finite number of times.

Once nontermination due to MBU or MBO is excluded even for an infinite
series of halting calls, termination is proved by induction on the QSMA-tree.

Theorem 3. If the MBU and MBO functions have finite basis, whenever the
preconditions are satisfied the function subtreeIsSolved halts.

Example 5. Apply subtreeIsSolved to the root of the QSMA-tree in Example 2.
Formula L gets p1 ∧ ¬p2. SMA produces an M′ that assigns values to x, p1, and
p2. Suppose that M′ assigns 1 to x, while it must assign true to p1 and false to
p2. In the recursive call on b1, formula L gets x � 2·y1. If SMA produces an M′′

that extends M′ with y1← 1
2 , we have a model of Gb1 . In the recursive call on

b2, formula L gets 3·x � 2·y2. If SMA produces an M′′ that extends M′ with
y2← 3

2 , we have a model of Gb2 , but because M′(p2) = false, there is no model
of G. Indeed, formula ϕ of Example 2 is false as the original formula is true.

5 The OptiQSMA Algorithm and Its Total Correctness

YicesQS implements an optimized variant of QSMA, called OptiQSMA, that
reduces the number of recursive calls to subtreeIsSolved by entrusting more
work to each call to SMA. Reconsider the behavior of QSMA in Example 4.
We can avoid a recursive call to subtreeIsSolved by asking SMA to satisfy
(p1 ∨ ¬p2) ∧ (p1 ⇒ ¬F1[x, y1]) in lieu of p1 ∨ ¬p2. This way, if the candidate
model returned by SMA assigns true to p1, it also assigns to x and y1 values
that satisfy ¬F1[x, y1]. This means that ∃y1.¬F1[x, y1] is found true without
recursion. On the other hand, if p2 is assigned false, the algorithm still has to
make the recursive call to see if it can satisfy ∃y2.¬F2[x, y2].

The idea of OptiQSMA is to do a look-ahead on a path in the QSMA-tree,
doing the work in one shot rather then through recursive calls on all the nodes
in the path. The look-ahead applies to a path such that the Boolean labels of
all the arcs in the path are assigned true by the candidate model. The following
definition builds a formula to allow the look-ahead.

Definition 6 (Look-ahead formula). Given a QSMA-tree G = (z̄, T ), for all
nodes n of T the look-ahead formula of n is LF (n) = n.F ∧

∧
n→b(b.p ⇒ LF (b)).

The next definition distinguishes the nodes that are handled together in one
shot without recursion and those where recursion is still needed. Nodes of the
first kind are called no alternation nodes, because such nodes are on a path as
described above, where all Boolean labels are assigned true and hence there is
no alternation between true and false. Nodes of the second kind are called first
alternation nodes, because they are the nodes reached by the first arc whose
Boolean label is assigned false.
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Fig. 3. Pseudocode of the main function of the OptiQSMA algorithm

Definition 7 (No alternation nodes and first alternation nodes). Given
a QSMA-tree G = (z̄, T ) for all nodes n of T and extensions M of M0 to
FV (LF (n)), the set NAN(n,M) of the no-alternation nodes from n according
to M (resp. the set FAN(n,M) of the first-alternation nodes from n according to
M) contains all and only the nodes b such that: (i) b is a descendant of n through
a path n → n1 → . . . → nq → b (q ≥ 0), (ii) ∀i, 1 ≤ i ≤ q, M(ni.p) = true, and
(iii) M(b.p) = true (resp. M(b.p) = false).

A node b ∈ FAN(n,M) such that q = 0 in Condition (i) of Definition 7
is a child of n: for a child there is no optimization. The OptiQSMA algorithm
seeks a candidate model M that satisfies LF (n) and recurses only on the nodes
in FAN(n,M). Therefore, the definition of satisfaction with look-ahead, denoted
|=la, follows the pattern of Definition 3, replacing r.F with LF (r) and Condi-
tion (ii) of Definition 3 with a condition for the nodes in the FAN set.

Definition 8 (Satisfaction with look-ahead). Given a QSMA-tree G =
(z̄, T ) with r = root(T ) and an extension M of M0 to Rigid(r) = z̄, M |=la G
if there exists an extension M′ of M to FV (LF (r)) such that (i) M′ |= LF (r)
and (ii) for all nodes b ∈ FAN(r,M′), M′ �|=la Gb.

Since for the nodes b ∈ FAN(r,M′) it is M′(b.p) = false, the |=la relation is
negated in Condition (ii). The next theorem shows that the optimization does
not change the problem.

Theorem 4. Given a QSMA-tree G = (z̄, T ) and an extension M of M0 to z̄,
M |= G if and only if M |=la G.

The OptiQSMA algorithm maintains under-approximations n.U of n.ψ for all
nodes n, but not over-approximations. Accordingly, the main function OptiQSMA
(Fig. 3) initializes only n.U for all nodes n, and then calls optiSubtreeIsSolved
(Fig. 4). This function returns SAT(U) if M |=la G and UNSAT(O) if M �|=la

G. The formula U is an under-approximation of r.ψ (r = root(T )) such that
M |= U . The formula O is an over-approximation of r.ψ such that M �|= O. The
main function OptiQSMA has no usage for U and O and merely returns true
or false accordingly. Function optisubtreeIsSolved builds and returns under-
approximations and over-approximations recursively. The reason for saving only
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Fig. 4. Pseudocode of the auxiliary functions of the optiQSMA algorithm

under-approximations is practical, and will become clear after the illustration of
optisubtreeIsSolved. This function takes a node n and a model M extending
M0 to Rigid(n) and determines whether M |=la Gn, by executing a loop whose
body contains the following steps:

1. Build a formula L (line 3 in Fig. 4) as the conjunction of the look-ahead
formula LF (n) (in lieu of n.F in line 7 of Fig. 2) and a formula for every
descendant b of n, denoted n →+ b (in lieu of child as in Fig. 2).

2. Invoke the SMA function to search for an extension M′ of M to Var(n)
such that M′ |= L. For those descendants b for which M′(b.p) = false, the
subformula for b in L reduces to ¬b.U as in Step 2 of the description of
subtreeIsSolved. For those descendants b for which M′(b.p) = true, the
subformula for b in L reduces to true, in agreement with the fact that over-
approximations are not kept.

3. If SMA returns nil, optiSubtreeIsSolved returns UNSAT(O), where O is
simply the outcome of applying MBO to L and M, as over-approximations
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are not kept. Otherwise, there is potential for satisfaction with look-ahead.
Function optiSubtreeIsSolved initializes the formula reasons to � and
invokes solutionForallDescendants passing reasons by reference.

4. Function solutionForallDescendants considers first all descendants b in
FAN(n,M), and calls optiSubtreeIsSolved(b,M) for each of them. If this
call returns SAT(U), it means that M |=la Gb; solutionForallDescendants
weakens b.U by disjunction with U and returns false.
If optiSubtreeIsSolved(b,M) returns UNSAT(O), it means that M �|=la Gb,
and we move on to the next descendant in FAN(n,M). Prior to that, reasons
is strengthened by conjunction with ¬b.p ⇒ ¬O. For all descendants b in
NAN(n,M), solutionForallDescendants strengthens reasons by conjunc-
tion with b.p.

5. If solutionForallDescendants returns true, optiSubtreeIsSolved builds
formula L′ as LF (n)∧reasons, and returns SAT(U), where U is the outcome
of the application of MBU to L′ and M. Otherwise, the control returns to
line 3. Since solutionForallDescendants returned false, it means that it
found a node b in FAN(n,M) for which optiSubtreeIsSolved(b,M) returned
SAT(U) and the formula b.U was updated (line 17). Therefore the state has
changed, variable L gets a new formula on line 3, and the subsequent call to
SMA will not produce the same model.

In the experiments it turned out that storing over-approximations for all
nodes is less efficient than using them to compute L′ and then forget them.
Thus, the over-approximation O encapsulated in the UNSAT(O) value returned
by a recursive call to optiSubtreeIsSolved is used to build the temporary
formula reasons, but it is not saved, and reasons is used to compute L′.

Theorem 5. The function optiSubtreeIsSolved is partially correct: if the pre-
conditions hold and the function halts, then the postconditions hold.

The proof of partial correctness of optiSubtreeIsSolved shows that every
model that satisfies L′ = (LF (n) ∧ reasons) fulfills Definition 8. In this sense,
reasons is an explanation of why a model is found with look-ahead.

Theorem 6. If the MBU and MBO functions have finite basis, whenever the
preconditions are satisfied the function optiSubtreeIsSolved halts.

6 The YicesQS Solver and Experimental Results

The OptiQSMA algorithm is implemented in YicesQS to equip Yices 2 with sup-
port for quantifiers for complete theories (unrelated to Yices 2 support for quan-
tifiers in UF).2 MBO is available as model interpolation from Yices’s MCSAT [10]
solver for quantifier-free formulas, including theory-specific techniques for bitvec-
tors (BV) [15] and arithmetic. The latter are based on NLSAT [16] and ulti-
mately on Cylindrical Algebraic Decomposition (CAD). Basic MBU is done

2 See https://github.com/disteph/yicesQS and https://yices.csl.sri.com/.

https://github.com/disteph/yicesQS
https://yices.csl.sri.com/
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Fig. 5. Plot for BV.

as generalization-by-substitution [12] and improved with model-based projection
(e.g., [18]) for arithmetic, and invertibility conditions [21], including ε-terms, for
BV. In YicesQS model-based projection also is based on CAD.

In the 2022 SMT competition, YicesQS entered the single-query, non-incre-
mental tracks of BV, LRA, LIA, NRA, and NIA (nonlinear integer arithmetic). The
experiments were run on the Starexec cluster with a 20min timeout per bench-
mark and 60GB of memory. The benchmarks were a subset of the SMT-LIB
collection. The results presented below were computed by running the compe-
tition script join.sh on the raw data from StarExec,3 sorting the data, and
producing the plots that are available online.4 A description of the participating
solvers can be found on the competition website.5

Figure 5 shows the results for BV, where YicesQS solved quickly a high num-
ber of benchmarks (compared for example with CVC5), but was not outstanding,
possibly because YicesQS 2022 makes a limited use of invertibility conditions
for model interpolation. Figure 6 shows the results for the four arithmetics. The
columns on the left list number of solved instances and time to solve them for
each logic and solver. In the plot on the right, each color corresponds to a solver
and point (x, y) of that color means that the xth fastest-solved benchmark was
solved by that solver in time y (log scale). 2021 Z3 is included because in some of
these logics it performed slightly better than 2022 Z3. The logic where YicesQS
performed best is LRA: it was the only solver to solve all 1,003 benchmarks. Z3
2021 was second best, solving 948 benchmarks with a total runtime about 100
times higher. YicesQS has neither a special treatment (e.g., simplex-based) of lin-
ear problems, nor integer-specific techniques: it relies on CAD-based techniques
for MBU and MBO also for integer problems. Thus, it is somewhat average
on LIA and NIA. These two theories are undecidable (NRA due to division by
0) and hence they lie outside of the theoretical framework of QSMA. YicesQS

3 https://github.com/SMT-COMP/smt-comp/tree/master/2022/results.
4 http://www.csl.sri.com/users/sgl/Work/Cade2023-data/index.html.
5 https://smt-comp.github.io/2022/participants.html.

https://github.com/SMT-COMP/smt-comp/tree/master/2022/results
http://www.csl.sri.com/users/sgl/Work/Cade2023-data/index.html
https://smt-comp.github.io/2022/participants.html
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Fig. 6. Plots for the four arithmetics.

answers should still be correct, but termination can be lost. With Z3 being a
non-competing participant in the SMT 2022 competition, YicesQS came second
for Largest Contribution (single queries), because of its overall performance in
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the four arithmetics, where it also came first for satisfiable instances and in the
24 sec timeout setup (instead of 20min).

7 Discussion: Related Work and Future Work

Quantified SMT was approached by a procedure with an ∃-solver and a ∀-solver
for prenex normal form formulas with ∃∀ prefix [12]. A formulation as a game
between an ∃-player and a ∀-player appeared with the QSAT algorithm [3] for
prenex normal form formulas with (∃∀)+ prefix. QSMA accepts arbitrary formu-
las with quantifiers in arbitrary positions.

Both QSAT and QSMA work for a generic theory T over basic T -specific com-
ponents. QSAT uses model-based projection [3,18] and a solver for quantifier-free
satisfiability that supports UNSAT cores. Model-based projection is an instance
of MBU. An UNSAT core (as a conjunction) is an MBO in the special case
where the input assignment is Boolean. While MBO can produce UNSAT cores,
MBO generalizes the concept of UNSAT core with theory-specific reasoning when
there are non-Boolean input assignments, as it is the case in QSMA. It is unclear
whether the combination of UNSAT cores and theory-specific MBU can emulate
MBO or provide the same benefits. QSAT is implemented in Z3 and it is the
default solver for LIA, LRA, and NRA.

YicesQS is a recent implementation that only participated in the SMT com-
petition in 2021 and 2022. Directions for further development include augmenting
integer reasoning, and improving model interpolation in BV by a better usage of
invertibility conditions. Another lead for future work is to compose QSMA within
the CDSAT framework for conflict-driven reasoning in unions of theories [4–6].
For this, one may need to drop the assumption that there is a unique model
M0 and only its extensions need to be considered, which will be a generalization
also in the single theory case. As most known MBU and MBO functions are for
single theories, one may have to study how to get MBU and MBO functions
for a union of theories from such functions for the component theories. Another
issue is the interplay between QSMA’s recursive descent over the QSMA-tree for
the formula and CDSAT’s conflict-driven search.
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Abstract. This paper introduces a uniform substitution calculus for
dLCHP, the dynamic logic of communicating hybrid programs. Uniform
substitution enables parsimonious prover kernels by using axioms instead
of axiom schemata. Instantiations can be recovered from a single proof
rule responsible for soundness-critical instantiation checks rather than
being spread across axiom schemata in side conditions. Even though
communication and parallelism reasoning are notorious for necessitating
subtle soundness-critical side conditions, uniform substitution when gen-
eralized to dLCHP manages to limit and isolate their conceptual overhead.
Since uniform substitution has proven to simplify the implementation
of hybrid systems provers substantially, uniform substitution for dLCHP

paves the way for a parsimonious implementation of theorem provers for
hybrid systems with communication and parallelism.

Keywords: Uniform substitution · Parallel programs · Differential
dynamic logic · Assumption-commitment reasoning · CSP

1 Introduction

Fig. 1. The proof rule is
only sound under subtle
side conditions (��).

Hybrid systems and parallel systems are notoriously
subtle to analyze. Combining both not only cul-
minates these subtleties but is further complicated
because parallel hybrid systems are interlocked by
synchronization in a shared global time. The dynamic
logic of communicating hybrid programs dLCHP [6]
tames the complexity of parallel hybrid systems providing a compositional proof
calculus that disentangles reasoning into purely discrete, continuous, and com-
munication pieces. However, the calculus is subject to schematic side conditions
whose implementation is generally error-prone causing large soundness-critical
code bases [30]. In particular, compositional reasoning about parallelism as in
the idealized proof rule in Fig. 1 holds the challenge to exhaustively characterize
all side conditions required to make all instances of this proof rule sound. Proof
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systems for discrete parallelism [1,19,27,35,44,46] already have complicated side
conditions, but complexity only increases with continuous interactions in shared
global time.

In order to compositionally support compositional reasoning for parallel
hybrid systems, this paper generalizes Church’s uniform substitution [8] and
develops a uniform substitution calculus [30–32] for dLCHP. Uniform substitu-
tion modularizes the calculus itself enabling its parsimonious implementation.
Although applicable to discrete parallelism, the dLCHP development resolves the
inherent challenge that parallel hybrid systems always synchronize in time.

Uniform substitution adopts a finite list of concrete formulas as axioms
instead of an infinite set of formulas via axiom schemata with side conditions.
This enables theorem provers without the extensive algorithmic checks otherwise
required for each schema to sort out unsound instances. Thanks to the proof
rule US for uniform substitution, only sound instances derive from the axioms
such that the parallel composition rule in dLCHP could be adopted almost lit-
erally as above, but with all the soundness-critical checking encapsulated solely
in rule US. Thanks to US’s checking, parallel systems reasoning even reduces
to a single parallel injection axiom [α]ψ → [α ‖ β]ψ that merely describes the
preservation of property ψ of one parallel component α in the parallel system
α ‖ β. Proofs about α ‖ β reduce to a sequence of property embeddings with this
axiom from local abstractions of the subcomponents, which combine soundly due
to US.

Soundness checks in uniform substitution are ultimately determined by the
binding structures as identified in the static semantics. The development of uni-
form substitution for dLCHP is, therefore, grounded in the following key obser-
vation: Communication and parallelism both cause additional binding structure
that needs attention in the substitution process performed by rule US:
(B I) Expressions depend on communication along (co)finite channel sets
(besides finitely many free variables), which, by the core substitution principle
[8], must not be introduced free into contexts where they are written.

(B II) Subprograms in a parallel context need to be restricted in the variables
and channels written as compositional proof rules for parallelism require local
abstractions of subprograms not depending on the internals of the context [35].

Grounded in the need for abstraction (B II), [α]ψ → [α ‖ β]ψ can only be
adopted as a sound axiom schema if α and β do not share state, and if program β
does not interfere with the contract ψ, i.e., (i) ψ has no free variables bound by β
(with exceptions), and (ii) ψ does not depend on communication channels written
by β (except for channels joint with α). This extensive side condition would need
nontrivial soundness-critical implementations of dLCHP axiom schemata. Still,
uniform substitution can be lifted with only small changes locally checking for
clashes with written channels, and prohibited variables or channels.

The modularity of uniform substitution is the key to the parsimonious imple-
mentation [23] of the theorem prover KeYmaera X [11] for differential dynamic
logic dL and differential game logic dGL [29], thus paving the way for a straight-
forward theorem prover implementation of dLCHP. Since dLCHP conservatively
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generalizes dL [6], its uniform substitution calculus inherits the complete [33]
axiomatic treatment of differential equation invariants [30]. All proofs are in [7].

2 Dynamic Logic of Communicating Hybrid Programs

This section briefly recaps dLCHP [6], the dynamic logic of communicating hybrid
programs (CHPs). It combines hybrid programs [28] with CSP-style communica-
tion and parallelism [15]. By assumption-commitment (ac) reasoning [22,46,47],
dLCHP allows compositional verification of parallelism in dL. For uniform substi-
tution, function and predicate symbols, and program constants are added.

2.1 Syntax

The set of variables V = VR∪VN∪VT has real (VR), integer (VN), and trace (VT )
variables. For each x ∈ VR, the differential symbol x′ is in VR, too. The designated
variable μ ∈ VR represents the shared global time. The set of channel names
is Ω. By convention x, y ∈ VR, n ∈ VN, h ∈ VT , ch ∈ Ω, and z ∈ V . Channel set
Y ⊆ Ω is (co)finite. Vectorial expressions are denoted ē. Moreover, fM, gM are
M-valued function symbols and p, q, r are predicate symbols, where argument
sorts are annotated by : M1, . . . , Mk. Finally, a, b are program constants.

Definition 1 (Terms). Terms consist of real (TrmR), integer (TrmN), channel
(TrmΩ), and trace (TrmT ) terms, and are defined by the grammar below, where
θ, θ1, θ2 ∈ Q[VR] ⊂ TrmR are polynomials in VR:

TrmR : η1, η2 ::= x | fR(Y, ē) | η1 + η2 | η1 · η2 | (θ)′ | val(te) | time(te)
TrmN : ie1, ie2 ::= n | fN(Y, ē) | ie1 + ie2 | |te|
TrmΩ : ce1, ce2 ::= fΩ(Y, ē) | chan(te)
TrmT : te1, te2 ::= h | fT (Y, ē) | 〈ch, θ1, θ2〉 | te1 · te2 | te ↓ Y | te[ie]

Real terms are polynomials in VR enriched with function symbols fR(Y, ē)
(including constants c ∈ Q) only depending on communication along channels Y
and terms ē, differential terms (θ)′, and val(te) and time(te), which access
the value and the timestamp of the last communication in te, respectively. By
convention, θ ∈ Q[VR] denotes a pure polynomial in VR without (·)′, val(·), and
time(·) as they occur in programs. For simplicity, we do not define Q[VR] ⊂ TrmR

as a fifth term sort but use the convention that function symbols gR can only
be replaced with Q[VR]-terms. Integer terms are variables n, function symbols
fN(Y, ē) (including constants 0, 1), addition, and length |te| of trace term te.1

The function symbol fΩ(Y, ē) includes constants ch ∈ Ω, and chan(te) is chan-
nel access. Trace terms record the communication history of programs. They
encompass variables h, function symbols fT (Y, ē) (including the empty trace ε),
communication items 〈ch, θ1, θ2〉 with value θ1 and timestamp θ2, projection

1 Omitting multiplication results in decidable Presburger arithmetic [34].
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te ↓ Y onto channels Y , and access te[ie] of the ie-th item in te. Where useful,
op(ē) denotes built-in function symbols of fixed interpretation, e.g., · + ·.

dLCHP’s context-sensitive program and formula syntax presumes notions of
free and bound variables (Sect. 2.3) defined on the context-free syntax:

Definition 2 (Programs). Communicating hybrid programs are defined by the
following grammar, where θ ∈ Q[VR] is a polynomial in VR and χ ∈ FOLR is a
formula of first-order real-arithmetic. In α ‖ β, the subprograms must not share
state but can share time and history, i.e., BV(α) ∩ BV(β) ⊆ {μ, μ′} ∪ VT .2

α, β ::= a(|Y, z̄|) | x := θ | x := ∗ | ?χ | {x′ = θ & χ} | α;β | α ∪ β | α∗ |
ch(h)!θ | ch(h)?x | α ‖ β

The program constant a(|Y, z̄|) restricts the written channels to Y ⊆ Ω and
the bound variables to z̄ ⊆ VR ∪ VT , where Y and z̄ are (co)finite. Instead of
a(|Y, z̄|), write a if Y and z̄ can be arbitrary. Assignment x := θ updates x to θ,
nondeterministic assignment x := ∗ assigns an arbitrary real value to x, and
the test ?χ does nothing if χ holds and aborts the computation otherwise. The
continuous evolution {x′ = θ&χ} follows the ODE x′ = θ for any duration as long
as formula χ is not violated. The global time μ evolves with every continuous
evolution according to ODE μ′ = 1. Sequential composition α;β executes β
after α, choice α ∪ β executes α or β nondeterministically, α∗ repeats α zero
or more times, ch(h)!θ sends θ along channel ch, and ch(h)?x receives a value
into variable x along channel ch. The trace variable h records communication.
Finally, α ‖ β executes α and β in parallel synchronized in global time μ.

Example 3. The program ct∗ ‖ ve∗ models a simplified cruise control [24]. The
vehicle ve repeatedly receives a target velocity vtr

ve from the controller ct along
channel tar. The target vtr

ct sent by ct is in range [0, V ]. Hence, ve’s velocity vve
stays in range [0, V ] within the ε > 0 time units till the next communication if
vve ∈ [0, V ] held initially. The evolution {t′ = 1} allows passage of time in ct.

ct ≡ vtr
ct := ∗; ?(0 ≤ vtr

ct ≤ V ); tar(h)!vtr
ct ; {t′ = 1}

ve ≡ tar(h)?vtr
ve; ave :=

vtr
ve − vve

ε
; t0 := μ; {v′

ve = ave & μ − t0 ≤ ε}

Definition 4 (Formulas). Formulas are defined by the grammar below for
relations ∼, terms e1, e2 ∈ Trm of equal sort, and z ∈ V . Moreover, the ac-
formulas are unaffected by state change in α, i.e., (FV(A)∪FV(C))∩BV(α) ⊆ VT .

ϕ,ψ,A,C ::= e1 ∼ e2 | p(Y, ē) | ¬ϕ | ϕ ∧ ψ | ∀z ϕ | [α]ψ | [α]{A,C}ψ

The formulas combine first-order dynamic logic with ac-reasoning. Predi-
cate symbols p(Y, ē) depend on channels Y and terms ē. The ac-box [α]{A,C}ψ

2 Previous work [6] disallows reading of variables bound in parallel as their change is
not observable. This restriction is conceptually desirable but not soundness-critical.
Here we drop it for simplicity, but it could be maintained by US as well.
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expresses that C holds after each communication event and ψ in the final state,
for all runs of α whose incoming communication satisfies A. Other connectives ∨,
→, ↔ and quantifiers ∃z ϕ ≡ ¬∀z ¬ϕ can be derived. The relations ∼ include =
for all term sorts, ≥ on real and integer terms, and prefixing � on trace terms.

By convention, the predicate symbol qR can only be replaced with formulas
of first-order real arithmetic. It serves as placeholder for tests χ in CHPs.

Example 5. The cruise control from Example 3 is safe if its velocity stays in
range [0, V ]. This can be expressed with the formula ϕ → [ct∗ ‖ ve∗]ψsafe, where
ψsafe ≡ 0 ≤ vve ≤ V and ϕ ≡ ψsafe ∧ ε > 0 ∧ V > 0.

2.2 Semantics

A trace τ = (τ1, ..., τk) is a finite chronological sequence of communication events
τi = 〈chi, di, si〉, where chi ∈ Ω, and di ∈ R is the communicated value, and
si ∈ R is a timestamp such that si ≤ sj for 1 ≤ i < j ≤ k. A recorded trace
τ = (τ1, ..., τk) additionally carries a trace variable hi ∈ VT with each event, i.e.,
τi = 〈hi, chi, di, si〉. For variable z ∈ VM and M ∈ {R, N, T }, let type(z) = M. A
state v maps each z ∈ V to a value v(z) ∈ type(z). The sets of traces, recorded
traces, and states are denoted T , Trec, and S, respectively.

For d ∈ type(z), the state vd
z is the modification of v at z to d. For τ ∈ Trec,

the trace τ(h) ∈ T is obtained from the subsequence of τ carrying h ∈ VT by
removing the carried variable. State-trace concatenation v · τ ∈ S for τ ∈ Trec,
appends τ(h) to v at h for all h ∈ VT . The projection τ ↓Y of (recorded) trace τ
is the subsequence of all communication events in τ whose channel is in Y ⊆ Ω.
The state projection v ↓ Y ∈ S modifies v at h to v(h) ↓ Y for all h ∈ VT .

An interpretation I assigns a function I(fM : M1, . . . , Mk) :×k

i=1
Mi → M to

each function symbol fM that is smooth in all real-valued arguments if M = R,
and a relation I(p : M1, . . . , Mk) ⊆×k

i=1
Mi to each k-ary predicate symbol p.

Definition 6 (Term Semantics). The valuation Iv[[e]] ∈ R ∪ N ∪ Ω ∪ T of
term e in interpretation I and state v is defined as follows:

Iv[[z]] = v(z)
Iv[[f(Y, e1, ..., ek)]] = I(f)(Iṽ[[e1]], ..., Iṽ[[ek]]) where ṽ = v ↓ Y

Iv[[op(e1, . . . , ek)]] = op(Iv[[e1]], . . . , Iv[[ek]]) for builtin op ∈ {· + ·, · ↓ Y, . . .}

Iv[[(θ)′]] =
∑

x∈VR

v(x′)
∂Iv[[θ]]

∂x

The projection ṽ = v ↓ Y ensures that f(Y, ē) only depends on Y , i.e., the
communication in v along channels Y � does not matter. The differentials (θ)′

have a semantics describing the local rate of change of θ [30].
The denotational semantics of CHPs [6] combines dL’s Kripke semantics [30]

with a linear history semantics [47] and a global notion of time. Denotations
are subsets of D = S × Trec × S⊥ with S⊥ = S ∪ {⊥}. Final state ⊥ marks an
unfinished computation, i.e., it still can be continued or was aborted due to a
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failing test. If (w′ = ⊥ and τ ′ � τ), where � is the prefix relation on traces,
or (τ ′, w′) = (τ, w), then (τ ′, w′) is a prefix of (τ, w) written (τ ′, w′) � (τ, w).
Since (even empty) communication of unfinished computations is still observable,
denotations D ⊆ D of CHPs are prefix-closed and total, i.e., (v, τ, w) ∈ D and
(τ ′, w′) � (τ, w) implies (v, τ ′, w′) ∈ D, and ⊥D ⊆ D with ⊥D = S × {ε} × {⊥}.
Moreover, all (v, τ, w) ∈ D are chronological, i.e., v(μ) ≤ w(μ) and when τ =
(τ1, . . . , τk) �= ε and let τi(μ) = (〈hi, chi, di, si〉)(μ) = si, then v(μ) ≤ τ1(μ) and
if w �= ⊥, then τk(μ) ≤ w(μ). Note that τ is chronological as all traces are.

The interpretation I(a(|Y, z̄|)) ⊆ D of a program constant a(|Y, z̄|) is a prefix-
closed and total set of chronological computations that (i) only communicate
along (write) channels Y and (ii) only bind variables z̄. More precisely, for all
(v, τ, w) ∈ I(a(|Y, z̄|)), we have (i) τ ↓ Y � = ε, and (ii) v = w on VT and w · τ = v
on z̄�. For D,M ⊆ D, we define D⊥ = {(v, τ,⊥) | (v, τ, w) ∈ D}, and (v, τ, w) ∈
DM if (v, τ1, u) ∈ D and (u, τ2, w) ∈ M exist with τ = τ1 ·τ2. For states wα, wβ ,
the merged state wα ⊕wβ is ⊥ if one of the substates wα or wβ is ⊥. Otherwise,
wα ⊕ wβ = wα on BV(α) and wα ⊕ wβ = wβ on BV(α)� (or, equivalently by
syntactic well-formedness, on BV(β)� and BV(β), respectively). If Y is the set of
all channel names occurring in α, we write τ ↓ α for τ ↓ Y .

Definition 7 (Program semantics). Given an interpretation I, the semantics
I[[α]] ⊆ D of a CHP α is defined as follows, where ⊥D = S × {ε} × {⊥} and �
denotes the satisfaction relation (Definition 8):

I[[a(|Y, z̄|)]] = I(a(|Y, z̄|))
I[[x := θ]] = ⊥D ∪ {(v, ε, w) | w = vd

x where d = Iv[[θ]]}
I[[x := ∗]] = ⊥D ∪ {(v, ε, w) | w = vd

x where d ∈ R}
I[[?χ]] = ⊥D ∪ {(v, ε, v) | Iv � χ}
I[[{x′ = θ & χ}]] = ⊥D ∪

{
(v, ε, ϕ(s)) | v = ϕ(0) on {μ′, x′}�, and ϕ(ζ) = ϕ(0)

on {x, x′, μ, μ′}�, and Iϕ(ζ) � μ′ = 1 ∧ x′ = θ ∧ χ for all ζ ∈ [0, s] and

a solution ϕ : [0, s] → S with ϕ(ζ)(z′) =
dϕ(t)(z)

dt
(ζ) for z ∈ {x, μ}

}

I[[ch(h)!θ]] = {(v, τ, w) | (τ, w) � (〈h, ch, d, v(μ)〉, v) where d = Iv[[θ]]}
I[[ch(h)?x]] = {(v, τ, w) | (τ, w) � (〈h, ch, d, v(μ)〉, vd

x) where d ∈ R}
I[[α ∪ β]] = I[[α]] ∪ I[[β]]

I[[α;β]] = I[[α]] ◦̂ I[[β]] def= (I[[α]])⊥ ∪ (I[[α]]  I[[β]])

I[[α∗]] =
⋃

n∈N

(I[[α]])n =
⋃

n∈N

I[[αn]] whereα0 ≡ ?T and αn+1 = α;αn

I[[α1 ‖ α2]] =

{
(v, τ, wα1 ⊕ wα2)

∣∣∣∣
(v, τ ↓ αj , wαj

) ∈ I[[αj ]] for j = 1, 2, and
wα1 = wα2 on {μ, μ′}, and τ = τ ↓ (α1‖α2)

}

The semantics is indeed constructed prefix-closed, total, and chronological.
Communication τ of α1 ‖ α2 is implicitly characterized via its subsequences for
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the subprograms. By τ = τ ↓ (α1 ‖ α2), there is no non-causal communication.
Joint communication and the whole computation are synchronized in global
time by the projections and by wα1 = wα2 on {μ, μ′}, respectively. Likewise, by
projection, communication is synchronously recorded by trace variables.

Definition 8 (Formula semantics). The satisfaction Iv � φ of a dLCHP for-
mula φ in interpretation I and state v is inductively defined as follows:

1. Iv � e1∼e2 if Iv[[e1]] ∼ Iv[[e2]] where ∼ is any relation symbol
2. Iv � p(Y, e1, . . . , ek) if (Iṽ[[e1]], . . . , Iṽ[[ek]]) ∈ I(p) where ṽ = v ↓ Y
3. Iv � ϕ ∧ ψ if Iv � ϕ and Iv � ψ
4. Iv � ¬ϕ if Iv � ϕ, i.e., it is not the case that Iv � ϕ
5. Iv � ∀z ϕ if Ivd

z � ϕ for all d ∈ type(z)
6. Iv � [α]ψ if Iw · τ � ψ for all (v, τ, w) ∈ I[[α]] with w �= ⊥
7. Iv � [α]{A,C}ψ if for all (v, τ, w) ∈ I[[α]] the following conditions hold:

{Iv · τ ′ | τ ′ ≺ τ} � A implies Iv · τ � C (commit)
(
{Iv · τ ′ | τ ′ � τ} � A and w �= ⊥

)
implies Iw · τ � ψ (post)

Where U � ϕ for a set of interpretation-state pairs U and any formula ϕ if
Iv � ϕ for all Iv ∈ U . In particular, ∅ � ϕ.

In item 6 and 7, reachable worlds are built from states v and w, and com-
munication τ , as change of state and communication are observable. The strict
prefix ≺ for the assumption in case (commit) in item 6 excludes (when A ≡ C)
the circularity that commitment C can be shown in states where it is assumed.

2.3 Static Semantics

In the uniform substitution process, checks of free and bound variables, as well
as accessed and written channels, separate sound from unsound axiom instantia-
tions. As parallelism requires fine-grained control over channels, the static seman-
tics for dL [30] is lifted to a communication-aware static semantics for dLCHP.
It uses accessed channels to characterize the subsequence of a communication
trace influencing truth of a formula even more precisely than free variables.

To precisely grasp free and bound variables, and accessed and written chan-
nels, Definition 9 gives a semantic characterization. In this section, formulas are
considered truth-valued, i.e., Iv[[φ]] = tt if Iv � φ and Iv[[φ]] = ff if Iv � φ.

Definition 9 (Static semantics). For term or formula e, and program α,
free variables FV(e) and FV(α), bound variables BV(α), accessed channels CN(e),
and written channels CN(α) form the static semantics.

FV(e) = {z ∈ V | ∃I, v, ṽ such that v = ṽ on {z}� and Iv[[e]] �= Iṽ[[e]]}
CN(e) = {ch ∈ Ω | ∃I, v, ṽ such that v ↓ {ch}� = ṽ ↓ {ch}� and Iv[[e]] �= Iṽ[[e]]}
FV(α) = {z ∈ V | ∃I, v, ṽ, τ, w such that v = ṽ on {z}� and (v, τ, w) ∈ I[[α]],

and there is no (ṽ, τ̃ , w̃) ∈ I[[α]] such that τ̃ = τ and w = w̃ on {z}�}
BV(α) = {z ∈ V | ∃I, (v, τ, w) ∈ I[[α]] such that w �= ⊥ and (w · τ)(z) �= v(z)}
CN(α) = {ch ∈ Ω | ∃I, (v, τ, w) ∈ I[[α]] such that τ ↓ {ch} �= ε}
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The already subtle static semantics of hybrid systems [30] becomes even
more subtle with communication and parallelism. For example, CHPs (silently)
synchronize with the global time μ, which is free and bound in ODEs, and the
differential μ′ is bound, i.e.,μ ∈ FV({x′ = θ & χ}) and μ, μ′ ∈ BV({x′ = θ & χ})
if the evolution has a run of non-zero duration, regardless of whether μ occurs
in x. Since reachable worlds of CHPs consist of communication and state, bound
variables BV(α) of program α compare v with the state-trace concatenation w · τ
instead of missing τ . Consequently, h ∈ BV(ch(h)!θ) ⊆ FV(ch(h)!θ), which also
reflects that the initial communication never gets lost.

Lemma 10 (Bound effect property). The sets BV(α) and CN(α) are the
smallest sets with the bound effect property for program α. That is, v = w on VT
and v = w · τ on BV(α)� if w �= ⊥, and τ ↓ CN(α)� = ε for all (v, τ, w) ∈ I[[α]].

By the following communication-aware coincidence property, terms and for-
mulas only depend on their free variables, which for trace variables can be further
refined to the subtraces whose channels are accessed. This subtrace-level preci-
sion is crucial in the soundness proof of the parallel injection axiom as it allows
to drop β from [α ‖ β]ψ only if β does not write channels of ψ that are not also
written by α. The signature Σ(·) of an expression denotes all occurring symbols.

Lemma 11 (Coincidence for terms and formulas). The sets FV(e) and
CN(e) are the smallest sets with the communication-aware coincidence property
for term or formula e. That is, if v ↓ CN(e) = ṽ ↓ CN(e) on FV(e) and I = J
on Σ(e), then Iv[[e]] = Jṽ[[e]]. In particular, for formula φ: Iv � φ iff Jṽ � φ.

Programs communicate but do not depend on the recorded history, thus
the coincidence property for programs is not communication-aware. However,
programs can produce the same communication starting from coinciding states.

Lemma 12 (Coincidence for programs). The set FV(α) is the smallest set
with the coincidence property for program α. That is, if v = ṽ on X ⊇ FV(α),
and I = J on Σ(α), and (v, τ, w) ∈ I[[α]], then (ṽ, τ̃ , w̃) ∈ J [[α]] exists such that
w = w̃ on X, and τ = τ̃ , and (w = ⊥ iff w̃ = ⊥).

3 Uniform Substitution for dLCHP

In dLCHP, a uniform substitution [30] σ maps function and predicate symbols to
terms (of equal sort) and formulas, respectively, while substituting the arguments
of the symbol for their placeholders in the replacement, and program constants
are mapped to CHPs. For example, σ = {f(·) �→ · + 1, a �→ ch(h)?v; {x′ = v}}
replaces all occurrences of function symbol f with · + 1 while the reserved 0-ary
function symbol · marks the positions for the parameter of f in the replacement.
Moreover, σ replaces the program constant a with the program ch(h)?v; {x′ = v}.

The key to sound uniform substitution is that new free variables must not
be introduced into a context where they are bound [8]. In the presence of com-
munication, likewise, new channel access must not be introduced into contexts
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where the channel is written (B I). For parallelism, substitution must not reveal
internals of the parallel context to the local abstraction of a subprogram (B II),
and must not violate state disjointness. The one-pass approach [32] used for
dLCHP postpones these checks and simply applies the substitution recursively
while collecting written variables and channels as taboo set (Fig. 2), thus oper-
ates linearly in the input. Clashes between the taboo, and new free variables and
channel access are only checked locally at the replacement site. Likewise, clashes
between the permitted channels and variables of a program constant, and its
replacement program are checked locally.

The substitution operator σU,W
Z (α) for program α takes an input taboo U ⊆

V ∪ Ω and a parallel context W ⊆ V , and returns, if defined, the substitution
result and a set of output taboos Z ⊆ V ∪ Ω. For terms and formulas, the
substitution operator σU only takes a taboo U ⊆ V ∪Ω as input. The substitution
process clashes, i.e., prevents unsound instantiation, if it were to introduce a free
variable or accessed channel into a context where it is bound (B I) or if it were to
write variables and channels violating abstraction (B II). Moreover, substitution
preserves well-formedness of programs and formulas, i.e., substitution clashes if
replacements were to violate well-formedness.

Fig. 2. Application of uniform substitution for taboo U and parallel context W , where
WU,γ ≡ W ∪ (BV(σU,W (γ) \ ({μ, μ′} ∪ VT )) for any program γ, and e ↓ Y for term e is
recursive push down of projection ↓Y , where p(Y0, e) ↓ Y ≡ p(Y0 ∩ Y, e).
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The side condition (FV(σf(·)) ∪ CN(σf(·))) ∩ U = ∅ implements locally that
the replacement for f must not introduce free parameters that are tabooed by U
(B I). The substitution {· �→ σU (e ↓ Y )}∅ is responsible for the argument e,3

where ∅ suffices as the taboo U is already checked on e ↓ Y . By the projection,
e↓Y only depends on channels Y . Quantification ∀z taboos the bound variable z.
Program α in a box or ac-box has an empty parallel context ∅.

The substitution σU,W
Z (α) computes the output taboo Z by adding the writ-

ten variables and channels of program α to U , e.g., real variable x for assignment
x := θ and for receiving ch(h)?x additionally channel ch and trace variable h.
The output taboo Z is passed to ac-formulas and postconditions of boxes and
ac-boxes for recursive checks for clashes w.r.t. (B I). Crucially for soundness,
Lemma 13 below proves that σU,W

Z (·) correctly computes the output taboo Z.
The taboo U∪W passed to nested expressions contains the parallel context W

to prevent free variables in replacements of function and predicate symbols that
are bound in parallel. This prepares the substitution process to preserve the
syntax restrictions for parallel composition from previous work [6].4 Substitu-
tion for evolution {x′ = θ & χ} considers that the global time μ, μ′ is always
implicitly bound regardless of whether it occurs in x, x′. The fixpoint notation
σZ,W

Z (α) for the replacement of repetition α∗ ensures that the output taboo of
the first iteration is tabooed in the subsequent iterations [32]. Computing the
parallel context of α and β in case α ‖ β requires one additional pass for both
subprograms because what they potentially bind after substitution adds to the
parallel context of the respective other subprogram.

Lemma 13 (Correct output taboo). Application σU,W
Z (α) of uniform sub-

stitution retains input taboo U and correctly adds the bound variables and written
channels of program α, i.e., Z ⊇ U ∪ BV(σU,W

Z (α)) ∪ CN(σU,W
Z (α)).

The side condition of σU,W
Z (a(|Y, z̄|)) maintains local abstraction of subpro-

grams (B II) because the replacement cannot bind more than a(|Y, z̄|), thus can-
not bind variables and channels of an abstraction that is independent of a(|Y, z̄|).
This also preserves state-disjointness (well-formedness) of parallel programs.

3.1 Semantic Effect of Uniform Substitution

The key ingredients for proving soundness of uniform substitution are Lemma 16
and 17 below. They prove that the effect of the syntactic transformation applied
by uniform substitution can be equally mimicked by semantically modifying the
interpretation of function and predicate symbols, and program constants. This
adjoint interpretation σ∗

wI for interpretation I and state w changes how symbols
are interpreted according to their syntactic replacements in the substitution σ.

3 Extension to vectorial arguments is straightforward.
4 For α ‖ β, the restriction is (V(α) ∩ BV(β)) ∪ (V(β) ∩ BV(α)) ⊆ {μ, μ′} ∪ VT [6].

However, in this paper, programs obey a less restrictive syntax for simplicity.
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Definition 14 (Adjoint substitution). For interpretation I and state w, the
adjoint interpretation σ∗

wI changes the meaning of function and predicate sym-
bols, and program constants according to the substitution σ evaluated in state w:

σ∗
wI(fM : Marg) : Marg → M; d �→ Id

· w[[σf(·)]] where M, Marg ∈ {R, N, Ω, T }
σ∗

wI(p : Marg) = {d ∈ Marg | Id
· w � σp(·)} where Marg ∈ {R, N, Ω, T }

σ∗
wI(a(|Y, z̄|)) = I[[σa]]

We follow the observation for dGL [32] that the more liberal one-pass sub-
stitution requires stronger coincidence between the substitution and the adjoint
on neighborhoods of the original state. Where the dGL soundness proof has suc-
ceeded by a neighborhood semantics of state on taboos, the dLCHP proof succeeds
with a generalization to a neighborhood semantics of state and communication
on taboos. The neighborhood of a state consists of its variations:

Definition 15 (Variation). For a set U ⊆ V ∪ Ω, a state v is a U -variation
of state w if v and w only differ on variables or projections onto channels in U ,
i.e., v ↓ (U� ∩ Ω) = w ↓ (U� ∩ Ω) on U� ∩ V .

The proofs of Lemma 16 and 17 follow a lexicographic induction on the
structure of substitution, and term, formula, or program. In Lemma 17, the
induction is mutual for formulas and programs.

Lemma 16 (Semantic uniform substitution). The term e evaluates equally
over U -variations under uniform substitution σU and adjoint interpretation σ∗

wI,
i.e., Iv[[σU (e)]] = σ∗

wIv[[e]] for all U -variations v of w.

Lemma 17 (Semantic uniform substitution). The formula φ and the pro-
gram α have equal truth value and semantics, respectively, over U -variations
under uniform substitution σU and adjoint interpretation σ∗

wI, i.e.,

1. for all U -variations v of w: Iv � σU (φ) iff σ∗
wIv � φ

2. for all (U ∪W )-variations v of w: (v, τ, o) ∈ I[[σU,W
Z (α)]] iff (v, τ, o) ∈ σ∗

wI[[α]]

3.2 Uniform Substitution Proof Rule

The proof rule US for uniform substitution is the single point of truth for the
sound instantiation of axioms (plus renaming of bound variables [30] and written
channels, e.g., [x := θ]ψ(x) to [y := θ]ψ(y) and [ch(h)?x]ψ(ch) to [dh(h)?x]ψ(dh).
Soundness of the rule, i.e., that validity of its premise implies validity of the
conclusion, immediately follows from Lemma 17. Since the substitution process
starts with no taboos, σ(φ) is short for σ∅(φ). If the substitution clashes, i.e.,
σ∅(φ) is not defined, then rule US is not applicable.

Theorem 18 (US is sound). The proof rule US is sound.

φ
US

σ(φ)
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Unlike dL [30] and dGL [32], dLCHP has a context-sensitive syntax for programs
and formulas (see Definition 2 and Definition 4). By Proposition 19, uniform
substitution, however, preserves syntactic well-formedness. Since all axioms in
Sect. 4 will be well-formed, only well-formed formulas can be derived in dLCHP.

Proposition 19 (US preserves well-formedness). The result σU (φ) (if
defined) of applying uniform substitution to a well-formed formula φ is well-
formed.

4 Axiomatic Proof Calculus

Figure 3 presents a sound proof calculus for dLCHP. The significant difference to
dLCHP’s schematic calculus [6] is that it completely abandons soundness-critical
side conditions, internalizing them syntactically in the axioms. Only axiom []WA

was adjusted to obtain a symbolic representation and an ac-version KAC of modal
modus ponens is included. Now, distribution of ac-boxes over conjuncts []AC∧
and ac-monotonicity M[·]AC derive from KAC, thus are dropped. Except for the
small changes soundness is inherited from the schematic axioms [6].

Algebraic laws for reasoning about traces [6] can be easily adapted to uniform
substitution as well [7]. Decidable first-order real arithmetic [41] and Presburger
arithmetic [34] have corresponding oracle proof rules [6].

Remark 20. To obtain a truly finite list of axioms from Fig. 3, symbolic (co)finite
sets can be finitely axiomatized as a boolean algebra together with extensionality,
which can be unrolled to a finite disjunction for (co)finite sets [7].

Parallel Composition. The parallel injection axiom [‖ ]AC in Fig. 3 decom-
poses parallel CHPs by local abstraction (B II). Unlike dLCHP’s [6] and Hoare-
style [46,47] schematic calculi for ac-reasoning, axiom [‖ ]AC internalizes the
noninterference property [6, Def. 7] that determines valid instances of formula

[α]{A,C}ψ → [α ‖ β]{A,C}ψ (1)
purely syntactically. To focus on noninterference, a(|Ya, z̄a|) ‖wf b(|Yb, z̄b|) abbrevi-
ates well-formed parallel composition a(|Ya, z̄a|) ‖ b(|Yb, (z̄b ∩ z̄�

a) ∪ {μ, μ′} ∪ VT |)
using operator ‖wf for program constants a(|Ya, z̄a|), b(|Yb, z̄b|). This notation
ensures disjoint parallel state except for the global time μ, μ′ and recorder vari-
ables VT .

Intuitively, axiom [‖ ]AC restricts β in Eq. (1) such that α overapproximates
the behavior of α ‖ β influencing A, C, or ψ. For this purpose, noninterference
internalized in b(|Yb ∩ (Y � ∪ Ya), z̄�|) forbids b to bind variables z̄ that are free
in the postcondition p(Y, z̄), and Y � forbids b to bind channels Y (except for
channels Ya written by a because joint parallel communication can already be
observed from a, too). Moreover, parallel programs always agree on the global
time μ, μ′ and the communication recorded by trace variables VT . Therefore, the
operator ‖wf explicitly allows their sharing even if z̄� disallows it. Note that Ya

and Y , and z̄a and z̄ may overlap but can also be disjoint.
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Fig. 3. dLCHP proof calculus

Despite its asymmetric shape, axiom [‖ ]AC decomposes [α‖β](φ∧ψ) into [α]φ
and [β]ψ (if they mutually do not interfere) via independent proofs for [α‖β]φ
and [α‖β]ψ, which drop either α or β by [‖ ]AC modulo commutativity.

Axiom System. For each program statement, there is either a dynamic or an
ac-axiom because the respective other version derives by axiom []�,� or [ε]AC.
Axioms [:=], [:∗], and [?] are as in dL [30]. Axioms [;]AC, [∪]AC, and [∗]AC for
decomposition, and IAC for induction carefully generalize their versions in differ-
ential [30] dynamic [14] logic to ac-reasoning. Sending is handled step-wise via
flattening the assumption-commitments by axiom [ch!]AC and axiom [ch!] that
executes the effect onto the recorder h. The duality [ch?]AC turns receiving into
arbitrary sending, which only synchronizes if it agrees with the parallel context
on the value. Usage of axiom W[]AC is for convenience. Axiom [μ] materializes
the flow of global time μ such that dL’s axiomatization of continuous evolution
[30] gets applicable, which requires ODE shape x̄′ = fR(x̄). The axiomatic proof
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rules GAC, MP, ∀, and CE are an ac-version of Gödels generalization rule, modus
ponens, quantifier elimination, and contextual equivalence, respectively.

The axiom []WA can weaken assumptions. Its slight change compared to
dLCHP’s schematic calculus [6] exploits that the compositionality condition WA

is only required for a’s reachable worlds. Interestingly, dLCHP’s monotonicity
rule M[·]AC [6] does not derive from modal modus ponens KAC and Gödel gen-
eralization GAC in analogy to dL [30] but needs W[]AC handling monotonicity of
assumptions, which does not fit into GAC because necessitating the assumption
in GAC would render the derivation of [α]{ T

,T}T by GAC impossible.
Axioms using postcondition P ≡ p(Y, z̄), e.g., in [;]AC, allow any replacement

of P since accessed channels Y ⊆ Ω and free variables z̄ ⊆ VR ∪ VT can be
arbitrary. Replacements of assumptions R ≡ r(Y, h̄) and commitments Q ≡
q(Y, h̄) can instead only mention trace variables h̄ ⊆ VT bound in their context.
This reflects that trace variables are the only interface between the program α
and the ac-formulas A and C in an ac-box [α]{A,C}ψ (well-formedness).

Theorem 21 (Soundness). The proof calculus for dLCHP presented in Fig. 3
is sound as an instantiation of the schematic calculus [6].

Clashes. Clashes sort out unsound instantiations of axioms. Unlike in dL and
dGL [30,32] whose clashes are solely due to tabooed variables in terms and for-
mulas, clashes in dLCHP can also be due to tabooed channels, and even due
to taboos in programs. For example, the substitution σ = {a �→ gh(h)!1, b �→
ch(h)!2, p �→ψ, r �→T, q �→T} with ψ ≡ |h ↓ ch| > 0 ∧ |h ↓ dh| > 0 ∧ y < 0 clashes
below, where Y = {ch,dh}, and z̄ ≡ h, y, and R ≡ r(Y ), and Q ≡ q(Y ). Writing
channel ch in the replacement for b would break the local abstraction of a as ch
is accessed in ψ but not written in the replacement for a, thus the clash indeed
sorts out an unsound instantiation.

[a(|{gh}, h|)]{R,Q}p(Y, z̄) → [a(|{gh}, h|) ‖wf b(|{ch}∩(Y �∪{gh)}, z̄�|)]{R,Q}p(Y, z̄)
�clash

[gh(h)!1]{T,T}ψ → [gh(h)!1 ‖ ch(h)!2]{T,T}ψ

In contrast, σ = {a �→ch(h)?x; gh(h)!1, b �→ch(h)!2, p �→ψ, r �→T, q �→T} does
not clash below, where Y = {ch,dh}, and Ya = {ch, gh}, and other abbreviations
are as above, because ch ∈ Y � ∪ Ya = {dh}�. Intuitively, the ch-communication
of b remains observable after dropping b from the parallel composition as it is
joint with a.

∗
[‖ ]AC

[a(|Ya, h, x|)]{R,Q}p(Y, z̄) → [a(|Ya, h, x|) ‖wf b(|{ch} ∩ (Y � ∪ Ya), z̄�|)]{R,Q}p(Y, z̄)
US

[ch(h)?x; gh(h)!1]{T,T}ψ → [(ch(h)?x; gh(h)!1) ‖ ch(h)!2]{T,T}ψ

Also note that by the operator ‖wf for well-formed parallel composition, the
recorder variable h can be shared without causing a clash above. However, clashes
prevent instantiation that would violate syntactic well-formedness of programs
(Definition 2) by binding the same state variable in parallel:
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[a(|∅, x|)]{r,q}p(x, y) → [a(|∅, x|) ‖wf b(|∅, {x, y}�|)]{r,q}p(x, y)
�clash

[x := y]{T,T}y = x → [x := y ‖ x := 0]{T,T}y = x

Well-formedness of programs and formulas is ensured in the axioms by well-
formed parallel composition ‖wf and limitation to trace variables h̄ in Rj ≡
rj(Y, h̄) and Qj ≡ qj(Y, h̄) in ac-boxes [α]{Rj ,Qj}ψ in Fig. 3, respectively. By
Proposition 19, uniform substitution always preserves well-formedness.

Example 22. The proof tree below decomposes safety (Example 5) of cruise con-
trol (Example 3) into safety 1 of controller ct and branch 2 to be continued
to safety of the vehicle ve. The lower subproof introduces the ac-formulas

A ≡ C ≡
(
|h ↓ tar| > 0 → 0 ≤ val(h ↓ tar) ≤ V

)

using axiom []WA to abstract from the communication between ct and ve. The
upper subproof uses the parallel injection axiom [‖ ]AC to drop ve. Uniform
substitution US does not clash as the commitment C only refers to joint com-
munication of ct and ve. Other applications of US (e.g., for []WA) are omit-
ted. Rule Prop denotes propositional reasoning. Abbreviations are as follows:
α ≡ a(|tar, vtrct , t, t

′, μ, μ′, h|), R ≡ r(tar, h), Q ≡ q(tar, h), P ≡ p(tar).

∗
Prop

(C → A) ∧ T
GAC

ϕ → [ct∗‖ve∗]{T,C→A}T

2

ϕ → [ct∗‖ve∗]{T∧A,T}ψsafe
∧R

ϕ → [ct∗‖ve∗]{T∧A,C}T ∧ [ct∗‖ve∗]{T∧A,T}ψsafe
[]AC∧

ϕ → [ct∗‖ve∗]{T∧A,C∧T}(T ∧ ψsafe)
∧R

ϕ → [ct∗‖ve∗]{T,C→A}T ∧ [ct∗‖ve∗]{T∧A,C∧T}(T ∧ ψsafe)
[]WA

ϕ → [ct∗‖ve∗]{T,C∧T}(T ∧ ψsafe)
[]�,�, M[·]AC

ϕ → [ct∗‖ve∗]ψsafe

1

ϕ → [ct∗]{T,C}T

∗
[‖ ]AC

[α]{R,Q}P → [α ‖wf b(|tar, vtr
ve, ave, t0, vve, v

′
ve|)]{R,Q}P

US
[ct∗]{T,C}T → [ct∗‖ve∗]{T,C}T

MP, CE
ϕ → [ct∗‖ve∗]{T,C}T

M[·]AC
ϕ → [ct∗‖ve∗]{T∧A,C}T

5 Related Work

Uniform substitution for differential dynamic logic dL [30] generalizes Church’s
uniform substitution for first-order logic [8, §35, 40]. Unlike the lifting from dL
to differential game logic dGL [31], dLCHP generalizes into the complementary
direction of communication and parallelism. Unlike schematic calculi [2,19,27,
44,46], whose treacherous schematic simplicity relies on encoding all subtlety of
parallel systems in significant soundness-critical side conditions, our development
builds upon a minimalistic non-schematic parallel injection axiom and sound
instantiation encapsulated in uniform substitution. This provides a new, more
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atomic and more modular understanding of parallel systems overcoming the
root cause for large soundness-critical prover kernels [5,9,12,16,18,36]. Usage of
uniform substitution reduced the kernel of the theorem prover KeYmaera from
105 kLOC to 2 kLOC in KeYmaera X [23]. We expect dLCHP’s integration into
KeYmaera X to stay in the same order of magnitude.

To the best of our knowledge, assumption-commitment reasoning [22,46]5 has
no tool support, which might be due to vast implementation effort. The latter can
be underpinned by analogy with tools [5,9,16,18,36] for verification of shared-
variables concurrency, some of which use rely-guarantee reasoning [36,39]. Unlike
uniform substitution for dLCHP that enables a straightforward implementation of
a small prover kernel, they all rely on large soundness-critical code bases. Unlike
refinement checking for CSP [12] and discrete-time CSP [4], dLCHP supports
safety properties of dense-time hybrid systems. Contrary to our goal of small
prover kernels, implementations of model checkers [12] are inherently large.

Beyond embeddings of concurrency reasoning for discrete systems into proof
assistants [3,25,26,38], dLCHP can verify parallel hybrid systems synchronizing in
shared global time. The latter imposes even more complicated binding structures
than parallel or hybrid systems alone but dLCHP’s uniform substitution calculus
continues to manage them in a modular way.

The recent tool HHLPy [37] for hybrid CSP (HCSP) [17] is limited to
the sequential fragment. Unlike extending HHLPy to parallelism, which would
require extensive soundness-critical side conditions and a treatment of the dura-
tion calculus, integrating dLCHP into KeYmaera X [11] boils down to adding a
finite list of concrete object level formulas as axioms and only small changes
to the uniform substitution process. In contrast to dLCHP’s compositional par-
allel systems calculus [6], HCSP calculi [13,20,42] are non-compositional [6] as
they either unroll exponentially many interleavings from the operational seman-
tics [13,42] or can only decompose independent parallel components [20] causing
limited ability to reason about complex systems. Former HCSP tools [43,45] only
implement a non-compositional calculus [20] reinforcing the significance of our
approach for managing parallel hybrid systems reasoning. Other hybrid process
algebras defer to model checkers for reasoning [10,21,40]. Further discussion of
dLCHP is in [6].

6 Conclusion

This paper introduced a sound one-pass uniform substitution calculus for the
dynamic logic of communicating hybrid programs dLCHP thereby mastering the
significant challenge of developing simple sound proof calculi for parallel hybrid
systems with communication. Uniform substitution can separate even notori-
ously complicated binding structures from parallelism with communication in
multi-dynamical logics into axioms and their instantiation. In the case of dLCHP,
5 Assumption-commitment and rely-guarantee reasoning are specific patterns for

message-passing and shared variables concurrency, respectively. The broader assume-
guarantee principle has been used across diverse areas for various purposes.
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this applies to channel access in predicates and the need for local abstraction of
subprograms in parallel statements, and it even turns out that uniform substitu-
tion can maintain a context-sensitive syntax along the way. Thanks to uniform
substitution, parallel systems reasoning reduces to multiple uses of an asymmet-
ric parallel injection axiom.

Now, with uniform substitution a straightforward implementation of dLCHP

in KeYmaera X is only one step away.
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Abstract. We present an Isabelle/HOL formalization of Simple Clause
Learning for first-order logic without equality: SCL(FOL). The main
results are formal proofs of soundness, non-redundancy of learned
clauses, termination, and refutational completeness. Compared to the
unformalized version, the formalized calculus is simpler and more gen-
eral, some results such as non-redundancy are stronger and some results
such as non-subsumption are new. We found one bug in a previously
published version of the SCL Backtrack rule. Compared to related for-
malizations, we introduce a new technique for showing termination based
on non-redundant clause learning.

Keywords: interactive theorem proving · automated theorem
proving · first-order logic · CDCL · SCL · non-redundant clause
learning

1 Introduction

The SCL (“Clause Learning from Simple Models” or simply “Simple Clause
Learning”) family of calculi lifts a conflict-driven clause learning (CDCL) app-
roach to first-order logic: SCL(FOL) is for first-order logic without equal-
ity [8,10], SCL(T) is for first-order logic with theories [6], SCL(EQ) is for first-
order logic with equality [12], and HSCL is for exhaustive partial models explo-
ration in first-order logic without equality [7]. In its original formulation [10],
SCL(FOL) required exhaustive propagation and a precise strategy for the appli-
cation of the rules in order to learn non-redundant clauses. This was improved
upon by SCL(T) [6] by dropping exhaustive propagation and weakening the
strategy, i.e., any run according to the strategy in [10] is also a run according
to the strategy in [6]. The SCL(FOL) version presented in Bromberger et al. [8]
integrates those changes and additionally refines the Backtrack rule.

We present an Isabelle/HOL formalization of the non-executable specifica-
tion of SCL(FOL) based on and developed in parallel to Bromberger et al. The
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main results are soundness, non-redundancy of learned clauses, termination, and
refutational completeness. In contrast to the goal of Bromberger et al. to guide
toward an implementation, our goal is to be as simple and general as possi-
ble. For that, we (i) simplified the calculus (e.g., no more explicity tracking of
decision levels), (ii) generalized the calculus (e.g., multiple acceptable positions
in the Backtrack rule), (iii) strengthened existing theorems (e.g., Theorem 11
on non-redundancy), and (iv) proved new theorems (e.g., Corollary 12 on non-
subsumption).

This work is part of the IsaFoL (Isabelle Formalization of Logic) effort [2],
which aims at developing a library of results about logical calculi. The Isabelle
theory files are available in the Archive of Formal Proofs (AFP) [9] and amount
to more than 11 000 lines of source text. They build heavily upon many other
entries of the AFP: (i) First_Order_Terms [17] for first-order terms, term sub-
stitutions, and MGU; (ii) Ordered_Resolution_Prover [14–16] for the clausal
calculus, clause substitutions, Herbrand interpretation, and compactness of first-
order logic; and (iii) Saturation_Framework_Extensions [5,18] for entailment
of the clausal calculus. We contributed many lemmas and definitions back to
both the Isabelle distribution and the aforementioned AFP entries (e.g., over
50 to First_Order_Terms). We made heavy use of the Isar language [19] to
write structured proofs, the Sledgehammer tool [13] for proof automation, and
locales [1]—Isabelle’s parameterized module system—to structure our develop-
ment and reuse existing components from the AFP entries. To ease associating
the main results in this paper with their counterparts in the Isabelle develop-
ment, names in monospace are taken verbatim from the formalization.

The formalization follows the basic ideas of the existing formalizations of the
first-order resolution calculus [16] and propositional CDCL calculi [3,4]. Com-
pared to propositional logic, first-order logic adds a number of challenges: the
extra term level requires to consider variables, substitutions, groundings, and
the concept of factorization. To preserve completeness, propagation of ground
literals must not be exhaustive anymore, resulting in a level-wise exploration
w.r.t. a bounding atom. Inside this bound, the calculus always terminates. If
one level does not suffice to find a refutation, the bound can be increased and
exploration can be continued. For unsatisfiable formulas, we prove the existence
of a bound sufficient to derive ⊥, which guarantees that only finitely many levels
need to be explored.

The paper is now organized as follows. Section 2 recaps the SCL(FOL) calcu-
lus from Bromberger et al. as the basis of our formalization presented in Sect. 3.
We first present the Isabelle formalization of the abstract rules of the SCL(FOL)
calculus. Then we prove invariants preserved by the rules starting from the initial
state, Lemma 1. Subsequently, we prove soundness, Theorem 7, non-redundancy
of learned clauses, Theorem 11, termination with respect to a fixed bound, The-
orem 18, and finally refutational completeness with respect to an appropriate
bound, Theorem 20. We discuss important aspects of the formalization and proof
ideas here and refer the reader to the formalization for more details. The paper
ends with a short conclusion of the obtained results.
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2 The SCL(FOL) Calculus

We shortly repeat basic first-order logic notions and the SCL(FOL) calculus pre-
sented in Bromberger et al. We consider an untyped, first-order logic without
equality. A term is defined inductively as either a variable x or a function appli-
cation f(

−→
t ) for a constant f and a (possibly-empty) list of terms −→

t . An atom is
a predicate symbol applied to a list of term arguments. A literal is either a posi-
tive atom A or a negative atom ¬A. For literals we write L or K. The atom of a
literal may be selected with atom(A) = A and atom(¬A) = A. The complement
of a literal is defined as comp(A) = ¬A and comp(¬A) = A. A disjunctive clause
is a finite multiset of literals. For clauses we write C or D. We use the syntax
L ∨ C and C ∨ D synonymously with the multiset sums {L} + C and C + D
respectively. We also use the syntax ⊥ synonymously with the empty multiset
{}. All variables in clauses are to be understood as universally quantified.

Substitutions are total unary functions from variables to terms. A substitu-
tion σ may be applied to a variable x, a term t, an atom A, a literal L, or a clause
C, denoted xσ, tσ, Aσ, Lσ, or Cσ respectively. Substitution application is left-
associative, i.e., Cσ1σ2 = (Cσ1)σ2. The domain of a substitution σ is defined as
dom(σ) = {x |xσ �= x}. The composition of two substitutions σ1 and σ2 is defined
as the function σ1 ◦σ2 = (λx.xσ1σ2). A substitution γ is a grounding for a term t,
an atom A, a literal L, or a clause C if tγ, Aγ, Lγ, or Cγ are respectively ground,
i.e., if they do not contain variables. A substitution ρ is a renaming if it is injec-
tive and xρ is a variable for all variables x. The inverse of a renaming ρ is any
function ρ−1 from terms to variables such that ρ−1 (xρ) = x for all variables x.
The restriction of a substitution σ to a set of variables V is defined as the function
(λx. if x ∈ V then xσ else x). A substitution σ is idempotent if σ ◦ σ = σ. A sub-
stitution υ is a unifier for a set of terms T if t1υ = t2υ for all terms t1 ∈ T and
t2 ∈ T . A substitution μ is a most general unifier (MGU) for a set of terms T if μ is
a unifier for T and there exists a substitution σ such that μ ◦ σ = υ for all unifiers
υ for T . A substitution μ is an idempotent, most general unifier (IMGU) for a set
of terms T if μ is a unifier for T and μ ◦ υ = υ for all unifiers υ for T ; note that μ
is an IMGU iff it is both idempotent and a MGU.

When formalizing logical calculi, IMGUs are preferable because they allow
to apply groundings to a term both directly and after applying an IMGU, i.e.,
tγ = tμγ for all terms t, groundings γ, and IMGU μ. Non-idempotent MGU
do not have this property as the following counter-example shows. Consider the
terms t1 = f(x, y, z) and t2 = f(w, y, z), the grounding γ = {x �→ a, y �→ b, z �→
c, w �→ a}, and the non-idempotent MGU μ = {x �→ w, y �→ z, z �→ y} where
x, y, z, w are variables and a, b, c are ground constants, then we have t1γ =
f(a, b, c) �= f(a, c, b) = t1μγ. In published literature, an IMGU is often meant
instead of an MGU; the idempotency requirement is often kept implicit because
standard implementations for computing MGUs actually produce IMGUs.

The function gnd(C) = {Cγ |Cγ is ground} expresses the set of all ground-
ings of a clause C. The function gnd(N) = (

⋃
C ∈ N. gnd(C)) expresses

the set of all groundings of a set of clauses N ; its subset whose clauses are
restricted to atoms less than or equal to a bound β w.r.t. an order ≺B is
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defined as gnd�Bβ(N) = {C ∈ gnd(N) | ∀L ∈ C. atom(L) �B β}. Note that
gnd(gnd(N)) = gnd(N). The strict order ≺B is total on ground literals and
is such that for each β there are only finitely many literals L with L ≺B β.
An example of such an order could be KBO without zero-weight symbols. Note
that LPO does not satisfy the last condition of a ≺B order although it is a
well-founded and total order.

Herbrand entailment is defined as (I |=H N ←→ (∀C ∈ N. I |=H C))
for a set of clauses N , (I |=H C ←→ (∃L ∈ C. I |=H L)) for a clause C,
(I |=H A ←→ A ∈ I), and (I |=H ¬A ←→ A /∈ I) for a literal with atom
A; note that the symbol |=H is overloaded. Ground entailment is defined as
(N1 |=G N2 ←→ (∀I. I |=H N1 −→ I |=H N2)). First-order entailment is defined
as (N1 |= N2 ←→ gnd(N1) |=G gnd(N2)). A set of ground clauses N is satisfiable
if there exists a Herbrand interpretation I such that I |=H N ; otherwise, it is
unsatisfiable.

An annotated literal is the pairing of a literal with an annotation. We call
it a decision literal when the annotation is a natural number n indicating the
literal’s level (i.e., that it is the nth decision) and a propagation literal when the
annotation is a closure of the clause the literal originated from. The literal of an
annotated literal K is denoted lit(K) and the annotation is denotated ann(K).
The level of a clause is the maximum level of its literals. A trail is a finite
sequence of annotated ground literals: it grows from left to right. The empty
trail is written ε and appending a new annotated literal K to a trail Γ is written
Γ,K. The concatenation of two trails Γ1 and Γ2 is written Γ2, Γ1. A trail Γ can
be converted to a set with set(Γ ).

A literal L is true under trail Γ if L ∈ {lit(K) | K ∈ set(Γ )}. A literal L is
false under trail Γ if comp(L) ∈ {lit(K) | K ∈ set(Γ )}. A literal L is defined in
a trail Γ if L is true or false under Γ ; otherwise, it is undefined. A clause C
is true under trail Γ if (∃L ∈ C. L is true under Γ ). A clause C is false under
trail Γ if (∀L ∈ C. L is false under Γ ). A clause C is defined in a trail Γ if
(∀L ∈ C. L is defined in Γ ); otherwise, it is undefined.

The SCL(FOL) calculus is defined as a transition system operating on states
(Γ ;N ;U ;β; k; C) where Γ is a trail, N is a finite set of initial clauses, U is a finite
set of learned clauses, β is a bounding atom restricting the considered ground
literals, k is a natural number counting the number of decisions taken in Γ , and
C is either � or a clause closure (C; γ) such that Cγ is ground and false in Γ .
The initial state is (ε;N ; ∅;β; 0;�) for some initial clause set N and bound β.

The transition relation ⇒SCL is a mapping between states. The rules below
are from Bromberger et al. and serve as a reference for the Isabelle formalization
described in Sect. 3.

Propagate (Γ ;N ;U ;β; k;�) ⇒SCL (Γ,Lγ((C0∨L)μ;γ);N ;U ;β; k;�)
if (C∨L) ∈ (N ∪U), C = C0∨C1, C1γ = Lγ∨· · ·∨Lγ, C0γ does not contain Lγ,
μ is the IMGU of the literals in C1 and L, (C ∨L)γ is ground, (C ∨L)γ ≺B {β},
C0γ false under Γ , and Lγ is undefined in Γ .

Decide (Γ ;N ;U ;β; k;�) ⇒SCL (Γ,Lγk+1;N ;U ;β; k + 1;�)
if L ∈ C for a C ∈ (N ∪U), Lγ is a ground literal undefined in Γ , and Lγ ≺B β.
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Conflict (Γ ;N ;U ;β; k;�) ⇒SCL (Γ ;N ;U ;β; k; (C; γ))
if C ∈ (N ∪ U), Cγ is false under Γ for a grounding substitution γ.

These rules construct a (partial) model via the trail Γ for N ∪ U until a
conflict, i.e., a clause false under Γ is found. The above rules always terminate,
because there are only finitely many ground literals L with L ≺B β. It might be
necessary to successively increase β for full refutational completeness.

Skip (Γ,K;N ;U ;β; k; (C; γ)) ⇒SCL (Γ ;N ;U ;β; k − i; (C; γ))
if comp(K) does not occur in Cγ, if K is a decision literal then i = 1; otherwise,
i = 0.

Factorize (Γ ;N ;U ;β; k; (C ∨ L ∨ L′; γ)) ⇒SCL (Γ ;N ;U ;β; k; ((C ∨ L)μ; γ))
if Lγ = L′γ and μ = IMGU(L,L′).

Note that this rule may be used multiple times if the conflicting clause con-
tains more than two duplicates of a given literal or if multiple distinct literals
have duplicates.

Resolve (Γ,KγD
(D∨K;γD);N ;U ;β; k; (C ∨ L; γC))

⇒SCL (Γ,KγD
(D∨K;γD);N ;U ;β; k; ((C ∨ D)μ; γC ◦ γD))

if KγD = comp(LγC), μ = IMGU(K, comp(L)).
The clauses D ∨ K and C ∨ L are assumed to have disjoint variables.

Backtrack (Γ0,K, Γ1, comp(Lγ)k;N ;U ;β; k; (C ∨ L; γ))
⇒SCL (Γ0;N ;U ∪ {C ∨ L};β; j;�)

if Cγ is of level i′ < k, and Γ0,K is the minimal trail subsequence such that
there is a grounding substitution γ′ with (C ∨ L)γ′ is false under Γ0,K but not
in Γ0, and Γ0 is of level j.

The clause C ∨L added by the rule Backtrack to U is called a learned clause.
The empty clause ⊥ can only be generated by rule Resolve or be already present
in N , hence, as usual for CDCL-style calculi, the generation of ⊥ together with
the clauses in N ∪ U represent a resolution refutation.

A sequence of SCL rule applications is called a reasonable run if the rule
Decide does not enable an immediate application of rule Conflict. A sequence
of SCL rule applications is called a regular run if it is a reasonable run and the
rule Conflict has precedence over all other rules.

3 Formalization of the SCL(FOL) Calculus

The formalization introduces some new concepts absent from Sect. 2. A mul-
tiset C can be converted to a set, i.e., without duplicates, with set(C). The
multiplicity of an element x in a multiset C is denoted by count(C, x). The car-
dinality of a multiset—the sum of the multiplicities of its elements—is denoted
by |C|. The multiset whose only element is x with multiplicity n is denoted by
repeat(n, x); note that count(repeat(n, x), x) = n, and set(repeat(n, x)) = {x}
if n > 0. The multiset extension of an order on literals extends the order to
multisets containing literals; we use the Huet-Oppen specification [11], one of
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several equivalent alternatives for this extension. The adaptation of a substi-
tution σ to a renaming ρ is a function whose domain is the renamed domain
of σ and whose codomain is the same as σ; it is defined as the function
(λx. if x ∈ {yρ | y ∈ dom(σ)} then (ρ−1 x)σ else x). A substitution γ is a merged
grounding of a grounding γA for a set of variables A and a grounding γB for
a set of variables B if (A ∩ B = {} −→ (∀x ∈ A. xγA is ground) −→ (∀x ∈
B. xγB is ground) −→ (∀x ∈ A. xγ = xγA) ∧ (∀x ∈ B. xγ = xγB)); an example
of a function that fulfills this specification is (λx. if x ∈ A then xγA else xγB).
The length of a trail Γ is denoted by |Γ |. The nth right-most element of a
trail Γ is denoted by Γ [n]; we use zero-based indexing where the right-most
element is the 0th element. The Herbrand interpretation of a trail Γ is defined
as HI(Γ ) = (

⋃
K ∈ set(Γ ). case lit(K) of A ⇒ {A} | ¬A ⇒ {}).

The formalization also changes some existing concepts. No distinction is made
between atoms and terms, so first-order terms are used everywhere in place of
atoms. The level annotation of a decision literal is not required anymore and
replaced by a † marker, it is now written K = (K; †) for some literal K. A prop-
agation literal is written (KγD)(K;D;γD) = (KγD; (D;K; γD)) for some literal
K, clause D, and grounding γD. Note that the propagated literal is explicitly
separated from its clause in the closure annotation; this eases the formulation
of the additional invariants 5 and 6 of Lemma 1., that the respective clause is
always false under the respective trail. For the trail Γ,K, the Isabelle formal-
ization uses the constructor List.ConsK Γ which actually grows from right to
left. However, we keep the well-established left-to-right convention in this paper
because it significantly eases the presentation. An state is a tuple (Γ ;U ; C) where
Γ is a trail, U is a finite set of learned clauses, and C is an optional clause
closure. The individual components can be selected with trail((Γ ;U ; C)) = Γ ,
learned((Γ ;U ; C)) = U , and conflict((Γ ;U ; C)) = C. The initial state is (ε; {};�),
i.e., empty trail, no learned clauses, and no conflicting closure. The finite set of
initial clauses N and the bounding atom β are no longer stored in the state but
are rather parameters of the transition relation; this was done to highlight the
fact that they are never modified by any rule. The natural number k counting the
number of decisions, used in Sect. 2 to determine an appropriate backtracking
point, turned out not to be necessary and was dropped entirely. We assume the
existence of a binary relation on atoms ≺B such that (∀β. {t | t ≺B β} is finite)
but dropped the requirement for ≺B to be a strict order total on ground terms.
We also don’t lift ≺B to literals and clauses, but always use it at the atom level.
We define the relation �B as the reflexive closure of ≺B .

The transition relation ⇒N,β
SCL is a binary predicate between states and is

parameterized by the finite set N of initial clauses and the bounding atom β.
It is defined as the disjunction of the following rules. Following each rule, we
highlight the main differences from Sect. 2 not already covered.

Propagate (Γ ;U ;�) ⇒N,β
Propagate (Γ,(Lμγ)(Lμ;C0μ;γ);U ;�)

if (L∨C) ∈ (N∪U), γ is a grounding for L∨C, (∀K ∈ (L∨C). atom(Kγ) �B β),
C0 = {K ∈ C |Kγ �= Lγ}, C1 = {K ∈ C |Kγ = Lγ}, C0γ is false under Γ , Lγ
is undefined in Γ , and μ is an IMGU for all terms in {atom(K) |K ∈ (L ∨ C1)}.

https://bitbucket.org/isafol/isafol/src/cf2d21868ff6ba9109e8a1d7f334e814db59f9ad/Simple_Clause_Learning/Simple_Clause_Learning.thy#lines-1538
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Compared to Sect. 2, we express the splitting of C into C0 and C1 formally
as set operations and replace ≺B with �B. This replacement has no effect on the
results but allowing the bound β to be in gnd�Bβ(N) eases the proof of Lemma
21, where the largest element of the (finite) unsatisfiable core is directly used as
new bound. There are also situations where the maximal element of a signature
is required to derive a contradiction: a non-strict bound requires to artificially
extend the signature while a non-strict bound does not.

Decide (Γ ;U ;�) ⇒N,β
Decide (Γ,(Lγ);U ;�)

if (L∨C) ∈ N , γ is a grounding for L, Lγ is undefined in Γ , and atom(Lγ) �B β.
Compared to Sect. 2, we replace ≺B with �B and take the decision literal

from N instead of N ∪ U . The ground instances of literals of U are a subset of
the ground instances of literals of N so it is redundant to also consider U here.

Conflict (Γ ;U ;�) ⇒N,β
Conflict (Γ ;U ; (C; γ))

if C ∈ (N ∪ U), γ is a grounding for C, and Cγ is false under Γ .

Skip (Γ,K;U ; (C; γ)) ⇒N,β
Skip (Γ ;U ; (C; γ))

if comp(lit(K)) /∈ Cγ.

Factorize (Γ ;U ; (L′ ∨ L ∨ C; γ)) ⇒N,β
Factorize (Γ ;U ; ((L ∨ C)μ; γ))

if Lγ = L′γ and μ is the IMGU for the terms atom(L) and atom(L′).

Resolve (Γ ;U ; (L ∨ C; γC)) ⇒N,β
Resolve (Γ ;U ; ((CρC ∨ DρD)μ; γ))

if Γ = Γ ′,(KγD)(K;D;γD), and KγD = comp(LγC), ρC and ρD are renamings
such that the variables of (L∨C)ρC and (K ∨D)ρD are disjoint, μ is the IMGU
for the terms atom(L)ρC and atom(K)ρD, γ′

C and γ′
D are adaptations of γC and

γD to the renamings ρC and ρD respectively, and γ is a merged grounding of γ′
C

for the variables of (L ∨ C)ρC and γ′
D for the variables of (K ∨ D)ρD.

Note that the definition of merged grounding implies the following equalities:
μ ◦ γ = γ, LρCγ = LγC , CρCγ = CγC , KρDγ = KγD, and DρDγ = DγD.

Compared to Sect. 2, we explicitly rename the merged clauses to avoid
variable-name clashes instead of assuming disjoint variables, and use an abstract
specification for the merged grounding instead of forcing substitution composi-
tion. The latter makes our rule more general by allowing more freedom to an
implementation.

Backtrack (Γ, Γ ′,K;U ; (L ∨ C; γ)) ⇒N,β
Backtrack (Γ ; {L ∨ C} ∪ U ;�)

if K = comp(Lγ) and (�γ′. (L ∨ C)γ′ is ground and false under Γ ).
Compared to Sect. 2, we allow backtracking to any non-conflicting trail

instead of specifying the position. This makes our rule more general by, again,
allowing more freedom to an implementation. The minimally backtracking strat-
egy introduced in Definition 4 brings back equivalence to the Backtrack rule of
Sect. 2.

Isabelle Technicalities. We define the SCL rules in the scl_fol_calculus
locale. It fixes an abstract binary relation ≺B as a locale parameter and assumes
that it bounds a finite number of atoms. It also fixes an abstract function to

https://bitbucket.org/isafol/isafol/src/cf2d21868ff6ba9109e8a1d7f334e814db59f9ad/Simple_Clause_Learning/Simple_Clause_Learning.thy#lines-1555
https://bitbucket.org/isafol/isafol/src/cf2d21868ff6ba9109e8a1d7f334e814db59f9ad/Simple_Clause_Learning/Simple_Clause_Learning.thy#lines-1560
https://bitbucket.org/isafol/isafol/src/cf2d21868ff6ba9109e8a1d7f334e814db59f9ad/Simple_Clause_Learning/Simple_Clause_Learning.thy#lines-1570
https://bitbucket.org/isafol/isafol/src/cf2d21868ff6ba9109e8a1d7f334e814db59f9ad/Simple_Clause_Learning/Simple_Clause_Learning.thy#lines-1573
https://bitbucket.org/isafol/isafol/src/cf2d21868ff6ba9109e8a1d7f334e814db59f9ad/Simple_Clause_Learning/Simple_Clause_Learning.thy#lines-1578
https://bitbucket.org/isafol/isafol/src/cf2d21868ff6ba9109e8a1d7f334e814db59f9ad/Simple_Clause_Learning/Simple_Clause_Learning.thy#lines-1591
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generate variable renamings as a locale parameter and assumes its correctness;
this function is not required for the specification of the calculus but is required
in multiple proofs. Most of the following definitions and theorems are in the con-
text of this locale. Each SCL rule is defined separately as an inductive predicate.
Having separate definitions allows to refer to the rules individually in subse-
quent definitions and theorems. Using inductive predicates, as opposed to plain
definitions, is convenient because Isabelle automatically generates some useful
introduction and elimination lemmas, and configures structured Isar syntax for
case analysis.

From the SCL rules, we can prove a number of invariants about states. Most
of them are intuitive while few are technicalities of the Isabelle formalization. We
will use the invariants as hypotheses for many of the main lemmas and theorems.

Lemma 1 (scl_state_invariants). Let (Γ ;U ; C) be an state w.r.t. ⇒N,β
SCL .

The following invariants hold for the initial state (ε; {};�) and are each individ-
ually preserved by the SCL rules.

1. All annotated literals in Γ are ground.
– ∀K ∈ {lit(K) | K ∈ set(Γ )}. K is a ground literal

2. The atoms of all annotated literals in Γ are �B β.
– ∀K ∈ {lit(K) | K ∈ set(Γ )}. atom(K) �B β

3. All annotated literals in Γ are undefined in their respective subtrail of Γ .
– ∀Γ ′ K Γ ′′. Γ = Γ ′,K, Γ ′′ −→ lit(K) is undefined in Γ ′

4. All closures in Γ and C are ground.
– ∀K ∈ set(Γ ). ∀D K γ. K = (Kγ)(K;D;γ) −→ Dγ is ground
– ∀C γ. C = (C; γ) −→ Cγ is ground

5. All closures in Γ and C are false under their respective subtrail of Γ .
– invariant 4. holds
– ∀D K γ Γ ′ Γ ′′. Γ = Γ ′,(Kγ)(K;D;γ), Γ ′′ −→ Dγ is false under Γ ′

– ∀C γ. C = (C; γ) −→ Cγ is false under Γ
6. All propagated literals in Γ are the grounding of the non-ground literal in

their closure annotations.
– ∀K ∈ set(Γ ). ∀D K γ. ann(K) = (D;K; γ) −→ lit(K) = Kγ

7. The complements of all propagated literals in Γ are absent from their closure
annotation.
– ∀K ∈ set(Γ ). ∀D K γ. K = (Kγ)(K;D;γ) −→ comp(Kγ) /∈ Dγ

8. All literals of the clauses in Γ ’s propagating clauses, U , and C have a cor-
responding, more general literal in N .
– ∀D ∈ {D | (Kγ)(K;D;γ) ∈ set(Γ )} ∪ U ∪ (if C = (C; γ) then {C} else {}).

∀K ∈ D. ∃D′ ∈ N. ∃K ′ ∈ D′. ∃σ. K ′σ = K
9. All annotated literals in Γ have a corresponding more general literal either

in N or in U .
– ∀K ∈ set(Γ ). ∃L ∈ N ∪ U. ∃σ. Lσ = lit(K)

10. All clauses in Γ , U , and C are entailed by N .
– ∀K ∈ set(Γ ). ∀D K γ. K = (Kγ)(K;D;γ) −→ N |= {K ∨ D}
– N |= U
– ∀C γ. C = (C; γ) −→ N |= {C}
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The SCL calculus is defined as a transition system where many decisions are
deferred to strategies. A strategy specifies a transition system whose transitions
are a subset of those from an existing transition system. We say that a strategy S
restricts a transition system T (or symmetrically that T is restricted by S) if
(∀x y. S x y −→ T x y). Note that strategies can be chained to iteratively apply
more restrictions.

We define the reasonable and regular strategies restricting the ⇒N,β
SCL relation

in order to prove the main results of this paper.

Definition 2. The reasonable strategy ⇒N,β
Rea-SCL restricts the SCL calculus by

preventing decisions that immediately lead to a conflict. Such situations could be
replaced by a propagation. Formally:

S ⇒N,β
Rea-SCL S′ ←→ S ⇒N,β

SCL S′∧(S ⇒N,β
Decide S′ −→ (�S′′.S′ ⇒N,β

Conflict S′′))

Definition 3. The regular strategy ⇒N,β
Reg-SCL restricts the reasonable strategy

by prioritizing the conflict rule to any other. Formally:

S ⇒N,β
Reg-SCL S′ ←→ S ⇒N,β

Rea-SCL S′ ∧ ((∃S′′. S ⇒N,β
Conflict S′′) −→ S ⇒N,β

Conflict S′)

While not required for the coming results, we also define the minimally back-
tracking strategy to express the constraint on the backtracking position found
in Sect. 2.

Definition 4. The minimally backtracking strategy ⇒N,β
Min-Bac-SCL restricts the

regular strategy by requiring that backtracking removes the shortest possible suffix
of the trail. Formally:

S ⇒N,β
Min-Bac-SCL S′ ←→ S ⇒N,β

Reg-SCL S′ ∧ (S ⇒N,β
Backtrack S′ −→

trail(S′) is the longest prefix of trail(S)
not in conflict with the learned clause)

All three strategies build on one-another and ultimately restrict the SCL
relation. We can express this formally as implications, of which the first can be
used to show that coming results (e.g., Corollaries 13 and 19) also hold for the
minimally backtracking strategy.

Lemma 5 (strategy_restrictions). The minimally backtracking strategy
restricts the regular strategy, which restricts the reasonable strategy, which
restricts the SCL calculus. Formally:

– ∀N β S S′. S ⇒N,β
Min-Bac-SCL S′ −→ S ⇒N,β

Reg-SCL S′

– ∀N β S S′. S ⇒N,β
Reg-SCL S′ −→ S ⇒N,β

Rea-SCL S′

– ∀N β S S′. S ⇒N,β
Rea-SCL S′ −→ S ⇒N,β

SCL S′

The bounding atom β restricts the calculus to only consider the finitely many
ground atoms less than or equal to β w.r.t. ≺B; this will play an important role in
the termination proof. When SCL terminates, it either derived a contradiction,
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or it found a model for the bounded groundings of the initial clauses. Because β is
usually chosen heuristically, the model might be unsatisfactory for the considered
use case and one may want to continue execution with a bigger bound. This is
allowed if the new bound properly extends the previous bound β w.r.t. �B.

Theorem 6 (monotonicity_wrt_bound). If the ground atoms bound by β are
a subset of the ground atoms bound by β′, formally if (∀A. A is ground −→
A �B β −→ A �B β′), then the SCL, reasonable SCL, regular SCL, and
minimally backtracking transitions w.r.t. β are also transitions w.r.t. β′, formally

– ∀N S S′. S ⇒N,β
SCL S′ −→ S ⇒N,β′

SCL S′,
– ∀N S S′. S ⇒N,β

Rea-SCL S′ −→ S ⇒N,β′
Rea-SCL S′,

– ∀N S S′. S ⇒N,β
Reg-SCL S′ −→ S ⇒N,β′

Reg-SCL S′, and

– ∀N S S′. S ⇒N,β
Min-Bac-SCL S′ −→ S ⇒N,β′

Min-Bac-SCL S′.

Theorem 6 implies that all properties w.r.t. a bound β also hold w.r.t. a
compatible bound β′. Its hypothesis is fulfilled if �B is transitive on ground
atoms, β and β′ are ground atoms, and β �B β′. The bounding atom could even
be increased at any point in an SCL run, not just when the calculus terminated.

The different rules and strategies considered so far express a single step of
computation for the SCL calculus; they offer a good level of granularity to both
understand and mechanize the details of the calculus. But many results of the
following sections ought to express properties of the calculus as a whole. We
express such results in terms of a run from the initial state. A run is the reflexive,
transitive closure of a rule or strategy, e.g. S (⇒N,β

SCL)
∗ S′ is an SCL run from the

state S to the state S′.
The soundness of the individual SCL rules is shown by invariant 10. We now

consider the soundness of terminating runs of the SCL calculus as a whole.

Theorem 7 (correct_termination). Let S = (Γ ;U ; C) be a state w.r.t.
⇒N,β

SCL . If invariants 2, 3, 5, 6 and 10 hold for S, and if S is a stuck state
with some restrictions, formally if

– �S′. S ⇒N,β
Propagate S′,

– �S′. S ⇒N,β
Decide S′ ∧ (�S′′. S′ ⇒N,β

Conflict S′′),
– �S′. S ⇒N,β

Conflict S′,
– �S′. S ⇒N,β

Skip S′,
– �S′. S ⇒N,β

Resolve S′,
– �S′. S ⇒N,β

Backtrack S′ and the backtracking is minimal,

then either the conflicting clause ⊥ has been derived and the groundings gnd(N)
of the initial clauses N are unsatisfiable, or there is no conflicting clause and
the groundings gnd�Bβ(N) of the initial clauses N are satisfiable by the trail,
formally either

– (∃γ. C = (⊥; γ)) ∧ (�I. I |=H gnd(N)), or
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– C = � ∧ HI(Γ ) |=H gnd�Bβ(N).

Note that no hypothesis restricts the usage of the Factorize rule because it
is an optional step of conflict resolution that has no impact on satisfiability.

Theorem 7 holds for a family of strategies, in contrast to Theorem 5 from
Bromberget et al., which was only shown for what is here called the minimally
backtracking strategy. This family of strategies contains any strategy that pre-
serves the required invariants and is restricted by the minimally backtracking
strategy. From Lemma 5 we know that these two requirements are fulfilled by
the SCL relation but also by the reasonable, regular, and minimally backtracking
strategies. This leads to a more intuitive corollary based on runs.

Corollary 8 (correct_termination_strategies). If an SCL, reasonable
SCL, regular SCL, or minimally backtracking SCL run starting from the ini-
tial state (ε; {};�) terminates in a state S = (Γ ;U ; C), formally any of

– (ε; {};�) (⇒N,β
SCL)

∗ S ∧ (�S′. S ⇒N,β
SCL S′),

– (ε; {};�) (⇒N,β
Rea-SCL)

∗ S ∧ (�S′. S ⇒N,β
Rea-SCL S′),

– (ε; {};�) (⇒N,β
Reg-SCL)

∗ S ∧ (�S′. S ⇒N,β
Reg-SCL S′), or

– (ε; {};�) (⇒N,β
Min-Bac-SCL)

∗ S ∧ (�S′. S ⇒N,β
Min-Bac-SCL S′),

then the conclusion of Theorem 7 holds.

Note that each strategy is used with positive polarity in the “run” hypothesis
and negative polarity in the “no-more-step” hypothesis. For this reason, it is
impossible to provide a corollary with a single requirement to restrict or be
restricted by any known strategy.

Traditional saturation-based calculi for first-order logic, e.g. Resolution and
Superposition, can learn redundant clauses and thus their implementations
require costly checks for non-redundancy. SCL(FOL) learns only non-redundant
clauses. Thus, an implementation would not need to check for (forward) non-
redundancy. We first repeat the definition of standard redundancy as found
in [18].

Definition 9. A clause C is redundant w.r.t. a set of clauses N and a strict
order on clauses ≺ if (∀C ′ ∈ gnd(C). {D′ ∈ gnd(N) |D′ ≺ C ′} |=G C ′).

We first prove non-redundancy w.r.t. a trail-induced dynamic order and then
lift this result to non-redundancy w.r.t. a static order.

Definition 10. A trail Γ induces a well-founded, strict partial order ≺Γ , total
on all atoms in Γ ’s literals. Assuming Γ has the form L∗

n,. . . ,L∗
2,L

∗
1,L

∗
0 for all

∗ ∈ {†, (D, γD) for some D and γD}, we have the following ordering.

atom(Ln) ≺Γ · · · ≺Γ atom(L2) ≺Γ atom(L1) ≺Γ atom(L0)

In other words, “older” elements on the left are smaller than “newer” elements
on the right. Formally:

t1 ≺Γ t2 ←→ (∃i < |Γ |. ∃j < i. t1 = atom(lit(Γ [i])) ∧ t2 = atom(lit(Γ [j])))
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Compared to Bromberger et al., the trail-induced order is defined on atoms
instead of literals and non-redundancy is proven for any lifting to literals.

Theorem 11 (dynamic_non_redundancy_regular_scl). Following conflict
resolution in a regular run, formally if

– (ε; {};�) (⇒N,β
Reg-SCL)

∗ (Γ ;U ;�),
– (Γ ;U ;�) ⇒N,β

Conflict S1,
– S1 (⇒N,β

Skip,Factorize,Resolve)
+ Sn, and

– Sn ⇒N,β
Backtrack S1+n,

then neither is the learned clause C = conflict(Sn) generalized by any initial or
learned clause, formally (�D ∈ N ∪ U. ∃σ. Dσ = C), nor is it redundant w.r.t.
N ∪U and the order we get by first lifting the trail-induced order ≺Γ from atoms
to literals and then taking its multiset extension.

Dynamic non-redundancy with respect to the trail-induced order does not
by itself release an implementation from performing backward non-redundancy
checks, but it is a strong guarantee on the quality of learned clauses. For back-
ward redundancy checks an order needs to be used that encompasses all dynamic
trail-induced orders. An order based on a strict multiset relation has this prop-
erty. So for backward redundancy we can, e.g., delete subsumed clauses.

Corollary 12 (static_non_subsumption_regular_scl). If a regular run
starting from the initial state (ε; {};�) learns a clause C, formally if

– (ε; {};�) (⇒N,β
Reg-SCL)

∗ (Γ ;U ; (C; γ)) and
– (Γ ;U ; (C; γ)) ⇒N,β

Backtrack S,

then C is not subsumed by any of the initial or learned clauses, formally
�D ∈ N ∪ U. ∃σ. Dσ ⊆ C.

All non-redundancy results can be generalized to an arbitrary strategy restricting
the regular strategy. We only show one example here and refer the reader to the
formalization for the others.

Corollary 13 (dynamic_non_redundancy_strategy). Following conflict res-
olution in the run of a strategy restricting regular SCL, formally if

– (ε; {};�) (⇒N,β
Strategy)

∗ (Γ ;U ;�),
– (Γ ;U ;�) ⇒N,β

Conflict S1,
– S1 (⇒N,β

Skip,Factorize,Resolve)
+ Sn,

– Sn ⇒N,β
Backtrack S1+n, and

– ∀S S′. S ⇒N,β
Strategy S′ −→ S ⇒N,β

Reg-SCL S′,

then neither is the learned clause generalized by any initial or learned clause,
formally (�D ∈ N ∪ U. ∃σ. Dσ = C), nor is it redundant w.r.t. N ∪ U and the
order we get by first lifting the trail-induced order ≺Γ from atoms to literals and
then taking its multiset extension.
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During the development of this formalization, we discovered that the original
Backtrack rule found in [6] allows to learn a duplicate of the last learned clause,
which violates the stated non-redundancy of learned clauses. The original Back-
track rule ensures that the conflict closure is not false under the new trail, but
the learned clause could still be in conflict w.r.t. another grounding. Following
this conflict, the Backtrack rules would be immediately applicable and would
learn the same clause again. This could only happen a finite number of times as
backtracking reduces the length of the (finite) trail. As an example, consider the
set of clauses N = {P (x), Q(y),¬Q(z)∨R(z),¬R(w)∨S(w),¬P (v)∨¬S(v)}, and
a big enough β. The following SCL run was valid with the original Backtrack
rule. Note that the notation for the trail was shortened to save space.

(ε; {};�)

(⇒N,β
Decide)

∗
(P(a),Q(a),P(b),Q(b); {};�)

(⇒N,β
Propagate)

∗
(P(a),Q(a),P(b),Q(b),R(b)

(R(z);¬Q(z);z �→b)
,S(b)

(S(w);¬R(w);w �→b)
; {};�)

⇒N,β
Conflict (P(a),Q(a),P(b),Q(b),R(b)

(R(z);¬Q(z);z �→b)
,S(b)

(S(w);¬R(w);w �→b)
; {}; (¬P (v)∨¬S(v); v 	→b))

⇒N,β
Resolve+Skip (P(a),Q(a),P(b),Q(b),R(b)

(R(z);¬Q(z);z �→b)
; {}; (¬P (v) ∨ ¬R(v); v 	→b))

⇒N,β
Resolve+Skip (P(a),Q(a),P(b),Q(b); {}; (¬P(v) ∨ ¬Q(v); v 	→ b))

⇒N,β
Backtrack (P(a),Q(a),P(b); {¬P(v) ∨ ¬Q(v)};�)

⇒N,β
Conflict+Skip (P(a),Q(a); {¬P(v) ∨ ¬Q(v)}; (¬P(v) ∨ ¬Q(v); v 	→a))

⇒N,β
Backtrack (P(a); {¬P(v) ∨ ¬Q(v)};�)

This counterexample was only discovered when we failed to prove Theorem
11 in Isabelle. Note that this formalization is based on and was developed simul-
taneously to Bromberger et al., which originally inherited the Backtrack rule
from [10]. The solution, which was promptly integrated into this formalization
and Bromberger et al., is for the Backtrack rule to find a position without con-
flict w.r.t. the learned clause. Note that the original Backtrack rule reaches such
a state after having learned the same clause finitely often, which has no effect
on the set of learned clauses because sets ignore duplicates. Thus, the original
Backtrack rule did not invalidate the other properties of the SCL calculus. This
discovery is strong evidence of the usefulness of mechanized formalization for
both published work and ongoing research: the Isabelle formalization lead to the
discovery of a previously unknown bug and it guided the development of the
refinement.

A calculus expressed as a state machine terminates if the transition relation
starting from the initial state is well-founded following the arrow direction. We
prove well-foundedness of regular SCL in three steps: (1) we first prove well-
foundedness of SCL without backtracking, denoted ⇒N,β

SCL-no-Back ; (2) we then
prove that a regular run can only learn finitely many clauses; and (3) from these
two results we finally prove well-foundedness of regular SCL. Step 1 is novel to
the formalization. Prior work in Bromberger et al. focuses exclusively on the
Backtrack rule (step 2) in order to prove termination of regular SCL (step 3).
Also novel to the formalization are decreasing measuring functions for steps 1
and 2.



An Isabelle/HOL Formalization of the SCL(FOL) Calculus 129

Definition 14. The measuring function M3(N,β, S) for SCL without back-
tracking maps a set of initial clauses N , a bounding atom β, and a state S
to a 4-tuple. The tuple elements are (1) a boolean identifying whether the state
is conflict-free, (2) a (finite) set overapproximating the literals that could be
added to the trail, (3) a (finite) list overapproximating the numbers of resolution
steps that could be performed at each position in the trail, and (4) the (finite)
cardinality of the conflicting clause. Formally:

M1(β, Γ ) = {L | atom(L) �B β} − {lit(K) | K ∈ set(Γ )}

M2(ε, C) = ε

M2((Γ,K), C) = M2(Γ,C),0

M2((Γ,(Kγ)(K;D;γ)), C) = let n = count(C, comp(Kγ)) in
M2(Γ,C ∨ repeat(n,Dγ)),n

M3(N,β, (Γ ;U ;�)) = (True; M1(β, Γ ); ε; 0)
M3(N,β, (Γ ;U ; (C; γ))) = (False; {}; M2(Γ,C); |C|)

With this, we can prove termination of SCL without backtracking (step 1).

Theorem 15 (termination_scl_without_back). SCL without backtracking
is well-founded on all states reachable by an SCL-without-backtracking run start-
ing from the initial state, formally on {S | (ε; {};�) (⇒N,β

SCL-no-Back)
∗ S}.

We now turn to proving termination of regular SCL with backtracking by first
defining an appropriate measuring function.

Definition 16. The measuring function M4(β, S) for the rule Backtrack maps
a bounding atom β and a state S to a finite set of clauses without duplicates. It
computes an over-approximation of the set of clauses that could still be learned
modulo duplicates. Formally:

M4(β, S) = 2{L | atom(L)�Bβ} − {set(C) |C ∈ gnd(learned(S))}

We then prove that it decreases every time we learn a new clause (step 2).

Lemma 17 (M_back_after_regular_backtrack). Following conflict resolu-
tion in a regular run, formally if

– (ε; {};�) (⇒N,β
Reg-SCL)

∗ (Γ ;U ;�),
– (Γ ;U ;�) ⇒N,β

Conflict S1,
– S1 (⇒N,β

Skip,Factorize,Resolve)
+ Sn, and

– Sn ⇒N,β
Backtrack S1+n, then

1. the ground conflict is distinct from all groundings of initial and learned
clauses modulo duplicates, formally (∃C γ. conflict(Sn) = (C; γ) ∧ set(Cγ) /∈
{set(D) |D ∈ gnd(N ∪ U)}), and
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2. the set of clauses that could potentially be learned strictly diminishes, formally
M4(β, S1+n) ⊂ M4(β, Sn).

Lemma 17 is novel to the formalization. Together with Theorem 15 it allows us
to prove termination of regular SCL with backtracking (step 3).

Theorem 18 (termination_regular_scl). Regular SCL is well-founded on
all states reachable by a regular-SCL run starting from the initial state, formally
on {S | (ε; {};�) (⇒N,β

Reg-SCL)
∗ S}.

All termination results can be generalized to an arbitrary strategy restricting
the regular strategy. We only show one example here and refer the reader to the
formalization for the others.

Corollary 19 (termination_strategy). If a strategy restricts regular SCL,
formally if (∀S S′. S ⇒N,β

Strategy S′ −→ S ⇒N,β
Reg-SCL S′), then it is well-founded

on all states reachable by a run using this strategy and starting from the initial
state, formally on {S | (ε; {};�) (⇒N,β

Strategy)
∗ S}.

All theorems until now were first expressed and proven using invariants and
then the versions expressed using runs were derived. However, Theorem 18 posed
an interesting problem because its proof requires the backtracking step to have
knowledge of the trail when a conflict last occurred. But this information is
lost in the SCL state due to the Skip rule shrinking the trail. We did define an
invariant that expresses the historical form of the trail and its properties derived
from the regular strategy, but it is complex and the added value compared to
working directly on a regular run is questionable. For simplicity, we chose not
to present this invariant in this paper.

Together, soundness and termination allow us to prove refutational complete-
ness of the regular SCL calculus w.r.t. a fixed bound.

Theorem 20 (completeness_wrt_bound). If the groundings gnd�Bβ(N) of
the initial clauses N are unsatisfiable, then all regular SCL runs starting from
the initial state terminate and derive the conflicting clause ⊥, formally

1. there is no infinite regular run starting from the initial state, and
2. (∀S. (ε; {};�) (⇒N,β

Reg-SCL)
∗ S ∧ (�S′. S ⇒N,β

Reg-SCL S′) −→ (∃γ. conflict(S) =
(⊥; γ))).

Theorem 20 is only defined w.r.t. a bound, but fortunately we can prove that
there must always exist an appropriate bound.

Lemma 21 (ex_bound_if_unsat). If the relation ≺B is a well-founded, strict
order, total on ground atoms and the groundings gnd(N) of the initial clauses N
are unsatisfiable, then there exists a bound β such that the groundings gnd�Bβ(N)
are unsatisfiable.

Note that while Lemma 21 proves the existence of an appropriate bound, it
provides no constructive way of finding one. What one can do is follow along The-
orem 6 and iteratively increase a heuristically chosen bound until an appropriate
one is found; if the set of initial clauses is unsatisfiable, this will terminate.
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Isabelle Technicalities. Lemma 21’s hypothesis that ≺B is a well-founded,
total, strict order cannot be expressed as a theorem-local hypothesis. The rea-
son is that the compactness theorem for clausal first-order logic requires terms
to be an instance of the wellorder type class, which is not the case in the
scl_fol_calculus locale, where the assumptions on the ≺B relation are kept
minimal. Because Isabelle does not allow to instantiate a type class with a
concrete type inside a locale or theorem, we define a new locale that extends
scl_fol_calculus and adds a type class requirement on the first-order term
constants. This enables the type-class system to automatically instantiate the
wellorder type class for terms using the previously registered Knuth-Bendix
order. We then instantiate the ≺B relation of scl_fol_calculus with the
Knuth-Bendix order. This type class and locale gymnastic could be avoided if
the formalization of the compactness theorem was refactored to offer a predicate-
based version alongside the existing type-class-based version.

4 Conclusion

We generalized and formalized the SCL(FOL) calculus in Isabelle/HOL. The
main results are formal proofs of soundness, non-redundancy of learned clauses,
termination, and refutational completeness. Because the formalization was per-
formed simultaneously to Bromberger et al., they could benefit from each other.
A mechanized formalization must consider low-level details, but it is also the
opportunity to identify the most import aspects of the theory and abstract over
details needed in the context of an actual implementation. For example, we
abstracted from the level of a state to define the Backtracking rule and replaced
it with an abstract specification of the result. A level was used in all pen-an-
paper presentations of the calculus in order to have a constructive way of going
back to the maximal trail where the learned clause propagates. The abstraction
supports investigation of several Backtrack rule versions and to base the sound-
ness result on a version with a minimal requirement, i.e., the learned clause is
no longer false with respect to the trail.

The formalization did uncover a small bug in the calculus, but also showed
that its effect was very localized and naturally lead to a solution. Another ben-
efit of the formalization is how much it supports refactoring and exploratory
experimentation. When making a change to a definition or a conjecture, Isabelle
immediately and exhaustively points to the parts that need to be adapted. Very
often, proofs can automatically be adapted using proof automation tools such
as Sledgehammer. This was invaluable to quickly try out ideas or change subtle
parts of the calculus. One such example is in the Resolve rule, where the formal-
ization first used substitution composition as found in the original calculus and
latter replaced it by an abstract specification of merged grounding. This idea
came from a private discussion sketching an eventual C implementation where
it became clear that substitution composition would be a costly operation. We
then introduced the abstract specification of merged grounding and fixed the
formalization by following the mistakes reported by Isabelle.
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Abstract. We show that SCL(FOL) can simulate the derivation of non-
redundant clauses by superposition for first-order logic without equal-
ity. Superposition-based reasoning is performed with respect to a fixed
reduction ordering. The completeness proof of superposition relies on the
grounding of the clause set. It builds a ground partial model according
to the fixed ordering, where minimal false ground instances of clauses
then trigger non-redundant superposition inferences. We define a respec-
tive strategy for the SCL calculus such that clauses learned by SCL and
superposition inferences coincide. From this perspective the SCL calculus
can be viewed as a generalization of the superposition calculus.

Keywords: first-order reasoning · superposition · SCL ·
non-redundant clause learning

1 Introduction

Superposition [1,2,18] is currently considered as the prime calculus for first-
order logic reasoning where all leading first-order theorem provers implement a
variant thereof [14,16,20,22]. More recently, the family of SCL calculi (Clause
Learning from Simple Models, or just Simple Clause Learning) [4,8,9,11,17]
was introduced. There are first experimental results [3] available, and first steps
towards an overall implementation [5,7].

The main differences between superposition and SCL for first-order logic with-
out equality are: (i) superposition assumes a fixed ordering on literals whereas
the ordering in SCL is dynamic and evolves out of the satisfiability of clauses,
(ii) superposition performs single superposition left and factoring inferences
whereas SCL typically performs several such inferences to derive a single learned
clause, (iii) the superposition model operator is not effective on the non-ground
clause level whereas the SCL model assumption is effective. For first-order logic
without equality superposition reduces to ordered resolution combined with the
powerful superposition redundancy criterion. Our simulation result cannot be
one-to-one because an SCL learned clause is typically generated by several super-
position inferences and superposition factoring inferences are performed by SCL
only in the context of resolution inferences. The simulation result considers the
c© The Author(s) 2023
B. Pientka and C. Tinelli (Eds.): CADE 2023, LNAI 14132, pp. 134–152, 2023.
https://doi.org/10.1007/978-3-031-38499-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38499-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-38499-8_8


SCL(FOL) Can Simulate Non-Redundant Superposition Clause Learning 135

ground case, where the superposition strategy used in the completeness proof only
triggers non-redundant inferences [1]. We call this strategy SUP-MO, Definition 5.
Overall first-order superposition completeness is then obtained by a lifting argu-
ment to the non-ground clause level. We actually show that a superposition refu-
tation of some ground clause set can be simulated by an SCL refutation on the
same clause set, such that they coincide on all superposition left (ordered resolu-
tion) inferences. For the superposition calculus we refer to [1] and for SCL to [9]
where all main properties of both calculi have meanwhile been verified inside the
Isabelle framework [10,19,21].

For example, consider a superposition refutation of the simple ground clause
set

N0
SUP = {(C1) P (a) ∨ P (a), (C2) ¬P (a) ∨ Q(b), (C3) ¬Q(b)}

with respect to a KBO [13], where all symbols have weight one, and prece-
dence a ≺ b ≺ P ≺ Q. Superposition generates only non-redundant clauses.
Then with respect to the usual superposition ordering extension to literals and
clauses we get (C1) ≺KBO-SUP (C2) ≺KBO-SUP (C3) and the superposition model
operator produces the Herbrand model N0

SUP,I = ∅. Now clause (C1) is the min-
imal false clause, triggering a factoring inference resulting in (C4) P (a) and
clause set N1

SUP = N0
SUP ∪ {(C4) P (a)}. The clause P (a) cannot be derived

by SCL because factoring is only preformed in the context of resolution infer-
ences. Now (C4) is the smallest clause in N1

SUP and the superposition model
operator produces N1

SUP,I = {P (a), Q(b)} with minimal false clause (C3). A
superposition left inference between (C3) and (C2) generates (C5) ¬P (a) and
N2

SUP = N1
SUP ∪ {(C5) ¬P (a)}. The generation of ¬P (a) can now be sim-

ulated by SCL by constructing the SCL trail [P (a)1Q(b){¬P (a)∨Q(b)}] out of
N0

SUP = N0
SCL leading to the learned clause (C5) ¬P (a) and respective clause

set N2
SCL = N0

SCL ∪ {(C5) ¬P (a)}. Note that P (a) could have also been prop-
agated, see Sect. 2 rule Propagate, but this would eventually not lead to the
learned clause (C5) ¬P (a) but ⊥. Finally, the superposition model operator pro-
duces N2

SUP,I = {P (a), Q(b)} with minimal false clause (C5) and infers ⊥. The
SCL simulation generates the trail [P (a){P (a)}] and then learns ⊥ as well out
of a conflict with (C5). Note that this SCL trail is based on a factoring of (C1)
to P (a) that was the explicit first step of the superposition refutation. Recall
that by using an exhaustive propagation strategy, SCL would start with the
trail [P (a)P (a)Q(b){¬P (a)∨Q(b)}] and immediately derive ⊥. Exhaustive propa-
gation is not a good strategy in general, because first-order logic clauses may
enable infinitely many propagations. Even together with the typical SCL restric-
tion to finitely many ground instances, there are exponentially many propaga-
tions possible, in general. Therefore, the regular strategy defined in [9] does not
require exhaustive propagation, but guarantees non-redundant clause learning.
The SCL-SUP strategy, Definition 8, and Definition 10, simulating superposition
SUP-MO runs is also a regular strategy, Lemma 17.

The paper is now organized as follows. After repetition of the needed concepts
of SCL and superposition, Sect. 2, the simulation result is contained in Sect. 3.
We show that any superposition refutation of a ground clause set producing only
non-redundant inferences through the SUP-MO strategy, can be simulated via
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the SCL-SUP strategy. Based on the 14 simulation invariants of Definition 7,
we show the invariants by an inductive argument on the length of the super-
position refutation, starting from the initial state, Lemma 13, for intermediate
superposition inference steps Lemma 14, until the final refutation Lemma 15,
and Lemma 16. For the simulation we do not consider selection in superposition
inferences in favor of a less complicated presentation. The paper ends with a
discussion of the obtained results. A full version of the paper including all proofs
is available on arxiv [6].

2 Preliminaries

We assume a first-order language without equality where N denotes a clause
set; C,D denote clauses; L,K,H denote literals; A,B denote atoms; P,Q,R
denote predicates; t, s terms; f, g, h function symbols; a, b, c constants; and x, y, z
variables. Atoms, literals, clauses and clause sets are considered as usual, where
in particular clauses are identified both with their disjunction and multiset of
literals [9]. The complement of a literal is denoted by the function comp. The
function atom(L) denotes the atomic part of a literal. Semantic entailment |=
is defined as usual where variables in clauses are assumed to be universally
quantified. Substitutions σ, τ are total mappings from variables to terms, where
dom(σ) := {x | xσ �= x} is finite and codom(σ) := {t | xσ = t, x ∈ dom(σ)}.
Their application is extended to literals, clauses, and sets of such objects in the
usual way. A term, atom, clause, or a set of these objects is ground if it does
not contain any variable. A substitution σ is ground if codom(σ) is ground. A
substitution σ is grounding for a term t, literal L, clause C if tσ, Lσ, Cσ is
ground, respectively. The function mgu denotes the most general unifier of two
terms, atoms, literals. We assume that any mgu of two terms or literals does not
introduce any fresh variables and is idempotent. A closure is denoted as C · σ
and is a pair of a clause C and a substitution σ that is grounding for C. The
function ground returns the set of all ground instances of a literal, clause, or
clause set with respect to the signature of the respective clause set.

A (partial) model M for a clause set N is a satisfiable set of ground literals.
A ground clause C is true in M , denoted M |= C, if C ∩ M �= ∅, and false
otherwise. A ground clause set N is true in M , denoted M |= N if all clauses
from N are true in M . A (partial) Herbrand model I for a clause set N is a set
of ground atoms. A ground clause C is true in I, denoted I |=H C, if there is
an atom A ∈ C such that A ∈ I, or there is a negative literal ¬A ∈ C such that
A �∈ I, and false otherwise. A ground clause set N entails a ground clause C,
denoted N |= C, if M |= C implies M |= {C} for all models M .

We identify sets and sequences whenever appropriate. However, the trail of
an SCL run is always a sequence of ground literals.

Let ≺ denote a well-founded, total, strict ordering on ground literals. This
ordering is then lifted to clauses and clause sets by its respective multiset exten-
sion. We overload ≺ for literals, clauses, clause sets if the meaning is clear from
the context. The ordering is lifted to the non-ground case via instantiation: we
define C ≺ D if for all grounding substitutions σ it holds Cσ ≺ Dσ. We define

 as the reflexive closure of ≺ and N�C := {D | D ∈ N and D 
 C}.
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Definition 1 (Clause Redundancy). A ground clause C is redundant with
respect to a ground clause set N and an order ≺ if N�C |= C. A clause C is
redundant with respect to a clause set N and an order ≺ if for all C ′ ∈ ground(C)
it holds that C ′ is redundant with respect to ground(N).

Let ≺B denote a well-founded, total, strict ordering on ground atoms such
that for any ground atom A there are only finitely many ground atoms B with
B ≺B A. For example, an instance of such an ordering could be KBO without
zero-weight symbols. (Note that LPO does not satisfy the last condition of a ≺B

ordering although it is a well-founded, total, strict ordering.) The ordering ≺B

is lifted to literals by comparing the respective atoms and if the atoms of two
literals are the same, then the negative version of the literal is larger than the
positive version. It is lifted to clauses by a multiset extension.

The SCL(FOL) Calculus: The inference rules of SCL(FOL) [9] are represented
by an abstract rewrite system. They operate on a problem state, a six-tuple
(Γ ;N ;U ;β; k;D) where Γ is a sequence of annotated ground literals, the trail ;
N and U are the sets of initial and learned clauses; β is a ground literal limiting
the size of the trail; k counts the number of decisions; and D is either �, ⊥
or a clause closure C · σ such that Cσ is ground and false in Γ . Literals in Γ
are either annotated with a number, also called a level; i.e., they have the form
Lk meaning that L is the k-th guessed decision literal, or they are annotated
with a closure that propagated the literal to become true. A ground literal L
is of level i with respect to a problem state (Γ ;N ;U ;β; k;D) if L or comp(L)
occurs in Γ and the first decision literal left from L (comp(L)) in Γ , including
L, is annotated with i. If there is no such decision literal then its level is zero. A
ground clause D is of level i with respect to a problem state (Γ ;N ;U ;β; k;D)
if i is the maximal level of a literal in D. The level of the empty clause ⊥ is 0.
Recall D is a non-empty closure or � or ⊥. Similarly, a trail Γ is of level i if the
maximal literal in Γ is of level i.

A literal/atom L/A is undefined in Γ if neither L/A nor comp(L)/comp(A)
occur in Γ . The start state of SCL is (ε;N ; ∅;β; 0;�) for some initial clause set
N and bound β. The below rules are exactly the rules from [9] and serve as a
reference for our simulation proof in Sect. 3.
Propagate (Γ ;N ;U ;β; k;�) ⇒SCL (Γ,Lσ(C0∨L)δ·σ;N ;U ;β; k;�)
provided C ∨ L ∈ (N ∪ U), C = C0 ∨ C1, C1σ = Lσ ∨ · · · ∨ Lσ, C0σ does
not contain Lσ, δ is the mgu of the literals in C1 and L, (C ∨ L)σ is ground,
(C ∨ L)σ ≺β {β}, C0σ is false under Γ , and Lσ is undefined in Γ .

Decide (Γ ;N ;U ;β; k;�) ⇒SCL (Γ,Lσk+1;N ;U ;β; k + 1;�)
provided atom(L) occurs C for a C ∈ (N ∪ U), Lσ is a ground literal undefined
in Γ , and Lσ ≺β β.

Conflict (Γ ;N ;U ;β; k;�) ⇒SCL (Γ ;N ;U ;β; k;D · σ)
provided D ∈ (N ∪ U), Dσ false in Γ for a grounding substitution σ.
Skip (Γ,L;N ;U ;β; k;D · σ) ⇒SCL (Γ ;N ;U ;β; k − i;D · σ)
provided comp(L) does not occur in Dσ, if L is a decision literal then i = 1,
otherwise i = 0.
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Factorize (Γ ;N ;U ;β; k; (D ∨ L ∨ L′) · σ) ⇒SCL (Γ ;N ;U ;β; k; (D ∨ L)η · σ)
provided Lσ = L′σ, η = mgu(L,L′).

Resolve (Γ,Lδ(C∨L)·δ;N ;U ;β; k; (D ∨ L′) · σ)
⇒SCL (Γ,Lδ(C∨L)·δ;N ;U ;β; k; (D ∨ C)η · σδ)

provided Lδ = comp(L′σ), η = mgu(L, comp(L′)).

Backtrack (Γ0,K, Γ1, comp(Lσ)k;N ;U ;β; k; (D ∨ L) · σ)
⇒SCL (Γ0;N ;U ∪ {D ∨ L};β; j;�)

provided Dσ is of level i′ < k, and Γ0,K is the minimal trail subsequence such
that there is a grounding substitution τ with (D ∨ L)τ is false in Γ0,K but not
in Γ0, and Γ0 is of level j.

A sequence of rule applications of a particular calculus is called a run of the
calculus. A strategy for a calculus restricts the set of runs we actually allow by
imposing further conditions on the allowed rule applications.

Definition 2 (SCL Runs). A sequence of SCL rule applications is called a
reasonable run if the rule Decide does not enable an immediate application of
rule Conflict. A sequence of SCL rule applications is called a regular run if it is
a reasonable run and the rule Conflict has precedence over all other rules.

All regular SCL runs are sound, only derive non-redundant clauses, always
terminate, and SCL with a regular strategy is refutationally complete (for first-
order logic without equality) [9].

The Superposition Calculus: Superposition [1,2,18] is a calculus for first-order
logic reasoning that also infers/learns new clauses like SCL. In contrast to SCL,
it does these inferences based on a static ordering ≺ and, at the level of infer-
ence rules, independent of a partial model. A permissible ordering ≺ for the
superposition calculus is always a well-founded, total, strict ordering on ground
literals. This ordering is then lifted to clauses and clause sets by its respective
multiset extension. A problem state in the superposition calculus is just a set N
of clauses. The start state the initial clause set. Due to the restriction to first-
order logic without equality, the most basic version of the superposition calculus
consists just of the following two rules (without selection):

Superposition Left (N {C1∨P (t1, . . . , tn), C2∨¬P (s1, . . . , sn)}) ⇒SUP

(N ∪ {C1 ∨ P (t1, . . . , tn), C2 ∨ ¬P (s1, . . . , sn)} ∪ {(C1 ∨ C2)σ})
where (i) P (t1, . . . , tn)σ is strictly maximal in (C1 ∨ P (t1, . . . , tn))σ
(ii) ¬P (s1, . . . , sn)σ is maximal, (iii) σ is the mgu of P (t1, . . . , tn) and
P (s1, . . . , sn).
Factoring (N  {C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn)}) ⇒SUP

(N ∪ {C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn)} ∪ {(C ∨ P (t1, . . . , tn))σ})
where (i) P (t1, . . . , tn)σ is maximal in (C ∨ P (t1, . . . , tn) ∨ P (s1, . . . , sn))σ
(ii) σ is the mgu of P (t1, . . . , tn) and P (s1, . . . , sn).
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Let sfac(C) represent a clause obtained by exhaustively applying superposi-
tion Factoring on C. Recall, that superposition Factoring only applies to maximal
positive literals. Let sfac(N) represent the clause set N after every clause has
been exhaustively factorized by Superposition Factorization.

Although the superposition calculus itself is independent of a partial model
and may learn non-redundant clauses, the completeness proof of superposition
in [1] is based on a strategy that builds ground partial models according to
the fixed ordering ≺, where minimal false ground instances of clauses then trig-
ger non-redundant superposition inferences. Note that the completeness proof
relies on a grounding of the clause set that may lead to infinitely many clauses.
However, the strategy from the completeness proof can also be seen as a super-
position strategy for an initial clause set, where all clauses are already ground.
On ground, finite clause sets, superposition restricted to the strategy only infers
non-redundant clauses, always terminates, and is complete. The partial model
needed in each step of the strategy is constructed according to the following
model operator:

Definition 3 (Superposition Model Operator). Let N be a set of ground
clauses. Then NI is the Herbrand model according to the superposition model
operator for clause set N and it is constructed recursively over the partial Her-
brand models NC for all C ∈ N :

NC =
⋃

D≺C δD NI =
⋃

C∈N δC

δD =

{
{B} if D = D′ ∨ B, B strictly maximal, ND �|=H D

∅ otherwise
We say that a clause C is productive (wrt. the model construction of a clause

set N) if δC �= ∅. We say that a clause C produces an atom B (wrt. the model
construction of a clause set N) if δC = {B}.

After constructing the model NI for a clause set N , the strategy selects
the smallest clause in N that is false in NI . The strategy then selects a fitting
inference rule based on the reason why the clause is false in NI . The newly
inferred clause either changes the model in the next step or changes the smallest
clause that is false. This is the strategy used in the superposition completeness
proof [1].

Definition 4 (Minimal False Clause). The minimal false clause C ∈ N is
the smallest clause in N according to ≺ such that NC ∪ δC �|=H C.

Definition 5 (Superposition Model-Operator Strategy: SUP-MO).
The superposition model-operator strategy is defined over the minimal false
clause with regards to the current clause set N . The strategy can encounter the
following cases:

(1) N has no minimal false clause. Then N is satisfied by NI and we can stop
the superposition run.

(2) The minimal false clause in N is ⊥. Then N is unsatisfiable, which means
we can also stop the superposition run.
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(3) C is the minimal false clause in N , and it has a maximal literal L that
is negative. Then there must be a clause D ∈ N with D ≺ C, a strictly
maximal literal comp(L), and δD = {comp(L)}. In this case, the strategy
applies as its next step Superposition Left to C and D.

(4) C is the minimal false clause in N , and it has a maximal literal L that
is positive. Then L is not strictly maximal in C and the strategy applies
Factoring to C.

The first two cases of the SUP-MO strategy also describe its final states
according to [1]. In all other states there is always exactly one rule applicable
according to the SUP-MO strategy, which also means that SUP-MO is never
stuck.

Lemma 6 (SUP-MO Applicability). Let N be a set of ground clauses. If N
has a minimal false clause C �= ⊥, then there exists exactly one rule applicable
to N according to the SUP-MO strategy.

3 SCL Simulates Superposition

In general, it is not possible to simulate all inferences of the superposition cal-
culus with SCL because SCL only learns/infers non-redundant clauses, whereas
syntactic superposition inferences have no such guarantees. Moreover, the infer-
ences by SCL are all based on conflicts according to a partial model driven by
the satisfiability of clause instances, whereas the inferences by superposition are
based on a static ordering ≺. We can mitigate these differences by restricting
superposition with the SUP-MO strategy because SUP-MO has non-redundancy
guarantees and it infers new clauses based on minimal false clauses with respect
to a ground partial model.

Let N0 be a set of ground clauses, totally ordered by a superposition
reduction ordering ≺. Let N i (for i > 0) be the result of i steps of the
superposition calculus applied to N0 according to the SUP-MO strategy, i.e.,
N0 ⇒SUP-MO N1 ⇒SUP-MO . . . ⇒SUP-MO N i. Again, all N i are sets of ground
clauses, totally ordered by a superposition reduction ordering ≺. The SCL strat-
egy SCL-SUP that simulates superposition restricted to SUP-MO runs is defined
inductively on the clause ordering ≺. To guide and to prove the correctness of our
simulation, we assign to each SCL state and every clause some additional infor-
mation. For this purpose, every SCL state is annotated with a triple (i, C, γ),
where i is an integer that states that the SCL state simulates the superposition
state N i, C is the last clause that was used as a decision aid by the strategy, γ
is a function such that γ(C) = sfac(C) if sfac(C) ∈ N i and γ(C) = C otherwise,
the SCL state also simulates the model construction for N i upto N i

C′ ∪δC′ , where
C ′ = γ(C). The annotated states are written (Γ ;N0;U ;β; k;E)(i,C,γ). The over-
all start state is then (ε;N0; ∅;β; 0;�)(0,⊥,γ), where we assume β large enough
so A ≺β β for all A ∈ atom(N0), ⊥ �∈ N0, and γ(C) = sfac(C) if sfac(C) ∈ N0

and γ(C) = C otherwise. We will later see that the annotated integer is not
relevant for the actual choice of SCL rules by the SCL-SUP strategy but only
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to prove that the strategy actually simulates superposition. Moreover, we define
a new ordering ≺γ based on our superposition ordering ≺ and function γ such
that C ≺γ D if γ(C) ≺ γ(D).

Definition 7 (State Simulation). Let (Γ ;N0;U ;β; k;E)(i,D,γ) be an SCL
state for the input clauses N0. Let L be the maximal literal in D if D �= ⊥ and
the minimal literal according to ≺ otherwise. Let N0 ⇒SUP-MO N1 ⇒SUP-MO

. . . ⇒SUP-MO N i be the superposition run following the SUP-MO strategy start-
ing from the input clause set N0. Let D′ = γ(D). Then we say that the SCL
state (Γ ;N0;U ;β; k;E)(i,D,γ) simulates N i and the model construction upto
N i

D′ ∪ δD′ if

(i) atom(N0) = atom(N i) = atom(N0 ∪ U), A ≺β β for all A ∈ atom(N0),
and D ∈ {⊥} ∪ N0 ∪ U

(ii) sfac(N0 ∪ U) ⊆ sfac(N i) and γ(C) ∈ N i for all C ∈ N0 ∪ U and γ(C) =
sfac(C) or γ(C) = C.

(iii) for all C ∈ N i there exists a C ′ ∈ N0 ∪ U ∪ {E} such that sfac(C) =
sfac(C ′) if the maximal literal in C is positive

(iv) for all C ∈ N i there exists a C ′ ∈ N0 ∪ U ∪ {E} such that C ′ |= C and
γ(C ′) 
 C

(v) for all atoms A occurring in N0: A ∈ ND′ ∪ δD′ iff A ∈ Γ
(vi) for all atoms A: ¬A ∈ Γ iff A ≺ L and A �∈ ND′

(vii) for every literal L in Γ , i.e., Γ = Γ ′, L, Γ ′′, and all literals L′ in Γ ′,
atom(L′) ≺ atom(L)

(viii) for every atom (= positive literal) B in Γ , i.e., Γ = Γ ′, B, Γ ′′, there exists
C ∈ N0 ∪ U and a C ′ ∈ N i such that γ(C) = sfac(C) = sfac(C ′) = C ′,
and C ′ produces B, i.e., δC′ = {B}

(ix) for every clause C ∈ N i with C 
 γ(D) that produces an atom B, i.e.,
δC = {B}, there exists C ′ ∈ N0 ∪ U such that C = γ(C ′) and C 
γ D.

(x) Γ contains only decisions if E = �
(xi) E �∈ {�,⊥} iff Γ = Γ ′Bsfac(D), Γ ′ contains only decisions, there exists

E′ ∈ N i where γ(E) = E = E′ is the minimal false clause in N i, and
¬B ∈ E

(xii) Γ |= C for all C ∈ N0 ∪ U with C 
γ D
(xiii) Conflict is not applicable to (Γ ;N0;U ;β; k;E)(i,D,γ).
(xiv) ⊥ �∈ N0 ∪ U and E = ⊥ iff Γ = ε and ⊥ ∈ N i

The above invariants can be summarized as follows: (i) All ground atoms
encountered are known from the start and the trail bound β is large enough
so SCL can Decide/Propagate them. (ii)–(iv) Every initial clause C or inferred
clause by SUP-MO must coincide with an initial clause C ′ or learned clause by
SCL; this means on the one hand that for every clause C learned by SCL-SUP,
SUP-MO infers a clause C ′ that is identical up to factoring; on the other hand
it means that for every clause C inferred by SUP-MO, SCL-SUP learns a clause
C ′ that entails C (i.e. C ′ |= C) and is at most as large as C wrt. γ. (v)–(ix) The
partial model constructed by SCL-SUP and SUP-MO coincide and any atom B
in NC ∪ δC produced by clause D has a clause D′ on the SCL side that could



142 M. Bromberger et al.

propagate B and vice versa. (x)–(xiii) Ensure that any Conflict in SCL-SUP
corresponds to a minimal false clause and that the trail is always constructed
in such a way that the Resolve applications per Conflict call are limited to the
maximal literal in the conflict; this property is needed or the next clause that
would be learned by SCL no longer coincides with the clauses learned by SUP-
MO. (xiv) Describes the final state in case the input clause set is unsatisfiable.

Now that we have defined how an SCL state must look like in order to simu-
late a superposition state, we define SCL-SUP, the SCL strategy that eventually
simulates a SUP-MO run. First, note that not all states visited by SCL-SUP
satisfy the invariants of Definition 7. However, the invariants hold again after
each so-called atomic sequence of SCL-SUP steps. Second, one atomic sequence
of SCL-SUP steps may skip over several successive superposition states. The
reason is that SCL can and must skip all steps of SUP-MO that occur because
the maximal literal in a clause is not strictly maximal, i.e., superposition Fac-
toring steps. SCL performs factoring implicitly in its Propagation rule so SCL
never has to explicitly simulate case (4) of Definition 5. Third, definition of the
SCL-SUP strategy is split in two parts and each part describes some atomic
sequences of SCL-SUP steps.

Definition 8 (SCL Superposition Strategy: SCL-SUP Part 1). Let
S0 = (Γ ;N0;U ;β; k;�)(i,C,γ) be an SCL state with additional annotations for
the strategy. Let D be the next largest clause from C in the ordering ≺γ with
respect to the ground clause set N0 ∪ U . Let L be the maximal literal of D. Let
[¬A1,¬A2, . . . ¬An] be all negative literals such that for all i we have Ai ≺ L, all
Ai undefined in Γ , Ai occurs in N0 ∪ U , and Ai ≺ Ai+1. Let D′ = γ(D) be in
N i such that sfac(D) = sfac(D′). Let j0 +1 be the number of occurrences of L in
D′ and j = i + j0. Then the SCL Superposition Strategy (SCL-SUP) performs
the following steps to S0 (possibly without any actual SCL rule applications, just
changing the state annotation):

(1) First decide all literals [¬A1,¬A2, . . . ¬An] in order, i.e., S0 ⇒∗ Decide
SCL-SUP S1,

where S1 = (Γ,¬Ak+1
1 , . . . ,¬Ak+n

n ;N0;U ;β; k + n;�)(i,D,γ).
(2a) If the maximal literal L in D is positive (i.e., L = B),

Γ,¬Ak+1
1 , . . . ,¬Ak+n

n �|= D, and Conflict is not applicable to
S2 = (Γ,¬Ak+1

1 , . . . ,¬Ak+n
n , Bk+n+1;N0;U ;β; k + n + 1;�)(j,D,γ′), then

decide B, i.e., S1 ⇒Decide
SCL-SUP S2, where γ′ is the same as γ except that

γ′(D) = sfac(D).
(2b) If the maximal literal L in D is positive (i.e., L = B),

Γ,¬Ak+1
1 , . . . ,¬Ak+n

n �|= D, and E is the smallest clause in N0 ∪ U that
is false in wrt. Γ,¬Ak+1

1 , . . . ,¬Ak+n
n , Bsfac(D), then propagate B and apply

Conflict to E, i.e., S1 ⇒Propagate
SCL-SUP S′

2 ⇒Conflict
SCL-SUP S2,

where S2 = (Γ,¬Ak+1
1 , . . . ,¬Ak+n

n , Bsfac(D);N0;U ;β; k + n;E)(j,D,γ′) and
γ′ is the same as γ except that γ′(D) = sfac(D).

(2c) Otherwise, S2 = S1 and no further rules have to be applied.
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A (potentially empty) sequence of SCL rule applications according to SCL-SUP
is called an atomic sequence of SCL-SUP steps if it starts from a state S0 and
ends in a state S2 outlined in the cases (2a-c).

The first part of the strategy simulates the recursive construction of the
partial model used in the SUP-MO strategy (see Definition 3). It assumes that
the model is already constructed up to the current annotated clause C and
extends this model for the next largest clause D ∈ (N0 ∪U). To this end, it uses
the rule Decide in step (1) to set all atoms A to false that are still undefined but
can no longer be produced by any clause greater or equal to D. Next the strategy
makes a case distinction. Step (2a) handles the case where D corresponds to a
clause D′ in the superposition state (modulo some Factoring steps skipped by
SCL) that produces atom B; SCL-SUP then adds B to the trail with the rule
Decide because producing/adding this atom does not falsify a clause. Step (2b)
handles a similar case compared to step (2a); but in this case producing/adding
the atom B to the trail results in a minimal false clause E; in order to force a
resolution step between clause D and E, SCL-SUP first uses Propagate to add
B to the trail and then applies conflict to E. Step (2c) handles the case where
D corresponds to a clause D′ that will not produce an atom B even modulo
some Factoring steps; in this case no further SCL rule applications are necessary
as the SUP-MO model will not change. Note that the annotated function γ is
needed so the SCL state knows when the superposition state would have applied
Factoring to a clause C, which also means that it is now treated as its factorized
version γ(C) = sfac(C) in our inductive clause ordering.

Example 9. Let us now further demonstrate the three different cases of the first
part of the SCL-SUP strategy with the help of an example. Let N0 be our initial
set of clauses:

N0 = {(C1) P (a), (C2) ¬P (b) ∨ Q(a), (C3) ¬P (a) ∨ Q(a) ∨ Q(a),
(C4) P (a) ∨ ¬Q(a), (C5) ¬P (a) ∨ ¬Q(a)}

We compare the run of SCL-SUP for N0 with the run of SUP-MO for N0 to
demonstrate that both runs coincide. As superposition ordering, we choose an
LPO with precedence a ≺ b ≺ P ≺ Q. This means that the atoms are ordered
P (a) ≺ P (b) ≺ Q(a) ≺ Q(b) and the clauses in N0 are ordered C1 ≺ C2 ≺
C3 ≺ C4 ≺ C5. The initial SUP-MO state is simply the clause set N0 and the
initial SCL-SUP state is (ε,N0, ∅, β, 0,�)(0,⊥,γ0), where γ0(C) = C for all clauses
C. In the first step of SCL-SUP, SCL-SUP first selects the clause C1 as its new
decision aid because it is the next largest clause in N0 compared to ⊥. Then SCL-
SUP continues with step (1) of Definition 3. In this step SCL-SUP does nothing
because there are no atoms smaller than P (a). Next, SCL-SUP detects that the
maximal literal of C1 is positive, ε �|= C1, and that the trail [P (a)1] does not result
in a conflict. Therefore, SCL-SUP follows step (2a) of Definition 3 and Decides
P (a), which results in the state ([P (a)1], N0, ∅, β, 1,�)(0,C1,γ0). Meanwhile, SUP-
MO starts with constructing a model for N0 starting with the clause C1. The
result is that C1 is productive and δC1 = {P (a)} and N0

C1
= ∅, which coincides

with our new SCL trail.
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SCL-SUP considers the clause C2 as its new decision aid and continues with
step (1) of Definition 3. This time there is an atom smaller than the maximal
literal of C2 namely P (b). Therefore, SCL-SUP Decides ¬P (b) in step (1) of
Definition 3, which results in ([P (a)1,¬P (b)2], N0, ∅, β, 2,�)(0,C2,γ0). Next, SCL-
SUP detects that the maximal literal of C2 is positive but that [P (a)1,¬P (b)2] |=
C2. Therefore, SCL-SUP follows step (2c) of Definition 3 and ends this atomic
sequence immediately. SUP-MO continues the model construction for N0 with
the clause C2. The clause C2 is not productive because N0

C2
|=H C2, where

N0
C2

= δC1 = {P (a)} and δC2 = ∅, which again coincides with our new SCL trail
as Herbrand models do not explicitly define atoms assigned to false.

SCL-SUP now considers the clause C3 as its new decision aid and continues
with step (1) of Definition 3. In this step SCL-SUP does nothing because all
atoms smaller than Q(a) are already assigned. Next, SCL-SUP detects that the
maximal literal of C3 is positive, [P (a)1,¬P (b)2] �|= C3, and that the clause C5 is
false with respect to the trail [P (a)1,¬P (b)2, Q(a)sfac(C3)]. Therefore, SCL-SUP
follows step (2b) of Definition 3, i.e. it Propagates P (a) and applies Conflict to
C5, resulting in ([P (a)1,¬P (b)2, Q(a)sfac(C3)], N0, ∅, β, 2, C3)(1,C2,γ1), where γ1
is identical to γ0 except that γ1(C3) = sfac(C3) = ¬P (a) ∨ Q(a). Note that
SCL-SUP must change the state annotations because the maximal literal in C3

is not strictly maximal, so SCL-SUP skips and eventually silently performs the
Factorization step performed by SUP-MO. Note also that in the changed clause
ordering ≺γ1 the order of C2 and C3 changed, i.e., C3 ≺γ1 C2, which corresponds
to sfac(C3) ≺ C2. Meanwhile, SUP-MO continues the model construction for N0

with the clause C3. The clause C3 is not productive because the maximal literal is
not strictly maximal so δ(3) = ∅ and N0

C3
∪δC3 �|=H C3 so C3 is the minimal false

clause in N0. SUP-MO resolves this conflict by applying Factoring to C3, which
means SUP-MO infers the clause C6 = sfac(C3) = ¬P (a)∨Q(a). The new clause
order in superposition state N1 = N0 ∪{C6} is C1 ≺ C6 ≺ C2 ≺ C3 ≺ C4 ≺ C5,
which matches the changed ordering C3 ≺γ1 C2 because C6 = γ1(C3). Next,
SUP-MO updates its model construction for N1. The result is that C1 and C6

are productive and that N1
C6

∪ δC6 = {P (a), Q(a)}, which matches the current
SCL trail. Moreover, if we continue the model construction upto C5 then no new
literals are produced and C5 also turns into the minimal false clause for N1.

Definition 10 (SCL Superposition Strategy: SCL-SUP Part 2). Let
S0 = (Γ,Bsfac(C);N0;U ;β; k;E)(i,C,γ) be an SCL state with E �∈ {�,⊥} and
additional annotations for the strategy. Let L = ¬B be the maximal literal of
E. Let Γ contain only decision literals. Let all atoms A occurring in N0 ∪ U
with A ≺ B be defined in Γ following the order ≺, i.e., for all A occurring in
N0 ∪ U with A ≺ B there exist Γ ′ and Γ ′′ such that Γ ′ = Γ ′, LA, Γ ′′, LA = A
or LA = ¬A and all atoms A′ ∈ N0 ∪U with A′ ≺ A are defined in Γ ′. Let E be
contained in N i. Let j0 be the number of occurrences of L in E and j = i + j0.
Let sfac(C) = C1 ∨ B and E = E′ ∨ E′′, where E′′ contains all occurrences of L
in E. Then the SCL Superposition Strategy (SCL-SUP) performs the following
steps to S0:
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(1) First apply Resolve to E until all occurrences of L are resolved away, i.e.,
S0 ⇒∗ Resolve

SCL-SUP S1, where S2 = (Γ,Bsfac(C);N0;U ;β; k;E2)(j,C,γ) and E2 =
E′ ∨ C1 ∨ . . . ∨ C1.

(2a) If E2 = ⊥, then we apply Skip until the trail is empty and then stop the
SCL run, i.e., S2 ⇒∗ Skip

SCL-SUP S5, where S5 = (ε;N0;U ;β; 0;⊥)(j,⊥,γ).
(2b) If E2 �= ⊥, then E2 has a maximal literal L1. Next the strategy applies Skip

until comp(L1) is the topmost literal on the trail, i.e., S2 ⇒∗ Skip
SCL-SUP S3,

where S3 = (Γ0, L
k1
1 ;N0;U ;β; k1;E2)(j,C,γ). (Note that this step skips at

least over the literal Bsfac(C)).
(3) Next apply Backtrack to S3, i.e., S3 ⇒Backtrack

SCL-SUP S4, where S4 = (Γ0;N0;U∪
{E2};β; k1 − 1;�)(j,C,γ).

(4a) If L1 is a negative literal, continue with the following rule applications.
Let D be the smallest clause in N0 ∪ U with maximum literal comp(L1) =
B1 and Γ0 �|= D. Then Propagate B1 from D, and apply Conflict to E2,
i.e., S4 ⇒Propagate

SCL-SUP S′′
4 ⇒∗ Conflict

SCL-SUP S5, where S5 = (Γ0, B
sfac(D)
1 ;N0;U ∪

{E2};β; k1 − 1;E2)(j,D,γ).
(4b) If L1 is a positive literal (i.e., L1 = B) and Conflict is not applicable to

S5 = (Γ0, B
k1
1 ;N0;U ∪ {E2};β; k1;�)(j2,E2,γ′), then decide B, i.e.,

S4 ⇒Decide
SCL-SUP S5, where j1 + 1 is the number of occurrences of B1 in

E2, j2 = j + j1, and γ′ is the same as γ except that γ′(E2) = sfac(E2).
(4c) If L1 is a positive literal (i.e., L1 = B) and E3 is the smallest clause in

N0 ∪ U that is false in S′
5 = (Γ0, B

sfac(E2)
1 ;N0;U ;β; k1 − 1;�)(j,E2), then

propagate B1 and apply Conflict to E3, i.e., S4 ⇒Propagate
SCL-SUP S′

5 ⇒Conflict
SCL-SUP

S5, where S5 = (Γ0, B
sfac(E2)
1 ;N0;U ;β; k1 − 1;E3)(j2,E2,γ′), j1 + 1 is the

number of occurrences of B1 in E2, j2 = j + j1, and γ′ is the same as γ
except that γ′(E2) = sfac(E2).

A (potentially empty) sequence of SCL rule applications according to SCL-SUP
is called an atomic sequence of SCL-SUP steps if it starts from a state S0 and
ends in a state S5 outlined in the cases (2a) and (5a-c).

The second part of the strategy simulates the actual inferences resulting from
a minimal false clause found in step (2b) of Definition 8 or found in steps (4a) and
(4c) of Definition 10. These inferences always correspond to Superposition Left
steps of the SUP-MO strategy that resolve minimal false clauses E′ in N i with
maximal literal ¬B with the clause C ′ in N i that produced B. Note however that
SCL-SUP may combine several Superposition Left steps of the SUP-MO strategy
into one new learned clause. This is the case whenever the maximal literal ¬B
in the minimal false clause E′ in N i is not strictly maximal. In this case, the
next minimal false clause E′′ will always correspond to the last inferred clause,
the maximal literal of this clause will still be ¬B, the clause producing B will be
again C ′, and therefore the next Superposition Left partner of E′′ is also again
C ′. Moreover, all of the skipped inferences are actually redundant with respect to
the final inference E′

2 in this chain, which explains why SCL-SUP is still capable
of simulating SUP-MO although it skips the intermediate inferences. The actual
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SCL-SUP clause E2 corresponding to final SUP-MO inference E′
2 is computed in

the steps (1) and (2) of Definition 10 with greedy applications of the rules Resolve
and Factorize. The following steps of Definition 10 take care of the four different
cases how E′

2 changes the model and minimal false clause in N j . The first case
is that E′

2 = ⊥ so SUP-MO has reached a final state. This case is handled by
step (2a) of Definition 10 that simply empties the trail with applications of the
rule Skip so the resulting SCL state has the form of a SCL-SUP final state. The
second case is that the maximal literal L1 in E′

2 is negative. In this case, the
model for N i and N j is still the same and just the minimal false clause changes
to E′

2. This case is handled by steps (2b)–(4a) of Definition 10 that Backtrack
before comp(L1) was decided, propagate it instead and apply Conflict to E2. In
the third and fourth case the maximal literal L1 in E′

2 is positive. In this case,
the model for N i and N j actually changes because E′

2 is always productive. Case
(2b)–(4b) of Definition 10 handles the case where producing L1 leads to no new
minimal false clause, and case (2b)–(4c) of Definition 10 handles the case where
it does. Both cases work symmetrically to steps (2a) and (2b) of Definition 8.

Example 11. We continue Example 9 to demonstrate cases (1)→(4a) and
(1)→(2a) of the second part of the SCL-SUP strategy. We left the runs in
the SCL state ([P (a)1,¬P (b)2, Q(a)sfac(C3)], N0, ∅, β, 2, C3)(1,C2,γ1) that simu-
lates the superposition state N1, where

N1 = {(C1)P (a), (C2) ¬P (b) ∨ Q(a), (C3) ¬P (a) ∨ Q(a) ∨ Q(a),
(C4) P (a) ∨ ¬Q(a), (C5) ¬P (a) ∨ ¬Q(a), (C6) ¬P (a) ∨ Q(a)}

and C5 became the minimal false clause in N1 after C1 and C6 produced together
the partial model {P (a), Q(a)}. SUP-MO continues from the state N1 by apply-
ing Superposition Left to C5 and C6. In the new state N2 = N1 ∪{(C7) ¬P (a)∨
¬P (a)} the new clause order is C1 ≺ C7 ≺ C6 ≺ C2 ≺ C3 ≺ C4 ≺ C5 and
after constructing the model for C1, which produces again P (a), the clause
C7 becomes again the minimal false clause. SCL-SUP follows (1) of Defini-
tion 10 and applies Resolve to C5 and sfac(C3) = C6, resulting in the state
([P (a)1,¬P (b)2, Q(a)sfac(C3)], N0, ∅, β, 2, C7)(2,C2,γ1). Then SCL-SUP continues
with steps (2b) and (3) by applying Skip twice and Backtrack once to jump
to the state (ε,N0, {C7}, β, 0,�)(2,C2,γ1). Next, SCL-SUP continues with step
(4a) because the maximal literal of C7 is ¬P (a) and therefore negative. This
means SCL-SUP will add P (a) again to the trail but this time by applying
Propagate to C1 and afterwards it applies Conflict to C7. The resulting state
([P (a)sfac(C1)], N0, {C7}, β, 0, C7)(2,C1,γ1) matches again the SUP-MO state N2.

SUP-MO continues from the state N2 by applying Superposition Left to C7

and C1, resulting in N3 = N2 ∪ {(C8)¬P (a)}. Since C8 has the same maximal
literal as C7 it becomes automatically the next minimal false clause in N3. As a
result, SUP-MO applies Superposition Left to C8 and C1, which returns N5 =
N3 ∪ {(C9) ⊥} a final state that proves the unsatisfiability of N0. Meanwhile,
SCL-SUP simulates both Superposition Left steps with one atomic SCL-SUP
sequence. It starts with step (1) of Definition 10 and applies Resolve twice,
resulting in the state ([P (a)1,¬P (b)2, Q(a)sfac(C3)], N0, ∅, β, 2,⊥)(4,C2,γ1). Then



SCL(FOL) Can Simulate Non-Redundant Superposition Clause Learning 147

it continues with step (2a) of Definition 10 and applies Skip until the trail is
empty. The resulting state (ε,N0, ∅, β, 2,⊥)(4,⊥,γ1) is a final state and proves
unsatisfiability of N0.

Example 12. The next example demonstrates the atomic sequence (1)→(4b) of
the second part of the SCL-SUP strategy. Let N0 be our initial set of clauses:

N0 = {(C1)P (a), (C2) ¬P (b), (C3) ¬P (a) ∨ Q(a), (C4) P (b) ∨ ¬Q(a)

As superposition ordering, we choose an LPO with precedence a ≺ b ≺ P ≺ Q.
This means that the atoms are ordered P (a) ≺ P (b) ≺ Q(a) ≺ Q(b) and the
clauses in N0 are ordered C1 ≺ C2 ≺ C3 ≺ C4. In order to keep the example
short, we skip the initial SCL-SUP steps and continue directly with the state
S = ([P (a)1,¬P (b)2, Q(a)sfac(C3)], N0, ∅, β, 2, C4)(0,C3,γ), where γ(C) = C for all
clauses C and β = Q(b). This state simulates the superposition state N0 upto
the model construction for C3, where N0

C3
∪ δC3 = δC1 ∪ δC3 = {P (a), Q(a)} and

C4 is the minimal false clause. SUP-MO continues from the state N0 by applying
Superposition Left to C4 and C3. In the new state N1 = N0∪{(C5) ¬P (a)∨P (b)}
the new clause order is C1 ≺ C5 ≺ C2 ≺ C3 ≺ C4 and the partial model
upto C5 is N0

C5
∪ δC5 = δC1 ∪ δC5 = {P (a)} ∪ {P (b)}, which turns C2

into the next minimal false clause. SCL-SUP simulates the above steps by
following the atomic sequence (1)→(4b) of Definition 10. The result is the
state ([P (a)1, P (b)sfac(C5)], N0, {C5}, β, 1, C2)(1,C5,γ) matching again our current
superposition state and model.

Without clause C2, SCL-SUP would apply the atomic sequence
(1)→(4a) of Definition 10 to S, resulting in the state ([P (a)1, P (b)2], N0 \
{C2}, {C5}, β, 2,�)(1,C5,γ). This matches the state N1 \ {C2} and its partial
model upto C5 that is still the same as for N1 with the exception that it does
not lead to a minimal false clause.

In order to actually show that every SCL-SUP run simulates a SUP-MO run,
we need to prove three properties. The first property is that each state visited by
an SCL-SUP run must simulate a state visited by the corresponding SUP-MO
run. Note that this property does not yet say anything about the order in which
SCL-SUP simulates the SUP-MO states. This property can also be seen as a
soundness argument for our strategy.

Lemma 13 (Initial SCL State Simulates Initial Superposition State).
The initial SCL state (ε;N0; ∅;β; 0;�)(0,⊥,γ) simulates the initial superposition
state N0 and the model construction upto N0

⊥ ∪ δ⊥

Lemma 14 (SCL-SUP Preserves Simulation). Let the SCL state S =
(Γ ;N0;U ;β; k;E)(i,C,γ) simulate the superposition state N i and the correspond-
ing model construction upto N i

C′ ∪ δC′ , where C ′ = γ(C). Let the SCL state
S′ = (Γ ′;N0;U ′;β; k′;E′)(j,D,γ′) be the result of one atomic sequence of SCL-
SUP steps. Then there exists a clause D′ ∈ N j with γ′(D) = D′ and S′ simulates
the superposition state N j and the model construction upto N j

D′ ∪ δD′ .
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The second property is that each atomic sequence of SCL-SUP steps always
makes progress in the simulation. This means that each atomic sequence of SCL-
SUP steps either advances the superposition state N i simulated by the current
SCL state S = (Γ ;N0;U ;β; k;E)(i,D,γ), i.e., it increases the annotated i, or it
still simulates the same superposition state N i but advances the simulation of
the model construction operator, i.e. it increases the annotated clause C and
keeps i the same. Note that it can actually happen that an atomic sequence of
SCL-SUP steps skips over several superposition states. This property can also
be seen as a termination argument for our strategy because SUP-MO always
terminates on ground clause sets.

Lemma 15 (SCL-SUP Advances the Simulation). Let the SCL state
S = (Γ ;N0;U ;β; k;E)(i,D,γ) simulate the superposition state N i and the model
construction upto N i

D ∪ δD. Let the SCL state S′ = (Γ ′;N0;U ′;β; k′;E′)(j,D′,γ′)
be the next state reachable by one atomic sequence of SCL-SUP steps. Then
either i < j or i = j and γ′ = γ and D ≺γ D′.

The last missing property shows that the SCL-SUP strategy can always
advance the current SCL state whenever the simulated superposition state can
be advanced by the SUP-MO strategy. This means SCL-SUP is never stuck when
SUP-MO can still progress. These properties hold because the simulation invari-
ants in Definition 7 either correspond to a correct final state or they satisfy the
preconditions of Definition 8 or Definition 10. This property can also be seen as
a partial correctness argument for our strategy.

Lemma 16 (SCL-SUP Correctness of Final States). Let the SCL state
S = (Γ ;N0;U ;β; k;E)(i,D,γ) simulate the superposition state N i and the model
construction upto N i

γ(D) ∪ δγ(D). Let there be no more states reachable from S
following an atomic sequence of SCL-SUP steps. Then S is a final state, i.e.,
either (i) E = ⊥, D = ⊥, ⊥ ∈ N i, and N0 is unsatisfiable or (ii) Γ |= N0.

We can also show that any SCL-SUP run is also a regular run. Although
this is not strictly necessary for the simulation proof, it is beneficial because it
means that SCL-SUP inherits many properties that hold for SCL restricted to
a regular strategy. For instance, that all learned clauses are non-redundant and
that SCL-SUP always terminates.

Lemma 17 (SCL-SUP is a Regular SCL Strategy). SCL-SUP is a regular
SCL strategy if it is executed on a state S = (Γ ;N0;U ;β; k;E)(i,C,γ) that sim-
ulates a superposition state N i and the corresponding model construction upto
N i

γ(C) ∪ δγ(C).

4 Conclusion

We have shown that the SCL(FOL) calculus [9] can simulate model driven super-
position [1] refutations deriving only non-redundant clauses. The superposition
calculus cannot simulate SCL refutations due to its static a priori ordering.



SCL(FOL) Can Simulate Non-Redundant Superposition Clause Learning 149

In general, an SCL(FOL) learned clause is generated out of several resolution
and factorization steps. From this perspective the SCL(FOL) calculus is more
general and flexible than the superposition calculus. Furthermore, it only gener-
ates non-redundant clauses whereas any superposition implementation generates
redundant clauses due to the syntactic application of the superposition inference
rules.

Selection in superposition can also be simulated, but requires an additional
branch in the SCL-SUP strategy, because selection of non-maximal, negative
literals by superposition requires a different trail ordering for SCL in order to
simulate a respective superposition left inference.

For future work, we plan to lift our simulation result from the ground case to
the non-ground case. This lifting will require the extension of the SCL calculus
by an additional rule that learns clauses that are computed as intermediate
steps during the conflict analysis. This rule was left out of previous versions of
SCL because we would never use it in a CDCL inspired SCL-run and because
it would have complicated the termination and non-redundancy proofs for SCL.
Nevertheless, we are confident that the rule can be designed in such a way that
all properties of the original calculus still hold.

Considering the extension to the non-ground case, this result can be used in
various directions. It can be used to develop an alternative implementation of
the superposition calculus. Given a fixed ordering, the trail can be developed
according to the ordering, generating only non-redundant superposition infer-
ences. On the other hand, the concept of finite saturation can be kept this way
preserving a strong mechanism for detecting satisfiability. Secondly, the result
means that SCL can be used to naturally combine propagation driven reasoning
with fixed ordering driven reasoning. This might overcome some of the issues of
the current first-order portfolio approaches implemented in the state-of-the-art
provers.

Another calculus contained in first-order reasoning portfolios is InstGen [12,
15]. It abstracts a first-order clause set to propositional logic via a grounding
with a single constant. In case a CDCL sat solver proves the abstraction unsat-
isfiable, the first-order clause set is unsatisfiable too. For otherwise, the model
found on the propositional level triggers an instantiation inference of a first-order
clause. The instance rules out the before found propositional model modulo the
abstraction.

The CDCL model building after grounding can be simulated via a respective
SCL trail. This will then lead to a stuck state if SCL is restricted to the InstGen
grounding. Now let C be the false first-order clause selected by InstGen for an
instance. Then the SCL stuck state can be extended to a conflict state for C.
Then SCL will not learn an instance of C, but a related clause that also rules out
the previously found model on the propositional level. This way the relationship
between InstGen and SCL can be investigated as well.

Acknowledgements. We thank our reviewers for their careful reading and construc-
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Abstract. We present a simple calculus for deriving statements about
the local behaviour of partial, continuous functions over the reals, within
a collection of such functions associated with the elements of a finite
partial order. We show that the calculus is sound in general and com-
plete for particular partial orders and statements. The motivation for
this work is drawn from an attempt to foster digitalisation in secondary-
eduction classrooms, in particular in experimental lessons in natural sci-
ence classes. This provides a way to formally model experiments and to
automatically derive the truth of hypotheses made about certain phe-
nomena in such experiments.

Keywords: formal modelling · proof system · continuous functions ·
completeness

1 Introduction

Formal reasoning using proof rules is a well-established mechanism for explaining
and deriving the truth of statements, both in general-purpose first- and higher-
order logics [2,16] as well as special-purpose logics in arithmetic [5], knowledge
discovery [15], program verification [13] etc. Here we are concerned with the
problem of proving statements about the local “behaviour” of certain real-valued
functions. A proof calculus for such simple statements may be interesting purely
for its logical (meta-)properties. There is, however, also a very concrete motiva-
tion for this work: digitalisation of experiments in natural sciences in secondary-
education classrooms. Studies show how digitalisation can benefit such teaching-
learning environments [10,18], not least by channeling pupils’ interaction through
a software tool to enforce better learning [11].

In classes of natural sciences like biology, physics and chemistry, pupils are
often taught some background knowledge about particular subjects which they
then need to put to the test experimentally. For this, they are given a research
question which typically asks them to discover and formulate a particular phe-
nomenon in form of a so-called hypothesis, and to validate its correctness exper-
imentally. Take for instance as an “experiment” in a physics class the standard
European alternating current at 230V 50Hz. The way that voltage fluctuates
c© The Author(s) 2023
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over time – in other words: time influences voltage – and voltage induces (resp.
influences) a current, forms the background theory, and a research question
could for instance be: how does the current change over time? We aim to pro-
vide digital technology that can answer such questions automatically in order to
give valid feedback to a pupil about their success in this task.

Formal models for processes from natural sciences have been proposed in the
literature [19], like Petri nets [6,12] or hybrid automata [1,3]. They allow for
precise modelling of experiments; the price to pay is that of undecidability of
model checking already, let alone validity checking. Moreover, they rely on exact
knowledge about the nature of influences in such experiments, and this can often
only be described by differential equations. Hence, determining correctness of a
hypothesis requires sophisticated algebraic or numerical methods.

Here, we model experiments abstractly as influence schemes, that is sets C of
statements about certain parts of an influence, allowing them to be built from
observations for instance. Correctness of a hypothesis H then is the question
of whether H logically follows from C. We provide the framework for modelling
experiments and hypotheses about influences in the form of a simple language
of statements, a formal semantics via collections of partial continuous functions,
and a proof calculus for logical consequence in this language. We show that it is
sound in general, complete for a large and useful class of hypotheses and exper-
iment models, i.e. influence schemes, and that it is polynomial-time decidable.

The completeness proof uses elements that are similar to constructions for
general logics. A key ingredient is normalisation, essentially a saturation process
comparable to the construction of Hintikka or maximally consistent sets, cf. [7,
17]. Another one is the effective construction of countermodels for such saturated
sets, cf. [8,9,14]. The details of these constructions are of course tailored to the
specifics of the mixed discrete-continuous structures here, dealing with properties
of collections of (partial) continuous functions associated with pairs of elements
of some underlying finite partial order.

The paper is organised as follows. Section 2 introduces the mathematical basics
in terms of functions on the reals, statements, influence schemes, hypotheses etc.
Section 3 presents the proof calculus including its soundness. Section 4 begins by
showing that the proof calculus is generally incomplete, as the relatively sim-
ple statements cannot make assertions capturing certain phenomena arising with
functions on the reals. We then develop a restriction on influence schemes and
show that completeness does hold in this case. The full proofs of technical lemmas
are omitted for reasons of space restriction. Section 5 discusses the computational
problem of proof search. Section 6 concludes with remarks on further work.

2 Modelling Influence

Statements and Influence Schemes. In all of the following, V = {a, b, . . .}
denotes a finite set of variables, and we assume that these are partially ordered
by ≤ with < denoting its strict subset.

An interval (of reals) is denoted [x, y] for x, y ∈ Q ∪ {−∞,∞} with x ≤ y.
Abusing standard notation, we write, e.g. [−∞, 10] rather than (−∞, 10] for the
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set of all real numbers z with z ≤ 10, since we only consider intervals that are
closed at rational bounds (for purposes of effective representation) and semi-
open only at infinities. This provides a common notation for intervals and saves
us making case distinctions everywhere, depending on the interval bounds.

A V-statement is a 5-tuple S = (a, I, q, I ′, b), typically written as a I q I′
b,

s.t. a, b ∈ V with a < b, and I, I ′ are intervals in the sense above. I is called the
domain, denoted dom(S), and required to be a non-singleton interval. I ′ is the
range, denoted rng(S). Finally, q ∈ Q := {↗,↘,→,�} is called a behaviour. It
describes a gradient of the influence abstractly as either monotonic, antitonic,
constant or arbitrary. When the variables a, b involved in the statement S are
clear from or irrelevant for the context, we also often simply write I q I′ .

The statement S is used to formalise the assertion “variable ainfluences vari-
able b on the interval I in a way described by q, s.t. varying the value for a in
this interval results in b taking values from the interval I ′.”

A V-influence scheme, or simply influence scheme if V is clear from the con-
text, is a finite set C of V-statements. Intuitively, an influence scheme describes
the way that certain variables influence each other in an abstract way.

Example 1. We build an influence scheme for the AV-voltage experiment. The
relevant variables are t for time, v for voltage and c for current, ordered by t <
v < c. A theory of how voltages alternates over time (in the standard European
alternating 230V/50Hz setting) and how it induces a current at a resistance
of 326 Ω can be formalised as follows. Remember that a scheme is a finite
set of statements like t [0,5] ↗ [0,326] v etc. Each can easily be visualised as a
rectangle in the 2-dimensional plane for the pair of involved variables: horizontal
and vertical edges determine domain and range, and the behaviour can be shown
as a label on the rectangle. A particular influence scheme C with 20 statements
is shown in Fig. 1 as grey rectangles in this way. The behaviours in the graph in
the middle are left out for better visibility; they are all supposed to be ↗.

The orange lines in the graphs of Fig. 1 represent a so-called influence exper-
iment, as it will be explained below. At this point, it can be used to show that
influence schemes as formal models of experiments can be obtained through data
sampling. Note how the borders of the rectangles in the scheme C coincide with
values of the functions represented by the orange lines in most cases.

Note that the scheme C shown in Fig. 1 contains no statements for the pair
(t, c) of variables. This does not mean that time does not influence current in this
scheme: clearly, if time influences voltage, and voltage influences current, then
time executes some influence on current. Hence, a valid question asks whether
the statement H shown as a blue rectangle follows logically from the scheme C in
the sense that whenever time influences voltage and voltage influences current
in the way described by C, does time then also influence current in the way
described by H? We use the letter H for such a statement as it plays the role
of a hypothesis: in logical terms it is just a statement, but from an application
point of view it is special in that it signifies an implicit question after its truth
with respect to a scheme.
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Fig. 1. An influence scheme (grey rectangles), a hypothesis (blue dashed rectangle)
and an influence experiment (orange lines) between time, voltage and current. (Color
figure online)

A Formal Semantics. In order to give a well-defined meaning to the question
whether H follows from C for a given scheme C and hypothesis H, we introduce a
formal interpretation of statements in so-called influence experiments. We need
to recall and define a few technicalities about functions over the reals.

An influence is a function f : R ⇀ R s.t. dom(f) is a non-singleton interval
in the sense above, and f is continuous on its domain in the usual sense. We
write f(x) = ⊥ if x 
∈ dom(f). When composing partial functions we assume
undefined values to be absorbing, i.e. g(f(x)) = ⊥ if f(x) = ⊥.

An influence f is called monotonic, antitonic or constant on [x, y] ⊆ dom(f),
if for all z, z′ ∈ [x, y] with z ≤ z′ we have f(z) ≤ f(z′), respectively f(z) ≥ f(z′)
and f(z) = f(z′). It satisfies the statement S = [x,y] q [x′,y′] , written f |= S,
if the following two conditions are met.

1. f(z) ∈ [x′, y′] for all z ∈ [x, y].
2. q = ↗ and f is monotonic on [x, y], or q = ↘ and f is antitonic on [x, y], or

q = → and f is constant on [x, y], or q = �.

Since every constant function is monotonic and antitonic, and each of these
is also an arbitrary one, we naturally obtain a partial order  on behaviours
that features unique infima and suprema, shown in Fig. 3. Note that, whenever
f |= I q I′ and q  q′ then also f |= I q′ I′ .

We are now ready to define the formal semantics of influence schemes.

Definition 1. Let V be as above. A V-influence experiment is a collection F of
influences, namely one function Fa,b for each pair (a, b) s.t. a < b, altogether
satisfying the following coherence property (CP).

– For all a, b, c ∈ V s.t. a < b, b < c and all x ∈ R: Fa,c(x) = Fb,c(Fa,b(x)).

F satisfies the V-statement S = a I q I′
b, written F |= S, if Fa,b |= I q I′ .

F satisfies the V-influence scheme C, written F |= C, if F |= S for all S ∈ C.
CP together with the absorption of ⊥ in function composition is the reason

for demanding the variables to be partially ordered: Fa,a, for any variable a
would have to be the total identity function to satisfy CP. And then we would
have Fb,a = F−1

a,b for any a, b. Thus, by demanding that Fa,b is only defined
whenever a < b we avoid problems arising with non-invertible functions.
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Example 2. Figure 1 shows a particular time-voltage-current experiment F as
three influences drawn as orange graphs. It represents the way that voltage
alternates in time along a sine curve with amplitude 230 · √

2 ≈ 326 V and
frequency 50Hz. Electric current depends linearly on voltage in this experiment,
with a factor of 1

326 used here suggesting an electrical resistance of 326 Ω. The
coherence property then demands a third influence Ft,c as their composition on
the domain of Ft,v = [0,∞] which is also a sine curve.

Let C be the influence scheme shown in Fig. 1 and introduced in Example 1.
Clearly F 
|= C because F does not satisfy the second (degenerate) rectangle
representing the statement t [3,7] → [264,264] v and neither the fifth representing
t [12,16] ↘ [−310,−192] v. This is because Ft,v is neither constant on [3, 7] nor
antitonic on [12, 16], and because it assumes values outside of the statements’
ranges on these domains, e.g. Ft,v(5) = 326 
∈ [264, 264] and Ft,v(15) = −326 
∈
[−310,−192].

Note that satisfaction of a statement S by an influence f means that the
graph of f enters the rectangle representing S through its left edge and leaves it
only through its right edge, and within this rectangle it displays the behaviour
stated in S. This is the case for instance for the hypothesis H drawn as a blue
rectangle: F |= H indeed. But this does not allow any conclusion to be drawn
about whether H follows from C in any way.

The interpretation of an influence scheme through influence experiments nat-
urally gives rise to a notion of logical consequence: we say that the V-statement
H follows from the V-influence scheme C, written C |= H, if F |= H for all
V-influence experiments s.t. F |= C. Thus, an influence scheme C can be seen
as a finite representation of an (uncountable) number of V-experiments, which
yields the abstract nature of these schemes as mentioned in the introduction.

The semantics also gives rise to a natural notion of equivalence between
schemes: C and C′ are equivalent, written C ≡ C′, if for all F we have F |= C
iff F |= C′. Note that this is the case iff for all hypotheses H we have C |= H
iff C′ |= H. Equivalent schemes can therefore be seen as (possibly different)
descriptions of the same experimental setup, up to a certain amount of impre-
cision determined by the description of the experimental setup through discrete
statements.

3 The Calculus of Influence

The concept of consequence between a scheme and a hypothesis provides the
foundations for a logical approach to modelling experimental setups and cor-
rectness of hypotheses w.r.t. them. Ideally, the consequence relation |= would be
decidable, since this would provide a way to automatically check the correctness
of a hypothesis w.r.t. a given scheme. In this section we develop a proof-theoretic
characterisation of |= in terms of a provability predicate �. Ideally, � would be
sound and complete w.r.t. |=, i.e. a statement would follow from an influence
scheme iff it is provably derivable from it. Then decidability of � (cf. Sect. 5)
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Fig. 2. Proof rules for correctness of a statement w.r.t. an influence scheme C. See
Fig. 3 for the definitions of � and ⊗.

would yield the basis for automatic reasoning about influence in experimental
setups.

Henceforth, let V and a V-influence scheme C be fixed. We say that a V-
statement H is provable w.r.t. C, written C � H, if there is a finite proof for H
in the proof system whose rules are shown in Fig. 2.

We will briefly explain the intuition behind each of them. The rule (F), which
serves as an axiom, essentially states that any statement which is part of the
scheme, follows from it. (G) expresses the fact that experiments are comprised
of potentially partial functions whose domain is always some interval. It states
that any function Fa,b which shows some certain behaviour on the interval [x, y],
and some certain behaviour on the interval [x′, y′] where y < x′, must also be
defined on the interval [y′, x]. However, we cannot determine better bounds than
infinities on its values, nor a non-arbitrary behaviour there.

Rule (T) expresses the transitivity principle laid out in the coherence property
of V-experiments: when a influences b s.t. a-values in I lead to b-values in I1,
and I1 ⊆ I2, and b-values in I2 lead to c-values in I ′, then a-values in I lead
to c-values in I ′. Moreover, the behaviour of the influence from a to c can be
derived from the ones from a to b and from b to c via the multiplication table
for ⊗ shown in Fig. 3.

Rule (I−) expresses weakening of statements w.r.t. the involved intervals.
Any function which maps values from I1 to values in I2 must also do so for
values from a subset of I1, and their range is naturally limited by any superset
of I2. On the other hand, (I+) represents an important strengthening principle:
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Fig. 3. Order � (left) and multiplication ⊗ (right) on behaviours.

any function that maps values from I1 to I ′
1 and values from I2 to I ′

2 must map
values from I1∩I ′

1 to I2∩I ′
2. Note that the rule is only (meaningfully) applicable

if I1 ∩ I ′
1 
= ∅. Moreover, the behaviour on the intersection can be determined

from those on the two involved intervals. For instance, if Fa,b is monotonic on
I1 and antitonic on I ′

1 then it must be both monotonic and antitonic on I1 ∩ I ′
1,

hence, it must in fact be constant there.
Rules (L+↗ )–(R+

↘ ) express further strengthening principles which are appli-
cable in situations where two statements are made about the behaviour of a
function on adjacent intervals. Suppose for instance, that Fa,b maps values from
[x, y] monotonically into [l, u], and values from [y, z] somehow into [l′, u′]. In
particular, we have Fa,b(y) ≤ u since y ∈ [x, y], and Fa,b(y) ≤ u′ since y ∈ [y, z],
i.e. Fa,b(y) ≤ min(u, u′). By monotonicity, for all z′ with x ≤ z′ ≤ y we must
have Fa,b(z′) ≤ min(u, u′) as well. Hence, from the knowledge about the mono-
tonic behaviour of Fa,b on [x, y] and the upper bound on an adjacent interval
to the right of it, we can possibly infer a tighter upper bound on the values of
Fa,b on [x, y]. This is what rule (L+↗ ) does. The other three rules (L+↘ ), (R+

↗ ) and
(R+

↘ ) cover the analogous cases of the behaviour being antitonic or the adjacent
statement being on the other side.

Rule (J) can be used to infer statements about the behaviour of a function
on parts of its domain which are comprised of several intervals. If Fa,b maps
values from [x, y] into I1 with behaviour q, and values from [y, z] into I2 with
behaviour q′, then it maps values from [x, z] into I1 ∪ I2, provided that this is an
interval. Moreover, the behaviour on the larger interval can be determined from
q and q′ by simply taking the supremum w.r.t . This is obviously associative,
which allows us to write sup�(q1, . . . , qn) without ambiguity.

Note that (J) is also a weakening rule: for instance, from S1 = a [0,1] � [0,1] b
and S2 = a [1,2] � [1,2] b we can infer S = a [0,2] � [0,2] b, describing any
influence Fa,b that maps values from [0, 2] to [0, 2], for instance Fa,b(x) = 2− x.
I.e. we have F |= S, but F 
|= S1 and F 
|= S2. Likewise, (Q−) allows the
weakening of behaviours. It states that a function which possesses a certain
behaviour on an interval also possesses any weaker behaviour on this interval.

At last, rule (C) expresses a simple principle: an influence of variable a onto
b whose values can be bounded by a singleton interval, is of constant behaviour.

Example 3. A proof of C � H for the scheme C and the hypothesis H =
t [12.5,15] ↘ [−1.05,−0.5] c shown in Fig. 1 (cf. Example 1) is given in Fig. 4. The
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Fig. 4. Proof of the hypothesis H from the scheme C in Example 1.

subtrees that are abbreviated by vertical dots are very similar to their siblings
and therefore omitted in order to keep the tree small.

The following theorem then guarantees that C |= H holds, too.

Theorem 1 (Soundness). Let C be an influence scheme and S be a statement.
If C � S then C |= S.

Proof. First we observe that all the rules are sound in the sense that if C |= T
for all premises T of some rule, then C |= S for its conclusion S. This is trivial
for rule (F) and can be easily be shown by contradiction for the other 11 rules.
The theorem can then easily be shown by induction on the height of a proof tree
for C � S. ��

4 Completeness for Elementary Diamond-Free Schemes

General Incompleteness. We remark that the calculus of influence is not
complete in general. Consider the variable order a < b < c and the scheme C (in
grey) and hypothesis H (in dashed blue) represented by the following rectangles.

a

b

0 1 2 3
0

1

2

↗
↗

↗

b

c

0 1 2 3
0

1

2 ↗
→

a

c

0 1 2 3
0

1

2 ↘

It seems that H does not follow from C because it demands constant
behaviour of an influence Fb,c on the interval [1, 2] while C only prescribes
monotonic behaviour there. However, we have C |= H indeed for the follow-
ing reason: the combination of S1 = a [1,2] ↗ [1,2] b with b [1,2] ↗ [1,2] c yields
a [1,2] ↗ [1,2] c. Together with a [1,2] ↘ [1,2] c we get a [1,2] → [1,2] c, i.e.
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we must have that Fa,c is constant on [1, 2] for any F with F |= C. Since
Fa,c = Fb,c ◦Fa,b and Fa,b cannot be constant on [1, 2] because of the two state-
ments neighbouring S1, we must indeed have that Fb,c is constant on [1, 2]. Thus,
C |= H but the rules do not support this kind of backwards reasoning (from (a, c)
to (b, c)). Hence, we have C 
� H.

There are two principal ways to go from here: either extend the calculus by
rules formalising this kind of reasoning, or try to achieve completeness for a
restricted class of schemes and hypotheses only. We do the latter; the former
would require a significant extension of the machinery as the example above
shows: backwards reasoning introduces nondeterminism, and in order to resolve
it one needs to take contexts of statements into account. This suggests that
general completeness may only be achieved through a general extension of the
format of rules. Note also that completeness cannot hold for a class of schemes
containing inconsistent ones, where C is said to be consistent if there is some
F s.t. F |= C. The reason is that we have C |= H for any H whenever C is
inconsistent, even when H makes an assertion about variables not occurring in
C in which case it is clear that H cannot be derived from C.

Normalisation. We develop some general machinery that is useful for obtaining
completeness in a restricted case. For a scheme C and variables a, b with a < b
we write Ca,b for the set of statements S ∈ C s.t. S = a I q I′

b for some I, q, I ′.

Definition 2. We call a scheme C separated if for all a, b ∈ V with a < b there
are n ∈ N and x1 < . . . < xn+1 ∈ Q ∪ {−∞,∞}, behaviours q1, . . . , qn and
intervals [l1, u1], . . . , [ln, un] s.t.

Ca,b = { [x1,x2] q1 [l1,u1] , [x2,x3] q2 [l2,u2] , . . . , [xn,xn+1] qn [ln,un] } .

This induces a natural notion of left and right neighbour of a statement T in a
separated scheme, denoted lnb(T ) and rnb(T ) when they exist.

We say that such a separated C is minimal if for all i = 1, . . . , n we have

a) if qi = ↗ then ui ≤ ui+1 and li−1 ≤ li,
b) if qi = ↘ then li ≥ li+1 and ui−1 ≥ uii
c) if qi = → then ui ≤ min(ui−1, ui+1) and li ≥ max(li−1, li+1),

where we set l0 = ln+1 := −∞ and u0 = un+1 := ∞ to avoid case distinctions.
C is called transitive if for all a, b, c ∈ V with a < b < c and all x, y ∈ R

we have the following: if x ∈ I1, y ∈ I2 for some statement a I1 q1 I2 b ∈ C,
and y ∈ I3 for some statement b I3 q2 I4 c ∈ C, then there is a statement
a I5 q3 I6 c ∈ C s.t. x ∈ I5 and I6 ⊆ I4.

C is called normalised if it is separated, minimal and transitive.

So, intuitively, separation and minimality predict that the statements in a
normalised scheme can be arranged as a sequence of horizontally adjacent rect-
angles, for each pair of variables a, b, with no gaps in between, and no statement
can be strengthened further because of its left or right neighbours (compare this
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Fig. 5. A normalisation C∗ (red) of the influence scheme C from Example 1 (Color
figure online) (grey).

to the strengthening rules (L+↗ )–(R+
↘ )). Transitivity means that C is complete in

the sense that whenever it allows Fa,b(x) = y and Fb,c(y) = z for some x, y, z,
then it must also predict the possibility of Fa,c(x) = z.

Lemma 1 (Normalisation Lemma). Let C be a consistent scheme. There is
a normalised scheme C∗ s.t. C∗ ≡ C and for all T ∈ C∗ we have C � T .

Proof. (Sketch) We successively transform C into C∗ using operations that follow
rule applications. (G), (I+) and (I−) (in restricted form) can be used to obtain
separation, (L+↗ )–(R+

↘ ) to ensure minimality, and (T) together with (J) to ensure
transitivity. The trick is then to arrange the process of saturating C by adding
new statements and replacing some with others in a terminating way.

In the following, we will write C∗ to denote a normalised scheme obtained from C
that satisfies the conditions of this lemma. Note that C∗ is not necessarily unique;
for example statements with adjacent domains and equal ranges and behaviours
can be merged using rule (J) or statements can be split w.r.t. to their domain
using (I−) without breaking the conditions of the lemma.

Example 4. Figure 5 shows the result of normalising the scheme C from Exam-
ple 1 (grey rectangles) as a scheme C∗ with 11+25+11=47 statements shown
as red rectangles. It should be clear that the hypothesis H, also depicted here
as a blue rectangle, does indeed follow from C∗: intuitively, it is impossible to
draw an influence experiment into these diagrams as three functions that tra-
verse through the red rectangles in the prescribed ways without also traversing
through the blue rectangle correctly.

Figure 5 suggests the use of the normalisation process for proof construction:
a close inspection of the example proof in Fig. 4 allows the origin of the red
rectangles touched by the hypothesis H to be traced back to the grey ones from
the original scheme.

Countermodel Construction. The following two lemmas contain one of the
main ingredients for obtaining a completeness result: they show how to construct
influences on a particular statement in a normalised scheme piecewise to one that
satisfies all the statements for the same variables in this scheme. Note that this
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does not construct an influence experiment (yet) as it does not show how to
construct influences for other pairs of variables.

We first make an observation about the possibility to satisfy statements in a
normalised scheme by particular influences. A sequence S1, . . . , Sm of statements
Si = a [xi,yi] qi [x

′
i,y

′
i] b is called connected if yi = xi+1, i.e. Si+1 = rnb(Si) for

all i < n. A connector for S1, . . . , Sn is an influence f s.t. dom(f) = [x1, yn] and,
for all i ≤ n, we have that f |= [xi,yi] qi [x

′
i,y

′
i] . Such a connector f is strict

if, additionally, for all i ≤ n we have f 
|= [xi,yi] q
′ [x′

i,y
′
i] for any q′ ≺ qi. It

is range-covering if there are x, y ∈ [x1, yn] such that f(x) = min{x′
1, . . . , x

′
n}

and f(y) = max{y′
1, . . . , y

′
n}. Sometimes, we will need to construct connectors

for single statements S which are simply sequences of length 1 only.

Lemma 2 (Connectors Lemma). Let C be consistent and normalised and
S = a [x,x′] q [y,y′] b ∈ M .

a) Suppose x′′, y′′ ∈ R are given s.t. x < x′′ < x′ and y ≤ y′′ ≤ y′. Then there
is a connector f for S s.t. f(x′′) = y′′.

b) Suppose y′′ ∈ rng(lnb(S)) ∩ rng(S) is given. Then there is a connector f for
S s.t. f(x) = y′′.

c) Suppose y′′ ∈ rng(S) ∩ rng(rnb(S)) is given. Then there is a connector f for
S s.t. f(x′) = y′′.

d) Let S1, . . . , Sn be connected s.t. the behaviour of Si is not → for some i. Then
there is a strict, range-covering connector for S1, . . . , Sn.

Proof. (Sketch) Parts (a)–(c) essentially boil down to a case distinction, depend-
ing on the behaviour q. However, it is relatively easy to observe that the require-
ments in all three cases are always satisfiable by a function that is either linear
or composed of two linear functions on the interval [x, x′], making use of the
intuitive fact that in a rectangle, with two points given on the left and right
edge and one in the middle, it is always possible to draw a (straight) line within
this rectangle from the left point to the middle one, and then continue it to the
right one. Part (d) requires a decomposition of the sequence S1, . . . , Sn according
to their behaviours.

An immediate consequence of this is the possibility to build influences for not
just a single statement in a normalised scheme, but in fact for all the statements
concerning the same pair of variables. This crucially relies on parts (b) and (c)
of Lemma 2.

Lemma 3 (Small Extension Lemma). Let V be a partially ordered set of
variables, a, b ∈ V s.t. a < b, and C be a consistent and normalised V-influence
scheme s.t.

Ca,b = { [x1,x2] q1 I1
︸ ︷︷ ︸

T1

, [x2,x3] q2 I2
︸ ︷︷ ︸

T2

, . . . , [xn,xn+1] qn In
︸ ︷︷ ︸

Tn

} .

Let 1 ≤ j ≤ k ≤ n and f ′ be a connector for Tj , . . . , Tk. Then there is an
influence f s.t. dom(f) = [x1, xn+1], f |= Tj for all j = 1, . . . , n, and f(x) =
f ′(x) for all x ∈ [xj , xk+1].
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Completeness for Elementary Schemes over Diamond-Free Orders.
Let C be a class of pairs of schemes and statements. We say that the calculus of
influence is complete for C if for all (C, S) ∈ C we have: if C |= S then C � S. We
now concentrate on a class that allows for a construction proving completeness,
and which still captures a large class of experiments and hypotheses occurring
in natural sciences, cf. the concluding section for a discussion on that.

We call a pair (a, b) of variables elementary if a < b and there is no c s.t.
a < c < b. Any finite partial order is the (reflexive-)transitive closure of a finite
set of elementary pairs. A statement a I q I′

b is called elementary if (a, b) is
elementary. A scheme C is called elementary if all T ∈ C are elementary.

We say that the partial order ≤ is diamond-free if for all a, b, c, d: if a ≤ b ≤ d
and a ≤ c ≤ d then b ≤ c or c ≤ b. In a finite diamond-free partial order, for
every pair (a, b) with a < b there is a unique sequence c1, . . . , cn for some n ≥ 0
s.t. (a, c1), (cn, b) and (ci, ci+1) for i = 1, . . . , n − 1 are all elementary.

In a diamond-free elementary scheme, all derivable non-elementary state-
ments can be traced back to applications of the transitivity rule (T). Moreover, in
any normalisation of a diamond-free elementary scheme obtained as in Lemma 1,
all non-elementary statements can be traced back to an application of rule (T).

Lemma 4 (Decomposition Lemma). Let C be an elementary scheme over a
diamond-free partial order and C∗ be a normalisation of C obtained via Lemma 1.
Suppose T = a I q I′

c ∈ C∗ such that (a, c) is non-elementary. Then there is b
with a < b < c and S = a I q1 I1 b and S′

1, . . . , S
′
n such that S, S′

1, . . . , S
′
n ∈ C∗,

joining S′
1, . . . , S

′
n via (J) yields S′ = b I2 q1 I′

c, and q = q1 ⊗ q2, I1 ⊆ I2.

The key ingredients are that all non-elementary statements in C∗ are derivable
in C, and the fact that C∗ is normalised, whence a derivation of T in C can be
used to generate a derivation of T in C∗. Note that w.l.o.g. we can assume that
I1 = I2 in the above lemma.

Now let C be an elementary diamond-free scheme. We observe that any influ-
ence experiment that satisfies all statements in C on elementary relations auto-
matically satisfies all derivable statements on non-elementary relations due to
correctness of the rules in the calculus of influence, in particular their observance
of the coherence principle. This yields the following.

Lemma 5 (Sufficiency Lemma). Let C be an elementary and diamond-free
scheme, and let C∗ be a normalisation of C obtained via Lemma 1. Then any
influence experiment that satisfies all elementary statements in C∗ satisfies all
statements of C∗.

The next lemma then contains the heart of the completeness proof. It shows
how to construct counterexamples, in the form of specific influence experiments,
for normalised schemes and hypotheses that appear to state something different
to what is contained in the normalised scheme.

Lemma 6 (Counterexample Lemma). Let C be a consistent, elementary
scheme over a diamond-free partial order and C∗ be a normalisation of C obtained
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via Lemma 1. Let a, b ∈ V s.t. a < b and

C∗
a,b = { [x1,x2] q1 [l1,u1]

︸ ︷︷ ︸

T1

, [x2,x3] q2 [l2,u2]

︸ ︷︷ ︸

T2

, . . . , [xn,xn+1] qn [ln,un]

︸ ︷︷ ︸

Tn

} .

Let H = a [x0,y0] q [l,u] b. If one of the following conditions holds, then there is
an influence experiment F s.t. F |= C∗ but F 
|= H.

a) x0 < x1 or y0 > xn+1.
b) ( i)

⋃j
h=i[lh, uh] 
⊆ [l, u] or ( ii) sup�(qi, . . . , qj) 
 q holds, where i and j are

the (necessarily unique) indices s.t. x0 ∈ [xi, xi+1] and y0 ∈ [xj , xj+1].

Proof. (Sketch) We give a high-level, intuitive idea of the construction. If (a, b)
is elementary, it suffices to find an Fa,b such that Fa,b |= C∗

a,b but Fa,b 
|= J . The
functions for the other elementary relations can be interpreted in an arbitrary
fashion such that Fc,d satisfies C∗

c,d for all (c, d). This is always possible since
C, and hence C∗ is consistent. The interpretations of the non-elementary rela-
tions are then obtained automatically via the coherence principle; note that this
always satisfies any statements on the respective non-elementary relations due
to Lemma 5.

Case (a) is the simpler one. Here, [x0, y0] � [x1, xn+1]. Hence, it suffices to
construct an experiment F s.t. dom(Fa,b) = [x1, xn+1], whence F 
|= H. We need
to ensure F |= C by simply truncating the domain of any influence experiment
that satisfies C. Such an experiment exists since C is consistent.

For case (b), H disagrees with the statements in C∗
a,b in at least one of two

ways: (i) it restricts the values of an experiment at some point x more than the
unique statement Ti in the sequence in C∗

a,b covering x does. Then we pick a
value y that is covered by the vertical interval in Ti but not in H, use Lemma 2
(a) to obtain a connector that runs through this point (x, y) and extend it to an
influence using Lemma 3 to ensure F |= C but F 
|= H. Or (ii) the behaviour
stated in H is strictly stronger than those in the corresponding statements in
C∗
a,b. Then we obtain a strict connector for these statements using Lemma 2 (d)

and extend it accordingly using Lemma 3. Strictness ensures that the influence
Fa,b has the behaviours required by C∗ but not by H, hence F 
|= H as well.

If (a, b) is not elementary, by the decomposition lemma (Lemma 4) there is a
sequence a = c1, . . . , cn = b of elementary relations and a sequence S1, . . . , Sn−1

of statements derivable in C∗ that satisfy the requirements of Lemma 4. We omit
case (a). If we are in case (b) (i), again we pick a point (x, y) not covered by H,
but by the statements in C∗

a,b. We then generate a sequence of points (xi, yi) for
i ≤ n such that x = x1 and yi = xi+1 for all i < n and yn = y. It then suffices to
invoke Lemma 2 (a) and Lemma 3 to complete the individual relations Fci,ci+1

such that they go through the point (xi, yi).
For the case (b) (ii), it suffices to build interpretations of the Fci,ci+1 that

are strict w.r.t. Si. However, for i > 1, the statement Ti might not exist in C∗,
but may only be derivable via (J). We use Lemma 2 (d) to obtain a strict, range-
covering connector for the sequence of statements that derive Si and, again, use
Lemma 3 to complete it into an influence for Fci,ci+1 . Since these connectors are
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range-covering, we obtain a strict interpretation for Fa,b from these intermediate
Fci,ci+1 , which is the desired contradiction. ��
Theorem 2 (Completeness for Elementary Diamond-Free Schemes).
The calculus of influence is complete for the class of consistent and elementary
schemes over diamond-free partial orders, and arbitrary hypotheses.

Proof. Let C be consistent and elementary, its underlying partial order ≤ be
diamond-free. Let C∗ be a normalisation of C obtained via Lemma 1. Hence, C∗

is also consistent. Let H = a [x,y] q I b s.t. a < b and suppose that

C∗
a,b = { [x1,x2] q1 I1

︸ ︷︷ ︸

T1

, [x2,x3] q2 I2
︸ ︷︷ ︸

T2

, . . . , [xn,xn+1] qn In
︸ ︷︷ ︸

Tn

} .

Moreover, by Lemma 1 we have C � Ti for all i = 1, . . . , n.
If x < x1 or y > xn+1 then Lemma 6 (a) would yield a contradiction to

the assumption that C∗ |= H. Thus, there are i and j s.t. x ∈ [xi, xi+1] and y ∈
[xj , xj+1]. Now we must have

⋃j
h=i Ih ⊆ I and sup�(qi, . . . , qj)  q for otherwise

Lemma 6 (b) would yield a contradiction to the assumption that C∗ |= H.
Let T := a [xi,xj+1] sup�(qi,...,qj) Ii∪...∪Ij b. By repeated applications of rule

(J), T is provable from Ti, . . . , Tj , whence C � T . Moreover, H is provable from
T by at most one application of rule (I−) and (Q−) each. So C � H as well. ��

The completeness proof shows that for any consistent scheme there is always
a satisfying experiment that is comprised of stepwise linear functions. One may
argue that this does not capture the heart of functional behaviour in natural
sciences. It is possible, though, to require influences not only to be continuous
but even differentiable (on their domains). To fulfil this requirement, one could
simply use splines of order 3 in the proof of Lemma 2 with their first derivative
being 0 at the left and right edges of each rectangle.

5 Proof Search and Empirical Results

We observe that the consequence relation � between influence schemes and
hypotheses is in fact polynomial-time decidable, using a bottom-up approach.

Theorem 3. The problem of deciding, given a scheme C and a hypothesis H,
whether or not C � H holds, is decidable in time |C|O(1).

Proof. A close inspection of the proof rules shows that rule (I−) can always be
pushed downwards in a proof and successive applications of it can be shortened
to a single one, s.t. C � H iff there is some H ′ which is provable from C without
using rule (I−), but H can be derived from H ′ by a single application of (I−).

Next we observe that all rules except (I−) have the following property: the
bounds of domain and range of the conclusion are bounds of the domain or range
of some premise. This guarantees termination of a simple bottom-up procedure
for proof search: saturate C by applications of all rules other than (I−). The
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number of different statements created this way is bounded by 4·v2 ·b4 = O(|C|6)
where v is the number of variables occurring in C, and b is the number of different
interval bounds occurring in it. For each of these statements, check whether H
can be derived using (I−). This can be done in time polynomial in |C|. ��

An implementation of a proof search tool, written in Python, is publicly
available.1 The repository also contains formalisations of some influence schemes
and examples of statements whose derivability can be checked using the tool. A
deeper look at the implementation details is beyond the scope of this paper and
deferred for space considerations. It uses a more sophisticated top-down proof
search that constructs only the relevant part of the normalisation of a scheme, i.e.
only “around” those statements that can occur in a proof for the given hypothesis
H. This can not only contain statements about other variables due to rule (T)
but also statements further away from H because rules (L+↗ )–(R+

↘ ) can transmit
requirements on underlying influence experiments along the horizontal axis.

6 Conclusion

We presented a simple language for statements about the behaviour of functions
in a collection that can be interpreted as a way that different entities influence
one another. We gave it a formal semantics and devised a proof calculus to char-
acterise the (uncountable) notion of logical consequence that is generally sound
and complete for a large class of schemes that covers typical cases occurring in
the formal modelling of experimental setups from natural science classes.

It remains to be seen whether the calculus can be extended logically (by fur-
ther rules for instance) to completely capture a larger class of influence schemes.

Future work will also comprise a number of extensions of the calculus for the
purpose of obtaining higher expressiveness. Some experimental setups are inher-
ently temporal in the sense that the influence which a asserts on b depends on a
value range of a and a point in time, as in “Yeast grows at temperatures between
15 and 40 ◦during the next five minutes.” We have made a proposal to incorpo-
rate time in [4]. It also incorporates the ability to make refined assertions about
the behaviour of an influence, as in “Voltage increase is at most 65.4 V msec−1.”
This replaces the abstract behaviours ↗ etc. by intervals like [0, 65.4], and the
geometric interpretation of a statement becomes a trapezoid.

Formal statements could also include a third interval denoting time points,
and influence experiments become collections of binary real-valued functions
which interpret cuboids in three-dimensional real spaces. This would also be an
approach to model the combined effect of several variables on another variable,
even if the modeling of time as a special variable is not desired.

Acknowledgement. We thank Shahla Rasulzade for discussions that have led to this
work, and for suggesting to study a temporal extension thereof.

1 https://github.com/SoerenMoeller/influence_solver.
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Abstract. We present a theory of Cartesian arrays, which are multi-
dimensional arrays with support for the projection of arrays to sub-
arrays, as well as for updating sub-arrays. The resulting logic is an
extension of Combinatorial Array Logic (CAL) and is motivated by the
analysis of quantum circuits: using projection, we can succinctly encode
the semantics of quantum gates as quantifier-free formulas and verify
the end-to-end correctness of quantum circuits. Since the logic is expres-
sive enough to represent quantum circuits succinctly, it necessarily has a
high complexity; as we show, it suffices to encode the k-color problem of a
graph under a succinct circuit representation, an NEXPTIME-complete
problem. We present an NEXPTIME decision procedure for the logic and
report on preliminary experiments with the analysis of quantum circuits
using this decision procedure.

1 Introduction

There has been extensive research on logics to reason about array data-types in
programs. Arrays can concisely represent the values of an unbounded number of
memory locations, and have been successfully applied to verify industrial-scale
programs [11,15,29]. An array formula encoding the semantics of a program path
is typically linear in the number of program statements. Much of the existing
work focuses on one-dimensional arrays and uses nesting to handle the case of
multiple dimensions.

|00000〉 69%
|00001〉 1%

. . .

|11111〉 1%

Fig. 1. A quantum state.

This paper studies a logic called Cartesian Array
Logic (CaAL), in which multi-dimensional arrays are
treated as first-class citizens. The motivation for
designing this logic comes from developing a tailor-
made theory for reasoning about quantum circuits or
programs, which need a fundamentally different rep-
resentation of states than classical programs. Quan-
tum states exist in a superposition of classical states.
Figure 1 gives an example of a 5-qubit quantum state,
c© The Author(s) 2023
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which can be interpreted as a probability distribution over 25 classical states;
every classical state, which can be seen as a string of n bits, is associated with
a probability of being observed.

Current SMT-based solutions for reasoning about quantum programs [3]
encode program paths to a Satisfiability Modulo Theories (SMT) formula over
the theory of real numbers. For a n-qubit quantum program, the direct encoding
uses 2n variables to represent the execution of a quantum circuit, one variable
per classical state. The formula representing a quantum circuit is exponential in
the circuit size.

In the Cartesian Array Logic designed in this paper, one can instead encode
an n-qubit quantum state as an array s : (Bn ⇒ C) that maps each classical
state to a complex number c encoding the probability of this classical state being
observed. The squared absolute value |c|2 is the probability that the complex
number c encodes. Quantum gates, the basic operating units of a quantum circuit,
can be viewed as functions that transform one quantum state to another. We
show that CaAL can concisely encode the semantics of quantum gates, so that
a path formula becomes linear in the circuit size. The semantics of a quantum
circuit is the composition of the gate encodings.

Structure of the Paper. The syntax and formal semantics of the CaAL logic
will be given in Sect. 2. In the same section, we show that this logic is quite
expressive, it can easily encode the satisfiability problem of a quantified Boolean
formula (QBF). We show that deciding the logic is, in fact, NEXPTIME-hard
by a polynomial reduction from the k-color problem of a succinct circuit repre-
sentation of graphs [23]. As an application, in Sect. 3, we show that the logic can
concisely encode the semantics of quantum circuits, using B

n as the index type
and C as the value type. In Sect. 4, we present a decision procedure for CaAL,
extending the classical approach of read-over-write propagation used for arrays.
In the worst case, our procedure might perform an exponential number of such
propagations; hence, if the underlying logic can be decided in NP, our logic can
be decided in NEXPTIME. The preliminary experimental results of applying
this decision for quantum circuit verification can be found in Sect. 5.

Contributions of the paper are (i) a new array logic, CaAL, with native support
for multi-dimensional arrays; (ii) the proof the satisfiability problem of CaAL is
NEXPTIME-hard; (iii) a linear encoding of the semantics of quantum circuits in
CaAL; (iv) an NEXPTIME decision procedure for CaAL without nested array
sorts; and (v) a preliminary evaluation of our approach using standard quantum
circuits.

Related Work on Verification of Quantum Circuits. Although quantum states
can be naturally represented as arrays, the connection between array theories
and quantum circuit verification is novel, to the best of our knowledge. In the
past, people have considered automated quantum circuit verification based on
automata [7], various types of equivalence checking [1,9,19,33], abstract inter-
pretation [24,34], and model checking [13,21,32]. However, techniques based on
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satisfiability modulo theories (SMT) are still lacking. The closest work to ours
is a symbolic execution and verification framework of quantum circuits [3]. The
work encodes quantum circuit verification problems into SMT with the theory of
real numbers, using variables in trigonometric functions, e.g., sinx, which might
lose precision in corner cases. As mentioned, their approach requires 2n variables
to encode a n-qubit circuit in the worst case. As far as we know, our work is
the first SMT-based approach that allows a precise and succinct encoding and
verification of quantum circuits.

Related Work on Array Theories. There is a large body of research on array
decision procedures for SMT, going back to the 1980s, and most SMT solvers
implement at least the theory of extensional arrays (with operations read and
write/store) in our paper, as standardized in SMT-LIB [2]. Stump et al. [29]
presented a decision procedure for this theory and formed the basis for many later
procedures. An extension of the theory, called Combinatorial Array Logic (CAL),
with functions for constant arrays and for the point-wise extension of functions
was presented by De Moura et al. [11]. CAL served as the main inspiration for
our work and is in this paper extended further by adding projections and updates
of sub-arrays. An extension of CAL with cardinality constraints was presented
by Raya et al. [25]. Christ et al. [8] present an algorithm for the theory of arrays
where lemmas are created lazily based on weak equivalences; this method was
later extended to handle constant arrays [20].

There are also many more generalized decision procedures for arrays. For
instance, Ganesh et al. [16] focus on the combined theory of arrays and bit-
vectors and present a decision procedure based on pre-processing, bit-blasting,
and linear arithmetic solving. Brummayer et al. present a decision procedure for
the same theory that introduces lemmas lazily, guided by congruence closure [6].
An extended array theory tailored to software, including operations memset and
memcpy, was presented by Falke et al. [12]. More recently, several theories of
finite arrays were proposed. Bonacina et al. [5] extend the standard theory of
arrays with an abstract notion of length, and present a decision procedure based
on the CDSAT framework. Wang et al. [31] consider a logic extending CAL with
a length function, as well as operations for concatenation, slicing, and repetition
of arrays, and identify a decidable fragment. Sheng et al. [27] propose a theory
of sequences that combines the standard array operations with a length func-
tion, concatenation, and slicing. All those logics cannot directly encode quantum
circuits in a similar style as CaAL, however, since no projection operation is
available.

2 A Theory of Cartesian Arrays

2.1 Preliminaries

We work in the setting of multi-sorted first-order logic with equality; see, e.g.,
[18]. A signature is a tuple Σ = (ΣS , ΣF , ΣP ) consisting of a set ΣS of sorts,
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a set ΣF of function symbols, and a set ΣP of predicates. Predicates and func-
tions have fixed arity and argument sorts, and functions have a fixed result
sort. Given a signature Σ and a set X of sorted variables, we define the usual
notions of Σ-terms, Σ-atoms, Σ-literals, Σ-formulas, and Σ-sentences. Formulas
are evaluated over Σ-structures M = (D, I) that interpret every sort σ ∈ ΣS

as a non-empty domain I(σ) ⊆ D, predicates p ∈ ΣP as relations I(p), and
functions f ∈ ΣF as set-theoretical functions I(f). We slightly abuse notation;
we assume that also variables x ∈ X are mapped to values I(x) by M . The
evaluation of terms, formulas, etc., is defined as is common; the equality sym-
bol = is assumed to be interpreted as the equality relation on D. A theory T
over Σ is a set of Σ-sentences. A Σ-formula φ is called T -satisfiable if there is a
Σ-structure M satisfying both the T -axioms and φ.

2.2 Definition of the Theory of Cartesian Arrays

Cartesian arrays are introduced in the context of a base signature ΣB and a
base ΣB-theory TB , which provides the index and value sorts for arrays. The
signature ΣCaAL = (ΣS

CaAL, ΣF
CaAL, ΣP

CaAL) of CaAL is then defined as follows.
The set of sorts is the least set ΣS

CaAL such that (i) ΣS
B ⊆ ΣS

CaAL, and (ii)
σ, τ ∈ ΣS

CaAL and n ∈ N>0 imply (σn ⇒ τ) ∈ ΣS
CaAL. A sort (σn ⇒ τ) is an

array sort of arity n with index sort σ and value sort τ .

Table 1. Operations included in ΣF
CaAL for each sort (σn ⇒ τ).

·[·, . . . , ·] : (σn ⇒ τ) × σn → τ Reading of array values

store : (σn ⇒ τ)×σn×τ → (σn ⇒ τ) Updating of array values

K : τ → (σn ⇒ τ) Construction of constant arrays

mapf : (σn ⇒ τ1) × · · · × (σn ⇒
τk) → (σn ⇒ τ)

Point-wise extension of base
function f : τ1 × · · · × τk → τ

proj k : (σn ⇒ τ) × σ → (σn−1 ⇒ τ) For n > 1 and k ∈ {1, . . . , n},
projection to n − 1 of the
indexes

arrayStorek : (σn ⇒
τ) × σ × (σn−1 ⇒ τ) → (σn ⇒ τ)

For n > 1 and k ∈ {1, . . . , n},
update of a sub-array

The set ΣF
CaAL includes ΣS

B , as well as the operations listed in Table 1 for
every array sort (σn ⇒ τ). The operators ·[·, . . . , ·] and store are the functions
for reading from and writing to arrays, as in the standard theory of arrays. K
and mapf correspond to the functions introduced in CAL [11]; in particular,
any base function f ∈ ΣF

B is lifted to an operator on arrays using mapf . The
operators proj and arrayStore are specific to our theory CaAL, and can be
used to project an n-dimensional array to an (n − 1)-dimensional sub-array by
fixing the value of the k’th index, and to update the corresponding portion of
the original array, respectively. The set ΣP

CaAL coincides with ΣP
B . Semantics is

defined by the axiom schemata in Table 2.
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Example 1. We illustrate the use of two-dimension arrays s, s′ : (B2 ⇒ C)
to encode two-qubit quantum states. Suppose that s represents the state
1√
2
(|00〉 + |11〉), and s′ = X2(s) is the quantum state after applying an X gate

(the quantum version of a “not”-gate) on the 2nd qubit of s. The matrix repre-
sentations of s and s′ are as follows; note that the results of x2 = 0 and x2 = 1
are swapped in s and s′.

s =

( x1=0 x1=1

x2=0
1√
2

0
x2=1 0 1√

2

)
, s′ =

( x1=0 x1=1

x2=0 0 1√
2

x2=1
1√
2

0

)
.

The projection proj 1(s, k) maps the matrix s to its k’th column vector,
specifically the column with x1 = k. In CaAL, we can construct s′ from s
as s′ = arrayStore2(arrayStore2(K(0), 1, proj 2(s, 0)), 0, proj 2(s, 1)). To compute
the sum of the two matrices, we use map+(s, s′), which is also utilized for other
quantum gate operations.

Several extensions of the theory of Cartesian arrays are possible but beyond
the scope of this paper. Those include (i) arrays with multiple different index
sorts, as opposed to just n copies of the same index sort σ; and (ii) a theory that
also includes point-wise extensions of predicates.

Table 2. Axioms of the Theory of Cartesian Arrays. As shorthand notation, we write
ī : σn for a vector of n index variables i1 : σ, . . . , in : σ.

∀a : (σn ⇒ τ), ī : σn, x : τ.

store(a, ī, x)[ ī ] = x
(1)

∀a : (σn ⇒ τ), ī : σn, j̄ : σn, x : τ.

ī = j̄ ∨ store(a, ī, x)[ j̄ ] = a[ j̄ ]
(2)

∀a, b : (σn ⇒ τ). ∃ī : σn.

a = b ∨ a[ ī ] �= b[ ī ]
(3)

∀x : τ, ī : σn.

K(x)[ ī ] = x
(4)

∀a1 : (σn ⇒ τ1), . . . , ak : (σn ⇒ τk), ī : σn.

mapf (a1, . . . , ak)[ ī ] = f(a1[ ī ], . . . , ak[ ī ])
(5)

∀a : (σn ⇒ τ), ī : σn.

proj k(a, ik)[i1, . . . , ik−1, ik+1, . . . , in] = a[ ī ]
(6)

∀a : (σn ⇒ τ), b : (σn−1 ⇒ τ), ī : σn.

arrayStorek(a, ik, b)[ ī ] = b[i1, . . . , ik−1, ik+1, . . . , in]
(7)

∀a : (σn ⇒ τ), b : (σn−1 ⇒ τ), ī : σn, j : σ.

j = ik ∨ arrayStorek(a, j, b)[ ī ] = a[ ī ]
(8)



A Theory of Cartesian Arrays 175

2.3 Complexity of Satisfiability in CaAL

We now study the hardness of satisfiability of quantifier-free CaAL formu-
las. The quantified Boolean formula problem (QBF) generalizes the Boolean
satisfiability problem by allowing existential and universal quantifiers to be
applied to variables. Its satisfiability problem is PSPACE-complete [28]. With-
out loss of generality, we can assume that QBF formulas are in prenex nor-
mal form Q1x1.Q2x2. · · · Qnxn.φ, which consists of a Boolean formula φ over n
Boolean variables x1, . . . , xn, and a prefix of quantifiers Q1, Q2, . . . , Qn ∈ {∀,∃}.

To reduce the satisfiability problem of QBF to CaAL, we assume that the
base theory provides a sort B with the standard operations. This sort will be
used for both index and values. An array toCaAL(φ) : (Bn ⇒ B) encoding the
semantics of φ is defined recursively as follows:

– toCaAL(xk) = arrayStorek(K(0), 1,K(1)).
– toCaAL(¬φ) = map¬(toCaAL(φ)).
– toCaAL(φ1 ∧ φ2) = map∧(toCaAL(φ1), toCaAL(φ2)).

Observe that arrayStorek(K(0), 1,K(1))[i1, . . . , ik, . . . , in] = ik, and note that
the size of toCaAL(φ) is linear in the size of φ. We can construct a CaAL formula
that is equisatisfiable with Q1x1. · · · Qnxn.φ as follows:

QElim(Q1x1. · · · Qnxn.φ) =

(q1[0] 	1 q1[1]) ∧
n∧

i=2

qi−1 = map�i
(proj i(qi, 0), proj i(qi, 1)) ∧ qn = toCaAL(φ)

where 	i = ∧ when Qi = ∀, and 	i = ∨ otherwise. Note that the
QBF formula Q1x1. · · · Qnxn.φ is valid if and only if the CaAL formula
QElim(Q1x1. · · · Qnxn.φ) is satisfiable.

Theorem 1. The satisfiability problem of CaAL over B is PSPACE-hard.

This lower bound can be improved, however. The k-colorability problem for
graphs with succinct circuit representation is NEXPTIME-complete [23]. This
problem can be reduced to the satisfiability problem of CaAL in polynomial time
as well.

Consider an undirected graph with 2n nodes, and let φ(x̄, x̄′) be a Boolean
circuit encoding the edge relation of the graph: φ(x̄, x̄′) evaluates to true when-
ever there is an edge (x̄) → (x̄′) in the graph. The k-colorability of the graph
can be characterized as the following formula, where c : (Bn → N) is an array
representing the color of each node:

∀x̄, x̄′ : Bn. φ(x̄, x̄′) → c[x̄] �= c[x̄′] ∧ c[x̄] < k ∧ c[x̄′] < k .

In a similar way as for QBF, we encode φ as an array formula φ′ of linear size,
in which aφ : (Bn ×B

n ⇒ B) is an array variable representing the edge relation.
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We then create two intermediate arrays a, b : (Bn×B
n ⇒ N) and use the following

formula in CaAL to encode the relation ∀x̄, x̄′ : Bn. a[x̄, x̄′] = c[x̄]∧b[x̄, x̄′] = c[x̄′]:

EqColor(a, b, c) ≡

a = an ∧ c = a0 ∧
n∧

j=1

projj+n(aj , 0) = projj+n(aj , 1) = aj−1 ∧

b = bn ∧ c = b0 ∧
n∧

j=1

projj(bj , 0) = projj(bj , 1) = bj−1

Then we encode the k-color problem with the following CaAL formula:

φ′ ∧ EqColor(a, b, c) ∧ mapf (aφ, a, b) = K(1)

where f(e, col1 , col2 ) ≡ e → (col1 �= col2 ∧ col1 < k ∧ col2 < k).

Theorem 2. The satisfiability problem of CaAL is NEXPTIME-hard.

3 Array Semantics of Quantum Circuits

As an application, we show that CaAL can encode the semantics of quantum
circuits. Below, we only give a short overview of quantum circuits and define
notations; for more details, see, e.g., the textbook of Nielsen and Chuang [22].

In a n-qubit quantum, a state is a superposition of computational basis states
{|j〉 | j ∈ {0, 1}n}. For example, for a system with three qubits x1, x2, and x3,
the computational basis state |101〉 (in Dirac notation) denotes a state in which
both x1 and x3 are set to 1, and x2 is set to 0. A n-qubit quantum state s is then
denoted as a formal sum

∑
j∈{0,1}n cj · |j〉, where c0, c1, . . . , c2n−1 ∈ C are com-

plex probability amplitudes satisfying the constraint that
∑

j∈{0,1}n |cj |2 = 1.
Intuitively, |cj |2 is the probability that when we measure the quantum state
s in the computational basis, we obtain the basis state |j〉. The constraint∑

j∈{0,1}n |cj |2 = 1 states that probabilities need to sum up to 1 for all compu-
tational basis states.

We can record a quantum state as an array that maps a computational basis
state to its complex probability amplitudes. The state s is represented as an
array s : (Bn ⇒ C) satisfying s[j] = cj for all j ∈ {0, 1}n; slightly abusing
notation, we denote both the state and the array by s.
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3.1 Quantum Circuits

|x1〉 H

|x2〉

Fig. 2. The EPR circuit, consisting
of an H and a CX gate with control
qubit (•) and target qubit (⊕).

A quantum circuit consists of a sequence of
quantum gates. Each quantum gate defines
a specific transformation of quantum states.
For example, the Pauli-X gate (the quantum
version of classical “not” gate) on the k-th
qubit transforms a state s to s′ satisfying ∀i ∈
{0, 1}k−1, b ∈ {0, 1}, j ∈ {0, 1}n−k : s′[ibj] =
s[ib̄j], i.e., it negates the k-th index bit.

Another example is the Pauli-Z gate on
the k-th qubit, which transforms a state s
to s′ satisfying ∀i ∈ {0, 1}k−1, b ∈ {0, 1}, j ∈ {0, 1}n−k : s′[ibj] = ite(b,−1 ·
s[ibj], s[ibj]). Here, probability amplitudes are multiplied with −1 when b is 1,
and are unchanged otherwise.

A H gate, or Hadamard gate, on the k-th qubit transforms a state s to s′

satisfying ∀i ∈ {0, 1}k−1, b ∈ {0, 1}, j ∈ {0, 1}n−k :

s′[ibj] = ite(b,
s[i0j] − s[i1j]√

2
,
s[i0j] + s[i1j]√

2
).

Notice that the amplitude of a basis state of s′ is affected by the amplitude of
two basis states of s, enabling a more diverse superposition. The division with√

2 is for normalizing the probability sum.
A more advanced class of gates are multiple-qubit gates. The CX gate

(“controlled-X”) on the control qubit c and target qubit t applies an X gate to t
when c is 1, and is identity otherwise. Formally, assuming c < t, the gate trans-
forms a state s to s′ satisfying ∀i1 ∈ {0, 1}c−1, bc ∈ {0, 1}, i2 ∈ {0, 1}t−c−1, bt ∈
{0, 1}, i3 ∈ {0, 1}n−t :

s′[i1bci2bti3] = ite(bc, s[i1bci2b̄ti3], s[i1bci2bti3]).

The Toffoli gate CCX (“controlled-controlled-X gate”) has two control qubit c,
d and applies the X gate to the target qubit t only when c = d = 1.

We have introduced enough quantum gates to define the EPR circuit (Fig. 2),
named after Einstein, Podolsky, and Rosen for constructing the Bell state, i.e.,
a 2-qubit circuit converting a basis state |00〉 to a maximally entangled state
1√
2
(|00〉 + |11〉). Starting from a state s (represented s that maps 00 to 1 and

others to 0, the circuit first applies H on the first qubit x1 (denoted H1 in this
paper) to produce the quantum state s′ with s′[00] = s′[10] = 1√

2
and s′[11] =

s′[01] = 0. Then a CX1,2 converts it further to s′′ with s′′[00] = s′′[11] = 1√
2

and s′′[01] = s′′[10] = 0. Notice that CX1,2 converts |10〉 to |11〉, i.e., when x1

is 1, it negates x2.

Note on Complexity. Simulation of a quantum circuit is bounded-error quantum
polynomial time (BQP) hard, a complexity class that is incomparable with NP,
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Table 3. Semantics of quantum gates in Cartesian array logic. We use s and s′ to
denote the quantum state before and after executing the circuit.

Gate Formula

Xk proj k(s′, 0) = proj k(s, 1) ∧
proj k(s′, 1) = proj k(s, 0)

Yk proj k(s′, 0) = map∗(−ω2)proj k(s, 1) ∧
proj k(s′, 1) = map∗(ω2) proj k(s, 0)

Zk proj k(s′, 0) = proj k(s, 0) ∧
proj k(s′, 1) = map∗(−1)proj k(s, 1)

Sk proj k(s′, 0) = proj k(s, 0) ∧
proj k(s′, 1) = map∗(ω2) proj k(s, 1)

Tk proj k(s′, 0) = proj k(s, 0) ∧
proj k(s′, 1) = map∗(ω) proj k(s, 1)

Hk proj k(s′, 0) = map(.+.)/
√
2(proj k(s, 0), proj k(s, 1)) ∧

proj k(s′, 1) = map(.−.)/
√
2(proj k(s, 0), proj k(s, 1))

Rx(π
2
)k proj k(s′, 0) = map(.+(−ω2)∗.)/

√
2(proj k(s, 0), proj k(s, 1)) ∧

proj k(s′, 1) = map((−ω2)∗.+.)/
√
2(proj k(s, 0), proj k(s, 1))

Ry(π
2
)k proj k(s′, 0) = map(.−.)/

√
2(proj k(s, 0), proj k(s, 1)) ∧

proj k(s′, 1) = map(.+.)/
√
2(proj k(s, 0), proj k(s, 1))

CXc,t proj c(s
′, 0) = proj c(s, 0) ∧

proj t(proj c(s
′, 1), 0) = proj t(proj c(s, 1), 1)∧

proj t(proj c(s
′, 1), 1) = proj t(proj c(s, 1), 0)

CZc,t proj c(s
′, 0) = proj c(s, 0) ∧

proj t(proj c(s
′, 1), 0) = proj t(proj c(s, 1), 0)∧

proj t(proj c(s
′, 1), 1) = map∗(−1)proj t(proj c(s, 1), 1)

CCXc,d,t proj c(s
′, 0) = proj c(s, 0) ∧

proj d(s′, 0) = proj d(s, 0) ∧
proj t(proj d(proj c(s

′, 1), 1), 0) = proj t(proj d(proj c(s, 1), 1), 1) ∧
proj t(proj d(proj c(s

′, 1), 1), 1) = proj t(proj d(proj c(s, 1), 1), 0)

as it can compute exactly the probability amplitudes of a quantum state after
executing a circuit. We will show that the Cartesian array logic can encode the
semantics of quantum circuits, so one can also use the logic for quantum circuit
simulation. Hence, exponential time is the best deterministic algorithm we can
hope for when solving CaAL formulas.

3.2 Interpretation of Quantum Gates

We show the encoding of quantum gates in CaAL in Table 3. Notice that this
gate set includes several universal gates (e.g., H, CX, and T [10]) that can
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approximate any quantum gate to an arbitrary precision requirement. Arbitrary
degree rotation can also be supported using the theory of reals as the base theory.
This paper presents a precise encoding that only requires a theory of integers.
In the figure, we use s and s′ to denote the quantum states (encoded as arrays)
before and after executing a quantum gate. To encode s′ = Xk(s), negating the
k-th qubit, we use proj k(s′, 0) = proj k(s, 1) ∧ proj k(s′, 1) = proj k(s, 0): index
k = 0 in s′ equals the case of k = 1 in s. The handling of Z, S, and T gates
is similar, using the map function to multiply the array values with different
constants. Note that here we use ω to represent e

πi
4 = cos π

4 + i sin π
4 = 1√

2
+ i√

2
,

the unit vector that is at an angle of 45◦ to the positive real axis in the complex
plane. Later we will show that this representation allows a precise algebraic
representation of complex numbers using a five-tuple of integers. Observe that
ω4 = −1. The Y gate combines the two constructions; it negates the k-th index
qubit and multiplies each projection with different constant coefficients. For
the H, Rx(π

2 ), and Ry(π
2 ) gates, we use a binary map function to update the

amplitudes. For the controlled gates, we use the projection function to classify
the cases according to the control bits and apply the X or Z gate only when all
controlled bits are 1.

Example 2. We use CaAL to verify the correctness of the EPR circuit Fig. 2: the
circuit transforms the state |00〉 to 1√

2
(|00〉 + |11〉). For this, the initial state of

the circuit is encoded as an array expression, the H and CX gates are encoded
according to Table 3, and the intended final state of the circuit is represented as
a negated equation:

s0 = store(K(0), (0, 0), 1)

∧ proj 1(s1, 0) = map(.+.)/
√
2(proj 1(s0, 0), proj 1(s0, 1))

}
s1 = H1(s0)∧ proj 1(s1, 1) = map(.−.)/

√
2(proj 1(s0, 0), proj 1(s0, 1))

∧ proj 1(s2, 0) = proj 1(s1, 0) }
s2 = CX1,2(s1)∧ proj 2(proj 1(s2, 1), 0) = proj 2(proj 1(s1, 1), 1)

∧ proj 2(proj 1(s2, 1), 1) = proj 2(proj 1(s1, 1), 0)

∧ s2 �= store(store(K(0), (1, 1),
1√
2
), (0, 0),

1√
2
)

The formula is unsatisfiable if and only if the EPR circuit correctly performs
the transformation.

Representation of Complex Numbers. To achieve accuracy with no loss of pre-
cision, in this paper, when working with C, we use a subset of the complex
numbers that the following algebraic encoding can express (cf. [7,30,35]):

( 1√
2

)
k(a + bω + cω2 + dω3), (9)
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Table 4. Tableau proof rules of the decision procedure for CaAL.

a = store(b, ī, v)
idx

v = a[̄i]

a = K(v) w = a′ [̄i] a ∼ a′
K ⇓

v = w

a = store(b, ī, v) w = a′[j̄] a ∼ a′
store ⇓

ī = j̄ w = b[j̄]

a = store(b, ī, v) w = b′[j̄] b ∼ b′
store ⇑

ī = j̄ w = a[j̄]

a = mapf (b1, . . . , bm) w = a′ [̄i] a ∼ a′
map ⇓

w = f(b1 [̄i], . . . , bm [̄i])

a = mapf (b1, . . . , bm) w = b′ [̄i] b′ ∼ bk for some k ∈ {1, . . . , m}
map ⇑

a[̄i] = f(b1 [̄i], . . . , bk−1 [̄i], w, bk+1 [̄i], . . . , bm [̄i])

a = projk(b, j) w = a′ [̄i] a ∼ a′
proj ⇓

w = b[i1, . . . , ik−1, j, ik, . . . , in−1]

a = projk(b, j) w = b′ [̄i] b ∼ b′
proj ⇑

j �= ik w = a[i1, i2, . . . , ik−1, ik+1, . . . , in]

a = arrayStorek(b, j, c) w = a′ [̄i] a ∼ a′
arrayStore ⇓

j = ik ∧ w = c[i1, . . . , ik−1, ik+1, . . .] j �= ik ∧ w = b[̄i]

a = arrayStorek(b, j, c) w = b′ [̄i] b ∼ b′
arrayStore ⇑1

j = ik w = a[̄i]

a = arrayStorek(b, j, c) w = c′ [̄i] c ∼ c′
arrayStore ⇑2

w = a[i1, . . . , ik−1, j, ik, . . . , in−1]

a : (σn ⇒ τ) b : (σn ⇒ τ)
ext

a = b ∃ī : σn. a[̄i] �= b[̄i]

i1, . . . , ik : σ
freshIdx ∃j : σ. j �= i1 ∧ · · · ∧ j �= ik

a : (σn ⇒ τ) ī : σn

read ∃v : τ. v = a[̄i]

v = a[̄i] w = b[j̄] a ∼ b
readCong

ī �= j̄ ī = j̄ ∧ v = w

where a, b, c, d, k ∈ Z. A complex number is then represented by a five-tuple
(a, b, c, d, k). Although the considered set of numbers is only a small subset of C,
it is closed under the operations needed to encode quantum gates, and it can arbi-
trarily closely approximate any complex number. For this, note that (a, 0, c, 0, k)
represents 1√

2
k (a + cω2) = a√

2
k + ci√

2
k , and pick suitable a, c, and k. The repre-

sentation is also sufficient to describe a set of quantum gates that can implement
universal quantum computation (Table 3).
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4 A Decision Procedure for Cartesian Arrays

We now present a decision procedure for quantifier-free CaAL. Our calculus is an
extension of the calculus for CAL [11] with rules for the proj and arrayStore oper-
ations. For the sake of presentation, we use the setting of analytic tableaux [14],
although the same proof rules can be used also in a model-constructing calcu-
lus [11].

As a simplifying assumption, in this section we furthermore require that
the index sorts σ of an array sort (σn ⇒ τ) represent infinite domains. This
assumption can be lifted in the same way as for CAL [11], but the details are
orthogonal to the task of supporting the new array operations.

4.1 Preliminaries

A tableau [14] is a finite tree growing downwards, in which each node is labelled
with a formula, the root is labelled with the formula to be refuted, and the
children of each node are derived from the formulas on the branch leading to
the node using one of the available proof rules. We assume a tableau calculus
equipped with a set of standard rules [14]: (i) α- and β-rules for eliminating
Boolean connectives ∧,∨; (ii) δ-rules for eliminating existential quantifiers ∃;
(iii) rules for reasoning about positive and negative equalities x = y between
variables, which include rules for closing proof branches; (iv) rules implementing
a decision procedure for the base theory TB .

Our calculus operates on flat formulas, which are formulas in which func-
tions f only occur in equations y = f(x̄) in positive positions, i.e., underneath
an even number of negations, with y, x̄ being variables. Every formula can be
converted to a flat formula by introducing a linear number of new variables.

We define proof rules using the following notation:

φ1 φ2 · · · φk
rule

ψ1 · · · ψm

The rule is applicable if the premises φ1, . . . , φk occur on a proof branch, and
has the effect of expanding the tableau: the proof branch is split into m new
branches, to which the formulas ψ1, . . . , ψm, respectively, are appended.

In the premises of a rule, we frequently include assumptions x ∼ y that
require that the equality x = y follows from positive equalities between variables
on the proof branch. We also use premises x : σ, stating that x is a variable of
sort σ occurring on the proof branch.

4.2 Proof Rules

The rules of our calculus are shown in Table 4. The rules idx,K⇓, store⇓, store⇑,
map⇓,map⇑ coincide with the rules used for CAL [11], and define the semantics
of the operators K, store, and map. Extensionality is implemented by the rule ext,
which can be applied for any two array variables a, b of the same type occurring
on a branch.
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The semantics of proj and arrayStore is defined, in a similar way as for store,
by upward and downward propagation of array reads. Since arrayStorek(b, j, c)
combines two arrays b, c into a single new array, downward propagation has to
route reads either to b or to c. Upward propagation from c is always possible,
while reads on b can only be propagated if they are not overwritten by c.

For sake of presentation, we write the conclusion in the rules map⇓,map⇑,
and ext in non-flat form, and assume that the transformation to a flat formula
happens implicitly by adding existentially quantified variables representing the
sub-terms.

Congruence reasoning is necessary only for array reads, and implemented
using the rule readConq. For simplicity, in our formulation the rule splits over
the cases ī �= j̄ and ī = j̄, and effectively searches for an arrangement of the
index variables satisfying a formula. An actual implementation could rely on
equality propagation being performed by a theory combination procedure.

As one of the more tricky points, the completeness of the calculus sometimes
requires new array reads to be generated. This aspect is covered by the rules ε	

and εδ in CAL [11], which are rules that can, however, not directly be used in
our setting of multi-dimensional arrays. To obtain completeness, our calculus
sometimes has to construct reads by combining different index variables occur-
ring on a branch, and sometimes invent index values that are distinct from all
indexes occurring in a formula. The introduction of corresponding new reads is
handled by the rules freshIdx and read.

Example 3. Consider arrays a, b : (Z2 ⇒ Z), and the formulas

proj 1(a, i) = K(42) ∧ proj 2(a, j) = K(43) (10)
a = K(42) ∧ b = store(a, (i, i), 43) ∧ proj 1(b, i) = K(43) (11)

Both formulas are unsatisfiable, but cannot be refuted using the rules discussed
so far. In (10), no reads a[· · · ] exist, so that no propagations can be performed
by any of the rules. It is necessary to identify the constraints on the value a[i, j]
as contradictory. The rule read can be used to introduce a new formula ∃v. v =
a[i, j] on a proof branch, after which the rules proj ⇑ and K⇓ can be applied.

To show that (11) is unsatisfiable, we need to consider a point (i, j) with
j �= i and derive that a[i, j] = b[i, j] = 42, and contradicting proj 1(b, i) = K(43).
The introduction of a fresh index value j (different from i) is handled by the
rule freshIdx, which relies on the index sort σ representing an infinite domain.
Once the existence of an index j �= i has been asserted, the rule read can be used
to introduce an equation v = a[i, j], and the contraction be derived.

4.3 Correctness and Complexity

Theorem 3. The presented tableau calculus is sound and complete for flat
quantifier-free CaAL formulas: there is a closed tableau for a formula φ if and
only if φ is unsatisfiable.
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Proof. Soundness: As usual, we identify each proof branch with the conjunction
of its formulas and a tableau with the disjunction of its proof branches. It can
be shown that the tableau before expansion using a proof rule is equi-satisfiable
to the tableau before the expansion, modulo the array axioms in Table 2.

Completeness: We make the simplifying assumption that φ only contains
arrays with (infinite) index sort σ and value sort τ , and in particular that array
sorts are not nested. Completeness for the general case follows by recursively
applying model construction.

Consider then the systematic construction of a tableau for a formula φ by
exhaustively applying proof rules under the following restrictions: (i) regularity,
i.e., rules are only applied if they lead to new formulas being added to each
generated branch; (ii) rule freshIdx can only be applied once on a branch, only
after ext has been applied to all pairs a, b of array variables on the branch, and
choosing i1, . . . , ik as the set of all variables of sort σ on the branch.

Observe that this systematic application of rules terminates: the calculus
never introduces new array variables so that only finitely many applications
of ext are possible. Note that ext and freshIdx are the only rules introducing
new index variables. Since freshIdx is applied at most once on a branch, the set
of index variables is bounded, and there is only a bounded number of array
reads v = a[̄i].

Assume now that a tableau for φ cannot be closed, i.e., has at least one
branch B that cannot be closed, although all possible rule applications have
been performed. We extract a model of φ from B. Suppose that MT = (DT , IT )
is a model that interprets the non-array-variables (including index variables),
satisfying all literals on B that do not contain array variables, and denote the
equivalence class of an array variable a on B by [a] = {b | a ∼ b}. Extending IT ,
we construct an interpretation I with I((σn ⇒ τ)) = IT (σ)n → IT (τ) being a
function space, and the theory functions ·[·], store,K,mapf , proj and arrayStore
having their expected meaning. I is constructed in such a way that all array
literals on B are satisfied; the satisfaction of compound formulas on B, and in
particular of φ, then follows like in the standard Hintikka construction [14].

The interpretation I(a) of an array variable a : (σn ⇒ τ) is derived from
the array reads on [a] occurring on B. The main difficulty is to consistently
interpret the (infinitely many) elements of the array that are not mentioned
explicitly on B. For this, denote the index variable introduced by the unique
freshIdx application on B by ε, and observe that its value IT (ε) is distinct from
the value of all other index variables. We will use values read from IT (ε)-locations
as default values for the arrays. Let

Ra = {(〈IT (i1), . . . , IT (in)〉, IT (v)) | v = b[̄i] occurs on B and a ∼ b}

be the set of array reads for a : (σn ⇒ τ). The relation Ra describes a non-empty,
consistent (but partial) valuation of the array elements, due to the exhaustive
application of rules read and readCong.

The gaps in Ra will be filled with default values introduced by ε. For this, we
define a precedence ordering � ⊆ IT (σ)∗ ×IT (σ)∗ over index vectors; intuitively,



184 Y.-F. Chen et al.

c̄ � d̄ if c̄ and d̄ agree in all components, unless dk = IT (ε), which is interpreted
as don’t-care:

〈c1, . . . , ck〉 � 〈d1, . . . , dm〉 iff k = m and ∀i ∈ {1, . . . , k} : ci = di ∨ di = IT (ε)

The value of array variable I(a) ∈ I((σn ⇒ τ)) is then:

I(a) =
{

(c̄, x) | (d̄, x) ∈ Ra, where c̄ � d̄
and for all (d̄′, x′) ∈ Ra : if c̄ � d̄′ then d̄ � d̄′

}

To see that I(a) is functionally consistent, note that whenever (d̄, x) and (d̄′, x′)
exist in Ra such that c̄ � d̄ and c̄ � d̄′, then there is also some (d̄′′, x′′) ∈ Ra such
that c̄ � d̄′′ � d̄, d̄′. This is because the rule read has been applied exhaustively.

It remains to be shown that I satisfies all array literals. By construction,
equations a = b will be satisfied. To see that equations v = a[̄i] hold, note that
I(a) ⊇ Ra. Equations a �= b are satisfied due to the exhaustive application of
ext: there has to be some vector ī of index variables such that a[̄i] �= b[̄i].

All other array literals are positive equations of the form x = f(ȳ),
and hold because exhaustive propagation of read atoms was performed. As
an example, consider an equation a = proj k(b, j); it has to be shown that
I(a) = {(〈c1, . . . , ck−1, ck+1, . . . , cn〉, x) | (c̄, x) ∈ I(b), ck = IT (j)}. Observe
that Ra = {(〈c1, . . . , ck−1, ck+1, . . . , cn〉, x) | (c̄, x) ∈ Rb, ck = IT (j)} due to the
rules proj ⇓ and proj ⇑. Consider then a point (c̄, x) ∈ I(a), defined by (d̄, x) ∈
Ra, and the corresponding index vectors c̄′ = 〈c1, . . . , ck−1, IT (j), ck, . . . , cn−1〉
and d̄′ = 〈d1, . . . , dk−1, IT (j), dk, . . . , dn−1〉 in Rb, and show that (c̄′, x) ∈ I(b) is
defined by (d̄′, x) ∈ Rb. ��

The proof of the theorem highlights the restrictions necessary to obtain a
decision procedure for CaAL: all rules should be applied under the condition of
regularity, and the rule freshIdx has to be restricted to at most one application
per branch, and only after applications of ext have been performed.

To evaluate runtime, like in the proof of Theorem 3 we make the assumption
that there are no nested array sorts, i.e., index and value sorts are themselves
not arrays. To avoid degenerate cases when evaluating runtime, we assume that
a formula φ cannot be smaller than the maximum arity of occurring array vari-
ables. We then get:
Lemma 1. The satisfiability problem of quantifier-free CaAL formulas φ with-
out nested array sorts is in NEXPTIME, assuming that the satisfiability problem
of the base theory is in NP.

Proof. This follows from the proof of Theorem 3. On every branch, the rule ext
can be applied at most quadratically often, and the number of index variables
occurring on a branch is polynomial in the size of the input formula φ. The
number of distinct read atoms v = a[̄i] that can be introduced on a branch,
and therefore the number of rule applications altogether is then polynomially
bounded by the number of variables in φ, and exponentially bounded in the
maximum arity of array variables in φ. After exhaustive application of the rules
in Table 4, solving an at most exponential number of base theory formulas (with
at most exponential size) on a branch is in NEXPTIME. ��
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4.4 Optimizations

The calculus and decision procedure are primarily designed with simplicity in
mind, rather than focusing on practical efficiency. Although the procedure’s com-
plexity may not be reduced below NEXPTIME, incorporating various optimiza-
tions can yield significant practical improvements. Two obvious improvements
to be considered are: (i) The detection of linear array variables, which are
essentially variables that are assigned to at most once in array literals [11]. It is
enough to perform upward propagation (rules ⇑) only for non-linear variables.
(ii) The restriction of the number of reads introduced using the rule read.
In practice, only a few of the generated equations are actually needed to ensure
completeness. Instead of generating all possible reads eagerly, a procedure could
focus on the other rules first, and only introduce additional reads when it is
detected that default values are missing for some sub-arrays. We believe that
other refinements presented in [11] can be carried over to our decision procedure
as well.

Table 5. Experimental results. We list the circuit name, the number of qubits and
gates in the circuit, the verification result, and the execution time.

circuit qubits gates result time circuit qubits gates result time

H2 1 2 OK 3.1 s H2 (bug) 1 2 bug 3.0 s

BV 1 3 OK 3.2 s BV (bug) 1 3 bug 3.3 s

BV 2 5 OK 6.4 s BV 5 13 OK 1m 59.0 s

BV 3 8 OK 16.8 s BV 6 15 OK 9m 13 s

BV 4 10 OK 43.2 s BV 7 18 OK 50m 54 s

GroverSingle-Comp 2 17 OK 5.2 s GroverSingle-Comp 4 85 OK 51.7 s

GroverAll-Comp 2 17 OK 6.8 s GroverAll-Comp 4 85 OK 3m 53 s

GroverSingle-Iter 1 9 OK 3.2 s GroverAll-Iter 1 9 OK 3.8 s

GroverSingle-Iter 2 15 OK 4.9 s GroverAll-Iter 2 15 OK 14.2 s

GroverSingle-Iter 3 21 OK 8.4 s GroverAll-Iter 3 21 OK 37.9 s

GroverSingle-Iter 4 27 OK 17.1 s GroverAll-Iter 4 27 OK 4m 51 s

GroverSingle-Iter 5 33 OK 46.9 s GroverAll-Iter 5 33 OK 57m 2 s

5 Preliminary Experimental Result

We have implemented the decision procedure proposed for CaAL, the encoding
of quantum gates using array operations, and of complex numbers as five-tuples
of integers in the SMT solver Princess [26]. The implementation is still a proof
of concept and largely unoptimized, so that the results reported in this section
should be considered preliminary. We evaluate the performance of CaAL based
on a set of benchmarks for quantum circuit verification. All experiments were
conducted on a server with an AMD EPYC 7742 64-core processor (1.5 GHz),
1,152 GiB of RAM, and a 1 TB SSD running Ubuntu 20.04.5 LTS but were run
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with only one core for the sake of fairness. Files to reproduce the experiment
can be found in https://zenodo.org/record/7970588. The experimental results
are shown in Table 5. Specifically, we tested four different verification problems
with different circuit sizes.

– H2: Two consecutive H gates equal to identity.
– BV: The (complex) amplitudes of the output quantum state from a Bernstein-

Vazirani’s [4] circuit have no imaginary parts.
– GroverXXX-Comp: The Grover’s [17] circuit has a probability of 90% to find

the correct answer.
– GroverXXX-Iter: Each Grover iteration [17] increases the possibility of finding

the correct answer.

For Grover’s algorithm, XXX = Single means we check the correctness of
the circuit against a specific oracle, and XXX = All means we check against all
possible oracles. We manually injected two bugs (by altering one gate) into two
examples to demonstrate bug-catching capability. With a timeout of 60min, our
implementation can analyze circuits with at most 7 qubits and at most 85 gates,
which are still relatively small circuits. Analyzing the results, we discovered that,
in particular, the H gates used to create a superposition state at the beginning
of a circuit are challenging for the array decision procedure, as they lead to an
exponential number of array reads being created.

6 Conclusions

We have presented CaAL, an expressive logic of extensional arrays, with opera-
tions for reading and storing values, creating constant arrays, a point-wise exten-
sion of functions on array values to arrays, projection of arrays, and updating
array slices. We have established that checking the satisfiability of quantifier-
free CaAL formulas is NEXPTIME-complete, for a base theory in NP and non-
nested arrays. The root cause for the complexity of CaAL (as opposed to the
NP complexity of CAL and the standard theory of arrays) is that formulas can
be constructed in which a cell in one array has dependencies to an exponential
number of cells in another array. In our decision procedure, such situations lead
to an exponential number of reads generated during propagation. High degrees
of dependency are typical, however, for quantum circuits.

We believe that CaAL is a suitable framework for reasoning about quantum
circuits. Due to the expressiveness of the logic, the encoding of quantum gates
becomes remarkably succinct and elegant (Table 3), and easily understandable
both for researchers in quantum circuit verification and people in automated rea-
soning. While theoretically optimal, we consider the decision procedure proposed
for CaAL only as a first step: the high complexity of CaAL implies that brute-
force approaches like saturation are unlikely to scale to interesting instances. As
future work, we therefore plan to explore the use of abstraction methods and of
more succinct array representations in the decision procedure, thus making it
possible to exploit the highly structured nature of typical quantum circuits in

https://zenodo.org/record/7970588
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the solving process. We also plan to investigate whether interesting fragments of
CaAL with lower complexity can be identified.
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robin.coutelier@student.uliege.be

2 TU Wien, Vienna, Austria

Abstract. Subsumption resolution is an expensive but highly effec-
tive simplifying inference for first-order saturation theorem provers. We
present a new SAT-based reasoning technique for subsumption resolu-
tion, without requiring radical changes to the underlying saturation algo-
rithm. We implemented our work in the theorem prover Vampire, and
show that it is noticeably faster than the state of the art.

1 Introduction

Saturation-based proof search is a popular approach to first-order theorem prov-
ing [6,14,18]. In addition to efficient inference systems [1,8], saturation provers
also implement redundancy elimination to reduce the size of the search space.
Redundancy elimination deletes clauses from the search space by showing them
to be logical consequences of other (smaller) clauses, and therefore redundant.
However, checking whether a first-order formula is implied by another first-
order formula is undecidable, and so eliminating redundant clauses is in gen-
eral undecidable too. In practice, saturation systems apply cheaper conditions
for redundancy elimination, such as removing equational tautologies by con-
gruence closure or deleting subsumed clauses by establishing multiset inclu-
sion. Recently, SAT solving has been applied to efficiently detect and remove
subsumed clauses [10]. We extend SAT-based reasoning in first-order theorem
proving to a combination of subsumption and resolution, subsumption resolu-
tion [2] (Sect. 4).

Both subsumption and subsumption resolution are NP-complete [4]. To
improve efficiency in practice, we (i) encode subsumption resolution as SAT
formulas over (match) set constraints (Sect. 5) and (ii) directly integrate CDCL
SAT solving for checking subsumption resolution in first-order theorem prov-
ing (Sect. 6). We implement our approach in the theorem prover Vampire [6],
improving the state-of-the-art in first-order reasoning (Sect. 7).

Related Work. Subsumption and subsumption resolution are some of the most
powerful and frequently used redundancy criteria in saturation-based provers.
Subsumption resolution is supported as contextual literal cutting in [14], along
with efficient approaches for detecting multiset inclusions among clauses [6,13,
18]. Special cases of unit deletion as a by-product of subsumption tests are also
proposed in [16]. Much attention has been given to refinements of term indexing
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[13,16] to drastically reduce the set of candidate clauses checked for subsump-
tion. Recently, these approaches have been complemented by SAT solving [10],
reducing subsumption checking to SAT. Our work generalises this approach by
solving for both subsumption and subsumption resolution via SAT.

SAT solvers have been applied widely to first-order theorem proving, includ-
ing but not limited to AVATAR [17], instance-based methods [5], heuristic
grounding [14], global subsumption [12] and combinations thereof [11], but using
SAT solvers for classical subsumption methods is under-explored. To the best
of our knowledge, SAT solving for subsumption resolution has so far not been
addressed in the landscape of automated reasoning.

2 Illustrative Examples and Main Contributions

Let us illustrate a few challenges of subsumption resolution, which motivate our
approach to solving it (Sect. 4). Given a pair of clauses L and M , denoted as
(L,M), the problem is to decide whether M can be simplified by L via a special
case of logical consequence. In Fig. 1 we show examples where it is not obvious
for which pairs (Li,Mi) subsumption resolution can be applied.

L1 := p(x1, x2) ∨ p(f(x2), x3)

M1 := p(g(y1), c) ∨ ¬p(f(c), e)
L2 := p(x1) ∨ q(x2)

M2 := ¬p(y) ∨ ¬q(c)

L3 := p(x1) ∨ q(x1, x2) ∨ ¬p(x2)

M3 := ¬p(y) ∨ q(y, y)

L4 := p(x1) ∨ q(x2) ∨ r(x3)

M4 := ¬p(y1) ∨ q(c)

Fig. 1. Illustrative examples.

In fact, subsumption resolution can only be applied to (L1,M1). Later, we
show how our approach determines that M1 can be shortened in the presence of
L1 (Example 3.1), but also how the remaining pairs cannot apply subsumption
resolution (Examples 5.1, 5.2, and 4.1). For example, (L4,M4) is filtered by
pruning to bypass the SAT routine altogether.

Our Contributions

1. We cast the problem of subsumption resolution over pairs of first-order for-
mulas (L,M) as a SAT problem (Theorem 5.1), ensuring any instance of
subsumption resolution is a model of this SAT problem.

2. We tailor encodings of subsumption resolution (Sects. 5.1–5.2) for effective
SAT-based subsumption resolution (Algorithm 1).

3. We integrate our approach into the saturation loop, solving for subsumption
and subsumption resolution simultaneously (Sect. 6).

4. We implement our work in the theorem prover Vampire and showcase our
practical gains in first-order proving (Sect. 7).
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3 Preliminaries

We assume familiarity with first-order logic with equality. We include standard
Boolean connectives and quantifiers in the language, and the constants �,⊥ for
truth and falsehood. We use x, y, z for first-order variables, c, d, e for constants,
f, g for functions, p, q, r for atoms, l,m for literals, and L,M for clauses, all
potentially with indices. If L is a clause l1 ∨ . . . ∨ ln, we sometimes consider it
as a multiset of its literals li, and write |L| for its cardinality (i.e. the number n
of literals in L). The empty clause is denoted �. Free variables are universally
quantified. An expression E is a term, atom, literal, clause, or formula.

Substitutions and Matches. A substitution σ is a (partial) mapping from
variables to terms. The result of applying a substitution σ to an expression E is
denoted σ(E) and is the expression obtained by simultaneously replacing each
variable x in E by σ(x). For example, the application of σ := {x �→ f(c)} to the
clause L := {p(x), q(x, y)} yields σ(L) = {p(f(c)), q(f(c), y)}. Note that σ(L) is
a logical consequence of L.

A matching substitution, in short a match, between literals l and m is a
substitution σ such that σ(l) = m. For example, the match of p(x) onto p(f(c))
is {x �→ f(c)}. Two matches are compatible and can be combined in the same
substitution iff they do not assign different terms to the same variable. For
example, the substitutions {x �→ f(c), y �→ g(d)} and {x �→ f(c), z �→ h(e)} are
compatible, but {x �→ f(c)} and {x �→ g(c)} are not.

Saturation and Redundancy. Many first-order systems apply the superposi-
tion calculus [1] in a saturation loop [8]. Given an input set F of clauses, satura-
tion iteratively derives logical consequences and adds them to F . By soundness
and completeness of superposition, if � is derived the system can report unsat-
isfiability of F ; if � is not encountered and no further clauses can be derived,
the system reports satisfiability of F .

Saturation is more efficient when F is as small as possible. For this reason,
saturation-based provers also employ simplifying inferences. Simplifying infer-
ences reduce the number or size of clauses in F . This is formalised using the
following notion of redundancy : a ground clause M is redundant in a set of
ground clauses F if M is a logical consequence of clauses in F that are strictly
smaller than M w.r.t. a fixed simplification ordering �. A non-ground clause M
is redundant in a set of clauses F if each ground instance of M is redundant
in the set of ground instances of F . If M is redundant in F , then M can be
removed from F while retaining completeness.

Subsumption. A clause L subsumes a distinct clause M iff there is a substi-
tution σ such that

σ(L) ⊆M M (1)

where ⊆M denotes multiset inclusion. We also say that M is subsumed by L.
Note that subsumed clauses are redundant.
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Removing subsumed clauses M from the search space F is implemented
through a simplifying rule, checking condition (1) over pairs of clauses (L,M)
from F . Matches between every literal in L to some literal in M are checked; if
a compatible set of matches is found, then M can be removed from F .

Subsumption Resolution. Subsumption resolution aims to remove one redun-
dant literal from a clause. Clauses M and L are said to be the main and side
premise of subsumption resolution, respectively, iff there is a substitution σ, a
set of literals L′ ⊆ L and a literal m′ ∈ M such that

σ(L′) = {¬m′} and σ(L \ L′) ⊆ M \ {m′}. (2)

If so, M can be replaced by M \ {m′}. Subsumption resolution is hence the rule

L ��M(SR)
M \ {m′}

We indicate the deletion of a clause M by drawing a line through it (��M),
and we refer to the literal m′ of M as the resolution literal of SR. Intuitively,
subsumption resolution is binary resolution followed by subsumption of one of
its premises by the conclusion. However, by combining two inferences into one
it can be treated as a simplifying inference, which is advantageous from the
perspective of proof search dynamics.

Example 3.1. Consider L1,M1 of Fig. 1. Subsumption resolution is applied by
using the substitution σ := {x1 �→ g(y1), x2 �→ c, x3 �→ e}. Note that σ(L1) =
p(g(y1), c) ∨ p(f(c), e). σ(L1) and M1 can be resolved to obtain p(g(y1), c). The
clause p(g(y1), c) subsumes M1, since it is a sub-multiset of M1. We have

p(x1, x2) ∨ p(f(x2), x3) �����������
p(g(y1), c) ∨ ¬p(f(c), e)

p(g(y1), c)

4 SAT-Based Subsumption Resolution

We describe the main steps of our SAT-based approach for deciding the appli-
cability of subsumption resolution on a pair (L,M) of clauses. The core of our
work solves (2) by finding match substitutions between literals in L and M . Our
technique is summarised in Algorithm 1.

Pruning. The first step of Algorithm 1 prunes pairs (L,M) of clauses that
cannot be simplified by subsumption resolution due to a syntactic restriction
over symbols in L and M , viz. whether the set of predicates in L is a subset of
the predicates in M . If not, then there is a literal in L that cannot be matched
to any literal in M , and hence subsumption resolution cannot be applied.

Example 4.1. The clause pair (L4,M4) from Fig. 1 is pruned by Algorithm 1:
the set of predicates in L4 and M4 are respectively {p, q, r} and {p, q}, implying
that the literal r(x3) of L4 cannot be matched to any literal in M4.
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Algorithm 1. SAT-based subsumption resolution over pair (L,M) of clauses
ms ← createMatchSet()
solver ← createSatSolver(ms)
procedure SubsumptionResolution(L, M)

if pruned(L, M) then
return NoSubsumptionResolution

if fillMatchSet(ms, L, M) is false then
return NoSubsumptionResolution

encodeConstraints(solver ,ms)
if solver .solve() is SAT then

return buildConclusion(solver .getSolution(), M) � conclusion of
subsumption resolution

return NoSubsumptionResolution

Match Set. The match set of Algorithm 1 computes matching substitutions
over literals of L and M . The match set ms consists of a sparse matrix that
assigns each literal pair (li,mj) ∈ L × M a substitution σi,j such that σi,j(li) =
mj or σi,j(li) = ¬mj . In addition, a polarity Pi,j is also assigned to (li,mj), as
follows: we set polarity Pi,j = + if σi,j(li) = mj and Pi,j = − if σi,j(li) = ¬mj .
This matrix is sparse because in general not all literal pairs (li,mj) ∈ L × M
can be matched. Additionally, it is again possible to prune (L,M) while filling
the match set: if a row of the match set is empty, then there is some literal in L
that cannot be matched to any literal in M . In this case, subsumption resolution
cannot use L to simplify M , so the pair (L,M) is pruned.

SAT Solver. The solver of Algorithm 1 is the CDCL-based SAT solver intro-
duced previously [10], which supports reasoning over matching substitutions in
addition to standard propositional reasoning. This solver also features direct sup-
port for AtMostOne constraints. Solver performance was tuned for subsumption,
which we retain for subsumption resolution. Each propositional variable v is asso-
ciated with a substitution σv, and the solver ensures that all substitutions σv,
for which v is assigned � in the current model, are compatible. Conceptually, a
global substitution σ satisfying the invariant σ =

⋃{σv | v = �} is kept in the
SAT solver. In the following, we will write this binding as v ⇒ σv ⊆ σ.

Example 4.2. Suppose propositional variables v1 and v2 are associated with sub-
stitutions σ1 := {x �→ y} and σ2 := {x �→ z}, respectively. As σ1 and σ2 are
incompatible, the solver will block assigning v1 = � and v2 = � simultaneously
since it would break the above invariant.

Encoding Constraints. Given the match set of (L,M), we formalise the sub-
sumption resolution problem (2) as the conjunction of four constraints over
matching substitutions. Our formalisation is given in Theorem 5.1 and is com-
plete in the following sense: subsumption resolution can be applied over (L,M)
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iff each constraint of Theorem 5.1 is satisfiable. Application of subsumption reso-
lution is tested via satisfiability checking over our constraints from Theorem 5.1.
Encodings of our subsumption resolution constraints are given in Sect. 5.

Building the Conclusion. If a model is found for the constraints encoding
subsumption resolution, the conclusion M \ {m′} of SR is built using the model.

5 Subsumption Resolution and SAT Encodings

As mentioned in Sect. 4, we turn the application of subsumption resolution SR
over (L,M) into the satisfiability checking problem of Algorithm 1. We give our
formalisation of SR in Theorem 5.1, followed by two encodings to SAT (Sect. 5.1–
5.2) and adjustments to subsumption (Sect. 5.3).

Theorem 5.1 (Subsumption Resolution Constraints). Clauses M and L
are the main and side premise, respectively, of an instance of the subsumption
resolution rule SR iff there exists a substitution σ that satisfies the following four
properties:

existence ∃i j. σ(li) = ¬mj (3)

uniqueness ∃j′.∀i j.
(
σ(li) = ¬mj ⇒ j = j′) (4)

completeness ∀i.∃j.
(
σ(li) = ¬mj ∨ σ(li) = mj

)
(5)

coherence ∀j.
(∃i. σ(li) = mj ⇒ ∀i. σ(li) = ¬mj

)
(6)

We relate these constraints to the definition of subsumption resolution (2).
The existence property (3) requires a literal mj in M such that a literal li of
L can be matched to ¬mj , ensuring the existence of the resolution literal in SR.
Uniqueness (4) asserts that the resolution literal mj of SR is unique, required
because SR performs only a single resolution step. Completeness (5) requires
each literal in L be matched either to the complement of a resolution literal,
or to a literal in M . Since each (complementary) literal in L is matched to one
(resolution) literal of M , the completeness property ensures that the conclusion
of SR subsumes M . Finally, coherence (6) states that all literals in M must be
matched by literals in L with uniform polarity. This implies that all literals of
L other than the resolution literal are present in the conclusion of SR. We note
that these constraints can be used to recreate Example 3.1.

Example 5.1. The clause pair (L2,M2) of Fig. 1 does not satisfy the uniqueness
property: both the match between p(x1) and ¬p(y) and the match between q(x2)
and ¬q(c) are negative and so no substitution can satisfy all constraints simul-
taneously. Therefore, subsumption resolution cannot be applied over (L2,M2).

Example 5.2. The clause pair (L3,M3) violates the coherence property for all
possible σ, since a negative map from p(x1) to ¬p(y) cannot coexist with a
positive map from ¬p(x2) to ¬p(y). Subsumption resolution cannot be performed
over (L3,M3).
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5.1 Direct SAT Encoding of Subsumption Resolution

We present our encoding of subsumption resolution constraints as a SAT prob-
lem, allowing us to use Algorithm 1 for deciding the application of SR. In the
sequel we consider the clauses L,M as in Theorem 5.1.

Compatibility. We introduce indexed propositional variables b+i,j and b−
i,j to

represent σ(li) = mj and σ(li) = ¬mj respectively, which we use to track com-
patible matching substitutions between literals of L and M . More precisely, a
propositional variable is created if and only if the corresponding match is pos-
sible (i.e., in the formulas below, if no match exist, replace the corresponding
propositional variable by ⊥). As it is not possible to have simultaneously a sub-
stitution σi,j(li) = mj and σi,j(li) = ¬mj , we also write bi,j to mean either
b+i,j or b−

i,j when the polarity of the match is irrelevant. Following Sect. 4, the
variables are bound to their substitutions:

SAT-based compatibility
∧

i

∧

j

[bi,j ⇒ σi,j ⊆ σ] (7)

SR Constraints. Constraints (3)–(6) of Theorem 5.1 employ bounded quantifi-
cation over the finite number of literals in L,M . Expanding these quantifiers over
their respective domains, we translate them into the following SAT formulas:

SAT-based existence
∨

i

∨

j

b−
i,j (8)

SAT-based uniqueness
∧

j

∧

i

∧

i′≥i

∧

j′>j

¬b−
i,j ∨ ¬b−

i′,j′ (9)

SAT-based completeness
∧

i

∨

j

bi,j (10)

SAT-based coherence
∧

j

∧

i

∧

i′
¬b+i,j ∨ ¬b−

i′,j (11)

SR as SAT Problem. Based on the above, application of subsumption resolu-
tion is decided by the satisfiability of (7)∧(8)∧(9)∧(10)∧(11). This SAT formula
extended with substitutions represents the result of encodeConstraint() in Algo-
rithm 1 and is used further in Algorithm 3. When this formula is satisfiable, we
construct the substitution σ required for SR by

σ =
⋃

{σi,j | bi,j = �}.
From the model of the SAT solver, we extract the first literal b−

i,j assigned �,
from which we conclude that the jth literal in M is the resolution literal of SR.
As such, application of SR over L and M results in replacing M by M \ {mj}.

Remark 5.1. Implicitly, all li literals are mapped to at most one literal mj .
Indeed, if there were several literals mj such that σ(li) = mj or σ(li) = ¬mj , then
either the respective matches are not compatible (guarded by the compatibility
property (7)), there are identical literals in M , or M is a tautology (which is not
allowed).
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Remark 5.2. While we defined bi,j to be true if, and only if, σi,j ⊆ σ, we only
encode the sufficient condition bi,j ⇒ σi,j ⊆ σ. The completeness property (10)
together with Remark 5.1 state that each li must have exactly one match to
some mj or ¬mj . Therefore, if σi,j ⊆ σ then the respective bi,j must be true and
the condition also becomes necessary: bi,j ⇐ σi,j ⊆ σ.

Example 5.3. Consider the pair (L1,M1) of Fig. 1. The match set ms of Algo-
rithm 1 is:

σi,j =
[{x1 �→ g(y1), x2 �→ c} {x1 �→ f(c), x2 �→ e}

⊥ {x1 �→ c, x2 �→ e}
]

Pi,j =
[

+ −
−

]

Since σ2,1 is incompatible with any substitution, b2,1 = ⊥ need not be defined.
This also allows to disregard SAT clauses that are trivially satisfied. The exis-
tence (8) and completeness (10) properties cannot have empty clauses: this is
easily detected while filling the match set, and the instance of SR is pruned.
Adding falsified literals in these constraints is unnecessary. The uniqueness (9)
and coherence (11) properties have only negative polarity literals and therefore
there is no need to add clauses containing b2,1. In light of the previous comment,
we use variables b+1,1, b−

1,2 and b−
2,2 and encode SR using the following constraints:

b+1,1 ⇒ {x1 �→ g(y1), x2 �→ c} ⊆ σ SAT-based compatibility of b+1,1

b−
1,2 ⇒ {x1 �→ f(c), x2 �→ e} ⊆ σ SAT-based compatibility of b−

1,2

b−
2,2 ⇒ {x2 �→ c, x3 �→ e} ⊆ σ SAT-based compatibility of b−

2,2

b−
1,2 ∨ b−

2,2 SAT-based existence

b+1,1 ∨ b−
1,2 SAT-based completeness, i = 1

b−
2,2 SAT-based completeness, i = 2

The uniqueness (9) and coherence (11) properties are trivial here because the
problem is simple: all b−

i,j have the same j, and no literal mj can be mapped
with different polarities. By using SAT solving from Algorithm 1 over the above
SAT constraints, we obtain the SAT model b+1,1 ∧ ¬b−

1,2 ∧ b−
2,2, with b−

2,2 the first
literal assigned � with negative polarity. The application of SR over (L1,M1)
yields the conclusion M \ {m2} = p(g(y1), c), replacing M .

5.2 Indirect SAT Encoding of Subsumption Resolution

SAT-based formulas (9) and (11) may yield many constraints, with worst-case
complexity O(|L|2|M |2). In practice such situations rarely occur, since the match
set ms is sparsely populated. Nevertheless, to alleviate this worst-case com-
plexity, we further constrain the approach of Sect. 5.1. We introduce structur-
ing propositional variables cj such that cj is � iff there exists a literal li with
σ(li) = ¬mj , which we encode as:
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SAT-based structurality
∧

j

[

¬cj ∨
∨

i

b−
i,j

]

∧
∧

j

∧

i

(
cj ∨ ¬b−

i,j

)
(12)

SR as revised SAT problem. While the compatibility property (7) remains
unchanged, the SR constrains of Theorem 5.1 are revised as given below.

SAT-based revised existence
∨

j

cj (13)

SAT-based revised uniqueness AtMostOne({cj , j = 1, ..., |M |}) (14)

SAT-based revised completeness
∧

i

∨

j

bi,j (15)

SAT-based revised coherence
∧

j

∧

i

(¬cj ∨ ¬b+i,j
)

(16)

Similarly to Sect. 5.1, application of subsumption resolution is decided via Algo-
rithm 1 by checking satisfiability of (7)∧ (12) ∧ (13) ∧ (14) ∧ (15) ∧ (16) . Using
the above SAT formula as the result of encodeConstraint() in Algorithm 1, the
worst-case behaviour is eliminated in exchange for O(|M |) propositional vari-
ables, cj . While the direct encoding of Sect. 5.1 is more efficient on small prob-
lems as it requires fewer variables and constraints, the indirect encoding of this
section is expected to behave better on larger problems (see Sect. 7).

Remark 5.3. Note that the uniqueness property (14) is handled via AtMostOne
constraints, based on the approach of [10]. If a variable cj is set to �, then our
SAT solver in Algorithm 1 infers that all other variables cj′ are set to ⊥.

Example 5.4. Consider again the clause pair (L1,M1) of Fig. 1. Compared to
Example 5.3, our revised encoding of SR requires one additional variable c2, as
m2 in Example 5.3 is used with negative polarity. The revised constraints are:

b+1,1 ⇒ {x1 �→ g(y1), x2 �→ c} ⊆ σ SAT-based compatibility of b+1,1

b−
1,2 ⇒ {x1 �→ f(c), x2 �→ e} ⊆ σ SAT-based compatibility of b−

1,2

b−
2,2 ⇒ {x2 �→ c, x3 �→ e} ⊆ σ SAT-based compatibility of b−

2,2

¬c2 ∨ b−
1,2 ∨ b−

2,2 SAT-based structurality of c2

c2 ∨ ¬b−
1,2 SAT-based structurality of c2

c2 ∨ ¬b−
2,2 SAT-based structurality of c2

c2 SAT-based revised existence

AtMostOne({c2}) SAT-based revised uniqueness

b+1,1 ∨ b−
1,2 SAT-based revised completeness, i = 1

b−
2,2 SAT-based revised completeness, i = 2
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The SAT solver returns b+1,1 ∧ ¬b−
1,2 ∧ b−

2,2 ∧ c2 as a solution to the above SAT
problem, from which the application of SR yields a similar result to that of
Example 5.3.

Remark 5.4. We note that our method naturally supports commutative pred-
icates, such as equality. Let � denote object-level equality. Suppose we have
literals li := a � b and mj := c � d. Two propositional variables with associated
matching substitutions σi,j and σ′

i,j are introduced, where σi,j matches a � b
against c � d and σ′

i,j matches a � b against d � c. If zero or one matches exist,
then the problem behaves exactly like the non-symmetric case. If both matches
exist, then σi,j and σ′

i,j must be incompatible: otherwise, c and d would be iden-
tical terms and the trivial literal mj would have been eliminated. Therefore, our
SAT-based encodings for subsumption resolution do not need to be adapted and
behave as expected.

5.3 SAT Constraints for Subsumption

In the new framework of Algorithm 1, the formulation suggested by [10] was
adjusted to work with subsumption resolution. Algorithm 1 needs very little
adaptation for subsumption: the encodeConstraint() method uses the encoding
below, and the conclusion needs not be built as only the satisfiability of the
formulas is relevant. The re-written SAT encoding becomes:

subsumption compatibility
∧

i

∧

j

(
b+i,j ⇒ σi,j ⊆ σ

)
(17)

subsumption completeness
∧

i

∨

j

b+i,j (18)

multiplicity conservation
∧

j

AtMostOne({b+i,j , i = 1, ..., |L|}) (19)

Note that the set of propositional variables used in our SAT-based formulas
(17)–(19) encoding subsumption is a subset of the variables used by our SAT-
based subsumption resolution constraints.

Pruning for Subsumption. The pruning technique described in Sect. 4 can
be adapted into a stronger form for subsumption. In this case, we will check for
multi-set inclusion between multi-sets of (predicates, polarity) pairs.

6 SAT-Based Subsumption Resolution in Saturation

In this section we discuss the integration of our SAT-based subsumption resolu-
tion approach within saturation-based proof search.

Forward/Backward Simplifications. For the purpose of efficient reasoning,
saturation algorithms use two main variants of simplification inferences imple-
menting redundancy. Forward simplifications are applied on a newly generated
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Algorithm 2. SAT-based subsumption in saturation
ms ← createMatchSet()
solver ← createSatSolver(ms)
procedure Subsumption(L, M)

FS, FSR ← pruned(L, M)
� FS (resp. FSR) gets true if subsumption (resp. subsumption resolution) cannot

succeed
fillMatchSet(ms, L, M) � Build the whole match set, and update FS and FSR

if FS then � subsumption cannot be applied
return NoSubsumption

encodeConstraints(solver ,ms) � SAT-constraints of Section 5.3
if solver .solve() is SAT then

return Subsumed

else
return NoSubsumption

Algorithm 3. SAT-based subsumption resolution in saturation
for bit empty space only to get– with subsumption already set up via Algorithm 2

procedure SubsumptionResolution(L, M)
� upon Algorithm 2 failing to subsume

� the match set is already set up
if FSR then

return NoSubsumptionResolution

encodeConstraints(solver ,ms) � SAT constraints of Sect. 5.1 or Sect. 5.2
if solver .solve() is SAT then

return buildConclusion(solver .getSolution(), M) � conclusion of
subsumption resolution

return NoSubsumptionResolution

clause M to check whether M can be simplified by an existing clause L. Backward
simplifications use a newly generated clause L to check whether L can simplify
existing clauses M . Backward simplification tends to be more expensive.

SAT-Based Subsumption Resolution in Saturation. Since subsumption
is a stronger form of simplification, subsumption is checked before subsumption
resolution. This means that subsumption resolution is applied only if subsump-
tion fails for all candidate premises. We integrate Algorithm 1 within saturation
so that it is used both for subsumption and subsumption resolution.

Algorithms 2–3 display a variation of the integration of our SAT-based app-
roach for checking subsumption resolution during saturation. Since most of the
setup of subsumption is also required for subsumption resolution, both simplifica-
tion rules are set up at the same time. As such, whenever turning to subsumption
resolution, the same match set ms from Algorithm 2 can be reused, while also
taking advantage of pruning steps performed during subsumption.

We modified the forward simplification algorithm as described in Algo-
rithm 4. In this new setting, checking the same pair (L,M) for subsumption
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Algorithm 4. Forward simplification with SAT-based subsumption resolution
procedure ForwardSimplify(M, F )

M∗ ← NoSubsumptionResolution

for L ∈ F \ {M} do
if subsumption(L, M) is Subsumed then � using Algorithm 2

F ← F \ {M}
return � � M is subsumed and removed

if M∗ = NoSubsumptionResolution then
M∗ ← subsumptionResolution(L, M) � using Algorithm 3

if M∗ �= NoSubsumptionResolution then
F ← F \ {M} ∪ {M∗} � M∗ is the conclusion of subsumption resolution

between L and M
return �

return ⊥

Algorithm 5. Evaluation of SAT-based subsumption resolution
procedure ForwardSimplifyWrapper(M, F )

s ← startTimer()
r ← ForwardSimplify(M, F ) � Benchmarked method

� Prevent modification of F
e ← endTimer()
writeInFile(e − s)
r′ ← Oracle(M, F )
checkCoherence(r, r′) � Empiric check
return r′

directly followed by subsumption resolution enables us to use Algorithms 2 and
3 efficiently. Algorithm 4 pays the price of checking subsumption resolution even
if subsumption may succeed, but in practice inefficiencies in this respect are seen
rarely.

Role of Indices. When applying inferences that require terms or literals to
unify or match, modern automated first-order theorem provers typically use
term indices [9] to consider only viable candidates within the set of clauses.
Subsumption and subsumption resolution is no exception. Our testbed system
Vampire currently uses a substitution tree to index clauses for matching by
their literals (Sect. 7).

7 Implementation and Experiments

We implemented and integrated our SAT-based subsumption resolution app-
roach in the saturation-based first-order theorem prover Vampire [6]1.

1 https://github.com/vprover/vampire/tree/robin c-subsumption resolution.

https://github.com/vprover/vampire/tree/robin_c-subsumption_resolution
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Versions compared. We use following versions of Vampire in our evaluation:

• VampireM is the master branch without SAT-based subsumption resolution;
• VampireI is the SAT-based subsumption resolution with the indirect encod-

ing of Sect. 5.2 and a standard forward simplification algorithm with Algo-
rithm 1 — that is, Algorithm 4 is not used here;

• Vampire∗
I uses the indirect encoding with Algorithms 2–4;

• Vampire∗
D uses the direct encoding of Sect. 5.1 and Algorithms 2–4.

Experimental Setting. To evaluate our work, we used the examples of the
TPTP library (version 8.1.2) [15]. In our evaluation, 24 926 problems were used
out of the 25 257 TPTP problems; the remaining problems are not supported by
Vampire (e.g., problems with both higher-order operators and polymorphism).

Our experimental evaluation was done on a machine with two 32-core AMD
Epyc 7502 CPUs clocked at 2.5 GHz and 1006 GiB of RAM (split into 8 memory
nodes of 126 GiB shared by 8 cores). Each benchmark problem was run with
the options -sa otter -t 60, meaning that we used the Otter saturation
algorithm [7] with a 60-second time-out. We use the Otter strategy because
it is the most aggressive in terms of simplification and therefore runs the most
subsumption resolutions. We turned off the AVATAR framework (-av off) in
order to have full control over SAT-based reasoning in Vampire.

Evaluation Setup. Our evaluation process is summarised in Algorithm 5,
incorporating the following notes.

• The conclusion clause of the subsumption resolution rule SR is not necessarily
unique. Therefore, different versions of subsumption resolution, including our
work based on direct and indirect SAT encodings, may not return the same
conclusion clause of SR. Hence, applying different versions of subsumption
resolution over the same clauses may change the saturation process.

• Saturation with our SAT-based subsumption resolution takes advantage of
subsumption checking (see Algorithms 3 and 4). Therefore, only checking
subsumption resolution on pairs of clauses is not a fair nor viable comparison,
as isolating subsumption checks from subsumption resolution is not what we
aimed for (due to efficiency).

• CPU cache influences results. For example, two consecutive runs of Algo-
rithm 4 may be up to 25% faster on second execution, due to cache effects.

For the reasons above, we decided to measure the run time of a complete
execution of Algorithm 4. To prevent the branches to change, an Oracle is used
to choose the path to follow. The Oracle is based on our indirect SAT encoding
(Vampire∗

I). This way, the same computation graph is used for all evaluated
methods. To prevent cache preheating, we run the Oracle after the respective
evaluated method. This way the cache is in a normal state for the evaluated
method. To measure the run time of Algorithm 4, a Wrapper method was built on
top of the Forward Simplify procedure of Algorithm 4. This Wrapper replaces
the Forward Simplify loop in Vampire with minimal changes to the code. To
empirically verify the correctness of our results, we used the Wrapper to compare
the result of the evaluated method with the result of the Oracle.



SAT-Based Subsumption Resolution 203

Experimental Details and Analysis. Fig. 2 lists the cumulative instances
solved by the respective Vampire versions, highlighting the strength of forward
simplifications for effective saturation.

Fig. 2. Cumulative instances of applying subsumption resolution, using the TPTP
examples. A point (n, t) on the graph means that n forward simplify loops were executed
in less than t μs. The flatter the curve, the faster the Vampire version is.

Table 1. Average time spent in the Forward Simplify loop. Vampire∗
D is the fastest

method, closely followed by the Vampire∗
I . However, the indirect encoding is much

more stable and has a lower variance.

Prover Average Std. Dev. Speedup

VampireM 42.63 μs 1609.06 μs 0%

VampireI 40.13 μs 1554.52 μs 6.2%

Vampire∗
D 34.39 μs 1047.85 μs 23.9%

Vampire∗
I 34.55 μs 250.25 μs 23.4%

Remark 7.1. Our experimental summary in Fig. 2 shows that the total number
of Forward Simplify loops ran in 60 s. However, the average and standard
deviation were computed only on the intersection of the problems solved. That
is, only the Forward Simplify loops finished by all the methods are taken into
account. Otherwise, if a hard problem is solved in, for instance, 1 000 000 μs by
one method, and times out for another, the average for the better would increase
a lot, but the weaker method would not be penalised. Table 1 summarises the
average solving time of our evaluation.

Comparison of Encodings. We correlated the constraint building and SAT
solving time with the length of clauses, using the different encodings of Sects. 5.1–
5.2. Figure 3 shows that on larger clauses, the average computation time increases
faster for the direct encoding than for the indirect encoding.
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Fig. 3. Average time (μs) spent on the creating and solving SAT-based subsumption
resolution constraints.

Table 2. Number of TPTP problems solved by the considered versions of Vampire.
The run was made using the options -sa otter -av off with a timeout of 60 s. The
Gain/Loss column reports the difference of solved instances compared to VampireM .

Prover Total Solved Gain/Loss

VampireM 10 555 baseline

Vampire∗
D 10 667 (+141, −29)

Vampire∗
I 10 658 (+133, −30)

Experimental Summary. Our experiments show that Vampire∗
I yields the

most stable approach for SAT-based subsumption resolution (Table 1), especially
when it comes on solving large instances (Fig. 3). Our results demonstrate the
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superiority of SAT-based subsumption resolution used with forward simplifica-
tions in saturation (e.g., Vampire∗

D and Vampire∗
I), as concluded by Table 2.

8 Conclusion

We advocate SAT solving for improving saturation-based first-order theorem
proving. We encode powerful simplification rules, in particular subsumption res-
olution, as SAT problems, triggering eager and efficient reasoning steps for the
purpose of keeping proof search small. Our experiments with Vampire showcase
the benefit of SAT-based subsumption. In the future, we aim to further extend
simplification rules with SAT solving, in particular focusing on subsumption
demodulation for equality reasoning [3].
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Abstract. IsaSAT is the most advanced verified SAT solver, but it did
not yet feature inprocessing (to simplify and strengthen clauses). In order
to improve performance, we enriched the base calculus to not only do
CDCL but also inprocess clauses. We also replaced the target of our code
synthesis by Isabelle/LLVM. With these improvements, we can solve 4
times more SAT Competition 2022 problems than the original IsaSAT
version, and 4.5 times more problems than any other verified SAT solver
we are aware of. Additionally, our changes significantly reduce the trusted
code base of our verification.

1 Introduction

SAT solving is a very important tool that has been extensively used in various
applications like mathematics or cryptography. To ensure the correctness of the
answer provided by a SAT solver, there are two approaches: either producing a
certificate that can be checked independently or verifying a SAT solver. The first
approach has been extensively studied and works very well in practice [19,26,28]
– only checked proofs are counted in the SAT Competition [2].

The second approach, i.e., verifying a whole SAT solver is orders of mag-
nitudes more complex than checking a certificate. To this end, the goal of the
IsaFoL (Isabelle Formalization of Logic) [3] effort is to develop methodology and
libraries for formalizing modern research in automated reasoning. In this con-
text, we have verified a CDCL calculus (conflict-driven clause learning) and a
two-watched literals data structure (Sect. 2). To show that they are useful, we
have developed the verified SAT solver IsaSAT [8], which we later optimized [12].
To our surprise, it won the EDA Challenge 2021 defeating all the non-verified
solvers, but, as expected, it finished last at the SAT Competition 2022 [2]. How-
ever, the former used a much shorter timeout (200 s, not announced before the
competition) whereas the latter uses 5000 s.

In this paper, we present our new developments in IsaSAT, which make
our solver arguably the most advanced formally verified SAT solver to date:
inprocessing and verifying fast LLVM code [20] rather than slow functional code.
c© The Author(s) 2023
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Inprocessing is a critical feature of modern SAT solvers (e.g., every winner of
the SAT Competition since 2013 includes it). In order to use it in our formally
verified solver, we had to extend our verified CDCL calculus: Our new PCDCL
calculus includes features to encompass various inprocessing techniques, even if
we have not yet implemented every possible technique (Sect. 3).

We generate IsaSAT by exporting a model in the interactive theorem prover
Isabelle [22] to executable code. Earlier we used Isabelle’s default code gen-
erator to export to Standard ML (SML). However, the performance was not
sufficient – especially memory consumption was very high. Thus, we switched to
Isabelle/LLVM [18], which generates LLVM intermediate representation (LLVM
IR). Apart from allowing faster imperative code, it also reduced the trusted
code base (Sect. 4), replacing the rather niche MLton [27] compiler by only the
backend of the widely used LLVM.

Porting our entire development to Isabelle/LLVM required some changes
and some cleanup. Moreover, when we implemented and verified inprocessing,
we realized that some design decisions need to be improved. In Sect. 5, we report
on our experiences and lessons learned while porting and extending IsaSAT.

Finally, we have benchmarked IsaSAT on the problems from the SAT Compe-
tition 2022. We show that just porting IsaSAT from SML to Isabelle/LLVM sig-
nificantly improved the performance, and the new inprocessing techniques com-
bined with heuristic improvements give us another significant increase, demon-
strating the usefulness of our PCDCL calculus (Sect. 6).

This presentation is an extended version of our (non-peer-reviewed) system
description from the EDA Challenge 2021 [13] and the SAT Competition 2022 [6].
Compared to that version, we have provided much more details on PCDCL, our
experience porting the development to LLVM, and performance tests.

2 Preliminaries

CDCL. CDCL is a procedure that builds a partial assignment called a trail
either by guessing (called deciding) or propagating information. If the partial
assignment is a model, the algorithm stops. If there is a conflict between the
partial assignment and a clause, the partial assignment is repaired and a new
clause is learned. For more details (beyond the scope of this paper), we refer the
reader to the Handbook of Satisfiability [7].

We use a transition system for our formalization of CDCL [8]. Its state con-
sists of the trail M , the (multi)sets of initial and learned clauses (N and U),
and the conflict clause to analyze (or None if there is none). We show one rule,
decide, that adds L to the current assignment M :

inductive decide :: ′st ⇒ ′st ⇒ bool where
undefined lit M L =�⇒ |L| ∈ |N | =�⇒
decide (M,N,U,None) (L · M,N,U,None)

If no conflict has been found so far (None), we add the new literal L at the begin-
ning of the trail M . We prove that our set of rules is terminating and correct [8].
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Code Synthesis. To generate the IsaSAT code, we start from the abstract rules
like decide and gradually refine it to some deterministic functions using the
Refinement Framework [16]. Then, we rely on Sepref [17] to synthesize code: It
takes an (Isabelle) function and synthesizes a new version, replacing functional
data structures (like lists) by imperative data structures (like arrays). There
are two versions of the tool. The older version, which we used before [8,12],
uses Imperative HOL [9] and Isabelle’s standard (trusted) code generator [14]
to export code into various functional languages. We used Standard ML (SML)
with the compiler MLton [27], because it offers (by far) the best performance
for our use case. The new Sepref is part of the Isabelle/LLVM library (devel-
oped by the second author) and generates LLVM IR from a model of LLVM IR
inside the theorem prover. The code generator interprets a shallow embedding
of Isabelle/LLVM as equivalent to similar looking LLVM code. This reduces the
trusted code base in two ways: first, the trusted pretty printer is simpler, and,
second, instead of the rather niche full compiler MLton, we use only the backend
of the widely used LLVM [20].

The biggest difference is that Imperative HOL allows arbitrary large arrays
and integers, whereas Isabelle/LLVM is more realistic, requiring integers (in
particular array offsets, see Sect. 5.1) to have a fixed bit-width.

Related Work. Our goal is to produce a fully verified SAT solver, without any
runtime checks, that both terminates and returns a correct model while using
efficient data structures. No other solver achieves all three goals. The SAT solver
TrueSAT from Andrici and Ciobaca [1] relies on the original DPLL and uses
less efficient data structures (including counters instead of watch lists), but it
terminates. Historically, this would roughly correspond to SAT solver from the
early 90s. However, it only uses stateless heuristics, and it is not clear if the
approach can be extended to CDCL (where the solver learns and keeps new
clauses) or to stateful heuristics (like VSIDS [21]). The solvers versat [23] and
Creusat [25] go into a similar direction with CDCL instead of DPLL, but prove
a weaker correctness property: they only show that an UNSAT result is correct,
while a SAT result requires an additional check. Also, termination is not proved.
Only proving this partial property makes many proofs considerably easier, in
particular adding restarts. Oe et al’s solver versat [23] was the first partially
verified solver that could run benchmarks from the SAT Competition. More
recently, Skot̊am [25] has verified in his Master’s thesis the SAT solver CreuSAT
using the Creusot framework (relying on Why3 internally). While CreuSAT is
much faster than versat in our tests, its correctness relies on (trusted) SMT
solvers, and the proofs are not checked by a small kernel like our Isabelle code.
However, the verification also takes much less time (a few minutes compared to
several hours).

Modern SAT solvers use inprocessing to make the subsequent CDCL run
heuristically faster [15]. In particular, clauses are strengthened and global trans-
formation (e.g., to remove variables) are applied. Two techniques (that we do
not support), variable elimination and addition, slowly change the models of the
formula by changing the set of variable. The SAT solver then reconstructs a
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model of the original formula at the end. Fazekas et al. [11] made it compati-
ble with incremental SAT solving. All others inprocessing technique fit into our
extended CDCL described in the next section.

3 Pragmatic CDCL for Inprocessing

SAT solvers nowadays apply a combination of CDCL (most of the time) and
inprocessing (sometimes). Therefore, we extended our calculus similarly. At the
core, we have our terminating CDCL. We also allow for formula transformation
and restarts. We call the combination pragmatic CDCL or PCDCL.

Splitting the Clause Set. Inprocessing makes it possible to strengthen and
simplify clauses. However, we want models from the final set of clauses to remain
models from the initial set of clauses. Deleting clauses is not possible: if we start
with the clauses A∨C and B∨¬B, removing the tautology means that the model
A of A ∨ C is not a model of the initial clause set anymore. Hence we want to
keep the literal B without considering the tautology for propagation/conflict.

To solve the issue we split our set of clauses into two parts: clauses that
are useful for propagation and clauses that can be ignored but are kept for
their literals. Thus we keep the set of all literals A constant. For our proof of
refinement to the original CDCL, we have to make sure that the new behavior is
also possible in the original calculus – in particular we do not miss propagations
or conflicts. In the case of tautologies, this is simple (they are never used). If
we consider subsumption, like A ∨ B subsumes A ∨ B ∨ C, whenever the latter
propagates, then the former is a conflict. Therefore, the behavior is compatible.

While the idea of splitting our clauses seems surprising, the additional clause
sets are only required for the connection to our CDCL transition system, and
we entirely remove them when generating the code. Moreover, the refinement
is easier as we do not have to update our heuristics to remove literals (and
potentially shorten arrays). Finally, this is similar to the behavior of SAT solvers
like Kissat [4]: while the clauses are removed, all literals of the problem are set.

In our original refinement, we have split the clauses to distinguish between
clauses of length 1 (where we cannot distinguish two distinct literals and thus
they cannot fit into our two-watched literals data structures) and longer clauses,
but the aim was only distinguishing on the length.

One important point to notice is that the role of our clause sets changes. In
our original CDCL, N was the (immutable) set of initial clauses and U contains
the redundant clauses that can be removed at any point: N ensures that we do
gain new models during our transformations. Now, the set changes: strengthening
an irredundant clause from N also shortens the clause that is in there. Therefore,
a naive version could remove literals.

Overall we have 4 sets of clauses: the irredundant clauses N and the redun-
dant U clauses, and each one is divided into the active clauses (Na and Ua) and
the inactive (discarded) clauses (Nd and Ud). For example, tautologies or sub-
sumed clauses are discarded, but remain in N , so literals are never removed. In
our development there are actually three sets (containing a literal set at level 0
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or tautologies, subsumed clauses, and false clauses) to reduce the number of case
distinction in some proofs. We never demote irredundant clauses to redundant
ones, but we can promote them.

Inprocessing Rules. Our aim when picking the rule is to be general (like
we can learn any useful clause) and then we specialize rules to specific tech-
niques. We will show this with the example of subsumption-resolution [7]. When
doing subsumption-resolution, we resolve two clauses together if the conclusion
is shorter. Then we can remove either one or both of the antecedents. For exam-
ple, resolving A∨B ∨C with A∨ ¬C produces the clause A∨B with subsumes
the former clause. If the latter clause was A∨B∨¬C, the resolved clauses would
actually subsume both clauses.

One of the most important inprocessing rule learns any possible clause. To
simplify the presentation, we will only give the rules operating on the learned
clauses, but similar rules exists for the initial set of clauses.

inductive cdcl learn clause :: ′prag st ⇒ ′prag st ⇒ bool where
|C| ⊆ |N + Nd| =�⇒ count decidedM = 0 =�⇒
N ∧ Nd � C =�⇒ ¬tautologyC =�⇒ distinctC =�⇒
cdcl learn clause (M,N,U,None, Nd, Ud)

(M,N,U ∧ C,None, Nd, Ud)

The side conditions not only include that the clause is entailed and duplicate-
free, but also the clause is not a tautology and we do not break CDCL invariants
(count decidedM = 0). Then we can deactivate subsumed clauses:

inductive cdcl subsumed :: ′prag st ⇒ ′prag st ⇒ bool where
C ⊆ D =�⇒ count decidedM = 0 =�⇒
cdcl subsumed (M,N,U ∧ C ∧ D,None, Nd, Ud)

(M,N,U ∧ C,None, Nd,D ∧ Ud)

We combine these rules to express subsumption-resolution: We first learn the
clause obtained by resolution. Then we can remove the antecedents. If either
antecedent is in N , we also have promoted the conclusion from N to U . The
advantage of our approach is that we can express other inprocessing techniques
without adding new rules, only by specializing them.

Overall we have 9 rules with some overlap with CDCL (propagation and
conflict), but mostly simplification of clauses (removing true clauses and false
literals from clauses) and pure literal deletion: When a literal always appears
positively (or always negatively), we can set this literal to be true unconditionally
(later removing all clauses containing it): every model after adding the clause is
also a model of the original set of clauses but not the opposite. This is the first
transformation that does not preserve models in IsaSAT or any other verified
SAT solvers.

Refinement of Subsumption-Resolution. While the definition of subsump-
tion resolution is very simple, the refinement to code was challenging.
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We verified forward subsumption [7] following CaDiCaL [5] (unbounded how-
ever, so all clauses selected heuristically are checked). We sort clauses by size
and check if the current candidate is subsumed by one of the smaller clauses.
Because we use two-watched literals, we need to distinguish between the binary
clauses (than can produce new units) and the other clauses. At the end, we
implemented two forward subsumption passes: one for binary clauses only and
the other for larger clauses.

To subsume the candidates, we build occurrence lists and populate them with
binary clauses, whereas Kissat [5] reuses watch lists. Moreover, for efficiency,
we need a new marking data structure for efficient detection of subsuming-
resolution.

4 Correctness of the Code and Completeness

Our specification model if satisfiable takes the multiset of clauses and returns
a model (if there is one) or None if the clauses are unsatisfiable. Our imple-
mentation IsaSATSML opts takes an array containing the clauses and returns an
optional array containing the assignment, assuming that the clauses do not con-
tain duplicated literals or the empty clause (precondition proper lits no dups ⊥).
The additional argument opts activates and deactivates certain techniques for
solving. The following theorem states that our implementation refines the spec-
ification:

Theorem 1 (SML End-to-End Correctness). The following refinement
relation holds:

(IsaSATSML opts, model if satisfiable)
∈ [proper lits no dups ⊥] clauses assn → option model assn

The LLVM version is nearly the same. It can handle duplicated literals and
the empty clause. Moreover, the new specification model if satisfiable bounded
allows for an unknown result if arrays would grow larger than the size permitted
by the fixed bit-width. While this limit does not exist in Imperative HOL, it
exists in practice as no machine supports arrays that large. Therefore, we tech-
nically weakened our theorem, but did not change practical guarantees on the
generated code. For IsaSATSML we start [12] with 64-bit unsigned integers and
only switch to GMP integers if the arrays grow too large.

Theorem 2 (LLVM End-to-End Correctness). The following refinement
relation holds:

(IsaSATLLVM opts, RETURN ◦ model if satisfiable bounded)
∈ [proper lits] clauses assn → option model assn

Moreover, the change from SML to LLVM reduces the trusted code base:
The Isabelle/LLVM model is closer to the actual LLVM, such that the trusted
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pretty-printer is simpler. LLVM is also more low-level, such that fewer parts of
the compiler have to be trusted. Finally, the LLVM compiler is more widely used
and tested than the rather niche MLton compiler we used before.

5 Experience Porting the Development to LLVM

We report on the challenges we faced when updating the huge IsaSAT formaliza-
tion (Sect. 5.1). Moreover, we report on the unverified parts of IsaSAT (Sect. 5.2),
and finally compile some lessons learned (Sect. 5.3).

5.1 Required Changes

Before porting the development to LLVM, we removed our only remaining source
of unbounded integers: the clause indices during the garbage collection. As
garbage collection does not happen very often, we did not expect this to make
a difference. Surprisingly, it turns out to have a performance impact.

Isabelle/LLVM is an entire tool set, including a fork of the original Sepref
tool. While related to the original Sepref tool, there are different libraries, and
the development of the two versions has diverged.

Initially, we tried to support both versions of Sepref. We ended up with two
sets of files for code synthesis, and duplication of some libraries (to provide
constants defined in Isabelle/LLVM but not in SeprefSML). This significantly
complicated our refinement approach, although we made it conceptually cleaner
during the porting. Then, we realized that IsaSATLLVM was much faster than
IsaSATSML (we observed a factor 2 on our test files), and decided to discontinue
the SML backend.

With this, also some workarounds for SML specific performance issues (like
the tuple uint32 * bool * uint64 being much less efficient than combining
the uint32 and the Boolean into a single 64-bit number) became obsolete.

Compilation. We have experimented with compilation flags before to improve
performance. We know from the SML code that we need to increase the level of
inlining, because many small functions make the verification easier. The same
applies for LLVM and the easiest solution is to use link-time optimization that
increases the inlining level as a side effect. However, this makes profiling impos-
sible – exactly like the SML code. So there is no regression here.

Tuples. In 2021, we observed a major performance regression of the synthe-
sis, caused by a new feature in SeprefLLVM: pointer-equality tracking caused
quadratic behaviour for case-splits of tuples. As our solver state is a large tuple,
synthesis became impossible (several dozen minutes for simple functions).

To avoid the issue, we decided to work around on the abstract level, using
getter and setter functions for the state’s components, rather than case splitting.
Now, every function on the state would first get the required components, update
them, and then put them back. For example:
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definition rescore conflict :: clause index ⇒ isasat ⇒ isasat where
rescore conflict C S = do{
let (M,S) = extract trail S;
... (*reads the trail M and can change it*) ...
let S = update trail M S;
RETURN S

}
This makes synthesis much faster. However, the ownership model of Sepref does
not allow aliasing, nor do our refinement relations allow leaving a ’gap’ in the
state where we moved out an element. As an easy work-around, we resorted to
placing dummy-values, like empty lists, in the state, hoping that LLVM would
optimize away the allocations and deallocations for these values. However, this
did not happen: In the hot-spot of the SAT solver, the propagation loop, the
dummy value for the trail was recreated and freed each time. Thus, we locally
resorted to unfolding our code to make sure that we need only one free in the
inner propagation loop. We leave a more principled solution of this problem
(possibly changing Sepref) to future work.

We even attempted to go one step further (as the state-of-the-art SAT solver
Kissat [4] does) and simply passing a pointer to the state structure as argument.
Once we had already changed our refinement with accessors, we simply had
to change them to work on a pointer. However, we never managed to make
the synthesized code efficient. We observed a factor of 10 slower code. Hand-
optimizing the accessors (basically making sure that LLVM understands that
we care only about one component) reduced this to factor 2 slower. Once we
realized that the LLVM optimizer was replacing the pointer by the structure
passed directly as argument, we gave up on that approach.

5.2 Unverified Parts

In the generated SAT solver, there are some parts that we cannot verify. First,
the parser is not verified, because the file system has no model in Isabelle (unlike
CakeML, where conditions apply however). To this end, we link the verified code
with an unverified C program, which provides the parser and command line
interface.

Second, Isabelle/LLVM does not support any output (like statistics, or the
DRAT proofs [28] required for the SAT Competition). For the SML version, we
could use a feature of Isabelle’s code generator to (axiomatically) implement
a function by some external function (e.g. a function that does nothing in the
model, by a printing function). As Isabelle/LLVM does not yet have such a
feature, we resorted to post-processing the generated code (i.e., a function that
does nothing in the model, is replaced by a printing function or even a function
storing some literals for DRAT proofs). Note that this post-processing is not
required for IsaSAT to work (but it won’t print DRAT proofs).
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5.3 Lessons Learned

Lesson 1: Embrace Duplication. We have already highlighted the importance
of the set of all possible literals A, in particular to establish a bound on the
size of various arrays. At first, we tried to avoid duplicating this set across the
different components on the specification side. This, however, resulted in a closer
coupling of the various refinement proofs, impeding modularity: data structures
that, conceptually, are just a small part of the whole state, have to be formalized
on the whole state, just to have the set A available. We solved this problem by
duplicating the set A on the abstract level for all new data structures. Note that
this duplication is removed in a later refinement stage.

Lesson 2: The Limits are Isabelle Files. Checking our Isabelle files takes
nearly two hours. This can be explained by three factors: 1. the heuristic and
code synthesis amounts to 91 000 loc, making it a very large formalization; 2. the
synthesis is single-threaded (for technical reasons); 3. Sepref encourages a style
that is not very parallel: every refinement starts with a call to a tactic refine vcg
that generates the goals (meaning that all successive tactics have to wait). To
improve performance we have attempted [12] to generate more standard proofs
in Isar (by generating the text corresponding to the theorems to prove), but it
is not clear that this style is faster as huge number of variables are generated
(this style is required for more complicated proofs, however).

In order to improve Isabelle’s performance and speed-up the testing of new
heuristics in IsaSATLLVM, we have split the files into three parts: the shared def-
initions of the functions to refine, the (single-threaded) synthesis, and the cor-
rectness proof of the refinement. Even with these optimizations, proof checking
still takes 2 h. There is also no clear improvement path. The old SML version has
a similar problem, but it is overall faster because it has fewer features, making
it less critical.

Lesson 3: Performance Bugs exist. In order to improve performance, we
need to measure and observe performance. To solve that problem, IsaSAT prints
statistics and produces some timing information. The statistics during the run
made identifying scheduling bugs for the different techniques possible – we acci-
dentally ran some techniques way too often or barely ever. Especially because
we increase the interval between two inprocessing rounds geometrically, a simple
statistics at the end of the run is not sufficient. One interesting performance
bug we found was that we accidentally inverted reducing clauses (marking them
as removed) and garbage collection (physically removing them). Therefore, we
would nearly always physically delete clauses. We never saw this issue, because
we also printed the statistics inverted. To help debugging performance, we pro-
duce some timing information by measuring time in the C program:

c propagate : 83.48% (581.66 s)
c reduce : 0.12% (0.82 s)
c subsumption : 0.06% (0.39 s)
c pure_lits : 0.05% (0.33 s)
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Fig. 1. CDF of the performance of SAT solvers

c binary_simp : 0.02% (0.15 s)
c GC : 0.16% (1.10 s)

This helps to identify bottlenecks but also outliers where one technique is par-
ticularly slow and requires some limits or a change in the scheduling to avoid
slowing down the solver too much. This makes it possible to identify errors like
allocations in loops. The overall timing matches what we expect from other
SAT solvers (although usually they spend more time on inprocessing and less on
propagation).

6 Performance

In order to study the performance we have run 3 different IsaSAT versions:
the original SML solver (using MLton with the LLVM backend), the first port
of the IsaSAT solver, and the current version with inprocessing and various
other improvements on heuristics that do not require any change on our PCDCL
calculus, notably rephasing and target phases [10] (but no local search) and the
alternation between aggressive restarts (heuristically seems better for UNSAT)
and few restarts (seems better for SAT) following the ideas of Chanseok Oh [24].

We run all the benchmarks from the SAT Competition 2022 on an Intel Xeon
E5-2620 v4 CPU at 2.10 GHz (with turbo-mode disabled) with a memory limit
of 7 GB and a timeout of 5000 s. For comparison, we have included versat [23]
and CreuSAT [25]. For completeness, we have included Kissat [6] (more precisely
the bulky version submitted for the anniversary track).

The results are given in Fig. 1 as a CDF (the higher the curve, the more solved
problems). The first surprise is that CreuSAT performs similarly to IsaSATSML

(37 vs 40 solved problems), worse than expected given the results reported in the



A More Pragmatic CDCL for IsaSAT and Targetting LLVM (Short Paper) 217

Master’s thesis [25] that tested on the 2015 benchmarks. We suspect that is due
to the garbage collection and the fact that problems from the SAT Competition
have become harder.

There is a clear improvement when going from the SML version to the LLVM
version (98 solved), while the latest version solves 166. The SML version produces
335 out-of-memory errors (OOMs), the base LLVM version is more memory
efficient (23 OOMs) like the latest IsaSAT version (19 OOMs) or CaDiCaL that
has the same memory layout (17 OOMs). However, there is still a large gap to
reach the performance level of Kissat and its inprocessing techniques.

7 Conclusion

We have reported on updating our verified SAT solver IsaSAT to a more powerful
base calculus (our pragmatic CDCL) which can express inprocessing, and to the
more efficient Isabelle/LLVM backend. We have also compiled important lessons
learned from proof-engineering and maintaining large formalizations like IsaSAT
(∼200 kloc of proofs).

Our changes made IsaSAT solve 4 times more problems (166/40), making it
the most efficient verified SAT solver. At the same time, our verification is more
complete than the next fastest verified solvers.

Most techniques (including the two most important, vivification and probing)
either fit into our new PCDCL base calculus or do not require any change (like
random walk [10] that is conjectured to be the reason for the major performance
improvement in 2020). One major technique that we cannot currently express is
variable elimination, because models are changed and need to be fixed. We leave
the required extensions to our PCDCL for future work.
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Abstract. We recently proposed Acceleration Driven Clause Learning
(ADCL), a novel calculus to analyze satisfiability of Constrained Horn
Clauses (CHCs). Here, we adapt ADCL to transition systems and intro-
duce ADCL-NT, a variant for disproving termination. We implemented
ADCL-NT in our tool LoAT and evaluate it against the state of the art.

1 Introduction

Termination is one of the most important properties of programs, and thus
termination analysis is a very active field of research. Here, we are concerned
with disproving termination of transition systems (TSs), a popular intermediate
representation for verification of programs written in more expressive languages.

Example 1. Consider the following TS T with entry-point init and two further
locations �1, �2 over the variables x, y, z, where x′, y′, z′ represent the values
of x, y, z after applying a transition, and

=
x, x++, and x– – abbreviate x′ = x,

x′ = x + 1, and x′ = x − 1. The first two transitions are a variant1 of
chc-LIA-Lin 052 from the CHC Competition ’22 [7] and the last two are a
variant2 of flip2 rec.jar-obl-8 from the Termination and Complexity Com-
petition (TermComp) [21].

init → �1 �x′ ≤ 0 ∧ z′ ≥ 5000 ∧ y′ ≤ z′� (τi)

�1 → �1 �y ≤ 2 · z ∧ x++ ∧ ((x < z ∧ =
y) ∨ (x ≥ z ∧ y++)) ∧ =

z� (τ�1)

�1 → �2 �x = y ∧ x > 2 · z ∧ =
x ∧ =

y� (τ�1→�2)

�2 → �2 �x = y ∧ x > 0 ∧ =
x ∧ y– –� (τ=

�2
)

�2 → �2 �x > 0 ∧ y > 0 ∧ x′ = y ∧ ((x > y ∧ y′ = x) ∨ (x < y ∧ =
y))� (τ �=

�2
)

1 We generalized the example to make it more interesting, and we added the condition
y ≤ 2 · z to enforce termination of τ�1 .

2 We combined the transitions for the cases x > y and x < y into the equivalent tran-
sition τ �=

�2
to demonstrate how our approach can deal with disjunctions in conditions.
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At �1, T operates in two “phases”: First, just x is incremented until x reaches
z (1st disjunct of τ�1). Then, x and y are incremented until y reaches 2 · z + 1
(2nd disjunct of τ�1). If x = y = c holds for some c > 1 at that point (which is
the case if x ≤ y = z holds initially), then the execution can continue at �2 as
follows:

�2(c, c, cz) −→τ=
�2

�2(c, c − 1, cz) −→
τ �=

�2

�2(c − 1, c, cz) −→
τ �=

�2

�2(c, c, cz) −→τ=
�2

. . .

Here, �2(c, c, cz) means that the current location is �2 and the values of x, y, z

are c, c, cz. The 1st and 2nd step with τ �=
�2

satisfy the 1st (x > y ∧ . . .) and 2nd

(x < y∧. . .) disjunct of τ �=
�2

’s condition, respectively. Thus, T does not terminate.

Example 1 is challenging for state-of-the-art tools for several reasons. First,
more than 5000 steps are required to reach �2, so reachability of �2 is difficult to
prove for approaches that unroll the transition relation or use other variants of
iterative deepening. Thus, chc-LIA-Lin 052 is beyond the capabilities of most
other state-of-the-art tools for proving reachability.

Second, the pattern “τ=
�2

, 1st disjunct of τ �=
�2

, 2nd disjunct of τ �=
�2

” must be found
to prove non-termination. Therefore, flip2 rec.jar-obl-8 (which does not use
disjunctions) cannot be solved by other state-of-the-art termination tools.

Third, Example 1 contains disjunctions, which are not supported by
many termination tools. Presumably, the reason is that most techniques for
(dis)proving termination of loops are restricted to conjunctions (e.g., due to the
use of templates and Farkas’ Lemma). While disjunctions can be avoided by
splitting disjunctive transitions according to the DNF of their conditions, this
leads to an exponential blow-up in the number of transitions.

We present an approach that can prove non-termination of systems like
Example 1 automatically. To this end, we tightly integrate non-termination tech-
niques into our recent Acceleration Driven Clause Learning (ADCL) calculus
[16], which has originally been designed for CHCs, but it can also be used to
analyze TSs.

Due to the use of acceleration techniques that compute the transitive closure
of recursive transitions, ADCL finds long witnesses of reachability automatically.
If acceleration techniques cannot be applied, it unrolls the transition relation, so
it can easily detect complex patterns of transitions that admit non-terminating
runs. Finally, ADCL reduces reasoning about disjunctions to reasoning about
conjunctions by considering conjunctive variants of disjunctive transitions. Thus,
combining ADCL with non-termination techniques for conjunctive transitions
allows for disproving termination of TSs with complex Boolean structure.

After introducing preliminaries in Sect. 2, Sect. 3 presents a straightforward
adaption of ADCL to TSs. Section 4 introduces our main contribution: ADCL-
NT, a variant of ADCL for proving non-termination. Finally, in Sect. 5, we dis-
cuss related work and demonstrate the power of our approach by comparing it
with other state-of-the-art tools. All proofs can be found in [19].
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2 Preliminaries

We assume familiarity with basics from many-sorted first-order logic. V is a
countably infinite set of variables and A is a first-order theory over a k-sorted sig-
nature ΣA with carrier CA = (CA,1, . . . , CA,k). QF(ΣA) is the set of all quantifier-
free first-order formulas over ΣA, which are w.l.o.g. assumed to be in negation
normal form, and QF∧(ΣA) only contains conjunctions of ΣA-literals. Given a
first-order formula η over ΣA, σ is a model of η (written σ |=A η) if it is a model
of A with carrier CA, extended with interpretations for V such that η is satisfied.
As usual, |=A η means that η is valid, and η ≡A η′ means |=A η ⇐⇒ η′.

We write �x for sequences and xi is the ith element of �x. We use “::” for
concatenation of sequences, where we identify sequences of length 1 with their
elements, so we may write, e.g., x :: xs instead of [x] :: xs.

Transition Systems. Let d ∈ N be fixed, and let �x, �x′ ∈ Vd be disjoint vectors
of pairwise different variables. Each ψ ∈ QF(ΣA) induces a relation −→ψ on Cd

A
where �s −→ψ �t iff ψ[�x/�s, �x′/�t] is satisfiable. So for the condition ψ := (x = y ∧
x > 0∧=

x∧y– –) of τ=
�2

, we have (4, 4, 4) −→ψ (4, 3, 7). L ⊇ {init, err} is a finite set
of locations. A configuration is a pair (�, �s) ∈ L × Cd

A, written �(�s). A transition
is a triple τ = (�, ψ, �′) ∈ L ×QF(ΣA) × L, written � → �′ �ψ�, and its condition
is cond(τ) := ψ. W.l.o.g., we assume � �= err and �′ �= init. Then τ induces
a relation −→τ on configurations where s −→τ t iff s = �(�s), t = �′(�t), and
�s −→ψ �t. So, e.g., �2(4, 4, 4) −→τ=

�2
�2(4, 3, 7). We call τ recursive if � = �′,

conjunctive if ψ ∈ QF∧(ΣA), initial if � = init, and safe if �′ �= err. Moreover, we
define (� → �′ �ψ�)|ψ′ := � → �′ �ψ′�. A transition system (TS) T is a finite set
of transitions, and it induces the relation −→T :=

⋃
τ∈T −→τ .

Chaining τ = �s → �t �ψ� and τ ′ = �′
s → �′

t �ψ′� yields chain(τ, τ ′) := (�s →
�′
t �ψc�) where ψc := ψ[�x′/�x′′]∧ψ′[�x/�x′′] for fresh �x′′ ∈ Vd if �t = �′

s, and ψc := ⊥
(meaning false) if �t �= �′

s. So −→chain(τ,τ ′) = −→τ◦−→τ ′ , and chain(τ�1→�2 , τ
=
�2

) =
�1 → �2 �ψ� where ψ ≡A (x = y ∧ x > 2 · z ∧ x > 0 ∧ =

x ∧ y– –). For non-empty,
finite sequences of transitions we define chain([τ ]) := τ and chain([τ1, τ2] :: �τ) :=
chain(chain(τ1, τ2) :: �τ). We lift notations for transitions to finite sequences via
chaining. So cond(�τ) := cond(chain(�τ)), �τ is recursive if chain(�τ) is recursive,
−→�τ = −→chain(�τ), etc. If τ is initial and cond(τ :: �τ) �≡A ⊥, then (τ :: �τ) ∈ T +

is a finite run. T is safe if every finite run is safe. If there is a σ such that
σ |=A cond(�τ ′) for every finite prefix �τ ′ of �τ ∈ T ω, then �τ is an infinite run. If
no infinite run exists, then T is terminating.

Acceleration. Acceleration techniques compute the transitive closure of rela-
tions. In the following definition, we only consider relations defined by conjunc-
tive formulas, since many existing acceleration techniques do not support dis-
junctions [4], or have to resort to approximations in the presence of disjunctions
[13].

Definition 2 (Acceleration). An acceleration technique is a function accel :
QF∧(ΣA) �→ QF∧(ΣA′) such that −→+

ψ = −→accel(ψ), where A′ is a first-
order theory. For recursive conjunctive transitions τ , we define accel(τ) :=
τ |accel(cond(τ)).
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So we clearly have −→+
τ = −→accel(τ). Note that most theories are not “closed

under acceleration”. E.g., accelerating the Presburger formula x′
1 = x1 +x2 ∧ =

x2

yields the non-linear formula n > 0 ∧ x′
1 = x1 + n · x2 ∧ =

x2. If neither N nor Z

are contained in CA, then an additional sort for the range of n is required in the
formula that results from applying accel. Hence, Definition 2 allows A′ �= A.

3 ADCL for Transition Systems

We originally proposed the ADCL calculus to analyze satisfiability of linear Con-
strained Horn Clauses (CHCs) [16]. Here, we rephrase it for TSs, and in Sect. 4,
we modify it for proving non-termination. The adaption to TSs is straightforward
as TSs can be transformed into equivalent linear CHCs and vice versa (see, e.g.,
[10]).

To bridge the gap between transitions τ where cond(τ) ∈ QF(ΣA) and accel-
eration techniques for formulas from QF∧(ΣA), ADCL uses syntactic implicants.

Definition 3 (Syntactic Implicants [16, Def. 6]). If ψ ∈ QF(ΣA), then:

sip(ψ, σ) :=
∧

{π is a literal of ψ | σ |=A π} if σ |=A ψ

sip(ψ) := {sip(ψ, σ) | σ |=A ψ}
sip(τ) := {τ |ψ | ψ ∈ sip(cond(τ))} for transitions τ

sip(T ) :=
⋃

τ∈T
sip(τ) for TSs T

Here, sip abbreviates syntactic implicant projection.

As sip(ψ, σ) is restricted to literals from ψ, sip(ψ) is finite. Syntactic implicants
ignore the semantics of literals. So we have, e.g., (X > 1) /∈ sip(X > 0∧X > 1) =
{X > 0 ∧ X > 1}. It is easy to show ψ ≡A

∨
sip(ψ), and thus −→T = −→sip(T ).

Since sip(τ) is worst-case exponential in the size of cond(τ), we do not com-
pute it explicitly. Instead, ADCL constructs a run �τ step by step, and to per-
form a step with τ , it searches for a model σ of cond(�τ :: τ). If such a model
exists, it appends τ |sip(cond(τ),σ) to �τ . This corresponds to a step with a conjunc-
tive variant of τ whose condition is satisfied by σ. In other words, our calculus
constructs sip(cond(τ), σ) “on the fly” when performing a step with τ , where
σ |=A cond(�τ :: τ)

The core idea of ADCL is to learn new, non-redundant transitions via accel-
eration. Essentially, a transition is redundant if its transition relation is a subset
of another transition’s relation. Thus, redundant transitions are not useful for
(dis-)proving safety.

Definition 4 (Redundancy, [16, Def. 8]). A transition τ is (strictly) redun-
dant w.r.t. τ ′, denoted τ � τ ′ (τ � τ ′) if −→τ ⊆ −→τ ′ (−→τ ⊂ −→τ ′). For a
TS T , we have τ � T (τ � T ) if τ � τ ′ (τ � τ ′) for some τ ′ ∈ T .
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In the sequel, we assume oracles for redundancy, satisfiability of QF(ΣA)-
formulas, and acceleration. In practice, we use incomplete techniques instead
(see Sect. 5).

From now on, let T be the TS that is being analyzed with ADCL. A state of
ADCL consists of a TS S that augments T with learned transitions, a run �τ of
S called the trace, and a sequence of sets of blocking transitions [Bi]ki=0, where
transitions that are redundant w.r.t. Bk must not be appended to the trace.

The following definition introduces the ADCL calculus. It extends the trace
step by step (using the rule Step, which performs an evaluation step with a
transition) and learns new transitions via acceleration (Accelerate) whenever
a suffix of the trace is recursive. To avoid non-terminating ADCL-derivations,
our notion of redundancy from Definition 4 is used to backtrack whenever a
suffix of the trace corresponds to a special case of another (learned) transition
(Covered). Moreover, Backtrack is used whenever a run cannot be contin-
ued. A more detailed explanation of ADCL is provided after Definition 5.

Definition 5 (ADCL [16, Def. 9, 10]). A state is a triple (S, [τi]ki=1, [Bi]ki=0)
where S ⊇ T is a TS,

⋃k
i=0 Bi ⊆ sip(S), and [τi]ki=1 ∈ sip(S)∗. The transitions

in sip(T ) are called original and the transitions in sip(S) \ sip(T ) are learned.
A transition τk+1 � Bk is blocked, and τk+1 �� Bk is active if chain([τi]k+1

i=1 ) is
an initial transition with satisfiable condition (i.e., [τi]k+1

i=1 is a run). Let

bt(S, [τi]ki=1, [B0, . . . , Bk]) := (S, [τi]k−1
i=1 , [B0, . . . , Bk−1 ∪ {τk}])

where bt abbreviates “backtrack”. Our calculus is defined by the following rules.

T � (T , [], [∅]) (Init)

τ ∈ sip(S) is active

(S, �τ , �B) � (S, �τ :: τ, �B :: ∅) (Step)

�τ� is recursive |�τ�| = | �B�| accel(�τ�) = τ �� sip(S)

(S, �τ :: �τ�, �B :: �B�) � (S ∪ {τ}, �τ :: τ, �B :: {τ}) (Accelerate)

�τ ′ � sip(S) or �τ ′ � sip(S) ∧ |�τ ′| > 1

s = (S, �τ :: �τ ′, �B) � bt(s) (Covered)

all transitions from sip(S) are inactive τ is safe

s = (S, �τ :: τ, �B) � bt(s) (Backtrack)

�τ is unsafe

(S, �τ , �B) � unsafe (Refute)

all transitions from sip(S) are inactive

(S, [], [B]) � safe (Prove)

We write I�, S�, . . . to indicate that the rule Init, Step, . . . was used. Step
adds a transition to the trace. When the trace has a recursive suffix, Acceler-
ate allows for learning a new transition which then replaces the recursive suffix
on the trace, or we may backtrack via Covered if the recursive suffix is redun-
dant. Note that Covered does not apply if �τ ′ � sip(S) and |�τ ′| = 1, as it could
immediately undo every Step, otherwise. If no further Step is possible, Back-
track applies. Note that Backtrack and Covered block the last transition
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from the trace so that we do not perform the same Step again. If �τ is an unsafe
run, Refute yields unsafe, and if the entire search space has been exhausted
without finding an unsafe run (i.e., if all initial transitions are blocked), Prove
yields safe.

The definition of ADCL in [16] is more liberal than ours: In our setting,
Accelerate may only be applied if the learned transition is non-redundant, and
our definition of “active transitions” enforces that the first transition on the trace
is always an initial transition. In [16], these requirements are not enforced by the
definition of ADCL, but by the definition of reasonable strategies [16, Def. 14].
For simplicity, we integrated these requirements into Definition 5. Additionally,
Covered should be preferred over Accelerate, and Accelerate should be
preferred over Step.

Example 6. We apply ADCL to a version of Example 1 with the additional
transition

�1 → err �x = y ∧ x > 2 · z ∧ =
x ∧ =

y ∧ =
z�. (τerr)

T I� (T , [], [∅]) S�
2

(T , [τi, τ�1 |ψx<z
], [∅, ∅, ∅]) (x ≤ 1 ∧ z ≥ 5k ∧ y ≤ z)

A� (S1, [τi, τ+
x<z], [∅, ∅, {τ+

x<z}]) (x ≤ z ∧ z ≥ 5k ∧ y ≤ z)

S� (S1, [τi, τ+
x<z, τ�1 |ψx≥z

], [∅, ∅, {τ+
x<z}, ∅])

(x = z + 1 ∧ z ≥ 5k ∧ y ≤ z + 1)

A� (S2, [τi, τ+
x<z, τ

+
x≥z], [∅, ∅, {τ+

x<z}, {τ+
x≥z}])

(x ≥ y ∧ x > z ≥ 5k ∧ y ≤ 2 · z + 1)

S� (S2, [τi, τ+
x<z, τ

+
x≥z, τerr], [∅, ∅, {τ+

x<z}, {τ+
x≥z}, ∅])

(x = 2 · z + 1 = y ∧ z ≥ 5k)

R� unsafe

Here, 5k abbreviates 5000 and:

ψx<z := y ≤ 2 · z ∧ x++ ∧ x < z ∧ =
y ∧ =

z ψx≥z := y ≤ 2 · z ∧ x++ ∧ x ≥ z ∧ y++ ∧ =
z

τ+
x<z := �1 → �1 �y ≤ 2 · z ∧ n > 0 ∧ x′ = x + n ∧ x + n ≤ z ∧ =

y ∧ =
z�

τ+
x≥z := �1 → �1 �y + n − 1 ≤ 2 · z ∧ n > 0 ∧ x′ = x + n ∧ x ≥ z ∧ y′ = y + n ∧ =

z�

S1 := T ∪ {τ+
x<z} S2 := S1 ∪ {τ+

x≥z}

On the right, we show formulas describing the configurations that are reachable
with the current trace. Every �-derivation starts with Init. The first two Steps
add the initial transition τi and an element of sip(τ�1) to the trace. Since x < z
holds after applying τi, the only possible choice for the latter is τ�1 |ψx<z

.
As τ�1 |ψx<z

is recursive, it is accelerated and replaced with accel(τ�1 |ψx<z
) =

τ+
x<z, which simulates n steps with τ�1 |ψx<z

. Moreover, τ+
x<z is also added to the

current set of blocking transitions, as we always have −→2
τ ⊆ −→τ for learned

transitions τ and thus adding them to the trace twice in a row is pointless.
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Next, τ�1 is applicable again. As neither x < z nor x ≥ z holds for all
reachable configurations, we could continue with any element of sip(τ�1) =
{τ�1 |ψx<z

, τ�1 |ψx≥z
}. We choose τ�1 |ψx≥z

, so that the recursive transition τ�1 |ψx≥z

can be accelerated to τ+
x≥z. Then τerr applies, and the proof is finished via

Refute.

For our purposes, the most important property of ADCL is the following.

Theorem 7. If T �∗ (S, �τ , �B) and �τ is non-empty, then cond(�τ) �≡A ⊥ and
−→�τ ⊆ −→+

T . So if T �∗ unsafe, then T is unsafe.

The other properties of ADCL that were shown in [16] immediately carry over
to our setting, too: if T �∗ safe, then T is safe; if T is unsafe, then T �∗ unsafe;
in general, � does not terminate. The proofs are analogous to [16].

4 Proving Non-Termination with ADCL-NT

From now on, we assume that the analyzed TS T does not contain unsafe tran-
sitions. To prove non-termination, we look for a corresponding certificate.

Definition 8 (Certificate of Non-Termination). Let τ = � → � �. . .�. A
satisfiable formula ψ certifies non-termination of τ , written ψ |=∞

A τ , if for any
model σ of ψ, there is an infinite sequence �(σ(�x)) = s1 −→τ s2 −→τ . . .

There exist many techniques for finding certificates of non-termination auto-
matically, see Sect. 5. However, Definition 8 has several shortcomings. First, the
problem of finding such certificates becomes very challenging if cond(τ) contains
disjunctions. Second, it is insufficient to consider a single transition when only
non-singleton sequences �τ such that chain(�τ) is recursive admit non-terminating
runs. Third, just finding a certificate ψ of non-termination for some �τ ∈ T ∗

does not suffice for proving non-termination of T . Additionally, a proof that
the pre-image of −→�τ |ψ is reachable from an initial configuration is required.
All of these problems can be solved by integrating the search for certificates of
non-termination into the ADCL calculus.

Definition 9 (ADCL-NT). To prove non-termination, we extend ADCL with
the rule Nonterm and modify Covered as shown below. We write �nt for the
relation defined by the (modified) rules from Definition 5 and Nonterm.

�τ� is recursive �τ� � sip(S) or �τ� � sip(S) ∧ |�τ�| > 1

s = (S, �τ :: �τ�, �B) �nt bt(s) (Covered)

chain(�τ�) = � → � �. . .� ψ |=∞
A �τ� τ = � → err �ψ� �� sip(S)

(S, �τ :: �τ�, �B) �nt (S ∪ {τ}, �τ :: �τ�, �B) (Nonterm)

So the idea of Nonterm is to apply a technique which searches for a certifi-
cate of non-termination to a recursive suffix of the trace. Apart from introducing
Nonterm, we restricted Covered to recursive suffixes. The reason is that back-
tracking when the trace has a redundant, non-recursive suffix may prevent us
from analyzing loops, resulting in a precision issue.
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Example 10. Let T := {τi, τ
′
i , τ�, τ�′} where

τi := init → � ��� τ ′
i := init → �′ ��� τ� := � → �′ ��� τ�′ := �′ → � ���

and � means true. Due to the loop � −→τ�
�′ −→τ�′ �, T is clearly non-

terminating. Without requiring that �τ� is recursive in Covered, T can be
analyzed as follows:

T I�nt (T , [], [∅])
S�

2

nt (T , [τi, τ�], ∅
3)

C�nt (T , [τi], [∅, {τ�}])
B�nt (T , [], [{τi}])

S�
2

nt (T , [τ ′
i , τ�′ ], {τi} :: ∅

2)
C�nt (T , [τ ′

i ], [{τi}, {τ�′}])
B�nt (T , [], [{τi, τ

′
i }])

P�nt safe

The 1st application of Covered is possible as [τi, τ�] � τ ′
i and the 2nd application

of Covered is possible as [τ ′
i , τ�′ ] � τi. Note that the trace never contains both

τ� and τ�′ , but both transitions are needed to prove non-termination.

Recall the shortcomings of Definition 8 mentioned above. First, due to the
use of syntactic implicants, ADCL-NT reduces reasoning about arbitrary transi-
tions to reasoning about conjunctive transitions. Second, as Nonterm considers
a suffix �τ� of the trace, it can prove non-termination of sequences of transitions.
Third, ADCL’s capability to prove reachability directly carries over to our goal of
proving non-termination. So in contrast to most other approaches (see Sect. 5),
ADCL-NT does not have to resort to other tools or techniques for proving reach-
ability.

We only search for a certificate of non-termination for �τ� if ADCL-NT estab-
lished reachability of the pre-image of −→�τ� beforehand. Note, however, that
this does not imply reachability of the pre-image of −→�→err �ψ�, as ψ entails
cond(�τ�), but not the other way around. Hence, we cannot directly derive non-
termination of T when Nonterm applies. Regarding the strategy for �nt, one
should try to use Nonterm once for each recursive suffix of the trace.

Example 11. Reconsider Example 1. Up to (excluding) the second-last step, the
derivation from Example 6 remains unchanged. Then we get

(S2, [τi, τ+
x<z, τ

+
x≥z], [. . . ]) (x ≥ y ∧ x > 5k)

S�
4

nt (S2, [τi, τ+
x<z, τ

+
x≥z, τ�1→�2 , τ

=
�2

, τ �=
�2

|ψx>y
, τ �=

�2
|ψx<y

], [. . .]) (1 ≡2 y = x > 10k)
N�nt (S3, [τi, τ+

x<z, τ
+
x≥z, τ�1→�2 , τ

=
�2

, τ �=
�2

|ψx>y
, τ �=

�2
|ψx<y

], [. . .]) (1 ≡2 y = x > 10k)
S�nt (S3, [τi, τ+

x<z, τ
+
x≥z, τ�1→�2 , τ

=
�2

, τ �=
�2

|ψx>y
, τ �=

�2
|ψx<y

, τerr], [. . .])
R�nt unsafe

where ψx>y := x > 0 ∧ y > 0 ∧ x′ = y ∧ x > y ∧ y′ = x τerr := �2 → err �x = y > 1�

ψx<y := x > 0 ∧ y > 0 ∧ x′ = y ∧ x < y ∧ =
y S3 := S2 ∪ {τerr}

The formulas on the right describe the values of x and y that are reachable with
the current trace, where 1 ≡2 y means that y is odd. After the first Step with
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τ�1→�2 , just τ=
�2

can be used, as cond(τ�1→�2) implies x′ = y′. While τ=
�2

is recur-
sive, Accelerate cannot be applied next, as −→τ=

�2
= −→+

τ=
�2

, so the learned

transition would be redundant. Thus, we continue with τ �=
�2

, projected to x > y
(as cond(τ=

�2
) implies x′ = y′ +1). Again, all transitions that could be learned are

redundant, so Accelerate does not apply. We next use τ �=
�2

projected to x < y,
as the previous Step swapped x and y. As the suffix [τ=

�2
, τ �=

�2
|ψx>y

, τ �=
�2

|ψx<y
] of

the trace does not terminate (see Example 1), Nonterm applies. So we learn
the transition τerr, which is added to the trace to finish the proof, afterwards.

Theorem 12. If T �∗
nt unsafe, then T does not terminate.

While Theorem 12 establishes the soundness of our approach, we now inves-
tigate completeness. In contrast to ADCL for safety (Sect. 3), ADCL-NT is not
refutationally complete, but the proof is non-trivial. So in the following, we show
that there are non-terminating TSs T where T ��∗

nt unsafe. To prove incomplete-
ness, we adapt the construction from the proof that ADCL does not terminate
[16, Thm. 18]. There, states (S, �τ , �B) were extended by a component L that maps
every element of sip(S) to a regular language over sip(T ). However, the proof of
[16, Thm. 18] just required reasoning about finite (prefixes of infinite) runs, but
we have to reason about infinite runs. So in our setting L maps each element τ
of sip(S) to a regular or an ω-regular language over sip(T ), i.e., L(τ) ⊆ sip(T )∗

or L(τ) ⊆ sip(T )ω. We lift L from sip(S) to sequences of transitions as follows.

L(ε) := ε L(�τ :: τ) := L(�τ) :: L(τ) if L(τ) ⊆ sip(τ)∗

Here, “::” denotes language concatenation (i.e., L1 :: L2 = {τ1 :: τ2 | τ1 ∈
L1, τ2 ∈ L2}) and we only consider sequences where L(τ) is regular (not ω-
regular) to ensure that L is well defined. So while we lift other notations to
sequences of transitions via chaining, L(�τ) does not stand for L(chain(�τ)).

Definition 13 (ADCL-NT with Regular Languages). We extend states
by a fourth component L, and adapt Init, Accelerate, and Nonterm as
follows:

L(τ) = {τ} for all τ ∈ sip(T )

T �nt (T , [], [∅], L) (Init)

�τ� is recursive |�τ�| = | �B�| accel(�τ�) = τ �� sip(S)

(S, �τ :: �τ�, �B :: �B�, L) �nt (S ∪ {τ}, �τ :: τ, �B :: {τ}, L 
 (τ �→ L(�τ�)+)) (Accelerate)

chain(�τ�) = � → � �. . .� ψ |=∞
A �τ� τ = � → err �ψ� �� sip(S)

(S, �τ :: �τ�, �B, L) �nt (S ∪ {τ}, �τ :: �τ�, �B, L 
 (τ �→ L(�τ�)ω)) (Nonterm)

All other rules from Definition 5 leave the last component of the state unchanged.

Here, L(π)+ :=
⋃

n∈N≥1
L(π)n, and L(π)ω is the ω-regular language consisting of

all words that result from concatenating infinitely many elements of L(π) \ {ε}.
In Accelerate and Nonterm, chain(�τ�) is recursive. Thus, �τ� does not

contain unsafe transitions. Hence, L(�τ�) and thus also L(�τ�)+ are well defined
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and regular, and L(�τ�)ω is ω-regular. Moreover, the use of “�” is justified by
the condition τ �� sip(S). The next lemma states two crucial properties about
L.

Lemma 14. Assume T �∗
nt (S, �τ , �B,L) and let τ = (� → �′ �ψ�) ∈ sip(S).

• If L(τ) ⊆ sip(T )∗, then −→τ =
⋃

�τ∈L(τ) −→�τ .
• If L(τ) ⊆ sip(T )ω, then for every model σ of ψ, there is an infinite sequence

�(σ(�x)) = s1 −→τ1 s2 −→τ2 . . . where [τ1, τ2, . . .] ∈ L(τ).

Based on this lemma, we can prove that our extension of �nt from Definition 13
is not refutationally complete. Then refutational incompleteness of ADCL-NT as
introduced in Definition 9 follows immediately. The reason is that L is only used
in the premise of Init in Definition 13, but there the requirement “L(τ) = {τ}
for all τ ∈ sip(T )” is trivially satisfiable by choosing L accordingly.

Theorem 15. There is a non-terminating TS T such that T ��∗
nt unsafe.

Proof (Sketch). As in the proof of [16, Thm. 18], for any (original or learned)
transition τ such that L(τ) is regular, L(τ) contains at most one square-free word
(i.e., a word without a non-empty infix w :: w). Thus, if L(τ) is ω-regular, then
L(τ) does not contain an infinite square-free word. Moreover, as in the proof
of [16, Thm. 18], one can construct a TS T that admits a single infinite run �τ ,
and this infinite run is square-free. Thus, there is no transition τ such that L(τ)
contains a suffix of �τ , i.e., no �nt-derivation starting with T corresponds to �τ .
Hence, by Lemma 14, assuming T �∗

nt unsafe results in a contradiction. ��

Since ADCL can prove unsafety as well as safety, it is natural to ask if there
is a dual to ADCL-NT that can prove termination. The most obvious approach
would be the following: Whenever the trace has a recursive suffix �τ�, then termi-
nation of �τ� needs to be proven before the next �-step. The following example
shows that this is not enough to ensure that T �+

nt safe implies termination of
T .

Example 16. Let T := {τi = init → � �ψi�} ∪ {τm = � → � �ψm� | 0 ≤ m ≤ 2}
and

ψi := x′ = 0 ψ0 := x = 0 ∧ x′ = 1 ψ1 := x = 1 ∧ x′ = 2 ψ2 := x = 2 ∧ x′ = 1.

As we have �(1) −→τ1 �(2) −→τ2 �(1), T is clearly non-terminating. We get:

T I�nt (T , [], [∅])
S�

3

nt (T , [τi, τ0, τ1], ∅
4)

A�nt (S1, [τi, τ01], ∅
2 :: {τ01})

S�nt (S1, [τi, τ01, τ2], ∅
2 :: {τ01} :: ∅)

A�nt (S2, [τi, τ012], ∅
2 :: {τ01, τ012})

S�nt (S2, [τi, τ012, τ1], ∅
2 :: {τ01, τ012} :: ∅)

C�nt (S2, [τi, τ012], ∅
2 :: {τ01, τ012, τ1})

B�nt (S2, [τi], ∅ :: {τ012}) �∗
nt (S2, [τi], ∅ :: {τ012, τ0, τ01})

B�nt (S2, [], [{τi}])
P�nt safe

After three Steps, we accelerate the recursive suffix [τ0, τ1] of the trace, resulting
in τ01 = � → � �x = 0∧x′ = 2� and S1 = T ∪{τ01}. After one more step, [τ01, τ2]
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is accelerated to τ012 = � → � �x = 0 ∧ x′ = 1� and we get S2 = S1 ∪ {τ012}.
After the next step, [τ012, τ1] is redundant w.r.t. τ01, so Covered applies. Then
we Backtrack, as no other transitions are active. The next Steps also yield
states that allow for backtracking (as their traces have the redundant suffixes
[τ0, τ1] and [τ01, τ2]), so we can finally apply Backtrack again and finish with
Prove.

Note that whenever the trace has a recursive suffix, then it leads from �(i)
to �(j) where i �= j, i.e., each such suffix is trivially terminating. In particular,
the cycle �(1) −→τ1 �(2) −→τ2 �(1) is not apparent in any of the states.

This example reveals a fundamental problem when adapting ADCL for prov-
ing termination: ADCL ensures that all reachable configurations are covered,
which is crucial for proving safety, but there are no such guarantees for all runs.
Therefore, we think that adapting ADCL for proving termination requires major
changes.

5 Related Work and Experiments

We presented ADCL-NT, a variant of ADCL for proving non-termination. The
key insight is that tightly integrating techniques to detect non-terminating tran-
sitions into ADCL allows for handling classes of TSs that are challenging for
other techniques. In particular, ADCL-NT can find non-terminating executions
involving disjunctive transitions or complex patterns of transitions. Moreover,
it tightly couples the search for non-terminating configurations and the proof of
their reachability, whereas other approaches usually separate these two steps.

Related Work. There are many techniques to find certificates of non-
termination [2,14,15,22,23,25]. We could use any of them (they are black boxes
for ADCL-NT).

Most non-termination techniques for TSs first search for non-terminating
configurations, and then prove their reachability [5,6,9,22], or they extract and
analyze lassos [23]. In contrast, ADCL-NT tightly integrates the search for non-
terminating configurations and reachability analysis.

Earlier versions of our tool LoAT [12,15] also interleaved both steps using a
technique akin to the state elimination method to transform finite automata to
regular expressions. This technique cannot handle disjunctions, and it is incom-
plete for reachability. Hence, LoAT is now solely based on ADCL-NT.

Implementation. So far, our implementation in our tool LoAT is restricted to
integer arithmetic. It uses the technique from [15] for acceleration and finding
certificates of non-termination, the SMT solvers Z3 [26] and Yices [11], the recur-
rence solver PURRS [1], and libFAUDES [24] to implement the automata-based
redundancy check from [16].

Experiments. To evaluate our implementation in LoAT, we used the 1222 Inte-
ger Transition Systems (ITSs) and the 335 C Integer Programs from the Ter-
mination Problems Database [28] used in TermComp [21]. The C programs are
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small, hand-crafted examples that often require complex proofs. The ITSs are
significantly larger, as they were obtained from automatic transformations of C
or Java programs. Moreover, they contain a lot of “noise”, e.g., branches where
termination is trivial or variables that are irrelevant for (non-)termination. Thus,
they are well suited to test the scalability and robustness of the tools.

We compared our implementation (LoAT ADCL) with other leading termina-
tion analyzers: iRankFinder [2,9], T2 [6], Ultimate [8], VeryMax [3,22], and the
previous version of LoAT [15] (LoAT ’22). For T2, VeryMax, and Ultimate, we
took the versions of their last TermComp participations (2015, 2019, and 2022).
For iRankFinder, we used the configuration from the evaluation of [15], which
is tailored towards proving non-termination. We excluded AProVE [20], as it
cannot prove non-termination of ITSs, and it uses LoAT and T2 as backends
when analyzing C programs. Moreover, we excluded Ultimate from the evaluation
on ITSs, as it cannot parse them. All experiments were run on StarExec [27] with
300 s wallclock timeout, 1200 s CPU timeout, and 128 GB memory limit per
example.

No Yes Runtime overall Runtime No

solved unique solved average median timeouts average median

LoAT ADCL 521 9 0 48.6 s 0.1 s 183 2.9 s 0.1 s

LoAT ’22 494 2 0 7.4 s 0.1 s 0 6.2 s 0.1 s

T2 442 3 615 17.2 s 0.6 s 45 7.4 s 0.6 s

VeryMax 421 6 631 28.3 s 0.5 s 30 30.5 s 14.5 s

iRankFinder 409 0 642 32.0 s 2.0 s 93 12.3 s 1.7 s

The table above shows the results for ITSs, where the column “unique” contains
the number of examples that could be solved by the respective tool, but no others.
It shows that LoAT ADCL is the most powerful tool for proving non-termination
of ITSs. The main reasons for the improvement are that LoAT ADCL builds upon
a complete technique for proving reachability (in contrast to, e.g., LoAT ’22), and
the close integration of non-termination techniques into a technique for proving
reachability, whereas most competing tools separate these steps from each other.

If we only consider the examples where non-termination is proven, LoAT
ADCL is also the fastest tool. If we consider all examples, then the average
runtime of LoAT ADCL is significantly slower. This is not surprising, as ADCL-
NT does not terminate in general. So while it is very fast in most cases (as
witnessed by the very fast median runtime), it times out more often than the
other tools.

For C integer programs, the best tools are very close (VeryMax: 103×No,
LoAT ADCL: 102×No, Ultimate: 100×No). Regarding runtimes, the situation is
analogous to ITSs. See [18] for detailed results, more information about our
evaluation, and a pre-compiled binary. LoAT is open-source and available on
GitHub [17].
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Abstract. There is a wide range of modal logics whose semantics goes
beyond relational structures, and instead involves, e.g., probabilities,
multi-player games, weights, or neighbourhood structures. Coalgebraic
logic serves as a unifying semantic and algorithmic framework for such
logics. It provides uniform reasoning algorithms that are easily instan-
tiated to particular, concretely given logics. The COOL 2 reasoner pro-
vides an implementation of such generic algorithms for coalgebraic modal
fixpoint logics. As concrete instances, we obtain in particular reason-
ers for the aconjunctive and alternation-free fragments of the graded
μ-calculus and the alternating-time μ-calculus. We evaluate the tool
on standard benchmark sets for fixpoint-free graded modal logic and
alternating-time temporal logic (ATL), as well as on a dedicated set of
benchmarks for the graded μ-calculus.

1 Introduction

Modal and temporal logics are established tools in the specification and verifica-
tion of systems. While many such logics are interpreted over relational transition
systems, the semantics of quite a number of important logics goes beyond the
relational setup, involving, for instance, probabilities [20,30], concurrent games
as in alternating-time logics [1,36], monotone neighbourhoods structures as in
game logic [34] and concurrent dynamic logic [37], or integer transition weights as
in the multigraph semantics [5] of the graded μ-calculus [25]. Coalgebraic logic [4]
provides a uniform semantic and algorithmic framework for these logics, based
on the paradigm of universal coalgebra [38]. It provides reasoning algorithms
of optimal complexity at various levels of expressiveness, up to the coalgebraic
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μ-calculus [3,21–23]. These algorithms are parametric in the transition type of
systems (weighted, probabilistic, game-based etc.) as well as in suitable choices
of modalities specific to the given system type. Their instantiation to specific
logics requires providing either a set of next-step modal tableau rules satisfying
a suitable completeness criterion [41] or, more generally, a plug-in algorithm that
determines satisfiability for an extremely simple one-step logic that describes the
interaction between modalities, and consists of (conjunctions of) modal opera-
tors applied to variables only [29].

The COalgebraic Ontology Logic solver (COOL) provides reasoning support
for coalgebraic logics based on these generic algorithms. The first version of the
tool [15] provided reasoning support for fixpoint-free coalgebraic hybrid logic
with global assumptions, using a global caching principle [13]. In the present
paper, we present COOL 2, which provides reasoning support for coalgebraic fix-
point logics, specifically for both the aconjunctive fragment and the alternation-
free fragment of the coalgebraic μ-calculus. By instantiation, we obtain in par-
ticular the first implemented reasoners for the graded μ-calculus [26] (for which
a set of coalgebraic modal tableau rules has been described in the literature [41];
however, this rule set has later turned out to be incomplete, cf. Remark 2.3)
and the alternating-time μ-calculus [1]. We describe the structure of the tool
including implementational details, and present evaluation results, focusing on
the graded μ-calculus and alternating-time temporal logic (ATL). Additional
details on the evaluation can be found in the full version [17].

Related Work: We have already mentioned work in coalgebraic logic on which
COOL is based [3,13,21–23,41]. COOL is conceptually a successor of the Coal-
gebraic Logic Satisfiability Solver (CoLoSS) [2] but does not share any of its
code. CoLoSS implements fixpoint-free logics, and is entirely unoptimised. The
first version of COOL [15] has been evaluated on fixpoint-free next-step logics.

COOL does cover also various relational modal logics, for which there are
numerous specialised reasoners, including highly optimised description logic rea-
soners such as FaCT++ [44], Pellet [42], RACER [18], and HermiT [12]. As these
systems do not support fixpoint logics, a comparison would be of limited value.
In previous work, COOL has been evaluated on various relational fixpoint log-
ics, and has been shown to perform favourably on Computation Tree Logic [23]
(in comparison to reasoners featured in a previous systematic evaluation [14]),
as well as on the aconjunctive fragment of the modal μ-calculus [22] (in com-
parison to MLSolver [11]). A reasoner for (next-step) graded modal logic has
been evaluated against various description logic reasoners [43], using however
the above-mentioned incomplete set of modal tableau rules.

For the same reasons, we refrain from evaluating COOL 2 against reason-
ers for coalition logic, i.e. the fixpoint-free fragment of the alternating-time μ-
calculus, such as CLProver [32]. The only implemented reasoner for any fragment
of the alternating-time μ-calculus that does include fixpoints still appears to be
the tableau reasoner TATL for alternating-time temporal logic [6,7]. TATL has
been compared to COOL on random formulas in previous work [23].
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2 Satisfiability in the Coalgebraic µ-Calculus

COOL 2 is a satisfiability checker for the coalgebraic μ-calculus [3], that is, for
the extension of coalgebraic modal logic with extremal fixpoint operators. For-
mulas of this logic are interpreted over coalgebras, where the semantics of modal
operators is defined by means of so-called predicate liftings [41]; we recapitulate
examples of system types and modalities subsumed by this paradigm in Example
2.1.

Syntax: Formulas are built relative to a set Var of fixpoint variables and a modal
similarity type Λ, that is, a set of modal operators with assigned finite arities
that is closed under duals, with ♥ ∈ Λ denoting the dual of ♥ ∈ Λ. Formulas
ψ, φ, . . . of the coalgebraic μ-calculus over Λ are given by the grammar

ψ, φ := ⊥ | � | ψ ∧ φ | ψ ∨ φ | ♥(ψ1, . . . , ψn) | X | μX.ψ | νX.ψ,

where ♥ ∈ Λ has arity n and X ∈ Var. A formula χ is aconjunctive if for every
conjunction ψ∧φ that is a subformula of χ, at most one of the formulas ψ and φ
contains a free fixpoint variable X that is bound by a least fixpoint operator μX.
While the logic does not contain negation as an explicit operator, full negation
can be defined as usual; e.g. we have ¬♥ψ = ♥¬ψ and ¬μX.ψ = νX.¬ψ[¬X/X],
using ¬¬X = X.

Both the theoretical satisfiability checking algorithm and its implementa-
tion in COOL 2 operate on the Fischer-Ladner closure [21,24,27] of the target
formula. The alternation depth (e.g. [21,29,33]) of a formula is the maximum
depth of dependent alternating nestings of least and greatest fixpoints within
the formula. Formulas with alternation depth 1 are alternation-free.

Semantics: Formulas are interpreted over F -coalgebras, that is, structures

(C, ξ : C → FC),

where F : Set → Set is a functor determining the branching type of the systems at
hand; thus ξ(x) ∈ FC encodes the transitions from x ∈ C, structured according
to F . Modalities ♥ ∈ Λ of arity n are interpreted as predicate liftings, that is,
families of maps �♥�U : (2U )n → 2FU (for U ∈ Set) that assign predicates on FU
to n-tuples of predicates on U , subject to a naturality condition [35,40]. On a
coalgebra (C, ξ), the semantics of formulas is defined inductively in the usual
way for the propositional operators and fixpoints, and by �♥(ψ1, . . . , ψn)� =
ξ−1[�♥�C(�ψ1�, . . . , �ψn�)] for modalities.

A closed formula ψ is satisfiable if there is a coalgebra (C, ξ) and a state
x ∈ C such that x ∈ �ψ�. A formula ψ is valid if ¬ψ is not satisfiable.

Example 2.1.(1) The standard modal μ-calculus [24] is obtained using the
functor F = P(A) × P, where A is a fixed set of atoms, the similarity type
Λ = {♦,�, a,¬a | a ∈ A}, and predicate liftings

�♦�C(B) = {(A, Z) ∈ 2A × 2C | Z ∩ B �= ∅} �a�C = {(A, Z) ∈ 2A × 2C | a ∈ A}
���C(B) = {(A, Z) ∈ 2A × 2C | Z ⊆ B} �¬a�C = {(A, Z) ∈ 2A × 2C | a /∈ A}
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The expressive power of the modal μ-calculus is demonstrated by the for-
mulas

μX. νY. (p ∧ ♦Y ) ∨ ♦X νX.μY. (p ∧ ♦X) ∨ ♦Y.

The former is a co-Büchi formula expressing the existence of a path on
which p holds forever, from some point on; the latter formula expresses the
Büchi property that there is a path on which the atom p is satisfied infinitely
often.

(2) The graded μ-calculus [26] allows expressing quantitative properties with
the help of modal operators 〈n〉 and [n], n ∈ N; formulas 〈n〉ψ and [n]ψ then
have the intuitive meaning that ‘there are more than n successor states that
satisfy ψ’, and ‘all but at most n successor states satisfy ψ’, respectively.
Its coalgebraic interpretation is based on multigraphs, which are coalgebras
for the multiset functor [5]. A graded variant of the above Büchi property
is specified, e.g., by the formula νX. μY. (p ∧ 〈n〉X) ∨ 〈n〉Y , which expresses
the existence of an infinite n + 1-ary tree such that the atom p is satisfied
infinitely often on every path in the tree.

(3) The alternating-time μ-calculus (AMC) [39] extends coalition logic [36] with
fixpoints and (modulo syntax) supports modalities 〈D〉 and [D], where D ⊆
N is a coalition formed by agents from the set N = {1, . . . , n} for some fixed
n ∈ N; formulas 〈D〉ψ and [D]ψ then state that ‘coalition D has a joint
strategy to enforce ψ’ and that ‘coalition D cannot prevent ψ’, respectively.
For instance, the formula νX. μY. νZ. (p∧〈D〉X)∨ (q ∧〈D〉Y )∨ (¬q ∧〈D〉Z)
expresses that coalition D has a joint multi-step strategy that guarantees
that p is visited infinitely often whenever q is visited infinitely often.

Satisfiability Checking: We proceed to recall the satisfiability checking algorithm
for the coalgebraic μ-calculus that forms the basis of the implementation within
COOL 2. This algorithm adapts the automata-based approach to satisfiability
checking for the standard μ-calculus, and generalises the treatment of modal
steps by parametrizing over a solver for the one-step satisfiability problem of the
logic, which concerns satisfiability of formulae with exactly one layer of next-step
modalities [21]. It thus avoids the necessity of tractable sets of tableaux rules
for modal operators. Under mild assumptions on the complexity of the one-step
satisfiability problem of the base logic at hand (‘tractability ’), the algorithm
witnesses a, typically optimal, upper bound ExpTime for the complexity of
the satisfiability problem; unlike a previous algorithm [4], the algorithm thus
has optimal runtime also in cases where no tractable sets of modal tableaux
rules are known, such as the graded (or, more generally, Presburger) μ-calculus
(further cases of this kind include the probabilistic μ-calculus with polynomial
inequalities [21] and the unrestricted form of the alternating-time μ-calculus with
disjunctive explicit strategies [16]).

The algorithm constructs and solves a parity game that characterises satis-
fiability of the input formula χ. In this game one player attempts to construct
a tableau structure for χ while the opposing player attempts to refute the exis-
tence of such a structure. Modal steps in this tableau construction are treated
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by using instances of the one-step satisfiability problem for the logic at hand,
thereby generalising traditional modal tableau rules. The winning condition of
the game is encoded by a non-deterministic parity automaton Aχ, reading infi-
nite words that encode sequences of step-wise formula evaluations (so-called for-
mula traces) within a coalgebra; such words encode branches in the constructed
tableau structure. Conjunctions give rise to nondeterminism in this automaton,
and the parity condition of the automaton is used to accept exactly those words
that encode sequences of formula evaluations in which some least fixpoint is
unfolded infinitely often. To use the language accepted by Aχ as the winning
condition in a parity game, we transform Aχ to an equivalent deterministic par-
ity automaton Bχ. This automaton then is paired with the tableau construction
to yield a parity game in which the existential player aims to show the existence
of a tableau structure in which all branches are rejected by Bχ, and that is built
in such a way that modalities always are jointly one-step satisfiable. To ensure
the latter property, the modal moves in the game invoke instances of the one-step
satisfiability problem of the base logic. For more details on one-step satisfiability
and the overall algorithm, see [17,21].

Corollary 2.2 ([21]). Suppose that the one-step satisfiability problem is
tractable. Then the satisfiability problem of the corresponding instance of the
coalgebraic μ-calculus is in ExpTime.

Remark 2.3. As mentioned above, previous algorithms for the coalgebraic
μ-calculus (also implemented in COOL 2) rely on complete sets of modal
tableau rules, specifically on one-step cutfree complete sets of so-called one-
step rules [41]; such rules (in their incarnation as tableau rules) have a premiss
with exactly one layer of modal operators and a purely propositional conclu-
sion. A typical example is the usual tableau rule for the modal logic K: ‘To
satisfy �a1 ∧ · · · ∧ �an ∧ ¬�a0, satisfy a1 ∧ · · · ∧ an ∧ ¬a0’. It has been shown
that the existence of a tractable one-step cutfree complete set of one-step rules
implies tractability of one-step satisfiability [29], i.e. the approach via one-step
satisfiability is more general.

As indicated in the introduction, a tractable one-step cutfree complete set of
one-step rules for graded modal logic has been claimed in the literature [41,43]
but has since turned out to be incomplete; we give a counterexample in the full
version [17]. (A similar rule for Presburger modal logic [28] has also been shown
to be in fact incomplete [29].)

3 Implementation

The previous version COOL [15] only implements fixpoint-free (coalgebraic) log-
ics, such as standard modal logic, probabilistic modal logic, or coalition logic.
The main novelty of the new version COOL 2, described here, is

– the addition of fixpoint constructs to the previously implemented logics, sup-
porting alternation-free and aconjunctive fragments of the resulting μ-calculi,
and implementing on-the-fly solving to allow early termination
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– support for treating modal steps both by tableaux rules (when a suitable rule
set exists), and by one-step satisfiability checking (in the remaining cases)

In more detail, COOL 2 is written in OCaml and implements the satisfiabil-
ity checking algorithm described in Sect. 2, treating modal steps by solving
instances of the one-step satisfiability problem1. For logics where a suitable set of
modal tableau rules is implemented, those are used for the treatment of modal
steps, rather than relying on one-step satisfiability (unless the user explicitly
chooses otherwise); in these cases, COOL 2 essentially implements the algo-
rithm described in [29]. The current implementation supports the alternation-
free and the aconjunctive fragments of the standard μ-calculus (both serial and
non-serial), the monotone μ-calculus [19], the alternating-time μ-calculus (i.e.
coalition logic with fixpoint operators), and the graded μ-calculus. Tractable
tableaux rules are available for all cases except for the graded μ-calculus, for
which COOL 2 uses the one-step satisfiability algorithm to decide satisfiability.
In particular, COOL 2 is the only existing reasoner for the graded μ-calculus (as
well as the only reasoner covering the alternating-time μ-calculus beyond ATL).

The concrete logic used can be selected via a command-line parameter set-
ting up the data structures in COOL 2 accordingly before parsing and check-
ing the syntax of the given formula χ. COOL 2 then builds the determinised
automaton Bχ, yielding the parity game described above in a step-wise man-
ner, repeatedly adding nodes in expansion steps that explore the game. In the
case of simpler alternation-free formulas, the Miyano-Hayashi method [31] is
used to construct Bχ, resulting in asymptotically smaller games with a Büchi
winning condition; for the more involved aconjunctive formulas, the implemen-
tation uses the permutation method for determinisation of limit-deterministic
parity automata [9,22]. Nodes in the constructed game are marked as either
unexpanded, undecided, unsatisfiable, or satisfiable.

Optional solving steps may take place at any point during the construction of
Bχ, depending on runtime parameters of COOL 2; these steps compute the win-
ning regions of the partial game that has been constructed so far and accordingly
mark nodes as satisfiable or unsatisfiable, if possible. The reasoner terminates
as soon as the initial node is marked satisfiable or unsatisfiable. If this does
not allow for early termination, the game eventually becomes fully explored, at
which point a final (obligatory) solving step for the complete game is guaranteed
to mark the initial node, thereby ensuring termination.

We detail the implementation of the two main procedures within COOL 2.

Implementation of Expansion Steps. The propositional expansion steps in the
game construction for nodes v are performed using the propositional satisfiabil-
ity solver MiniSat [8] to compute a word that encodes consistent propositional
formula manipulations for v. Afterwards, the successor of v in Bχ under this
word is computed and added to the game.

When the one-step satisfiability based algorithm of COOL 2 is used, modal
expansion steps for nodes v create new game nodes for each subset κ of the
1 Sources are available at https://git8.cs.fau.de/software/cool.

https://git8.cs.fau.de/software/cool
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modalities that are to be jointly satisfied at v; this is done by computing the
successor of v in Bχ that is reached by manipulating each formula from κ.

When the tableau-based algorithm of COOL 2 is used, the modal expansion
step for a node v instead computes all applications of a modal rule matching v
and inserts, for each such rule application, and each conjunctive clause κ in the
conclusion of the rule application, the new game node that is reached from v
in Bχ by manipulating the modalities that constitute κ. Intuitively, using tableau
rules reduces the search space by only adding nodes found in the conclusion of
some matching rule application.

Any node that is added by some expansion step is initially marked as unde-
cided. Crucially, all expansion steps perform on-the-fly determinisation, that is,
given a game node v and a word that encodes a sequence of formula manipula-
tions, the newly added game node is computed using only the information stored
in v.

Implementation of Solving Steps. A single solving step computes the winning
regions in the parity game that has been constructed up to this point, and marks
nodes accordingly. The game solving is done using either the parity game solver
PGSolver [10] or a native implementation provided by COOL 2 that solves the
game by fixpoint iteration.

If the one-step satisfiability-based algorithm is used, an assigned modal node
v is satisfiable if its modalities are jointly one-step satisfiable in those successors
of v that are satisfiable themselves. An enumerative representation of the game
thus contains existential moves to all subsets Π of subsets of modalities of v that
are sufficiently large for one-step satisfaction of the modalities of v, followed
by universal moves to nodes induced by any κ ∈ Π; the full game thus is of
doubly-exponential size. This can be avoided by inlining the modal steps, thereby
evading the intermediate nodes Π. The winning region can then be computed
in single-exponential time by using COOL 2’s native fixpoint iteration over a
function that computes the two-tiered modal steps in one go.

Decision procedures for the one-step satisfiability problems in the relational
and the graded case are implemented in COOL 2 along the lines of the algorithms
described in [21, Example 6] (in the graded case, nondeterministic guessing is
replaced with a recursive search procedure).

If the algorithm based on modal tableau rules is used, the treatment of modal
steps follows the tableaux-based algorithm that is given in [3]. States v are sat-
isfiable if for all rule applications that match v, the conclusion of the application
contains a conjunctive clause κ such that the node induced by κ is satisfiable.

COOL 2 also allows the user to specify the desired frequency of optional
game solving steps, including the options once and adaptive. With the option
once, no intermediate solving takes place so that the game is fully constructed
and solved just once, at the very end of the execution. With the option adaptive,
intermediate solving takes places, but the frequency of solving reduces as the size
of the constructed graph increases; this option implements on-the-fly solving and
allows for finishing early in cases where a small model or refutation exists.
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4 Evaluation

We conduct experiments in order to evaluate the performance of the various
algorithms implemented in COOL in comparison with each other, as well as
in comparison with other tools (where applicable).2 Complete definitions of all
formula series used in the evaluation as well as additional experimental results
can be found in the full version [17].

Experiments: In a first experiment, we compare COOL 2 with the established
reasoner FaCT++, which supports the description logic SROIQ(D) (subsuming
fixpoint-free graded modal logic), using the following series of formulas from
Snell et al. [43].

Cardinality(n) := 〈n − 1〉¬p ∧ 〈n − 1〉p ∧ [n]¬q ∧ [n]q (Sat)
CardinalityU(n) := 〈n − 1〉¬p ∧ 〈n − 1〉p ∧ [n]¬q ∧ [n − 1]q (UnSat)

Intuitively, the satisfiable Cardinality(n) formulas express that there are at least
2n successors and that both q and ¬q are satisfied in at most n successors,
each; similarly the unsatisfiable CardinalityU(n) formulas state that there are at
least 2n successors, and that q and ¬q hold in at most n and n − 1 successors,
respectively; the latter statements imply that there are at most 2n−1 successors,
yielding a contradiction.

Going beyond next-step formulas, we continue by devising various complex
series of graded μ-calculus formulas that involve (nested) fixpoints and express
non-trivial properties of graded trees, automata and games.

– We obtain a series of unsatisfiable formulas by requiring the existence of an
n + 1-branching tree in which p holds everywhere while at the same time
requiring that this tree contains some state with n+ 2 successors that satisfy
p:

TreeU(n) = (νX. 〈n〉(p ∧ X) ∧ [n + 1]¬p) ∧ (μY. 〈n + 1〉p ∨ 〈n〉(p ∧ Y )) (UnSat)

– Next we turn our attention to graded formulas involving parity conditions.
We devise a series of valid formulas expressing that graded parity automata
can be transformed to graded Büchi automata accepting a superlanguage of
the original automaton:

ParityToBuechi(n, k) := Parity(n, k) → Buechi(n, k) (Valid)

Here, Parity(n, k) encodes parity acceptance with k priorities and grade n
while Buechi(n, k) expresses Büchi acceptance by a nondeterministic automa-
ton that eventually guesses the maximal priority that occurs infinitely often;
the negated formula ¬ParityToBuechi(n, k) is unsatisfiable.

2 Scripts and executables that allow for reproducing our experiments can be found at
DOI 10.5281/zenodo.8042581.

https://doi.org/10.5281/zenodo.8042581
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– Rabin conditions are given by families of pairs 〈ij , fj〉j≤k of sets ij , fj of states,
and express the constraint that there is some j ≤ k such that states from ij
(infinite) are visited infinitely often and states from fj (finite) are visited
only finitely often. We can express Rabin conditions with k pairs (and one-
step property ψ), Büchi properties and satisfaction of single Rabin-pairs by
formulas Rabin(k, ψ), Buechi(f, ψ) and RabinPair(i, f, ψ), respectively. Then
we obtain valid formulas stating that the existence of an n+1-branching tree
that satisfies the Rabin condition on each path implies that there is a path
satisfying a simpler Büchi condition or a single Rabin-pair, respectively:

RabinToBuechi(k, n) := Rabin(k, 〈n〉) → Buechi(i1 ∨ . . . ∨ ik, 〈0〉) (Valid)
RabinToRPair(k, n) := Rabin(k, 〈n〉) → ∨

1≤j≤k RabinPair(ij , fj , 〈0〉) (Valid)

– Coming to games, we specify the winning regions in graded Büchi and
Rabin games by formulas BuechiG(f, n) and RabinG(k, n), respectively; in
such graded games, players are required to have at least n winning moves at
their nodes in order to win. The following valid formulas then express that
winning strategies in graded Rabin games with k pairs guarantee that some
node from i1 ∪ . . . ∪ ik is visited infinitely often:

RabinGame(k, n) := RabinG(k, n) → BuechiG(i1 ∨ . . . ∨ ik, n) (Valid)

In a final experiment on alternating-time formulas, we compare COOL 2
with TATL [6] on the ATL example formulas given in [6] as well as on additional
formula series. For instance, we turn the formula 〈〈1〉〉Gp∧¬〈〈2〉〉F 〈〈1〉〉Gp (written
here using ATL syntax) from [6] into a series Nest(n) with increasing number of
nested operators; formulas then alternatingly are satisfiable and unsatisfiable:

χ(0) = p χ(i + 1) = ¬〈〈2〉〉F 〈〈1〉〉Gχ(i) Nest(n) = 〈〈1〉〉Gp ∧ χ(n),

Results: We conducted all experiments on a virtual machine with four 2, 3GHz
vCPUs processors and 8GB of RAM. We compare with a 64-bit binary of
FaCT++ v1.6.5 and with TATL. We compute all results with a timeout of 60
seconds and average the results over multiple executions. For the execution and
measurement we use hyperfine3. Below, ‘COOL’ and ‘COOL on-the-fly’ refer to
invoking COOL 2 with solving rate once and adaptive, respectively.

Results for the Cardinality and CardinalityU series are shown in Fig. 1 and
Fig. 2, respectively. From n = 10 and n = 8 onwards, COOL 2 outperforms
FaCT++ considerably. An explanation for this could be that FaCT++ appears
to treat multiplicities in a näıve way while COOL 2 employs the more efficient
one-step satisfiability algorithm.

Results for the unsatisfiable tree property are shown in Fig. 3. As these for-
mulas contain fixpoint operators, a comparison with FaCT++ is not possible.
While COOL 2 is generally capable of handling quite large branching factors,
this experiment showcases the drawbacks of on-the-fly solving in the case that a
formula cannot be decided early so that repeated attempts of solving the game
early lead to overhead computations.
3 https://github.com/sharkdp/hyperfine.

https://github.com/sharkdp/hyperfine


COOL 2 System Description 243

Fig. 1. Runtimes for Cardinality(n) Fig. 2. Runtimes for CardinalityU(n)

Fig. 3. Runtimes for TreeU(n) Fig. 4. Runtimes for ¬ParityToBuechi(n, k)

Runtimes for COOL 2 (using on-the-fly solving) on the unsatisfiable series of
parity formulas ¬ParityToBuechi(n, k) are shown in Fig. 4. The results indicate
that increasing the number of priorities k has a much stronger effect on the
runtime than increasing multiplicities n in the modalities. This is in accordance
with expectations as increasing k leads to much larger determinized automata
and resulting satisfiabilty games, while increasing n only complicates the modal
steps in the game while leaving the global game structure unchanged.

Results for the Rabin families of formulas are given in the table below, with †
indicating a timeout of 60 s. COOL 2 is able to handle reasonably large formulas
describing Rabin properties of automata and games, with the series for n = 1
expressing properties of standard automata (solved using tableau rules), and the
series with n = 2 properties of graded automata with multiplicity 2 (solved using
one-step satisfiability).

In accordance with previous experiments on random ATL formulas of larger
sizes in [23], COOL 2 generally outperforms TATL by a large margin, starting
from formulas containing at least five modalities or involving nesting of temporal
operators; this trend is confirmed by Fig. 5 which shows the stepped execution
times for the series Nest that alternates between being satisfiable and unsatisfi-
able
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k/series 1 2 3

RabinToBuechi(k, 1) 0.03 0.51 45.25
RabinToBuechi(k, 2) 0.08 10.56 †
RabinToRPair(k, 1) 0.03 8.38 †
RabinToRPair(k, 2) 0.07

43.94

†
RabinGame(k, 1) 0.05 1.04 †
RabinGame(k, 2) 0.31

Fig. 5. Runtimes for the ATL series Nest(n)

In summary, COOL 2 shows promising performance in comparison to TATL
and FaCT++, as well as for practical applicability. On graded formulas without
fixpoints, COOL 2 scales much better than FaCT++ with regard to increasing
multiplicities. In the presence of fixpoints, COOL 2 still scales well and can han-
dle multiplicities that should be sufficient for practical use. The formula series
¬ParityToBuechi appears to show the limits of COOL 2 with the current imple-
mentation of graded one-step satisfiability checking. Nonetheless, our results
indicate that COOL 2 is capable of automatically proving or refuting involved
properties of (graded) ω-automata and games in reasonable time.

5 Conclusion

We have described and evaluated the current version COOL 2 of the COalgebraic
Ontology Logic reasoner (COOL). Future development will include the imple-
mentation of additional instance logics, such as the probabilistic and graded
μ-calculus with linear inequalities, as well as support for the full coalgebraic
μ-calculus via on-the-fly determinisation of unrestricted Büchi automata, using
the Safra-Piterman construction.
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22. Hausmann, D., Schröder, L., Deifel, H.-P.: Permutation games for the weakly acon-
junctive μ-calculus. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol.
10806, pp. 361–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89963-3 21
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Abstract. We present a generic tree-interpolation algorithm in the
SMT context with quantifiers. The algorithm takes a proof of unsatisfi-
ability using resolution and quantifier instantiation and computes inter-
polants (which may contain quantifiers). Arbitrary SMT theories are
supported, as long as each theory itself supports tree interpolation for
its lemmas. In particular, we show this for the theory combination of
equality with uninterpreted functions and linear arithmetic. The inter-
polants can be tweaked by virtually assigning each literal in the proof
to interpolation partitions (colouring the literals) in arbitrary ways. The
algorithm is implemented in SMTInterpol.

Keywords: Tree Interpolation · Quantified Formulas · SMT

1 Introduction

Craig interpolants [7] were originally proposed to reason about proof complex-
ity. In the last two decades, research reignited when interpolants proved useful
for software verification, in particular for generating invariants [15]. Tree inter-
polants are useful for verifying programs with recursion [12], and for solving
non-linear Horn-clause constraints [23], which can be used for thread modu-
lar reasoning [10,16] and verifying array programs [20]. For many verification
problems, reasoning about first-order quantified formulas is needed. Quantified
formulas are, among others, needed to model unsupported theories or to express
global properties of arrays [19], for example, sortedness [3,24].

An interpolation problem is an unsatisfiable conjunction of several input for-
mulas, the partitions of the interpolation problem. An interpolant summarises
the contribution of a single or multiple partitions to the unsatisfiability. Inter-
polants can be computed from resolution proofs. However, most methods require
localised proofs where each literal is associated with some input partition [22].
Proofs generated by SMT solvers, especially with quantifier instantiations, usu-
ally contain mixed terms and literals created during the solving process that
cannot be associated with a single input formula.
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In this paper, we extend our work on proof tree preserving sequence interpo-
lation of quantified formulas [13]. The method presented therein allows for the
computation of inductive sequence interpolants from instantiation-based resolu-
tion proofs of quantified formulas in the theory of uninterpreted functions. The
key idea of this method is to perform a virtual modification of mixed terms intro-
duced through quantifier instantiations, thus allowing to compute an inductive
sequence of interpolants on a single, non-local proof tree.

We extend the interpolation algorithm to compute tree interpolants and to
support arbitrary SMT theories (with the single restriction that such a theory
itself must support tree interpolation for its lemmas). We simplify the treat-
ment of mixed terms by virtually flattening all literals independently of the
partitioning. We show that the literals can be coloured (assigned to a partition)
arbitrarily, and that for every colouring, correct interpolants are produced. The
interpolants contain quantifiers for the flattening variables that bridge different
partitions, and by choosing colours sensibly the number of quantifiers can be
reduced. In contrast to previous works [1,12] which produce tree interpolants by
repeated binary interpolation and require multiple proofs, our method computes
a tree interpolant from a single proof.

Related Work. Many practical algorithms to compute interpolants have been
presented. We focus here on proof-based methods that either work in the presence
of quantifiers, or that can compute tree interpolants, or both.

Our work builds on the method presented in [4] for computing interpolants
from instantiation-based proofs in SMT. It is based on purifying quantifier
instantiations by introducing variables for terms not fitting the partition, and
adding defining auxiliary equalities as a new input clause in the proof. Our
method introduces these variables and equalities only virtually for computing
the partial interpolants. Thus, tree interpolants can be computed from a single
proof of unsatisfiability, while in [4] a purified proof is required for each partition.

There exist several methods to compute interpolants for quantified formu-
las inductively from superposition-based proofs. In [2], each literal is given a
label (similar to our colouring) used to project the clause to the different parti-
tions. First, a provisional interpolant is computed that may contain local sym-
bols. These symbols are replaced by quantified variables to obtain an inter-
polant. In contrast to our method, the approach only works when the provi-
sional interpolants contain at most local constants, i.e., no local functions or
predicates, and the assignment of labels is not flexible as our colouring. The
method in [17] is based on a slightly modified proof, where substitution steps
are done separately. First, a relational interpolant is computed, which may con-
tain local function symbols, but only shared predicates. In logic without equality,
or when the only local symbols are constants, the relational interpolant can be
turned into an interpolant by quantifying over non-shared terms, respecting their
dependencies.

A very different method based on summarising subproofs is presented in [9].
The proof is split into subproofs belonging to a single partition. The relevant
subproofs are summarised in an intermediant stating that their premises imply
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their conclusion. If the subproofs contain only symbols of the respective partition,
the resulting formula is an interpolant. If the proof can be split in that way, the
method works for any theory and proof system, but for tree interpolation, a
different proof would be required for each partitioning.

Tree interpolants can be computed by repeated binary interpolation from
formulas where the children interpolants are included, as discussed in [12]. In
the propositional setting, [11] discusses under which conditions sets of inter-
polants with certain relations, such as tree interpolants, can be obtained by
binary interpolation on different partitionings of the same formula. The method
is implemented in OpenSMT, but the solver, and therefore the interpolation
engine, does not support quantifiers.

A general framework for computing tree interpolants for ground formulas
from a single proof has been presented in [5]. It works for combinations of
equality-interpolating theories and is based on projecting mixed literals using
auxiliary variables and predicates. Additionally, the rule for computing a resol-
vent’s interpolant from its antecedents’ interpolants is more involved. The
method cannot deal with quantifier instantiations, nor with terms mixing sub-
terms from different partitions. We discuss in Sect. 6 how it can be combined
with the interpolation method for quantified formulas presented in this paper.

The first implementation of a tree interpolation algorithm in the presence of
quantifiers and theories was in Vampire [1]. It is based on repeatedly computing
binary interpolants for modified interpolation problems, similar to [12]. For each
binary computation, the proof must be localised in order to be able to compute
interpolants. In contrast, our method computes tree interpolants in one go from
a single proof that has been obtained without knowledge of the partitioning of
the tree interpolation problem. To the best of our knowledge, Vampire is the only
other tool that is able to compute tree interpolants in the presence of quantifiers.

2 Notation

We assume that the reader is familiar with first-order logic. We define a theory
T by its signature, that contains constant, function and predicate symbols, and
its set of axioms, closed formulas that fix the meaning of those function and
predicate symbols that are interpreted by the theory.

A term is a variable or the application of an n-ary function symbol to n
terms. An atom is the application of an n-ary predicate to n terms, and a literal
is an atom or its negation. A clause is a disjunction of literals, and a formula
is in conjunctive normal form (CNF) if it is a conjunction of clauses. We use �
(resp. ⊥) for the formula that is always true (resp. false).

We will demonstrate our algorithm using the theory of equality, and the the-
ory of linear arithmetic (with rationals and/or integers). The theory of equal-
ity establishes reflexivity, symmetry, and transitivity of the equality predicate
=, and congruence for each uninterpreted function symbol. For simplicity of
the presentation, uninterpreted constants are considered as 0-ary functions, and
uninterpreted predicate symbols as uninterpreted functions with Boolean return
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value. The theory of linear arithmetic contains the predicates ≤, <, rational con-
stants c, the binary addition function +, and a family of unary multiplication
functions c·, one for each rational constant c. These symbols have their usual
semantics, and the main theory lemmas are trichotomy (x < y ∨ x = y ∨ x > y)
and a variant of Farkas lemma. For simplicity, we apply arithmetic conversions
implicitly and treat x ≤ y and y ≥ x and 1 · x + (−1) · y ≤ 0 as the same literal,
and x > y as its negated literal.

We denote constants by a, b, c, functions by f, g, h, variables by v, x, y, z, and
terms by s, t. We use � for literals, C for clauses, and φ, F, I for formulas.

For a term t, the outermost (or head) function symbol is denoted by hd(t).
The set of all uninterpreted function symbols occurring in a formula F is symb(F )
and the set of all free variables in F is FreeVars(F ). The result of substituting in a
formula F each occurrence of a variable x by a term t is denoted by F{x �→ t}. By
x̄ and t̄, we denote the list of variables x1, . . . , xn and terms t1, . . . tn, respectively.
We use the symbol ≡ to denote equivalence between formulas, and to assign a
formula to a formula variable.

3 Preliminaries

Craig Interpolation. A binary Craig interpolant [7] for an unsatisfiable conjunc-
tion A ∧ B is a formula I that is implied by A, contradicts B, and contains
only symbols that occur in both A and B. A generalisation are tree interpolants,
which introduce several partitions in a tree-like structure.

Definition 1 (Tree interpolation). A tree interpolation problem (V,E, F )
is a labelled binary tree where V is a set of nodes connected by directed edges
E ⊆ V × V pointing towards the root node. Every node except for the root node
has one outgoing edge to its parent, and each non-leaf node has exactly two
incoming edges. The partitions P ⊆ V of the tree interpolation problem are the
leaf nodes. The labelling function F assigns a formula to each partition p ∈ P of
the tree such that their conjunction is unsatisfiable. We use st(v) ⊆ P to denote
the set of leaves in the subtree of the node v, i.e., the set of leaves for which a
path to the node v exists.

A tree interpolant for the interpolation problem (V,E, F ) is a labelling func-
tion I for all nodes with the following properties:

1. The label I(vr) of the root node vr of the tree is ⊥.
2. For each leaf node p ∈ P , its interpolant I(p) is implied by the formula F (p).
3. For each inner node v ∈ V \P , its interpolant I(v) is implied by the conjunc-

tion I(v1) ∧ I(v2) of the interpolants labelled to the two child nodes v1, v2.
4. For each node v, the symbols in I(v) occur both inside and outside the subtree

st(v), i.e., symb(I(v)) ⊆ (
⋃

p∈st(v) symb(F (p))) ∩ (
⋃

p�∈st(v) symb(F (p))).
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Remarks. In contrast to the earlier definition of tree interpolation [1,5], only
the leaves of the tree are labelled by F here. A tree interpolation problem with
labelled inner nodes can be transformed to our formalism by adding a leaf child
to each such node. A non-binary tree can be extended to a binary tree by adding
more internal nodes. If the interpolants of the newly created nodes are ignored,
the remaining interpolants are tree interpolants according to the earlier definition
for tree interpolation.

A binary interpolant of A and B corresponds to the tree interpolant of the
tree containing just two leaves A and B, more precisely, it is the interpolant
labelled to the first leaf. Vice versa, each interpolant I(v) of a tree interpolant
is also a binary interpolant of the formulas in the partitions A := st(v) and
Ac := P \ st(v). Since the set A defines v uniquely, we can also use IA to denote
I(v). We call a symbol A-local if it only occurs in partitions in A, Ac-local if it
only occurs in partitions in Ac, and shared if it occurs in both. The interpolant
may only contain shared symbols.

Theory Combination. We assume that the solver uses Nelson–Oppen style the-
ory combination sharing equalities without explicitly introducing auxiliary vari-
ables, and that each lemma in the proof belongs to one theory. Subterms in these
lemmas containing symbols from a different theory are treated as if they were
auxiliary variables. We further assume that there is a theory-specific interpola-
tion procedure for the lemmas. In this paper, we do not have the assumption
that theories are equality-interpolating. We introduce quantifiers in the inter-
polants for such theories. However, our approach can also be combined with
equality-interpolating theories and corresponding procedures to avoid quanti-
fiers, see Sect. 6.

CNF Transformation and Quantifiers. We assume that complex input formulas
are transformed to CNF by Tseitin-encoding, which introduces Boolean proxy
atoms. Existentially quantified variables are replaced with Skolem constants or
functions (if nested under a universal quantifier) and conjunctions are lifted
over universal quantifiers. Complex subformulas under a universal quantifier
are replaced by uninterpreted predicates, taking as arguments the quantified
variables. Quantified Tseitin-style axioms give the meaning for these predicates.
Thus, we end up with quantified clauses of the form ∀x̄. �1(x̄) ∨ · · · ∨ �n(x̄),
which we treat as a proxy literal. Instances of quantified clauses are created
using instantiation lemmas of the form ¬(∀x̄. �1(x̄) ∨ · · · ∨ �n(x̄)), �1(t̄), . . . , �n(t̄)
where t̄ are ground terms. Note that the proxy atom for a quantified formula
occurs only positively in input clauses and negated in instantiation lemmas. We
note that all preprocessing steps are done locally for each input formula, and
that auxiliary predicates and Skolem functions are fresh predicate or function
symbols. An interpolant of the preprocessed formulas is also an interpolant of the
original formulas, because the auxiliary symbols are not shared between different
input formulas and will never appear in the interpolant.
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Proofs. A resolution proof for the unsatisfiability of a formula in CNF is a
derivation of the empty clause ⊥ using the resolution rule

C1 ∨ � C2 ∨ ¬�

C1 ∨ C2

where C1 and C2 are clauses, and � is a literal called the pivot (literal). A
resolution proof can be represented by a tree, or more generally, if the same
subproof is used more than once, by a directed acyclic graph (DAG). In our
setting, the DAG has three types of leaves: input clauses, theory lemmas, i.e.,
clauses that are valid in the theory T , and instantiation lemmas of the form
¬(∀x̄.φ(x̄)) ∨ φ(t̄). The inner nodes are clauses obtained by resolution, and the
unique root node is the empty clause ⊥.

Binary interpolants can be computed from a resolution proof by computing
so-called partial interpolants for each clause. Each proof step proves a clause C as
a consequence of the input A∧B, hence it proves that A∧B∧¬C is unsatisfiable.
If each literal in the proof is assigned to, or coloured with, either partition A
or B, a partial interpolant for each intermediate step is the interpolant of A ∧
¬C � A and B ∧ ¬C � B, where the projection ¬C � A extracts from the
conjunction ¬C all literals that are coloured with partition A. McMillan showed
for propositional logic that partial interpolants (cf. Definition 2 in [18]) can be
computed recursively for each resolution step as the disjunction of the partial
interpolants of the antecedents if the pivot is coloured as A, and their conjunction
if it is coloured as B.

4 Colouring of Terms and Literals

In this section, we fix an interpolation problem (V,E, F ), with partitions P ⊆ V .
We use the following example to illustrate our interpolation algorithm.

Example 1 (Running example). Take the tree interpolation problem with nodes
V = {123, 1, 23, 2, 3} and edges E = {(1, 123), (23, 123), (2, 23), (3, 23)} (see also
Fig. 1), where the partitions P = {1, 2, 3} are labelled with F (p) ≡ φp where

φ1 ≡ ∀x. g(h(x)) ≤ x, φ2 ≡ ∀y. g(y) ≥ b, φ3 ≡ ∀z. f(g(z)) �= f(b).

The conjunction of the three formulas is unsatisfiable. Instantiating φ1 with b
gives g(h(b)) ≤ b. Instantiating φ2 with h(b) gives g(h(b)) ≥ b. Together they
imply g(h(b)) = b. However, this contradicts φ3 instantiated with h(b). This proof
creates, among others, the new literal g(h(b)) ≤ b. The term g(h(b)) contains
function symbols that do not occur in a common partition.

We recall that by symb(F (p)), we denote the uninterpreted function symbols
occurring in the formula F (p). We also keep track of the partitions where a
symbol occurs:

Definition 2 (Partitions). The partitions of a function symbol f are the par-
titions where this symbol occurs:

partitions(f) = {p ∈ P | f ∈ symb(F (p))}.
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McMillan’s interpolation algorithm assumes that all symbols of a literal occur
in one partition, such that the literal can be coloured with that partition. This
is no longer the case in SMT, because new literals are created during the proof
search, especially in the presence of instantiation lemmas. Our solution to this
problem is to split each literal into many smaller literals and assign each of them
to a partition. To keep the presentation simple, we flatten all (non-proxy) literals
using a fresh variable for each application term. Thus, for every term t occurring
in the resolution proof, we create a fresh variable vt and associate with it a set of
flattening equalities. In each literal, the top-level terms are replaced with their
associated variable, and the defining equalities are conjoined.

Definition 3 (Flattening). For a term t, we introduce a fresh variable vt, and
similarly for all its subterms. The associated set of flattening equalities FlatEQ(t)
is defined as follows:

FlatEQ(t) = {vf(t1,...,tn) = f(vt1 , . . . , vtn) | f(t1, . . . , tn) is a subterm of t}.

The flattened version of a literal � is

flatten(�) ≡
{

vt1 = vt2 if � ≡ t1 = t2

c1 · vt1 + · · · + cn · vtn ≤ c if � ≡ c1 · t1 + · · · + cn · tn ≤ c

and the associated set of flattening equalities is as follows

FlatEQ(�) =

{
FlatEQ(t1) ∪ FlatEQ(t2) if � ≡ t1 = t2

FlatEQ(t1) ∪ · · · ∪ FlatEQ(tn) if � ≡ c1 · t1 + · · · + cn · tn ≤ c.

The flattened version of a negated literal is the negation of the flattened literal,
i.e., flatten(¬�) ≡ ¬flatten(�). The set of flattening equalities for a negated lit-
eral is the set of flattening equalities for the literal itself, i.e., FlatEQ(¬�) =
FlatEQ(�).

The conjunction of the equalities in FlatEQ(t) implies that vt = t. Similarly, the
conjunction flatten(�)∧

∧
FlatEQ(�) implies the literal � and is equisatisfiable to

�. Proxy literals like quantified formulas are not flattened, as they will never occur
in a partial interpolant. For such a proxy literal, flatten(∀x.φ(x)) ≡ ∀x.φ(x) and
FlatEQ(∀x.φ(x)) = ∅.

Example 2 (Flattening). Consider the literal g(h(b)) ≤ b. Its flattened version
is flatten(g(h(b)) ≤ b) ≡ vg(h(b)) ≤ vb, and the set of flattening equalities is

FlatEQ(g(h(b)) ≤ b) = FlatEQ(g(h(b))) ∪ FlatEQ(b)
= {vg(h(b)) = g(vh(b)), vh(b) = h(vb), vb = b}.

To define partial interpolants, we colour each atom � with some partition,
denoted by colour(�) ∈ P . The negated atom always has the same colour. For
proxy atoms created during the CNF conversion, it is important to colour them
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with the input partition from which they were created. The colour of other
literals can be chosen arbitrarily, but a good heuristic would choose a partition
where most of the outermost function symbols occur. Each flattening equality is
associated with all partitions where the corresponding function symbol occurs.
The projection of auxiliary equations on a partition p, denoted by FlatEQ(�) � p,
is defined as the conjunction of the equalities (vf(t1,...,tn) = f(vt1 , . . . , vtn)) ∈
FlatEQ(�) where p ∈ partitions(f).

Finally, we define the projection of a literal � to a partition p. The projection
kernel � �− p is flatten(�) if p = colour(�) or � otherwise. The projection of � to
p is defined as � � p ≡ � �− p ∧ FlatEQ(�) � p. We define the projection to a set
of partitions � � A with A ⊆ P (and similarly � �− A) as the conjunction of all
projections � � p with p ∈ A. For a conjunction of literals F ≡ �1 ∧ · · · ∧ �n, we
define F � p ≡ �1 � p ∧ · · · ∧ �n � p and similar for F � A, F �− p and F �− A.

Example 3 (Projection of literals). Consider again the literal g(h(b)) ≤ b from
our running example (Example 1), and assume that we arbitrarily assign it to
partition 2, i.e., colour(g(h(b)) ≤ b) = 2. We have partitions(g) = {1, 2, 3},
partitions(h) = {1} and partitions(b) = {2, 3}. The projections are hence:

g(h(b)) ≤ b � 1 ≡ vg(h(b)) = g(vh(b)) ∧ vh(b) = h(vb)
g(h(b)) ≤ b � 2 ≡ vg(h(b)) ≤ vb ∧ vg(h(b)) = g(vh(b)) ∧ vb = b

g(h(b)) ≤ b � 3 ≡ vg(h(b)) = g(vh(b)) ∧ vb = b

Similar to the last paragraph in Sect. 3, we define a partial interpolant of
a clause C as an interpolant of the input problem and ¬C. More precisely, it
is the tree interpolant of a slightly modified tree interpolation problem, where
the projection ¬C � p is added to each leaf node p ∈ P . Since this step adds
flattening variables potentially shared between several partitions, these variables
can occur in the interpolants. The following definition accounts for the variables
occurring in the projection of a clause.

Definition 4 (Supported variable). We call a variable vt supported by a
clause C if its corresponding term t is a subterm of a non-proxy literal � in C.

The partial tree interpolant of a clause C may then contain a variable vt as
long as it is supported by the clause C.

Definition 5 (Partial tree interpolant). A partial tree interpolant for a
clause C is a tree interpolant as defined in Definition 1 for the tree interpolation
problem (V,E, F ′) where the leaves are labelled with F ′(p) ≡ F (p) ∧ ¬C � p.
For the symbol condition, all variables supported by the clause may occur in all
partial interpolants.

5 Interpolation for Quantified Formulas

In the following, we describe how to compute tree interpolants for instantiation-
based resolution proofs. We assume that each literal has been assigned to exactly
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one partition of the tree interpolation problem, as described in the previous
section. Following McMillan’s algorithm, we compute partial tree interpolants
inductively over the proof tree. The leaves of the proof tree are theory lem-
mas, for which we use theory-specific interpolation procedures, or they are input
clauses or instantiation lemmas, for which we compute partial tree interpolants
as described below. The inner nodes are obtained by resolution steps, for which
we follow McMillan’s algorithm to combine interpolants, and additionally treat
variables that violate the symbol condition, as described later in this section.

5.1 Interpolation Algorithm

We start by explaining how the interpolants for leaf nodes are computed. Our
algorithm computes interpolants separately for each node v ∈ V in the tree
interpolation problem. As mentioned in the preliminaries, we set A = st(v) and
use IA to denote the interpolant I(v).

Input Clauses. We assume that each input clause occurs in exactly one partition.
The partial tree interpolant for an input clause C from partition p is given by
IA ≡ ¬(¬C �− Ac) if p ∈ A, and IA ≡ ¬C �− A if p �∈ A.

Note that the literals can be assigned to a different partition than the clause.
Although it makes sense to assign a literal to the same partition as the input
clause it occurs in, this is not possible when the literal occurs in several input
clauses. Therefore, the above formulas are not necessarily � or ⊥. Proxy literals
always have the same colour as the input clause and will therefore never appear
in the interpolant.

Instantiation Lemmas. The partial tree interpolant for an instantiation lemma C
obtained from a quantified input clause ∀x.φ(x) from partition colour(∀x.φ(x))
is computed in the same way as for input clauses.

Theory Lemmas. We only require that for each theory one can compute a partial
tree interpolant for its lemmas, or to be more precise, the flattened negated
lemmas. Thus, we can reuse any existing procedure. For self-containment, we
cover transitivity, congruence, trichotomy and Farkas lemmas, which are the kind
of lemmas our solver produces for the theory of equality and linear arithmetic.1

For a transitivity lemma with the corresponding conflict ¬C ≡ t1 = t2 ∧
· · · ∧ tn−1 = tn ∧ t1 �= tn we can ignore the auxiliary equations introduced by
flattening the terms, as the projection kernel is also a transitivity lemma. A
partial tree interpolant is computed by summarising for each A the chains of the
flattened equalities (and, if applicable, the single disequality) that are assigned
to a partition p ∈ A. More precisely, let i1 < · · · < im be the boundary indices
such that colour(tij−1 = tij ) ∈ A and colour(tij = tij+1) /∈ A or vice versa. Set
i1 = 1 if t1 �= tn and t1 = t2 are in different partitions and im = n if tn−1 = tn

1 Branches in linear integer arithmetic [8] are decisions on inequality literals and are
handled by our resolution rule.
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and t1 �= tn are in different partitions. If m = 0, then all colours of the equalities
are in A and the interpolant is ⊥, or they are all in Ac and the interpolant is
�. Otherwise, the interpolant summarises the equalities between the boundary
indices that have a colour in A: if colour(t1 = tn) /∈ A, then the interpolant
is IA ≡ vi1 = vi2 ∧ vi3 = vi4 ∧ · · · ∧ vim−1 = vim , otherwise the interpolant is
IA ≡ vi2 = vi3 ∧ · · · ∧ vim−2 = vim−1 ∧ vim �= vi1 . Here, vi denotes the auxiliary
variable introduced for ti.

The flattened version of the conflict corresponding to a congruence lemma
C ≡ f(t1, . . . , tn) = f(s1, . . . , sn) ∨ t1 �= s1 ∨ · · · ∨ tn �= sn is

vf(t1,...,tn) �= vf(s1,...,sn) ∧ vt1 = vs1 ∧ . . . ∧ vtn = vsn

∧ vf(t1,...,fn) = f(vt1 , . . . , vtn) ∧ vf(s1,...,sn) = f(vs1 , . . . , vsn
)

∧
∧

{� | � ∈ FlatEQ(t), t ∈ {t1, . . . , tn, s1, . . . , sn}}.

Note that the formula is still a congruence conflict if we drop the last line.
Consequently, the flattening equalities for the arguments of the f -applications,
and for their subterms, are not needed in the computation of a partial inter-
polant, they only establish the implication between the flattened and the orig-
inal lemma. To obtain a partial tree interpolant, we first choose an arbitrary
partition pf ∈ partitions(f). The partial tree interpolant is computed as follows.

IA ≡
{

¬(¬C �− Ac) if pf ∈ A

¬C �− A otherwise

For a trichotomy lemma C ≡ t1 = t2 ∨ t1 > t2 ∨ t1 < t2, both IA ≡ ¬C �− A
and I ′

A ≡ ¬(¬C �− Ac) are partial interpolants. We can always choose the
projection that contains at most one literal.

A Farkas lemma has the form C ≡ ¬(s1 ≤ b1) ∨ · · · ∨ ¬(sn ≤ bn) where si

is of the form ci1 · v1 + . . . + cim · vm and bi, cij are numeric (integer) constants.
It is a valid lemma if there are Farkas coefficients (numeric integer constants)
k1, . . . , kn > 0 with

∑n
i=1 ki · si = 0 and

∑n
i=1 ki · bi < 0. We assume that

the lemma is flattened and all vi are variables. The flattening equalities can be
omitted from the lemma without changing its validity. For a set of partitions A,
we denote by LA := {i | colour(si ≤ bi) ∈ A} the indices where si ≤ bi is A-
local. The partial tree interpolant for a Farkas lemma is computed by summing
up the A-local literals multiplied by their Farkas coefficients. We obtain IA ≡
(
∑

i∈LA
ki · si) ≤ (

∑
i∈LA

ki · bi). Variables whose coefficients sum to zero are
removed from the inequality. If A contains all inequalities, they sum up to the
conflict 0 ≤

∑n
i=1 ki · bi and we set IA ≡ ⊥.

Theorem 1. The interpolants as defined in this section are valid partial tree
interpolants for the respective leaf nodes.

The proof for this theorem is a straight-forward case distinction over the type
of leaf node. Details can be found in [14].
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Resolution Steps. In a resolution step, we obtain the partial interpolant of the
resolvent using the partial interpolants of the premises.

C1 ∨ � : I1A C2 ∨ ¬� : I2A
C1 ∨ C2 : I3A

As the first step, we follow McMillan’s algorithm and combine the interpolants
of the premises either with ∨ or with ∧ depending on whether the pivot literal
is A or Ac-local. For tree interpolants, this is done separately for each node of
the tree interpolation problem, and a literal is seen as A-local if its colour is one
of the leaves in the subtree of the node.

I3A ≡
{

I1A ∨ I2A if colour(�) ∈ A

I1A ∧ I2A if colour(�) /∈ A

The formula I3A computed above may still contain variables supported by the
antecedents that are no longer supported by the resolvent C1∨C2. Each of those
unsupported variables must either be replaced by its definition or bound by a
quantifier in the partial tree interpolant. More precisely, let vt be an unsupported
variable such that t is not a subterm of t′ with vt′ ∈ FreeVars(I3A). This variable
must always exist, as there is always an outermost unsupported variable. Let
t = f(t1, . . . , tn). We replace I3A as follows:

I3A ≡

⎧
⎪⎨

⎪⎩

∃x. I3A{vt �→ x} if f is A-local, i.e., partitions(f) ⊆ A,

∀x. I3A{vt �→ x} if f is Ac-local, i.e., partitions(f) ∩ A = ∅,

I3A{vt �→ f(vt1 , . . . , vtn)} if f is shared (otherwise).

We do this repeatedly for all variables in FreeVars(I3A) that are unsupported.
The variables may be treated in any order that respects the partial order induced
by the subterm relation as described above. However, all interpolants of the tree
interpolant must use the same order.

Theorem 2. If I1A is a partial tree interpolant of C1 ∨ � and I2A is a partial
tree interpolant of C2 ∨ ¬�, then I3A as computed above, after the removal of
unsupported variables, is a partial tree interpolant of C1 ∨ C2.

The proof for this theorem is given in [14].

Example 4 (Resolution). Take the running example and suppose � ≡ g(h(b)) = b
is the pivot, I1{1} ≡ vg(h(b)) ≤ vb and I2{1} ≡ �. The interpolants are combined
as I1{1} ∧ I2{1} since colour(�) �∈ {1}. This results in the interpolant vg(h(b)) ≤ vb.
After the resolution step, we assume that vg(h(b)), vh(b), vb are no longer sup-
ported. The outermost variable is vg(h(b)), which must be replaced by its def-
inition: g(vh(b)) ≤ vb. Now vh(b) is bound by a quantifier, and since h only
occurs in partition 1, an existential quantifier is used: ∃y. g(y) ≤ vb. In the final
step, vb is bound by a universal quantifier since b does not occur in 1, yielding
∀x.∃y. g(y) ≤ x.
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Note that the order of eliminating variables is important. If vb had been cho-
sen in the first step despite occurring in FlatEQ(g(h(b))), the resulting formula
would have been ∃y.∀x.g(y) ≤ x. This formula is not logically equivalent and is
indeed not a valid interpolant, as it does not follow from ∀x.g(h(x)) ≤ x.

Fig. 1. Tree interpolation problem from Example 1 annotated by tree interpolants.

Fig. 2. Resolution proof for Example 1 with input clauses , instantiation lemmas ,

theory lemmas , and resolvents .

Theorem 3. The algorithm in this section computes valid tree interpolants from
a proof of unsatisfiability.

Proof. By induction, every node in the proof tree is labelled by a valid partial tree
interpolant: Theorem 1 is the base case and Theorem 2 the inductive step. The
proof of unsatisfiability ends with the empty clause and its partial interpolant
is a tree interpolant for the original problem.

5.2 Full Interpolation Example

We illustrate the algorithm on our running example (Example 1). Consider the
tree interpolation problem given in Fig. 1. The symbol b occurs in partitions 2
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and 3, f in 3, g in 1, 2, and 3, and h in 1. Our goal is to compute tree interpolants
I{1}, I{2}, and I{3} for the leaf nodes such that φ1 implies I{1}, φ2 implies I{2},
and φ3 implies I{3}, and tree interpolant I{2,3} such that I{2,3} is implied by
I{2} ∧ I{3}, and I{1} ∧ I{2,3} implies ⊥.

Figure 2 shows an instantiation-based resolution proof for the unsatisfiability
of φ1 ∧φ2 ∧φ3. First, we assign each literal occurring in the proof tree to exactly
one partition. We colour each proxy literal for a quantified formula by a partition
in which it occurs, e.g., colour(∀x.g(h(x)) ≤ x) = 1. For the other literals, we
can choose arbitrary colours. We assign the literals g(h(b)) = b, g(h(b)) ≤ b, and
g(h(b)) ≥ b to partition 2, and the literal f(g(h(b))) �= f(b) to partition 3. We
then compute for each literal � the projection onto each partition, i.e., � � pi. For
� ≡ g(h(b)) ≤ b assigned to partition 2, the projections are given in Example 3.
As g(h(b)) ≥ b and g(h(b)) = b are assigned to the same partition as � and only
differ in the comparison operator, their projections only differ in the comparison
operator of the flattened version of the original literal. For the remaining literal
f(g(h(b))) = f(b), we get the following projections:

f(g(h(b))) = f(b) � 1 ≡ vg(h(b)) = g(vh(b)) ∧ vh(b) = h(vb)
f(g(h(b))) = f(b) � 2 ≡ vg(h(b)) = g(vh(b)) ∧ vb = b
f(g(h(b))) = f(b) � 3 ≡ vf(g(h(b))) = vf(b) ∧ vf(g(h(b))) = f(vg(h(b))) ∧

vg(h(b)) = g(vh(b)) ∧ vf(b) = f(vb) ∧ vb = b

We now compute partial tree interpolants for each node in the proof tree.
The first input clause C ≡ φ1 on the top left of the proof tree is from partition 1.
The partial interpolants I{1} and I{1,2,3} are set to ¬(¬C �− Ac) ≡ ⊥, and I{2},
I{3}, and I{2,3} are set to ¬C �− A ≡ �. For the input clauses φ2 and φ3, the
interpolants are computed analogously. To summarise:

φ1 :
⊥

�
� �⊥

φ2 :
⊥

⊥
� ⊥ �

φ3 :
⊥

⊥
� � ⊥

We now compute the partial tree interpolants for the instantiation lemma on
the top right of the proof tree. Similar as for the input clauses, we set I{1} to
¬(¬C �− Ac), i.e., to ¬(¬C �− 2) ∧ ¬(¬C �− 3) ≡ vg(h(b)) ≤ vb. Analogously, we
compute all other partial tree interpolants for the three instantiation lemmas:

¬φ1 ∨ g(h(b)) ≤ b : ⊥
vg(h(b)) > vb

vg(h(b)) ≤ vb vg(h(b)) > vb �

¬φ2 ∨ g(h(b)) ≥ b :
⊥

⊥
� ⊥ �

¬φ3 ∨ f(g(h(b))) �= f(b) :
⊥

⊥
� ⊥�

For the trichotomy lemma, the partial tree interpolants can be set to ¬C �− A
or ¬(¬C �− Ac). Due to our colouring, all literals in the lemma are either in A
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or in Ac. To get the most simple partial interpolants, we set I{1} and I{3} to
¬C �− A ≡ �, and I{2} and I{2,3} to ¬(¬C �− Ac) ≡ ⊥:

g(h(b)) = b ∨ ¬(g(h(b)) ≤ b) ∨ ¬(g(h(b)) ≥ b) :
⊥

⊥
� ⊥ �

For the congruence lemma, we have pf = 3. The partial tree interpolants
I{1} and I{2} are set to ¬C �− A as pf �∈ A for these partitions. We get I{1} ≡ �
(neither of the flattened literals in ¬C is contained in the projection kernel) and
I{2} ≡ vg(h(b)) = vb, since we chose 2 as the colour of this literal. Similarly, I{3}
and I{2,3} are set to ¬(¬C �− Ac). We get I{3} ≡ vg(h(b)) �= vb and I{2,3} ≡ ⊥:

g(h(b)) �= b ∨ f(g(h(b))) = f(b) :
⊥

⊥
vg(h(b)) = vb vg(h(b)) �= vb�

Having computed the partial tree interpolants for all leaves in the proof
tree, we now compute the partial tree interpolants for each resolvent. If the
colour of the pivot literal � is in the A-part, i.e., colour(�) ∈ A, the partial tree
interpolant of the resolvent is the disjunction of the partial tree interpolants
of its antecedents. Otherwise, if colour(�) ∈ Ac, we build the conjunction of
the partial tree interpolants of its antecedents. In the resolution step for the
resolvent clause C3 ≡ g(h(b)) ≤ b, the pivot literal is assigned to partition 1,
i.e., colour(∀x.g(h(x)) ≤ x) = 1. To obtain I{1}, we hence build the disjunction
of the partial interpolants of the antecedents C1 ≡ ∀x.g(h(x)) ≤ x and C2 ≡
¬(∀x.g(h(x)) ≤ x) ∨ g(h(b)) ≤ b, so we get I{1} ≡ I1{1} ∨ I2{1} ≡ vg(h(b)) ≤ vb.
Similarly, we obtain I{2}, I{3} and I{2,3} by conjoining the respective partial
interpolants. Since the top-left interpolant is only � or ⊥ and the colouring
of the pivot literal ensures that we either build the conjunction with � or the
disjunction with ⊥, the resulting tree interpolant of the resolvent is the same as
for the top-right clause. The variables vg(h(b)) and vb are both supported by C3

and thus allowed to appear in the partial interpolant. The resolution steps of
the other inner nodes are very similar in that their partial interpolants always
equal the partial interpolant of one of their antecedents. To summarise:
g(h(b)) ≤ b :
g(h(b)) = b ∨ ¬(g(h(b)) ≥ b) :
g(h(b)) = b :

⊥
vg(h(b)) > vb

vg(h(b)) ≤ vb vg(h(b)) > vb �

g(h(b)) ≥ b :
⊥

⊥
� ⊥ �

f(g(h(b))) �= f(b) :
⊥

⊥
� ⊥�

g(h(b)) �= b :
⊥

⊥
vg(h(b)) = vb vg(h(b)) �= vb�
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The last resolution step is a bit more involved. We have already computed
the tree interpolant for partition 1 in Example 4 as I{1} ≡ ∀x.∃y.g(y) ≤ x.
For partition 2, the disjunction vg(h(b)) > vb ∨ vg(h(b)) = vb can be simplified to
vg(h(b)) ≥ vb. The outermost variable vg(h(b)) is then replaced by g(vh(b)), since
g occurs in 1 and 2. Then for vh(b) a universal quantifier is introduced, since h
only occurs in partition 1, resulting in ∀y.g(y) ≥ vb. Finally, vb is replaced by
b, since it occurs in both 2 and 3. This results in I{2} ≡ ∀y.g(y) ≥ b. We omit
the computation of the partial interpolant for partitions 3 and the node 23. The
partial tree interpolant computed in this step is the tree interpolant of the full
interpolation problem:

⊥ :
⊥

∃x.∀y.g(y) > x

∀x.∃y.g(y) ≤ x ∀y.g(y) ≥ b ∀y.g(y) �= b

6 Combination with Equality-Interpolating Theories

In Sects. 4 and 5, we assign each literal to exactly one partition, such that we can
apply McMillan’s algorithm to combine partial interpolants of the antecedents
to obtain a partial interpolant for the resolvent. In the presence of equality-
interpolating theories [25], we can also allow for mixed literals where only outer-
most terms must be assigned to one partition. More precisely, we can allow for
equalities t1 = t2 where the left-hand side t1 is in one partition and the right-
hand side t2 in another, or linear constraints of the form c1 · t1 + . . . + cn · tn � c0
with constants ci and � ∈ {=,≤, <,≥, >}, where each ti is assigned to one
partition. Such literals can be treated by applying proof tree preserving tree
interpolation [5].

A mixed literal � ≡ t1 = t2 is coloured with two colours p1 and p2, so
that each colour can be chosen to contain the outermost symbols of t1 and t2,
respectively. The projections are � �− p1 ≡ vt1 = v�, � �− p2 ≡ v� = vt2 and
for the negated literal ¬� �− p1 ≡ EQ1(v�, vt1) and ¬� �− p2 ≡ EQ2(v�, vt2),
where v� is a fresh variable and EQ1,EQ2 are shared uninterpreted predicates
with ∀x, y.¬(EQ1(x, y) ∧ EQ2(x, y)), that are only used for the interpolation
algorithm. The partial interpolants for a lemma containing mixed literals will
contain the auxiliary variable v�. If a negated mixed equality occurs in the con-
flict (the negated lemma), we further require that v� occurs only in literals of the
form EQ i(v�, s) for some shared term s. Valid interpolants will naturally have
this shape, as the interpolated conflict also contains v� only as first parameter of
an EQ i. We then introduce a new combination rule in the first part of interpo-
lating resolution steps: For a mixed literal �, the two interpolants I1[EQ i(v�, s)]
and I2(v�) are combined to I1[I2(s)], i.e., interpolant I2(s) replaces the EQ-
literals occurring in the interpolant I1 to form the resolvent interpolant. This
eliminates the variable v� without introducing a quantifier. The remaining part
is unchanged, i.e., we still introduce quantifiers for unsupported flattening vari-
ables. A proof that the first step produces a valid resolvent interpolant can be
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found in [5]. This method produces quantifier-free interpolants if the input for-
mulas were quantifier-free. An example for this method can be found in [13].

7 Implementation in SMTInterpol

We implemented the algorithm in SMTInterpol2 [6] with a few alterations. First,
we used the combination with equality-interpolating theories described in the
previous section. Second, we do not apply flattening explicitly. Instead of using
an auxiliary variable, the interpolation algorithms for the lemmas include the
corresponding term directly. This may result in an interpolant where the inter-
polant has symbols that are not allowed, because the auxiliary variable was
shared but its corresponding function symbol is local to one partition. Only
in that case, we introduce the fresh variables for these subterms and replace
the offending subterm in the interpolant with its variable. This creates the same
interpolants as our presented algorithm, because the latter replaces each variable
that stands for a shared function symbol by its definition in the end.

SMTInterpol also supports literals that are shared. If this is done näıvely,
the computed interpolants may violate the tree inductivity property (third prop-
erty in Definition 1). We solve this by treating each literal as occurring in one
designated partition when interpolating a lemma (minimizing the number of
alternating chains in transitivity lemmas). We then apply Pudlák’s resolution
rule [21] that has a case for shared literals. Our implementation colours input
literals with all partitions it occurs in. For new terms created in the proof, the
colour that matches the most outermost function symbols is chosen. If the term
uses only symbols from one partition, then it is coloured with that partition.
Equalities and inequalities between terms of different partitions are handled
with the equality-interpolating procedure to avoid introducing quantifiers when
it is not necessary.

8 Conclusion

We presented a tree interpolation algorithm for SMT formulas with quantifiers.
The key idea is to virtually flatten each conflict corresponding to a clause in the
resolution proof, such that the literals in the flattened version are non-mixed
and can be assigned to the different partitions. The colouring of the original
literals can even be chosen arbitrarily. Depending on the assigned colours, partial
interpolants may contain flattening variables that bridge different partitions,
which eventually must be bound by quantifiers.

Our algorithm computes tree interpolants from a single, non-local proof of
unsatisfiability obtained independently of the partitioning of the interpolation
problem. It supports quantifiers and arbitrary SMT theories, given that the

2 Official webpage: https://ultimate.informatik.uni-freiburg.de/smtinterpol/
Code available under LGPLv3 at https://github.com/ultimate-pa/smtinterpol.

https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/ultimate-pa/smtinterpol
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theory itself supports tree interpolation for its lemmas, and we provided the
algorithms for the theory of equality and the theory of linear rational arithmetic.

Correctness proofs for our algorithm are available in [14]. The algorithm is
implemented in the open-source SMT solver SMTInterpol.
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Abstract. There are many techniques and tools to prove termination
of C programs, but up to now these tools were not very powerful for fully
automated termination proofs of programs whose termination depends
on recursive data structures like lists. We present the first approach that
extends powerful techniques for termination analysis of C programs (with
memory allocation and explicit pointer arithmetic) to lists.

1 Introduction

In [11,16,17,25], we introduced an approach for automatic termination analysis
of C that also handles programs whose termination relies on the relation between
allocated memory addresses and the data stored at such addresses. This approach
is implemented in our tool AProVE [14]. Instead of analyzing C directly, AProVE
compiles the program to LLVM code using Clang [9]. Then it constructs a (finite)
symbolic execution graph (SEG) such that every program run corresponds to a
path through the SEG. AProVE proves memory safety during the construction
of the SEG to ensure absence of undefined behavior (which would also allow
non-termination). Afterwards, the SEG is transformed into an integer transition
system (ITS) such that all paths through the SEG (and hence, the C program)
are terminating if the ITS is terminating. To analyze termination of the ITS,

struct list {
unsigned int value;
struct list* next; };

int main() {
// initialize length
unsigned int n = nondet_uint();
// initialize list of length n
struct list* tail = NULL;
struct list* curr;
for (unsigned int k = 0; k < n; k++) {

curr = malloc(sizeof(struct list));
curr->value = nondet_uint();
curr->next = tail;
tail = curr; }

// traverse list
struct list* ptr = tail;
while(ptr != NULL) {

ptr = *((struct list**)((void*)ptr +
offsetof(struct list, next)));}}

AProVE applies standard techniques and
calls the tools T2 [7] and LoAT [12,13]
to detect non-termination of ITSs. How-
ever, like other termination tools for C, up
to now AProVE supported dynamic data
structures only in a very restricted way.

In this paper, we introduce a novel tech-
nique to analyze C programs on lists. In the
program on the right, nondet uint returns
a random unsigned integer. The for loop
creates a list of n random numbers if n > 0.
The while loop traverses this list via poin-
ter arithmetic: Starting with tail, it com-
putes the address of the next field of the
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current element by adding the offset of the next field within a list to the address
of the current list and dereferencing the computed address (i.e., the content of the
next field). This is done by offsetof, defined in the C library stddef.h.1 Since
the list is acyclic and the next pointer of its last element is the null pointer, list
traversal always terminates. Of course, the while loop could also traverse the list
via ptr = ptr->next, but in C, memory accesses can be combined with pointer
arithmetic. This example contains both the access via curr->next (when initial-
izing the list) and pointer arithmetic (when traversing the list).

We present a new general technique to infer list invariants via symbolic
execution, which express all properties that are crucial for memory safety and
termination. In our example, the list invariant contains the information that
dereferencing the next pointer in the while loop is safe and that one finally
reaches the null pointer. In general, our novel list invariants allow us to abstract
from detailed information about lists (e.g., about their intermediate elements)
such that abstract states with “similar” lists can be merged and generalized
during the symbolic execution in order to obtain finite SEGs. At the same time,
list invariants express enough information about the lists (e.g., their length, their
start address, etc.) such that memory safety and termination can still be proved.

We define the abstract states used for symbolic execution in Sect. 2. In Sect. 3,
after recapitulating the construction of SEGs, we adapt our techniques for merg-
ing and generalizing states from [25] to infer list invariants. Moreover, we adapt
those rules for symbolic execution that are affected by introducing list invariants.
Section 4 discusses the generation of ITSs and the soundness of our approach.
Section 5 gives an overview on related work. Moreover, we evaluate the implemen-
tation of our approach in the tool AProVE using benchmark sets from SV-COMP
[3] and the Termination Competition [15]. All proofs can be found in [18].

Limitations. To ease the presentation, in this paper we treat integer types as
unbounded. Moreover, we assume that a program consists of a single non-recursive
function and that values may be stored at any address. Our approach can also
deal with bitvectors, data alignments, and programs with arbitrary many (possi-
bly recursive) functions, see [11,16,25] for details. However, so far only lists with-
out sharing can be handled by our new technique. Extending it to more general
recursive data structures is one of the main challenges for future work.

2 Abstract States for Symbolic Execution

The LLVM code for the for loop is given on the next page. It is equivalent to the
code produced by Clang without optimizations on a 64-bit computer. We explain
it in detail in Sect. 3. To ease readability, we omitted instructions and keywords
that are irrelevant for our presentation, renamed variables, and wrote list

1 Note that ptr + n increases ptr by n times the size of the type *ptr. As we want
to increase ptr by a number of bytes and ptr is not an i8 pointer, we first cast ptr

to void*. Then ((void*)ptr + offsetof(struct list, next)) contains the next

pointer, so we cast our computed address to struct list** before dereferencing it.
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instead of struct.list. Moreover, we gave the C instructions (in gray) before
the corresponding LLVM code. The code consists of several basic blocks including
cmpF and bodyF (corresponding to the loop comparison and body).

list = type { i32, list* }

define i32 @main() { ...
cmpF:

k < n

0: k = load i32, i32* k_ad
1: kltn = icmp ult i32 k, n
2: br i1 kltn, label bodyF, label initPtr

bodyF:
curr = malloc(sizeof(struct list));

0: mem = call i8* @malloc(i64 16)
1: curr = bitcast i8* mem to list*
curr->value = nondet_uint();

2: nondet = call i32 @nondet_uint()
3: curr_val = getelementptr list,

list* curr, i32 0, i32 0
4: store i32 nondet, i32* curr_val
curr->next = tail;

5: tail = load list*, list** tail_ptr
6: curr_next = getelementptr list,

list* curr, i32 0, i32 1
7: store list* tail, list** curr_next
tail = curr;

8: store list* curr, list** tail_ptr
k++

9: kinc = add i32 k, 1
10:store i32 kinc, i32* k_ad
11:br label cmpF
... }

We now recapitulate the abstract
states of [25] used for symbolic execu-
tion and extend them by a component
LI for list invariants, i.e., they have
the form ((b, i),LV ,AL,PT ,LI ,KB).
The first component is a program posi-
tion (b, i), indicating that instruction
i of block b is executed next. Pos ⊆
(Blks × N) is the set of all program
positions, and Blks are all basic blocks.

The second component is a par-
tial injective function LV : VP ⇀Vsym ,
which maps local program variables
VP of the program P to an infinite
set Vsym of symbolic variables with
Vsym ∩ VP = ∅. We identify LV with
the set of equations {x = LV (x) | x ∈
domain(LV )} and we often extend LV
to a function from VP ⊎N to Vsym ⊎N

by defining LV (n) = n for all n ∈ N.
The third component of each state

is a set AL of (bytewise) allocations �v1, v2� with v1, v2 ∈ Vsym , which indicate
that v1 ≤ v2 and that all addresses between v1 and v2 have been allocated. We
require any two entries �v1, v2� and �w1, w2� from AL with v1 ≠w1 or v2 ≠w2 to
be disjoint.

The fourth and fifth components PT and LI model the memory contents.
PT contains “points-to” entries of the form v1 ↪→ty v2 where v1, v2 ∈ Vsym and
ty is an LLVM type, meaning that the address v1 of type ty points to v2. In
contrast, the set LI of list invariants (which is new compared to [25]) does not
describe pointwise memory contents but contains invariants vad

v�
↪−→ty [(off i :

tyi : vi..v̂i)]ni=1 where n∈N
>0, vad , v�, vi, v̂i∈Vsym , off i∈N for all 1 ≤ i ≤ n, ty and

tyi are LLVM types for all 1 ≤ i ≤ n, and there is exactly one “recursive field”
1 ≤ j ≤ n such that tyj =ty*.

2 Such an invariant represents a struct ty with n
fields that corresponds to a recursively defined list of length v�. Here, vad points
to the first list element, the i-th field starts at address vad +off i (i.e., with offset
off i)3 and has type tyi, and the values of the i-th fields of the first and last list
element are vi and v̂i, respectively. For example, the following list invariant
(1) represents all lists of length x� and type list whose elements store a 32-bit
integer in their first field and the pointer to the next element in their second field

2 Soundness of our approach is not affected if there are other recursive fields, but our
symbolic execution technique for list traversal on list invariants in Sect. 3.2.2 can
only be applied if the traversal is done along field j.

3 The field offsets can be computed using the data layout string in the LLVM program.
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with offset 8. The first list element starts at address xmem, the second starts at ad-
dress xnext, and the last element contains the null pointer. Moreover, the first ele-
ment stores the integer value xnd and the last list element stores the integer x̂nd.

xmem

x�
↪−→list [(0 : i32 : xnd..x̂nd), (8 : list* : xnext..0)] (1)

For example, this invariant represents the list with the allocation �xmem, xmem+15�,
where the first four bytes store the integer 5 and the last eight bytes store the
pointer xnext, and the allocation �xnext, xnext+15�, where the first four bytes store
the integer 2 and the last eight bytes store the null pointer (i.e., the address 0).
Here, we have x� = 2. Section 3.2.2 will show that the expressiveness of our list
invariants is indeed needed to prove termination of programs that traverse a list.

The last component of a state is a knowledge base KB of quantifier-free first-
order formulas that express integer arithmetic properties of Vsym . We identify
sets of first-order formulas {ϕ1, . . . , ϕm} with their conjunction ϕ1 ∧ . . . ∧ ϕm.

A special state ERR is reached if we cannot prove absence of undefined beha-
vior (e.g., if memory safety might be violated by dereferencing the null pointer).

As an example, the following abstract state (2) represents concrete states at
the beginning of the block cmpF, where the program variable curr is assigned the
symbolic variable xmem, the allocation �xk ad, xend

k ad� consisting of 4 bytes stores
the value xkinc, and xmem points to the first element of a list of length x� (equal
to xkinc) that satisfies the list invariant (1). (This state will later be obtained
during the symbolic execution, see State O in Fig. 3 in Sect. 3.1.)

(cmpF, 0), {curr = xmem, kinc = xkinc, ...}, {�xk ad, xend
k ad�, ...}, {xk ad ↪→i32 xkinc, ...},

{xmem

x�
↪−→list [(0 : i32 : xnd..x̂nd), (8 : list* : xnext..0)]}, {xend

k ad = xk ad + 3, x� = xkinc, ...} (2)

A state s = (p,LV ,AL,PT ,LI ,KB) is represented by a formula 〈s〉 which
contains KB and encodes AL, PT , and LI in first-order logic. This allows us to
use standard SMT solving for all reasoning during the construction of the SEG.
Moreover, 〈s〉 is also used for the generation of the ITS afterwards. The encod-
ing of AL and PT is as in [25], see [18]: 〈s〉 contains formulas which express
that allocated addresses are positive, that allocations represent disjoint memory
areas, that equal addresses point to equal values, and that addresses are differ-
ent if they point to different values. For each element of LI , we add the follow-
ing new formulas to 〈s〉 which express that the list length v� is ≥ 1 and the ad-
dress vad of the first element is not null. If v� = 1, then the values vi and v̂i of the
fields in the first and the last element are equal. If v� ≥ 2, then the next pointer
vj in the first element must not be null. Finally, if there is a field whose values vk

and v̂k differ in the first and the last element, then the length v� must be ≥ 2.

{v� ≥ 1 ∧ vad ≥ 1 | (vad

v�
↪−→ty [(off i : tyi : vi..v̂i)]

n
i=1) ∈ LI} ∪

{∧n
i=1 vi = v̂i | (vad

v�
↪−→ty [(off i : tyi : vi..v̂i)]

n
i=1) ∈ LI and |= 〈s〉 ⇒ v� = 1} ∪

{vj ≥ 1 | (vad

v�
↪−→ty [(off i : tyi : vi..v̂i)]

n
i=1) ∈ LI with tyj = ty∗ and |= 〈s〉 ⇒ v� ≥ 2} ∪

{v� ≥ 2 | (vad

v�
↪−→ty [(off i : tyi : vi..v̂i)]

n
i=1) ∈ LI and ∃ k∈N

>0, k ≤ n, s.t. |= 〈s〉 ⇒ vk ≠ v̂k}

In concrete states c, all values of variables and memory contents are deter-
mined uniquely. To ease the formalization, we assume that all integers are
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Fig. 1. SEG for the First Iteration of the for Loop

unsigned and refer to [16] for the general case. So for all v ∈ Vsym(c) (i.e., all
v ∈ Vsym occurring in c) we have |= 〈c〉 ⇒ v = n for some n ∈ N. Moreover, here
PT only contains information about allocated addresses and LI = ∅ since the
abstract knowledge in list invariants is unnecessary if all memory contents are
known.

For instance, all concrete states ((cmpF, 0),LV ,AL,PT , ∅,KB) represented
by the state (2) contain � allocations of 16 bytes for some � ≥ 1, where in the
first four bytes a 32-bit integer is stored and in the last eight bytes the address
of the next allocation (or 0, in case of the last allocation) is stored.

See [18] for a formal definition to determine which concrete states are repre-
sented by a state s. To this end, as in [25] we define a separation logic formula
〈s〉SL which also encodes the knowledge contained in the memory components
of states. To extend this formula to list invariants, we use a fragment similar to
quantitative separation logic [4], extending conventional separation logic by list
predicates. For any state s, we have |= 〈s〉SL ⇒ 〈s〉, i.e., 〈s〉 is a weakened version
of 〈s〉SL that we use for symbolic execution and the termination proof.

3 Symbolic Execution with List Invariants

We first recapitulate the construction of SEGs. Then, Sect. 3.1 extends the tech-
nique for merging and generalization of states from [25] to infer list invariants.
Finally, we adapt the rules for symbolic execution to list invariants in Sect. 3.2.

Our symbolic execution starts with a state A at the first instruction of the
first block (called entry in our example). Figure 1 shows the first iteration of the
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for loop. Dotted arrows indicate that we omitted some symbolic execution steps.
For every state, we perform symbolic execution by applying the corresponding
inference rule as in [25] to compute its successor state(s) and repeat this until
all paths end in return states. We call an SEG with this property complete.

As an example, we recapitulate the inference rule for the load instruction in
the case where a value is loaded from allocated and initialized memory. It loads
the value of type ty that is stored at the address ad to the program variable x.
Let size(ty) denote the size of ty in bytes for any LLVM type ty. If we can prove
that there is an allocation �v1, v2� containing all addresses LV (ad), . . . ,LV (ad)+
size(ty) − 1 and there exists an entry (w1 ↪→ty w2) ∈ PT such that w1 is equal
to the address LV (ad) loaded from, then we transform the state s at position
p = (b, i) to a state s′ at position p+ = (b, i+ 1). In s′, a fresh symbolic variable w
is assigned to x and w=w2 is added to KB . We write LV [x : =w] for the function
where LV [x : =w](x) = w and LV [x : =w](y) = LV (y) for all y ≠ x.

load from initialized allocated memory (p :“x = load ty, ty* ad”, x, ad ∈ VP)

s = (p, LV , AL, PT , LI , KB)

s′
= (p+, LV [x : =w], AL, PT , LI , KB ∪ {w = w2})

if w ∈ Vsym is fresh and

• there is �v1, v2� ∈AL with |= 〈s〉 ⇒ (v1 ≤ LV (ad) ∧ LV (ad) + size(ty) − 1 ≤ v2)
• there are w1, w2 ∈ Vsym with |= 〈s〉 ⇒ (LV (ad) = w1) and (w1 ↪→ty w2) ∈ PT

In our example, the entry block comprises the first three lines of the C
program and the initialization of the pointer to the loop variable k: First, a non-
deterministic unsigned integer is assigned to n, i.e., (n=vn)∈LV B , where vn is not
restricted. Moreover, memory for the pointers tail ptr and k ad is allocated
and they point to tail = NULL and k = 0, respectively (tail ptr = vtp and
k ad = vk ad with (vtp ↪→list* 0), (vk ad ↪→i32 0) ∈ PTB). For simplicity, in Fig. 1
we use concrete values directly instead of introducing fresh variables for them.
Since we assume a 64-bit architecture, tail ptr’s allocation contains 8 bytes.
For the integer value of k, only 4 bytes are allocated. Alignments and pointer
sizes depend on the memory layout and are given in the LLVM program.

State C results from B by evaluating the load instruction at (cmpF, 0), see
the above load rule. Thus, there is an evaluation edge from B to C.

The next instruction is an integer comparison whose Boolean return value
depends on whether the unsigned value of k is less than the one of n. If we
cannot decide the validity of a comparison, we refine the state into two successor
states. Thus, the states D and E (with (vn > 0) ∈KBD and (vn ≤ 0) ∈KBE) are
reached by refinement edges from State C. Evaluating D yields kltn = 1 in F .
Therefore, the branch instruction leads to the block bodyF in State G. State E
is evaluated to a state with kltn = 0. This path branches to the block initPtr
and terminates quickly as tail ptr points to an empty list.

The instruction at (bodyF, 0) allocates 16 bytes of memory starting at vmem
in State H. The next instruction casts the pointer to the allocation from i8*
to list* and assigns it to curr. Now the allocated area can be treated as a list
element. Then nondet uint() is invoked to assign a 32-bit integer to nondet.
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Fig. 2. Second Iteration of the for Loop

The getelementptr instruction computes the address of the integer field of the
list element by indexing this field (the second i32 0) based on the start address
(curr). The first index (i32 0) specifies that a field of *curr itself is computed
and not of another list stored after *curr. Since the address of the integer
value of the list element coincides with the start address of the list element, this
instruction assigns vmem to curr val. Afterwards, the value of nondet is stored
at curr val (vmem ↪→i32 vnd), the value 0 stored at vtp is loaded to tail, and a
second getelementptr instruction computes the address of the recursive field of
the current list element (vcn=vmem+8) and assigns it to curr next, leading to state
J . In the path to K, the values of tail and curr are stored at curr next and
tail ptr, respectively (vcn ↪→list* 0, vtp ↪→list* vmem). Finally, the incremented
value of k is assigned to kinc and stored at k ad (vk ad ↪→i32 1).

To ensure a finite graph construction, when a program position is reached
for the second time, we try to merge the states at this position to a generalized
state. However, this is only meaningful if the domains of the LV functions of
the two states coincide (i.e., the states consider the same program variables).
Therefore, after the branch from the loop body back to cmpF (see State L in Fig.
2), we evaluate the loop a second time and reach M . Here, a second list element
with value wnd and a next pointer wcn point-
ing to vmem has been stored at a new allocation
�wmem, w

end
mem �. Now, curr points to the new ele-

ment and k has been incremented again, so k ad
points to 2.

3.1 Inferring List Invariants and Generalization of States

As mentioned, our goal is to merge L and M to a more general state O that repre-
sents all states which are represented by L or M . The challenging part during
generalization is to find loop invariants automatically that always hold at this po-
sition and provide sufficient information to prove termination of the loop. For O,
we can neither use the information that curr points to a struct whose next field
contains the null pointer (as in L), nor that its next field points to another
struct whose next field contains the null pointer (as in M).

With the approach of [25], when merging states like L and M where a list has
different lengths, the merged state would only contain those list elements that
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are allocated in both states (often this is only the first element). Then elements
which are the null pointer in one but not in the other state are lost. Hence, prov-
ing memory safety (and thus, also termination) fails when the list is traversed
afterwards, since now there might be next pointers to non-allocated memory.

We solve this problem by introducing list invariants. In our example, we will
infer an invariant stating that curr points to a list of length x� ≥ 1. This invariant
also implies that all struct fields are allocated and that there is no sharing.

To this end, we adapt the merging heuristic from [25]. To merge two states
s and s′ at the same program position with domain(LV s) = domain(LV s′

), we
introduce a fresh symbolic variable xvar for each program variable var and use
instantiations μs and μs′ which map xvar to the corresponding symbolic variables
of s and s′. For the merged state s, we set LV s(var)=xvar. Moreover, we identify
corresponding variables that only occur in the memory components and extend
μs and μs′ accordingly. In a second step, we check which constraints from the
memory components and the knowledge base hold in both states in order to find
invariants that we can add to the memory components and the knowledge base
of s. For example, if �μs(x), μs(xend)� ∈ ALs and �μs′(x), μs′(xend)� ∈ ALs′

for
x, xend

∈ Vsym , then �x, xend� is added to ALs. To extend this heuristic to lists,
we have to regard several memory entries together. If there is an ad ∈ VP such
that μs(xad) = vstart

1 and μs′(xad) = wstart
1 both point to lists of type ty but of

different lengths �s ≠ �s′ with �s, �s′ ≥ 1, then we create a list invariant.
For a state s we say that vstart

1 points to a list of type ty with n fields and
length �s with allocations �vstart

k , vend
k � and values vk,i (for 1 ≤ k ≤ �s and

1 ≤ i ≤ n) if the following conditions (a)–(d) hold:

(a) ty is an LLVM struct type with subtypes tyi and field offsets off i ∈N for all
1 ≤ i ≤ n such that there exists exactly one 1 ≤ j ≤ n with tyj = ty∗.

(b) There exist pairwise different �vstart
k , vend

k � ∈ ALs for all 1 ≤ k ≤ �s and
|= 〈s〉 ⇒ vend

k = vstart
k + size(ty) − 1.

(c) For all 1 ≤ k ≤ �s and 1 ≤ i ≤ n there exist vstart
k,i , vk,i ∈ Vsym with |= 〈s〉 ⇒

vstart
k,i = vstart

k + off i and (vstart
k,i ↪→tyi

vk,i) ∈ PT s.
(d) For all 1 ≤ k < �s we have |= 〈s〉 ⇒ vk,j = vstart

k+1 .

Condition (a) states that ty is a list type with n fields, where the pointer to the
next element is in the j-th field. In (b) we ensure that each list element has a unique
allocation of the correct size where vstart

1 is the start address of the first allocation.
Condition (c) requires that for the k-th element, the initial address plus the i-th
offset points to a value vk,i of type tyi. Finally, (d) states that the recursive field
of each element indeed points to the initial address of the next element.

Then, for fresh x�, xi, x̂i ∈ Vsym , we add the following list invariant to LI s.

xad

x�
↪−→ty [(off i : tyi : xi..x̂i)]ni=1 (3)

To ensure that the allocations expressed by the list invariant are disjoint
from all allocations in ALs, we do not use the list allocations �vstart

k , vend
k � to

infer generalized allocations in ALs. Similarly, to create PT s, we only use entries
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Fig. 3. Merging of States

v ↪→ty w from PT s and PT s′
where v is disjoint from the list addresses, i.e.,

where |= 〈s〉 ⇒ v <vstart
k ∨v >vend

k holds for all 1 ≤ k ≤ �s and analogously for s′.
Moreover, we add formulas to KBs stating that (A) the length x� of the list is
at least the smaller length of the merged lists, (B) x� is equal to all variables x
which result from merging variables v and w that are equal to the lengths �s and
�s′ in s and s′, and (C) the symbolic variable xi for the value of the i-th field of
the first list element is equal to all variables x with μs(x) = v1,i and μs′(x) =w1,i

where v1,i and w1,i are the values of the i-th field of the first list element in s
and s′ (and analogously for the values x̂i of the last list element):

(A) min(�s, �s′) ≤ x�

(B)
∧

x∈μ−1
s (v)∩μ−1

s′ (w)
x� =x for all v, w ∈Vsym with |= 〈s〉 ⇒ v = �s and |= 〈s′〉 ⇒ w = �s′

(C)
∧

x∈μ−1
s (v1,i)∩μ−1

s′ (w1,i)
xi = x and

∧
x∈μ−1

s (v�s,i)∩μ−1
s′ (w�

s′ ,i)
x̂i = x for all 1 ≤ i ≤ n

To identify the variables in the list invariant (3) of s with the corresponding
values in s and s′, the instantiations μs and μs′ are extended such that μs(x�)=�s,
μs′(x�) = �s′ , μs(xi) = v1,i, μs′(xi) =w1,i, μs(x̂i) = v�s,i, and μs′(x̂i) =w�s′ ,i for all
1 ≤ i ≤ n. Similarly, if there already exist list invariants in s and s′, for each
pair of corresponding variables a new variable is introduced and mapped to its
origin by μs and μs′ . This adaption of the merging heuristic only concerns the
result of merging but not the rules when to merge two states. Thus, the same
reasoning as in [25] can be used to prove soundness and termination of merging.

In our example, L and M contain lists of length �L = 1 and �M = 2. To
ease the presentation, we re-use variables that are known to be equal instead of
introducing fresh variables. If xmem is the variable for the program variable curr,
we have μL(xmem) = vmem and μM (xmem) = wmem. Indeed, vmem resp. wmem points to a
list with values vk,i resp. wk,i as defined in (a)–(d): For the type list with n=2,
ty1=i32, ty2=list∗, off 1=0, off 2=8, and j=2 (see (a)), we have �vmem, vend

mem �∈ALL

and �vmem, vend
mem �, �wmem, wend

mem � ∈ALM , all consisting of size(list) = 16 bytes, see
(b). We have (vmem ↪→i32 vnd), (vcn ↪→list* 0)∈PTL with (vcn =vmem+8)∈KBL and
(vmem ↪→i32 vnd), (vcn ↪→list* 0), (wmem ↪→i32 wnd), (wcn ↪→list* vmem) ∈ PTM with
(vcn = vmem + 8), (wcn = wmem + 8) ∈ KBM (see (c)), so the first list element in M
points to the second one (see (d)). Therefore, when merging L and M to a new
state O (see Fig. 3), the lists are merged to a list invariant of variable length x�

and we add the formulas (A) 1 ≤ x� and (B) x� = xkinc to KBO. By (C), the
i32 value of the first element is identified with xnd, since μL(xnd) is equal to the
first value of the first list element in L and μM (xnd) is equal to the first value
of the first list element in M . Similarly, the values of the last list elements are
identified with 0, as in L and M .
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After merging s and s′ to a generalized state s, we continue symbolic execu-
tion from s. The next time we reach the same program position, we might have
to merge the corresponding states again. As described in [25], we use a heuristic
for constructing the SEG which ensures that after a finite number of iterations, a
state is reached that only represents concrete states that are also represented by
an already existing (more general) state in the SEG. Then symbolic execution can
continue from this more general state instead. So with this heuristic, the con-
struction always ends in a complete SEG or an SEG containing the state ERR.

We formalized the concept of “generalization” by a symbolic execution rule
in [25]. Here, the state s is a generalization of s if the conditions (g1)−(g6) hold.

Condition (g1) prevents cycles consisting only of refinement and gener-
alization edges in the graph. Condition (g2) states that the instantiation
μ : Vsym(s) → Vsym(s) ∪ Z maps symbolic variables from the more general state
s to their counterparts from the more specific state s such that they correspond
to the same program variable. Conditions (g3)–(g6) ensure that all knowledge
present in KB , AL, PT , and LI still holds in s with the applied instantiation.

generalization with instantiation μ

s = (p, LV , AL, PT , LI , KB)

s = (p, LV , AL, PT , LI , KB)
if

(g1) s has an incoming evaluation edge
(g2) domain(LV ) = domain(LV ) and LV (var) = μ(LV (var)) for all var ∈ VP where

LV and LV are defined
(g3) |= 〈s〉 ⇒ μ(KB)
(g4) if �x1, x2� ∈AL, then �v1, v2� ∈AL with |= 〈s〉 ⇒ v1 = μ(x1) ∧ v2 = μ(x2)
(g5) if (x1 ↪→ty x2) ∈ PT ,

then (v1 ↪→ty v2) ∈ PT with |= 〈s〉 ⇒ v1 = μ(x1) ∧ v2 = μ(x2)

(g6) if (xad

x�
↪−→ty [(off i : tyi : xi..x̂i)]

n
i=1) ∈ LI ,

then either (vad
v�

↪−→ty [(off i : tyi : vi..v̂i)]
n
i=1) ∈ LI with

• |= 〈s〉 ⇒ vad = μ(xad) ∧ v� = μ(x�) and
• |= 〈s〉 ⇒ vi = μ(xi) ∧ v̂i = μ(x̂i) for all 1 ≤ i ≤ n,

or vstart
1 points to a list of type ty and length � with allocations �vstart

k , vend
k �

and values vk,i (for 1 ≤ k ≤ �, 1 ≤ i ≤ n) such that
• |= 〈s〉 ⇒ vstart

1 = μ(xad) ∧ � = μ(x�),
• |= 〈s〉 ⇒ v1,i = μ(xi) ∧ v�,i = μ(x̂i) for all 1 ≤ i ≤ n, and
• if (z1 ↪→ty z2) ∈ PT ,

then |= 〈s〉 ⇒ μ(z1) < vstart
k ∨ μ(z1) > vend

k for all 1 ≤ k ≤ �.

Condition (g6) is new compared to [25] and takes list invariants into account.
So for every list invariant l of s there is either a corresponding list invariant l
in s such that lists represented by l in s are also represented by l in s, or there
is a concrete list in s that is represented by l in s. The last condition of the
latter case ensures that disjointness between the memory domains of PT and
LI is preserved. See [18] for the soundness proof of the extended generalization
rule, i.e., that every concrete state represented by s is also represented by s.

Our merging technique always yields generalizations according to this rule,
i.e., the edges from L and M to O in Fig. 3 are generalization edges. Here, one
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Fig. 4. Extending a List Invariant

chooses μL and μM such that μL(xmem) = vmem, μL(x�) = 1, μL(xnd) = vnd, μL(x̂nd)
= vnd, μL(xnext) = 0, μM (xmem) = wmem, μM (x�) = 2, μM (xnd) = wnd, μL(x̂nd) = vnd,
and μM (xnext)=vmem. In both cases, all conditions of the second case of (g6) with
�L = 1 and �M = 2 are satisfied. With μL(xkinc) = 1 resp. μM (xkinc) = 2, we also
have |= 〈L〉 ⇒ μL(x�) = μL(xkinc) resp. |= 〈M〉 ⇒ μM (x�) = μM (xkinc).

3.2 Adapting List Invariants

To handle and modify list invariants, three of our symbolic execution rules have
to be changed. Section 3.2.1 presents a variant of the store rule where the list
invariant is extended by an element. In Sect. 3.2.2, we adapt the load rule to load
values from the first list element and we present a variant of the getelementptr
rule for list traversal. Soundness of our new rules is proved in [18]. For all other
instructions, the symbolic execution rules from [25] remain unchanged.

3.2.1 List Extension
After merging L and M , symbolic execution continues from the more general
state O in Fig. 3. Here, the values of k and kinc and the length of the list are not
concrete but any positive (resp. non-negative) value with x� = xkinc = xk + 1. The
symbolic execution of O is similar to the steps from B to J in Sect. 3 (see Fig. 1).
First, the value xkinc stored at k ad is loaded to k. To distinguish whether k < n
still holds, the next state is refined. From the refined state with k < n, we enter
the loop body again. A new block �ymem, yend

mem � of 16 bytes is allocated and ymem is
assigned to mem and curr. Then, a new unknown value ynd is assigned to nondet.
The address of the i32 value of the current element (equal to ymem) is computed
by the first getelementptr instruction of the loop and the value ynd of nondet
is stored at it. The second getelementptr instruction computes the address ycn
of the recursive field and results in State P in Fig. 4, where ycn =ymem +8 is added
to KBP . Now, store sets the address of the next field to the head of the list
created in the previous iteration. Since this instruction extends the list by an
element, instead of adding ycn ↪→list* xmem to PTQ, we extend the list invariant:
The length is set to y� and identified with x�+1 in KBQ. The pointer xmem to the
first element is replaced by ymem, while the first recursive field in the list gets the
value xmem. Since (ymem ↪→i32 ynd) ∈ PTP , ynd is the value of the first i32 integer
in the list. We remove all entries from PTQ that are already contained in the
new list invariant, e.g., ymem ↪→i32 ynd.
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To formalize this adaption of list invariants, we introduce a modified rule
for store in addition to the one in [25]. It handles the case where there is a
concrete list at some address vstart , pa points to the m-th field of this list’s first
element, one wants to store a value t at the address pa, and one already has a list
invariant l for the “tail” of the list in the j-th field (if m ≠ j) resp. for the list at
the address t (if m = j). In all other cases, the ordinary store rule is applied.

More precisely, let the list invariant l
describe a list of length vl at the address
vad . Then l is replaced by a new list invari-
ant l′ which describes the list at the address
vstart after storing t at the address pa. Irre-
spective of whether m ≠ j or m = j, the
resulting list at vstart has the list at vad

as its “tail” and thus, its length v′
� is v� +1.

We prevent sharing of different elements by
removing the allocation �vstart , vend� of the
list and all points-to information of point-
ers in �vstart , vend�.

list extension (p : “store ty t, ty* pa”, t ∈ VP ∪ N, pa ∈ VP)

s = (p, LV , AL, PT , LI , KB)

s′
= (p+, LV , AL\{�vstart , vend�}, PT ′, LI \{l} ∪ {l ′}, KB ′)

if

• there is l = (vad

v�
↪−→lty [(off i : ltyi : wi..ŵi)]

n
i=1) ∈ LI with ltyj = lty∗

• there is �vstart , vend� ∈AL with |= 〈s〉 ⇒ vend
= vstart

+ size(lty) − 1
• there exists 1 ≤ m ≤ n such that ty = ltym and |= 〈s〉 ⇒ LV (pa) = vstart

+ off m

• |= 〈s〉 ⇒ vad = vj if m ≠ j and |= 〈s〉 ⇒ vad = LV (t) if m = j
• for all 1 ≤ i ≤ n with i ≠m there exist vstart

i , vi ∈ Vsym

with |= 〈s〉 ⇒ vstart
i = vstart

+ off i and (vstart
i ↪→ltyi

vi) ∈ PT
• PT ′

= {(x1 ↪→sy x2) ∈ PT | |= 〈s〉 ⇒ (vend
< x1) ∨ (x1 + size(sy) − 1 < vstart)}

• l ′ = (vstart
v′

�
↪−→lty [(off i : ltyi : vi..ŵi)]

n
i=1)

• KB ′
=KB ∪ {vm = LV (t), v′

� = v� + 1}, where vm, v′
� are fresh

3.2.2 List Traversal
After the current element ymem is stored at xtp and the value xkinc of
k is incremented to ykinc and stored at xk ad, we reach a state R at
position (cmpF, 0) by the branch instruction. However, our already existing state
O is more general than R, i.e., we can draw a generalization edge from R to O
using the generalization rule with the instantiation μR where μR(xmem) = ymem,
μR(xnd) = ynd, μR(xcn) = ycn, μR(xk) = xkinc, μR(xkinc) = ykinc, μR(x�) = y�,
μR(x̂nd) = x̂nd, and μR(xnext) = xmem. Thus, the cycle of the first loop closes here.



278 J. Hensel and J. Giesl

Fig. 5. Traversing a List Invariant

As mentioned, in the
path from O to R there is
a state at position (cmpF, 1)
which is refined (similar to
State C). If k < n holds,
we reach R. The other
path with k 
<n leads out
of the for loop to the
block initPtr followed by
the while loop (see State
S and the corresponding
LLVM code on the side).
The value xmem at address
tail ptr is loaded to tail’
and stored at a new pointer
variable ptr. State T is
reached after the first itera-
tion of the while loop body.
Here, block cmpW loads the
value xmem stored at ptr to
str. Since it is not the null pointer, we enter bodyW, which corresponds to the
body of the while loop. First, xmem is cast to an i8 pointer. Then getelementptr
computes a pointer xnp to the next element by adding 8 bytes to xmem. After
another cast back to a list* pointer, we load the content of the new pointer to
next. To this end, we need the following new variant of the load rule to load
values that are described by a list invariant.
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load from list invariant (p : “x = load ty, ty* ad i”, x, ad i ∈ VP)

s = (p, LV , AL, PT , LI , KB)

s′
= (p+, LV [x : =w], AL, PT , LI , KB ∪ {w = vi})

if w ∈ Vsym is fresh and

• there is l = (vad

v�
↪−→ty [(off i : tyi : vi..v̂i)]

n
i=1) ∈ LI

• there exists 1 ≤ i ≤ n such that ty = tyi and |= 〈s〉 ⇒ LV (ad i) = vad + off i

With this new load rule, the content of the new pointer is identified as
xnext. It is loaded to next and stored at xptr. Then we return to the block cmpW
(State T ). Merging T with its predecessor at the same program position is not
possible yet since the domains of the respective LV functions do not coincide.
Now, xnext is loaded to str and compared to the null pointer. Since we do
not have information about xnext, T ’s successor state is refined to a state with
xnext = 0 (which starts a path out of the loop to a return state), and to a state
with xnext ≥ 1, which reaches U after a few evaluation steps, see Fig. 5. Now,
getelementptr computes the pointer x′

np = xnext + 8 to the third element of the
list, which is assigned to next ptr. 〈U〉 contains x� ≥ 2 since the first and the last
pointer value are known to be different (xnext ≠0). This information is crucial for
creating a new list invariant starting at xnext, which is used in the next iteration
of the loop. Therefore, if our list invariant did not contain variables for the first
and the last pointer, we could not prove termination of the program. In such a
case where the pointer to the third element of a list invariant is computed and
the length of the list is at least two, we traverse the list invariant to retain the
correspondence between the computed pointer x′

np and the new list invariant.
In the resulting state V , we represent the first list element by an allocation
�xmem, xend

mem � and preserve all knowledge about this element that was encoded in
the list invariant (xend

mem =xmem+15, xmem ↪→i32 xnd, xnp ↪→list* xnext). Moreover, we
adapt the list invariant such that it now represents the list at xnext (i.e., without
its first element) starting with the value x′

nd. We also relate the length of the
new list invariant to the length of the former one (x′

� = x� − 1).
Thus, in addition to the rule for getelementptr in [25], we now introduce

rules for list traversal via getelementptr. The rule below handles the case where
the address calculation is based on the type i8 and the getelementptr instruc-
tion adds the number of bytes given by the term t to the address pa. Here, the
offsets in our list invariants are needed to compute the address of the accessed
field. We also have similar rules for list traversal via field access (i.e., where the
next element is accessed using curr’->next as in the for loop) and for the case
where we cannot prove that the length v� of the list is at least 2, see [18].
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list traversal (p : “pb = getelementptr i8, i8* pa, im t”, t ∈ VP ∪ N, pa, pb ∈ VP)

s = (p, LV , AL, PT , LI , KB)

s′
= (p+, LV [pb : =wstart

j ], AL ∪ �vstart , vend�, PT ′, LI \{l} ∪ {l ′}, KB ′)
if

• there is l = (vad

v�
↪−→ty [(off i : tyi : vi..v̂i)]

n
i=1) ∈ LI with tyj = ty∗,

|= 〈s〉 ⇒ LV (pa) = vj , |= 〈s〉 ⇒ LV (t) = off j , and |= 〈s〉 ⇒ v� ≥ 2
• PT ′

= PT ∪ {(vstart
i ↪→tyi

vi) | 1 ≤ i ≤ n}
• l ′ = (wstart w�

↪−→ty [(off i : tyi : wi..v̂i)]
n
i=1)

• KB ′
=KB ∪ {vstart

= vad , vend
= vstart

+ size(ty) − 1, wstart
= vj , w� = v� − 1,

wstart
j = wstart

+ off j} ∪ {vstart
i = vad + off i | 1 ≤ i ≤ n}

• vstart , vend , vstart
1 , . . . , vstart

n , wstart , w�, w
start
j , w1, . . . , wn ∈ Vsym are fresh

We continue the symbolic execution of State V in our example and finally
obtain a complete SEG with a path from a state W at the position (cmpW, 0) to
the next state W ′ at this position, and a generalization edge back from W ′ to
W using an instantiation μW ′ . Both W and W ′ contain a list invariant similar
to T where instead of the length x� in T , we have the symbolic variables z� and
z′
� in W and W ′, where μW ′(z�) = z′

� (see [18] for more details).

4 Proving Termination

To prove termination of a program P, as in [25] the cycles of the SEG are
translated to an integer transition system whose termination implies termina-
tion of P. The edges of the SEG are transformed into ITS transitions whose
application conditions consist of the state formulas 〈s〉 and equations to iden-
tify corresponding symbolic variables of the different states. For evaluation and
refinement edges, the symbolic variables do not change. For generalization edges,
we use the instantiation μ to identify corresponding symbolic variables. In our
example, the ITS has cyclic transitions of the following form:

O(xn, xk, xkinc, . . .) →+ R(xn, xk, xkinc, . . .) | xkinc = xk + 1 ∧ xn > xk ∧ . . .

R(xn, xk, xkinc, . . .) → O(xn, xkinc, . . .)

W (z�, z
′
�, . . .) →+ W ′(z�, z

′
�, . . .) | z� = z′

� − 1 ∧ z� ≥ 1 ∧ . . .

W ′(z�, z
′
�, . . .) → W (z′

�, . . .)

The first cycle resulting from the generalization edge from R to O terminates
since k is increased until it reaches n. The generalization edge yields a condition
identifying xkinc in R with xk in O, since μR(xk) = xkinc. With the conditions
xkinc = xk + 1 and xn > xk (from KBO), the resulting transitions of the ITS
are terminating. The second cycle from the generalization edge from W ′ to W
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terminates since the length of the list starting with curr’ decreases. Although
there is no program variable for the length, due to our list invariants the states
contain variables for this length, which are also passed to the ITS. Thus, the
ITS contains the variable z� (where z� in W is identified with z′

� in W ′ due to
μW ′(z�) = z′

�). Since the condition z′
� = z� − 1 is obtained on the path from W to

W ′ and z� ≥ 1 is part of 〈W 〉 due to the list invariant with length z� in LI W ,
the resulting transitions of the ITS clearly terminate. Analogous to [25, Cor. 11
and Thm. 13], we obtain the following theorem. To prove that a complete SEG
represents all program paths, in [25] we used the LLVM semantics defined by
the Vellvm project [26]. One now also has to prove soundness of those symbolic
execution rules which were modified due to the new concept of list invariants
(i.e., generalization, list extension, and list traversal), see [18].

Theorem 1 (Memory Safety and Termination). Let P be a program with a
complete SEG G. Since a complete SEG does not contain ERR, P is memory safe
for all concrete states represented by the states in G.4 If the ITS corresponding
to G is terminating, then P is also terminating for all states represented by G.

5 Conclusion, Related Work, and Evaluation

We presented a new approach for automated proofs of memory safety and ter-
mination of C/LLVM-programs on lists. It first constructs a symbolic execution
graph (SEG) which overapproximates all program runs. Afterwards, an integer
transition system (ITS) is generated from this graph whose termination is proved
using standard techniques. The main idea of our new approach is the extension
of the states in the SEG by suitable list invariants. We developed techniques to
infer and modify list invariants automatically during the symbolic execution.

During the construction of the SEG, the list invariants abstract from a con-
crete number of memory allocations to a list of allocations of variable length
while preserving knowledge about some of the contents (the values of the fields
of the first and the last element) and the list shape (the start address of the first
element, the list length, and the content of the last recursive pointer which allows
us to distinguish between cyclic and acyclic lists). They also contain information
on the memory arrangement of the list fields which is needed for programs that
access fields via pointer arithmetic. The symbolic variables for the list length
and the first and last values of list elements are preserved when generating an
ITS from the SEG. Thus, they can be used in the termination proof of the ITS
(e.g., the variables for list length can occur in ranking functions).

In [5,6,22] we developed a technique for termination analysis of Java, based
on a program transformation to integer term rewrite systems instead of ITSs.
This approach does not require specific list invariants as recursive data structures
on the heap are abstracted to terms. However, these terms are unsuitable for

4 Our approach can only prove but not disprove memory safety, i.e., a SEG with the
state ERR just means that we failed in showing memory safety.
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C, since they cannot express memory allocations and the connection to their
contents.

Separation logic predicates for termination of list programs were also used in
[1], but their list predicates only consider the list length and the recursive field,
but no other fields or offsets. The tools Cyclist [24] and HipTNT+ [19] are integra-
ted in separation logic systems which also allow to define heap predicates. How-
ever, they require annotations and hints which parameters of the list predicates
are needed as a termination measure. The tool 2LS [20] also provides basic sup-
port for dynamic data structures. But all these approaches are not suitable if ter-
mination depends on the contents or the shape of data structures combined with
pointer arithmetic. In [10], programs can be annotated with arithmetic and struc-
tural properties to reason about termination. In contrast, our approach does not
need hints or annotations, but finds termination arguments fully automatically.

We implemented our approach in AProVE [25]. While C programs with lists
are very common, existing tools can hardly prove their termination. Therefore,
the current benchmark collections for termination analysis contain almost no
list programs. In 2017, a benchmark set5 of 18 typical C-programs on lists was
added to the Termination category of the Competition on Software Verification
(SV-COMP) [3], where 9 of them are terminating. Two of these 9 programs do
not need list invariants, because they just create a list without operating on
it afterwards. The remaining seven terminating programs create a list and then
traverse it, search for a value, or append lists and compute the length afterwards.
Only few tools in SV-COMP produced correct termination proofs for programs
from this set: HipTNT+ and 2LS failed for all of them. CPAchecker [2] and
PeSCo [23] proved termination and non-termination for one of these programs in
2020. UAutomizer [8] proved termination for two and non-termination for seven
programs. The termination proofs of CPAchecker, PeSCo, and UAutomizer only
concern the programs that just create a list. Our new version of AProVE is the
only termination prover6 that succeeds if termination depends on the shape or
contents of a list after its creation. Note that for non-termination, a proof is a
single non-terminating program path, so here list invariants are less helpful.

For the Termination Competition [15] 2022, we submitted 18 terminating C
programs on lists7 (different from the ones at SV-COMP), where two of them
just create a list. Three traverse it afterwards (by a loop or recursion), and ten
search for a value, where for nine, also the list contents are relevant for termina-
tion. Three programs perform common operations like inserting or deleting an
element. UAutomizer proves termination for a program that just creates a list but
not for programs operating on the list afterwards. With our approach, AProVE
succeeds on 17 of the 18 programs. Overall, AProVE and UAutomizer were the two

5 https://github.com/sosy-lab/sv-benchmarks/tree/master/c/termination-memory-
linkedlists.

6 We did not compare with the tool VeriFuzz [21], since it does not prove termination
but only tests for non-termination and thus, it is unsound for inferring termination.

7 https://github.com/TermCOMP/TPDB/tree/master/C/Hensel 22.

https://github.com/sosy-lab/sv-benchmarks/tree/master/c/termination-memory-linkedlists
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/termination-memory-linkedlists
https://github.com/TermCOMP/TPDB/tree/master/C/Hensel_22
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most powerful tools for termination of C in SV-COMP 2022 and the Termination
Competition 2022, with UAutomizer winning the former and AProVE winning

SV-C T. SV-C Non-T. TermCmp T.

AProVE 7 (of 9) 5 (of 9) 17 (of 18)
UAutomizer 2 (of 9) 7 (of 9) 1 (of 18)

the latter competition. To down-
load AProVE, run it via its web
interface, and for details on our
experiments, see https://aprove-developers.github.io/recursive structs.
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Brno University of Technology, Brno, Czech Republic
{ifiedortom,holik,ihruska,rogalew,sicjuraj,ivargovcik}@fit.vutbr.cz

Abstract. Several new algorithms for deciding emptiness of Boolean combina-
tions of regular languages and of languages of alternating automata have been
proposed recently, especially in the context of analysing regular expressions
and in string constraint solving. The new algorithms demonstrated a significant
potential, but they have never been systematically compared, neither among each
other nor with the state-of-the art implementations of existing (non)deterministic
automata-based methods. In this paper, we provide such comparison as well as
an overview of the existing algorithms and their implementations. We collect a
diverse benchmark mostly originating in or related to practical problems from
string constraint solving, analysing LTL properties, and regular model checking,
and evaluate collected implementations on it. The results reveal the best tools and
hint on what the best algorithms and implementation techniques are. Roughly,
although some advanced algorithms are fast, such as antichain algorithms and
reductions to IC3/PDR, they are not as overwhelmingly dominant as sometimes
presented and there is no clear winner. The simplest NFA-based technology may
sometimes be a better choice, depending on the problem source and the imple-
mentation style. We believe that our findings are relevant for development of
automata techniques as well as for related fields such as string constraint solving.

1 Introduction

Efficient representation of regular properties of finite words has been the subject of
research for a long time, with applications and results spanning much of the field of for-
mal reasoning, including regular expression matching, verification, testing, modelling,
or general decision procedures of logics. When regular properties are combined using
Boolean and similar operations, interesting decision problems are PSPACE-complete.
This includes the most essential problem of language emptiness (further just empti-
ness). The textbook approaches that use deterministic automata are plagued by state
space explosion. Determinization and complementation is done by exponential sub-
set construction and conjunction is quadratic. This motivated the research on effi-
cient algorithms for non-deterministic and alternating finite automata (NFA and AFA,
respectively).

Using nondeterminism and alternation, one can gain one or two levels of exponen-
tial savings in the size of automata, respectively. Alternation in context of automata was
first studied in [24] and [18,38,53], and extensively in the context of automata over
c© The Author(s) 2023
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infinite words and temporal logics (e.g., [57,58,66,76]). It adds conjunctive branching
to the disjunctive non-deterministic branching and allows to avoid the blow-up in the
automata size completely. However, from the perspective of the worst case complex-
ity, the gained succinctness is payed back by the PSPACE-completeness of language
emptiness. Still, the more succinct the representation gives more opportunities for clever
heuristics that combat the worst case complexity and work in practical cases, essentially
by avoiding re-creation of the entire (non)deterministic representation.

Several very promising techniques and their implementations were proposed during
the recent years. The latest advances in testing AFA emptiness appeared in the context
of analysing combinations of regular expressions and in string solving. A group of these
techniques is based on reducing AFA emptiness to a reachability in a Boolean transi-
tion systems and using existing implementations of model-checking algorithms, most
notably of IC3/PDR [15,46], such as ABC [17], nuXmv [22], or IC3Ref [16], to solve
it [27,28,47,80]. The most recent contribution from [73] extends the SMT-solver Z3
with symbolic derivatives, a generalisation of Antimirov derivatives of regular expres-
sions. Z3 uses them to convert a combination of regular expressions into an alternat-
ing/Boolean automaton and on the fly tests its language emptiness through the classical
de-alternation and a search for an accepting configuration.

Slightly older algorithm for testing equivalence of AFA (convertible to an emptiness
test) is based on computing bisimulation up-to congruence [30]. It generalizes the orig-
inal NFA-equivalence test of [11]. The congruence closure algorithms were preceded
by the antichain algorithms that optimize the subset construction by the subsumption
pruning [41,82], and by the first attempt to use the model checking algorithms, namely
the algorithm Impact of [63], to emptiness of combinations of regular properties [40].
Lastly, the area of string constraint solving gave rise to a large variety of string con-
straint solvers. They approach combinations of regular properties through a spectrum of
clever techniques based e.g. on automata, transformations to other types of constraints,
reasoning on lengths of strings, Parikh images, etc. (e.g. Z3 [65,73], CVC4/5 [7,68],
Z3Str4 [9], OSTRICH [25,26], Trau [4,5] to name a few).

These works demonstrate a significant promise, but they are presented in specific,
often narrow contexts and under varying views on state of the art. Consequently, they
have never been sufficiently compared against each other. Even comparisons against
the most efficient implementations of the more standard techniques based on (non)de-
terministic automata is rare. String solvers were compared only against string solvers,
advanced AFA-emptiness tests were compared only against the basic de-alternation.
A somewhat interesting comparison was done only between NFA-antichain and up-
to congruence-based language inclusion and equivalence test in [11] and in [39], and
between the basic antichain based AFA emptiness and a version that uses abstract
interpretation [41]. A number of works also take as their baseline implementations
of automata or string solvers which, even though being respectable tools in their own
right, are currently not the fastest solvers of combinations of regular properties in either
category. On top of that, all the mentioned works on solving combinations of regular
properties use only narrow benchmarks, often mutually exclusive.

Systematic comparisons of tools and algorithms on meaningful benchmarks is obvi-
ously needed to answer the questions ‘What to use?’ and ‘What to compare with?’, and
generally for the field of reasoning about regular properties and automata to progress.
We thus present a comparison of implementations of major algorithms. We compare
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the tools on a large benchmark of problems that we have collected from other works,
from string constraint solving problems, analysis of regular expressions, regular model
checking, and analysing LTL properties of systems. We believe that it is currently the
most comprehensive benchmark in existence. Our main focus is on examples around
string solving and analysis of regular expressions, which is also where the most of the
recent developments has happened. These benchmarks mostly allow for a relatively
simple representations of automata transition functions. Even though the alphabets in
examples coming form this are large (e.g. UNICODE with up to 232 symbols), the
alphabet size can, in most cases, be reduced to few symbols by working with alpha-
bet minterms (classes of indistinguishable symbols) instead of individual symbols. The
issue of effective symbolic representation of transition relations with large alphabets
then does not dominate the evaluation, although it would be critical in other application
areas, such as deciding WS1S (monadic second-order logic of one successor) or linear
integer arithmetic [20,44,81].

We have obtained results that paint the basic landscape of the available techniques
and tools. They identify tools and approaches which are likely to work well and should
be used as the baseline in comparisons. We also provide a relatively diverse and large
benchmark to be used in comparisons. The results broadly confirm that the new algo-
rithms represent a leap in efficiency compared to the technology of DFA and also make
a reduction of a problem to language emptiness of alternating automaton an attractive
option. On the other hand, they challenge some folklore knowledge and conclusions
implied elsewhere. For instance, reductions to IC3/PDR, although yielding one of the
fastest algorithm, are not as vastly superior as sometimes presented. Some practically
relevant benchmark categories are best solved by a combination of an antichain algo-
rithm with a SAT solver. Others, surprisingly many in fact, by a simple efficiency ori-
ented implementation of basic algorithms for nondeterministic automata. Our results
also underscore that there is no universal silver bullet. The particular kind of the prob-
lem, determined to a large degree by its source, is a decisive factor that should be taken
into account when choosing and tuning a solver.

We will maintain and further grow the benchmark set, at GitHub [1], as well as
the framework for the entire comparison, at [2], in order for it to be easily usable and
extensible by others.

2 Preliminaries

A (nondeterministic) finite automaton (NFA) over Σ is a tuple A = (𝑄,Δ, 𝐼, 𝐹) where
𝑄 is a finite set of states, Δ is a set of transitions of the form 𝑞−{𝑎}→𝑟 with 𝑞,𝑟 ∈ 𝑄 and
𝑎 ∈ Σ, 𝐼 ⊆ 𝑄 is the set of initial states, and 𝐹 ⊆ 𝑄 is the set of final states. A run of A
over a word 𝑤 ∈ Σ∗ is a sequence 𝑝0−{𝑎1}→𝑝1−{𝑎2}→ . . .−{𝑎𝑛 }→𝑝𝑛 where for all 1 ≤ 𝑖 ≤ 𝑛, it
holds that 𝑎𝑖 ∈ Σ∪{𝜖}, 𝑤 = 𝑎1 ·𝑎2 · · ·𝑎𝑛, and either 𝑝𝑖−1−{𝑎𝑖 }→𝑝𝑖 ∈ Δ or 𝑝𝑖−1 = 𝑝𝑖 , 𝑎𝑖 = 𝜖 .
The run is accepting if 𝑝0 ∈ 𝐼 and 𝑝𝑛 ∈ 𝐹, and the language 𝐿(A) of A is the set of all
words for which A has an accepting run.

The automaton is deterministic (DFA) if for every state 𝑞 and symbol 𝑎, Δ has
at most one transition 𝑞−{𝑎}→𝑟 . Any NFA can be determinized by the subset construc-
tion, which creates the DFA 𝐴′ = (2𝑄,Δ′, {𝐼}, {𝑆 | 𝑆∩𝐹 ≠ ∅}) where 𝑆−{𝑎}→𝑆′ ∈ Δ′ iff
𝑆′ = {𝑠′ | 𝑠 ∈ 𝑆∧ 𝑠−{𝑎}→𝑠′ ∈ Δ}. The basic automata constructions implementing Boolean
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operations with languages are intersection, A∩A
′ = (𝑄×𝑄 ′,Δ×, 𝐼 × 𝐼 ′, 𝐹 ×𝐹 ′

) where
(𝑞, 𝑞′)−{𝑎}→(𝑟,𝑟 ′) ∈ Δ× iff 𝑞−{𝑎}→𝑟 ∈ Δ and 𝑞′−{𝑎}→𝑟 ′ ∈ Δ′, non-deterministic union
A∪A

′ = (𝑄 ∪𝑄 ′,Δ∪Δ′, 𝐼 ∪ 𝐼 ′, 𝐹 ∪ 𝐹 ′
), deterministic union by product which is the

same as ∩ up to that the final states are 𝐹 ×𝑄 ∪𝑄 × 𝐹, and complementation which
consists of determinization and complementing the final states.

Alternating Automata. An alternating finite automaton (AFA) in the most general form
would be a tuple M = (Σ,P,𝑄, 𝛿, 𝐼, 𝐹) where, when denoting B(𝑋) the Boolean pred-
icate formulae over variables 𝑋: 1) Σ is a finite alphabet; 2) P is a set of unary symbol
predicates with a free variable 𝛼; 3) 𝑄 is a finite set of states; 4) 𝛿 : 𝑄 → B(𝑄 ∪P) is
a transition function where states of 𝑄 have only positive occurrences 5) 𝐼 ∈ B(𝑄) is a
positive initial condition; and 6) 𝐹 ∈ B(𝑄) is a negative final/accepting condition.1

It can be interpreted as the forward NFA 𝐴f = (Σ,P(𝑄),Δf, 𝐼 ′, 𝐹 ′
) with states 𝑐 ⊆ 𝑄

called configurations of 𝐴. Assume many sorted interpretation of formulae over vari-
ables 𝑄 of the type Boolean (values 0 and 1) and the variable 𝛼 of the type Σ. A set
of states 𝑐 ⊆ 𝑄 is understood as an assignment 𝑄 → {0,1} in which 𝑐(𝑞) = 1 corre-
sponds to 𝑞 ∈ 𝑐. A pair (𝑐, 𝑎), 𝑎 ∈ Σ is understood as the same assignment extended
with 𝛼 ↦→ 𝑎. The satisfaction relation |= between a formula and a configuration 𝑐 or
a pair (𝑐, 𝑎) is defined as usual. The transition relation Δf then contains a transition
𝑐−{𝑎}→𝑐′ iff (𝑐′, 𝑎) |=

∧
𝑞∈𝑐Δ(𝑞), and 𝐼 ′ and 𝐹 ′ are the sets of configurations that satisfy

𝐼 and 𝐹, respectively. It is common to define Δf to contain only the smallest transitions,
that is, for a given 𝑐 and 𝑎, only the transitions 𝑐−{𝑎}→𝑐′ with the ⊆-minimal target 𝑐′ are
in Δ.2 The language of 𝐴, 𝐿(𝐴), is the language of 𝐴f.

The AFA can equivalently be interpreted as the backward NFA, the automaton 𝐴b =
(Σ,P(𝑄),Δb, 𝐼 ′, 𝐹 ′

) where 𝑐−{𝑎}→𝑐′ ∈ Δb if (𝑐, 𝑎) |= Δ(𝑞) for each 𝑞 ∈ 𝑐. Here it is
enough to take, for a given 𝑐′ and 𝑎, only the transition with the ⊆-largest source 𝑐3

(this makes the transition relation backward deterministic).

Boolean Automata. Alternating automata may be extended to Boolean finite automata
(BFA) by allowing any Boolean combination in the initial, final, and transition formulae
(states in the initial and transition formulae may occur negatively, states in the final
formula may occur positively). Note that the extension of AFA to BFA is not dramatic,
as a BFA is easily encoded as an AFA with only double the size, by the following steps:
1) for each 𝑞 ∈ 𝑄, add state 𝑞 with Δ(𝑞) = ¬Δ(𝑞), 2) transform all formulas in 𝐼, 𝐹,Δ
to DNF, 3) replace all literals ¬𝑞 by 𝑞 in Δ and 𝐼 and replace literals 𝑞 by ¬𝑞 in 𝐹.

Restricted Forms of AFA Transition Relation. The general form of AFA, as defined
above, is the most succinct. It provides space for most optimizations, such as in [77].
Automata in this form are generated from LTL conversions of [34] used in [30,77]. On
the other hand, only a small subset of algorithms and tools support AFA in this most lib-
eral form. A common restriction (used e.g. in [30]) is to separate symbols from states in

1 This is not a most standard definition of AFA but it allows us to later cover and categorize their
common syntactic variants. See e.g. [18,41,57] for more standard definitions.

2 A state in a configuration is understood as a constraint. The less constraints, the more can be
accepted from the configuration. Transitions to more constrained configurations are useless.

3 Going backward, larger configurations are more permissive. Transitions from the same target
with smaller configurations are useless.
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the transition formulae, that is, having Δ(𝑞) in the form 𝜑∧𝜓 with 𝜑 ∈ B(P),𝜓 ∈ B(𝑄).
We call such AFA separated. The transition relation can then be seen as a function
𝑄 → B(P) ×B(𝑄). Separated AFA are often considered with the state formula 𝜓 in the
disjunctive normal form (e.g. in [36,41]), which we call the DNF form, and Δ then may
be seen as a set of transitions of the form 𝑞−{𝜑}→𝑐 where

∧
𝑐 is a (positive) clause of 𝜓.

The Decision Problems. We will concentrate on two decision problems:

(1) AFA emptiness asks whether the language of the given AFA is empty.
(2) Emptiness of Boolean combinations of regular properties (BRE), asks whether a

Boolean combination of regular languages, given as automata or regular expres-
sions, is empty (languages can be combined with ∩, ∪, and complement wrt. Σ∗,
which also covers testing inclusion and equivalence4).

3 Existing Algorithms and Tools

In this section, we will overview the existing approaches and tools implementing AFA
and BRE emptiness.

3.1 Representation of Automata Transition Relations

In the simplest form, a predicate on a automata transition represents a single letter
from the alphabet. This is called an explicit transition. Explicit automata are simple,
allow for low level optimizations, and implementation of complex algorithms for them
is manageable (such as advanced algorithms for computing simulations [23,50,70]).
The technique of a-priori mintermization, that replaces the alphabet by the alphabet of
minterms, classes of indistinguishable symbols, makes explicit automata usable also
when alphabets are large. However, when the number of minterms tends to explode,
explicit automata do not scale.

Various implementations of automata have been using transition predicates imple-
mented as BDDs, Boolean formulae, formulae over SMT-theory of bit-vectors, inter-
vals of numbers, etc. This has been systematized in the works on symbolic automata
[31,33,79], where the symbol predicates may be taken from any effective Boolean
algebra (and the automata are in the separated form). Even more compact than sym-
bolic automata are representations of the transition relation used in the WS1S solver
MONA or in some of the implementations of AFA, which in a way drop the restriction
to the separated form. We will discuss the concrete implementations below.

3.2 (Non)deterministic Finite Automata

The baseline approach to solve BRE is to use DFA or NFA. Boolean operations are
implemented as the classical construction listed in Sect. 2. Automata may be kept deter-
ministic, or they are kept non-deterministic whenever possible and determinized only
before complementing. An important ingredient of achieving efficiency is usually to

4 𝐿′
⊆ 𝐿 is emptiness of 𝐿′

∩ 𝐿 and equivalence is emptiness of (𝐿′
∩ 𝐿) ∪ (𝐿′ ∩ 𝐿).
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minimize automata at least once every few operations (important e.g. in applications
such as regular model checking [12] or some approaches to string solving [4,10,25]).
The deterministic approaches construct the minimal DFA by the Hopcroft, Moore,
Brzozowski, or the Huffman algorithm [19,52,54,64], the non-deterministic approach
may use simulation [23,45,50,55,70] or bisimulation [48,69,75] based reduction meth-
ods. Simulation reduces significantly more but is much costlier. DFA/NFA are imple-
mented in many libraries. Here we select a representative sample.

First, ENFA is the simplest tool, our own implementation of NFA, which was origi-
nally meant to play the role of a baseline. It uses explicit automata with mintermization.
It is implemented in C++, with efficiency in mind, but with no extensive optimizations
(roughly, transitions from a state stored in a two layered data structure, the first layer
divided and ordered by symbols, and the second layer ordered by the target state). It
uses an off the shelf implementation of one of the newest generation algorithms for
computing simulation [23,50,70] (that achieve good efficiency through a usage of the
partition-relation data structure) taken from VATA tree automata library [59] (imple-
menting namely [50]).5

The BRICS automata library [67] is often considered a baseline in comparisons [67].
It uses primarily deterministic automata and transition relation represented symbolically
using character ranges. It is written in Java and relatively optimized.

The AUTOMATA library [78], made in C#, implements symbolic NFA/DFA parame-
trized by an effective Boolean algebra. We use it with the default algebra of BDDs.
AUTOMATA has been long developed and has accumulated many optimizations and
novel techniques for handling symbolic automata (e.g., optimized minimization [32]).

MONA [44], written in C, is the most influential and optimized implementation
of deterministic automata. It specialises in deciding WS1S formulae, which besides
Boolean combinations includes also quantification. The decision procedure generates
DFA with complex transition relations over large alphabets of bit-vectors. For this pur-
pose, MONA uses a compact representation of the transition relation: a single MTBDD
for all transitions originating in a state, with the target states in its leaves. MONA can
represent only a DFA, hence it always implicitly determinizes.

VATA [59], written in C++, is a library implementing non-deterministic tree
automata. As NFA are a special case of tree automata, we can use it as an implementa-
tion of the basic constructions for explicit NFA. It is relatively optimized. We include
it into the comparison for its fast implementation of the antichain inclusion checking
[12,49], which for NFA boils down to the inclusion check of [36].

3.3 Alternating Automata

De-alternation. The basic approach to AFA emptiness is de-alternation, transformation
to an NFA, either the forward 𝐴f or the backward 𝐴b, followed by testing the emptiness
of the resulting NFA. Both NFAs are constructed by a variation on the NFA subset
construction. We are not aware of any tool using pure de-alternation, and we believe
that it would not be competitive. The forward algorithm is however the basis of [73]

5 In our experiment, simulation is only used after parsing and has minimal overall impact.
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used in Z3 where it is run on the fly with a novel symbolic derivative construction
(discussed also in the paragraph on string constraint solvers).

Interpolation Based Abstraction Refinement. Attempts to harness model checking algo-
rithms to AFA emptiness appeared in the context of string solving and processing of
regular expressions. To our best knowledge, the earliest attempt was [40], where con-
junctions of regular constraints were solved using the interpolation-based algorithm of
[62]. The interpolation-based abstraction refinement, namely the algorithm Impact of
[63], was also used in [56]. This work concentrated on more general problem, solving
emptiness of AFA over data words with an infinite data domain (that can relate past and
current values of data variables). Their tool JALTIMPACT [3] (in Java), that we include
into our comparison, can be run on our benchmark too.

Reduction to Reachability and IC3/PDR. The work of [80] presented the first transla-
tion of string constraints (mostly BRE) into reachability in a Boolean transition system
(circuit) that was then solved by the model checker nuXmv [22]. This was de facto the
first reduction of AFA emptiness to reachability in a Boolean transition system (BTS).

Let us briefly overview the basic principle of the reduction. The forward BTS for
an AFA 𝐴 has configurations that are Boolean assignments to 𝑄, initial and final
configurations satisfy 𝐼 and 𝐹, respectively, and transitions are given by the formula
Φf

Δ :
∧

𝑞∈𝑄 𝑞 → [Δ(𝑞)] ′. Here we use [𝜑] ′ to denote the formula obtained from 𝜑 by
substituting every state 𝑞 by its primed version 𝑞′, and we will also denote by [𝑐] ′ the
primed version {𝑞′ | 𝑞 ∈ 𝑐} of a configuration 𝑐. A successor of a configuration 𝑐 is any
configuration 𝑐 such that [𝑐] ′ satisfies ∃𝑄∃𝛼Φf

Δ ∧
∧

𝑞∈𝐶 𝑞 (the symbol variable alpha
is of the bit-vector sort). Reachability is then the transitive and reflexive closure of the
successor relation and the reachability problem asks whether a final configuration is
reachable from an initial one. It is the case if and only if 𝐴 is not empty. The forward
reduction has been used in [80]. Alternatively, the backward BTS for 𝐴 has the initial
configurations satisfying 𝐹, final configurations satisfying 𝐼, and the successor relation
given by the formula Φb

Δ :
∧

𝑞∈𝑄 𝑞′ → Δ(𝑞).
The work [28] applied IC3/PDR [15,46], implemented in IC3Ref [16], together with

the backward BTS reduction to solve emptiness of BRE and obtained very encouraging
results. The implementation used in [28], called Qzy, is, however, proprietary and not
publicly available. Similar approach was taken by [47], where a string constraint was
translated to a multi-tape AFA and then to a BTS by the forward translation, and given
to IC3/PDR to solve through tools nuXmv [22] or ABC [17]. Results of [77] seem to
indicate that the backward translation is better and the same is suggested by the com-
parison in [27,28] in which the string solver Sloth [47], based on the forward reduction,
was much slower than Qzy, based on the backward reduction. In this comparison, we
include our own C++ implementation BWIC3 of the backward reduction based on the
model checker ABC.

Antichains. Antichain algorithms presented in [82] were the first breakthrough in solv-
ing BRE. They use subsumption relations between the states of the automata con-
structed by variations of the subset construction to prune the constructions. They were
used to test language universality and inclusion of NFAs and AFA emptiness. The AFA
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emptiness namely is based on an on-the-fly search for an accepting state of the 𝐴f or for
an initial state of the 𝐴b. Subsumption prunes discovered states that are larger (smaller
for the backward algorithm) than others.

The antichain algorithms were enhanced and generalized in a number of works,
e.g. with a more aggressive pruning by the simulation-based subsumption [6,36], or by
counterexamples guided abstraction refinement in [41]. In this comparison, we include
the NFA inclusion check implemented in the VATA tree automata library [59]. We
also experimented with a student-made implementation of the antichain AFA empti-
ness check of [41] that uses abstraction refinement (the original implementation is no
longer maintained and we were not able to run it). However, not being able to achieve a
competitive performance, we excluded it from the comparison. One reason of the poor
performance may be that simplest form of AFA, explicit DNF form (used in the original
version [41]), might be too inefficient and costly to construct in our examples, partly
due to a large number of minterms induced by the AFA emptiness benchmark.

We implemented (in C++) the antichain AFA emptiness test of [36] that integrates
tightly with a SAT solver to handle the general form of AFA with large alphabets. We
will refer to it as ANTISAT. We will briefly explain its principle. It essentially imple-
ments the reachability test for the backward BTS discussed in the previous paragraph.
A configuration 𝑐 is represented by the conjunction 𝜙𝑐 =

∧
𝑞∈𝑄\𝑐¬𝑞. Note that 𝜙𝑐 is

satisfied by the downward closure of 𝑐, which are all configurations included in (sub-
sumed by) 𝑐. To compute predecessors of configurations represented by 𝜙𝑐, the SAT
solver (namely MiniSAT [37]) is called on the formula Φ : Ψb

Δ ∧ 𝜙𝑐 ∧𝜓Ach. Here, 𝜓Ach

excludes all already discovered configurations from the solution. It is a conjunction of
clauses 𝜙𝑐 :

∨
𝑞∈𝑄\𝑐 𝑞 for every previously discovered configuration 𝑐. The SAT solver

discovers a satisfying assignment 𝑒, which is turned into a new configuration 𝑐′ =𝑄∩ 𝑒
(that is, the values of the symbol bits constituting the bit-vector 𝛼 are omitted from
𝑒). Unless 𝑐′ is initial, it is queued for further predecessor computation and is imme-
diately added to 𝜙Ach through the interface of incremental SAT solving as the clause
𝜙𝑐′ . Finally, only maximal predecessors of 𝑐 are of interest, as the non-maximal ones
are subsumed by them. We enforce the maximality of 𝑐 through working directly with
the internal SAT solver structures: at decision points, the SAT solver is forced to give
priority to decisions that assign 1 to state variables.

Bisimulation up-to Congruence. A later class of algorithms, here refered to as up-to
algorithms, checks equivalence as a bisimulation between configurations of AFA, and
utilises the up-to congruence technique to prune the search space. The first algorithm on
NFA equivalence [11] was extended to alternating automata emptiness check in [30].
These algorithms are close to antichains. As shown in [11], the pruning potential of the
up-to techniques is in theory the same or larger than that of antichain. A disadvantage
of the up-to congruence technique is the need for expensive evaluation of congruence
closures. The more extensive experiments of [39] shows antichain algorithms as faster,
with an exception of randomly generated automata with small alphabets and very dense
transition relations. We include into the comparison the Java implementation of the AFA-
emptiness of [30] (emptiness reduces to equivalence with a trivial empty AFA), that we
refer to as BISIM. The other implementations of up-to algorithms we are aware of, from
[39] and [11], are single-purpose programs that decide equivalence of two NFAs, hence
we would be able to run them on a very small fraction of our benchmark only.
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3.4 String Constraints Solvers

There are dozens of string constraint solvers that implement, to a various degree, a sup-
port for deciding combinations of regular properties. String languages are rich and BRE
are not the absolute priority of the solvers, hence they perform on them generally worse
than specialised tools. However, string solvers implement a wide scale of unique tech-
niques and pragmatic heuristics that may work in specific instances. Representatives of
the solvers with the most mature implementations (also used in most comparisons in
the literature) are Z3 [65,73] and CVC5 [7,68]. CVC5 solves BRE mostly through
rewriting rules. Recently [73] extended Z3 with an approach based on the Antimirov
derivative automata construction generalised to symbolic automata and extended regu-
lar expressions. Essentially, the construction produces a symbolic AFA/BFA and checks
its emptiness on the fly while running the forward de-alternation. As shown in [73], it is
significantly more efficient in solving BRE than other SMT solvers (including CVC5).

3.5 Other Approaches and Tools

Although we believe that we have collected a representative subset of existing algo-
rithms and tools, we have not collected all interesting specimens. Some were not avail-
able, some were difficult to run or prepare the inputs for, some seemed covered by
experimentation in other works. Including these tools and algorithms into the compar-
ison could still be interesting and we leave it for the future work (we plan to keep
extending the tool base as well as the benchmark set). Namely, the tool DPRLE [51],
used in the comparison in [28], seemed to be mostly outperformed by the IC3/PDR
approach implemented in Qzy, however, not absolutely consistently. The implementa-
tion of NFA antichain and up-to congruence techniques used in [39] seems efficient,
with its NFA antichain inclusion twice as fast as that of VATA. The up-to congruence
NFA equivalence checking of [11] could be fast too ([11] and [39] report somewhat
conflicting results). There are numerous NFA/DFA libraries, e.g. the C alternative of
BRICS [61] or the Java implementation of symbolic NFA of [29]. ALASKA [35] might
contain interesting implementations of antichain algorithms but is no longer maintained
and available. Our comparison is missing a basic implementation of antichain-powered
de-alternation for explicit AFA in the DNF form, which, if not overwhelmed by a large
number of minterms, could reach a good performance through simple fast data struc-
tures, similarly to our ENFA.

4 Benchmarks

We collected as comprehensive benchmark as possible, harvesting examples used in
previous works as well as generating some of our own. It is available together with
the whole experiment from [2] and at GitHub [1] (we plan to maintain and grow the
benchmark and welcome contributors).

Our main focus of the current benchmark set is the areas where the most of the
development in solving AFA and BRE emptiness happened recently, which is string
constraint solving and analysis of regular expressions used in analysing and filtering
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texts. Atomic regular properties are here mostly given in the form of regular expressions
over UNICODE character classes. The alphabet is large but the number of minterms
is mostly small or moderate. This is true also for our examples from regular model
checking. Symbolic handling of complex transition relations over large alphabets is thus
not absolutely crucial and the experiment can stay focused on the main algorithms for
emptiness check. For that reason, we do not include benchmarks from solving WS1S
[21], the primary target of MONA, or Presburger arithmetic with automata [13,81],
where the techniques of handling symbolic alphabet are indispensable. Techniques spe-
cialising at this kind of problems would deserve their own study. Our benchmarks
where the symbolic alphabet representation is still rather important are AFA coming
from (combinations of) LTL properties, with alphabets of sets of atomic propositions,
and from translations of string constraint problems to AFA with complex multi-track
alphabets.6

Boolean Combinations of Regular Expressions. This group of BRE contains bench-
marks on which we can run all tools, including those based on NFA and DFA. They
have small to moderate numbers of minterms (about 30 in average, at most over a
hundred).

b-smt contains 330 string constraints from the Norn and SyGuS-qgen, collected in SMT-
LIB benchmark [8], that fall in BRE. These were also used to compare SMT-solvers
in [73].

b-hand-made has 56 difficult handwritten problems from [73] containing membership
in regular expressions extended with intersection and complement. They encode (1)
date and password problems, (2) problems where Boolean operations interact with
concatenation and iteration, and (3) problems with exponential determinization.

b-armc-incl contains 171 language inclusion problems from runs of abstract regular
model checking tools (verification of the bakery algorithm, bubble sort, and a pro-
ducer-consumer system) of [12]. These examples were used also in [11,39].

b-regex contains 500 problems, obtained analogously as in [30,77], of the form 𝑟1 ∧
𝑟2 ∧ 𝑟3 ∧ 𝑟4 = 𝑟1 ∧ 𝑟2 ∧ 𝑟3 ∧ 𝑟4 ∧ 𝑟5, where each 𝑟𝑖 is one of the 75 regexes7 from
RegExLib [71] selected so that 𝑟1 ∧ 𝑟2 ∧ 𝑟3 ∧ 𝑟4 ∧ 𝑟5 is not empty. This benchmark
is inspired by spam filtering, where we want to test whether a new filter 𝑟5 adds
anything to existing filters. We transformed this problem into the inclusion 𝑟5 ⊆

𝑟1∧𝑟2∧𝑟3∧𝑟4, and kept the original form for BISIM which expects an equivalence.
b-param has 8 parametric problems. Four are from [40]:

(1) [a-c]a[a-c]{𝑛+1} ∩[a-c]a[a-c]{𝑛} (long strings),

6 We did not attempt to generate purely random problems. First, purely random automata gen-
erated e.g. by [74] seem to have different characteristics than automata coming from practical
problems (e.g. in [12,39]). Second, although generating random NFA is possible with a gen-
erator controlled by three simple parameters which give a manageable parameter-value space
covering all NFA, it is not clear how to similarly generate random AFA or BRE. On the other
hand, we do include a benchmark based on randomly generated LTL formulae, which we con-
sider relatively close to realistic LTL specifications.

7 https://github.com/lorisdanto/symbolicautomata/blob/master/benchmarks/src/main/java/
regexconverter/pattern%4075.txt.

https://github.com/lorisdanto/symbolicautomata/blob/master/benchmarks/src/main/java/regexconverter/pattern%4075.txt
https://github.com/lorisdanto/symbolicautomata/blob/master/benchmarks/src/main/java/regexconverter/pattern%4075.txt
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(2)
⋂𝑛

𝑖=1 ([0-1]{𝑖−1}0[0-1]{𝑛−1}0[0-1]{𝑛− 𝑖}𝛼𝑖)|([0-1]{𝑖−1}1[0-1]{𝑛−
1}1[0-1]{𝑛− 𝑖}𝛼𝑖) (exponential branching),

(3)
⋂𝑛

𝑖=1 .*(.{𝑝10+𝑖})+𝛼𝑖 (exponential paths 1), and
(4)

⋂𝑛
𝑖=1 .+𝛼𝑖0(.{𝑝10+𝑖})+ (exponential paths 2), where 𝛼1, . . . , 𝛼𝑛 are disjoint

character classes and 𝑝 𝑗 is the 𝑗-th prime number. Another four are from [28]:
(5) ˆ.[01]*.1.[01]{n}.$\ˆ.[01]*.0.[01]{n-1}.$ (sat. difference),
(6) ˆ.[01]*.1.1.[01]{n}.$\ˆ.[01]*.0.[01]{n+1}.$ (unsat. difference),
(7) ˆ.[01]*.1.[01]{n}.$∩ˆ.[01]*.0.[01]{n-1}.$ (sat. intersection) and
(8) ˆ.[01]*.1.[01]{n}.$∩ˆ.[01]*.0.[01]{n}.$ (unsat. intersection). For (1)

we chose 𝑛 ∈ {50,100, . . . ,500}, for (2)–(4) we chose 𝑛 ∈ {2,3, . . . ,60} and for
(5)–(8) we chose 𝑛 ∈ {50,100, . . . ,1000}.

AFA Benchmark. The second group of examples contains AFA not easily convertible
to BRE. Here we can run only tools that handle general AFA emptiness. Some of these
benchmarks also have large sets of minterms (easily reaching to thousands) and com-
plex formulae in the AFA transition function, hence converting them to restricted forms
such such as separated DNF or explicit may be very costly. This also seems to be the
main reason for which our implementation of [41] could not compete.

a-ltlf-patterns comes from transformation of linear temporal logic formulae over finite
traces (LTL 𝑓 ) to AFA [34]. The 1699 formulae are from [60]8 and they represent
common LTL 𝑓 patterns which can be divided into two groups: (1) 7 parametric pat-
terns (100 each) and (2) randomly generated conjunctions of simpler LTL 𝑓 patterns
(999 formulae).

a-ltl-rand contains 300 LTL 𝑓 formulae obtained with the random generator of [77].
The generator traverses the syntactic tree of the LTL grammar, and is controlled by
the number of variables, probabilities of connectives, maximum depth, and average
depth. We have set the parameters empirically in a way likely to generate exam-
ples difficult for the compared solvers (the formulae have 6 atomic propositions and
maximum depth 16).

a-ltl-param has a pair of hand-made parametric LTL 𝑓 formulae (160 formulae each)
used in [30,77]: Lift [43] describes a simple lift operating on a parametric number
of floors and Counter [72] describes a counter incremented modulo the parameter.

a-ltlf-spec [60] contains 62 LTL 𝑓 formulae that specify realistic systems, used by Boe-
ing [14] and NASA [42]. The formulae represent specifications used for designing
Boeing AIR 6110 wheel-braking system and for designing NASA NextGen air traf-
fic control (ATC) system.

a-sloth 4062 AFA emptiness problems to which the string solver Sloth reduced string
constraints [47]. The AFA have complex multi-track transitions encoding Boolean
operations and transductions, and a special kind of synchronization of traces requir-
ing complex initial and final conditions.

a-noodler 13840 AFA emptiness problems that correspond to certain sub-problems
solved within the string solver Noodler in [10]. The AFA were created similarly
as those of a-sloth, but encode a different particular set of operations over different
input automata.

8 https://drive.google.com/file/d/1eOYGvm3C8sQ-9iyfZ8qx42K54hgrFNTC.

https://drive.google.com/file/d/1eOYGvm3C8sQ-9iyfZ8qx42K54hgrFNTC
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5 The Comparison

We ran our experiments on Debian GNU/Linux 11, with Intel Core 3.4 GHz processor,
8 CPU cores, and 20 GB RAM. All experiments were run with the timeout of 60 s
(increasing the timeout did not have a significant impact). Additional details as well as
the virtual machine with the entire benchmark are available at [2].

Benchmarking Infrastructure. The initial difficulty is that the tools expect different
input formats and forms of automata and the benchmarks come in different formats as
well. We converted all benchmarks to our internal AFA format, from which we gen-
erated formats supported by the AFA handling tools JALTIMPACT, BWIC3, ANTISAT,
and BISIM, or we extend the tools with a parser. The BRE benchmarks come from
various sources. We first convert them into a master file which specifies the Boolean
combination of atomic NFA, each atomic NFA stored in a separate file. The SMT-
lib format is generated for Z3 and CVC5. In the case of b-hand-made, b-param, and
b-smt, the atomic automata are translated from regular expressions using the parser
of BRICS, while in the case of b-regex, where the regexes contain features not sup-
ported by BRICS, we use the parser from BISIM. b-smt and b-hand-made requires first
translating from SMT-lib to a regular expression. In the case of b-armc-incl, the atomic
automata come directly as NFAs, and are converted into formats of the individual BRE
solvers (we again wrote parsers for some of the solvers), and to our AFA format for the
AFA solvers. Every BRE solver was extended by an interpreter of the master file that
reads the NFA/DFA from the generated solver-specific files (except the SMT solvers,
which read SMT-lib). We note that due to some difficulties with internal structures, we
currently cannot run BRICS on b-armc-incl, and due to the lack of a converter from
complex regular expressions and from pure NFA to the SMT format, we do not run Z3
and CVC5 on b-regex and on b-armc-incl.

Measured Data. We will present the results obtained with BRE (where we run all the
tools) and with AFA emptiness (where we run BWIC3, ANTISAT, BISIM, and JALTIM-
PACT) separately. We also separate the results on examples from applications from
results on parametric hand-made examples.

Table 1 summarizes the statistics from evaluating the benchmarks. The table lists: (i)
the average time, (ii) the median time, and (iii) the number of timeouts and number of
errors (mostly, a tool ran out of the memory, made a bad alloc or ran into a segmentation
fault). A few errors, e.g. in CVC5 or BISIM, were due to the unsupported features in the
inputs. The tools’ performance is then visualised on cactus plots in Fig. 1. For each tool,
the plot shows the progress of the tool on each benchmark: the 𝑦 axis is the cumulative
time taken on the benchmark, with the individual examples on the 𝑥 axis ordered by the
runtime taken by the tool. Timeouts are omitted. In the appendix, we also show a set of
scatter-plots that compare for every benchmark the three best performing tools.

Finally, we compared the tools on the parametric benchmarks a-ltl-param and b-
param. We illustrate the results in Fig. 2. Each graph shows the times for the increasing
value of the specific parameter on the 𝑥 axis.
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Table 1. Summary of AFA and BRE benchmarks. Table lists (i) the average, (ii) the median, and
(iii) the number of timeouts and errors (in brackets). Winners are highlighted in bold.

a-ltl-rand a-ltl-spec a-ltlf-patterns a-noodler a-sloth a-ltl-param
(300) (62) (1 699) (13 840) (4 062) (320)

BWIC3 0.1 0.1 0 0.1 0.1 0 0.1 0.1 0 0.1 0.1 3 1.3 0.1 34 25.4 0.6 134
BISIM 4.4 1.0 8 32.9 60.0 32 37.0 60.0 1013 31.6 26.4 6644(8) 17.5 1.5 1087(10) 58.2 60.0 308

JALTIMPACT 7.9 2.3 12 2.4 1.4 0(1) 4.0 2.8 0 3.8 1.8 186 24.1 15.4 958 47.0 60.0 205
ANTISAT 18.3 0.1 84 0.0 0.0 0 31.0 60.0 868 0.4 0.0 57 14.9 0.0 991 58.3 60.0 310

b-armc-incl b-hand-made b-regex b-smt b-param
(171) (56) (500) (330) (267)

BWIC3 5.2 1.1 1 0.4 0.1 0 0.2 0.1 0 0.1 0.1 0 44.9 60.0 191

BISIM 28.5 9.5 72 11.2 1.0 8 3.8 1.3 15 2.5 2.5 0 55.4 60.0 240
BRICS - 3.9 0.4 3 5.8 0.8 40 0.3 0.3 0 52.7 60.0 228
CVC5 - 27.4 0.8 10(15) - 0.8 0.2 1 48.6 60.0 208

AUTOMATA 3.5 0.4 9 0.2 0.2 0 0.2 0.2 0 0.2 0.2 0 46.3 60.0 161(42)
JALTIMPACT 30.9 24.6 63 11.1 3.6 5 12.2 2.4 48 3.5 3.5 0 57.8 60.0 252

ANTISAT 42.8 60.0 118 1.4 0.0 1 9.3 1.4 45 0.0 0.0 0 39.0 60.0 147
MONA 28.5 44.1 43 27.3 0.1 22(3) 41.0 60.0 15(298) 1.5 0.0 8 44.9 60.0 25(169)
ENFA 1.9 0.8 0 0.1 0.0 0 0.2 0.1 0 0.0 0.0 0 44.6 60.0 143(51)

VATA 2.6 3.4 0 0.1 0.0 0 2.1 0.2 10(1) 0.0 0.0 0 37.8 60.0 155(1)
Z3 - 3.9 0.0 2 - 0.4 0.0 2 32.0 48.1 129

5.1 Discussion

Based on the measurements, we make several observations.
Firstly, the tool which combines universality (it can be run on AFA as well as on

BRE emptiness) with the most consistent good performance is BWIC3. It dominates
most of the AFA emptiness benchmark, shows great or a very good performance on
the BRE benchmark, and often stands out on the parametric examples. Moreover, the
measurements reported in [28] suggest that the backward BTS reduction has even more
potential. This is visible namely from the comparison of our results on the parametric
benchmarks di -sat, di -unsat, inter-sat, and inter-unsat. Our implementation matched
the result of [28] on di -sat and partially on inter-sat, saw a worse trend on di -unsat
and much worse trend on inter-unsat. A likely culprit is a different underlying model-
checker, ABC [17] in our implementation versus IC3Ref [16] in [28]. However, IC3Ref
was not used out of the box in [28], harnessing it efficiently for problems of our king is
not entirely trivial.

Secondly, the results on application related BRE (all BRE except the parametric
examples in b-param) quite surprisingly favour the tools based mostly on relatively
basic NFA algorithms. The overall best is the simplest tool of all, our implementa-
tion ENFA of basic NFA constructions. Close to the performance of ENFA is VATA,
which uses the antichain inclusion checking on b-armc-incl and b-regex (the fact that
explicit complementation of ENFA is faster than the antichain of VATA suggests that the
inclusion benchmarks are not particularly hard). VATA specialises to the more general
tree automata, which probably causes unnecessary overhead. AUTOMATA also performs
well. It uses slightly more advanced algorithms than ENFA (such as lazy evaluation of
difference, though, without antichain pruning). Its symbolic representation of transition
functions with BDDs probably does not provide much advantage here. This result chal-
lenges the view that translating complex problems, arising for instance in string con-
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Fig. 1. Cactus plots of AFA and BRE benchmarks. The 𝑦 axis is the cumulative time taken on the
benchmark in logarithmic scale, benchmark on the 𝑥 axis are ordered by the runtime of each tool.

straint solving, into AFA in order to use the sophisticated machinery of AFA solvers
is an obvious silver bullet. Organizing the computation into smaller NFA operations,
where, moreover, partial results can be minimized and re-used, and a simpler and hence
more flexible NFA technology is used, might be a better strategy (this seems to work
very well for instance in our recent prototype string constraint solver [10]).

Our AFA emptiness test ANTISAT based on the antichain algorithm and a SAT
solver has an interesting performance. As can be seen on the cactus plots, besides its
absolute domination on a-ltlf-spec, it is significantly faster than other tools on a large
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Fig. 2. Models of runtime on parametric benchmarks based on specific parameter 𝑘 with timeout
60s. The sawtooths represent the tool failed on the benchmark for some 𝑘 while solving bench-
marks for 𝑘−1 and 𝑘 +1. For brevity, we draw the models only until they start continually failing.

portion of the other AFA emptiness benchmark, but struggles on the rest. The exam-
ples where it dominates are often automata with the structure resembling a lasso (or
several lassos) with a long handle. The other implementation of an antichain algorithm,
NFA/NTA inclusion in VATA, also shows a good performance. This together points on
the overall strength of antichain algorithms.

The SMT string constraint solvers are not among the best in the benchmark related
to practical applications, but are competitive (especially Z3), and win on some paramet-
ric cases. This may be due to that various heuristics unique to SMT solvers, especially
rewriting that reduces one type of a constraint to another, kicks in. For instance, Z3
seems to solve exppaths1 with a help of rewriting to the sub-string constraint in the
theory of sequences. In general, the measurements on parametric examples underscore
the fact that no algorithm is universally the best and their relative performance may vary
drastically depending on the kind of an input.

Although the mediocre performance of the other tools can be partially explained by
their focus on a different kind of a problem or a dated underlying technology, and each
of them is respectable in its own right, a point can be made against relying on them
as a baseline in comparisons of tools for solving our kind of problem. MONA, opti-
mized for a different settings (complex alphabets of bit-vectors with many minterms),
is held back by the implicit determinization, and, in our case, probably by the over-
head of the symbolic representation. It also frequently runs out of the 32-bit address
space for BDD nodes. Similarly for BRICS, which also always determinizes. The low
performance of BISIM is surprising relative to the good results of the up-to algorithms
reported in [11,30]. It is more consistent with [39] where up-to algorithms were not
wining against antichains on the more practical examples. Our results however do not
directly contradict the results of [30] itself, since it does not compare with the fast tools
identified here and stands to a large degree on parametric and random benchmarks.
There is also always the possibility that we have prepared the input in a way not ideal
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for the tool. For instance, transformation to the separated AFA, required by BISIM,
is not entirely trivial. Further investigation of this and a comparison with some other
implementation of the up-to techniques seems to be needed. The lack of a raw speed
of JALTIMPACT on BRE and AFA emptiness is expectable considering that it is meant
for a different kind of systems, AFA over data words. The stable trends shown in the
graphs suggest that an implementation of an interpolation-based abstraction refinement
optimized for BRE and AFA emptiness might have a potential.

Main Takeaways. The backward reduction of AFA emptiness to BTS reachability in a
combination with IC3 is very fast and extremely versatile, showing very good perfor-
mance on almost all benchmarks. However, on BRE with a relation to a real world appli-
cation, simple NFA algorithms actually tend to have the best raw performance, with the
simplest implementation of NFA being the best. Antichain algorithms work also well,
even significantly better than other algorithms on specific kinds of AFA. These seem to
be the tools to use. Reasonable implementations of the backward BTS reduction with
IC3, of antichain, and of basic NFA should also be the baseline of comparisons.

MONA and BRICS, based on DFA, as well as JALTIMPACT focused on data words
rather then on pure regular properties, do no reach the performance of the best tools.
Also BISIM did not confirm the power of up-to algorithms. SMT-solvers, Z3 especially,
are competitive, but cannot be considered the top of state of the art.

Generally, the particular kind and source of benchmark is a decisive factor influenc-
ing the performance of tools, as especially visible on the parametric benchmark.

Threads to Validity. Our results must be taken with a grain of salt as the experiment
contains an inherent room for error. Although we tried to be as fair as possible, not
knowing every tool intimately, the conversions between formats and kinds of automata,
discussed at the start of Sect. 5, might have introduced biases into the experiment. Tools
are written in different languages and some have parameters which we might have used
in sub-optimal way (we use the tools in their default settings), or, in the case of libraries,
we could have used a sub-optimal combination of functions. We also did not measure
memory peaks, which could be especially interesting e.g. in when the tools are deployed
on a cloud. We are, however, confident that our main conclusions are well justified
and the experiment gives a good overall picture. The entire experiment is available for
anyone to challenge or improve upon [2].
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37. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24605-3 37

38. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata. Int. J. Com-
put. Math. 35 (1990)

39. Fu, C., Deng, Y., Jansen, D.N., Zhang, L.: On equivalence checking of nondeterministic finite
automata. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.) SETTA 2017. LNCS, vol. 10606,
pp. 216–231. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69483-2 13

40. Gange, G., Navas, J.A., Stuckey, P.J., Søndergaard, H., Schachte, P.: Unbounded model-
checking with interpolation for regular language constraints. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 277–291. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36742-7 20

41. Ganty, P., Maquet, N., Raskin, J.: Fixed point guided abstraction refinement for alternating
automata. Theor. Comput. Sci. 411(38–39) (2010)

42. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking at scale:
automated air traffic control design space exploration. In: Chaudhuri, S., Farzan, A. (eds.)
CAV 2016. LNCS, vol. 9780, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-41540-6 1

43. Harding, A.: Symbolic strategy synthesis for games with LTL winning conditions. Ph.D.
thesis, University of Birmingham (2005)

44. Henriksen, J.G., et al.: Mona: monadic second-order logic in practice. In: Brinksma, E.,
Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol.
1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0 5

https://mosca19.github.io/slides/cox.pdf
https://mosca19.github.io/slides/cox.pdf
https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1007/978-3-540-88387-6_21
https://doi.org/10.1007/978-3-540-88387-6_21
https://doi.org/10.1007/978-3-642-12002-2_2
https://doi.org/10.1007/978-3-642-12002-2_2
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-69483-2_13
https://doi.org/10.1007/978-3-642-36742-7_20
https://doi.org/10.1007/978-3-642-36742-7_20
https://doi.org/10.1007/978-3-319-41540-6_1
https://doi.org/10.1007/978-3-319-41540-6_1
https://doi.org/10.1007/3-540-60630-0_5


304 T. Fiedor et al.

45. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: Proceedings of the FOCS. IEEE (1995)

46. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A., Sebas-
tiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31612-8 13

47. Holı́k, L., Janků, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with concatenation
and transducers solved efficiently. In: Proceedings of the POPL’18, vol. 2 (2018)
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Abstract. We present an automated reasoning framework for synthe-
sizing recursion-free programs using saturation-based theorem proving.
Given a functional specification encoded as a first-order logical formula,
we use a first-order theorem prover to both establish validity of this for-
mula and discover program fragments satisfying the specification. As a
result, when deriving a proof of program correctness, we also synthesize
a program that is correct with respect to the given specification. We
describe properties of the calculus that a saturation-based prover capa-
ble of synthesis should employ, and extend the superposition calculus in
a corresponding way. We implemented our work in the first-order prover
Vampire, extending the successful applicability of first-order proving to
program synthesis.

Keywords: Program Synthesis · Saturation · Superposition ·
Theorem Proving

1 Introduction

Program synthesis constructs code from a given specification. In this work we
focus on synthesis using functional specifications summarized by valid first-order
formulas [1,14], ensuring that our programs are provably correct. While being a
powerful alternative to formal verification [20], synthesis faces intrinsic compu-
tational challenges. One of these challenges is posed to the reasoning backend
used for handling program specifications, as the latter typically include first-
order quantifier alternations and interpreted theory symbols. As such, efficient
reasoning with both theories and quantifiers is imperative for any effort towards
program synthesis.

In this paper we address this demand for recursion-free programs. We advo-
cate the use of first-order theorem proving for extracting code from correctness
proofs of functional specifications given as first-order formulas ∀x.∃y.F [x, y].
These formulas state that “for all (program) inputs x there exists an output
y such that the input-output relation (program computation) F [x, y] is valid”.
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Given such a specification, we synthesize a recursion-free program while also
deriving a proof certifying that the program satisfies the specification.

The programs we synthesize are built using first-order theory terms extended
with if−then−else constructors. To ensure that our programs yield computa-
tional models, i.e., that they can be evaluated for given values of input variables
x, we restrict the programs we synthesize to only contain computable symbols.

Our Approach in a Nutshell. In order to synthesize a recursion-free pro-
gram, we prove its functional specification using saturation-based theorem prov-
ing [11,15]. We extend saturation-based proof search with answer literals [5],
allowing us to track substitutions into the output variable y of the specification.
These substitutions correspond to the sought program fragments and are condi-
tioned on clauses they are associated with in the proof. When we derive a clause
corresponding to a program branch if C then r, where C is a condition and
r a term and both C, r are computable, we store it and continue proof search
assuming that ¬C holds; we refer to such conditions C as (program) branch
conditions. The saturation process for both proof search and code construction
terminates when the conjunction of negations of the collected branch conditions
becomes unsatisfiable. Then we synthesize the final program satisfying the given
(and proved) specification by assembling the recorded program branches (see
e.g. Examples 1–3).

The main challenges of making our approach effective come with (i) inte-
grating the construction of the programs with if−then−else into the proof
search, turning thus proof search into program search/synthesis, and (ii) guiding
program synthesis to only computable branch conditions and programs.

Contributions. We bring the next contributions solving the above challenges:1

• We formalize the semantics for clauses with answer literals and introduce a
saturation-based algorithm for program synthesis based on this semantics. We
prove that, given a sound inference system, our saturation algorithm derives
correct and computable programs (Sect. 4).

• We define properties of a sound inference calculus in order to make the cal-
culus suitable for our saturation-based algorithm for program synthesis. We
accordingly extend the superposition calculus and define a class of substitu-
tions to be used within the extended calculus; we refer to these substitutions
as computable unifiers (Sect. 5).

• We extend a first-order unification algorithm to find computable unifiers
(Sect. 6) to be further used in saturation-based program synthesis.

• We implement our work in the Vampire prover [11] and evaluate our synthesis
approach on a number of examples, complementing other techniques in the
area (Sect. 7). For example, our results demonstrate the applicability of our
work on synthesizing programs for specifications that cannot be even encoded
in the SyGuS syntax [16].

1 Proofs of our results are given in the extended version [8] of our paper.
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2 Preliminaries

We assume familiarity with standard multi-sorted first-order logic with equality.
We denote variables by x, y, terms by s, t, atoms by A, literals by L, clauses by
C,D, formulas by F,G, all possibly with indices. Further, we write σ for Skolem
constants. We reserve the symbol � for the empty clause which is logically
equivalent to ⊥. Formulas and clauses with free variables are considered implic-
itly universally quantified (i.e. we consider closed formulas). By � we denote
the equality predicate and write t �� s as a shorthand for ¬t � s. We use a
distinguished integer sort, denoted by Z. When we use standard integer pred-
icates <, ≤, >, ≥, functions +,−, . . . and constants 0, 1, . . . , we assume that
they denote the corresponding interpreted integer predicates and functions with
their standard interpretations. Additionally, we include a conditional term con-
structor if−then−else in the language, as follows: given a formula F and terms
s, t of the same sort, we write if F then s else t to denote the term s if F is
valid and t otherwise.

An expression is a term, literal, clause or formula. We write E[t] to denote
that the expression E contains the term t. For simplicity, E[s] denotes the expres-
sion E where all occurrences of t are replaced by the term s. A substitution θ is a
mapping from variables to terms. A substitution θ is a unifier of two expressions
E and E′ if Eθ = E′θ, and is a most general unifier (mgu) if for every unifier η
of E and E′, there exists substitution μ such that η = θμ. We denote the mgu
of E and E′ with mgu(E,E′). We write F1, . . . , Fn 	 G1, . . . , Gm to denote that
F1 ∧ . . . ∧ Fn → G1∨ . . . ∨Gm is valid, and extend the notation also to validity
modulo a theory T . Symbols occurring in a theory T are interpreted and all
other symbols are uninterpreted.

2.1 Computable Symbols and Programs

We distinguish between computable and uncomputable symbols in the signature.
The set of computable symbols is given as part of the specification. Intuitively,
a symbol is computable if it can be evaluated and hence is allowed to occur
in a synthesized program. A term or a literal is computable if all symbols it
contains are computable. A symbol, term or literal is uncomputable if it is not
computable.

A functional specification, or simply just a specification, is a formula

∀x.∃y.F [x, y]. (1)

The variables x of a specification (1) are called input variables. Note that while
we use specifications with a single variable y, our work can analogously be used
with a tuple of variables y in (1).

Let σ denote a tuple of Skolem constants. Consider a computable term r[σ]
such that the instance F [σ, r[σ]] of (1) holds. Since σ are fresh Skolem constants,
the formula ∀x.F [x, r[x]] also holds; we call such r[x] a program for (1) and say
that the program r[x] computes a witness of (1).
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Fig. 1. The superposition calculus Sup.

Further, if ∀x.(F1 ∧ . . . ∧ Fn → F [x, r[x]]) holds for computable formulas
F1, . . . , Fn, we write 〈r[x],

∧n
i=1 Fi〉 to refer to a program with conditions F1, . . . ,

Fn for (1). In the sequel, we refer to (parts of) programs with conditions also
as conditional branches. In Sect. 4 we show how to build programs for (1) by
composing programs with conditions for (1) (see Corollary 3).

2.2 Saturation and Superposition

Saturation-based proof search implements proving by refutation [11]: to prove
validity of F , a saturation algorithm establishes unsatisfiability of ¬F . First-
order theorem provers work with clauses, rather than with arbitrary formulas. To
prove a formula F , first-order provers negate F which is further skolemized and
converted to clausal normal form (CNF). The CNF of ¬F is denoted by cnf(¬F )
and represents a set S of initial clauses. First-order provers then saturate S by
computing logical consequences of S with respect to a sound inference system
I. The saturated set of S is called the closure of S and the process of computing
the closure of S is called saturation. If the closure of S contains the empty clause
�, the original set S of clauses is unsatisfiable, and hence the formula F is valid.

We may extend the set S of initial clauses with additional clauses C1, . . . , Cn.
If C is derived by saturating this extended set, we say C is derived from S under
additional assumptions C1, . . . , Cn.

The superposition calculus, denoted as Sup and given in Fig. 1, is the most
common inference system used by saturation-based provers for first-order logic
with equality [15]. The Sup calculus is parametrized by a simplification ordering
� on terms and a selection function, which selects in each non-empty clause a
non-empty subset of literals (possibly also positive literals). We denote selected
literals by underlining them. An inference rule can be applied on the given
premise(s) if the literals that are underlined in the rule are also selected in the
premise(s). For a certain class of selection functions, the superposition calculus
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Sup is sound (if � is derived from F , then F is unsatisfiable) and refutationally
complete (if F is unsatisfiable, then � can be derived from it).

2.3 Answer Literals

Answer literals [5] provide a question answering technique for tracking substi-
tutions into given variables throughout the proof. Suppose we want to find a
witness for the validity of the formula

∃y.F [y]. (2)

Within saturation-based proving, we first derive the skolemized negation of (2)
and add an answer literal using a fresh predicate ans with argument y, yielding

∀y.(¬F [y]∨ans(y)). (3)

We then saturate the CNF of (3), while ensuring that answer literals are not
selected for performing inferences. If the clause ans(t1)∨ . . . ∨ans(tm) is derived
during saturation, note that this clause contains only answer literals in addition
to the empty clause; hence, in this case we proved unsatisfiability of ∀y.¬F [y],
implying validity of (2). Moreover, t1, . . . , tm provides a disjuntive answer, i.e.
witness, for the validity of (2); that is, F [t1]∨ . . . ∨F [tm] holds [12]. In particular,
if we derive the clause ans(t) during saturation, we found a definite answer t
for (2), namely F [t] is valid.

Answer Literals with if−then−else. The derivation of disjunctive answers
can be avoided by modifying the inference rules to only derive clauses containing
at most one answer literal. One such modification is given within the A(R)-
calculus for binary resolution [22], where R is a so-called strongly liftable term
restriction. The A(R)-calculus replaces the binary resolution rule when both
premises contain an answer literal by the following A-resolution rule:

A∨C∨ans(r) ¬A′∨C ′∨ans(r′)
(C∨C ′∨ans(if A then r′ else r))θ

(A-resolution),

where θ := mgu(A,A′) and the restriction R(if A then r′ else r) holds.
In our work we go beyond the A-resolution rule and modify both the super-

position calculus and the saturation algorithm to reason not only about answer
literals but also about their use of if−then−else terms (see Sects. 4–5).

3 Illustrative Example

Let us illustrate our approach to program synthesis. We use answer literals in sat-
uration to construct programs with conditions while proving specifications (1).
By adding an answer literal to the skolemized negation of (1), we obtain

∀y.(¬F [σ, y]∨ans(y)),
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Fig. 2. Axioms defining a group. Uninterpreted function symbols i(·), e, ∗ represent the
inverse, the identity element, and the group operation, respectively.

where σ are the skolemized input variables x. When we derive a unit clause
ans(r[σ]) during saturation, where r[σ] is a computable term, we construct a
program for (1) from the definite answer r[σ] by replacing σ with the input
variables x, obtaining the program r[x]. Hence, deriving computable definite
answers by saturation allows us to synthesize programs for specifications.

Example 1. Consider the group theory axioms (A1)–(A3) of Fig. 2. We are inter-
ested in synthesizing a program for the following specification:

∀x.∃y. x ∗ y � e (4)

In this example we assume that all symbols are computable. To synthesize a
program for (4), we add an answer literal to the skolemized negation of (4) and
convert the resulting formula to CNF (preprocessing). We consider the set S of
clauses containing the obtained CNF and the axioms (A1)-(A3). We saturate S
using Sup and obtain the following derivation:2

1. σ ∗ y �� e∨ans(y) [preprocessed specification]
2. i(x) ∗ (x ∗ y) � e ∗ y [Sup A1, A3]
3. i(x) ∗ (x ∗ y) � y [Sup A2, 2.]
4. x ∗ y � i(i(x)) ∗ y [Sup 3., 3.]
5. e � x ∗ i(x) [Sup 4., A1]
6. ans(i(σ)) [BR 5., 1.]

Using the above derivation, we construct a program for the functional specifi-
cation (4) as follows: we replace σ in the definite answer i(σ) by x, yielding the
program i(x). Note that for each input x, our synthesized program computes the
inverse i(x) of x as an output. In other words, our synthesized program for (4)
ensures that each group element x has a right inverse i(x).

While Example 1 yields a definite answer within saturation-based proof
search, our work supports the synthesis of more complex recursion-free pro-
grams (see Examples 2–3) by composing program fragments derived in the pro-
gram search (Sect. 4) as well as by using answer literals with if−then−else to
effectively handle disjunctive answers (Sect. 5).

2 For each formula in the derivation, we also list how the formula has been derived. For
example, formula 5 is the result of superposition (Sup) with formula 4 and axiom A1,
whereas binary resolution (BR) has been used to derive formula 6 from 5 and 1.
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4 Program Synthesis with Answer Literals

We now introduce our approach to saturation-based program synthesis using
answer literals (Algorithm 1). We focus on recursion-free program synthesis and
present our work in a more general setting. Namely, we consider functional spec-
ifications whose validity may depend on additional assumptions (e.g. additional
program requirements) A1, . . . , An, where each Ai is a closed formula:

A1 ∧ . . . ∧ An → ∀x.∃y.F [x, y] (5)

Note that specification (1) is a special case of (5). However, since A1, . . . , An are
closed formulas, (5) is equivalent to ∀x.∃y.(A1 ∧ . . . ∧ An → F [x, y]), which is a
special case of (1).

Given a functional specification (5), we use answer literals to synthesize pro-
grams with conditions (Sect. 4.1) and extend saturation-based proof search to
reason about answer literals (Sect. 4.2). For doing so, we add the answer literal
ans(y) to the skolemized negation of (5) and obtain

A1 ∧ . . . ∧ An ∧ ∀y.(¬F [σ, y]∨ans(y)). (6)

We saturate the CNF of (6), while ensuring that answer literals are not selected
within the inference rules used in saturation. We guide saturation-based proof
search to derive clauses C[σ]∨ans(r[σ]), where C[σ] and r[σ] are computable.

4.1 From Answer Literals to Programs

Our next result ensures that, if we derive the clause C[σ]∨ans(r[σ]), the term r[σ]
is a definite answer under the assumption ¬C[σ] (Theorem 1). We note that we do
not terminate saturation-based program synthesis once a clause C[σ]∨ans(r[σ])
is derived. We rather record the program r[x] with condition ¬C[x] (and possibly
also other conditions), replace clause C[σ]∨ans(r[σ]) by C[σ], and continue satu-
ration (Corollary 2). As a result, upon establishing validity of (5), we synthesized
a program for (5) (Corollary 3).

Theorem 1 [Semantics of Clauses with Answer Literals]. Let C be a
clause not containing an answer literal. Assume that, using a saturation algo-
rithm based on a sound inference system I, the clause C∨ans(r[σ]) is derived
from the set of clauses consisting of initial assumptions A1, . . . , An, the clausified
formula cnf(¬F [σ, y]∨ans(y)) and additional assumptions C1, . . . , Cm. Then,

A1, . . . , An, C1, . . . , Cm 	 C,F [σ, r[σ]].

That is, under the assumptions C1, . . . , Cm,¬C, the computable term r[σ] pro-
vides a definite answer to (5).

We further use Theorem 1 to synthesize programs with conditions for (5).
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Corollary 2 [Programs with Conditions]. Let r[σ] be a computable term
and C[σ] a ground computable clause not containing an answer literal. Assume
that clause C[σ]∨ans(r[σ]) is derived from the set of initial clauses A1, . . . , An,
the clausified formula cnf(¬F [σ, y]∨ans(y)) and additional ground computable
assumptions C1[σ], . . . , Cm[σ], by using saturation based on a sound inference
system I. Then,

〈r[x],
m∧

j=1

Cj [x] ∧ ¬C[x]〉

is a program with conditions for (5).

Note that a program with conditions 〈r[x],
∧m

j=1 Cj [x] ∧ ¬C[x]〉 corresponds
to a conditional (program) branch if

∧m
j=1 Cj [x] ∧ ¬C[x] then r[x]: only if the

condition
∧m

j=1 Cj [x] ∧ ¬C[x] is valid, then r[x] is computed for (5).
We use programs with conditions 〈r[x],

∧m
j=1 Cj [x] ∧ ¬C[x]〉 to finally synthe-

size a program for (5). To this end, we use Corollary 2 to derive programs with
conditions, and once their conditions cover all possible cases given the initial
assumptions A1, . . . , An, we compose them into a program for (5).

Corollary 3 [From Programs with Conditions to Programs for (5)].
Let P1[x], . . . , Pk[x], where Pi[x] = 〈ri[x],

∧i−1
j=1 Cj [x] ∧ ¬Ci[x]〉, be programs with

conditions for (5), such that
∧n

i=1 Ai ∧ ∧k
i=1 Ci[x] is unsatisfiable. Then P [x],

given by

P [x] := if ¬C1[x] then r1[x]
else if ¬C2[x] then r2[x]

. . .

else if ¬Ck−1[x] then rk−1[x]
else rk[x],

(7)

is a program for (5).

Note that since the conditional branches of (7) cover all possible cases to be
considered over x, we do not need the condition if ¬Ck. In particular, if k = 1,
i.e.

∧n
i=1 Ai∧C1[x] is unsatisfiable, then the synthesized program for (5) is r1[x].

4.2 Saturation-Based Program Synthesis

Our program synthesis results from Theorem 1, Corollary 2 and Corollary 3
rely upon a saturation algorithm using a sound (but not necessarily complete)
inference system I. In this section, we present our modifications to extend state-
of-the-art saturation algorithms with answer literal reasoning, allowing to derive
clauses C[σ]∨ans(r[σ]), where both C[σ] and r[σ] are computable. In Sects. 5–6
we then describe modifications of the inference system I to implement rules over
clauses with answer literals.
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Algorithm 1. Saturation Loop for Recursion-Free Program Synthesis
1 initial set of clauses S := {cnf(A1 ∧ . . . ∧ An ∧ ∀y.(¬F [σ, y] ∨ ans(y)))}
2 initial sets of additional assumptions C := ∅ and programs P := ∅
3 repeat

4 Select clause G ∈ S
5 Derive consequences C1, . . . , Cn of G and formulas from S using rules of I
6 for each Ci do

7 if Ci = (C[σ] ∨ ans(r[σ])) and C[σ] is ground and computable then

8 P := P ∪ {〈r[x],
∧

C′∈C C′ ∧ ¬C[x]〉} /* Corollary 2 */
9 C := C ∪ {C[x]}
10 Ci := C[σ]
11 S := S ∪ {C1, . . . , Cn}
12 if � ∈ S then

13 return program (7) for specification (5), derived from P /* Corollary 3 */

Our saturation algorithm is given in Algorithm 1. In a nutshell, we use Corol-
lary 2 to construct programs from clauses C[σ]∨ans(r[σ]) and replace clauses
C[σ]∨ans(r[σ]) by C[σ] (lines 7–10 of Algorithm 1). The newly added com-
putable assumptions C[σ] are used to guide saturation towards deriving pro-
grams with conditions where the conditions contain C[x]; these programs with
conditions are used for synthesizing programs for (5), as given in Corollary 3.

Compared to a standard saturation algorithm used in first-order theorem
proving (e.g. lines 4–5 of Algorithm 1), Algorithm 1 implements additional steps
for processing newly derived clauses C[σ]∨ans(r[σ]) with answer literals (lines
6–10). As a result, Algorithm 1 establishes not only the validity of the specifica-
tion (5) but also synthesizes a program (lines 12–13). Throughout the algorithm,
we maintain a set P of programs with conditions derived so far and a set C of
additional assumptions. For each new clause Ci, we check if it is in the form
C[σ]∨ans(r[σ]) where C[σ] is ground and computable (line 7). If yes, we con-
struct a program with conditions 〈r[x],

∧
C′∈C C ′ ∧ ¬C[x]〉, extend C with the

additional assumption C[x], and replace Ci by C[σ] (lines 8–10). Then, when
we derive the empty clause, we construct the final program as follows. We first
collect all clauses that participated in the derivation of �. We use this clause
collection to filter the programs in P – we only keep a program originating from
a clause C[σ]∨ans(r[σ]) if the condition C[σ] was used in the proof, obtaining
programs P1, . . . , Pk. From P1, . . . , Pk we then synthesize the final program P
using the construction (7) from Corollary 3.

Remark 1. Compared to [22] where potentially large programs (with conditions)
are tracked in answer literals, Algorithm 1 removes answer literals from clauses
and constructs the final program only after saturation found a refutation of the
negated (5). Our approach has two advantages: first, we do not have to keep
track of potentially many large terms using if−then−else, which might slow
down saturation-based program synthesis. Second, our work can naturally be
integrated with clause splitting techniques within saturation (see Sect. 7).
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5 Superposition with Answer Literals

We note that our saturation-based program synthesis approach is not restricted
to a specific calculus. Algorithm 1 can thus be used with any sound set of
inference rules, including theory-specific inference rules, e.g. [10], as long as the
rules allow derivation of clauses in the form C∨ans(r), where C, r are computable
and C is ground. I.e., the rules should only derive clauses with at most one answer
literal, and should not introduce uncomputable symbols into answer literals.

In this section we present changes tailored to the superposition calculus Sup,
yet, without changing the underlying saturation process of Algorithm 1. We first
introduce the notion of an abstract unifier [17] and define a computable unifier –
a mechanism for dealing with the uncomputable symbols in the reasoning instead
of introducing them into the programs. The use of such a unifier in any sound
calculus is explained, with particular focus on the Sup calculus.

Definition 1 (Abstract unifier [17]). An abstract unifier of two expressions
E1, E2 is a pair (θ,D) such that:

1. θ is a substitution and D is a (possibly empty) disjunction of disequalities,
2. (D∨E1 � E2)θ is valid in the underlying theory.

Intuitively speaking, an abstract unifier combines disequality constraints D with
a substitution θ such that the substitution is a unifier of E1, E2 if the constraints
D are not satisfied.

Definition 2 (Computable unifier). A computable unifier of two expressions
E1, E2 with respect to an expression E3 is an abstract unifier (θ,D) of E1, E2

such that the expression E3θ is computable.

For example, let f be computable and g uncomputable. Then ({y �→ f(z)},
z �� g(x)) is a computable unifier of the terms f(g(x)), y with respect to f(y).
Further, ({y �→ f(g(x))}, ∅) is an abstract unifier of the same terms, but not a
computable unifier with respect to f(y).

Ensuring Computability of Answer Literal Arguments. We modify the
rules of a sound inference system I to use computable unifiers with respect to
the answer literal argument instead of unifiers. Since a computable unifier may
entail disequality constraints D, we add D to the conclusions of the inference
rules. That is, for an inference rule of I as below

C1 · · · Cn

Cθ
,

(8)

where θ is a substitution such that Eθ � E′θ holds for some expressions E,E′,
we extend I with the following n inference rules with computable unifiers:

C1∨ans(r) C2 · · · Cn

(D∨C∨ans(r))θ′ · · ·
C1 C2 · · · Cn∨ans(r)

(D∨C∨ans(r))θ′
,

(9)

where (θ′,D) is a computable unifier of E,E′ with respect to r and none of
C1, . . . , Cn contains an answer literal. We obtain the following result.
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Fig. 3. Selected rules of the extended superposition calculus Sup for reasoning with
answer literals, with underlined literals being selected.

Lemma 4 [Soundness of Inferences with Answer Literals]. If the rule (8)
is sound, the rules (9) are sound as well.

We note that we keep the original rule (8) in I, but impose that none of its
premises C1, . . . , Cn contains an answer literal. Clearly, neither the such modified
rule (8) nor the new rules (9) introduce uncomputable symbols into answer
literals. Rather, these rules add disequality constraints D into their conclusions
and immediately select D for further applications of inference rules. Such a
selection guides the saturation process in Algorithm 1 to first discharge the
constraints D containing uncomputable symbols with the aim of deriving a clause
C ′∨ans(r′) where C ′ is computable. The clause C ′∨ans(r′) is then converted into
a program with conditions using Corollary 2.

Superposition with Answer Literals. We make the inference rule modifica-
tions (8), together with the addition of new rules (9), for each inference rule of
the Sup calculus from Fig. 1. Further, we also ensure that rules with multiple



318 P. Hozzová et al.

premises, when applied on several premises containing answer literals, derive
clauses with at most one answer literal. We therefore introduce the following
two rule modifications. (i) We use the if−then−else constructor to combine
answer literals of premises, by adapting the use of if−then−else within binary
resolution [13,14,22] to superposition rules. (ii) We use an answer literal from
only one of the rule premises in the rule conclusion and add new disequality
constraint r �� r′ between the premises’ answer literal arguments, similar to the
constraints D of the computable unifier. Analogously to the computable unifier
constraints, we immediately select this disequality constraint r �� r′.

The resulting extension of the Sup calculus with answer literals is given in
Fig. 3. In addition to the rules of Fig. 3, the extended calculus contains rules
constructed as (9) for superposition and binary resolution rules of Fig. 1. Using
Lemma 4, we conclude the following.

Lemma 5 [Soundness of Sup with Answer Literals]. The inference rules
from Fig. 3 of the extended Sup calculus with answer literals are sound.

By the soundness results of Lemmas 4–5, Corollaries 2–3 imply that, when
applying the calculus of Fig. 3 in the saturation-based program synthesis app-
roach of Algorithm 1, we construct correct programs.

Example 2. We illustrate the use of Algorithm 1 with the extended Sup calcu-
lus of Fig. 3, strengthening our motivation from Sect. 3 with if−then−else
reasoning. To this end, consider the functional specification over group theory:

∀x, y.∃z.(x ∗ y �� y ∗ x → z ∗ z �� e), (10)

asserting that, if the group is not commutative, there is an element whose square
is not e. In addition to the axioms (A1)–(A3) of Fig. 2, we also use the right
identity axiom (A2’) ∀x. x ∗ e � x.3 Based on Algorithm 1, we obtain the
following derivation of the program for (10):

1. σ1 ∗ σ2 �� σ2 ∗ σ1 ∨ ans(z) [preprocessed specification]
2. e � z ∗ z ∨ ans(z) [preprocessed specification]
3. σ1 ∗ σ2 �� σ2 ∗ σ1 [answer literal removal 1. (Algorithm 1, line 10)]
4. x ∗ (x ∗ y) � e ∗ y ∨ ans(x) [Sup 2., A3]
5. e � x ∗ (y ∗ (x ∗ y))∨ ans(x ∗ y) [Sup A3, 2.]
6. x ∗ (x ∗ y) � y ∨ ans(x) [Sup 4., A2]
7. x ∗ e � y ∗ (x ∗ y)∨ ans(if e � x ∗ (y ∗ (x ∗ y)) then x else x ∗ y) [Sup 6., 5.]
8. y ∗ (x ∗ y) � x∨ ans(if e � x ∗ (y ∗ (x ∗ y)) then x else x ∗ y) [Sup 7., A2’]
9. x ∗ y � y ∗ x∨ ans(if x ∗ (y ∗ x) � y then x else if e � x ∗ (y ∗ (x ∗

y)) then x else x ∗ y) [Sup 6., 8.]
10. ans(if σ1 ∗ (σ2 ∗ σ1) � σ2 then σ1 else if e � σ1 ∗ (σ2 ∗ (σ1 ∗ σ2))

then σ1 else σ1 ∗ σ2) [BR 9., 3.]
11. � [answer literal removal 11. (Algorithm 1, line 10)]

3 We include axiom (A2’) only to shorten the presentation of the obtained derivation.
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The programs with conditions collected during saturation-based program syn-
thesis, in particular corresponding to steps 3. and 11. above, are:

P1[x, y] := 〈z, x ∗ y � y ∗ x〉
P2[x, y] := 〈if x ∗ (y ∗ x) � y then x else (if e � x ∗ (y ∗ (x ∗ y)) then x else x ∗ y),

x ∗ y �� y ∗ x〉

Note the variable z, representing an arbitrary witness, in P1[x, y]. An arbitrary
value is a correct witness in case x∗y � y∗x holds, as in this case (10) is trivially
satisfied. Thus, we do not need to consider the case x∗y � y∗x separately. Hence,
we construct the final program P [x, y] only from P2[x, y] and obtain:

P [x, y] := if x∗(y∗x)�x then x else (if e�x∗(y∗(x∗y)) then x else x∗y)

We conclude this section by illustrating the benefits of computable unifiers.

Example 3. Consider the group theory specification

∀x, y.∃z. z ∗ (i(x) ∗ i(y)) = e, (11)

describing the inverse element z of i(x) ∗ i(y). We annotate the inverse i(·) as
uncomputable to disallow the trivial solution i(i(x) ∗ i(y)). Using computable
unifiers, we synthesize the program y ∗ x; that is, a program computing y ∗ x as
the inverse of i(x) ∗ i(y).

6 Computable Unification with Abstraction

When compared to the Sup calculus of Fig. 1, our extended Sup calculus with
answer literals from Fig. 3 uses computable unifiers instead of mgus. To find
computable unifiers, we introduce Algorithm 2 by extending a standard unifica-
tion algorithm [7,18] and an algorithm for unification with abstraction of [17].
Algorithm 2 combines computable unifiers with mgu computation, resulting in
the computable unifier θ := mgucomp(E1, E2, E3) to be further used in Fig. 3.

Algorithm 2 modifies a standard unification algorithm to ensure computabil-
ity of E3θ. Changes compared to a standard unification algorithm are high-
lighted. Algorithm 2 does not add s �→ t to θ if s is a variable in E3 and t is
uncomputable. Instead, if t is f(t1, . . . , tn) where f is computable but not all
t1, . . . , tn are computable, we extend θ by s �→ f(x1, . . . , xn) and then add equa-
tions x1 = t1, . . . , xn = tn to the set of equations E to be processed. Otherwise,
f is uncomputable and we perform an abstraction: we consider s and t to be uni-
fied under the condition that s � t holds. Therefore we add a constraint s �� t to
the set of literals D which will be added to any clause invoking the computable
unifier. To discharge the literal s �� t, one must prove s � t. While s can be later
substituted for other terms, as long as we use mgucomp, s will never be substituted
for an uncomputable term. Thus, we conclude the following result.

Theorem 6. Let E1, E2, E3 be expressions. Then (θ,D) := mgucomp(E1, E2, E3)
is a computable unifier.
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Algorithm 2. Computable Unification with Abstraction
function mgucomp(E1, E2, E3)

if E3 is uncomputable then fail
let E be a set of equations and θ be a substitution; E := {E1 = E2}; θ := {}
let D be a set of disequalities; D := ∅
repeat

if E is empty then

return (θ, D) where D is the disjunction of literals in D
Select an equation s = t in E and remove it from E
if s coincides with t then do nothing
else if s is a variable and s does not occur in t then

if s does not occur in E3 or t is computable then θ :=θ◦{s �→ t}; E =E{s �→ t}
else if t = f(t1, . . . , tn) and f is computable then

θ :=θ◦{s �→f(x1, . . . , xn)}; E :=E{s �→f(x1, . . . , xn)}∪{x1 = t1, . . . , xn = tn}
where x1, . . . , xn are fresh variables

else if t = f(t1, . . . , tn) and f is uncomputable then D := D ∪ {s �� t}
else if s is a variable and s occurs in t then fail
else if t is a variable then E := E ∪ {t = s}
else if s and t have different top-level symbols then fail
else if s=f(s1, . . . , sn) and t=f(t1, . . . , tn) then E :=E∪{s1 = t1, . . . , sn = tn}

7 Implementation and Experiments

Implementation. We implemented our saturation-based program synthesis
approach in the Vampire prover [11]. We used Algorithm 1 with the extended
Sup calculus of Fig. 3. The implementation, consisting of approximately 1100
lines of C++ code, is available at https://github.com/vprover/vampire/tree/
synthesis-pr. The synthesis functionality can be turned on using the option
--question answering synthesis.

Vampire accepts functional specifications in an extension of the SMT-LIB2
format [4], by using the new command assert-not to mark the specifica-
tion. We consider interpreted theory symbols to be computable. Uninterpreted
symbols can be annotated as uncomputable via the command (set-option
:uncomputable (symbol1 ... symbolN)).

Our implementation also integrates Algorithm 1 with the AVATAR archi-
tecture [26]. We modified the AVATAR framework to only allow split-
ting over ground computable clauses that do not contain answer liter-
als. Further, if we derive a clause C[σ]∨ans(r[σ]) with AVATAR assertions
C1[σ], . . . , Cm[σ], where C[σ] is ground and computable, we replace it by the
clause C[σ]∨ ∨m

i=1 ¬Ci[σ]∨ans(r[σ]) without any assertions. We then immedi-
ately record a program with conditions 〈r[x],¬C[x] ∧ ∧m

i=1 Ci[x]〉, and replace
the clause by C[σ]∨ ∨m

i=1 ¬Ci[σ] (see lines 7–10 of Algorithm 1), which may be
then further split by AVATAR.

Finally, our implementation simplifies the programs we synthesize. If during
Algorithm 1 we record a program 〈z, F 〉 where z is a variable, we do not use
this program in the final program construction (line 12 of Algorithm 1) even if
F occurs in the derivation of � (see Example 2).

https://github.com/vprover/vampire/tree/synthesis-pr
https://github.com/vprover/vampire/tree/synthesis-pr
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Examples and Experimental Setup. The goal of our experimental evaluation
is to showcase the benefits of our approach on problems that are deemed to
be hard, even unsolvable, by state-of-the-art synthesis techniques. We therefore
focused on first–order theory reasoning and evaluated our work on the group
theory problems of Examples 1–3, as well as on integer arithmetic problems.

As the SMT-LIB2 format can easily be translated into the SyGuS 2.1 syn-
tax [16], we compared our results to cvc5 1.0.4 [3], supporting SyGuS-based
synthesis [2]. Our experiments were run on an AMD Epyc 7502, 2.5 GHz CPU
with 1 TB RAM, using a 5 min time limit per example. Our benchmarks as well
as the configurations for our experiments are available at: https://github.com/
vprover/vampire benchmarks/tree/master/synthesis

Experimental Results with Group Theory Properties. Vampire syn-
thesizes the solutions of the Examples 1–3 in 0.01, 13, and 0.03 s, respectively.
Since these examples use uninterpreted functions, they cannot be encoded in the
SyGuS 2.1 syntax, showcasing the limits of other synthesis tools.

Experimental Results with Maximum of n ≥ 2 Integers. For the maxi-
mum of 2 integers, the specification is ∀x1, x2 ∈ Z. ∃y ∈ Z.

(
y ≥ x1∧y ≥ x2∧(y =

x1∨y = x2)
)
, and the program we synthesize is if x1 < x2 then x2 else x1.

Both our work and cvc5 are able to synthesize programs choosing the maximal
value for up to n = 23 input variables, as summarized below. For n > 23, both
Vampire and cvc5 time out.

Number n of variables for
which max is synthesized

2 5 10 15 20 22 23

Vampire 0.03 0.03 0.05 1 13 55 215

cvc5 0.01 0.03 0.6 6.8 88 188 257

Experimental Results with Polynomial Equations. Vampire can synthe-
size the solution of polynomial equations; for example, for ∀x1, x2 ∈ Z.∃y ∈
Z.(y2 = x2

1 +2x1x2 +x2
2), we synthesize x1 +x2. Vampire finds the correspond-

ing program in 26 s using simple first-order reasoning, while cvc5 fails in our
setup.

8 Related Work

Our work builds upon deductive synthesis [14] adapted for the resolution calcu-
lus [13,22]. We extend this line of work with saturation-based program synthesis,
by using adjustments of the superposition calculus.

Component-based synthesis of recursion-free programs [21] from logical spec-
ifications is addressed in [6,21,24]. The work of [21] uses first-order theorem
proving to prove specifications and extract programs from proofs. In [6,24], ∃∀
formulas are produced to capture specifications over component properties and

https://github.com/vprover/vampire_benchmarks/tree/master/synthesis
https://github.com/vprover/vampire_benchmarks/tree/master/synthesis
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SMT solving is applied to find a term satisfying the formula, corresponding to a
straight-line program. We complement [21] with saturation-based superposition
proving and avoid template-based SMT solving from [6,24].

A prominent line of research comes with syntax guided synthesis (SyGuS) [1],
where functional specifications are given using a context-free grammar. This
grammar yields program templates to be synthesized via an enumerative search
procedure based on SMT solving [3,9]. We believe our work is complementary
to SyGuS, by strengthening first-order reasoning for program synthesis, as evi-
denced by Examples 1–3.

The sketching technique [19,25] synthesizes program assignments to vari-
ables, using an alternative framework to the program synthesis setting we rely
upon. In particular, sketching addresses domains that do not involve input logical
formulas as functional specifications, such as example-guided synthesis [23].

9 Conclusions

We extend saturation-based proof search to saturation-based program synthesis,
aiming to derive recursion-free programs from specifications. We integrate answer
literals with saturation, and modify the superposition calculus and unification to
synthesize computable programs. Our initial experiments show that a first-order
theorem prover becomes an efficient program synthesizer, potentially opening
up interesting avenues toward recursive program synthesis, for example using
saturation-based proving with induction.

Acknowledgements. We thank Haniel Barbosa for support with experiments with
cvc5. This work was partially funded by the ERC CoG ARTIST 101002685, and the
FWF grants LogiCS W1255-N23 and LOCOTES P 35787.
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Abstract. We present a uniform characterisation of three-valued log-
ics by means of bisequent calculus (BSC). It is a generalised form of
sequent calculus (SC) where rules operate on the ordered pairs of ordi-
nary sequents. BSC may be treated as the weakest kind of system in the
rich family of generalised SC operating on items being some collections
of ordinary sequents. This family covers several forms of hypersequent
and nested sequent calculi introduced to provide decent SC for several
non-classical logics. It seems that for many non-classical logics, includ-
ing some many-valued, paraconsistent and modal logics, this reasonably
modest generalization of standard SC is sufficient. In this paper we exam-
ine a variety of three-valued logics and show how they can be formalised
in the framework of bisequent calculus. All provided systems are cut-free
and satisfy the subformula property. Also the interpolation theorem is
constructively proved for some logics.

Keywords: Bisequent Calculus · Cut elimination · Many-valued
Logic · Three-valued logic · Interpolation Theorem

1 Introduction

The aim of this paper is to provide a uniform characterization of a variety of
three-valued logics by means of a simple cut-free generalised sequent calculus
(SC) called bisequent calculus (BSC). It is the weakest kind of system in the
rich family of generalised sequent calculi operating on collections of ordinary
sequents [23]. If we restrict our interest to structures built of two sequents only,
we obtain a limiting case of either hypersequent or nested sequent calculi; it is
what we call bisequent calculus.

Is such restricted calculus of any use? Hypersequent calculi already may be
seen as a quite restrictive form of generalised SC, yet they were shown to be useful
in many fields (see, e.g., [25] for a survey of applications of hypersequent calculi
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in modal logic, and [37] for their use in fuzzy logic). BSC is even more restrictive
but preliminary work on its application is promising. It was already successfully
applied to first-order modal logic S5 [23] and to the class of four-valued quasi-
relevant logics [27]. In what follows we will focus on another application of such
minimal framework – to three-valued logics.

Several proof systems of different kinds were proposed so far for many-valued
logics (see e.g. Hähnle [20] for a survey). The most direct and popular approach
to construction of many-valued sequent or tableau systems is based on the idea
of syntactic representation of n values either by means of n-sided sequents (e.g.
[8,45,56]) or by n labels attached to formulae or sets of formulae (e.g. [11,53,55]).
This solution was presented by many authors and despite its popularity has many
drawbacks (see [25] for discussion). Significant improvement in the construction
of efficient SC or tableau systems for many-valued logic was proposed indepen-
dently by Doherty [15] and Hähnle [19], where labels correspond not to single
values but to their sets (sets-as signs). Among other proof-theoretic approaches
to many-valued logics let us mention Caleiro and Marcelino’s [10] analytic cal-
culi for many-valued non-deterministic logics as well as the result by Grätz [18]
who has recently developed analytic tableau systems based on sets-as-signs DNF
representations with a correspondence to canonical sequent calculi.

Although BSC is a strictly syntactical calculus its semantical interpretation
makes it similar to set-as-signs approach. A fuller discussion of this issue is
provided in [27]. BSC is uniform in the sense that all three-valued logics are
characterised by the same set of axiomatic sequents, and in the case of logics
having the same set of connectives (i.e. defined in the same way) the rules are
identical even if the set of designated values or the consequence relation is defined
in different way. In this sense BSC is more uniform than several other approaches
where either the set of axioms must be changed or rules for connectives must be
different (even if described by means of the same table). In particular, BSC is
superior in this respect to the generalised calculus presented in [25].

Section 2 has rather encyclopaedic character and provides self-contained
description of a representative selection of three-valued logics. Section 3 contains
a case study of BSC for K3 and LP. In Sect. 4 we provide rules for connectives
of all logics introduced in Sect. 2. Section 5 shows how BSC can be applied to
prove interpolation for some three-valued paraconsistent and paracomplete log-
ics. We finish with remarks on possible extensions and comparison with other
approaches to formalisation of many-valued logics.

2 Logics

We will examine several three-valued propositional logics determined by three
element matrices with classical-like connectives (negation, disjunction, conjunc-
tion, and implication, plus the usual three-valued modal-style connectives); we
are not going to consider other types of connectives because of the lack of space.
The languages of these logics are freely generated algebras similar to three ele-
ment algebras of values. Logics are interpreted by homomorphisms from lan-
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guages to algebras such that h(cn(ϕ1, . . . , ϕn)) = c(h(ϕ1), . . . , h(ϕn)) for every
n−ary connective c and the corresponding operation c.

Let us consider as the starting point two three element Kleene’s algebras of
the form: A3 = 〈A,O〉 where A = {0, u, 1} and O contains an unary operation
¬ : A −→ A and binary operations � : A × A −→ A, where � ∈ {∧,∨,→}.
The operations are defined by the following truth tables in the strong and weak
Kleene algebra; the latter considered also by Bochvar [9] (negation is the same
in both):

∧ 1 u 0
1 1 u 0
u u u 0
0 0 0 0

∨ 1 u 0
1 1 1 1
u 1 u u
0 1 u 0

→ 1 u 0
1 1 u 0
u 1 u u
0 1 1 1

¬
1 0
u u
0 1

∧w 1 u 0
1 1 u 0
u u u u
0 0 u 0

∨w 1 u 0
1 1 u 1
u u u u
0 1 u 0

→w 1 u 0
1 1 u 0
u u u u
0 1 u 1

We obtain four matrices by specifying a set of designated values D either as
{1} or {1, u}. These are called SM3

1, SM3
2, WM3

1 and WM3
2 (where S stands

for strong, W for weak, 1 and 2 indicate the amount of designated values). In
general we will call matrices with D = {1} 1-matrices, and with D = {1, u}
– 2-matrices. Accordingly we will also call logics determined by 1-matrices and
2-matrices, 1- and 2-logics respectively. For any matrix we define a relation of
matrix consequence in the standard way:

Γ |=M ϕ iff for any homomorphism h : if h(Γ ) ⊆ D, then h(ϕ) ∈ D.

Logics are identified with their matrix consequences. In particular, logics
determined by these matrices are K3 (strong Kleene 1-logic) [31], LP – the logic
of paradox of Asenjo and Priest (corresponding 2-logic) [2,42], Kw

3 (weak Kleene
1-logic) [31], PWK (paraconsistent weak Kleene 2-logic) of Halldén [21].

Let us consider a few modifications of strong and weak Kleene logics. Here
is McCarthy’s logic K→

3 [36] (also called Kleene’s sequential and studied by
Fitting [16]) and its interesting modification presented by Komendantskaya [32]
under the name K←

3 by means of the following truth tables (again, negation is
unchanged):

∧mC 1 u 0
1 1 u 0
u u u u
0 0 0 0

∨mC 1 u 0
1 1 1 1
u u u u
0 1 u 0

→mC 1 u 0
1 1 u 0
u u u u
0 1 1 1

∧K 1 u 0
1 1 u 0
u u u 0
0 0 u 0

∨K 1 u 0
1 1 u 1
u 1 u u
0 1 u 0

→K 1 u 0
1 1 u 0
u 1 u u
0 1 u 1

Both K→
3 and K←

3 are logics determined by 1-matrices. An important prop-
erty of K3, Kw

3 , K→
3 , and K←

3 is that they are the only three-valued logics with
one designated value which produce partial recursive predicates (see [31,32] for
more details).

Several other important logics are obtained by changing the definitions of →
and ¬. Consider �Lukasiewicz’s [34], S�lupecki’s [49], Heyting’s [22] implications
as well as Heyting’s [22], Bochvar’s [9], Post’s and dual Post’s [41] negations. Let
us also consider yet another pair of additive conjunction and disjunction, arising
in �Lukasiewicz’s logic:
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→L 1 u 0

1 1 u 0
u 1 1 u
0 1 1 1

→Sl 1 u 0

1 1 u 0
u 1 1 1
0 1 1 1

→H 1 u 0

1 1 u 0
u 1 1 0
0 1 1 1

¬H

1 0
u 0
0 1

¬B

1 0
u 1
0 1

¬P

1 u
u 0
0 1

¬DP

1 0
u 1
0 u

∧L 1 u 0

1 1 u 0
u u 0 0
0 0 0 0

∨L 1 u 0

1 1 1 1
u 1 1 u
0 1 u 0

SM3
1 with �Lukasiewicz’s implication (instead of Kleene’s one) yields famous

�Lukasiewicz’s �L3, the first many-valued logic. In �L3 we may deal with two pairs
of conjunction and disjunction. We have: ϕ ∨ ψ = (ϕ →L ψ) →L ψ and ϕ ∧ ψ =
¬(¬ϕ ∨ ¬ψ), but ϕ ∧L ψ = ¬(ϕ →L ¬ψ) and ϕ ∨L ψ = ¬ϕ →L ψ. SM3

1 with
S�lupecki’s implication is an alternative to �L3 having the deduction theorem. It
was studied by S�lupecki, Bryll, and Prucnal [49] as well as Avron [4], under
the name GM3. If we change negation and implication of SM3

1 to Heyting’s
ones, then we get Heyting’s [22] logic G3, a close relative of intuitionistic logic
(the name after Gödel who also studied it [17]; this logic was investigated by
Jaśkowski as well [29]). The disjunction of SM3

1 and Post’s cyclic negation from
Post’s logic P3 [41] which is known for being functionally complete in the three-
valued setting. In [40], a dual cyclic negation ¬DP was suggested (it reverses
the direction of cyclicality of Post’s negation). SM3

2 with Heyting’s implication
and Bochvar’s negation was investigated by Osorio and Carballido [38] under
the name G′

3. In the case of SM3
2 the following connectives are interesting

as well: Sobociński’s [51] conjunction, disjunction, and implications as well as
D’Ottaviano/DaCosta/Jaśkowski/S�lupecki’s implication [13,30,48]:

∧S 1 u 0
1 1 1 0
u 1 u 0
0 0 0 0

∨S 1 u 0
1 1 1 1
u 1 u 0
0 1 0 0

→S 1 u 0
1 1 0 0
u 1 u 0
0 1 1 1

→′
S 1 u 0

1 1 u 0
u 1 1 0
0 1 u 1

→J 1 u 0
1 1 u 0
u 1 u 0
0 1 1 1

Sobociński’s logic S3 is obtained from SM3
2 by the replacement of all binary

connectives of this matrix with Sobociński’s original ones. This logic may be
treated as a relevant logic. However, a more popular three-valued relevant
logic is Anderson and Belnap’s RM3 [1] which is obtained from SM3

2 only
by the replacement of its implication with Sobociński’s one. Note that ear-
lier Sobociński [50] considered yet another implication →′

S . SM3
2 with the

implication due to D’Ottaviano/DaCosta/Jaśkowski/S�lupecki (first mentioned
by S�lupecki [48]) instead of Kleene’s one was independently studied by sev-
eral authors: D’Ottaviano and da Costa themselves [13,14], Asenjo and Tam-
burino [3], Batens [7] (under the name PIs), Avron [5] (under the name RM⊃

3 ),
and Rozonoer [44] (under the name PCont). An important extension of this
logic is J3 by D’Ottaviano and da Costa [13]. It has an additional connective
which is �Lukasiewicz’s tabular possibility operator (see below; we also present
�Lukasiewicz’s tabular necessity operator).

∧C 1 u 0
1 1 0 0
u 0 0 0
0 0 0 0

∨C 1 u 0
1 1 1 1
u 1 0 0
0 1 0 0

→C 1 u 0
1 1 0 0
u 1 1 1
0 1 1 1

♦
1 1
u 1
0 0

�
1 1
u 0
0 0
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As it is easy to guess, since RM3 may be viewed as a relevant logic, it should
be paraconsistent as well. Moreover, J3, S3, LP, and many other three-valued
logics with two designated values are paraconsistent (in contrast, three-valued
logics with one designated value are paracomplete). One of the most famous
three-valued paraconsistent logics is Sette’s logic P1 [47]. It has Bochvar’s nega-
tion and the above presented binary connectives (both 1 and u are designated).
There is a version of P1 with Kleene’s negation introduced by Carnielli and Mar-
cos [12,35] and called P2. A paracomplete companion of P1, the logic I1, was
presented by Sette and Carnielli [46]: it has Heyting’s negation and presented
below binary connectives (the implication has been first introduced by Bochvar
[9]). Its version with Kleene’s negation is I2 due to Marcos [35]. Both I1 and I2

have one designated value.

∧Se 1 u 0
1 1 1 0
u 1 1 0
0 0 0 0

∨Se 1 u 0
1 1 1 1
u 1 1 1
0 1 1 0

→Se 1 u 0
1 1 1 0
u 1 1 0
0 1 1 1

→R 1 u 0
1 1 0 0
u 1 1 0
0 1 1 1

→T 1 u 0
1 1 0 0
u 1 1 u
0 1 1 1

Last but not least, let us mention Rescher’s [43] and Tomova’s [57] impli-
cations (added above). These implications can be added to SM3

1. Tomova
[57] introduced the concept of natural implication. In three-valued case with
one designated value there are only 6 natural implications: �Lukasiewicz’s,
S�lupecki’s, Heyting’s, Bochvar’s, Rescher’s, and Tomova’s. In the case with
two designated values there are 24 natural implications, including Heyting’s
and Rescher’s as well as D’Ottaviano/DaCosta/Jaśkowski/S�lupecki’s implica-
tion, both Sobociński’s implications, and Sette’s implication.

3 Bisequent Calculus for K3 (and LP)

Bisequents in BSC are ordered pairs of sequents Γ ⇒ Δ | Π ⇒ Σ, where
Γ,Δ,Π,Σ are finite (possibly empty) multisets of formulae. We will call the left
component of a bisequent as 1-sequent and the right as 2-sequent respectively.
Bisequents with all elements being atomic will be also called atomic. In what
follows B stands for arbitrary bisequents and S for sequents.

Let us define the calculus BSC-K3 which provides an adequate formalisation
of K3. A bisequent Γ ⇒ Δ | Π ⇒ Σ is axiomatic iff it has nonempty Γ ∩ Σ or
Γ ∩ Δ or Π ∩ Σ. In fact this set of axioms is fixed for all considered calculi. If
constants �,⊥, U (the last for fixed undefined proposition) are added we must
add axioms of the form: Γ ⇒ Δ,� | Π ⇒ Σ; Γ ⇒ Δ | Π ⇒ Σ,�; ⊥, Γ ⇒ Δ |
Π ⇒ Σ; Γ ⇒ Δ | ⊥,Π ⇒ Σ; U, Γ ⇒ Δ | Π ⇒ Σ and Γ ⇒ Δ | Π ⇒ Σ,U .

The set of rules characterising the operations of the strong Kleene algebra
consists of the following schemata:

(¬⇒|) Γ ⇒ Δ | Π ⇒ Σ,ϕ

¬ϕ, Γ ⇒ Δ | Π ⇒ Σ
(⇒¬ |) Γ ⇒ Δ | ϕ,Π ⇒ Σ

Γ ⇒ Δ,¬ϕ | Π ⇒ Σ

(| ¬⇒)
Γ ⇒ Δ,ϕ | Π ⇒ Σ

Γ ⇒ Δ | ¬ϕ,Π ⇒ Σ
(|⇒¬)

ϕ, Γ ⇒ Δ | Π ⇒ Σ

Γ ⇒ Δ | Π ⇒ Σ,¬ϕ
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(∧⇒|) ϕ,ψ, Γ ⇒ Δ | S

ϕ ∧ ψ, Γ ⇒ Δ | S
(⇒∧ |) Γ ⇒ Δ,ϕ | S Γ ⇒ Δ,ψ | S

Γ ⇒ Δ,ϕ ∧ ψ | S

(| ∧⇒)
S | ϕ,ψ, Γ ⇒ Δ

S | ϕ ∧ ψ, Γ ⇒ Δ
(|⇒∧)

S | Γ ⇒ Δ,ϕ S | Γ ⇒ Δ,ψ

S | Γ ⇒ Δ,ϕ ∧ ψ

(⇒∨ |) Γ ⇒ Δ,ϕ, ψ | S

Γ ⇒ Δ,ϕ ∨ ψ | S
(∨⇒ |) ϕ, Γ ⇒ Δ | S ψ, Γ ⇒ Δ | S

ϕ ∨ ψ, Γ ⇒ Δ | S

(|⇒∨)
S | Γ ⇒ Δ,ϕ, ψ

S | Γ ⇒ Δ,ϕ ∨ ψ
(| ∨⇒)

S | ϕ, Γ ⇒ Δ S | ψ, Γ ⇒ Δ

S | ϕ ∨ ψ, Γ ⇒ Δ

(⇒→ |) Γ ⇒ Δ,ψ | ϕ,Π ⇒ Σ

Γ ⇒ Δ,ϕ → ψ | Π ⇒ Σ
(|⇒→)

ϕ, Γ ⇒ Δ | Π ⇒ Σ,ψ

Γ ⇒ Δ | Π ⇒ Σ,ϕ → ψ

(→⇒ |) Γ ⇒ Δ | Π ⇒ Σ,ϕ ψ, Γ ⇒ Δ | Π ⇒ Σ

ϕ → ψ, Γ ⇒ Δ | Π ⇒ Σ

(|→⇒)
Γ ⇒ Δ,ϕ | Π ⇒ Σ Γ ⇒ Δ | ψ,Π ⇒ Σ

Γ ⇒ Δ | ϕ → ψ,Π ⇒ Σ

Note that all rules satisfy the subformula property and other desirable prop-
erties of well-behaved SC. In particular, they are context independent in the
sense that validity-preservation of rules is intact by deletion or addition of the
same parameters in the premisses and conclusion. This feature will be of special
importance for the proof of the interpolation theorem. One may easily observe
that in case of the rules for strong ∧,∨ we have just standard G3 rules but
repeated in both components. Rules for negation and implication have different
character since side and principal formula are in different sequents in all cases.

Bisequents as such do not directly correspond to standard consequence rela-
tions in suitable matrices. Hence before we define the notion of a proof in BSC-K3

(or any other logic) it is better to start with more general concept. A proof-search
tree for a bisequent B in BSC-L, where L is any logic, is a tree of bisequents with
B as the root and nodes generated by rules of BSC-L. A proof-search tree is com-
plete iff every leaf is atomic, and it is axiomatic iff all leaves are axiomatic. The
height of a proof-search tree is defined as the length of the maximal branches.
A simple consequence of the subformula property of rules is:

Proposition 1. Every proof-search tree may be extended to a complete proof-
search tree.

The notion of a proof in BSC-K3 is introduced not only by restricting the
class of proof-search trees in BSC-K3 to axiomatic ones but also by restricting the
class of admissible roots. In general the rationale for bisequents is that 1-sequent
corresponds to consequence relation in 1-matrices and 2-sequent to consequence
relation in 2-matrices. Since K3 is characterised by 1-matrix we have:

BSC-K3 � B iff there is an axiomatic proof-search tree for B := Γ ⇒ ϕ |⇒.

We define the L-validity (L-satisfiability) of bisequents in the following way:
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L |= Γ ⇒ Δ | Π ⇒ Σ iff every homomorphism h satisfies Γ ⇒ Δ | Π ⇒ Σ.
The latter holds for h iff for some ϕ: either (ϕ ∈ Γ and h(ϕ) �= 1) or (ϕ ∈ Δ and
h(ϕ) = 1) or (ϕ ∈ Π and h(ϕ) = 0) or (ϕ ∈ Σ and h(ϕ) �= 0).

Clearly L �|= Γ ⇒ Δ | Π ⇒ Σ iff for some h, all elements of Γ are true, all
elements of Δ are either false or undefined, all elements of Π are either true or
undefined and all elements of Σ are false. In this case we say that h falsifies this
sequent.

Obviously, all axiomatic bisequents are valid for any logic L. As for the rules
they are not only sound (i.e. validity-preserving) but also invertible; namely it
holds:

Theorem 1. For all rules of BSC-K3, all premisses are K3-valid iff the conclu-
sion is K3-valid.

Proof. Straightforward proof by tedious checking. ��
A simple consequence of this theorem is that for every rule the conclusion is

falsified by some h iff at least one premiss is falsified by the same h.

Theorem 2 (Soundness). If BSC-K3 � Γ ⇒ ϕ |⇒, then Γ |=K3 ϕ

Proof. By induction on the height of the proof, use Theorem 1. ��
Invertibility of all rules implies that proof search process is confluent, i.e.

that the order of applications of rules does not affect the result. In particular, B
is provable iff every proof-search tree may be extended to obtain a proof.

Theorem 3 (Completeness). If Γ |=K3 ϕ, then BSC-K3 � Γ ⇒ ϕ |⇒.

Proof. Assume that Γ |=K3 ϕ but BSC-K3 � Γ ⇒ ϕ |⇒. Hence in every
complete proof-search tree for Γ ⇒ ϕ |⇒ there is at least one branch starting
with non-axiomatic atomic bisequent falsified by some h. Since all rules inherit
this valuation, then the root is also falsified contrary to our assumption. ��

As a simple consequence we obtain also a decision procedure for K3 (and for
other logics L with complete BSC-L). Another by-product of our proof is that
the following cut rules are admissible in BSC-K3 (and other logics):

(Cut |) Γ ⇒ Δ,ϕ | Λ ⇒ Θ ϕ,Π ⇒ Σ | Ξ ⇒ Ω

Γ,Π ⇒ Δ,Σ | Λ, Ξ ⇒ Θ,Ω

(| Cut)
Γ ⇒ Δ | Λ ⇒ Θ,ϕ Π ⇒ Σ | ϕ,Ξ ⇒ Ω

Γ,Π ⇒ Δ,Σ | Λ, Ξ ⇒ Θ,Ω

Moreover, we can constructively prove that these cut rules are admissible in
the same way as it is done for four-valued logics in [27]. Due to lack of space we
omit this issue here.

Note that the rules stated above provide BSC not only for K3 but also for
LP. The only difference is that in LP we consider as provable all bisequents of
the form ⇒| Γ ⇒ ϕ, which is a consequence of the fact that it is determined by
2-matrix. All the results established for BSC-K3 hold for BSC-LP.
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4 Bisequent Calculi for Other Logics

We provide sets of rules adequate for all logics described in Sect. 2. Every oper-
ation will be characterised by four rules of introduction to antecedents and con-
sequents of 1- and 2-sequent. The rules are devised on the basis of geometrical
insights based on the tabular representation of the respective connective: to
establish the premisses for the rule with the principal formula in one of the four
positions in a bisequent, we just examine its tabular representation. For exam-
ple, if indicated values of the arguments form a rectangle, one premiss is enough,
in case of more complex shapes, two or three premisses are required. Since the
process of construction of rules on the basis of tables is not deterministic we do
not propose any algorithm for that aim, however by the end of this section we
will illustrated the method with one example. In every case it holds that either:

Γ |=L ϕ iff BSC-L � Γ ⇒ ϕ |⇒ or Γ |=L ϕ iff BSC-L � ⇒| Γ ⇒ ϕ

depending on the fact whether |=L denotes consequence relation for logics char-
acterised by 1-matrices or by 2-matrices. Adequacy of BSC-L for all concrete
logics is proved in the same way as for BSC-K3. Therefore we limit our presen-
tation to systematic characterisation of rules from which the BSC for suitable
logic can be composed.

We start with rules for respective unary operations (including �Lukasiewicz’s
modalities):

(| ¬H⇒)
S | Π ⇒ Σ,ϕ

S | ¬ϕ,Π ⇒ Σ
(|⇒¬H)

S | ϕ,Π ⇒ Σ

S | Π ⇒ Σ,¬ϕ

(¬B⇒ |) Γ ⇒ Δ,ϕ | S

¬ϕ, Γ ⇒ Δ | S
(⇒¬B |) ϕ, Γ ⇒ Δ | S

Γ ⇒ Δ,¬ϕ | S

(| ¬P⇒)
Γ ⇒ Δ | Π ⇒ Σ,ϕ ϕ, Γ ⇒ Δ | Π ⇒ Σ

Γ ⇒ Δ | ¬ϕ,Π ⇒ Σ

(|⇒¬P )
Γ ⇒ Δ,ϕ | ϕ,Π ⇒ Σ

Γ ⇒ Δ | Π ⇒ Σ,¬ϕ
(¬DP⇒|) Γ ⇒ Δ,ϕ | ϕ,Π ⇒ Σ

¬ϕ, Γ ⇒ Δ | Π ⇒ Σ

(⇒ ¬DP |) Γ ⇒ Δ | Π ⇒ Σ,ϕ ϕ, Γ ⇒ Δ | Π ⇒ Σ

Γ ⇒ Δ,¬ϕ | Π ⇒ Σ
The remaining rules in each case (namely (¬H⇒ |), (⇒¬H |), (|¬B⇒),

(|⇒¬B) (¬P⇒ |), (⇒¬P |), (| ¬DP⇒) and (|⇒¬DP )) are like respective rules of
BSC-K3. Consider premisses of (|⇒¬P ) and (¬DP⇒|) displaying two occurrences
of the same side formula: in semantical terms it gives the effect of evaluating ϕ
as undefined.
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(♦⇒ |) Γ ⇒ Δ | ϕ,Π ⇒ Σ

♦ϕ, Γ ⇒ Δ | Π ⇒ Σ
(⇒♦ |) Γ ⇒ Δ | Π ⇒ Σ,ϕ

Γ ⇒ Δ,♦ϕ | Π ⇒ Σ

(| ♦⇒)
Γ ⇒ Δ | ϕ,Π ⇒ Σ

Γ ⇒ Δ | ♦ϕ,Π ⇒ Σ
(|⇒♦)

Γ ⇒ Δ | Π ⇒ Σ,ϕ

Γ ⇒ Δ | Π ⇒ Σ,♦ϕ

(�⇒ |) ϕ, Γ ⇒ Δ | Π ⇒ Σ

�ϕ, Γ ⇒ Δ | Π ⇒ Σ
(⇒� |) Γ ⇒ Δ,ϕ | Π ⇒ Σ

Γ ⇒ Δ,�ϕ | Π ⇒ Σ

(| �⇒)
ϕ, Γ ⇒ Δ | Π ⇒ Σ

Γ ⇒ Δ | �ϕ,Π ⇒ Σ
(|⇒�)

Γ ⇒ Δ,ϕ | Π ⇒ Σ

Γ ⇒ Δ | Π ⇒ Σ,�ϕ

Not surprisingly rules introducing modal formula to antecedents or to succe-
dents of 1- and 2-sequents have the same premisses; this is a consequence of the
fact that such formula is never undefined. The same remark applies to rules for
¬H and ¬B .

The set of rules for weak ∧,∨,→ is also partly identical with those for BSC-
K3. The identical rules are (∧w⇒|), (⇒∧w |), (|⇒∨w), (| ∨w⇒), (|⇒→w) and
(|→w⇒). In the remaining cases we have three premiss rules:

(| ∧w⇒)
Γ ⇒ Δ | ϕ, ψ, Π ⇒ Σ Γ ⇒ Δ, ϕ | ϕ, Π ⇒ Σ Γ ⇒ Δ, ψ | ψ, Π ⇒ Σ

Γ ⇒ Δ | ϕ ∧ ψ, Π ⇒ Σ

(|⇒∧w)
Γ ⇒ Δ | Π ⇒ Σ, ϕ, ψ ϕ, Γ ⇒ Δ | Π ⇒ Σ, ψ ψ, Γ ⇒ Δ | Π ⇒ Σ, ϕ

Γ ⇒ Δ | Π ⇒ Σ, ϕ ∧ ψ

(⇒∨w |) Γ ⇒ Δ, ϕ, ψ | Π ⇒ Σ Γ ⇒ Δ, ϕ | ϕ, Π ⇒ Σ Γ ⇒ Δ, ψ | ψ, Π ⇒ Σ

Γ ⇒ Δ, ϕ ∨ ψ | Π ⇒ Σ

(∨w⇒ |) ϕ, ψ, Γ ⇒ Δ | Π ⇒ Σ ϕ, Γ ⇒ Δ | Π ⇒ Σ, ψ ψ, Γ ⇒ Δ | Π ⇒ Σ, ϕ

ϕ ∨ ψ, Γ ⇒ Δ | Π ⇒ Σ

(⇒→w |) Γ ⇒ Δ, ψ | ϕ, Π ⇒ Σ Γ ⇒ Δ, ϕ | ϕ, Π ⇒ Σ Γ ⇒ Δ, ψ | ψ, Π ⇒ Σ

Γ ⇒ Δ, ϕ → ψ | Π ⇒ Σ

(→w⇒ |) ϕ, ψ, Γ ⇒ Δ | Π ⇒ Σ Γ ⇒ Δ | Π ⇒ Σ, ϕ, ψ ψ, Γ ⇒ Δ | Π ⇒ Σ, ϕ

ϕ → ψ, Γ ⇒ Δ | Π ⇒ Σ

In the case of K→
3 and K←

3 the specific rules are:

(| ⇒∧mC)
Γ ⇒ Δ | Π ⇒ Σ,ϕ ϕ, Γ ⇒ Δ | Π ⇒ Σ,ψ

Γ ⇒ Δ | Π ⇒ Σ,ϕ ∧ ψ

(| ∧⇒mC)
Γ ⇒ Δ | ϕ,ψ,Π ⇒ Σ Γ ⇒ Δ,ϕ | ϕ,Π ⇒ Σ

Γ ⇒ Δ | ϕ ∧ ψ,Π ⇒ Σ

(∨⇒mC |) ϕ, Γ ⇒ Δ | Π ⇒ Σ ψ,Γ ⇒ Δ | Π ⇒ Σ,ϕ

ϕ ∨ ψ, Γ ⇒ Δ | Π ⇒ Σ

(⇒∨mC |) Γ ⇒ Δ,ϕ, ψ | Π ⇒ Σ Γ ⇒ Δ,ϕ | ϕ,Π ⇒ Σ

Γ ⇒ Δ,ϕ ∨ ψ | Π ⇒ Σ

(⇒→mC |) Γ ⇒ Δ,ψ | ϕ,Π ⇒ Σ Γ ⇒ Δ,ϕ | ϕ,Π ⇒ Σ

Γ ⇒ Δ,ϕ → ψ | Π ⇒ Σ
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(→⇒mC |) ϕ,ψ, Γ ⇒ Δ | Π ⇒ Σ Γ ⇒ Δ | Π ⇒ Σ,ϕ

ϕ → ψ, Γ ⇒ Δ | Π ⇒ Σ

(| ⇒∧K)
Γ ⇒ Δ | Π ⇒ Σ,ψ ψ, Γ ⇒ Δ | Π ⇒ Σ,ϕ

Γ ⇒ Δ | Π ⇒ Σ,ϕ ∧ ψ

(| ∧⇒K)
Γ ⇒ Δ | ϕ,ψ,Π ⇒ Σ Γ ⇒ Δ,ψ | ψ,Π ⇒ Σ

Γ ⇒ Δ | ϕ ∧ ψ,Π ⇒ Σ

(∨⇒K |) ϕ, Γ ⇒ Δ | Π ⇒ Σ,ψ ψ, Γ ⇒ Δ | Π ⇒ Σ

ϕ ∨ ψ, Γ ⇒ Δ | Π ⇒ Σ

(⇒∨K |) Γ ⇒ Δ,ϕ, ψ | Π ⇒ Σ Γ ⇒ Δ,ψ | ψ,Π ⇒ Σ

Γ ⇒ Δ,ϕ ∨ ψ | Π ⇒ Σ

(⇒→K |) Γ ⇒ Δ,ψ | ϕ,Π ⇒ Σ Γ ⇒ Δ,ψ | ψ,Π ⇒ Σ

Γ ⇒ Δ,ϕ → ψ | Π ⇒ Σ

(→⇒K |) ψ, Γ ⇒ Δ | Π ⇒ Σ Γ ⇒ Δ | Π ⇒ Σ,ϕ, ψ

ϕ → ψ, Γ ⇒ Δ | Π ⇒ Σ

The remaining rules in both cases are identical with (∧⇒|), (⇒∧ |), (|⇒∨),
(| ∨⇒), (| ⇒→) and (| →⇒) from BSC-K3.

The implication of �Lukasiewicz [34] and his specific additive ∧L and ∨L are
characterised by the following rules:

(| ∧L ⇒)
ϕ, Γ ⇒ Δ | ψ,Π ⇒ Σ ψ,Γ ⇒ Δ | ϕ,Π ⇒ Σ

Γ ⇒ Δ | ϕ ∧ ψ,Π ⇒ Σ

(| ⇒ ∧L)
Γ ⇒ Δ, ϕ, ψ | Π ⇒ Σ ϕ, Γ ⇒ Δ | Π ⇒ Σ, ψ ψ, Γ ⇒ Δ | Π ⇒ Σ, ϕ

Γ ⇒ Δ | Π ⇒ Σ, ϕ ∧ ψ

(| ∨L ⇒)
ϕ, Γ ⇒ Δ | ψ,Π ⇒ Σ ψ,Γ ⇒ Δ | ϕ,Π ⇒ Σ

Γ ⇒ Δ | ϕ ∨ ψ,Π ⇒ Σ

(|⇒ ∨L)
Γ ⇒ Δ, ϕ, ψ | Π ⇒ Σ ϕ, Γ ⇒ Δ | Π ⇒ Σ, ψ ψ, Γ ⇒ Δ | Π ⇒ Σ, ϕ

Γ ⇒ Δ | Π ⇒ Σ, ϕ ∨ ψ

(⇒→L |) ϕ, Γ ⇒ Δ,ψ | Π ⇒ Σ Γ ⇒ Δ | ϕ,Π ⇒ Σ,ψ

Γ ⇒ Δ,ϕ → ψ | Π ⇒ Σ

(→L⇒ |) Γ ⇒ Δ, ϕ | ψ, Π ⇒ Σ ψ, Γ ⇒ Δ | Π ⇒ Σ Γ ⇒ Δ | Π ⇒ Σ, ϕ

ϕ → ψ, Γ ⇒ Δ | Π ⇒ Σ

The remaining rules are identical with (∧⇒|), (⇒∧ |), (⇒∨ |), (∨⇒|), (| ⇒→)
and (| →⇒) from BSC-K3.

For Sobociński’s connectives we have:

(∧S ⇒ |) ϕ, Γ ⇒ Δ | ψ,Π ⇒ Σ ψ,Γ ⇒ Δ | ϕ,Π ⇒ Σ

ϕ ∧ ψ, Γ ⇒ Δ | Π ⇒ Σ
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(⇒ ∧S |) Γ ⇒ Δ, ϕ, ψ | Π ⇒ Σ ϕ, Γ ⇒ Δ | Π ⇒ Σ, ψ ψ, Γ ⇒ Δ | Π ⇒ Σ, ϕ

Γ ⇒ Δ, ϕ ∧ ψ | Π ⇒ Σ

(|⇒∨S)
Γ ⇒ Δ,ϕ | Π ⇒ Σ,ψ Γ ⇒ Δ,ψ | Π ⇒ Σ,ϕ

Γ ⇒ Δ | Π ⇒ Σ,ϕ ∨ ψ

(| ∨S⇒)
Γ ⇒ Δ | ϕ, ψ, Π ⇒ Σ ϕ, Γ ⇒ Δ | Π ⇒ Σ, ψ ψ, Γ ⇒ Δ | Π ⇒ Σ, ϕ

Γ ⇒ Δ | ϕ ∨ ψ, Π ⇒ Σ

(|⇒→S)
ϕ, Γ ⇒ Δ,ψ | Π ⇒ Σ Γ ⇒ Δ | ϕ,Π ⇒ Σ,ψ

Γ ⇒ Δ | Π ⇒ Σ,ϕ → ψ

(|→S⇒)
Γ ⇒ Δ, ϕ | ψ, Π ⇒ Σ ψ, Γ ⇒ Δ | Π ⇒ Σ Γ ⇒ Δ | Π ⇒ Σ, ϕ

Γ ⇒ Δ | ϕ → ψ, Π ⇒ Σ

The remaining rules look like in BSC-K3.
Sette’s connectives are characterised by the following rules:

(⇒∧Se |) Γ ⇒ Δ | Π ⇒ Σ,ϕ Γ ⇒ Δ | Π ⇒ Σ,ψ

Γ ⇒ Δ,ϕ ∧ ψ | Π ⇒ Σ

(∧Se⇒|) Γ ⇒ Δ | ϕ,ψ,Π ⇒ Σ

ϕ ∧ ψ, Γ ⇒ Δ | Π ⇒ Σ
(⇒∨Se |) Γ ⇒ Δ | Π ⇒ Σ,ϕ, ψ

Γ ⇒ Δ,ϕ ∨ ψ | Π ⇒ Σ

(∨Se⇒|) Γ ⇒ Δ | ϕ,Π ⇒ Σ Γ ⇒ Δ | ψ,Π ⇒ Σ

ϕ ∨ ψ, Γ ⇒ Δ | Π ⇒ Σ

(→Se⇒|) Γ ⇒ Δ | Π ⇒ Σ,ϕ Γ ⇒ Δ | ψ,Π ⇒ Σ

ϕ → ψ, Γ ⇒ Δ | Π ⇒ Σ

(⇒→Se |) Γ ⇒ Δ | ϕ,Π ⇒ Σ,ψ

Γ ⇒ Δ,ϕ → ψ | Π ⇒ Σ
(|⇒→Se)

S | ϕ,Π ⇒ Σ,ψ

S | Π ⇒ Σ,ϕ → ψ

(|→Se⇒)
S | Π ⇒ Σ,ϕ S | ψ,Π ⇒ Σ

S | ϕ → ψ,Π ⇒ Σ

(| ∧Se⇒), (|⇒∧Se), (|⇒∨Se), (| ∨Se⇒) are like in BSC-K3.
Finally Carnielli and Sette connectives characterising I1 and I2:

(|⇒∧C)
Γ ⇒ Δ,ϕ | Π ⇒ Σ Γ ⇒ Δ,ψ | Π ⇒ Σ

Γ ⇒ Δ | Π ⇒ Σ,ϕ ∧ ψ

(|∧C⇒)
ϕ,ψ, Γ ⇒ Δ | Π ⇒ Σ

Γ ⇒ Δ | ϕ ∧ ψ,Π ⇒ Σ
(|⇒∨C)

Γ ⇒ Δ,ϕ, ψ | Π ⇒ Σ

Γ ⇒ Δ | Π ⇒ Σ,ϕ ∨ ψ
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(|∨C⇒)
ϕ, Γ ⇒ Δ | Π ⇒ Σ ψ,Γ ⇒ Δ | Π ⇒ Σ

Γ ⇒ Δ | ϕ ∨ ψ,Π ⇒ Σ

(|→C⇒)
Γ ⇒ Δ,ϕ | Π ⇒ Σ ψ,Γ ⇒ Δ | Π ⇒ Σ

Γ ⇒ Δ | ϕ → ψ,Π ⇒ Σ

(|⇒→C)
ϕ, Γ ⇒ Δ,ψ | Π ⇒ Σ

Γ ⇒ Δ | Π ⇒ Σ,ϕ → ψ
(⇒→C |) ϕ, Γ ⇒ Δ,ψ | S

Γ ⇒ Δ,ϕ → ψ | S

(→C⇒|) Γ ⇒ Δ,ϕ | S ψ, Γ ⇒ Δ | S

ϕ → ψ, Γ ⇒ Δ | S

(∧C⇒ |), (⇒∧C |), (⇒∨C |), (∨C⇒ |) are like in BSC-K3.
We finish with the characterisation of the remaining implications introduced

in Sect. 2. In most cases it is obtained by combining rules which were previously
introduced. In particular:

S�lupecki’s [49] implication is characterised by means of: (|⇒→) and (|→⇒)
from BSC-K3 as well as (⇒→C |) and (→C⇒ |).

Heyting’s implication [22] is characterised by means of: (→L⇒ |), (⇒→L |),
(|⇒→Se),(|→Se⇒).

D’Ottaviano/DaCosta/Jaśkowski/S�lupecki’s implication [13,30,48] is char-
acterised by means of: (→⇒ |), (⇒→ |), (|⇒→Se),(|→Se⇒).

Rescher’s implication [43] is characterised by means of: (→L⇒ |), (⇒→L |),
(|⇒→S),(|→S⇒).

Tomova’s implication [22] is characterised by means of: (→L⇒ |), (⇒→L |),
(|⇒→C),(|→C⇒).

Only in case of Sobociński’s implication →′
S we have a pair of new rules:

(→′
S⇒|) ψ, Γ ⇒ Δ | Π ⇒ Σ Γ ⇒ Δ | Π ⇒ Σ, ϕ, ψ Γ ⇒ Δ, ϕ | ϕ, ψ, Π ⇒ Σ

ϕ → ψ, Γ ⇒ Δ | Π ⇒ Σ

(⇒→′
S |) ϕ, Γ ⇒ Δ, ψ | Π ⇒ Σ Γ ⇒ Δ | ϕ, Π ⇒ Σ, ψ Γ ⇒ Δ, ψ | ψ, Π ⇒ Σ, ϕ

Γ ⇒ Δ, ϕ → ψ | Π ⇒ Σ

The remaining two rules are: (|⇒→Se) and (|→Se⇒).
Let us show how (⇒→′

S |) was obtained on the basis of the table for →′
S from

p. 4. ϕ → ψ is either false or undefined which corresponds to four cells:

→′
S 1 u 0

1 u 0 this row says that ϕ is 1 and ψ is 0 or u – the left premiss;
u 0
0 u this row says that ϕ is 0 and ψ is u – the right premiss.
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The remaining premiss covers the cell with 0 in the first and second rows
attributed to ψ while ϕ is 1 or u. Note that since the left premiss covers the first
row and the right premiss covers the last row we could alternatively formulate
the middle premiss as Γ ⇒ Δ,ϕ | ϕ,Π ⇒ Σ,ψ to cover exactly the cell with 0
in the second row (here ϕ is just u) but since ψ is 0 in two rows where ϕ is 1
or u we can be more economical here. A reader can check that many rules can
be formulated in alternative way. We always tried to find the most economical
representation which can be used easily also for proving syntactically the cut
elimination theorem (which will be shown in the extended version of this paper).

Now, consider an arbitrary connective c of the logic L, the corresponding
operation c as characterised by suitable matrix determining L in Sect. 2, and the
four rules for c. It holds:

Theorem 4. For all presented rules characterising arbitrary c of any L: all
premisses are L-valid iff the conclusion is L-valid.

Proof. This is an analogue of Theorem 1 for any considered logic L which implies
adequacy of respective BSC-L. ��

5 Interpolation

We present a constructive proof of the interpolation theorem for some logics
based on the strategy proposed by Muskens and Wintein [58]. It was originally
applied in tableau setting for Belnap-Dunn four-valued logic as well as for K3

and LP. Here we demonstrate that BSC can be also used for showing that
interpolation holds for some paracomplete and paraconsistent logics. Let L ∈
{I1, I2,P1,P2}.

Theorem 5. For any contingent formulae ϕ,ψ, if ϕ |=L ψ, then we can con-
struct an interpolant for I1, I2 on the basis of proof-search trees for ϕ ⇒|⇒ and
⇒ ψ |⇒ and an interpolant for P1,P2 on the basis of proof-search trees for
⇒| ϕ ⇒ and ⇒|⇒ ψ in suitable BSC-L.

Proof. We will demonstrate the case of BSC-I1; the case of BSC-I2 is identical
and the cases of BSC-P1 and BSC-P2 are dual, so we only comment on them
in the key points. Assume that ϕ |=I1 ψ; hence by completeness we have a
cut-free proof of ϕ ⇒ ψ |⇒ in BSC-I1. Now produce complete proof-search
trees for ϕ ⇒|⇒ and ⇒ ψ |⇒. Since ϕ,ψ are contingent, they have some non-
axiomatic leaves. Let Γ1 ⇒ Δ1 | Π1 ⇒ Σ1, . . . , Γk ⇒ Δk | Πk ⇒ Σk be
the list of non-axiomatic atomic leaves of the proof-search tree for ϕ ⇒|⇒ and
Θ1 ⇒ Λ1 | Ξ1 ⇒ Ω1, . . . , Θn ⇒ Λn | Ξn ⇒ Ωn such a list taken from the
proof-search tree for ⇒ ψ |⇒. It holds:

Claim (1). For any i ≤ k and j ≤ n, Γi, Θj ⇒ Δi,Λj | Πi, Ξj ⇒ Σi, Ωj is an
axiomatic atomic bisequent.
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To see this take a tree for ϕ ⇒|⇒ and add ψ to succedents of all 1-sequents
in the tree. Due to context independence of all rules it is a correct proof-search
tree. Now for each leaf Γi ⇒ Δi, ψ | Πi ⇒ Σi append a tree of ⇒ ψ |⇒ but
with Γi added to each antecedent and Δi added to each succedent of 1-sequents,
and similarly with Πi and Σi in all 2-sequents. In the resulting proof-search tree
we have leaves of the form Γi, Θj ⇒ Δi,Λj | Πi, Ξj ⇒ Σi, Ωj for all i ≤ k and
j ≤ n. If at least one of them is not axiomatic, then � ϕ ⇒ ψ |⇒. ��

Next for every Γi ⇒ Δi | Πi ⇒ Σi, i ≤ k, define the following sets:

Γ ′
i = Γi ∩ (

⋃
Λj ∪ ⋃

Ωj) for j ≤ n
Δ′

i = Δi ∩ ⋃
Θj for j ≤ n

Π ′
i = Πi ∩ ⋃

Ωj for j ≤ n
Σ′

i = Σi ∩ (
⋃

Θj ∪ ⋃
Ξj) for j ≤ n

Since every Γi, Θj ⇒ Δi,Λj | Πi, Ξj ⇒ Σi, Ωj is axiomatic we are guaranteed
that Γ ′

i∪Δ′
i∪Π ′

i∪Σ′
i �= ∅. Note also that AT (Γ ′

i∪Δ′
i∪Π ′

i∪Σ′
i) ⊆ AT (ϕ)∩AT (ψ),

where AT stands for the set of atoms. Now define an interpolant Int(ϕ,ψ) for
considered logics. For I1, I2 it has the same form:

∧
Γ ′
1∧∧ ¬Σ′

1∧¬( ∨ ¬Π ′
1∨∨

Δ′
1

) ∨ . . .∨ ∧
Γ ′
k ∧∧ ¬Σ′

k ∧¬( ∨ ¬Π ′
k ∨∨

Δ′
k

)
,

where ¬Π means the set of negations of all elements in Π.
For P1,P2 Int(ϕ,ψ) is defined as:
∧

Π ′
1 ∧∧¬Δ′

1 ∧¬(∨ ¬Γ ′
1 ∨∨

Σ′
1

) ∨ . . .∨ ∧
Π ′

k ∧∧¬Δ′
k ∧¬(∨ ¬Γ ′

k ∨∨
Σ′

k

)

We can show that:

Claim (2). Int(ϕ,ψ) is an interpolant for ϕ |=L ψ.

Proof. As an example, we present the proof for BSC-I1. For the sake of proof let
us recall that BSC-I1 consists of the rules characterising ∧C ,∨C ,→C and ¬H .
However, most of the rules necessary for conducting the proof are identical with
respective rules from BSC-K3, so the label C in their names will be omitted in
these cases for easier recognition where the specific rules (concretely (| ∨C ⇒)
and (|⇒ ∨C)) are required.

Since for every
∧

Γ ′
i ∧ ∧ ¬Σ′

i ∧ ¬(
∨ ¬Π ′

i ∨ ∨
Δ′

i) all (negated) atoms are
by definition taken from AT (ϕ) ∩ AT (ψ), we must only prove that BSC-I1 �
ϕ ⇒ Int(ϕ,ψ) |⇒, and BSC-I1 � Int(ϕ,ψ) ⇒ ψ |⇒ (the same for BSC-I2), and
BSC-P1 �⇒| ϕ ⇒ Int(ϕ,ψ) and BSC-P1 �⇒| Int(ϕ,ψ) ⇒ ψ (and the same for
BSC-P2).

Again take a complete proof-search tree for ϕ ⇒|⇒ and add Int(ϕ,ψ) to
every succedent of 1-sequent. For every Γi ⇒ Δi, Int(ϕ,ψ) | Πi ⇒ Σi apply
(⇒ ∨ |) to get

Γi ⇒ Δi,
∧

Γ ′
i ∧

∧
¬Σ′

i ∧ ¬(
∨

¬Π ′
i ∨

∨
Δ′

i), Int(ϕ,ψ)−i | Πi ⇒ Σi,

where Int(ϕ,ψ)−i is the rest of the disjunction (if any). Applying (⇒ ∧ |) we
obtain three bisequents:
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(a) Γi ⇒ Δi,
∧

Γ ′
i , Int(ϕ,ψ)−i | Πi ⇒ Σi

(b) Γi ⇒ Δi,
∧ ¬Σ′

i, Int(ϕ,ψ)−i | Πi ⇒ Σi

(c) Γi ⇒ Δi,¬(
∨ ¬Π ′

i ∨ ∨
Δ′

i), Int(ϕ,ψ)−i | Πi ⇒ Σi.

Systematically applying (⇒ ∧ |) to (a) we obtain Γi ⇒ Δi, p, Int(ϕ,ψ)−i |
Πi ⇒ Σi for each p ∈ Γ ′

i and since Γ ′
i ⊆ Γi they are all axiomatic. Similarly

with (b) but now we first obtain Γi ⇒ Δi,¬p, Int(ϕ,ψ)−i | Πi ⇒ Σi for each
p ∈ Σ′

i. After the application of (⇒ ¬ |) we obtain Γi ⇒ Δi, Int(ϕ,ψ)−i |
p,Πi ⇒ Σi which is axiomatic since Σ′

i ⊆ Σi. For (c) we first apply (⇒ ¬ |) and
obtain Γi ⇒ Δi, Int(ϕ,ψ)−i | ∨ ¬Π ′

i ∨ ∨
Δ′

i,Πi ⇒ Σi. By (| ∨C ⇒) we obtain:∨ ¬Π ′
i, Γi ⇒ Δi, Int(ϕ,ψ)−i | Πi ⇒ Σi and

∨
Δ′

i, Γi ⇒ Δi, Int(ϕ,ψ)−i | Πi ⇒
Σi. Systematic application of (∨ ⇒|) to the latter produces axiomatic bisequents
p, Γi ⇒ Δi, Int(ϕ,ψ)−i | Πi ⇒ Σi for each p ∈ Δ′

i. Systematic application of
(∨ ⇒|) to the former produces ¬p, Γi ⇒ Δi, Int(ϕ,ψ)−i | Πi ⇒ Σi for each
p ∈ Π ′

i. After application of (¬ ⇒|) they also yield axiomatic sequents. Hence
we have a proof of ϕ ⇒ Int(ϕ,ψ) |⇒.

We have to do the same with a complete proof-search tree for ⇒ ψ |⇒
but now adding Int(ϕ,ψ) to every antecedent of all 1-sequents in the tree. For
every leaf Int(ϕ,ψ), Θj ⇒ Λj | Ξj ⇒ Ωj we apply (∨ ⇒ |) to each disjunct
of Int(ϕ,ψ) until we get leaves:

∧
Γ ′
1 ∧ ∧ ¬Σ′

1 ∧ ¬(
∨ ¬Π ′

1 ∨ ∨
Δ′

1), Θj ⇒ Λj |
Ξj ⇒ Ωj . . .

∧
Γ ′
k ∧ ∧ ¬Σ′

k ∧ ¬(
∨ ¬Π ′

k ∨ ∨
Δ′

k), Θj ⇒ Λj | Ξj ⇒ Ωj . To each
such leaf we apply (∧ ⇒|) obtaining bisequents of the form Γ ′

i ,¬Σ′
i,¬(

∨ ¬Π ′
i ∨∨

Δ′
i), Θj ⇒ Λj | Ξj ⇒ Ωj for i ≤ k, j ≤ n. In each case the application of (¬ ⇒|

) yields Γ ′
i , Θj ⇒ Λj | Ξj ⇒ Ωj , Σ

′
i,

∨ ¬Π ′
i ∨ ∨

Δ′
i. The application of (|⇒ ∨C)

to
∨ ¬Π ′

i ∨ ∨
Δ′

i yields Γ ′
i , Θj ⇒ Λj ,

∨ ¬Π ′
i,

∨
Δ′

i | Ξj ⇒ Ωj , Σ
′
i. Systematic

application of (⇒ ∨ |) and (⇒ ¬ |) gives leaves of the form Γ ′
i , Θj ⇒ Λj ,Δ

′
i |

Π ′
i, Ξj ⇒ Ωj , Σ

′
i. Since for every i ≤ k, j ≤ n, Γi, Θj ⇒ Δi,Λj | Πi, Ξj ⇒ Σi, Ωj

is axiomatic these primed versions are axiomatic too. Assume the contrary, then
it must be e.g. some p /∈ Γ ′

i such that either p ∈ Γi ∩ Λj or p ∈ Γi ∩ Ωj (or for
other pairs generating axioms). But it is impossible since by definition Γ ′

i must
contain such p (and the same for other cases of primed sets). ��

The proof for BSC-I2 is identical since the only difference between these two
logics is that I1 has Heyting’s negation whereas in I2 it is Kleene’s negation. But
the two BSC rules for negation which are used in the proof are common to both
negations. The proof for P1,P2 is dual to the above and uses slightly different
definition of Int(ϕ,ψ) specified above. Again the two logics differ only with
respect to negations, but the rules used in the proof are common to Bochvar’s
and Kleene’s one.

Eventually note that this proof may be applied also to other logics but in
some cases it is convenient to extend their languages. For example, interpolants
for some logics can be defined as disjunctions of the following formulae:

For K3 –
∧

Γ ′
i ∧ ∧ ¬Σ′

i ∧ ∧¬BΔ′
i ∧ ∧ ¬B¬Π ′

i

For LP –
∧

Π ′
i ∧ ∧ ¬Δ′

i ∧ ∧ ¬HΣ′
i ∧ ∧ ¬H¬Γ ′

i

For G3 –
∧

Γ ′
i ∧ ¬H(

∧
Π ′

i → ∨
Σ′

i) ∧ ∧ ¬BΔ′
i

For G′
3 –

∧
Π ′

i ∧ ∧ ¬BΔ′
i ∧ ∧ ¬HΣ′

i ∧ ∧ ¬B¬BΓ ′
i
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6 Conclusion

Bisequent calculi can be seen as one of the possible syntactical realizations of so
called Suszko’s thesis [54] in the treatment of many-valued logics. According to
Suszko every logic is two-valued in the sense that all values are divided into des-
ignated and non-designated and this is reflected in the definition of consequence
relation. In the case of bisequent calculi it is additionally made evident that two
possible choices of designated values can be made. However, on a deep level a
BSC is similar to some other proposed formalisations mentioned in the Intro-
duction. On one hand bisequents resemble several labelled approaches where
labels denote sets of values; a difference is that instead of labels a position of
a formula in a bisequent is crucial, hence the method is strictly syntactical. On
the other hand, there is a similarity with Avron’s [4] and Avron, Ben-Naim, and
Konikowska’s [6] sequent calculi with special rules defined for negated formulae;
a difference is that BSC satisfies ordinary subformula property and purity condi-
tions to the effect that in schemata of rules only one (occurrence of a) connective
is involved. The price is that instead of standard sequents we use a pair of them.

As we mentioned in the Introduction there is one more general difference.
In the case of labelled calculi or Avron’s SC we have the same input for 1- and
2-logics, whereas in BSC a different input for both classes of logics is defined; a 1-
or a 2-sequent in a bisequent. A consequence of our choice is that for every pair
of 1- and 2-logic with the same connectives (like e.g. K3 and LP) the rules and
axioms are identical. In contrast, in other mentioned approaches for such pairs
of related logics, the respective calculi must differ either with respect to some
axioms (closure conditions in tableaux) or to rules. It seems that the present
solution where systems differ only with respect to the input is more economical
and uniform. In fact we can consider also logics determined by different notions
of consequence relations while still keeping the rules and axioms intact. Two
relations considered in the text express informally the situation where either
truth is preserved or non-falsity is preserved. But two other possibilities are open
as well: Γ ⇒ | ⇒ ψ corresponds to the notion of no-counterexample consequence
(see e.g. Lehmann [33], Paoli [39]), whereas ⇒ ϕ | Γ ⇒ corresponds to the
liberal consequence which leads from non-falsity to truth. This level of uniformity
follows from the fact that rules of BSC are not computed on the basis of any
normal (disjunctive or conjunctive) form, like in other approaches, but on the
basis of geometrical insights illustrated in Sect. 4.

Finally notice that the application of BSC may be extended easily to first-
order languages. It is quite obvious how to define suitable rules for quantifiers.
But the proof of adequacy requires more refined methods than those applied here
so for the lack of space we limited ourselves to propositional case. However, we
finish the paper with one more problem for further investigation: the application
of first-order BSC to formalisation of neutral free logics, and in particular to
specific theories of definite descriptions based on some Fregean ideas (see e.g.
Lehmann [33], Stenlund [52]). Since sequent and tableau calculi for such theories
built on positive and negative free logics were already provided in [24,26,28], this
paper offers a proper ground for extension of these results to neutral free logics.
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Abstract. Dependency pairs are one of the most powerful techniques
to analyze termination of term rewrite systems (TRSs) automatically.
We adapt the dependency pair framework to the probabilistic setting in
order to prove almost-sure innermost termination of probabilistic TRSs.
To evaluate its power, we implemented the new framework in our tool
AProVE.

1 Introduction

Techniques and tools to analyze innermost termination of term rewrite systems
(TRSs) automatically are successfully used for termination analysis of programs
in many languages (e.g., Java [10,35,38], Haskell [18], and Prolog [19]). While
there exist several classical orderings for proving termination of TRSs (e.g.,
based on polynomial interpretations [30]), a direct application of these orderings
is usually too weak for TRSs that result from actual programs. However, these
orderings can be used successfully within the dependency pair (DP) framework
[2,16,17]. This framework allows for modular termination proofs (e.g., which
apply different orderings in different sub-proofs) and is one of the most powerful
techniques for termination analysis of TRSs that is used in essentially all cur-
rent termination tools for TRSs, e.g., AProVE [20], MU-TERM [22], NaTT [40],
TTT2 [29], etc.

On the other hand, probabilistic programs are used to describe randomized
algorithms and probability distributions, with applications in many areas. To
use TRSs also for such programs, probabilistic term rewrite systems (PTRSs)
were introduced in [8,9]. In the probabilistic setting, there are several notions of
“termination”. A program is almost-surely terminating (AST) if the probability
for termination is 1. As remarked in [24]: “AST is the classical and most widely-
studied problem that extends termination of non-probabilistic programs, and
is considered as a core problem in the programming languages community”.
A strictly stronger notion is positive almost-sure termination (PAST), which
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requires that the expected runtime is finite. While there exist many automatic
approaches to prove (P)AST of imperative programs on numbers (e.g., [1,4,11,
15,21,24–26,32–34,36]), there are only few automatic approaches for programs
with complex non-tail recursive structure [7,12], and even less approaches which
are also suitable for algorithms on recursive data structures [3,6,31,39]. The
approach of [39] focuses on algorithms on lists and [31] mainly targets algorithms
on trees, but they cannot easily be adjusted to other (possibly user-defined) data
structures. The calculus of [6] considers imperative programs with stack, heap,
and pointers, but it is not yet automated. Moreover, the approaches of [3,6,31,39]
analyze expected runtime, while we focus on AST.

PTRSs can be used to model algorithms (possibly with complex recursive
structure) operating on algebraic data types. While PTRSs were introduced in [8,
9], the first (and up to now only) tool to analyze their termination automatically
was presented in [3], where orderings based on interpretations were adapted
to prove PAST. Moreover, [14] extended general concepts of abstract rewrite
systems (e.g., confluence and uniqueness of normal forms) to the probabilistic
setting.

As mentioned, already for non-probabilistic TRSs a direct application of
orderings (as in [3]) is limited in power. To obtain a powerful approach, one
should combine such orderings in a modular way, as in the DP framework. In
this paper, we show for the first time that an adaption of dependency pairs to
the probabilistic setting is possible and present the first DP framework for prob-
abilistic term rewriting. Since the crucial idea of dependency pairs is the modu-
larization of the termination proof, we analyze AST instead of PAST, because
it is well known that AST is compositional, while PAST is not (see, e.g., [25]).
We also present a novel adaption of the technique from [3] for the direct appli-
cation of polynomial interpretations in order to prove AST (instead of PAST)
of PTRSs.

We start by briefly recapitulating the DP framework for non-probabilistic
TRSs in Sect. 2. Then we recall the definition of PTRSs based on [3,9,14] in
Sect. 3 and introduce a novel way to prove AST using polynomial interpretations
automatically. In Sect. 4 we present our new probabilistic DP framework. The
implementation of our approach in the tool AProVE is evaluated in Sect. 5. We
refer to [28] for all proofs (which are much more involved than the original proofs
for the non-probabilistic DP framework from [2,16,17]).

2 The DP Framework

We assume familiarity with term rewriting [5] and regard TRSs over a finite sig-
nature Σ and a set of variables V. A polynomial interpretation Pol is a Σ-algebra
with carrier set N which maps every function symbol f ∈ Σ to a polynomial
fPol ∈ N[V]. For a term t ∈ T (Σ,V), Pol(t) denotes the interpretation of t by
the Σ-algebra Pol. An arithmetic inequation like Pol(t1) > Pol(t2) holds if it is
true for all instantiations of its variables by natural numbers.
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Theorem 1 (Termination With Polynomial Interpretations [30]). Let R
be a TRS and let Pol : T (Σ,V) → N[V] be a monotonic polynomial interpretation
(i.e., x > y implies fPol(. . . , x, . . .) > fPol(. . . , y, . . .) for all f ∈ Σ). If for every
� → r ∈ R, we have Pol(�) > Pol(r), then R is terminating.

The search for polynomial interpretations is usually automated by SMT solv-
ing. Instead of polynomials over the naturals, Theorem 1 (and the other ter-
mination criteria in the paper) can also be extended to polynomials over the
non-negative reals, by requiring that whenever a term is “strictly decreasing”,
then its interpretation decreases at least by a certain fixed amount δ > 0.

Example 2. Consider the TRS Rdiv = {(1), . . . , (4)} for division from [2].
minus(x, O)→x (1)

minus(s(x), s(y))→minus(x, y) (2)
div(O, s(y))→O (3)

div(s(x), s(y))→s (div(minus(x, y), s(y))) (4)

Termination of Rminus = {(1), (2)} can be proved by the polynomial interpreta-
tion that maps minus(x, y) to x + y + 1, s(x) to x + 1, and O to 0. However, a
direct application of classical techniques like polynomial interpretations fails for
Rdiv. These techniques correspond to so-called (quasi-)simplification orderings
[13] which cannot handle rules like (4) where the right-hand side is embedded
in the left-hand side if y is instantiated with s(x). In contrast, the dependency
pair framework is able to prove termination of Rdiv automatically.

We now recapitulate the DP framework and its core processors, and refer to,
e.g., [2,16,17,23] for more details. In this paper, we restrict ourselves to the DP
framework for innermost rewriting (denoted “ i→R”), because our adaption to
the probabilistic setting relies on this evaluation strategy (see Sect. 4.1).

Definition 3 (Dependency Pair). Let R be a (finite) TRS. We decompose
its signature Σ = ΣC � ΣD such that f ∈ ΣD if f = root(�) for some rule
� → r ∈ R. The symbols in ΣC and ΣD are called constructors and defined
symbols, respectively. For every f ∈ ΣD, we introduce a fresh tuple symbol f#

of the same arity. Let Σ# denote the set of all tuple symbols. To ease readability,
we often write F instead of f#. For any term t = f(t1, . . . , tn) ∈ T (Σ,V) with
f ∈ ΣD, let t# = f#(t1, . . . , tn). Moreover, for any r ∈ T (Σ,V), let SubD(r)
be the set of all subterms of r with defined root symbol. For a rule � → r with
SubD(r) = {t1, . . . , tn}, one obtains the n dependency pairs (DPs) �# → t#i with
1 ≤ i ≤ n. DP(R) denotes the set of all dependency pairs of R.

Example 4. For the TRS Rdiv from Example 2, we get the following dependency
pairs.

M(s(x), s(y)) → M(x, y) (5) D(s(x), s(y)) → M(x, y) (6)
D(s(x), s(y)) → D(minus(x, y), s(y)) (7)

The DP framework uses DP problems (D,R) where D is a (finite) set of
DPs and R is a (finite) TRS. A (possibly infinite) sequence t#0 , t#1 , t#2 , . . . with
t#i

i→D,R ◦ i→∗
R t#i+1 for all i is an (innermost) (D,R)-chain. Here, i→D,R is the
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restriction of →D to rewrite steps where the used redex is in normal form w.r.t.
R. A chain represents subsequent “function calls” in evaluations. Between two
function calls (corresponding to steps with D) one can evaluate the arguments
with R. For example, D(s2(O), s(O)), D(s(O), s(O)) is a (DP(Rdiv),Rdiv)-chain,
as D(s2(O), s(O)) i→DP(Rdiv),Rdiv

D(minus(s(O), O), s(O)) i→∗
Rdiv

D(s(O), s(O)), where
s2(O) is s(s(O)).

A DP problem (D,R) is called innermost terminating (iTerm) if there is no
infinite innermost (D,R)-chain. The main result on dependency pairs is the chain
criterion which states that a TRS R is iTerm iff (DP(R),R) is iTerm. The key
idea of the DP framework is a divide-and-conquer approach which applies DP
processors to transform DP problems into simpler sub-problems. A DP processor
Proc has the form Proc(D,R) = {(D1,R1), . . . , (Dn,Rn)}, where D,D1, . . . ,Dn

are sets of dependency pairs and R,R1, . . . ,Rn are TRSs. A processor Proc is
sound if (D,R) is iTerm whenever (Di,Ri) is iTerm for all 1 ≤ i ≤ n. It is
complete if (Di,Ri) is iTerm for all 1 ≤ i ≤ n whenever (D,R) is iTerm.

So given a TRS R, one starts with the initial DP problem (DP(R),R) and
applies sound (and preferably complete) DP processors repeatedly until all sub-
problems are “solved” (i.e., sound processors transform them to the empty set).
This allows for modular termination proofs, since different techniques can be
applied on each resulting “sub-problem” (Di,Ri). The following three theorems
recapitulate the three most important processors of the DP framework.

The (innermost) (D,R)-dependency graph is a control flow graph that indi-
cates which dependency pairs can be used after each other in a chain. Its
node set is D and there is an edge from �#1 → t#1 to �#2 → t#2 if there exist

(5)

(6)

(7)
substitutions σ1, σ2 such that t#1 σ1

i→∗
R �#2 σ2, and both �#1 σ1 and �#2 σ2

are in normal form w.r.t. R. Any infinite (D,R)-chain corresponds to an
infinite path in the dependency graph, and since the graph is finite, this
infinite path must end in some strongly connected component (SCC).1

Hence, it suffices to consider the SCCs of this graph independently. The
(DP(Rdiv),Rdiv)-dependency graph can be seen on the right.

Theorem 5 (Dep. Graph Processor). For the SCCs D1, ...,Dn of the
(D,R)-dependency graph, ProcDG(D,R) = {(D1,R), ..., (Dn,R)} is sound and
complete.

While the exact dependency graph is not computable in general, there are sev-
eral techniques to over-approximate it automatically, see, e.g., [2,17,23]. In our
example, applying ProcDG to the initial problem (DP(Rdiv),Rdiv) results in the
smaller problems

(
{(5)},Rdiv

)
and

(
{(7)},Rdiv

)
that can be treated separately.

The next processor removes rules that cannot be used to evaluate right-hand
sides of dependency pairs when their variables are instantiated with normal
forms.

1 Here, a set D′ of dependency pairs is an SCC if it is a maximal cycle, i.e., it is a
maximal set such that for any �#1 → t#1 and �#2 → t#2 in D′ there is a non-empty
path from �#1 → t#1 to �#2 → t#2 which only traverses nodes from D′.
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Theorem 6 (Usable Rules Processor). Let R be a TRS. For every f ∈
Σ�Σ# let RulesR(f) = {� → r ∈ R | root(�) = f}. For any t ∈ T

(
Σ � Σ#,V

)
,

its usable rules UR(t) are the smallest set such that UR(x) = ∅ for all x ∈ V
and UR(f(t1, . . . , tn)) = RulesR(f) ∪

⋃n
i=1 UR(ti) ∪

⋃
�→r∈RulesR(f) UR(r). The

usable rules for the DP problem (D,R) are U(D,R) =
⋃

�#→t#∈D UR(t#). Then
ProcUR(D,R) = {(D,U(D,R))} is sound but not complete.2

For the DP problem
(
{(7)},Rdiv

)
only the minus-rules are usable and thus

ProcUR
(
{(7)},Rdiv

)
= {

(
{(7)}, {(1), (2)}

)
}. For

(
{(5)},Rdiv

)
there are no usable

rules at all, and thus ProcUR
(
{(5)},Rdiv

)
= {

(
{(5)}, ∅

)
}.

The last processor adapts classical orderings like polynomial interpretations
to DP problems.3 In contrast to their direct application in Theorem 1, we may
now use weakly monotonic polynomials fPol that do not have to depend on all of
their arguments. The reduction pair processor requires that all rules and depen-
dency pairs are weakly decreasing and it removes those DPs that are strictly
decreasing.

Theorem 7 (Reduction Pair Processor with Polynomial Interpreta-
tions). Let Pol : T

(
Σ � Σ#,V

)
→ N[V] be a weakly monotonic polynomial

interpretation (i.e., x ≥ y implies fPol(. . . , x, . . .) ≥ fPol(. . . , y, . . .) for all
f ∈ Σ � Σ#). Let D = D≥ � D> with D> 	= ∅ such that:

(1) For every � → r ∈ R, we have Pol(�) ≥ Pol(r).
(2) For every �# → t# ∈ D, we have Pol(�#) ≥ Pol(t#).
(3) For every �# → t# ∈ D>, we have Pol(�#) > Pol(t#).

Then ProcRP(D,R) = {(D≥,R)} is sound and complete.

The constraints of the reduction pair processor for the remaining DP prob-
lems ({(7)}, {(1), (2)}) and ({(5)}, ∅) are satisfied by the polynomial interpre-
tation which maps O to 0, s(x) to x + 1, and all other non-constant function
symbols to the projection on their first arguments. Since (7) and (5) are strictly
decreasing, ProcRP transforms both ({(7)}, {(1), (2)}) and ({(5)}, ∅) into DP
problems of the form (∅, . . .). As ProcDG(∅, . . .) = ∅ and all processors used are
sound, this means that there is no infinite innermost chain for the initial DP
problem (DP(Rdiv),Rdiv) and thus, Rdiv is innermost terminating.

3 Probabilistic Term Rewriting

Now we recapitulate probabilistic TRSs [3,9,14] and present a novel criterion to
prove almost-sure termination automatically by adapting the direct application

2 For a complete version of the usable rules processor, one has to use a more involved
notion of DP problems with more components that we omit here for readability [16].

3 In this paper, we only regard the reduction pair processor with polynomial interpre-
tations, because for most other classical orderings it is not clear how to extend them
to probabilistic TRSs, where one has to consider “expected values of terms”.
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of polynomial interpretations from Theorem 1 to PTRSs. In contrast to TRSs,
a PTRS has finite4 multi-distributions on the right-hand side of rewrite rules.

Definition 8 (Multi-Distribution). A finite multi-distribution μ on a set
A 	= ∅ is a finite multiset of pairs (p : a), where 0 < p ≤ 1 is a probability
and a ∈ A, such that

∑
(p:a)∈μ p = 1. FDist(A) is the set of all finite multi-

distributions on A. For μ ∈ FDist(A), its support is the multiset Supp(μ)={a |
(p :a)∈μ for some p}.

Definition 9 (PTRS). A probabilistic rewrite rule is a pair � → μ ∈
T (Σ,V) × FDist(T (Σ,V)) such that � 	∈ V and V(r) ⊆ V(�) for every
r ∈ Supp(μ). A probabilistic TRS (PTRS) is a finite set R of probabilis-
tic rewrite rules. Similar to TRSs, the PTRS R induces a rewrite relation
→R ⊆ T (Σ,V) × FDist(T (Σ,V)) where s →R {p1 : t1, . . . , pk : tk} if there
is a position π, a rule � → {p1 : r1, . . . , pk : rk} ∈ R, and a substitution σ such
that s|π = �σ and tj = s[rjσ]π for all 1 ≤ j ≤ k. We call s →R μ an innermost
rewrite step (denoted s

i→R μ) if every proper subterm of the used redex �σ is in
normal form w.r.t. R.

Example 10. As an example, consider the PTRS Rrw with the only rule g(x) →
{1/2 : x, 1/2 : g(g(x))}, which corresponds to a symmetric random walk.

As proposed in [3], we lift →R to a rewrite relation between multi-
distributions in order to track all probabilistic rewrite sequences (up to non-
determinism) at once. For any 0 < p ≤ 1 and any μ ∈ FDist(A), let
p · μ = {(p · q : a) | (q : a) ∈ μ}.

Definition 11 (Lifting). The lifting ⇒ ⊆ FDist(T (Σ,V)) × FDist(T (Σ,V))
of a relation → ⊆ T (Σ,V) × FDist(T (Σ,V)) is the smallest relation with:

• If t ∈ T (Σ,V) is in normal form w.r.t. →, then {1 : t} ⇒ {1 : t}.
• If t → μ, then {1 : t} ⇒ μ.
• If for all 1 ≤ j ≤ k there are μj , νj ∈ FDist(T (Σ,V)) with μj ⇒ νj and

0 < pj ≤ 1 with
∑

1≤j≤k pj = 1, then
⋃

1≤j≤k pj · μj ⇒
⋃

1≤j≤k pj · νj.

For a PTRS R, we write ⇒R and
i⇒R for the liftings of →R and i→R, respec-

tively.

Example 12. For instance, we obtain the following
i⇒Rrw -rewrite sequence:

{1 : g(O)} i⇒Rrw {1/2 : O, 1/2 : g2(O)} i⇒Rrw {1/2 : O, 1/4 : g(O), 1/4 : g3(O)}
i⇒Rrw {1/2 : O, 1/8 : O, 1/8 : g2(O), 1/8 : g2(O), 1/8 : g4(O)}

Note that the two occurrences of O and g2(O) in the multi-distribution above
could be rewritten differently if the PTRS had rules resulting in different terms.
So it should be distinguished from {5/8 : O, 1/4 : g2(O), 1/8 : g4(O)}.

4 Since our goal is the automation of termination analysis, in this paper we restrict
ourselves to finite PTRSs with finite multi-distributions.
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To express the concept of almost-sure termination, one has to determine the
probability for normal forms in a multi-distribution.

Definition 13 (|μ|R). For a PTRS R, NFR ⊆ T (Σ,V) denotes the set of all
normal forms w.r.t. R. For any μ ∈ FDist(T (Σ,V)), let |μ|R =

∑
(p:t)∈μ,t∈NFR p.

Example 14. Consider the multi-distribution {1/2 : O, 1/8 : O, 1/8 : g2(O), 1/8 :
g2(O), 1/8 : g4(O)} from Example 12 and Rrw from Example 10. Then |μ|Rrw =
1/2 + 1/8 = 5/8 .

Definition 15 ((Innermost) AST). Let R be a PTRS and (μn)n∈N be an infi-
nite ⇒R-rewrite sequence, i.e., μn ⇒R μn+1 for all n ∈ N. Note that lim

n→∞
|μn|R

exists, since |μn|R ≤ |μn+1|R ≤ 1 for all n ∈ N. R is almost-surely terminating
(AST) ( innermost almost-surely terminating (iAST)) if lim

n→∞
|μn|R = 1 holds

for every infinite ⇒R-rewrite sequence (
i⇒R-rewrite sequence) (μn)n∈N.

Example 16. For the (unique) infinite extension of the
i⇒Rrw -rewrite sequence

(μn)n∈N in Example 12, we have lim
n→∞

|μn|R = 1. Indeed, Rrw is AST (but
not PAST, i.e., the expected number of rewrite steps is infinite for every term
containing g).

Theorem 17 introduces a novel technique to prove AST automatically using
a direct application of polynomial interpretations.

Theorem 17 (Proving AST with Polynomial Interpretations). Let R be
a PTRS, let Pol : T (Σ,V) → N[V] be a monotonic, multilinear5 polynomial
interpretation (i.e., for all f ∈ Σ, all monomials of fPol(x1, . . . , xn) have the
form c · xe1

1 · . . . · xen
n with c ∈ N and e1, . . . , en ∈ {0, 1}). If for every rule

� → {p1 : r1, . . . , pk : rk} ∈ R,

(1) there exists a 1 ≤ j ≤ k with Pol(�) > Pol(rj) and
(2) Pol(�) ≥

∑
1≤j≤k pj · Pol(rj),

then R is AST.

In [3], it was shown that PAST can be proved by using multilinear poly-
nomials and requiring a strict decrease in the expected value of each rule. In
contrast, we only require a weak decrease of the expected value in (2) and in
addition, at least one term in the support of the right-hand side must become
strictly smaller (1). As mentioned, the proof for Theorem 17 (and for all our
other new results and observations) can be found in [28]. The proof idea is based
on [32], but it extends their approach from while-programs on integers to terms.
However, in contrast to [32], PTRSs can only deal with constant probabilities,
since all variables stand for terms, not for numbers. Note that the constraints
(1) and (2) of our new criterion in Theorem 17 are equivalent to the constraint
of the classical Theorem 1 in the special case where the PTRS is in fact a TRS
(i.e., all rules have the form � → {1 : r}).
5 As in [3], multilinearity ensures “monotonicity” w.r.t. expected values, since multi-

linearity implies fPol(. . . ,
∑

1≤j≤k pj · Pol(rj), . . .) =
∑

1≤j≤k pj · Pol(f(. . . , rj , . . .)).
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Example 18. To prove that Rrw is AST with Theorem 17, we can use the poly-
nomial interpretation that maps g(x) to x + 1 and O to 0.

4 Probabilistic Dependency Pairs

We introduce our new adaption of DPs to the probabilistic setting in Sect. 4.1.
Then we present the processors for the probabilistic DP framework in Sect. 4.2.

4.1 Dependency Tuples and Chains for Probabilistic Term
Rewriting

We first show why straightforward adaptions are unsound. A natural idea to
define DPs for probabilistic rules � → {p1 : r1, . . . , pk : rk} ∈ R would be (8) or
(9):

{ �# → {p1 : r1, . . . , pi : t#j , . . . , pk : rk} | tj ∈ SubD(rj) with 1 ≤ j ≤ k } (8)

{ �# → {p1 : t#1 , . . . , pk : t#k } | tj ∈ SubD(rj) for all 1 ≤ j ≤ k } (9)

For (9), if SubD(rj) = ∅, then we insert a fresh constructor ⊥ into SubD(rj)
that does not occur in R. So in both (8) and (9), we replace rj by a single
term t#j in the right-hand side. The following example shows that this notion of
probabilistic DPs does not yield a sound chain criterion. Consider the PTRSs
R1 and R2:

R1 = {g → {1/2 : O, 1/2 : f(g, g)}} R2 = {g → {1/2 : O, 1/2 : f(g, g, g)}} (10)

R1 is AST since it corresponds to a symmetric random walk stopping at 0,
where the number of gs denotes the current position. In contrast, R2 is not AST
as it corresponds to a random walk where there is an equal chance of reducing
the number of gs by 1 or increasing it by 2. For both R1 and R2, (8) and (9)
would result in the only dependency pair G → {1/2 : O, 1/2 : G} and G → {1/2 :
⊥, 1/2 : G}, resp. Rewriting with this DP is clearly AST, since it corresponds
to a program that flips a coin until one gets head and then terminates. So the
definitions (8) and (9) would not yield a sound approach for proving AST.

R1 and R2 show that the number of occurrences of the same subterm in the
right-hand side r of a rule matters for AST. Thus, we now regard the multiset
MSubD(r) of all subterms of r with defined root symbol to ensure that multiple
occurrences of the same subterm in r are taken into account. Moreover, instead
of pairs we regard dependency tuples which consider all subterms with defined
root in r at once. Dependency tuples were already used when adapting DPs for
complexity analysis of (non-probabilistic) TRSs [37]. We now adapt them to the
probabilistic setting and present a novel rewrite relation for dependency tuples.

Definition 19 (Transformation dp). If MSubD(r) = {t1, . . . , tn}, then we
define dp(r) = cn(t#1 , . . . , t#n ). To make dp(r) unique, we use the lexicographic
ordering < on positions where ti = r|πi

and π1 < . . . < πn. Here, we extend ΣC

by fresh compound constructor symbols cn of arity n for n ∈ N.
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When rewriting a subterm t#i of cn(t#1 , . . . , t#n ) with a dependency tuple, one
obtains terms with nested compound symbols. To abstract from nested com-
pound symbols and from the order of their arguments, we introduce the following
normalization.

Definition 20 (Normalizing Compound Terms). For any term t, its con-
tent cont(t) is the multiset defined by cont(cn(t1, . . . , tn)) = cont(t1) ∪ . . . ∪
cont(tn) and cont(t) = {t} otherwise. For any term t with cont(t) = {t1, . . . , tn},
the term cn(t1, . . . , tn) is a normalization of t. For two terms t, t′, we define t ≈ t′

if cont(t) = cont(t′). We define ≈ on multi-distributions in a similar way: when-
ever tj ≈ t′j for all 1 ≤ j ≤ k, then {p1 : t1, . . . , pk : tk} ≈ {p1 : t′1, . . . , pk : t′k}.

So for example, c3(x, x, y) is a normalization of c2(c1(x), c2(x, y)). We do
not distinguish between terms and multi-distributions that are equal w.r.t. ≈
and we write cn(t1, . . . , tn) for any term t with a compound root symbol where
cont(t) = {t1, . . . , tn}, i.e., we consider all such t to be normalized.

For any rule � → {p1 : r1, . . . , pk : rk} ∈ R, the natural idea would be to
define its dependency tuple (DT) as �# → {p1 : dp(r1), . . . , pk : dp(rk)}. Then
innermost chains in the probabilistic setting would result from alternating a
DT-step with an arbitrary number of R-steps (using

i⇒∗
R). However, such chains

would not necessarily correspond to the original rewrite sequence and thus, the
resulting chain criterion would not be sound.

Example 21. Consider the PTRS R3 = {f(O) → {1 : f(a)}, a → {1/2 : b1, 1/2 :
b2}, b1 → {1 : O}, b2 → {1 : f(a)}}. Its DTs would be D3 = {F(O) →
{1 : c2(F(a),A)},A → {1/2 : c1(B1), 1/2 : c1(B2)},B1 → {1 : c0},B2 → {1 :
c2(F(a),A)}}. R3 is not iAST, because one can extend the rewrite sequence

{1: f(O)} i⇒R3 {1: f(a)} i⇒R3 {1/2 : f(b1), 1/2 : f(b2)} i⇒R3 {1/2 : f(O), 1/2 : f(f(a))} (11)

to an infinite sequence without normal forms. The resulting chain starts with

{ 1 : c1(F(O))}
i⇒D3 { 1 : c2(F(a),A)}
i⇒D3 { 1/2 : c2(F(a),B1), 1/2 : c2(F(a),B2)}
i⇒R3 {1/4 : c2(F(b1),B1), 1/4 : c2(F(b2),B1), 1/4 : c2(F(b1),B2), 1/4 : c2(F(b2),B2).}

The second and third term in the last distribution do not correspond to terms
in the original rewrite sequence (11). After the next D3-step which removes B1,
no further D3-step can be applied to the underlined term anymore, because b2
cannot be rewritten to O. Thus, the resulting chain criterion would be unsound,
as every chain (μn)n∈N in this example contains such D3-normal forms and
therefore, it is AST (i.e., lim

n→∞
|μn|D3 = 1 where |μn|D3 is the probability for

D3-normal forms in μn). So we have to ensure that when A is rewritten to B1

via a DT from D3, then the “copy” a of the redex A is rewritten via R3 to the
corresponding term b1 instead of b2. Thus, after the step with

i⇒R3 we should
have c2(F(b1),B1) and c2(F(b2),B2), but not c2(F(b2),B1) or c2(F(b1),B2).
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Therefore, for our new adaption of DPs to the probabilistic setting, we oper-
ate on pairs. Instead of having a rule � → {p1 : r1, . . . , pk : rk} from R and its
corresponding dependency tuple �# → {p1 : dp(r1), . . . , pk : dp(rk)} separately,
we couple them together to 〈�#, �〉 → {p1 : 〈dp(r1), r1〉, . . . , pk : 〈dp(rk), rk〉}.
This type of rewrite system is called a probabilistic pair term rewrite system
(PPTRS), and its rules are called coupled dependency tuples. Our new DP frame-
work works on (probabilistic) DP problems (P,S), where P is a PPTRS and S
is a PTRS.

Definition 22 (Coupled Dependency Tuple). Let R be a PTRS. For every
� → μ = {p1 : r1, . . . , pk : rk} ∈ R, its coupled dependency tuple (or simply
dependency tuple, DT) is DT (� → μ) = 〈�#, �〉 → {p1 : 〈dp(r1), r1〉, . . . , pk :
〈dp(rk), rk〉}. The set of all coupled dependency tuples of R is denoted by DT (R).

Example 23. The following PTRS Rpdiv adapts Rdiv to the probabilistic setting.

minus(x,O) → {1 : x} (12) minus(s(x), s(y)) → {1 : minus(x, y)} (13)
div(O, s(y)) → {1 : O} (14)

div(s(x), s(y)) → {1/2 : div(s(x), s(y)), 1/2 : s(div(minus(x, y), s(y)))} (15)

In (15), we now do the actual rewrite step with a chance of 1/2 or the
terms stay the same. Our new probabilistic DP framework can prove auto-
matically that Rpdiv is iAST, while (as in the non-probabilistic setting) a
direct application of polynomial interpretations via Theorem 17 fails. We get
DT (Rpdiv) = {(16), . . . , (19)}:

〈M(x, O),minus(x, O)〉 → {1 : 〈c0, x〉} (16)
〈M(s(x), s(y)),minus(s(x), s(y))〉 → {1 : 〈c1(M(x, y)), minus(x, y)〉} (17)

〈D(O, s(y)), div(O, s(y))〉 → {1 : 〈c0, O〉} (18)
〈D(s(x), s(y)), div(s(x), s(y))〉 → {1/2 : 〈c1(D(s(x), s(y))), div(s(x), s(y))〉,

1/2 : 〈c2(D(minus(x, y), s(y)),M(x, y)), s(div(minus(x, y), s(y)))〉} (19)

Definition 24 (PPTRS, i
�P,S). Let P be a finite set of rules of the form

〈�#, �〉 → {p1 : 〈d1, r1〉, . . . , pk : 〈dk, rk〉}. For every such rule, let proj1(P) con-
tain �# → {p1 : d1, . . . , pk : dk} and let proj2(P) contain � → {p1 : r1, . . . , pk :
rk}. If proj2(P) is a PTRS and cont(dj) ⊆ cont(dp(rj)) holds6 for all 1 ≤ j ≤ k,
then P is a probabilistic pair term rewrite system (PPTRS).

Let S be a PTRS. Then a normalized term cn(s1, . . . , sn) rewrites with the
PPTRS P to {p1 : b1, . . . , pk : bk} w.r.t. S (denoted i

�P,S) if there are an
1 ≤ i ≤ n, an 〈�#, �〉 → {p1 : 〈d1, r1〉, . . . , pk : 〈dk, rk〉} ∈ P, a substitution σ
with si = �#σ ∈ NFS , and for all 1 ≤ j ≤ k we have bj = cn(tj1, . . . , t

j
n) where

6 The reason for cont(dj) ⊆ cont(dp(rj)) instead of cont(dj) = cont(dp(rj)) is that in
this way processors can remove terms from the right-hand sides of DTs, see Theorem
32.
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• tji = djσ for all 1 ≤ j ≤ k, i.e., we rewrite the term si using proj1(P).
• For every 1 ≤ i′ ≤ n with i 	= i′ we have

(i) tji′ = si′ for all 1 ≤ j ≤ k or
(ii) tji′ = si′ [rjσ]τ for all 1 ≤ j ≤ k,

if si′ |τ = �σ for some position τ and if � → {p1 : r1, . . . , pk : rk} ∈ S.
So si′ stays the same in all bj or we can apply the rule from proj2(P) to
rewrite si′ in all bj, provided that this rule is also contained in S. Note that
even if the rule is applicable, the term si′ can still stay the same in all bj.

Example 25. For R3 from Example 21, the (coupled) dependency tuple for the
f-rule is 〈F(O), f(O)〉 → {1 : 〈c2(F(a),A), f(a)〉} and the DT for the a-rule is
〈A, a〉 → {1/2 : 〈c1(B1), b1〉, 1/2 : 〈c1(B2), b2〉}. With the lifting

i
�
�P,S of i

�P,S , we
get the following sequence which corresponds to the rewrite sequence (11) from
Example 21.

{1 : c1(F(O))} i
�
�DT (R3),R3

{1 : c2(F(a),A)}
i
�
�DT (R3),R3

{1/2 : c2(F(b1),B1), 1/2 : c2(F(b2),B2)}
(20)

So with the PPTRS, when rewriting A to B1 in the second step, we can simul-
taneously rewrite the inner subterm a of F(a) to b1 or keep a unchanged, but
we cannot rewrite a to b2. This is ensured by b1 in the second component of
〈A, a〉 → {1/2 : 〈c1(B1), b1〉, . . .}, since by Definition 24, if si′ contains �σ at some
arbitrary position τ , then one can (only) use the rule in the second component
of the DT to rewrite �σ (i.e., here we have si′ = F(a), si = A, and si′ |τ = a). A
similar observation holds when rewriting A to B2. Recall that with the notion of
chains in Example 21, one cannot simulate every possible rewrite sequence, which
leads to unsoundness. In contrast, with the notion of coupled DTs and PPTRSs,
every possible rewrite sequence can be simulated which ensures soundness of the
chain criterion. Of course, due to the ambiguity in (i) and (ii) of Definition 24,
one could also create other “unsuitable”

i
�
�DT (R3),R3

-sequences where a is not
reduced to b1 and b2 in the second step, but is kept unchanged. This does not
affect the soundness of the chain criterion, since every rewrite sequence of the
original PTRS can be simulated by a “suitable” chain. To obtain completeness
of the chain criterion, one would have to avoid such “unsuitable” sequences.

We also introduce an analogous rewrite relation for PTRSs, where we can
apply the same rule simultaneously to the same subterms in a single rewrite
step.

Definition 26 ( i
�S). For a PTRS S and a normalized term cn(s1, . . . , sn),

we define cn(s1, ..., sn) i
�S {p1 : b1, ..., pk : bk} if there are an 1 ≤ i ≤ n, an
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� → {p1 : r1, . . . , pk : rk} ∈ S, a position π, a substitution σ with si|π = �σ
such that every proper subterm of �σ is in NFS , and for all 1 ≤ j ≤ k we have
bj = cn(tj1, . . . , t

j
n) where

• tji = si[rjσ]π for all 1 ≤ j ≤ k, i.e., we rewrite the term si using S.
• For every 1 ≤ i′ ≤ n with i 	= i′ we have

(i) tji′ = si′ for all 1 ≤ j ≤ k or
(ii) tji′ = si′ [rjσ]τ for all 1 ≤ j ≤ k, if si′ |τ = �σ for some position τ .

So for example, the lifting
i
�
�S of i

�S for S = R3 rewrites {1 : c2(f(a), a)} to both
{1/2 : c2(f(b1), b1), 1/2 : c2(f(b2), b2)} and {1/2 : c2(f(a), b1), 1/2 : c2(f(a), b2)}.

A straightforward adaption of “chains” to the probabilistic setting using
i
�
�P,S ◦ i

�
�

*
S would force us to use steps with DTs from P at the same time

for all terms in a multi-distribution. Therefore, instead we view a rewrite
sequence on multi-distributions as a tree (e.g., the tree representation of
the rewrite sequence (20) from Example 25 is on the right). Regarding the

1 : c1(F(O))P

1 : c2(F(a),A)P

1/2 : c2(F(b1),B1) 1/2 : c2(F(b2),B2)

paths in this tree (which represent rewrite
sequences of terms with certain probabilities)
allows us to adapt the idea of chains, i.e., that
one uses only finitely many S-steps before the
next step with a DT from P.

Definition 27 (Chain Tree). T=(V,E,L, P ) is an (innermost) (P,S)-chain
tree if

1. V 	= ∅ is a possibly infinite set of nodes and E ⊆ V × V is a set of directed
edges, such that (V,E) is a (possibly infinite) directed tree where vE = {w |
(v, w) ∈ E} is finite for every v ∈ V .

2. L : V → (0, 1] × T
(
Σ � Σ#,V

)
labels every node v by a probability pv and a

term tv. For the root v ∈ V of the tree, we have pv = 1.
3. P ⊆ V \ Leaf (where Leaf are all leaves) is a subset of the inner nodes

to indicate whether we use the PPTRS P or the PTRS S for the rewrite
step. S = V \ (Leaf ∪P ) are all inner nodes that are not in P . Thus, V =
P � S � Leaf.

4. For all v ∈ P : If vE = {w1, . . . , wk}, then tv
i
�P,S {pw1

pv
: tw1 , . . . ,

pwk

pv
: twk

}.
5. For all v ∈ S: If vE = {w1, . . . , wk}, then tv

i
�S {pw1

pv
: tw1 , . . . ,

pwk

pv
: twk

}.
6. Every infinite path in T contains infinitely many nodes from P .

Conditions 1–5 ensure that the tree represents a valid rewrite sequence and
the last condition is the main property for chains.

Definition 28 (|T|Leaf , iAST). For any innermost (P,S)-chain tree T we
define |T|Leaf =

∑
v∈Leaf pv. We say that (P,S) is iAST if we have |T|Leaf = 1

for every innermost (P,S)-chain tree T.
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While we have |T|Leaf = 1 for every finite chain tree T, for infinite chain trees T
we may have |T|Leaf < 1 or even |T|Leaf = 0 if T has no leaf at all.

With this new type of DTs and chain trees, we now obtain an analogous
chain criterion to the non-probabilistic setting.

Theorem 29 (Chain Criterion). A PTRS R is iAST if (DT (R),R) is iAST.

In contrast to the non-probabilistic case, our chain criterion as presented
in the paper is sound but not complete (i.e., we do not have “iff” in Theorem
29). However, we also developed a refinement where our chain criterion is made
complete by also storing the positions of the defined symbols in dp(r) [27]. In this
way, one can avoid “unsuitable” chain trees, as discussed at the end of Example
25.

Our notion of DTs and chain trees is only suitable for innermost evaluation.
To see this, consider the PTRSs R′

1 and R′
2 which both contain g → {1/2 :

O, 1/2 : h(g)}, but in addition R′
1 has the rule h(x) → {1 : f(x, x)} and R′

2

has the rule h(x) → {1 : f(x, x, x)}. Similar to R1 and R2 in (10), R′
1 is AST

while R′
2 is not. In contrast, both R′

1 and R′
2 are iAST, since the innermost

evaluation strategy prevents the application of the h-rule to terms containing g.
Our DP framework handles R′

1 and R′
2 in the same way, as both have the same

DT 〈G, g〉 → {1/2 : 〈c0,O〉, 1/2 : 〈c2(H(g),G), h(g)〉} and a DT 〈H(x), h(x)〉 →
{1 : 〈c0, f(. . .)〉}. Even if we allowed the application of the second DT to terms of
the form H(g), we would still obtain |T|Leaf = 1 for every chain tree T. So a DP
framework to analyze “full” instead of innermost AST would be considerably
more involved.

4.2 The Probabilistic DP Framework

Now we introduce the probabilistic dependency pair framework which keeps the
core ideas of the non-probabilistic framework. So instead of applying one ordering
for a PTRS directly as in Theorem 17, we want to benefit from modularity. Now
a DP processor Proc is of the form Proc(P,S) = {(P1,S1), . . . , (Pn,Sn)}, where
P,P1, . . . ,Pn are PPTRSs and S,S1, . . . ,Sn are PTRSs. A processor Proc is
sound if (P,S) is iAST whenever (Pi,Si) is iAST for all 1 ≤ i ≤ n. It is
complete if (Pi,Si) is iAST for all 1 ≤ i ≤ n whenever (P,S) is iAST. In the
following, we adapt the three main processors from Theorems 5, 6, and 7 to the
probabilistic setting and present two additional processors.

The (innermost) (P,S)-dependency graph indicates which DTs from P can
rewrite to each other using the PTRS S. The possibility of rewriting with S is
not related to the probabilities. Thus, for the dependency graph, we can use the
non-probabilistic variant np(S) = {� → rj | � → {p1 : r1, . . . , pk : rk} ∈ S, 1 ≤
j ≤ k}.

Definition 30 (Dep. Graph). The node set of the (P,S)-dependency graph
is P and there is an edge from 〈�#1 , �1〉 → {p1 : 〈d1, r1〉, . . . , pk : 〈dk, rk〉} to
〈�#2 , �2〉 → . . . if there are substitutions σ1, σ2 and t# ∈ cont(dj) for some 1 ≤
j ≤ k such that t#σ1

i→∗
np(S) �#2 σ2 and both �#1 σ1 and �#2 σ2 are in NFS .
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(16) (17)

(18) (19)
For Rpdiv from Example 23, the (DT (Rpdiv),Rpdiv)-

dependency graph is on the side. In the non-probabilistic DP
framework, every step with i→D,R corresponds to an edge in
the (D,R)-dependency graph. Similarly, in the probabilistic set-
ting, every path from one node of P to the next node of P in a (P,S)-chain
tree corresponds to an edge in the (P,S)- dependency graph. Since every infi-
nite path in a chain tree contains infinitely many nodes from P , when track-
ing the arguments of the compound symbols, every such path traverses a cycle
of the dependency graph infinitely often. Thus, it again suffices to consider
the SCCs of the dependency graph separately. So for our example, we obtain
ProcDG(DT (Rpdiv),Rpdiv) = {({(17)},Rpdiv), ({(19)},Rpdiv)}. To automate the
following two processors, the same over-approximation techniques as for the
non-probabilistic dependency graph can be used.

Theorem 31 (Prob. Dep. Graph Processor). For the SCCs P1, ...,Pn of
the (P,S)-dependency graph, ProcDG(P, S)={(P1, S), ..., (Pn, S)} is sound and com-
plete.

Next, we introduce a new usable terms processor (a similar processor was
also proposed for the DTs in [37]). Since we regard dependency tuples instead
of pairs, after applying ProcDG, the right-hand sides of DTs 〈�#1 , �1〉 → . . . might
still contain terms t# where no instance t#σ1 rewrites to an instance �#2 σ2 of a
left-hand side of a DT (where we only consider instantiations such that �#1 σ1 and
�#2 σ2 are in NFS , because only such instantiations are regarded in chain trees).
Then t# can be removed from the right-hand side of the DT. For example, in the
DP problem ({(19)},Rpdiv), the only DT (19) has the left-hand side D(s(x), s(y)).
As the term M(x, y) in (19)’s right-hand side cannot “reach” D(. . .), the following
processor removes it, i.e., ProcUT({(19)},Rpdiv) = {({(21)},Rpdiv)}, where (21)
is

〈D(s(x), s(y)), div(s(x), s(y))〉 → {1/2 : 〈c1(D(s(x), s(y))), div(s(x), s(y))〉,
1/2 : 〈c1(D(minus(x, y), s(y))), s(div(minus(x, y), s(y)))〉}. (21)

So both Theorems 31 and 32 are needed to fully simulate the dependency
graph processor in the probabilistic setting, i.e., they are both necessary to
guarantee that the probabilistic DP processors work analogously to the non-
probabilistic ones (which in turn ensures that the probabilistic DP framework
is similar in power to its non-probabilistic counterpart). This is also confirmed
by our experiments in Sect. 5 which show that disabling the processor of The-
orem 32 affects the power of our approach. For example, without Theorem 32,
the proof that Rpdiv is iAST in the probabilistic DP framework would require a
more complicated polynomial interpretation. In contrast, when using both pro-
cessors of Theorems 31 and 32, then one can prove iAST of Rpdiv with the same
polynomial interpretation that was used to prove iTerm of Rdiv (see Example
36).
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Theorem 32 (Usable Terms Processor). Let �#1 be a term and (P,S) be
a DP problem. We call a term t# usable w.r.t. �#1 and (P,S) if there is a
〈�#2 , �2〉 → . . . ∈ P and substitutions σ1, σ2 such that t#σ1

i→∗
np(S) �#2 σ2 and

both �#1 σ1 and �#2 σ2 are in NFS . If d = cn(t#1 , . . . , t#n ), then UT (d)�#1 ,P,S denotes

the term cm(t#i1 , . . . , t
#
im

), where 1 ≤ i1 < . . . < im ≤ n are the indices of all
terms t#i that are usable w.r.t. �#1 and (P,S). The transformation that removes
all non-usable terms in the right-hand sides of dependency tuples is denoted by:

TUT(P,S) = {〈�#, �〉 → {p1 : 〈UT (d1)�#,P,S , r1〉, . . . , pk : 〈UT (dk)�#,P,S , rk〉}
| 〈�#, �〉 → {p1 : 〈d1, r1〉, . . . , pk : 〈dk, rk〉} ∈ P}

Then ProcUT(P,S) = {(TUT(P,S),S)} is sound and complete.

To adapt the usable rules processor, we adjust the definition of usable rules
such that it regards every term in the support of the distribution on the right-
hand side of a rule. The usable rules processor only deletes non-usable rules from
S, but not from proj2(P). This is sufficient, because according to Definition 24,
rules from proj2(P) can only be applied if they also occur in S.

Theorem 33 (Probabilistic Usable Rules Processor). Let (P,S) be a DP
problem. For every f ∈ Σ � Σ# let RulesS(f) = {� → μ ∈ S | root(�) =
f}. For any term t ∈ T

(
Σ � Σ#,V

)
, its usable rules US(t) are the smallest

set such that US(x) = ∅ for all x ∈ V and US(f(t1, . . . , tn)) = RulesS(f) ∪⋃n
i=1 US(ti) ∪

⋃
�→μ∈RulesS(f),r∈Supp(μ) US(r). The usable rules for (P,S) are

U(P,S) =
⋃

�#→μ∈proj1(P),d∈Supp(μ) US(d). Then ProcUR(P,S) = {(P,U(P,S))}
is sound.

Example 34. For the DP problem ({(21)},Rpdiv) only the minus-rules are usable
and thus ProcUR({(21)},Rpdiv) = {({(21)}, {(12), (13)})}. For ({(17)},Rpdiv)
there are no usable rules at all, hence ProcUR({(17)},Rpdiv) = {({(17)}, ∅)}.

For the reduction pair processor, we again restrict ourselves to multilin-
ear polynomials and use analogous constraints as in our new criterion for
the direct application of polynomial interpretations to PTRSs (Theorem 17),
but adapted to DP problems (P,S). Moreover, as in the original reduction
pair processor of Theorem 7, the polynomials only have to be weakly mono-
tonic. For every rule in S or proj1(P), we require that the expected value
is weakly decreasing. The reduction pair processor then removes those DTs
〈�#, �〉 → {p1 : 〈d1, r1〉, . . . , pk : 〈dk, rk〉} from P where in addition there is
at least one term dj that is strictly decreasing. Recall that we can also rewrite
with the original rule � → {p1 : r1, . . . , pk : rk} from proj2(P), provided that
it is also contained in S. Therefore, to remove the dependency tuple, we also
have to require that the rule � → rj is weakly decreasing. Finally, we have to
use c-additive interpretations (with cnPol(x1, . . . , xn) = x1 + . . . + xn) to handle
compound symbols and their normalization correctly.
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Theorem 35 (Probabilistic Reduction Pair Processor). Let Pol : T (Σ �
Σ#,V) → N[V] be a weakly monotonic, multilinear, and c-additive polynomial
interpretation. Let P = P≥ � P> with P> 	= ∅ such that:

(1) For every � → {p1 : r1, ..., pk : rk} ∈ S, we have Pol(�) ≥
∑

1≤j≤k pj ·Pol(rj).
(2) For every 〈�#, �〉 → {p1 : 〈d1, r1〉, . . . , pk : 〈dk, rk〉} ∈ P, we have Pol(�#) ≥∑

1≤j≤k pj · Pol(dj).
(3) For every 〈�#, �〉 → {p1 : 〈d1, r1〉, . . . , pk : 〈dk, rk〉} ∈ P>, there exists a

1 ≤ j ≤ k with Pol(�#) > Pol(dj).
If � → {p1 : r1, . . . , pk : rk} ∈ S, then we additionally have Pol(�) ≥ Pol(rj).

Then ProcRP(P,S) = {(P≥,S)} is sound and complete.

Example 36. The constraints of the reduction pair processor for the two DP
problems from Example 34 are satisfied by the c-additive polynomial interpre-
tation which again maps O to 0, s(x) to x + 1, and all other non-constant
function symbols to the projection on their first arguments. As in the non-
probabilistic case, this results in DP problems of the form (∅, . . .) and subse-
quently, ProcDG(∅, . . .) yields ∅. By the soundness of all processors, this proves
that Rpdiv is iAST.

So with the new probabilistic DP framework, the proof that Rpdiv is iAST
is analogous to the proof that Rdiv is iTerm in the original DP framework (the
proofs even use the same polynomial interpretation in the respective reduction
pair processors). This indicates that our novel framework for PTRSs has the
same essential concepts and advantages as the original DP framework for TRSs.
This is different from our previous adaption of dependency pairs for complexity
analysis of TRSs, which also relies on dependency tuples [37]. There, the power is
considerably restricted, because one does not have full modularity as one cannot
decompose the proof according to the SCCs of the dependency graph.

In proofs with the probabilistic DP framework, one may obtain DP problems
(P,S) that have a non-probabilistic structure (i.e., every DT in P has the form
〈�#, �〉 → {1 : 〈d, r〉} and every rule in S has the form �′ → {1 : r′}). We now
introduce a processor that allows us to switch to the original non-probabilistic
DP framework for such (sub-)problems. This is advantageous, because due to
the use of dependency tuples instead of pairs in P, in general the constraints
of the probabilistic reduction pair processor of Theorem 35 are harder than
the ones of the reduction pair processor of Theorem 7. Moreover, Theorem 7
is not restricted to multilinear polynomial interpretations and the original DP
framework has many additional processors that have not yet been adapted to
the probabilistic setting.

Theorem 37. (Probability Removal Processor). Let (P,S) be a probabilis-
tic DP problem where every DT in P has the form 〈�#, �〉 → {1 : 〈d, r〉} and
every rule in S has the form �′ → {1 : r′}. Let np(P) = {�# → t# | �# →
{1 : d} ∈ proj1(P), t# ∈ cont(d)}. Then (P,S) is iAST iff the non-probabilistic
DP problem (np(P),np(S)) is iTerm. So if (np(P),np(S)) is iTerm, then the
processor ProcPR(P,S) = ∅ is sound and complete.
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5 Conclusion and Evaluation

Starting with a new “direct” technique to prove almost-sure termination of prob-
abilistic TRSs (Theorem 17), we presented the first adaption of the dependency
pair framework to the probabilistic setting in order to prove innermost AST auto-
matically. This is not at all obvious, since most straightforward ideas for such
an adaption are unsound (as discussed in Sect. 4.1). So the challenge was to find
a suitable definition of dependency pairs (resp. tuples) and chains (resp. chain
trees) such that one can define DP processors which are sound and work analo-
gously to the non-probabilistic setting (in order to obtain a framework which is
similar in power to the non-probabilistic one). While the soundness proofs for our
new processors are much more involved than in the non-probabilistic case, the
new processors themselves are quite analogous to their non-probabilistic coun-
terparts and thus, adapting an existing implementation of the non-probabilistic
DP framework to the probabilistic one does not require much effort.

We implemented our contributions in our termination prover AProVE, which
yields the first tool to prove almost-sure innermost termination of PTRSs on
arbitrary data structures (including PTRSs that are not PAST). In our exper-
iments, we compared the direct application of polynomials for proving AST
(via our new Theorem 17) with the probabilistic DP framework. We evaluated
AProVE on a collection of 67 PTRSs which includes many typical probabilistic
algorithms. For example, it contains the following PTRS Rqs for probabilistic
quicksort.

rotate(cons(x, xs))→{1/2 : cons(x, xs), 1/2 : rotate(app(xs, cons(x, nil)))}
qs(nil)→{1 : nil}

qs(cons(x, xs))→{1 : qsHelp(rotate(cons(x, xs)))}
qsHelp(cons(x, xs))→{1 : app(qs(low(x, xs)), cons(x, qs(high(x, xs))))}

The rotate-rules rotate a list randomly often (they are AST, but not termi-
nating). Thus, by choosing the first element of the resulting list, one obtains
a random pivot element for the recursive call of quicksort. In addition to the
rules above, Rqs contains rules for list concatenation (app), and rules such that
low(x, xs) (resp. high(x, xs)) returns all elements of the list xs that are smaller
(resp. greater or equal) than x, see [28]. Using the probabilistic DP framework,
AProVE can prove iAST of Rqs and many other typical programs.

61 of the 67 examples in our collection are iAST and AProVE can prove iAST
for 53 (87%) of them. Here, the DP framework proves iAST for 51 examples and
the direct application of polynomial interpretations via Theorem 17 succeeds for
27 examples. (In contrast, proving PAST via the direct application of polynomial
interpretations as in [3] only works for 22 examples.) The average runtime of
AProVE per example was 2.88 s (where no example took longer than 8 s). So our
experiments indicate that the power of the DP framework can now also be used
for probabilistic TRSs.
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We also performed experiments where we disabled individual processors of
the probabilistic DP framework. More precisely, we disabled either the usable
terms processor (Theorem 32), both the dependency graph and the usable terms
processor (Theorems 31 and 32), or all processors except the reduction pair
processor of Theorem 35. Our experiments show that disabling processors indeed
affects the power of the approach, in particular for larger examples with several
defined symbols (e.g., then AProVE cannot prove iAST of Rqs anymore). So
all of our processors are needed to obtain a powerful technique for termination
analysis of PTRSs.

Due to the use of dependency tuples instead of pairs, the probabilistic DP
framework does not (yet) subsume the direct application of polynomials com-
pletely (two examples in our collection can only be proved by the latter, see
[28]). Therefore, currently AProVE uses the direct approach of Theorem 17 in
addition to the probabilistic DP framework. In future work, we will adapt fur-
ther processors of the original DP framework to the probabilistic setting, which
will also allow us to integrate the direct approach of Theorem 17 into the prob-
abilistic DP framework in a modular way. Moreover, we will develop processors
to prove AST of full (instead of innermost) rewriting. Further work may also
include processors to disprove (i)AST and possible extensions to analyze PAST
and expected runtimes as well. Finally, one could also modify the formalism of
PTRSs in order to allow non-constant probabilities which depend on the sizes
of terms.

For details on our experiments and for instructions on how to run our imple-
mentation in AProVE via its web interface or locally, we refer to https://aprove-
developers.github.io/ProbabilisticTermRewriting/.

Acknowledgements. We are grateful to Marcel Hark, Dominik Meier, and Florian
Frohn for help and advice.
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1. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
an efficient approach to termination of probabilistic programs. Proc. ACM Pro-
gram. Lang. 2(POPL), 1–32 (2017). https://doi.org/10.1145/3158122

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
Theor. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-
3975(99)00207-8

3. Avanzini, M., Dal Lago, U., Yamada, A.: On probabilistic term rewriting. Sci.
Comput. Program. 185 (2020). https://doi.org/10.1016/j.scico.2019.102338

4. Avanzini, M., Moser, G., Schaper, M.: A modular cost analysis for probabilistic
programs. Proc. ACM Program. Lang. 4(OOPSLA), 1–30 (2020). https://doi.org/
10.1145/3428240

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998). https://doi.org/10.1017/CBO9781139172752

6. Batz, K., Kaminski, B.L., Katoen, J.-P., Matheja, C., Verscht, L.: A calculus for
amortized expected runtimes. Proc. ACM Program. Lang. 7(POPL), 1957–1986
(2023). https://doi.org/10.1145/3571260

https://aprove-developers.github.io/ProbabilisticTermRewriting/
https://aprove-developers.github.io/ProbabilisticTermRewriting/
https://doi.org/10.1145/3158122
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1145/3428240
https://doi.org/10.1145/3428240
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1145/3571260


362 J.-C. Kassing and J. Giesl

7. Beutner, R., Ong, L.: On probabilistic termination of functional programs with
continuous distributions. In: Freund, S.N., Yahav, E. (eds.) PLDI 2021, pp. 1312–
1326 (2021). https://doi.org/10.1145/3453483.3454111

8. Bournez, O., Kirchner, C.: Probabilistic rewrite strategies. Applications to ELAN.
In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 252–266. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45610-4 18

9. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl,
J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-32033-3 24

10. Brockschmidt, M., Musiol, R., Otto, C., Giesl, J.: Automated termination proofs
for Java programs with cyclic data. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 105–122. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31424-7 13
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Abstract. This paper describes the formal verification of NP-hardness
reduction functions of two key problems relevant in algebraic lattice the-
ory: the closest vector problem and the shortest vector problem, both
in the infinity norm. The formalization uncovered a number of problems
with the existing proofs in the literature. The paper describes how these
problems were corrected in the formalization. The work was carried out
in the proof assistant Isabelle.
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1 Introduction

In recent years, algebraic lattices have received increasing attention for their
use in post-quantum cryptography. Algebraic lattices are additive, discrete sub-
groups of Rn, i.e. a set of points in R

n with certain structures. One can also define
lattices over finite fields, rings or modules as used in many modern post-quantum
crypto systems such as the CRYSTALS suites, NTRU and Saber.

Two problems form the very basis for computationally hard problems on lat-
tices, namely the closest vector problem (CVP) and the shortest vector problem
(SVP). Given a finite set of basis vectors in R

n, the set of all linear combinations
with integer coefficients forms a lattice. In optimization form, the SVP asks for
the shortest vector in the lattice and the CVP asks for the lattice vector closest
to some given target vector, both with respect to some given norm.

When working over the reals, the p-norm (for p ≥ 1) is defined as p
√∑

i |xi|p.
The most common examples are the Euclidean norm ‖x‖2 and the infinity norm
‖x‖∞ = maxi{|xi|}, which is the limit for p → ∞.

We have formalized, corrected and verified a number of NP-hardness proofs
from the literature, uncovering a number of mistakes along the way. The first
NP-hardness proof of the CVP and SVP in infinity norm is due to van Emde-
Boas [7]. For other norms (especially for the Euclidean norm), there is only a
randomized reduction for the NP-hardness of the SVP so far [2]. For the CVP,
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NP-hardness has been shown in any p-norm for p ≥ 1. One exemplary proof can
be found in the book by Micciancio and Goldwasser [15, Chapter 3, Thm 3.1].

The CVP and SVP were the starting point for lattice-based post-quantum
cryptography [16]. Moreover, the relevance of these problems can also be seen
from the rich literature on approximation results. For example, the LLL-
algorithm by Lenstra, Lenstra and Lovász [12] gives a polynomial-time algorithm
for lattice basis reduction which solves integer linear programs in fixed dimen-
sions. Using this reduced basis, one can find good approximations to the CVP
using Babai’s algorithm [3] for certain approximation factors. Still, for arbitrary
dimensions, the problem remains NP-hard. Further approximation results for
the CVP, SVP and integer programming can be found elsewhere [6,9,10,14,19].
These approximation problems are used in cryptography. However, we will focus
on the exact CVP and SVP in this paper.

A number of more basic NP-hardness proofs have been formalized in several
theorem provers so far. For example, there are formalizations of the Cook-Levin
Theorem in Coq [8] and Isabelle [4]. Formalizing Karp’s 21 NP-hard problems
(including the Subset Sum and Partition Problems assumed to be NP-hard in
this paper) in Isabelle is an ongoing project.

1.1 Contributions

In this paper we present NP-hardness proofs of the CVP and SVP in infinity
norm that have been verified in a proof assistant. We roughly follow the book by
Micciancio and Golwasser [15, Chapter 3, Thm 3.1] and the report by van Emde-
Boas [7]. However, many problems with the original proofs were encountered
during the formalization efforts. We will have a look at different approaches and
their advantages or problems.

We also verified the proof of NP-hardness of the CVP for any finite p ≥ 1
from the book by Micciancio and Goldwasser. This verification did not uncover
any problems with the informal proof. Thus we do not discuss it in detail.

These formalizations were carried out with the help of the proof assistant
Isabelle [17,18] and are available online [11]. They comprise 5200 lines. To the
authors knowledge, they are the first formalizations of hardness proofs for lattice
problems. Because of the importance of the SVP and CVP and the problems
in existing proofs, we consider our proofs a contribution to the foundations of
verified cryptography. However, we do not claim that these hardness results
directly imply quantum-resistance of any lattice-based cryptosystems.

1.2 Overview

The paper is structured as follows. Section 2 introduces the foundations. The
rest of the paper is dedicated to the proofs, which are phrased as the following
two polynomial time reduction chains:

– Subset Sum ≤p CVP
– Partition ≤p Bounded Homogeneous Linear Equations ≤p SVP

https://isabelle.in.tum.de/index.html
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Subset Sum and Partition are famous fundamental problems whose NP-hardness
has been proved many times in the literature and which we take for granted.

Section 3 presents the reduction of Subset Sum to the CVP. Differences
between our formalization and the book by Micciancio and Goldwasser [15] are
presented with examples that demonstrate problems with the original proof.
Moreover, an example is given why the generalization to the SVP given in [15]
does not work.

Therefore we turn to the early proof of NP-hardness of the SVP by van Emde
Boas [7]. This proof uses the Bounded Homogeneous Linear Equations problem
(BHLE) which is introduced in Sect. 4. The formalization of this proof is one
of the major achievements in this paper. It posed a significant challenge since
it often relied on human intuition and had to be restructured appropriately to
allow a formal proof. The main proof steps are explained and difficulties in the
formalization effort are described. This proof only works in infinity norm and we
explain why. In Sect. 5, the reduction from BHLE to the SVP is given. Again,
this proof was quite elaborate to formalize as there were inaccuracies and a
lot of intuition was involved. Differences between the formal proof and [7] are
explained by examples.

In Sect. 6, we have a quick look at the reduction proof for the CVP in p-norm
(for finite p ≥ 1). In the case of the SVP there only exists a randomized hardness
proof in Euclidean norm by Ajtai [1] up to now.

Finally, the time complexity of the reduction functions are considered in
Sect. 7. We conclude the paper with a short summary and outlook.

2 Foundations

This section introduces known foundations mainly to fix the terminology and
notation: problem reductions, lattices, and the combinatorial problems under
consideration (CVP, SVP, Partition and Subset Sum).

2.1 Problem Reductions

Formally, a decision problem is given by the set of YES-instances P and a set
Γ of problem instances, where P ⊆ Γ . We often associate the decision prob-
lem with the set of YES-instances, when the instance set Γ is obvious and not
explicitly defined. In this paper we will often phrase problems informally (e.g.
“decide if p is prime”) rather than give them explicitly as sets. For example, the
decision problem “decide if a natural number p is prime” will be formalized in
the following way: the set of problem instances is Γ = N (in Isabelle these are
all elements of type nat); and the YES-instances are P = {p ∈ N | p is prime}
(in Isabelle this is a set of type nat set).

Definition 1 (Problem reduction). Let A ⊆ Γ and B ⊆ Δ be two problems.
A function f : Γ → Δ is a reduction from A to B if it fulfills the following
properties:
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– ∀a ∈ Γ. a ∈ A ⇔ f(a) ∈ B
– f can be computed in polynomial time

If A is NP-hard, a reduction to B proves NP-hardness of B.
In this paper we present reduction functions informally (e.g. “an a is reduced

to a b that is constructed like this”) and often with copious amounts of “. . . ” to
construct vectors etc. Of course in the formalization these reduction functions
are spelled out in complete detail. Since all operations used in the reduction
functions in this paper are elementary, the polynomial time property has not
been formalized but is briefly discussed in Sect. 7. The focus of our paper are
the proofs a ∈ A ⇔ f(a) ∈ B.

2.2 Lattice-Based Computational Problems

To have a better understanding, we will first introduce lattices as such. Lattices
are a structured set of points. They form an additive, discrete subgroup of Rn.
Formally, we define the following.

Definition 2 (Lattice). Let A = {a1, . . . , an} ⊂ R
n be a set of linearly inde-

pendent vectors. Then the integer span of A forms a lattice L, that is:

L =

{
n∑

i=1

ciai | ci ∈ Z

}

Fig. 1. Two exemplary lattices in R
2

Example 1. In Fig. 1 two examples of lattices in R
2 are depicted. The red point

is the origin. The two blue arrows show the basis vectors a1 and a2 that are
linearly independent and span the lattice. Every integer combination of the two
blue arrows is a black point, an element of the lattice.

We can see that the grid spanned by the basis vectors is discrete and has some
recurring structures. These structures are determined by the basis vectors: the
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angle between them and their length. In Fig. 1a, the angle between the two basis
vectors is 90◦ yielding a rectangular fundamental domain. Whereas in Fig. 1b, we
have an angle of 60◦ between the basis vectors and equal length. This produces
a fundamental domain of an equilateral triangle.

Indeed, the automorphism group of a lattice is a symmetry group, see Con-
way [5, Chapter 3.4]. For example, in Fig. 1a the symmetry group is pmm and
in Fig. 1b is it p3m1 [13].

In the rest of the text and in the formalization we restrict to finite bases over
Z (instead of R), simply for computability reasons. Of course bases over Q can
be transformed into bases over Z by scaling all basis vectors.

The starting point of most known hard problems on lattices are the shortest
vector problem and the closest vector problem. They are defined below (as usual
in decision and not in optimization form). The lattice L ⊆ Z

n is assumed to be
generated by a finite basis in Z

n.

Definition 3 (Closest Vector Problem (CVP)). Given a lattice L, a vector
b ∈ Z

n and an estimate k, decide whether there exists a vector v ∈ L such that

‖v − b‖ ≤ k

Definition 4 (Shortest Vector Problem (SVP)). Given a lattice L and
an estimate k, determine whether there exists a vector v ∈ L such that

‖v‖ ≤ k and v �= 0

2.3 Partition and Subset Sum Problems

Recall that we plan to prove NP-hardness of the CVP and SVP in the case of
the infinity norm by reducing the well-studied NP-complete Subset Sum and
Partition problems to the CVP and SVP. We state the definitions.

Definition 5 (Partition problem). Given a finite list of integers a1, . . . , an,
does there exist a partition of {1 . . . n} into subsets I and {1 . . . n} \ I such that

∑

i∈I

ai =
∑

i∈{1...n}\I
ai

The Partition problem can be seen as a special case of the Subset Sum
problem.

Definition 6 (Subset Sum problem). Given a finite list of integers
a1, . . . , an and an integer s, decide whether there exists a subset S of {1 . . . n}
such that ∑

i∈S

ai = s
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2.4 Notation

Throughout the paper we use traditional mathematical notation, in particular
the graphical “...”. The formal Isabelle notation is by necessity more verbose
(and precise). Our formalization employs both lists and vectors as a type for
finite sequences and converts between them where necessary. For reasons of pre-
sentation we blur this distinction in the paper.

3 CVP

In this section, we formalize the proof of the NP-hardness of the CVP in the
infinity norm along the lines of [15, p 48., Chap. 3.2, Thm 3.1] by reducing Subset
Sum to the CVP.

An instance a1, . . . , an, s of Subset Sum is mapped to the following instance
of the CVP:

L =

⎛

⎜⎜⎜⎜
⎜
⎝

a1 · · · an

a1 · · · an

2 0
. . .

0 2

⎞

⎟⎟⎟⎟
⎟
⎠

· Zn b =

⎛

⎜⎜⎜⎜
⎜
⎝

s − 1
s + 1

1
...
1

⎞

⎟⎟⎟⎟
⎟
⎠

k = 1 (1)

We proved the following theorem:

Theorem 1. The above mapping is a reduction from the Subset Sum problem
to the CVP (in infinity norm).

This implies that the CVP (in infinity norm) is an NP-hard problem.
The reduction function used by Micciancio and Goldwasser [15] actually looks

a bit different. The image of a1, . . . , an, s would be

B =

⎛

⎜⎜⎜
⎝

a1 · · · an

2 0
. . .

0 2

⎞

⎟⎟⎟
⎠

L = B · Zn b =

⎛

⎜⎜⎜
⎝

s
1
...
1

⎞

⎟⎟⎟
⎠

k = 1 (2)

However, the proof in [15, p. 49] with this reduction function works only for
p < ∞. It goes along the lines of the following idea: Take k = p

√
n. In the case

of p = ∞, we get k = limp→∞ p
√

n = 1. Then we can formulate the following
equality (equation (3.5) in [15, p. 49]):

‖Bx − b‖pp =

∣∣
∣∣∣

n∑

i=1

aixi − s

∣∣
∣∣∣

p

+
n∑

i=1

|2xi − 1|p (3)

Given a YES-instance a1, . . . , an, s of Subset Sum, there exists a vector x =
(x1, . . . , xn) ∈ {0, 1}n, such that

∑n
i=1 aixi − s = 0 and |2xi − 1| = 1. Then

‖Bx − b‖pp = n which proves this case.
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Given a YES-instance of the CVP defined by L, t and k that are the image of
a1, . . . , an, s under the reduction function as in (2), we get ‖Bx− b‖pp ≤ n. Since
all values are integers, we have |2xi−1| ≥ 1. It follows that

∑n
i=1 aixi−s = 0 and

|2xi − 1| = 1. Thus, we can deduce that a1, . . . , an, s was indeed a YES-instance
of Subset Sum.

The major problem we encountered was that this proof works fine for p < ∞
but for p = ∞, the sum in (3) becomes a maximum instead. The equation then
reads

‖Bx − b‖∞ = max

(∣∣∣∣∣

n∑

i=1

aixi − s

∣∣∣∣∣
, |2xi − 1| for 1 ≤ i ≤ n

)

This invalidates the arguments in the proof since |∑n
i=1 aixi − s| can now be in

the range {−1, 0, 1}. The constraints are too lax to ensure the equality to zero.
A solution was to alter the matrix and target vector and add another entry.

The matrix and target vector we used are given in Eq. (1). The alternation to
s − 1 and s + 1 forces a linear combination of the ai to be exactly s in the
hardness proof, since |∑i ciai − (s ± 1)| ≤ 1.

After communicating with Daniele Micciancio, one of the authors of [15], he
suggested using a constant c > 1 and the generating instance

L =

⎛

⎜⎜⎜
⎝

c · a1 · · · c · an

2 0
. . .

0 2

⎞

⎟⎟⎟
⎠

· Zn b =

⎛

⎜⎜⎜
⎝

c · s
1
...
1

⎞

⎟⎟⎟
⎠

k = 1

This solves the problem as well and can be implemented using e.g. c = 2. This
technique is described later in the book [15, pp. 49–51] when trying to explain
the NP-hardness proof for the SVP in the infinity norm.

3.1 Towards the SVP

The authors of [15] argue that the reduction argument of the SVP can be deduced
generating an instance of the SVP using the Subset Sum instance a1, . . . , an, s
in the following way. For c > 1, e.g. c = 2, take

B =

⎛

⎜⎜
⎜
⎝

c · a1 · · · c · an c · s
2 0 1

. . . 1
0 2 1

⎞

⎟⎟
⎟
⎠

L = B · Zn+1 k = 1

The authors claim that every shortest vector in the image of the reduction func-
tion has −1 as last coefficient. For example, let a YES-instance of the SVP be
defined by the generating matrix B of the lattice and let x = (x1, . . . , xn,−1)T
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be the coefficients such that Bx is a shortest vector. Then we know that

‖Bx‖∞ =

∣∣∣
∣∣∣∣∣∣

∣∣∣
∣∣∣∣∣∣

⎛

⎜⎜⎜
⎝

c · (x1a1 + · · · + xnan − s)
2x1 − 1

...
2xn − 1

⎞

⎟⎟⎟
⎠

∣∣∣
∣∣∣∣∣∣

∣∣∣
∣∣∣∣∣∣
∞

≤ 1

Since c > 1, it follows, that x1a1 + · · · + xnan − s = 0, which yields a solution
for the given Subset Sum instance a1, . . . , an, s.

However, this reduction does not always work as the following example shows:

Example 2. Given the Subset Sum instance (a1, a2, a3, s) = (1, 1, 1, 1). This is a
YES-instance, since a solution is given by x1 = 1, x2 = 0 and x3 = 0. The basis
matrix of the corresponding SVP would be (with c > 1)

B =

⎛

⎜⎜
⎝

c c c c
2 0 0 1
0 2 0 1
0 0 2 1

⎞

⎟⎟
⎠

Take for example the vector v = B · (−1,−1,−1, 3)T = (0, 1, 1, 1)T . It has
infinity norm 1 and is thus a shortest vector in the lattice generated by B.
However, this vector has the last coefficient 3 and not −1, even though it clearly
is a shortest vector of the lattice given by B. The corresponding scaled “solution”
for Subset Sum would be (1/3, 1/3, 1/3,−1) but since only integer values are
allowed in the solution space, this is not a solution in our sense.

We consider another example. Let the Subset Sum instance be a′
1 = 3, s′ = 1.

We can easily see that this is not a YES-instance, i.e. there exists no solution.
Still, the corresponding SVP instance given via the reduction function is gener-
ated by the matrix

B′ =
(

c · 3 c · 1
2 1

)

In this case the coefficients (−1, 3)T yield a shortest vector in the lattice spanned
by B′, since ∣∣∣

∣

∣∣∣
∣B

′
(−1

3

)∣∣∣
∣

∣∣∣
∣
∞

=
∣∣∣
∣

∣∣∣
∣

(
0
1

)∣∣∣
∣

∣∣∣
∣
∞

≤ 1

Thus, B′ defines a YES-instance of the SVP, but the original Subset Sum
instance is not a YES-instance.

In [15], it is stated for the infinity norm that any shortest vector yields a
solution for the Subset Sum Problem, which is not the case in these examples:
we cannot ensure that a shortest vector always has −1 as a last coordinate.

Although the proof in [15] does not work out as expected, there is still
the reduction proof by van Emde-Boas [7] which reduces a problem called the
Bounded Homogeneous Linear Equation problem to the SVP in infinity norm.
This will be discussed in the next two sections.
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4 Bounded Homogeneous Linear Equations

A technical report by Peter van Emde-Boas [7] gives another reduction proof
for the NP-hardness of the SVP in infinity norm. The author first reduces the
Partition Problem to a problem called Bounded Homogeneous Linear Equation
(BHLE) which is then reduced to the SVP.

Definition 7 (Bounded Homogeneous Linear Equations problem).
Given a finite vector of integers b ∈ Z

n and a positive integer k, decide whether
there exists an x ∈ Z

n \ {0} with ‖x‖∞ ≤ k such that

〈b, x〉 = 0

We have verified a reduction from Partition to BHLE, and thus BHLE is
NP-hard.

Theorem 2. There is a reduction from Partition to BHLE in infinity norm.

The proof is carefully engineered and rather intricate. Differences to the original
proof and problems encountered during the formalization are:

– Our formal proof has a different structure than the proof in the technical
report [7]. Indeed, the technical report first proves the reduction of a weaker
form of Partition to BHLE and then argues that “omitting” an element yields
the desired result as it adds stricter constraints. In the formalization we skip
this intermediate step and directly prove the existence of an appropriate
reduction function.

– Steps that seem trivial in the technical report often require a long formal
proof. What can be reasoned by intuition in a pen-and-paper proof has to
be elaborated in the formal proof. Intuition is also sometimes used for hand-
waving over small gaps or imprecisions.

– Indexing vectors and lists has been a problem in the formalization. In pen-
and-paper proofs, one can argue easily about “omitting” an element of a
list even though this is imprecise and often misuses the notation. In the
formalization one cannot simply skip an index. All indexing functions in the
formalization have to be total. “Omitting” an element can only be solved by
re-indexing and re-structuring the lists in the proof.

– Numbers are interpreted in different number systems during the proof. In
contrast to the original proof, the formalization has to explicitly state the
digits for a change of basis and show equivalence. This leads to verbose and
elaborate proofs. To make proofs easier, we use the concrete basis d = 5
instead of an unspecified basis d > 4 as in [7]. Furthermore, the number M
must use the absolute values of the ai (omission in the definition of M in [7]).
The formal definition is stated below.

– The proof involved many arguments about manipulations of huge sums.
Working with huge sums entails very large proof states where the exist-
ing proof automation mostly failed on. These proof states require detailed
(but still readable) proofs and occasional manual instantiation of theorems.
Another possible solution to get smaller proof states is to introduce local
abbreviations for subterms.
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Let us have a look at the proof and its difficulties in the formalization in
more detail. We start from a Partition instance a = a1, . . . , an. Note that we
ignore the trivial case n = 0 in this presentation (but deal with it in the formal
proofs)—this means n − 1 ≥ 0. We reduce a to a BHLE instance b as follows:

– Define

M = 2 · (
n∑

i=1

|ai|) + 1 (4)

– For 1 ≤ i < n generate a 5-tuple

bi,1 = ai + M · (54i−4 + 54i−3 + 54i−1) (5)

bi,2 = M · (54i−3 + 54i)

bi,3 = M · (54i−4 + 54i−2)

bi,4 = ai + M · (54i−2 + 54i−1 + 54i)

bi,5 = M · (54i−1)
bi = bi,1, bi,2, bi,4, bi,5, bi,3

Note that bi,3 has moved to the last position in bi.
– For i = n generate only a 4-tuple:

bn,1 = an + M · (54n−4 + 54n−3 + 54n−1)

bn,2 = M · (54n−3 + 1)

bn,4 = an + M · (54n−2 + 54n−1 + 1)

bn,5 = M · (54n−1) (6)
bn = bn,1, bn,2, bn,4, bn,5

Note that
• bn,3 is omitted from bn to restrict the constraints necessary for the proof

and
• that in bn,2 and bn,4 the last summand changes to a +1 in comparison to

the other bi,2 and bi,4.

In summary, the entry bi,3 is uniformly in the last position in the bi but omitted
from the final bn.

The Partition instance a of length n is reduced to a vector b of length 5n−1:

b = (b1, . . . , bn−1, bn) (7)

The NP-hardness proof now follows in three steps:

1. We need to show an auxiliary lemma.
2. We show that a YES-instance of Partition is reduced to a YES-instance of

BHLE.
3. We show that the pre-image of a YES-instance of BHLE is indeed a YES-

instance in Partition.
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4.1 Auxiliary Lemma

As a first step, the proof needs a short auxiliary lemma from number theory.

Lemma 1. Let x, y, c ∈ Z
n and M be an integer. Assume that M >

∑n
i=1 |xi|

and that |ci| ≤ 1 for all 1 ≤ i ≤ n. Furthermore, let the following equation hold:

n∑

i=1

ci · (xi + M · yi) = 0 (8)

Then we have
〈c, x〉 = 0 and 〈c, y〉 = 0

In this lemma, we can reinterpret xi + M · yi from (8) as a number in basis M
with lowest digit xi. Even with a coefficient ci, the lowest digit in basis M has
to be zero, as well as the rest. By splitting off the lowest digits consecutively, we
can show, that indeed all digits in basis M have to equal zero.

4.2 a ∈ Partition =⇒ b ∈ BHLE

This direction is quite easy. Let a1, . . . , an be a YES-instance of partition with
partitioning set I. We will show that the following vector x is a solution to the
corresponding BHLE:

x = (x1, . . . , xn−1, xn)

xi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1,−1, 0,−1, 0 i ∈ I ∧ n − 1 ∈ I

0, 0,−1, 1, 1 i ∈ I ∧ n − 1 /∈ I

0, 0,−1, 1, 1 i /∈ I ∧ n − 1 ∈ I

1,−1, 0,−1, 0 i /∈ I ∧ n − 1 /∈ I

1 ≤ i < n

xn = 1,−1, 0,−1

We have to show that 〈b, x〉 = 0. This is proven by plugging in the definitions
and rearranging terms in the sum of the scalar product such that they cancel
out. As a last step in the proof, we need to show that ‖x‖∞ ≤ 1. For the infinity
norm this is quite easy. However, it would not be true for other norms. For p ≥ 1
and p < ∞ we have for n ≥ 1:

‖x‖p = p
√

3n > 1

Thus, the chosen constraints x only work in infinity norm.

4.3 a ∈ Partition ⇐= b ∈ BHLE

This direction is harder. Let b be a YES-instance of BHLE. That is, there exists
a nonzero x such that 〈b, x〉 = 0 and ‖x‖∞ ≤ 1. We have to show that there is
a partition I on a1, . . . , an with

∑
i∈I ai =

∑
i∈{1...n}\I ai.
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The proof idea works as follows. First, we apply the auxiliary lemma and
get a constraint on the ai on the one hand, and a condition on the xi with
coefficients that are powers of 5 on the other hand. Using this condition on the
xi, we generate equational constraints on the entries of x by looking at the digits
in basis 5. We argue that a number equals zero if and only if all its digits are
zero.

The generated equations lead to a good characterisation of x, namely the
weight w = x5(n−1)+1. From the assumption that ‖x‖∞ ≤ 1, we deduce |w| ≤ 1.
Again, this step can only be reasoned in the infinity norm. For other p-norms, this
argumentation breaks as we need the property |w| ≤ 1 to complete the proof.
Using the value of w, we can constuct a partitioning set I with the required
property from the equation on the ai.

5 SVP

Knowing that the BHLE is indeed an NP-hard problem, we reduce it to the
SVP. Then we can conclude that the SVP in infinity norm is NP-hard.

Theorem 3. There is a reduction from BHLE to the SVP in infinity norm.

Again some difficulties were met when formalizing the proof for the above
theorem. First of all, note that the terminology in [7] and nowadays is a bit
different. In [7], the shortest vector problem only denotes the shortest vector
problem in the Euclidean norm. What we call the shortest vector problem in
the infinity norm is named closest vector problem in [7]. To make terminology
even more confusing, our understanding of the closest vector problem is called
the nearest vector problem in [7]. To make the notation clear, we provide a table
for reference in Fig. 2.

technical report [7] our notation
closest vector problem SVP in infinity norm
shortest vector problem SVP in Euclidean norm
nearest vector problem CVP

Fig. 2. Notation

A more mathematical problem encountered was that the reduction itself used
in [7] was not entirely correct. In the reduction two factors k′ = k+1 and k′′ were
introduced. These factors should have certain properties to allow the arguments
of the reduction proof to go through. However, this is only true when tweaking
these factors a bit to make the whole proof watertight. We will now have a closer
look.
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Given the BHLE instance b = (b1, . . . , bn) and k, create the following SVP
instance:

L =

⎛

⎜
⎜⎜
⎝

1 0 0
. . .

...
0 1 0
− (k + 1) · b − k′′

⎞

⎟
⎟⎟
⎠

· Zn k = k

where k′′ is the factor in question. In the technical report, we have

k′′ = 2 · (k + 1) · (
∑

i

bi) + 1

The following example however shows that this factor is not enough.

Example 3. Consider the BHLE instance given by b = (1,−1) and k = 1. This
is a YES-instance, since the vector (1, 1) yields the expected properties.

Define the following matrices.

B0 =

⎛

⎝
1 0 0
0 1 0
2 −2 1

⎞

⎠ B1 =

⎛

⎝
1 0 0
0 1 0
2 −2 9

⎞

⎠ B2 =

⎛

⎝
1 0 0
0 1 0
6 −6 25

⎞

⎠

The associated SVP instance is the lattice generated by B0. Then the vector
(0, 0, 1)T with infinity norm 1 is a solution to the SVP instance generated by the
basis matrix B0. However, since the last entry is nonzero, this does not provide
a solution for BHLE. Contrary to this example, the proof in the technical report
shows that for all SVP solutions the last entry must be zero.

The reason, why the argument in the technical report breaks at this point is
because b1 + b2 = 0, thus making k′′ = 1 very small. One step to prevent this is
to use the absolute values of the bi in k′′ instead. The new k′′

1 we consider is

k′′
1 = 2 · (k + 1) · (

∑

i

|bi|) + 1

With this new factor k′′
1 we get the generating matrix B1 and the vector

(0, 0, 1) is no longer a shortest vector.
Still, this is not enough. Consider the same b = (1,−1) as above, but let

k = 5. Then we get B2 as the generating matrix of the SVP lattice. The vector
x = (0, 5, 1)T is a shortest vector whose last entry is nonzero. Again it contradicts
the proof in the technical report. The reason this time is the following: the
argument that (k+1) (

∑n
i=1 xibi) and k′′

1 have different relative sizes fails. Indeed,
we have ∣∣

∣∣∣∣

∣∣
∣∣∣∣

⎛

⎝
1 0 0
0 1 0
6 −6 25

⎞

⎠ ·
⎛

⎝
0
5
1

⎞

⎠

∣∣
∣∣∣∣

∣∣
∣∣∣∣
∞

=

∣∣
∣∣∣∣

∣∣
∣∣∣∣

⎛

⎝
0
5

−5

⎞

⎠

∣∣
∣∣∣∣

∣∣
∣∣∣∣
∞

= 5 ≤ k

We can obtain different relative sizes of (k+1) (
∑n

i=1 xibi) and k′′
1 by defining

k′′
2 = 2 · k · (k + 1) · (

∑

i

|bi|) + 1 (9)
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Now we can make sure that the last entry of a solution to the SVP problem
is indeed zero. For the proof of Theorem 3 we consider the reduction given by

L =

⎛

⎜⎜
⎜
⎝

1 0 0
. . .

...
0 1 0
− (k + 1) · b − k′′

2

⎞

⎟⎟
⎟
⎠

︸ ︷︷ ︸
B

·Zn k = k

where B denotes the basis matrix generating the lattice L as given above.
Consider a solution x = (x1, . . . , xn+1) of the SVP with ‖Bx‖∞ ≤ k. Then

we have

Bx =

⎛

⎜⎜⎜
⎝

1 0 0
. . .

...
0 1 0
− (k + 1) · b − k′′

2

⎞

⎟⎟⎟
⎠

·

⎛

⎜⎜⎜
⎝

x1

...
xn

xn+1

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

x1

...
xn

(k + 1)(
∑n

i=1 xibi) + xn+1 · k′′
2

⎞

⎟⎟⎟
⎠

As this yields a solution to the SVP, we get:

|(k + 1)(
n∑

i=1

xibi) + xn+1 · k′′
2 | ≤ k (10)

Then we calculate:

(k + 1)(
n∑

i=1

xibi) + xn+1 · k′′
2 ≤ (k + 1)(

n∑

i=1

|xi||bi|) + xn+1 · k′′
2 ≤

≤ (k + 1)k(
n∑

i=1

|bi|) + xn+1 · k′′
2

Assuming that xn+1 �= 0, we have

|(k + 1)k(
n∑

i=1

|bi|)| < |2 · k · (k + 1) · (
∑

i

|bi|) + 1| = |k′′
2 | ≤ |xn+1 · k′′

2 |

Thus the two summands indeed have different relative sizes and can never cancel
out the other summand. This leads to a contradiction to (10). Therefore, xn+1 =
0 must be true and (x1, . . . , xn) constitutes a solution to the BHLE when using
k′′
2 as in (9).

6 Other p-Norms

Up to now, we have investigated lattice problems under the infinity norm. Even
though this yields nice hardness results, in practice the Euclidean norm is used
more often. Unfortunately, when considering p-norms things do not play out as
nicely. In this section, we assume 1 ≤ p < ∞ whenever we talk about a specific p.
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For the CVP, there is a generalisation of the proof for every p-norm in [15, p.
48, Chap. 3.2, Thm 3.1] which we also formalized. Let a1, . . . , an, s be an instance
of Subset Sum. The reduction function maps this instance to:

L =

⎛

⎜⎜⎜
⎝

a1 · · · an

2 0
. . .

0 2

⎞

⎟⎟⎟
⎠

· Zn b =

⎛

⎜⎜⎜
⎝

s
1
...
1

⎞

⎟⎟⎟
⎠

k = p
√

n

Then the following theorem holds:

Theorem 4. The above mapping is a reduction from the Subset Sum problem
to the CVP in p-norm.

This implies that the CVP in p-norm is an NP-hard problem. The outline to
the proof is given in Sect. 3 after Theorem 1. The important difference to the
infinity norm is that the bound k scales with the dimension n of the lattice.

For the SVP, there is no known deterministic NP-hardness result in the
Euclidean norm, or even any p-norm. However, Ajtai [1,2] found an interesting
alternative which is quite useful for the application in cryptography, namely
randomized reductions using polynomial-time probabilistic reduction functions.
In cryptography, these results guarantee the hardness of “average” cases. That
is, given an average instance according to a probability distribution, it will most
likely be intractable.

7 Time Complexity

As stated in Sect. 2, time complexity of the above reduction functions has not
been formalized. However, we give a short explanation why all reduction func-
tions are indeed in polynomial time.

Subset Sum to CVP: The reduction function as given in Eq. (1) creates
(n + 2)(n + 1) + 1 values using only memory access or one addition. Therefore,
the time complexity in this case is O(n2).

Partition to BHLE: In this case, the reduction function maps the input a of
length n to b as defined in Eq. (7). The value k = 1 is fixed. Then a is mapped
to a vector of length 5n − 1. When calculating the bi, we need to calculate the
value of M as in (4). As we sum over all input values, this lies in O(n). Each
bi can then be calculated in O(n) since it only contains a constant number of
additions of the input with fixed cofactors (see (5)–(6)). Putting the construction
of the list and the calculation of the bi together, we find that the whole reduction
function is in O(n2).

BHLE to the SVP: Consider the reduction function as given in Eq. (5) using
the value k′′

2 as in (9). Calculating k′′
2 requires n + 2 memory accesses which

are processed in n + 4 arithmetic operations, thus having a time complexity of
O(n). Every other entry in the matrix is calculated on O(1), since they contain
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at most two memory accesses and at most two arithmetic operations. The input
generates (n+1)2 +1 values, of which (n+1)(n+1) are in O(1) (namely all the
zeros and ones, the vector (k + 1) · a and the constraint k) and one is calculated
in O(n) (namely k′′

2 ). Thus, the whole reduction function lies in O(n2).

8 Outlook

With this paper, we now have a formal proof for NP-hardness of the CVP and
SVP in the infinity norm, as well as a formal proof of the CVP in p-norm (for
1 ≤ p < ∞). In the formalization process, many gaps and imprecisions in the
pen-and-paper proofs were fixed. The changes to the original proofs have been
elaborated with explanations and examples. Unfortunately, giving a determin-
istic reduction proof of the SVP in p norm for p < ∞ is still an open prob-
lem. Under probabilistic assumptions, Ajtai showed NP-hardness of the SVP in
Euclidean norm in [2].

An interesting topic for future work is to develop a framework for probabilistic
reductions such as in [2]. This will give the foundation to extend formalization
of hardness proofs to other problems in lattice theory, especially those used in
lattice-based cryptography, such as the Learning with Errors (LWE) Problem,
Ring-LWE and Module-LWE. This will underline the security of many lattice-
based crypto systems. Another topic for future work is to formalize the hardness
proofs for approximate versions of the CVP and SVP.

Acknowledgements. We thank Manuel Eberl for continuous support and fruitful
discussions. The first author gratefully acknowledges the financial support of this work
by the research training group ConVeY funded by the German Research Foundation
under grant GRK 2428.

References

1. Ajtai, M.: Generating hard instances of lattice problems. Electron. Colloquium
Comput. Complex. 3 (1996)

2. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In: Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC 1998, Dallas, Texas, USA, pp. 10–19. ACM Press
(1998)

3. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6, 1–13 (1986)

4. Balbach, F.J.: The Cook-Levin theorem. Archive of Formal Proofs (2023). https://
isa-afp.org/entries/Cook Levin.html. Formal proof development

5. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer,
New York (1999). https://doi.org/10.1007/978-1-4757-6568-7

6. Dinur, I., Kindler, G., Raz, R., Safra, S.: Approximating CVP to within almost-
polynomial factors is NP-hard. Combinatorica 23, 205–243 (2003). https://doi.
org/10.1007/s00493-003-0019-y

7. van Emde Boas, P.: Another NP-complete partition problem and the complexity
of computing short vectors in a lattice. Technical report 81-04. Technical report,
Mathematisch Instituut, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands
(1981)

https://isa-afp.org/entries/Cook_Levin.html
https://isa-afp.org/entries/Cook_Levin.html
https://doi.org/10.1007/978-1-4757-6568-7
https://doi.org/10.1007/s00493-003-0019-y
https://doi.org/10.1007/s00493-003-0019-y


Verification of NP-Hardness Reduction Functions for Exact Lattice Problems 381

8. Gäher, L., Kunze, F.: Mechanising complexity theory: the Cook-Levin theo-
rem in coq. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://
doi.org/10.4230/LIPICS.ITP.2021.20. https://drops.dagstuhl.de/opus/volltexte/
2021/13915/

9. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to
within almost polynomial factors. In: Proceedings of the Thirty-Ninth Annual
ACM Symposium on Theory of Computing, STOC 2007, pp. 469–477. Associa-
tion for Computing Machinery, New York (2007)

10. Khot, S.: Hardness of approximating the shortest vector problem in lattices. J.
ACM 52(5), 789–808 (2005)

11. Kreuzer, K.: Hardness of lattice problems. Archive of Formal Proofs (2023).
https://isa-afp.org/entries/CVP Hardness.html. Formal proof development

12. Lenstra, A.K., Lenstra, H., Lovasz, L.: Factoring polynomials with rational coeffi-
cients. Math. Ann. 261, 515–534 (1982)

13. Liu, Y., Collins, R.: Frieze and wallpaper symmetry groups classification under
affine and perspective distortion. Technical report. CMU-RI-TR-98-37, Carnegie
Mellon University, Pittsburgh, PA (1998)

14. Micciancio, D.: The shortest vector in a lattice is hard to approximate to within
some constant. In: Proceedings 39th Annual Symposium on Foundations of Com-
puter Science (Cat. No. 98CB36280), pp. 92–98 (1998). https://doi.org/10.1109/
SFCS.1998.743432

15. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems. Springer, Boston
(2002)

16. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 5

17. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer, Cham
(2014). http://concrete-semantics.org

18. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL—A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

19. Rothvoss, T., Venzin, M.: Approximate CVP in time 20.802n – now in any norm!
arXiv:2110.02387 [cs] (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.4230/LIPICS.ITP.2021.20
https://doi.org/10.4230/LIPICS.ITP.2021.20
https://drops.dagstuhl.de/opus/volltexte/2021/13915/
https://drops.dagstuhl.de/opus/volltexte/2021/13915/
https://isa-afp.org/entries/CVP_Hardness.html
https://doi.org/10.1109/SFCS.1998.743432
https://doi.org/10.1109/SFCS.1998.743432
https://doi.org/10.1007/978-3-540-88702-7_5
http://concrete-semantics.org
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
http://arxiv.org/abs/2110.02387
http://creativecommons.org/licenses/by/4.0/


Buy One Get 14 Free: Evaluating Local
Reductions for Modal Logic
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Abstract. We are interested in widening the reasoning support for
propositional modal logics in the so-called modal cube. The modal cube
consists of extensions of the basic modal logic K with an arbitrary com-
bination of the modal axioms B, D, T, 4 and 5. We revisit recently devel-
oped local reductions from all logics in the modal cube to a normal form
comprising sets of clausal formulae with associated modal levels. We
extend these reductions further to the basic modal logic K, called defini-
tional reductions. This enables any prover for K to be used to solve the
satisfiability problem for all logics in the modal cube. We also present
alternative, axiomatic, reductions based on ideas originally proposed by
Kracht, providing new theoretical results and improved bounds on the
size of the reductions. We compare both sets of reductions combined with
state-of-the-art provers for K on a large set of parametric benchmarks
for all logics in the modal cube. The results show that the provers per-
form better with reductions based on the clausal normal form than the
axiomatic reductions.

1 Introduction

Following [4], modal logics can be seen as simple but expressive languages for
talking about relational structures that provide an internal and local perspective
on those structures. The most intensively studied modal logics are the basic
modal logic K and its extensions with one or more of the axioms B (symmetry),
D (seriality), T (reflexivity), 4 (transitivity) and 5 (Euclideaness), that form
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the so-called modal cube. There are numerous reasons for this. To name just
three: (i) relations which are serial, symmetric, transitive, etc. are very common;
(ii) the logics in the modal cube can be used to represent and reason about
idealised mental attitudes such as knowledge, belief, desire and intention; (iii)
mathematical techniques, algorithms, calculi, as well as implemented reasoning
tools for these logics provide building blocks for the study and application of
more complex modal logics.

In [27], we have presented a reduction from each of the 15 distinct logics in
the modal cube to Separated Normal Form with Sets of Modal Levels, SNFsml, a
clausal normal form for basic modal logic in which clauses are labelled with pos-
sibly infinite sets of modal levels, and to Separated Normal Form with Modal
Levels, SNFml, where each clause is given a natural number label. The latter
reduction then allowed us to use the modal-layered clausal resolution (MLR)
calculus [22], implemented in the modal logic theorem prover KSP [19,26] to
reason in these logics. We evaluated this approach on a new collection of bench-
mark formulae for all 15 logics and compared its performance with that of the
global modal resolution (GMR) calculus also implemented in KSP and with Leo-
III, an automated theorem prover for polymorphic higher-order logic [32]. The
GMR calculus has specific rules for each logic while Leo-III reasons about modal
logics using a translation approach and has translations for each of the 15 logics
built in. The evaluation showed that the approach performs better than Leo-III
but not as well as the GMR calculus in KSP. We identified the reduction from
SNFsml to SNFml as the main contributing factor, in particular, on satisfiable
formulae where the MLR calculus has to fully saturate the corresponding set of
SNFml clauses up to redundancy before it can conclude that the original formula
is satisfiable.

In this paper, we investigate and evaluate an alternative use of our reductions
from logics in the modal cube to SNFml. A finite set of clauses in SNFml can
straightforwardly be transformed into a formula in the basic modal logic K. Such
a transformation then allows the use of any existing approach to solving the
satisfiability problem in K to the satisfiability problem in all logics in the modal
cube. An advantage of the use of this transformation over a translation from each
of the 15 logics to first-order (or higher-order) logic [1,5,9,14] is the availability of
implemented decision procedures for basic modal logic. In contrast, while many
decidable fragments of first-order logics are known, including decidable fragments
that are suitable targets of translations of modal logic formulae, implemented
decision procedures for these fragments are rare. See also related discussions in
[27,30].

The original motivation for our work on reductions to SNFsml and SNFml

were Kracht’s reductions of the normal modal logics KB, KD, KT, and K4 to K
[17,18]. Extending our reduction from SNFml to K to obtain a reduction from
the modal cube to K raises first the question whether one can devise a reduction
based on the same idea as Kracht’s for the remaining logics of the modal cube.
We will call such a reduction axiomatic as the idea is to use certain instances
of axiom schemata embedded into modal contexts of nested �-operators up
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to a certain depth bound. We answer this question positively by providing the
reductions missing in Kracht’s work. The second question then raised is how well
provers for K perform on our reduction compared to an axiomatic reduction. Our
empirical evaluation indicates that the definitional reduction appears to result
in better performance overall when combined with state-of-the-art K provers.

The structure of the paper is as follows. In Sect. 2 we recall common con-
cepts of propositional modal logics and the definition of our normal form SNFml.
Section 3 recalls our reduction from logics in the modal cube to SNFml, defines
the transformation of a finite set of SNFml clauses to basic modal, and intro-
duces the axiomatic reduction for the logics in the modal cube. In Sect. 4 we
compare the performance of a combination of the reductions defined in Sect. 3
when combined with provers for basic modal logic as well as with the global
resolution calculus for logics in the modal cube implemented in KSP.

2 Preliminaries

The language of modal logic is an extension of the language of propositional
logic with unary modal operators � and �. More precisely, given a denumerable
set of propositional symbols, P = {p, p0, q, q0, t, t0, . . .} as well as propositional
constants true and false, modal formulae are inductively defined as follows:
constants and propositional symbols are modal formulae. If ϕ and ψ are modal
formulae, then so are ¬ϕ, (ϕ∧ψ), (ϕ∨ψ), (ϕ → ψ), �ϕ, and �ϕ. We also assume
that ∧, and ∨ are associative and commutative operators and consider, e.g.,
(p∨ (q ∨ r)) and (r ∨ (q ∨p)) to be identical formulae. We often omit parentheses
if this does not cause confusion. The size of ϕ is the number of occurrences
of propositional constants, propositional variable, boolean operators and modal
operators in ϕ. By var(ϕ) we denote the set of all propositional symbols occurring
in ϕ. This function easily extends to finite sets of modal formulae. A modal axiom
(schema) is a modal formula ψ representing the set of all instances of ψ.

A literal is either a propositional symbol or its negation; the set of literals is
denoted by LP . By ¬l we denote the complement of the literal l ∈ LP , that is, if
l is the propositional symbol p then ¬l denotes ¬p, and if l is the literal ¬p then
¬l denotes p. By |l| for l ∈ LP we denote p if l = p or l = ¬p. A modal literal is
either �l or �l, where l ∈ LP .

An occurrence of a subformula has positive polarity if it is inside the scope of
an even number of (explicit or implicit) negations, and it has negative polarity
if it is one inside the scope of an odd number of negations. A literal is pure if all
its occurrences have either a positive or a negative polarity.

The modal logic K is given by the smallest set of modal formulae which
includes all propositional tautologies, the axiom schema �(ϕ → ψ) → (�ϕ →
�ψ), is closed under modus ponens and the rule of necessitation (if ϕ ∈ K
then �ϕ ∈ K). Given a modal logic L and set of axioms Σ, the smallest modal
logic L′ ⊃ L ∪ Σ is an extension of L and we denote L′ by LΣ.

The standard semantics of modal logics is the Kripke semantics or possible
world semantics. A Kripke frame F is an ordered pair 〈W,R〉 where W is a non-
empty set of worlds and R is a binary (accessibility) relation over W . A Kripke
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structure M over P is an ordered pair 〈F, V 〉 where F is a Kripke frame and the
valuation V is a function mapping each propositional symbol in P to a subset
V (p) of W . A rooted Kripke structure is an ordered pair 〈M,w0〉 with w0 ∈ W .

Satisfaction (or truth) of a formula at a world w of a Kripke structure M =
〈W,R, V 〉 is inductively defined by:

〈M,w〉 |= true; 〈M,w〉 
|= false;
〈M,w〉 |= p iff w ∈ V (p), where p ∈ P ;
〈M,w〉 |= ¬ϕ iff 〈M,w〉 
|= ϕ;
〈M,w〉 |= (ϕ ∧ ψ) iff 〈M,w〉 |= ϕ and 〈M,w〉 |= ψ;
〈M,w〉 |= (ϕ ∨ ψ) iff 〈M,w〉 |= ϕ or 〈M,w〉 |= ψ;
〈M,w〉 |= (ϕ → ψ) iff 〈M,w〉 |= ¬ϕ or 〈M,w〉 |= ψ;
〈M,w〉 |= �ϕ iff for every v, w R v implies 〈M,v〉 |= ϕ;
〈M,w〉 |= �ϕ iff there is v, w R v and 〈M,v〉 |= ϕ.

If 〈M,w〉 |= ϕ then we say that ϕ is true at w in M . A rooted Kripke structure
M = 〈M,w0〉 is a model of a modal formula ϕ iff 〈M,w0〉 |= ϕ and M satisfies ϕ.
A modal formula is satisfiable iff there exists a Kripke structure M and a world
w ∈ M such that 〈M,w〉 |= ϕ. A rooted Kripke structure M = 〈W,R, V,w0〉 is a
rooted tree Kripke structure iff R is a tree, that is, a directed acyclic connected
graph where each node has at most one predecessor, with root w0.

A path from w′
0 to w′

k of length k, k ≥ 0, in a frame F = 〈W,R〉 is a sequence
(w′

0, w
′
1, . . . , w

′
k) where for every i, 0 ≤ i ≤ k − 1, w′

i R w′
i+1. A path (w′

0) of
length 0 is identified with its root w′

0. In a rooted tree Kripke structure M with
root w0 for every world wk ∈ W there is exactly one path connecting w0 and
wk; the modal level (in M), denoted by mlM (wk), is given by the length of the
path from w0 to wk. More generally, for a rooted Kripke structure M with root
w0, the depth of a world wk (in M), denoted by depthM (wk), is the length of the
shortest path from w0 to wk. The depth of M is the maximal depth of a world
in M . The outdegree of a world w in F is given by |{w′ | w R w′}|.

The 15 logics in the modal cube consist of K itself and its extensions with
one or more of the modal axioms shown in Table 1. Each of these axioms defines
a class of Kripke frames where the accessibility relation R satisfies the first-
order property stated in the table. Combinations Σ of axioms then define a class
FΣ of Kripke frames where the accessibility relation satisfies the combination
of their corresponding properties. Given a logic L = KΣ, a modal formula ϕ is

Table 1. Modal axioms and relational frame properties

Name Axiom Frame Property

D �ϕ → �ϕ ∀v∃w.v R w Serial

T �ϕ → ϕ ∀w.w R w Reflexive

B ϕ → ��ϕ ∀vw.v R w → w R v Symmetric

4 �ϕ → ��ϕ ∀uvw.(u R v ∧ v R w) → u R w Transitive

5 �ϕ → ��ϕ ∀uvw.(u R v ∧ u R w) → v R w Euclidean



386 C. Nalon et al.

Table 2. Rewriting Rules for Simplification

ϕ ∧ ϕ ⇒ ϕ

ϕ ∨ ϕ ⇒ ϕ

¬true ⇒ false

¬false ⇒ true

¬¬ϕ ⇒ ϕ

�true ⇒ true

�false ⇒ false

ϕ ∧ ¬ϕ ⇒ false

ϕ ∨ ¬ϕ ⇒ true

ϕ ∧ true ⇒ ϕ

ϕ ∧ false ⇒ false

ϕ ∨ false ⇒ ϕ

ϕ ∨ true ⇒ true

�ϕ ∨ �¬ϕ ⇒ �true

�ϕ ∧ �¬ϕ ⇒ �false

�false ∧ �ϕ ⇒ false

�true ∨ �ϕ ⇒ true

�ϕ ∧ �¬ϕ ⇒ false

�false ∧ �ϕ ⇒ �false

�true ∨ �ϕ ⇒ �true

L-satisfiable iff there exists a frame F ∈ FΣ , a valuation V and a world w ∈ F
such that M = 〈F, V,w〉 |= ϕ and we call M an L-model of ϕ.

A modal formula is in simplified NNF (denoted by nnf(ϕ)), if it has been sim-
plified by exhaustively applying the rewrite rules in Table 2, and it is in Negation
Normal Form (NNF), that is, a formula where only propositional symbols are
allowed in the scope of negations.

The reductions given in the next section produce formulae in a clausal normal
form, called Separated Normal Form with Sets of Modal Levels SNFsml, given in
[29]. The language of SNFsml extends that of the basic modal logic K with sets
of modal levels as labels. Clauses in SNFsml have one of the following forms:

S :
∨n

i=1 li
(literal clause)

S : l′ → �l
(positive modal clause)

S : l′ → �l
(negative modal clause)

where S ⊆ N and l, l′, li are propositional literals with 1 ≤ i ≤ n, n ∈ N. We
write � : ϕ instead of N : ϕ and such clauses are called global clauses. Positive
and negative modal clauses are together known as modal clauses.

Given a rooted tree Kripke structure M and a set S of natural numbers,
by M [S] we denote the set of worlds that are at a modal level in S, that is,
M [S] = {w ∈ W | mlM (w) ∈ S}. Then

M |= S : ϕ iff 〈M,w〉 |= ϕ for every world w ∈ M [S].

The use of sets as labels allows a concise representation of clauses that might
hold in a possibly infinite number of levels.

If M |= S : ϕ, then we say that S : ϕ holds in M or is true in M . For a set
Φ of labelled formulae, M |= Φ iff M |= S : ϕ for every S : ϕ in Φ, and we say Φ
is K -satisfiable.

We introduce some notation that will be used in the following. For m,n ∈ N,
m ≤ n, let [m. . n] = {m, . . . , n} ⊆ N. Let S+ = {l + 1 ∈ N | l ∈ S}, S− =
{l − 1 ∈ N | l ∈ S}, and S≥ = {ln ∈ N | n ≥ min(S) ≥ l}, where min(S) is the
least element in S. Note that the restriction of the elements being in N implies
that S− cannot contain negative numbers.

A formula is in Separated Normal Form with Modal Levels (SNFml) [22,23],
if it is a conjunction of clauses in on of the following forms:

ml :
∨n

i=1 li
(literal clause)

ml : l′ → �l
(positive modal clause)

ml : l′ → �l
(negative modal clause)
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where ml ∈ N ∪ {�} and l, l′, li are propositional literals with 1 ≤ i ≤ n, n ∈ N.
Effectively, this normal form corresponds to a restriction on the SNFsml where
the sets are singletons or �, representing all levels.

3 Reductions

3.1 Definitional Reduction

In [27] we introduced a reduction ρsml
L (ϕ) that for any modal logic L = KΣ

with Σ ⊆ {B,D,T, 4, 5}, transforms a modal formula ϕ in simplified NNF to
a finite set Φsml

L of clauses in SNFsml such that ϕ is L-satisfiable iff Φsml
L is K-

satisfiable. For K4, K5 and their extensions by further axioms, ρsml
L produces sets

of clauses where the labelling sets S are potentially infinite. However, depending
on syntactic properties of ϕ it is possible to impose upper bounds on the maximal
modal level that occurs in those sets so that the reduction remains satisfiability
preserving. Table 3 shows such a bound for each logic in the modal cube. In the
table and in the following, for a modal formula ϕ in simplified NNF, (i) dϕ

m is the
modal depth of ϕ, (ii) dϕ

� is the maximal nesting of �-operators not in the scope
of any � operators in ϕ, (iii) nϕ

� is the number of �-subformulae in ϕ, and (iv)
nϕ

� is the number of �-subformulae below �-operators in ϕ. Using these bounds
it is then possible to define a function ρml

L that transforms a modal formula ϕ in
simplified NNF to a finite set Φml

L of clauses in SNFml such that ϕ is L-satisfiable
iff Φml

L is K-satisfiable.
Table 4 shows the definitions of modified reductions ρ̄sml

L and ρ̄ml
L to SNFsml

and SNFml, respectively. In contrast to ρsml
L , ρ̄sml

L already uses the bounds in
Table 3 to ensure that all labelling sets S occurring in the reduction of a modal
formula remain finite. The function ρ̄ml

L then does not enforce further restric-
tions, but straightforwardly transforms a finite set of SNFsml-clauses with finite
labelling sets into a finite set of SNFml clauses. This presentation of the reduction
of modal formulae to a finite set of clauses in SNFml is closer to the implemen-
tation of the process in the prover KSP.

Given a finite set Φ of clauses in SNFml we can use a function τ f to obtain
an equivalent modal formula as follows:

τ f(Φ) =
∧

{�mlC | ml : C ∈ Φ}.

where �0ψ = ψ and �n+1ψ = ��nψ.

Table 3. Bounds on the maximal modal level in SNFsml clauses

Logic L Bound dsml
L (ϕ)

K,KD,KT,KB,KDB,KTB dϕ
m

K4, S4 1 + dϕ
� + nϕ

� × nϕ
�

KD4 1 + dϕ
� + (max(1, nϕ

�) × nϕ
�)

KB4,K5, S5,K45 1 + dϕ
� + nϕ

�

KD5,KD45 1 + dϕ
� + max(1, nϕ

�)
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ρ̄ml
L (ϕ) = {ml : ψ | S : ψ ∈ ρ̄sml

L (ϕ) and ml ∈ S}
ρ̄sml

L (ϕ) = {{0} : tϕ} ∪ ρd
L({0} : tϕ → ϕ)

where d = dsml
L (ϕ) as per Table 3 and ρd

L is defined as follows:

ρd
L(S : t → true) = ∅

ρd
L(S : t → false) = {S : ¬t}

ρd
L(S : t → (ψ1 ∧ ψ2)) = {S : ¬t ∨ η(ψ1), S : ¬t ∨ η(ψ2)} ∪ δd

L(S, ψ1) ∪ δd
L(S, ψ2)

ρd
L(S : t → ψ) = {S : ¬t ∨ ψ}

if ψ is a disjunction of literals

ρd
L(S : t → (ψ1 ∨ ψ2)) = {S : ¬t ∨ η(ψ1) ∨ η(ψ2)} ∪ δd

L(S, ψ1) ∪ δd
L(S, ψ2)

if ψ1 ∨ ψ2 is not a disjunction of literals

ρd
L(S : t → �ψ) = {S : t → �η(ψ)} ∪ δd

L(S+, ψ)

ρd
L(S : t → �ψ) = P d

L(S : t → �ψ) ∪ δd
L(lδd

L(S), ψ)

where η and δd
L are defined as follows:

η(ψ) =

{
ψ, if ψ is a literal

tψ, otherwise
δd

L(S, ψ) =

{
∅, if ψ is a literal

ρd
L(S : tψ → ψ), otherwise

and functions P d
L, lP d

L and lδd
L are defined as follows:

L P d
L(S : t�ψ → �ψ) lP d

L(S) lδd
L(S)

K S : t�ψ → �η(ψ) S S+ ∩ [0. . d]

KB S : t�ψ → �η(ψ),
S− : η(ψ) ∨ t�¬t�ψ , S− : t�¬t�ψ → �¬t�ψ

S (S− ∪ S+)
∩[0. . d]

K4 S≥ ∩ [0. . d] : t�ψ → �η(ψ),

S≥ ∩ [0. . d] : t�ψ → �t�ψ

S≥

∩[0. . d]
(S+)≥

∩[0. . d]

K5 [0. . d] : t�ψ → �η(ψ),
[0. . d] : ¬t�t�ψ ∨ t�ψ, [0. . d] : t�t�ψ → �t�ψ,
[0. . d] : ¬t�t�ψ → �¬t�ψ, [0. . d] : t�t�ψ → �t�t�ψ

[0. . d] [0. . d]

KB4 [0. . d] : t�ψ → �η(ψ),
[0. . d] : η(ψ) ∨ t�¬t�ψ , [0. . d] : t�ψ ∨ t�¬t�ψ ,
[0. . d] : t�¬t�ψ → �¬t�ψ, [0. . d] : t�ψ → �t�ψ

[0. . d] [0. . d]

K45 [0. . d] : t�ψ → �η(ψ), {0} : t�ψ → �t�ψ iff 0 ∈ S,
[0. . d] : ¬t�t�ψ ∨ t�ψ, [0. . d] : t�t�ψ → �t�ψ,
[0. . d] : ¬t�t�ψ → �¬t�ψ, [0. . d] : t�t�ψ → �t�t�ψ

[0. . d] [0. . d]

KDΣ {lP d
KΣ(S) : t�ψ → �η(ψ)} ∪ P d

KΣ(S : t�ψ → �ψ) − lδd
KΣ(S)

KTΣ {lP d
KΣ(S) : ¬t�ψ ∨ η(ψ)} ∪ P d

KΣ(S : t�ψ → �ψ) − lδd
KΣ(S) ∪ S

Table 4. ρ̄sml
L - and ρ̄ml

L -reductions of modal formulae to SNFsml and SNFml, respec-
tively, Σ ⊆ {B, 4, 5}.
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A smaller equivalent formula can be constructed as follows. For a finite set
Φ of clauses in SNFml let Φ[ml] = {C | ml : C ∈ Φ} and mlmax = max{ml | ml :
C ∈ Φ}. Then

τn(Φ) =
∧

Φ[0] ∧ �(
∧

Φ[1] ∧ �(
∧

Φ[2] ∧ · · · ∧ �(
∧

Φ[mlmax]) · · · )). (1)

Combining ρ̄ml
L and τn we can define a reduction ρdefL as

ρdefL (ϕ) = τn(ρ̄ml
L (ϕ))

which we call the definitional reduction of ϕ for the modal logic L.

Theorem 1 ([30]). Let L = KΣ with Σ ⊆ {B,D,T , 4 , 5} and ϕ be a modal
formula in simplified NNF. Then ϕ is L-satisfiable iff ρdefL (ϕ) is K-satisfiable.

This reduction allows us to use any reasoner for the basic modal logic K as a
reasoner for all the logics in the modal cube.

3.2 Axiomatic Reduction

The reductions ρsml
L and ρml

L in [27] were developed as an alternative to and
improvement on reductions from the modal logics KB, KD, KT, and K4 to K
introduced by Kracht [18]. In contrast to ρsml

L and ρml
L which require modal for-

mulae to be in NNF and treat the modal operators � and � differently, Kracht’s
reductions assumes that (i) modal formulae are not necessarily in NNF and (ii)
the only modal operator occurring in modal formulae is � and no distinction is
made between positive and negative occurrences of this operator. In the follow-
ing we extend Kracht’s reduction to all logics in the modal cube while adhering
to those two assumptions.

Let �
≤0ψ = ψ and �

≤n+1ψ = (ψ∧��
≤nψ). We can then define a reduction

ρax
L for all modal logics L in the modal cube as follows:

ρax
L (ϕ) = ϕ ∧ �

≤bax
L (ϕ)

∧
P ax

L (ϕ) (2)

Table 5. P ax
L -reduction of �-formulae, Σ ⊆ {B, 4, 5}.

L P ax
L (ϕ) baxL (ϕ)

K {true} dϕ
m

KB {¬ψ → �¬�ψ | �ψ ∈ sf(ϕ)} dϕ
m

K4 {�ψ → ��ψ | �ψ ∈ sf(ϕ)} nϕ
�

K5 {¬�¬�ψ → �ψ, ¬�¬�ψ → ��ψ, �(�ψ →
��ψ) | �ψ ∈ sf(ϕ)}

1

KB4 {�ψ ∨ �¬�ψ | �ψ ∈ sf(ϕ)} ∪ P ax
K4(ϕ) ∪ P ax

KB(ϕ) 0

K45 P ax
K4(ϕ) ∪ P ax

K5(ϕ) 0

KDΣ {¬�false} ∪ P ax
Σ (ϕ) bax

KΣ(ϕ)

KTΣ {�ψ → ψ | �ψ ∈ sf(ϕ)} ∪ P ax
Σ (ϕ) bax

KΣ(ϕ)
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where baxL (ϕ) and P ax
L (ϕ) are as defined in Table 5. We call ρaxL (ϕ) the axiomatic

reduction of ϕ for the modal logic L.

Theorem 2 Let L = KΣ with Σ ⊆ {B,D,T , 4 , 5} and ϕ be a modal formula
in simplified NNF. Then ϕ is L-satisfiable iff ρaxL (ϕ) is K-satisfiable.

Just as the definitional reduction, the axiomatic reduction allows us to use any
reasoner for basic modal logic as a reasoner for all the logics in the modal cube.

3.3 Discussion

There are five main differences between the definitional reduction and the
axiomatic reduction, and between the axiomatic reduction and the work in [18]:

1. The axiomatic reduction for all logics except the logics KB, KD, KT, K4 is
new. Kracht [18] did define a reduction from K5 to K4, but since K5 is not
a subset of K4, this reduction is not correct. Our definition of the axiomatic
reduction corrects that mistake while remaining close to the Kracht’s original
idea by adding instances of 4 at modal levels greater than 0.
The bounds given for KB, KD, and KT given in Table 5 are the same as
Kracht’s [18]. However, for K4 he used a bound given by the number of distinct
subformulae of the formula ϕ under consideration. We are able to show that
a bound given by the number of distinct �-subformulae is sufficient. For the
remaining logics, the bounds are new.

2. The definitional reduction introduces new propositional symbols for complex
subformulae, so-called surrogate propositional symbols. For the modal res-
olution calculi implemented in KSP [22,26] this is necessary to obtain the
clausal normal form on which the calculi operate. However, in the context
of our reductions, where we have to add instances of axiom schemata for �-
subformulae, the use of surrogate propositional symbols offers the advantage
that repeated occurrences of the same complex subformula can be replaced
by the same surrogate symbol. Each surrogate propositional symbol then
requires a definition at every modal level at which it occurs, but overall there
should still be a benefit in relation to the size of the resulting formula.

3. The bounds shown in Table 3 for the definitional reduction and in Table 5
for the axiomatic reduction, have different effects on the modal formulae
produced. For the definitional reduction, the modal depth of ρdefL (ϕ) is at
most dsml

L (ϕL) + 1, that is, the bound shown for L in Table 3 plus one. In
contrast, for the axiomatic reduction, baxL in Table 5 only states the modal
depth of �

≤baxL pa where the propositional symbol pa will then be replaced by
a conjunction of instances of axiom schemata for �-subformulae of ϕ. For all
logics except K and KD, the modal depth of these axiom schemata will be
between dϕ

m and dϕ
m + 2. Thus, the overall modal depth of ρaxL (ϕ) is bound

by baxL + dϕ
m + 2, not just by the bound shown in Table 5.

For example, consider the formula ��p in KB. Then with the axiomatic
reduction we obtain the formula

��p ∧ �
≤2((¬p → �¬�p) ∧ (¬�p → �¬��p))
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which itself is a formula of modal depth 5. With the definitional reduction,
we obtain

t��p ∧ (t��p → �t�p) ∧ �(t�p → �p) ∧ (p ∨ t�¬t�p
) ∧ (t�¬t�p

→ �¬t�p)

which is a formula of modal depth 2.
Taking this into account we can see that for L = KΣ where Σ ⊆ {B,D,T}
we can expect the modal depth of ρdefL (ϕ) to be less than or equal to that of
ρaxL (ϕ), while for the remaining logics of the modal cube it depends on the
individual formula which reduction will produce a formula of greater modal
depth. Nevertheless, for logics such as K4 we expect that the modal depth of
ρaxL (ϕ) will often be drastically lower than that of ρdefL (ϕ).

4. The definitional reduction makes a distinction between �- and �-operators
and only introduces additional clauses for �-subformulae. For logics except
KB4, K5 and their extensions, it also carefully tracks at which modal levels
additional clauses are required for which occurrences of surrogate symbols
that were introduced for �-subformulae. The ‘price’ paid for the fact that
for these logics additional clauses are not also introduced for �-subformulae
is in the higher bounds for the modal levels up to which additional clauses
and definitions of surrogate symbols need to be added. The reason is that
the presence of axiom instances for negative occurrences of �-subformulae
in the axiomatic reduction for K4, K5 and their extensions allows the ‘back-
propagation’ of �-subformulae that occur negatively, namely, if ¬�ψ is true
at a world w at modal level 2 or higher in a tree K-model of ρaxL (ϕ), then it
is also true at a predecessor world v of w. Provers that do not construct tree
Kripke structures, but general Kripke structure, or use caching, can poten-
tially take advantage of this and construct ‘shallower’ models. On the hand,
the outdegree of worlds increases.

5. The definitional reduction for K45, KD45 and KT45 takes account of the fact
that instances of 4 are only required to hold at the root world. At all other
worlds, instances of 5 are already sufficient to enforce transitivity of the acces-
sibility relation in Kripke structures for these logics. This restriction to the root
world is in line with the construction of the definitional reduction ρdefL in Eq. 1,
namely, that we have different sets of clauses associated with each modal level.
In contrast, the construction of the axiomatic reduction ρaxL in Eq. 2 assumes
that we use the same set of axiom instances at every modal level.

We will revisit the effect that Points 2, 3, and 4 have on the size and modal
depths of formulae, on the performance of provers, and the models they may
produce in the next section.

4 Evaluation

In our evaluation we compare the effect of using the definitional reduction and
the axiomatic reduction as input for three provers for K: CEGARBox [10], Sparta-
cus [13], and KSP [24,30]. Spartacus and CEGARBox were included as they pre-
sented best performance in recent evaluations [10,24–26,29,30] when compared
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with several other provers with built-in support for modal logics: BDDTab [12],
FaCT++ [34], InKreSAT [16], SPASS [33], and Leo-III+E [8,31].

We have included two more approaches in the comparison: (i) the global
modal resolution (GMR) calculi [21] that include specific inference rules for each
of the logics in the modal cube, implemented in KSP; (ii) modal layered reso-
lution (MLR) calculi [22] together with the reductions given in Table 4, again
implemented in KSP. The first is an example of ‘native’ reasoning in the log-
ics concerned, while the inclusion of latter allows us to investigate the effect of
‘internalising’ the reduction and having inference rules that operate on modal
clauses. Both calculi support several refinements of resolution. We report only
results for the ordered refinement (cord) as it was the best performing overall.

The two reductions combined with CEGARBox, Spartacus, and KSP and the
GMR and MLR calculi in KSP give us a total of eight different approaches.

We have used the benchmarks introduced in [27], which comprise1 (i) 100
unsatisfiable formulae for each of the logics being considered; these are based on
20 formulae each from 5 classes of the LWB benchmark collection [3] modified
so that the formulae for logic L are only unsatisfiable in L and its extensions;
and also (ii) 100 formulae that are S5-satisfiable, that is, formulae that are
satisfiable in all 15 logics; these consist of 20 formulae each from 5 classes of the
LWB benchmark collection.

We have supplied all reductions and provers with preprocessed formulae
extracted from KSP. The simplified negation normal form for a formula ϕ,
nnf(ϕ), is generated by KSP as follows. First, the formula is rewritten into box
normal form [28], a normal form similar to the negation normal form, but where
the operator � is rewritten as ¬�¬. To the resulting formula, we apply prenex-
ing [20], that is, moving the modal operators outwards as much as possible. The
simplification rules given in Table 2 are then applied together with pure literal
elimination (i.e. replacing occurrences of pure literals by true) and constant
propagation. Table 6 shows the effect of all these preprocessing steps on aver-
age size, average modal depth, and average number of boxes in our benchmark
formulae, separately for unsatisfiable (U) and satisfiable (S) formulae. Over all
formulae we get a 20% reduction in size and a 66% reduction in the number of
�-operators. The modal depth remains unchanged which is an indication of the
robustness of the benchmarks.

For the axiomatic reduction, the resulting formula is then extracted from KSP
and the reduction according to Eq. 2 and Table 5 is applied externally. For the

Table 6. Effect of preprocessing on benchmark formulae

Sat Original Formulae Simplified Formulae

Avg Size Avg Mod. Depth Avg #Boxes Avg Size Avg Mod. Depth Avg #Boxes

U 17931 16 405 15549 16 241

S 3641 48 719 1979 48 146

1 Input files for the provers used here and the source for KSP are available at http://
nalon.org/#software.

http://nalon.org/#software
http://nalon.org/#software
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definitional reduction, the formula is not extracted but transformed by KSP into
SNFml according to Tables 3 and 4. During the transformation into the normal
form, complex subformulae are replaced by the same symbol in all positions they
might occur. After transformation into SNFml, the kept clauses are extracted
from KSP and used to produce the modal formula for the definitional reduction
according to Eq. 1.

Table 7 shows experimental results comparing the performance of the eight
approaches. The first three columns of the table show the logic, the satisfiability
status of the formulae for our benchmark collection used for this logic (‘U’ for
‘unsatisfiable, ‘S’ for ‘satisfiable’), and their number. In total we have 30 sets
of benchmark formulae. The next eight columns then show how many of those
formulae were solved by each of the eight approaches. A time limit of 100 CPU
seconds was set for each formula and where a reduction is used the time taken
includes the computation of the reduction. The highest number or numbers in
each row are highlighted in bold. The last six columns show the results for ρdefL

and ρaxL combined with CEGARBox, Spartacus, and KSP. Here, for each logic L and
each satisfiability status we have indicated with italics which reduction resulted
in better performance for each of the three provers. In the following we call each
such pair a comparison point. Benchmarking was performed on a PC with an
AMD Ryzen 5 5600X CPU @ 4.60 GHz max and 64 GB main memory using
Fedora release 37 as operating system.

For both satisfiable and unsatisfiable benchmark formulae, the combination
of the definitional reduction with CEGARBox performs best. Overall, it solves
25% more formulae than the second best approach, the GMR calculi in KSP.
CEGARBox with the definitional reduction also outperforms CEGARBox with the
axiomatic reduction on both satisfiable and unsatisfiable benchmark formulae.
The same is true for the MLR calculus in KSP when combined with one of
the two reductions and for Spartacus on satisfiable benchmark formulae when
combined with one of the two reductions.

We can see that the internal transformation to SNFml together with the MLR
calculus in KSP performs better than first computing the definitional reduction
ρdefL and then handing the resulting formula to KSP. The former approach per-
forms better on 26 out of 30 sets of benchmark formulae. This is not surprising
since in the latter case KSP does apply the transformation into SNFml again. This
implies that new propositional symbols are introduced when applying renaming
and new clauses are added defining those symbols. Also, for the ordered res-
olution refinement we use, all literals in the scope of modal operators will be
renamed in order to retain completeness [22]. Again, for each renamed literal
there will be an additional clause. Overall, KSP will perform inferences with a
larger set of SNFml clauses over a larger set of propositional symbols. This is
bound to degrade performance in most cases.

Looking at individual logics, a more varied picture is evident. Consider both
satisfiable and unsatisfiable benchmark formulae for the logics K5, KD5, K4B
(which is the same logic as K5B), K45, KD45, and S5 and the behaviour of
Spartacus and KSP with one of the two reductions on these. Of these 24 com-
parison points, the axiomatic reduction results in better performance on 21 and
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Table 7. Performance of KΣ provers, ρdef
L combined with K provers and ρax

L combined
with K provers

L S Total KSP
(GMR)

KSP
(MLR)

CEGARBox Spartacus KSP (MLR)

ρdef
L ρax

L ρdef
L ρax

L ρdef
L ρax

L

K S 100 85 100 100 100 100 100 100 100

KD S 100 85 100 100 62 92 24 100 51

KT S 100 81 68 100 63 65 43 65 38

KB S 100 58 64 100 64 100 46 65 36

K4 S 100 85 58 65 50 56 47 50 18

K5 S 100 60 38 88 94 45 73 22 27

KDB S 100 70 73 100 30 82 12 65 30

KTB S 100 60 57 100 49 66 16 56 31

KD4 S 100 85 54 57 46 26 19 48 18

KD5 S 100 70 47 86 78 18 50 32 27

K45 S 100 53 38 88 90 45 83 22 37

KB4 S 100 19 38 94 84 63 90 34 59

KD45 S 100 66 47 86 84 18 61 32 34

S4 S 100 76 44 59 41 36 19 37 15

S5 S 100 57 42 84 81 37 65 20 39

All S 1500 1010 868 1307 1016 849 748 748 560

L S Total KSP
(GMR)

KSP
(MLR)

CEGARBox Spartacus KSP (MLR)

ρdef
L ρax

L ρdef
L ρax

L ρdef
L ρax

L

K U 100 76 78 90 90 76 88 82 83

KD U 100 76 75 89 73 73 49 78 35

KT U 100 78 76 89 80 70 44 71 31

KB U 100 79 52 82 66 37 32 49 46

K4 U 100 53 30 57 54 30 27 11 26

K5 U 100 46 32 82 57 7 60 26 27

KDB U 100 78 53 82 40 38 5 48 23

KTB U 100 77 50 84 43 52 17 47 17

KD4 U 100 59 35 51 35 3 4 8 14

KD5 U 100 46 45 77 59 5 61 35 10

K45 U 100 40 14 58 53 2 49 7 26

KB4 U 100 52 32 87 64 56 72 33 39

KD45 U 100 43 29 57 53 2 49 15 12

S4 U 100 68 23 55 48 32 17 14 9

S5 U 100 44 26 86 50 3 58 7 9

All U 1500 915 650 1126 865 486 632 520 407

the definitional reduction only on 3. In particular, Spartacus with the axiomatic
reduction consistently shows better performance for these logics than with the
definitional reduction. In stark contrast, CEGARBox with the definitional reduc-
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tion still performs better on 10 out of 12 comparison points. Interestingly, this
advantage of the axiomatic reduction does not carry over to K4 and its exten-
sions KD4 and S4. Here, with exceptions of 3 out of 18 comparison points, the
definitional reduction with one of CEGARBox, KSP, and Spartacus leads to better
performance than the axiomatic reduction.

Table 8. Comparison of axiomatic and definitional reduction combined with Spartacus
on satisfiable benchmark formulae.

Logic Reduction Solved Solved by both Formulae Models

Avg size Avg modal depth Avg num of worlds Avg num of edges Avg depth

K ρdef 100 100 5022 48 16 21 7

K ρax 100 100 1722 48 16 21 7

KD ρdef 92 24 881 4 16 22 4

KD ρax 24 24 13178 9 224 7870 5

KT ρdef 65 43 6746 8 43 1164 4

KT ρax 43 43 54700 17 272 5967 9

KB ρdef 100 45 37570 32 2 2 0

KB ρax 46 45 1552250 66 143 1037 1

K4 ρdef 56 34 339748 266 15 48 4

K4 ρax 47 34 501328 60 241 5322 9

K5 ρdef 45 44 342049 91 102 817 2

K5 ρax 73 44 166858 65 19 158 1

KDB ρdef 82 12 469 3 9 20 2

KDB ρax 12 12 3637 7 255 3513 4

KTB ρdef 66 16 805 4 14 32 3

KTB ρax 16 16 4277 8 693 4109 5

KD4 ρdef 26 19 20729 35 267 3073 34

KD4 ρax 19 19 18457 17 362 6676 11

KD5 ρdef 18 18 4670 8 246 4112 7

KD5 ρax 50 18 3784 7 39 334 3

K45 ρdef 45 44 342095 91 101 810 2

K45 ρax 83 44 111403 64 15 86 1

KB4 ρdef 63 62 257823 76 36 155 6

KB4 ρax 90 62 65461 50 60 709 5

KD45 ρdef 18 18 4689 8 241 4035 7

KD45 ρax 61 18 2383 6 36 188 3

S4 ρdef 36 19 25051 40 145 719 22

S4 ρax 19 19 23790 18 300 4723 12

S5 ρdef 37 34 19284 17 205 2968 15

S5 ρax 65 34 9541 10 195 1243 7

We can gain additional insight by looking in more detail at the behaviour of
provers. While this would be most beneficial for CEGARBox, this tool currently
only outputs the satisfiability status of formulae but neither models nor proofs.
Instead we turn to Spartacus which can output models for satisfiable formulae.
Table 8 shows information on the input formulae that were given to Spartacus,
resulting from one of our reductions, and the models that Spartacus produced.
The first four columns show the logic, the reduction that was used, how many
satisfiable benchmark formulae (out of 100) Spartacus was able to solve, and
how many formulae it was able to solve with both reductions. The number in
the fourth column is not necessarily the minimum of the two numbers in the
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Table 9. Comparison of axiomatic and definitional reduction combined with KSP on
unsatisfiable benchmark formulae.

Logic Reduction Solved Solved by both Formulae Proof Search

Avg size Avg modal depth Avg num Inferences Avg proof size Avg proof max level

K ρdef 82 82 1386 17 26912 487 17

K ρax 83 82 933 17 20738 256 17

KD ρdef 78 35 614 9 792 293 9

KD ρax 35 35 7311 18 295516 164 9

KT ρdef 71 31 2045 9 9787 191 2

KT ρax 31 31 7145 18 101555 238 9

KB ρdef 49 46 2510 13 27219 749 7

KB ρax 46 46 13882 27 279984 285 8

K4 ρdef 11 11 31716 133 121620 309 5

K4 ρax 26 11 7629 23 52571 160 5

K5 ρdef 26 11 4687 17 139615 259 3

K5 ρax 27 11 1552 6 78125 377 4

KDB ρdef 48 21 1391 8 11045 327 3

KDB ρax 23 21 6660 17 244031 252 7

KTB ρdef 47 17 1575 7 3212 199 2

KTB ρax 17 17 5875 16 247655 392 7

KD4 ρdef 8 8 82247 231 238114 350 6

KD4 ρax 14 8 11707 31 109937 275 6

KD5 ρdef 35 10 8340 17 69268 157 3

KD5 ρax 10 10 1926 8 200611 303 4

K45 ρdef 7 7 7138 21 450621 372 4

K45 ρax 26 7 1665 7 71733 873 5

KB4 ρdef 33 24 7562 21 164844 226 4

KB4 ρax 39 24 2724 11 174535 2189 7

KD45 ρdef 15 5 8023 17 107212 555 6

KD45 ρax 12 5 1405 7 88261 768 5

S4 ρdef 14 9 63723 215 122671 252 3

S4 ρax 9 9 12102 28 255852 289 4

S5 ρdef 7 4 5731 18 221199 210 4

S5 ρax 9 4 1301 7 98434 435 5

third column for a particular logic. The next two columns contain the aver-
age size and average modal depth of ρdefL and ρaxL where Spartacus solve both.
Finally, the last three columns contain the average number of worlds, number
of edges, and depth of the models for these formulae. Spartacus uses blocking,
even for the modal logic K, and the models it produces are not trees but general
graphs. A fine-grained analysis on the level of individual formulae shows that,
with the exception of the logic KB4, it is generally the case that the reduc-
tion that produces smaller formulae leads Spartacus to produce smaller models,
and thereby also leads to more formulae being solved. Only for KB4 are there
more instances where a larger formula resulting from a reduction, namely the
definitional reduction, lead to smaller models. However, it is still the case that
axiomatic reduction then allows more formulae to be solved for KB4.

For unsatisfiable formulae we consider KSP. Table 9 shows information on the
input formulae that were given to KSP, resulting from one of our reductions, and
the proof search conducted by KSP. The first six columns correspond to those in
Table 8. The final three columns contain the average number of inference steps
KSP requires to find a proof, the average size of those proofs, and the average
maximal modal level of a clause in those proofs. Again we see that the reduction
that produces smaller formulae, with few exceptions, also leads KSP to find
proofs in fewer inference steps and allows it to solve more formulae.
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5 Conclusions

The axiomatic and the definitional reductions from logics in the modal cube
to basic modal logic that we have presented in this paper allow any decision
procedure for basic modal logic to be used to solve the satisfiability problem in
all 15 logics of the modal cube. This is of particular interest as over the last 25
years, a range of decision procedures for basic modal logic have been implemented
and improved [2,6,7,10–13,15,34] but only few implemented decision procedures
for all logics of the modal cube exist. Our empirical results also indicate that
such reductions are not only a theoretical possibility but are effective and effi-
cient: the combination of the definitional reduction with CEGARBox is currently
the best performing approach on our collection of benchmark formulae for the
modal cube. There are a number of other contributing factors to the efficiency
of the approach that are also beneficial outside the context of reductions. Pre-
processing techniques such as simplification and prenexing can reduce the size
and, in the context of modal logics, the number of modal operators in a modal
formula. The use of surrogate propositional symbols and of a clausal normal
form allows to again reduce the size and structural complexity of formulae.

Despite the positive empirical results, we nevertheless hope that more provers
that natively support all the logics of the modal cube will be implemented. At
the moment our comparison is limited to our own resolution-based prover KSP.
Support for modal logics except K in other provers is often limited to KD, KT,
and S4. A wider range of provers for all logic in the modal cube would allow us to
establish the robustness of our empirical results and possibly enable us to identify
strength and weaknesses relative to native provers. It would be beneficial if such
support for native reasoning in a logics of the modal cube would also include the
provisions of proofs for unsatisfiable formulae and models for satisfiable formulae
as well as some abstract measure of the computational effort expended in finding
those. This is paramount for our ability to explain the behaviour of prover on
our benchmarks.

Finally, our collection of benchmark formulae requires further refinement.
Some of the satisfiable formulae in that collection seem to allow rather small
models and overall do not appear to be sufficiently challenging across all the
logics. We will need to investigate whether this can be remedied simply by mov-
ing to higher parameter values for these parameterised classes of formulae or
whether completely new classes of formulae are required.
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Abstract. We revisit AC completion for left-linear term rewrite systems
where AC unification is avoided and the normal rewrite relation can be
used in order to decide validity questions. To that end, we give a new
correctness proof for finite runs and establish a simulation result between
the two inference systems known from the literature. Furthermore, we
show how left-linear AC completion can be simulated by general AC
completion. In particular, this result allows us to switch from the former
to the latter at any point during a completion process. Finally, we present
experimental results for our implementation of left-linear AC completion
in the tool accompll.

Keywords: Completion · AC axioms · Term rewriting

1 Introduction

Completion has been extensively studied since its introduction in the seminal
paper by Knuth and Bendix [10]. One of the main limitations of the original
formulation is its inability to deal with equations which cannot be oriented into
a terminating rule such as the commutativity axiom. This shortcoming can be
resolved by completion modulo an equational theory E . In the literature, there
are two different approaches of achieving this. The general approach [3,6] requires
E-unification and allows us to decide validity problems using the rewrite relation
→R/E which is defined as ↔∗

E · →R · ↔∗
E . For left-linear term rewrite systems,

however, there is Huet’s approach [5] which avoids E-unification and allows us
to decide validity problems with the normal rewrite relation →R and a single
check for E-equivalence of the computed normal forms. In their respective books,
Avenhaus [1] and Bachmair [3] present inference systems for left-linear comple-
tion modulo an equational theory. In this paper, we revisit slightly modified
versions (A and B) of these inference systems for finite runs. In addition to a
new correctness proof for A in the spirit of [4] which does not rely on proof
orderings (Sect. 3), we reduce correctness of B to the correctness of A by estab-
lishing a simulation result between finite runs in these systems (Sect. 4). For
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the concrete equational theory of associative and commutative (AC) function
symbols, we also show the connection between the inference system A and gen-
eral AC completion by means of another simulation result (Sect. 5). Finally, we
present experimental results obtained from our implementation of A for AC in
the tool accompll which show that the avoidance of AC unification can result
in significant performance improvements over general AC completion (Sects. 6
and 7).

2 Preliminaries

We assume familiarity with term rewriting and completion as described e.g. in
[2] but recall some central notions. We consider term rewriting systems (TRSs)
which operate on terms over a given signature F . Terms which do not contain
the same variable more than once are referred to as linear terms. We say that
a TRS is left-linear if � is a linear term for every rule � → r ∈ R. A TRS R
is terminating if the associated rewrite relation →R is well-founded. In that
case, we write s →!

R t if t is a normal form of s. A TRS R is confluent if
different computation paths can always be joined, i.e., →∗

R · →∗
R ⊆ →∗

R · →∗
R .

An important sufficient criterion for confluence is the well-known critical pair
lemma which states that a terminating TRS is confluent if all non-trivial overlaps
between left-hand sides of rules (critical pairs) are joinable. Furthermore, there is
the notion of prime critical pairs [8] which further restricts the considered critical
peaks t →p

R s →ε
R u to the ones where all proper subterms of s|p are irreducible.

In particular, terminating TRSs whose prime critical pairs are joinable are also
confluent. The set of (prime) critical pairs is denoted by CP(R) (PCP(R)). We
define CP(R1,R2) as the set of all critical pairs stemming from local peaks of
the form t →p

R1
s →ε

R2
u and CP±(R1,R2) = CP(R1,R2)∪CP(R2,R1). A TRS

is complete if it is terminating and confluent. Hence, a complete presentation R
of an equational system (ES) E can be used to decide the validity problem for
E : s ↔∗

E t if and only if s →!
R · →!

R t.
We now turn our attention to rewriting modulo AC function symbols. To that

end, we start by giving general definitions for abstract rewrite systems (ARSs).
Let A = 〈A,→〉 be an ARS and ∼ an equivalence relation on A. We write ⇔ for
← ∪ → ∪ ∼, →/∼ for ∼ · → · ∼ and ↓∼ for →∗ · ∼ · →∗ . Given A, we denote
〈A,→/∼〉 by A/∼. The ARS A is terminating modulo ∼ if there are no infinite
rewrite sequences with →/∼ and Church–Rosser modulo ∼ if ⇔∗ ⊆ ↓∼. The
ARS A is complete modulo ∼ if it is terminating modulo ∼ and Church–Rosser
modulo ∼. While there is no distinction for termination modulo ∼ between A
and A/∼ (∼ · ∼ = ∼ by transitivity), it makes a considerable difference whether
we talk about the Church–Rosser modulo ∼ property and therefore completeness
modulo ∼ of A or A/∼. The following lemma is taken from [1, Lemma 4.1.12].
It establishes an important connection between the Church–Rosser modulo ∼
property of an ARS A and A/∼.
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Lemma 1. Let A = 〈A,→〉 and A′ = 〈A,⇀〉 be ARSs and ∼ an equivalence
relation on A such that → ⊆ ⇀ ⊆ →/∼. If A′ is Church–Rosser modulo ∼ then
A/∼ is Church–Rosser modulo ∼.

The definitions and results for ARSs carry over to TRSs by replacing the
equivalence relation ∼ by the equational theory ↔∗

B of an ES B. Most theoret-
ical results of this paper are not specific to AC but hold for an arbitrary base
theory B of which we only demand that Var(�) = Var(r) for all � ≈ r ∈ B. We
abbreviate ↔∗

B by ∼B and the rewrite relation →R/B is defined as ∼B · →R · ∼B.
Furthermore, we write ↓∼

R for the relation →∗
R · ∼B · →∗

R . Termination modulo B
is shown by B-compatible reduction orders >, i.e., > is well-founded, closed under
contexts and substitutions and ∼B · > · ∼B ⊆ >. This paper deals with a comple-
tion procedure which produces TRSs R such that R (rather than R/B) is com-
plete modulo B. In particular, the completion procedure uses the joinability with
respect to ↓∼

R of CP(R)∪CP±(R,B±) where B± denotes B ∪{r ≈ � | � ≈ r ∈ B}
as a sufficient and necessary criterion for the Church–Rosser modulo B property
of a B-terminating TRS R. Note that this criterion works with standard critical
pairs and therefore does not need unification modulo B. However, the criterion
is not valid for non-left-linear TRSs as the following example shows.

Example 1. Consider the TRS R consisting of the single rule f(x, x) → x with
+ as an additional AC function symbol. There are no critical pairs in R and
between R and AC, so CP(R) = CP±(R,AC±) = ∅. Now consider the conversion
f(x + y, y + x) ∼AC f(x + y, x + y) →R x + y. According to the criterion, f(x +
y, y + x) ↓∼

R x + y should hold, but this is clearly not the case.

3 Avenhaus’ Inference System

The idea of completion modulo an equational theory B for left-linear systems
where the normal rewrite relation can be used to decide validity problems has
been put forward by Huet [5]. To the best of our knowledge, inference systems for
this approach are only presented in the books by Avenhaus [1] and Bachmair [3].
This section presents a new correctness proof of a version of Avenhaus’ inference
system for finite runs in the spirit of [4] which does not rely on proof orderings.
Correctness of Bachmair’s system is established by a simulation result in Sect. 4.

3.1 Inference System

Definition 1. The inference system A is parameterized by a fixed B-compatible
reduction order > on terms. It transforms pairs consisting of an ES E and a
TRS R over the common signature F according to the following inference rules
where s ≈̇ t denotes either s ≈ t or t ≈ s:



404 J. Niederhauser et al.

E ,R
E ∪ {s ≈ t},R if s →R · →R t orient

E � {s ≈̇ t},R
E ,R ∪ {s → t} if s > t

deduce
E ,R

E ,R ∪ {t → s} if s →R · ↔B t delete
E � {s ≈ t},R

E ,R if s ∼B t

simplify
E � {s ≈̇ t},R
E ∪ {u ≈ t},R if s →R/B u collapse

E ,R � {t → s}
E ∪ {u ≈ s},R if t →R u

compose
E ,R � {s → t}
E ,R ∪ {s → u} if t →R/B u

A step in an inference system I from an ES E and a TRS R to an ES E ′ and
a TRS R′ is denoted by (E ,R) I (E ′,R′). The parentheses of the pairs are only
used when the expression is surrounded by text in order to increase readability.
In the following, PCP±(R,B±) denotes the restriction of CP±(R,B±) to prime
critical pairs but where irreducibility is always checked with respect to R, i.e.,
the critical peaks t →p

R s ↔ε
B u and t′ ↔p

B s →ε
R u′ are both prime if all proper

subterms of s|p are irreducible with respect to R.

Definition 2. Let E be an ES. A finite sequence

E0,R0 �A E1,R1 �A · · · �A En,Rn

with E0 = E and R0 = ∅ is a run for E. If En �= ∅, the run fails. The run is
fair if Rn is left-linear and the following inclusions hold:

PCP(Rn) ⊆ ↓∼
Rn

∪
n⋃

i=0

↔Ei∪Ri
PCP±(Rn,B±) ⊆ ↓∼

Rn
∪

n⋃

i=0

↔Ri

Intuitively, fair and non-failing runs yield a B-complete presentation Rn of
the initial set of equations E , i.e., ↔∗

E ∪B = ↔∗
Rn ∪B ⊆ ↓∼

Rn
. In particular, the

inference rules are designed to preserve the equational theory augmented by B.
The following example shows that deducing local cliffs ( →R · ↔B) as rules as
well as the restriction to →R in the collapse rule are crucial properties of the
inference system.

Example 2. Consider the ES E consisting of the single equation x+0 ≈ x where
+ is an AC function symbol. We clearly have 0+x ↔∗

E ∪AC x, so an AC complete
system C representing E has to satisfy 0+x ↓∼

C x. There is just one way to orient
the only equation in E , which results in the rule x + 0 → x. Since we want our
run to be fair, we add the rules stemming from the prime critical pairs between
x + 0 → x and AC±:

0+ x → x x + (0+ y) → x + y x + (y + 0) → x + y (x + y) + 0 → x + y

If collapsing with →R/AC is allowed, all these rules become trivial equations and
can therefore be deleted. Thus, the modified inference system allows for a fair
run which is not complete as 0 + x ↓∼

R x does not hold for R = {x + 0 → x}.
Furthermore, if we add pairs of terms stemming from local cliffs as equations,
we get the same result by applications of simplify.
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The inference system presented in Definition 1 is almost the same as the one
presented by Avenhaus in [1]. However, since we only consider finite runs, the
encompassment condition for the collapse rule has been removed in the spirit
of [13]. The following example shows that this can lead to smaller B-complete
systems.

Example 3. Consider the ES E = {f(x + y) ≈ f(x) + f(y)} where + is an AC
symbol. The inference system presented in [1] produces the AC complete system

f(x + y) → f(x) + f(y) f(y + x) → f(x) + f(y)

in which either of the rules could be collapsed if it was allowed to collapse with
the other rule. In [1] this is prevented by an encompassment condition which
essentially forbids to collapse at the root position with a rewrite rule whose left-
hand side is a variant of the left-hand side of the rule which should be collapsed.
However, this is possible with the system presented in this paper, so for an AC
complete representation just one of the two rules suffices.

3.2 Confluence Criterion

The confluence criterion used in the correctness proof of A is an extended version
of the one used in [4] which we dub peak-and-cliff decreasingness. In the following,
we assume that equivalence relations ∼ are defined as the reflexive and transitive
closure of a symmetric relation , so ∼ = ∗. Furthermore, we assume that
steps are labeled with labels from a set I, so let A = 〈A, {→α}α∈I〉 be an ARS
and ∼ = (

⋃
α∈I α)∗an equivalence relation on A.

Definition 3. The ARS A is peak-and-cliff decreasing if there is a well-founded
order > on I such that for all α, β ∈ I the inclusions

→α · →β ⊆ ∗⇐==⇒∨αβ
→α · β ⊆ ∗⇐=⇒∨α

· =←−
β

hold. Here <αβ denotes the set {γ ∈ I | α > γ or β > γ} and if J ⊆ I then →J

denotes
⋃

γ∈J →γ . We simplify <αα to <α.

Lemma 2. Every conversion modulo ∼ is either a valley modulo ∼ or contains
a local peak or cliff:

⇔∗ ⊆ ↓∼ ∪ ⇔∗ · ← · → · ⇔∗ ∪ ⇔∗ · · → · ⇔∗ ∪ ⇔∗ · ← · · ⇔∗

The proof of the following theorem is based on a well-founded order on mul-
tisets. We denote the multiset extension of an order > by >mul. It is well-known
that the multiset extension of a well-founded order is also well-founded.

Theorem 1. If A is peak-and-cliff decreasing then A is Church–Rosser mod-
ulo ∼.
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Proof. With every conversion C we associate a multiset MC consisting of labels
of its rewrite and equivalence relation steps. Since A is peak-and-cliff decreasing,
there is a well-founded order > on I which allows us to replace conversions C of
the forms →α · →β , →α · β and β · →αby conversions C ′ where MC >mul

MC′ . Hence, we prove that A is Church–Rosser modulo ∼, i.e., ⇔∗ ⊆ ↓∼, by
well-founded induction on >mul. Consider a conversion a ⇔∗ b which we call C.
By Lemma 2 we either have a ↓∼ b (which includes the case that C is empty) or
one of the following cases holds:

a ⇔∗ · ← · → · ⇔∗ b a ⇔∗ · ← · · ⇔∗ b a ⇔∗ · · → · ⇔∗ b

If a ↓∼ b we are immediately done. In the remaining cases, we have a local peak
or cliff with concrete labels α and β, so MC = Γ1 � {α, β} � Γ2. Since A is
peak-and-cliff decreasing, there is a conversion C ′ with MC′ = Γ1 �Γ �Γ3 where
{α, β} >mul Γ . Hence, MC >mul MC′ and we finish the proof by applying the
induction hypothesis. ��

In the following, we connect the joinability of local peaks and cliffs to the
joinability of prime critical pairs which allows us to apply peak-and-cliff decreas-
ingness in the correctness proof of A.

Definition 4. Given a TRS R and terms s, t and u, we write t �s u if s →+
R t,

s →+
R u, and t ↓R u or t ↔PCP(R) u. We write t �∼

s u if s →+
R t, s ∼ u and

t ↓∼
R u or t ↔PCP±(R,B±) u. Furthermore, �∼

s = {(u, t) | t �∼
s u}.

Lemma 3. Let R be a left-linear TRS. The following two properties hold:

1. If t →R s →R u then t �2
s u.

2. If t →R s ↔B u then t �s · �∼
s u.

3.3 Correctness Proof

We show that every fair and non-failing finite run results in a B-complete presen-
tation. To this end, we first verify that inference steps in A preserve convertibility.
We abbreviate E ∪ R ∪ B to ERB and E ′ ∪ R′ ∪ B to ERB′.

Lemma 4. If (E ,R) �A (E ′,R′) then the following inclusions hold:

−−−→
ERB

⊆ =−−−−→R′/B · ( =−−−→ER′ ∪ ∗←→B ) · =←−−−−R′/B −−−→
ERB′

⊆ ∗←−−→ERB

Corollary 1. If (E ,R) �∗
A (E ′,R′) then ∗←−−→ERB = ∗←−−−→ERB′ .

Lemma 5. If (E ,R) �∗
A (E ′,R′) and R ⊆ > then R′ ⊆ >.

Definition 5. Let ↔ be a rewrite relation or equivalence relation, M a finite
multiset of terms and > a B-compatible reduction order. We write s

M←→ t if s ↔ t
and there exist terms s′, t′ ∈ M such that s′ � s and t′ � t for � = > ∪ ∼B.
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We follow the convention that if a conversion is labeled with M , all single
steps can be labeled with M .

Lemma 6. Let (E ,R) �A (E ′,R′) and R′ ⊆ >.

1. For any finite multiset M we have M←−−→ERB
∗ ⊆ M←−−−→ERB′

∗.
2. If s

M−−→R t then s
M−−→R′

= · N←−−−→ERB′
∗ t with {s} >mul N .

Finally, we are able to prove the correctness result for A, i.e., all finite fair
and non-failing runs produce a B-complete TRS which represents the original
set of equations. In contrast to [1] and [3], the proof shows that it suffices to
consider prime critical pairs.

Theorem 2. Let E be an ES. For every fair and non-failing run

E0,R0 �A E1,R1 �A · · · �A En,Rn

for E, the TRS Rn is a B-complete representation of E.

Proof. Let > be the B-compatible reduction order used in the run. From fairness
we obtain En = ∅ as well as the fact that Rn is left-linear. Corollary 1 establishes
↔∗

E ∪B = ↔∗
Rn ∪B and termination modulo B of Rn follows from Lemma 5. It

remains to prove that Rn is Church–Rosser modulo B which we do by showing
peak-and-cliff decreasingness. So consider a labeled local peak t →M1

Rn
s →M2

Rn
u.

Lemma 3(1) yields t �2
s u. Let v �s w appear in this sequence (so v = t or

w = u). By definition, v ↓Rn
w or v ↔PCP(Rn) w. Together with fairness,

the fact that ∼B is reflexive as well as closure of rewriting under contexts and
substitutions we obtain v ↓∼

Rn
w or (v, w) ∈ ⋃n

i=0 ↔Ei ∪Ri
. In both cases, it

is possible to label all steps between v and w with {v, w}. Since s > v and
s > w we have M1 >mul {v, w} and M2 >mul {v, w}. Repeated applications of
Lemma 6(1) therefore yield a conversion in Rn ∪B between v and w where every
step is labeled with a multiset that is smaller than both M1 and M2. Hence, the
corresponding condition required by peak-and-cliff decreasingness is fulfilled.

Next consider a labeled local cliff t →M1
Rn

s ↔M2
B u. From Lemma 3(2) we

obtain a term v such that t �s v �∼
s u. As in the case for local peaks we obtain a

conversion between t and v where each step can be labeled with {t, v} <mul M1.
Together with fairness, v �∼

s u yields v ↓∼
Rn

u or (v, u) ∈ ⋃n
i=0 ↔Ri

. In the
former case there exists a k such that v →∗

Rn
· ∼B · →k

Rn
u. If k = 0 we can

label all steps with {v}. If k > 0 the conversion is of the form v →∗
Rn

· ∼B
· →k−1

Rn
w →Rn

u. We can label the rightmost step with M2 and the remaining
steps with {v, w}. Note that s > v. Since > is a B-compatible reduction order
we also have s > w. Thus, M1 >mul {v, w} which establishes the corresponding
condition required by peak-and-cliff decreasingness for all k. In the remaining
case we have (v, u) ∈ ⋃n

i=0 ↔Ri
, so there is some i � n such that v ↔Ri

u.
Actually, we know that u →M2

Ri
v since otherwise we would have both s > v

and v > s by the B-compatibility of >. Repeated applications of Lemma 6(1,2)
therefore yield a conversion between u and v of the form

u
M2−−−→Rn

= · N←−−−→Rn∪B
∗ v



408 J. Niederhauser et al.

where {u} >mul N . By definition, s′ � u for some s′ ∈ M1 and therefore M1 >mul

N , which means that the corresponding condition required by peak-and-cliff
decreasingness is fulfilled. Overall, it follows that Rn is peak-and-cliff decreasing
and therefore Church–Rosser modulo B. ��

Note that the proofs of the previous theorem and Theorem 1 do not require
multiset orders induced by quasi-orders but use multiset extensions of proper
B-compatible reduction orders which are easier to work with. This could be
achieved by defining peak-and-cliff decreasingness in such a way that well-
founded orders suffice for the abstract setting. However, the usage of multiset
orders based on B-compatible reduction orders as well as a notion of labeled
rewriting which allows us to label steps with B-equivalent terms are crucial in
order to establish peak-and-cliff decreasingness for TRSs.

4 Bachmair’s Inference System

As already mentioned, the inference system proposed by Avenhaus [1] is essen-
tially the same as A. The only other inference system for B-completion for left-
linear TRSs is due to Bachmair [3]. We investigate a slightly modified version of
this inference system where arbitrary local peaks are deducible and the encom-
passment condition from the collapse rule is removed as we only consider finite
runs and call the resulting system B.

The main difference between A and B is that in B one may only use the
standard rewrite relation →R for simplifying equations and composing rules.
This allows us to deduce local cliffs as equations. The goal of this section is to
establish correctness of B via a simulation by A.

Definition 6. The inference system B is the same as A but with rewriting in
compose and simplify restricted to →R and the following rule which replaces the
two deduction rules of A:

deduce
E ,R

E ∪ {s ≈ t},R if s →R · →R∪B± t

Definition 7. Let E be an ES. A finite sequence

E0,R0 �B E1,R1 �B · · · �B En,Rn

with E0 = E and R0 = ∅ is a run for E. If En �= ∅, the run fails. The run is
fair if Rn is left-linear and the following inclusion holds:

PCP(Rn) ∪ PCP±(Rn,B±) ⊆ ↓∼
Rn

∪
n⋃

i=0

↔Ei

In contrast to Definition 2, the fairness condition is the same for all prime
critical pairs since the inference rule deduce of B never produces rewrite rules.

In the following, o
I denotes an application of the rule orient in an inference

system I. In order to prove that fair and non-failing runs in B can be simulated
in A, we start with the following technical lemma.
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Lemma 7. If (E1,R1) �B (E2,R2) and (E1,R1)
o ∗
B (E ′

1,R′
1) then (E ′

1,R′
1) �=

A

(E ′
2,R′

2) where (E2,R2)
o ∗
B (E ′

2,R′
2). In a picture:

E1,R1 E2,R2

E ′
1,R′

1 E ′
2,R′

2

�B

�=
A

o
∗B

o
∗B

For the proof of the simulation result, we need a slightly different form of the
previous lemma. Analogous to the notation for rewrite relations, the relation o !

I
denotes the exhaustive application of the inference rule orient.

Corollary 2. If (E1,R1) �B (E2,R2) and (E1,R1)
o !
B (E ′

1,R′
1) then

(E ′
1,R′

1) �∗
A (E ′

2,R′
2) where (E2,R2)

o !
B (E ′

2,R′
2).

Theorem 3. For every fair run (E , ∅) �∗
B (∅,R) there exists a fair run

(E , ∅) �∗
A (∅,R).

Proof. Assume (E0,R0) �n
B (En,Rn) where R0 = En = ∅. By n applications of

Corollary 2 we arrive at the following situation:

E0,R0

E ′
0,R′

0E0,R0

E1,R1

E ′
1,R′

1

· · ·

· · ·

En,Rn

E ′
n,R′

n

B

o !
A

∗
A

B

∗
A

B

∗
A

o
!B

o
!B

o
!B

The following two statements hold:

1. For 0 � i � n, all orientable equations in Ei are in R′
i (possibly reversed) and

the other equations are in E ′
i .

2. PCP±(R′
n,B±) is a set of orientable equations.

Statement (1) is immediate from the simulation relation o !
B and statement (2)

follows from B-compatibility of the used reduction order together with the fact
that every (prime) critical pair is connected by one Rn-step and one B-step.
Furthermore, En = ∅ implies E ′

n = ∅ as well as Rn = R′
n. Hence, we obtain

fairness of the run in A by showing the following inclusions:

PCP(R′
n) ⊆ ↓∼

R′
n

∪
n⋃

i=0

↔E′
i ∪R′

i
PCP±(R′

n,B±) ⊆ ↓∼
R′

n
∪

n⋃

i=0

↔R′
i

Let s ≈ t ∈ PCP(R′
n). By fairness of the run in B we obtain s ↓∼

R′
n

t or s ↔Ek
t

for some k � n. In the former case, we are immediately done. In the latter case



410 J. Niederhauser et al.

we obtain s ↔E′
k ∪R′

k
t from (1) as desired. Now, let s ≈ t ∈ PCP±(R′

n,B±). By
fairness of the run in B we obtain s ↓∼

R′
n

t or s ↔Ek
t for some k � n. Again,

we are immediately done in the former case. In the latter case we have s ↔R′
k

t
because of (1) and (2). Therefore, the run in A is fair. ��

The previous theorem is an important simulation result which justifies the
emphasis on A in this paper. Moreover, together with Theorem 2 the correctness
of the inference system B is an easy consequence.

Corollary 3. Every fair and non-failing run for E in B produces a B-complete
presentation of E.

5 AC Completion

So far, the theoretical results have been generalized by using the equational the-
ory B as a placeholder. In practice, however, this paper is concerned with the
particular theory AC. The results of this section allow us to assess the effective-
ness of the inference system A in the setting of AC completion.

5.1 Limitations of Left-Linear AC Completion

In addition to the restriction to left-linear rewrite rules, the following exam-
ple demonstrates another severe limitation of the inference system A previously
unmentioned in the literature.

Example 4. Consider the ES E consisting of the equations

and(0, 0) ≈ 0 and(1, 1) ≈ 1 and(0, 1) ≈ 0

where and is an AC function symbol. There is only one way to orient each
equation. Furthermore, there are no critical pairs between the resulting rewrite
rules. Hence, using the inference system A we arrive at the intermediate TRS

and(0, 0) → 0 and(1, 1) → 1 and(0, 1) → 0

where the only possible next step is to deduce local cliffs. We will now show that
this has to be done infinitely many times. Note that an AC-complete presentation
R of E has to be able to rewrite any AC-equivalent term of a redex: Consider
the infinite family of terms

s0 = and(0, 1) s1 = and(and(0, x1), 1) s2 = and(and(and(0, x1), x2), 1) · · ·
as well as

t0 = 0 t1 = and(0, x1) t2 = and(and(0, x1), x2) · · ·
Clearly, sn ↔∗

E ∪AC tn for all n ∈ N and therefore also sn ↓∼
R tn for all n ∈ N, but

this demands infinitely many rules in R: For each sn there is an AC-equivalent
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term such that the constants 0 and 1 are next to each other which allows us
to rewrite it using the rule and(0, 1) → 0. However, with n also the amount of
variables between these constants increases which requires R to have infinitely
many rules since rewrite rules can only be applied before the representation
modulo AC is changed.

Note that there is nothing special about this example except the fact that it
contains at least one equation which can only be oriented such that the left-hand
side contains an AC function symbol where both arguments have “structure”,
i.e., both arguments represent more complicated terms than a variable. As a
consequence, the necessity of infinite rules applies to all equational systems which
have this property. Needless to say, this means that for a large class of equational
systems the corresponding AC-canonical presentation (in the left-linear sense)
is infinite if it exists. This observation is in stark contrast to the properties of
general AC completion as presented in the next section which can complete the
ES E from Example 4 into a finite AC-canonical TRS by simply orienting all
rules from left to right.

5.2 General AC Completion

Inference systems for completion modulo an equational theory which are not
restricted to the left-linear case usually need more inference rules than the ones
already covered in this paper. For general AC completion, however, there exists
a particularly simple inference system which constitutes a special case of nor-
malized completion [12] and can be found in Sarah Winkler’s PhD thesis [16,
p. 109].

Definition 8. The inference system KBAC is the same as A for the fixed theory
AC but with a modified collapse rule which allows us to rewrite with →R/AC and
the following rule which replaces the two deduction rules of A:

deduce
E ,R

E ∪ {s ≈ t},R if s →R · ∼AC · →R t

The purpose of this section is to show how A can be simulated by KBAC in
the case of B = AC. Since local cliffs cannot be deduced in KBAC, the simulation
has to work with a potentially smaller set of rewrite rules. Furthermore, during
a run, the variants of rules stemming from local cliffs may be in different states
with respect to inter-reduction (collapse and compose). Given an intermediate
TRS R of a run in A as well as an intermediate TRS R′ of a run in KBAC, the
invariant R ⊆ →+

R′/AC resolves both of the aforementioned problems. The main
motivation behind this invariant is the avoidance of compose and collapse in the
KBAC run.

Lemma 8. If (E1,R1) �A (E2,R2) and R1 ⊆ →+
R′

1/AC then there exists a TRS

R′
2 such that (E1,R′

1)
∗
KBAC

(E2,R′
2) and R2 ⊆ →+

R′
2/AC.
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Proof. Let > be a fixed AC-compatible reduction order which is used in both A
and KBAC. Suppose (E1,R1) �A (E2,R2) and R1 ⊆ →+

R′
1/AC. We proceed by a

case analysis on the rule applied in the inference step (E1,R1) �A (E2,R2). The
only interesting cases are when deduce, simplify, compose, or collapse is applied.

– If deduce is applied, we further distinguish whether it was applied to a local
peak or cliff. In the case of a local cliff, we have E1 = E2 and R2 = R1∪{� → r}
with � →R1/AC r. From � →R1/AC r and R1 ⊆ →+

R′
1/AC we obtain � →+

R′
1/AC r.

Thus, R2 ⊆ →+
R′

1/AC holds. As (E1,R′
1)

0
KBAC

(E2,R′
1) is trivial, the claim

follows. In the case of a local peak, we have R1 = R2 and E2 = E1 ∪ {t ≈ u}
with t →R1 s →R1 u. Since R1 ⊆ →+

R′
1/AC holds, we have t →∗

R′
1/AC

v →R′
1

· ∼AC s ∼AC · →R′
1

w →∗
R′

1/AC u for some v and w. By performing deduce and
simplify steps

(E1,R′
1) KBAC

(E1 ∪ {v ≈ w},R′
1)

∗
KBAC

(E1 ∪ {t ≈ u},R′
1) = (E2,R′

1)

is obtained. As R1 = R2, the inclusion R2 ⊆ →+
R′

1/AC is trivial. Hence, the
claim holds.

– If simplify is applied, we have R1 = R2, E1 = E0 ∪ {s ≈ t}, and E2 =
E0 ∪ {s′ ≈ t′} with s →=

R1
s′ and t →=

R1
t′. By R1 ⊆ →+

R′
1/AC we have

s →∗
R′

1/AC s′ and t →∗
R′

1/AC t′. Therefore, performing simplify, we obtain

(E1,R′
1)

∗
KBAC

(E2,R′
1). As R1 = R2, the inclusion R2 ⊆ →+

R′
1/AC is trivial.

– If compose is applied, we can write E1 = E2, R1 = R0 ∪ {� → r}, and
R2 = R0 ∪ {� → r′} with r →R0/AC r′. We have (E1,R′

1)
0
KBAC

(E2,R′
1).

Since the inclusions R0 ⊆ R1 ⊆ →+
R′

1/AC yield � →+
R′

1/AC r →+
R′

1/AC r′, we
obtain R2 ⊆ →+

R′
1/AC.

– If collapse is applied, we can write E2 = E1 ∪{�′ ≈ r} and R1 = R2 �{� → r}
with � →R2 �′. By R2 ⊆ R1 ⊆ →+

R′
1/AC we have

�′ →∗
R′

1/AC
t →R′

1
· ∼AC � ∼AC · →R′

1
u →∗

R′
1/AC r

for some t and u. Performing deduce and simplify, we obtain:

(E1,R′
1) KBAC

(E1 ∪ {t ≈ u},R′
1)

∗
KBAC

(E1 ∪ {�′ ≈ r},R′
1) = (E2,R′

1)

By R2 ⊆ R1 ⊆ →+
R′

1/AC the claim is concluded. ��

Theorem 4. For every fair run (E , ∅) �∗
A (∅,R) there exists a run (E , ∅) ∗

KBAC

(∅,R′) such that R′/AC is an AC-complete presentation of E.

Proof. With a straightforward induction argument, we obtain the run
(E , ∅) ∗

KBAC
(∅,R′) as well as R ⊆ →+

R′/AC (∗) from Lemma 8. Furthermore,
AC termination of R′ and ↔∗

E ∪AC = ↔∗
R′ ∪AC (∗∗) are easy consequences from
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the definition of KBAC. AC-completeness of R follows from fairness of the run
in A and Theorem 2. For the Church–Rosser modulo AC property of R′/AC,
consider a conversion s ↔∗

R′ ∪AC t. From (∗∗) we obtain s ↔∗
E ∪AC and therefore

s →∗
R · ∼AC · →∗

R t by the fact that R is an AC-complete presentation of E .
Finally, (∗) yields s →∗

R′/AC · ∼AC · →∗
R′/AC t as desired. Thus, R′/AC is an

AC-complete presentation of E . ��
In addition to the result of the previous theorem, the proof of Lemma 8

provides a procedure to construct a KBAC run which “corresponds” to a given
A run. In particular, this means that it is possible to switch from A to KBAC at
any point while performing AC completion. This is of practical relevance: Assume
that AC completion is started with A in order to avoid AC unification. If A gets
stuck due to simplified equations which are not orientable into a left-linear rule or
it seems to be the case that the procedure diverges due to the problem described
in Example 4, starting from scratch with KBAC is not necessary. We conclude
the section by illustrating the practical relevance of the simulation result with
an example.

Example 5. Consider the ES E for abelian groups consisting of the equations

e · x ≈ x x− · x ≈ e

where · is an AC symbol. Note that the well-known completion run for non-
abelian group theory is also a run in A: Critical pairs with respect to the asso-
ciativity axiom are deducible via local cliffs, non-left-linear intermediate rules are
allowed and all (intermediate) rules are orientable with e.g. AC-KBO. Hence, we
obtain the TRS R′ consisting of the rules

1: e · x → x 6: x · e → x

2: x− · x → e 7: x · x− → e

3: x−− → x 8: e− → e

4: x− · (x · y) → y 9: x · (x− · y) → y

5: (x · y)− → y− · x−

and switch to KBAC where we can collapse the redundant rules 4, 6, 7 and 9. A
final joinability check of all AC critical pairs reveals that the resulting TRS R
is an AC-complete presentation of abelian groups. Hence, the simulation result
allows to make progress with A even when it is doomed to fail. In particular,
critical pairs between rules whose left-hand sides do not contain AC symbols do
not need to be recomputed.

6 Implementation

To the best of our knowledge, our tool accompll is the first implementation of
left-linear AC completion. It is written in Haskell and available on its web-
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site1. Instead of expecting explicit AC-compatible reduction orders as input,
accompll performs completion with termination tools [15]. In principle, com-
pletion with termination tools has to consider all combinations of possible ori-
entations of equations in order to find a complete system. However, travers-
ing the whole search space is rather inefficient. The state of the art for solv-
ing this problem efficiently is multi-completion with termination tools due to
Winkler et al. [20]. Since the implementation of this method is a major effort,
accompll adopts a simple but incomplete strategy presented in [14]: Instead of
traversing the whole search space, accompll runs two threads in parallel where
one thread prefers to orient equations from left to right and vice versa. If one of
the threads finishes successfully, the corresponding result is reported. Comple-
tion fails if both threads fail.

As input, the tool expects a file in the WST2 format describing the equational
theory on which left-linear AC completion should be performed. The user can
choose whether →R or →R/AC is used for rewriting in the inference rules sim-
plify and compose. Furthermore, the generation of critical pairs can be restricted
to the primality criterion.

Another feature is the validity problem solving mode which solves a given
instance of the validity problem for an equational theory E upon successful com-
pletion of E . This mode can be triggered by supplying a concrete equation s ≈ t
as a command line argument in addition to the file describing E .

In the tool accompll, external termination tools do much of the heavy lifting.
In particular, the user can supply the executable of an arbitrary termination tool
as long as the output starts with YES, MAYBE, NO or TIMEOUT (all other cases are
treated as an error). The input format for the termination tool can be set by a
command line argument. The available options are the WST format as well as
the XML format of the Nagoya Termination Tool [21]3.

Since starting a new process for every call of the termination tool causes a
lot of operating system overhead, the tool supports an interactive mode which
allows it to communicate with a single process of the termination tool in a
dialogue style. Here, the only constraint for the termination tool is that it accepts
a sequence of termination problems separated by the keyword (RUN). This is
currently only implemented in an experimental version of Tyrolean Termination
Tool 2 (TTT2) [11], but we hope that more termination tools will follow as this
approach has a positive effect on the runtime of completion with termination
tools while demanding comparatively little implementation effort.

7 Experimental Results

The problem set used for the experimental results consists of 50 ESs. It is based
on the one used in [18] and has been extended by further examples from the
literature as well as handcrafted examples. The experiments were performed on
1 https://github.com/niedjoh/accompll.
2 https://www.lri.fr/~marche/tpdb/format.html.
3 https://www.trs.cm.is.nagoya-u.ac.jp/NaTT/natt-xml.html.

https://github.com/niedjoh/accompll
https://www.lri.fr/~marche/tpdb/format.html
https://www.trs.cm.is.nagoya-u.ac.jp/NaTT/natt-xml.html
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Table 1. Experimental results on 50 problems (excerpt)

accompll (TTT2) accompll (TTT2e) MædMax mkbTT
(1) (2) (1) (2) (1) (2) (1) (2)

N (+, ×) 0.85 10 0.28 10 18.78 5 ∞
N (+, −, ×, ÷) 1.74 15 0.42 15 ∞ 60.06 ?a

[1, Ex. 4.2.15(b)] 0.48 4 0.24 4 0.01 3 0.19 2
abelian groups ⊥ ⊥ 0.16 5 0.14 0
[7, Ex. 2] ∞ ∞ 0.04 5 0.44 3
problems solved 16 16 22 35
a mkbTT does not output the completed system for unknown reasons.

an Intel Core i7-7500U running at a clock rate of 2.7GHz with 15.5 GiB of main
memory. Our tool accompll was used with the termination tool TTT2 as well as an
experimental version (denoted by TTT2e) which allows our tool to communicate
a sequence of termination problems without having to start a new process all
the time, as described in the preceding section.

Table 1 shows some interesting results and compares the two configura-
tions of accompll with the normalized completion [12] mode of mkbTT [19]
and the AC completion mode of MædMax [17]. The tool mkbTT is the origi-
nal implementation of multi-completion with termination tools [20]. MædMax,
on the other hand, implements maximal completion [9] which makes use of
MaxSAT/MaxSMT solvers instead of termination tools in order to avoid using
concrete reduction orders as input. To the best of our knowledge, there is no com-
parable completion tool which supports AC axioms. Since normalized completion
subsumes general AC completion, a comparison with the aforementioned modes
of both systems allows us to assess the effectiveness of accompll with respect to
the state of the art in AC completion. Note that normalized completion uses AC
unification.

In Table 1, columns (1) show the execution time in seconds where ∞ denotes
that the timeout of 60 s has been reached and ⊥ denotes failure of completion.
Columns (2) state the number of rules of the completed TRS. The first two
problems show that the avoidance of AC unification can indeed have a positive
effect on the execution time. However, the third problem indicates that there may
also be an opposite effect on small problems. The last two problems show the two
main limitations of left-linear AC completion: Abelian groups do not have an
AC-complete presentation which is left-linear and Example 2 from [7] is a ground
ES which causes left-linear AC completion to suffer from the problem described
in Example 4 by definition. The severity of these limitations is reflected in the
total number of solved problems. In particular, the problem set does not contain
an ES which is completed only by accompll. However, given Theorem 4, this
is not unexpected. Another noteworthy but unsurprising fact is that complete
systems produced by accompll tend to have more rules since every rule needs
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different versions of left-hand sides to facilitate rewriting without AC-matching.
It would also be interesting to compare the execution times for typical queries
of the form E � s ≈ t as the resulting systems of left-linear AC completion allow
for more efficient joinability checks using →R instead of →R/AC. We leave this
for future work.

The complete results are available on the tool’s website4. We conclude with
some additional notes on the results.

– The results are not cluttered with detailed results for the available options
regarding prime critical pairs and the concrete rewrite relation used for sim-
plify and compose since they did not lead to significant runtime differences.
Instead, the default options (no prime critical pairs and the rewrite relation
→R) were used for the experiments.

– The second problem in Table 1 shows the merits of using termination tools
as it includes round-up division which cannot be handled by simplification
orders.

– Due to the incompleteness of the used approach for completion with termi-
nation tools, some equations in the problems A95_ex4_2_4a.trs as well as
sp.trs had to be reversed in order to get appropriate results. Note that this
does not distort the experimental results for left-linear AC completion in gen-
eral as the problem lies in the particular implementation of completion with
termination tools.

8 Conclusion

In this paper, we consolidated the existing literature for left-linear AC comple-
tion in the case of finite runs and gave new insight into its merits compared to
general AC completion. Furthermore, our implementation accompll allowed us
to run practical experiments. An extended version of this paper with full proof
details and an appendix which describes the original inference systems of Aven-
haus and Bachmair is available on the website of accompll (see Footnote 4). We
conclude by giving some pointers for future work. First of all, the merits of our
novel simulation result for general AC completion could be evaluated experimen-
tally by providing an implementation. Another interesting research direction is
normalized completion for the left-linear case. If successful, this would facilitate
the treatment of important cases such as abelian groups despite the restriction
to left-linear TRSs. Furthermore, a formalization of the established theoretical
results is desirable. To that end, the existing Isabelle/HOL formalization from
[4] is a perfect starting point as some results of this paper are extensions of the
results for standard rewriting presented there.

Acknowledgments. We thank Jonas Schöpf and Fabian Mitterwallner for providing
the experimental version of TTT2 as well as the anonymous reviewers for their valuable
suggestions.

4 http://cl-informatik.uibk.ac.at/software/accompll/.

http://cl-informatik.uibk.ac.at/software/accompll/
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Abstract. We study the P -interpolation property for certain local the-
ory extensions, and use these results for proving ≤-interpolation in classes
of semilattices with monotone operators. For computing the ≤-interpo-
lating terms, we use a hierarchic approach. We use these results for the
study of �-interpolation in the description logics EL and EL+.

1 Introduction

In this paper we study the problem of P -interpolation, a problem strongly related
to interpolation w.r.t. logical theories. The problem can be formulated as follows:

Let T be a theory, A and B be conjunctions of ground literals in the signature
of T , possibly with additional constants, P a predicate symbol in the signature
of T , a a constant occurring in A and b a constant occurring in B. Assume that
A ∧ B |=T aPb. Can we find a ground term t containing only constants and
function symbols “shared” by A and B, such that A ∧ B |=T aPt ∧ tPb?

Interpolation has been studied in classical and non-classical logics and in
extensions and combinations of theories; and is very important in program veri-
fication and also in the area of description logics. The first algorithms for inter-
polant generation in program verification required explicit constructions and
“separations” of proofs [14,16]. In [13] interpolants are computed using variants
of resolution. For certain theories, the “separation” of proofs relied on the pos-
sibility of “separating” atoms, i.e. on P -interpolation. Equality interpolation is
used in [34] for devising an interpolation method in combinations of theories
with disjoint signatures. In [22,24] and [19], for instance, we consider interpo-
lation problems in certain classes of extensions T0 ∪ K of a base theory T0 and
use a hierarchical approach to compute interpolants. The method relies on the
P -interpolation property of the base theory T0. In most of the applications we
considered, P is the equality predicate ≈ or a predicate ≤ with the property
that in all models of T0, the interpretation of ≤ is a partial ordering. Since at
that time our main interest was the study of interpolation problems, in [22,24]
and [19] P -interpolation is only used in order to help in giving methods for
interpolation and not as a goal in itself. However, in several papers in the area
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of description logics (cf. e.g. [8,31]) when defining the notion of interpolation
in description logics the authors define in fact a notion of �-interpolation. In
[8] (Thm. 4) it is proved that EL+ allows interpolation (in fact, the notion of
�-interpolation mentioned above) for safe role inclusions – this is related to the
notion of “sharing” considered in [24], cf. also Sect. 4. The proof technique in [8]
uses simulations. In this paper, we analyze the property of P -interpolation in
theory extensions, propose a method for solving it based on hierarchical reason-
ing and satisfiability modulo theories, and formulate the �-interpolation problem
for EL and EL+ as a ≤-interpolation problem in a theory of semilattices with
operators. We first studied ≤-interpolation in [17] in the context of description
logics; the �-interpolating concept descriptions were regarded as a form of “high-
level” explanations. In this paper we further extend the work in [17]. The general
approach we propose opens the possibility of applying similar methods to more
general classes of non-classical logics (including e.g. substructural logics or the
logics with monotone operators studied in [27,28]) or in verification (to consider
more general theory extensions than those with uninterpreted function symbols
analyzed in [19]). The main results can be summarized as follows:

– We propose variants of the definitions of convexity, P -interpolation and Beth
definability relative to a subsignature.

– We describe a hierarchical P -interpolation method in certain classes of local
theory extensions.

– We illustrate the applicability of these results to prove that certain classes
of semilattices with monotone operators have the property of ≤-interpolation
for a certain interpretation of “shared” function symbols.

– We show, by giving a counterexample, that ≤-interpolation does not hold if
by “shared” symbols we mean just the common symbols.

– We indicate how these results can be used to prove or disprove various notions
of interpolation for the description logics EL and EL+.

Structure of the Paper: In Sect. 2 and 3 basic notions are introduced, and some
results needed later are proved. In Sect. 4 we identify classes of local theory exten-
sions allowing P -interpolation and propose a hierarchical method of computing
P -interpolants. This is used in Sect. 5 to study the existence of ≤-interpolation
in classes of semilattices with monotone operators. In Sect. 6 we use the links
between the theory of semilattices with operators and the description logics EL
and EL+, and show how the results can be used in the study of these logics. The
details of the proofs and additional examples can be found in [18].

2 Theories, Convexity, P -Interpolation, Beth Definability

We assume known standard definitions from first-order logic such as Π-
structures, models, homomorphisms, logical entailment, satisfiability, unsatis-
fiability.

We consider signatures of the form Π = (Σ,Pred), where Σ is a family of
function symbols and Pred a family of predicate symbols. In this paper, a theory
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T is described by a set of closed formulae (the axioms of the theory). We call a
theory axiomatized by a set of (universally quantified) equations an equational
theory. In this paper, we denote by Mod(T ) the set of all models of T . We denote
“falsum” with ⊥. If F and G are formulae we write F |= G (resp. F |=T G) to
express the fact that every model of F (resp. every model of F which is also a
model of T ) is a model of G. The definitions can be extended in a natural way
to the case when F is a set of formulae; in this case, F |=T G if and only if
T ∪ F |= G. F |=⊥ means that F is unsatisfiable; F |=T ⊥ means that there is
no model of T which is also a model of F . If there is a model of T which is also
a model of F we say that F is T -consistent. If C is a fixed countable set of fresh
constants, we denote by ΠC the extension of Π with constants in C.

Convexity and P -Convexity. We can define a notion of convexity w.r.t. a
subset P of the set of predicates.

Definition 1. A theory T with signature Π = (Σ,Pred) is convex with respect
to a subset P of Pred (which may include also equality ≈) if for all conjunc-
tions Γ of ground ΠC-atoms (with additional constants in a set C), relations
R1, . . . , Rm ∈ P and tuples of ΠC-terms of corresponding arity t1, . . . , tm such
that Γ |=T

∨m
i=1 Ri(ti) there exists i0 ∈ {1, . . . , m} such that Γ |=T Ri0(ti0).

We will call a theory T convex if it is Pred∪ {≈}-convex. The following result is
well-known (cf. e.g. [5,10,32]):

Theorem 1. Let T be a theory and let Mod(T ) be the class of models of T .

(i) If Mod(T ) is closed under direct products then T is convex.
(ii) If T is a universal theory and T is convex, then T has an axiomatization

given by Horn clauses, hence Mod(T ) is closed under direct products.

Corollary 2. Let T1, T2 be two theories with signatures Π1,Π2. If Mod(T1) and
Mod(T2) are closed under direct products, then T1 ∪ T2 is convex.

Proof: Follows from the fact that if Mod(T1) and Mod(T2) are closed under direct
products then so is also Mod(T1 ∪ T2) and from Theorem 1. �

From Theorem 1 and Corollary 2 it immediately follows that if T1 and T2 are
universal theories and convex then T1∪T2 is convex. In particular, every extension
of a convex universal theory T0 with a set of new function symbols axiomatized
by a set K of Horn clauses is convex.

Equality Interpolation, R-Interpolation. We say that a convex theory T
has the equality interpolation property if for every conjunction of ground ΠC-
literals A(c, a1, a) and B(c, b1, b), if A∧B |=T a ≈ b then there exists a term t(c)
containing only the shared constants c such that A ∧ B |=T a ≈ t(c) ∧ t(c) ≈ b.

Sometimes, the theories and theory extensions we study contain interpreted
symbols in a set Π0 = (Σ0,Pred) and non-interpreted function symbols in a set
Σ1. The classical definition for equality interpolation for a theory T mentioned
above allows the term t(c) to contain all function symbols in the signature of T
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– these symbols are in this case all seen as being interpreted. If we distinguish
between interpreted and uninterpreted functions we might require that the inter-
mediate term t(c) contains only “shared” uninterpreted functions and common
constants.

If ΣA and ΣB are the uninterpreted function symbols occurring in A resp. B,
and Θ is a closure operator, by “shared” uninterpreted functions we can mean:

– Intersection-shared symbols:
⋂

-Shared(A,B) = ΣA ∩ ΣB , or
– Θ-shared symbols: Θ-Shared(A,B) = Θ(ΣA) ∩ Θ(ΣB).

Example 1. Let T = T0 ∪ K be the extension of a theory T0 with set of inter-
preted function symbols Σ0 with a set K of clauses containing new uninter-
preted function symbols in a set Σ1. If A and B are sets of atoms in the
signature of T containing additional constants in a set C and uninterpreted
function symbols ΣA, ΣB then the intersection-shared uninterpreted function
symbols of A and B are ΣA ∩ ΣB . Let ΘK be defined for every Σ ⊆ Σ1 by
ΘK(Σ) =

⋃
f∈Σ{g ∈ Σ1 | g ∼∗

K f}, where ∼∗
K is the equivalence relation induced

by the relation f ∼K g iff there exists C∈K s.t. f, g both occur in C.
Then the ΘK-shared symbols are ΘK(ΣA)∩ΘK(ΣB). In particular, if A contains
a function symbol f and B contains a symbol g such that f, g occur both in a
clause in K, then f and g are considered to be ΘK-shared by A, B. �

We also might be interested in similar properties for other binary relations. We
define an R-interpolation property, where R is a binary predicate symbol in Π.

Definition 2. Let R ∈ Pred∪{≈} be a binary predicate symbol. An {R}-convex
theory T with uninterpreted symbols Σ1 has the R-interpolation property if for
all conjunctions of ground atoms A(c, a1, a) and B(c, b1, b), if A∧B |=T aRb then
there exists a term t(c) containing only common constants c and only “shared”
uninterpreted symbols in Σ1 such that A ∧ B |=T aRt(c) ∧ t(c)Rb.

If P ⊆ Pred, we say that a theory has the P -interpolation property if it has the R-
interpolation property for every R ∈ P . In Sect. 5 we give examples of theories
with this property and show that a theory may not have the R-interpolation
property for a predicate symbol R if we use the notion of intersection-shared
symbols, but has the R-interpolation property if we consider the less restrictive
notion of Θ-shared symbols for a suitably defined closure operator Θ.

Beth Definability. Let T be a theory with signature Π = (Σ0∪Σ1,Pred), where
the function symbols in Σ0 are interpreted function symbols and the function
symbols in Σ1 are regarded as uninterpreted function symbols, and let C be a
set of additional constants. We define a notion of Beth definability relative to a
subset ΣS ⊆ Σ1 ∪ C of non-interpreted function symbols and constants similar
to the one introduced in [31], which we refer to as ΣS-Beth definability.
Let ΣS ⊆ Σ1 ∪ C, let Σr = Σ1\ΣS , and let Π ′ = (Σ0 ∪ (ΣS ∩ Σ1) ∪ Σ′

r,Pred),
where Σ′

r = {f ′ | f ∈ Σ1\ΣS} is the signature obtained by replacing all uninter-
preted function symbols in Σ1 which are not in ΣS with new primed copies. If φ
is a ΠC-formula, we will denote by φ′ the formula obtained from φ by replacing
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all uninterpreted function symbols in Σ1\ΣS and all constants in C\ΣS with dis-
tinct, primed versions. The interpreted function symbols and the uninterpreted
function symbols and constants in ΣS are not changed. We regard the theory T
as a set of formulae; let T ′ := {φ′ | φ ∈ T }.1

Let A be a conjunction of ground ΠC-literals, and a ∈ C. We say that a is
implicitly defined by A w.r.t. ΣS and T if, with the notations introduced before,

A ∧ A′ |=T ∪T ′ a ≈ a′.

We say that a is explicitly defined by A w.r.t. ΣS and T if there exists a term t
containing only symbols in Σ0,Pred and ΣS such that A |=T a ≈ t.

Definition 3. Let T be a theory with uninterpreted function symbols in a set
Σ1. Let ΣS ⊆ Σ1 ∪ C. T has the Beth definability property w.r.t. ΣS (ΣS-
Beth definability), if for every conjunction of literals A and every a ∈ C, if A
implicitly defines a w.r.t. ΣS and T then A explicitly defines a w.r.t. ΣS and T .

In [4,6] it was proved that if a convex theory has the ≈-interpolation property,
then it has the Beth definability property. We give an analogous implication
between ≈-interpolation and Beth definability w.r.t. a subsignature.

Theorem 3. Let T be a convex theory with signature Π = (Σ0 ∪ Σ1,Pred), C
a set of constants, and ΣS ⊆ Σ1 ∪ C. Let T ′ be as defined above.

(i) If T ∪T ′ has the ≈-interpolation property with intersection-sharing, then T
has the ΣS-Beth definability property.

(ii) Assume that T = T0∪K where all symbols in the signature of T0 are regarded
as interpreted, and K is a set of clauses also containing uninterpreted func-
tion symbols in Σ1. Let ΘK be the closure operator defined in Example 1. If
T ∪T ′ has the ≈-interpolation property with ΘK∪K′-sharing, then T has the
ΘK(ΣS)-Beth definability property.

Proof (Idea): (i) Assume a is implicitly definable w.r.t. ΣS , i.e. there exists a
conjunction A of literals such that if A′ is obtained by renaming as explained
before, then A∧A′ |=T ∪T ′ a ≈ a′. Since T ∧T ′ has ≈-interpolation, there exists
a term t using only the functions and predicate symbols common to A and A′

(i.e. the symbols in Σ0 ∪ ΣS) such that A ∧ A′ |=T ∪T ′ a ≈ t ∧ t ≈ a′. It can be
shown that then A |=T a ≈ t.

(ii) Assume a is implicitly definable w.r.t. ΘK(ΣS), i.e. there exists a con-
junction A of literals such that if A′ is obtained by renaming as explained before
then A ∧ A′ |=T ∪T ′ a ≈ a′. The symbols shared by A and A′ are the symbols in
Σ0∪ΣS∪ΘK∪K′(ΣS), where ΘK∪K′(ΣS) =

⋃
f∈ΣS∩Σ1

{g ∈ Σ1∪Σ′
1 | f ∼∗

K∪K′ g}.
It is easy to see that for every f ∈ Σ1\ΣS , f ∈ ΘK(ΣS) iff f ′ ∈ ΘK′(ΣS),
and ΘK∪K′(ΣS) = ΘK(ΣS) ∪ ΘK′(ΣS). Since we assumed that T ∪ T ′ has the
≈-interpolation property with the notion of ΘK∪K′ -sharing, there exists a term t
over the signature Σ0 ∪ΘK∪K′(ΣS) such that A∧A′ |=T ∪T ′ a ≈ t ∧ t ≈ a. The
term t might contain primed versions of function symbols. We can show that we
can find a term t containing only terms in ΘK(ΣS) such that A |=T a ≈ t. �
1 A similar definition can be given if theories are defined as classes of models.
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3 Local Theory Extensions

Let Π0=(Σ0,Pred) be a signature, and T0 be a “base” theory with signature Π0.
We consider extensions T := T0 ∪K of T0 with new function symbols Σ1 (exten-
sion functions) whose properties are axiomatized using a set K of (universally
closed) clauses in the extended signature Π = (Σ0 ∪ Σ1,Pred), which contain
function symbols in Σ1. If G is a finite set of ground ΠC-clauses, where C is an
additional set of constants, and K a set of Π-clauses, we will denote by st(K, G)
(resp. est(K, G)) the set of all ground terms (resp. extension ground terms, i.e.
terms starting with a function in Σ1) which occur in G or K. In this paper we
regard every finite set G of ground clauses as the ground formula

∧
C∈G C. If T

is a set of ground terms in the signature ΠC , we denote by K[T ] the set of all
instances of K in which the terms starting with a function symbol in Σ1 are in
T . Let Ψ be a map associating with every finite set T of ground terms a finite
set Ψ(T ) of ground terms containing T . For any set G of ground ΠC-clauses we
write K[ΨK(G)] for K[Ψ(est(K, G))]. We define:

(LocΨ
f ) For every finite set G of ground clauses in ΠC it holds that

T0 ∪ K ∪ G |= ⊥ if and only if T0 ∪ K[ΨK(G)] ∪ G is unsatisfiable.
Extensions satisfying condition (LocΨ

f ) are called Ψ -local. If Ψ is the identity we
obtain the notion of local theory extensions [21]; if in addition T0 is the theory
of pure equality we obtain the notion of local theories [9,15].

Hierarchical Reasoning. Consider a Ψ -local theory extension T0 ⊆ T0 ∪ K.
Condition (LocΨ

f ) requires that for every finite set G of ground ΠC-clauses,
T0∪K∪G |=⊥ iff T0∪K[ΨK(G)]∪G |=⊥. In all clauses in K[ΨK(G)]∪G the function
symbols in Σ1 only have ground terms as arguments, so K[ΨK(G)]∪G can be
flattened and purified by introducing, in a bottom-up manner, new constants
ct ∈ C for subterms t=f(c1, . . . , cn) where f∈Σ1 and ci are constants, together
with definitions ct=f(c1, . . . , cn). We thus obtain a set of clauses K0∪G0∪Def,
where K0 and G0 do not contain Σ1-function symbols and Def contains clauses
of the form c=f(c1, . . . , cn), where f∈Σ1, c, c1, . . . , cn are constants.

Theorem 4 ([11,12,21]). Let K be a set of clauses. Assume that T0 ⊆ T0 ∪K is
a Ψ -local theory extension. For any finite set G of flat ground clauses (with no
nestings of extension functions), let K0∪G0∪Def be obtained from K[ΨK(G)]∪G
by flattening and purification, as explained above. Then the following are equiv-
alent to T0 ∪ K ∪ G |=⊥:

(i) T0∪K[ΨK(G)]∪G |=⊥ .
(ii) T0 ∪ K0 ∪ G0 ∪ Con0 |=⊥, where

Con0 =
{∧n

i=1
ci ≈ di → c ≈ d | f(c1, . . . , cn) ≈ c ∈ Def

f(d1, . . . , dn) ≈ d ∈ Def

}

.

In [12] we showed that for extensions with sets of flat and linear clauses Ψ -locality
can be checked by checking whether an embeddability condition of partial into
total models holds.In [26] we mention (without proof) that the proof in [12] can
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be extended to situations in which the clauses in K are not linear. The result is
presented below. A full proof is given in the extended version of this paper [18].

Theorem 5. Let K be a set of Σ1-flat clauses, and ΨK be a term closure operator
such that for every set T of ground terms and for every clause D in K, if a
variable occurs in two terms in D then either the two terms are identical, or
the variable occurs below two different unary function symbols f and g and,
for every constant c, f(c) is in Ψ(T ) iff g(c) is in Ψ(T ). If all partial models
A of T0 ∪ K with totally defined Σ0-functions, and for which the set of terms
{f(a1, . . . , an) | f ∈ Σ1 and fA(a1, . . . , an) is defined} is finite and closed under
Ψ , embed into total models of T0 ∪ K, then the extension T0 ∪ K satisfies (LocΨ

f ).

4 R-interpolation in Local Theory Extensions

In [24] we considered convex and P -interpolating theories T0 with signature
Π0 = (Σ0,Pred) (where P⊆Pred). We studied Ψ -local extensions T = T0 ∪ K
of T0 with new function symbols in a set Σ1 axiomatized by a set K of clauses,
with the property that all clauses in K are of the form:

{
x1 R1 s1 ∧ · · · ∧ xn Rn sn → f(x1, . . . , xn)R g(y1, . . . , yn)
x1 R1 y1 ∧ · · · ∧ xn Rn yn → f(x1, . . . , xn)R f(y1, . . . , yn) (1)

where n ≥ 1, x1, . . . , xn, y1, . . . , yn are variables, f, g ∈ Σ1, R1, . . . , Rn, R
are binary relations with R1, . . . , Rn ∈ P and R transitive, and each si

is either a variable among the arguments of g, or a term of the form
fi(z1, . . . , zk), where fi ∈ Σ1 and all the arguments of fi are variables
occurring among the arguments of g.

Example 2. A set K of axioms containing clauses of the form:
{

x1 ≤ h(y1) → f(x1) ≤ g(y1)
x1 ≤ y1 → f(x1) ≤ f(y1)

satisfies the conditions above: n = 1, R1 = R =≤, s1 = h(y1), f, g, h ∈ Σ1.

In [24], we proved that if T0 allows ground interpolation, then T allows ground
interpolation, and that the interpolants can be computed in a hierarchical way,
using a method for ground interpolation in T0. We now show that under the
conditions above, the property of P -interpolation can be transferred from the
theory T0 to the extension T = T0 ∪ K of T0. The function symbols in the
signature of T0 are considered to be interpreted, and will always be considered
to be shared. For the function symbols in the signature Σ1 – considered to be
“quasi”-interpreted – we use the notion of ΘK-sharing introduced in Sect. 2.

In order to show that T has the P -interpolation property, we need to prove
that if A, B are conjunctions of atoms and A(c, a1, a)∧B(c, b1, b) |=T aRb, where
R ∈ P , then there exists a term t containing only the constants common to A



426 D. Peuter et al.

and B and only function symbols which are ΘK-shared by A and B, such that
A(c, a1, a) ∧ B(c, b1, b) |=T aRt ∧ tRb.

A(c, a1, a)∧B(c, b1, b)|=T aRb iff A(c, a1, a)∧B(c, b1, b)∧¬(aRb) |=T ⊥.
By Theorem 4 we can purify and flatten this conjunction and obtain a con-
junction of unit clauses A0 ∧B0 ∧Def ∧¬(aRb), where Def is a set of definitions
of newly introduced constants. Let T be the extension terms in Def. We intro-
duce new constants and definitions also for all extension terms in Ψ(T ). This
new set of definitions can be written as a conjunction DA ∧DB of its A-part and
its B-part. By the Ψ -locality of the extension T0 ⊆ T0 ∪ K and Theorem 4,

A0 ∧B0 ∧Def ∧¬(aRb) |=T ⊥ iff K0 ∧A0 ∧B0 ∧Con[DA ∧DB ]0 ∧¬(aRb) |=T0⊥,

where K0 is obtained from K[DA ∧ DB ] by replacing the Σ1-terms with the
corresponding constants contained in the definitions DA ∧ DB and

Con[DA ∧ DB ]0 =
∧{ n∧

i=1

ci ≈ di → c ≈ d | f(c1, . . . , cn) ≈ c ∈ DA ∪ DB ,
f(d1, . . . , dn) ≈ d ∈ DA ∪ DB

}
.

In general, Con[DA ∧ DB ]0 = ConA
0 ∧ ConB

0 ∧ Conmix and K0 = KA
0 ∧ KB

0 ∧ Kmix,
where ConA

0 ,KA
0 only contain extension functions and constants which occur in

A, ConB
0 ,KB

0 only contain extension functions and constants which occur in B,
and Conmix, Kmix contain mixed clauses with constants occurring in both A and
B. Our goal is to separate Conmix and Kmix into an A-part and a B-part, which
would allow us to use the P -interpolation property of theory T0.

Proposition 6. Assume that T0 is convex and P -interpolating. Let H be a set
of Horn clauses (

∧n
i=1 ciRidi) → cR0d in the signature ΠC

0 (with R0 transitive
and Ri ∈ P ) which are instances of flattened and purified clauses of type (1) and
of congruence axioms. Let Hmix be the mixed clauses in H:

Hmix = {∧n
i=1 ciRidi → cR0d ∈ H | ci, c constants in A, di, d constants in B}∪

{∧n
i=1 ciRidi → cR0d ∈ H | ci, c constants in B, di, d constants in A}

Let A0 and B0 be conjunctions of ground literals in the signature ΠC
0 such that

A0 ∧ B0 ∧ H ∧ ¬(aRb) |=T0⊥. Then H can be separated into an A- and a B-part
by replacing the set Hmix of mixed clauses with a separated set of formulae Hsep:

(i) There exists a set T of (Σ0 ∪ C)-terms containing only constants common
to A0 and B0 such that A0 ∧ B0 ∧ (H\Hmix) ∧ Hsep ∧ ¬(aRb) |=T0⊥, where
Hsep={(

∧n
i=1 ciRiti → cRcf(t1,...,tn)) ∧ (

∧n
i=1 tiRidi → cf(t1,...,tn)Rd) |∧n

i=1 ciRidi → cRd ∈ Hmix, di≈si(e1, . . . , en), d≈g(e1, . . . , en)∈DB ,
c≈f(c1, . . . , cn)∈DA or vice versa } = HA

sep ∧ HB
sep

and cf(t1,...,tn) are new constants in Σc (considered to be common) intro-
duced for the corresponding terms f(t1, . . . , tn), where for i ∈ {1, . . . , n}, ti
separates the atom ciRidi, which is entailed by the already deduced atoms.

(ii) A0 ∧B0 ∧ (H\Hmix)∧Hsep ∧¬(aRb) is logically equivalent with respect to T0

with the following separated conjunction of ground literals:
A0 ∧ B0∧¬(aRb)= A0 ∧ B0 ∧ ¬(aRb) ∧

∧
{cRd | Γ→cRd ∈ H\Hmix}∧∧

{cRcf(t) ∧ cf(t)Rd | (Γ → cRcf(t)) ∧ (Γ → cf(t)Rd) ∈ Hsep}.
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Proof (Idea). The proof is similar to that of Prop. 5.7 in [24]. (i) and (ii) are
proved simultaneously by induction on the number of clauses in H. If H = ∅, it
is already separated. Otherwise, one can prove that either (A0 ∧B0) |= aRb – in
which case we are done – or A0 ∧B0 entails all the premises of some clause C in
H. If C contains only constants in A0 or B0 we can remove it from H, add its
conclusion to A0 ∧ B0 and repeat the procedure with the new A0 ∧ B0 and H. If
the clause is mixed, we can compute terms ti which separate the premises in C,
separate C into an instance C1 of monotonicity and an instance C2 of a clause
in K, remove C from H, add to A0 ∧ B0 the conclusions of the clauses C1, C2,
and repeat the procedure with the new A0 ∧ B0 and H. �

Theorem 7. Assume that T0 is convex and P -interpolating with respect to P ⊆
Pred, and that T = T0∪K is a local extension of T0 with a set of clauses K which
only contains combinations of clauses of type (1). Then T is also P -interpolating.

Proof (Idea). We prove that if A, B are conjunctions of literals and A(c, a1, a) ∧
B(c, b1, b) |=T aRb where R ∈ P , then there exists a term t containing only the
constants common to A and B and only function symbols which are shared by A
and B, such that A(c, a1, a)∧B(c, b1, b) |=T aRt ∧ tRb. We can restrict w.l.o.g.
to a purified and flattened conjunction of unit clauses A0 ∧ B0 ∧ Def ∧ ¬(aRb).
With the notation used on page 8, by Theorem 4 we have:
A0 ∧ B0 ∧Def ∧ ¬(aRb)|=T ⊥ iff K0 ∧ A0 ∧ B0 ∧ Con[DA ∧ DB ]0 ∧ ¬(aRb)|=T0

⊥.
By Proposition 6 (ii), there exists a set T of (Σ0 ∪ C)-terms containing only
constants common to A0 and B0 such that H = K0 ∧ Con[DA ∧ DB ]0 can be
separated as described in Proposition 6, A0 ∧ B0 ∧ (H\Hmix) ∧ Hsep ∧ ¬aRb
is logically equivalent w.r.t. T0 with a separated conjunction of ground literals
A0∧B0∧¬aRb, which is therefore unsatisfiable, so A0∧B0 |= aRb. From the P -
interpolation property in T0, there exists a term containing the shared constants
such that A0 ∧ B0 |=T0 aRt ∧ tRb. If we now replace all constants cf(t1,...,tn)

introduced in the purification process or in the separation process with the terms
they denote, we obtain A ∧ B |=T aRt ∧ tRb. �
We obtain the following procedure for P -interpolation if A ∧ B |=T aRb:

Step 1: Preprocess Using locality, flattening and purification we obtain a set
H ∧ A0 ∧ B0 of formulae in the base theory, where H is as in Proposition 6.

Step 2: Δ := T. Repeat as long as A0 ∧ B0 ∧ Δ �|= aRb:
Let C∈H whose premise is entailed by A0∧B0∧Δ.
If C is not mixed, move C to Hsep and add its conclusion to Δ.
If C is mixed, compute terms ti which separate the premises in C, and sep-
arate the clause into an instance C1 of monotonicity and an instance C2 of
a clause in K as in the proof of Proposition 6. Remove C from H, and add
C1, C2 to Hsep and their conclusions to Δ.

Step 3: Compute separating term. Compute a separating term for A0∧B0∧
Δ |= aRb in T0, and construct an interpolant for the extension as explained
in the proof of Theorem 7.



428 D. Peuter et al.

5 Example: Semilattices with Monotone Operators

We will now analyze ≤-interpolation properties for theories of semilattices with
monotone operators. A semilattice (S,�) is set S with a binary operation �
which is associative, commutative and idempotent. One can equivalently regard
semilattices as partially ordered sets (S,≤), in which infima of finite non-empty
subsets exist; then a ≤ b iff a � b = a.

The theory SLat of semilattices can be axiomatized by equations (associativ-
ity, commutativity and idempotence of �) hence clearly is ≈-convex: Convexity
w.r.t. ≤ follows from the fact that x ≤ y iff (x � y) ≈ x. The theory SLat is
≤-interpolating, therefore also ≈-interpolating (cf. also [17]; we present the idea
of the proof since it indicates how the intermediate terms can be computed):

Lemma 8. The theory SLat of semilattices is ≤-interpolating.

Proof (Idea): This is a constructive proof based on the fact that every semilat-
tice is isomorphic to a sublattice of a power of S2, where S2 is the 2-element
semilattice (or, alternatively, that every semilattice is isomorphic to a semilat-
tice of sets). We prove that if A and B are two conjunctions of literals and
A ∧ B |=SLat a ≤ b, where a is a constant occurring in A and b a constant
occurring in B, then there exists a term containing only common constants in
A and B such that A ∧ B |=SLat a ≤ t and A ∧ B |=SLat t ≤ b. We can assume
without loss of generality that A and B consist only of atoms (for details cf.
[17]). A ∧ B |=SLat a ≤ b if and only if the following conjunction of literals in
propositional logic is unsatisfiable:

NA:

⎧
⎪⎪⎨

⎪⎪⎩

Pe1�e2↔Pe1 ∧ Pe2

Pe1↔Pe2 e1 ≈ e2 ∈ A
Pe1→Pe2 e1 ≤ e2 ∈ A

for all e1,e2 subterms in A

NB :

⎧
⎪⎪⎨

⎪⎪⎩

Pg1�g2 ↔ Pg1 ∧ Pg2

Pg1 ↔ Pg2 g1 ≈ g2 ∈ B
Pg1 → Pg2 g1 ≤ g2 ∈ B

for all g1, g2 subterms in B
Pa ¬Pb

We obtain an unsatisfiable set of clauses (NA ∧Pa)∧ (NB ∧¬Pb) |=⊥, where NA

and NB are sets of Horn clauses in which each clause contains a positive literal.
We show that if A ∧ B |=SLat a ≤ b holds, then for the term

t :=
�

{e | A |=SLat a ≤ e, e common subterm of A and B}

we have (i) A |=SLat a ≤ t, and (ii) A ∧ B |=SLat t ≤ b.
Clearly, A |=SLat a ≤ t, thus (i) holds. For proving (ii), we analyze the set

of clauses obtained by saturating NA ∧ Pa under ordered resolution in which all
propositional variables occurring in A but not in B are larger than the common
symbols. It is proved that for deriving the contradiction only the unit clauses Pe,
where e is a common subterm of A and B and A |= a ≤ e, and certain resolvents
of NA ∧ Pa are needed. The full proof is given in [17] and also in [18]. �

We illustrate the computation of intermediate terms on an example.
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Example 3. Let A = {a1 ≤ c1, c2 ≤ a2, a2 ≤ c3} and B = {c1 ≤ b1, b1 ≤
c2, c3 ≤ b2}. It is easy to see that A∧B |= a1 ≤ b2. We can find an intermediate
term by using the methods described in the proof of Lemma 8: We saturate the
set of clauses

NA ∧ Pa1 = (Pa1 → Pc1) ∧ (Pc2 → Pa2) ∧ (Pa2 → Pc3) ∧ Pa1

under ordered resolution, in which the propositional variables Pa1 , Pa2 are larger
than Pc1 , Pc2 , Pc3 . This yields the clauses Pc1 and Pc2 → Pc3 containing shared
propositional variables. (NA ∧Pa1)∧ (NB ∧¬Pb2) is unsatisfiable iff NB ∧¬Pb2 ∧
Pc1 ∧ (Pc2 → Pc3) is unsatisfiable. Indeed t = c1 is an intermediate term, as
A |= a1 ≤ c1 and A ∧ B |= c1 ≤ b2. Note that NB ∧ ¬Pb2 ∧ Pc1 is satisfiable, so
B �|= c1 ≤ b2. Moreover, we only need Pc2 → Pc3 in addition to NB ∪ ¬Pb2 to
derive ⊥, thus A ∧ B |= c1 ≤ b2 and the clause Pc2 → Pc3 obtained from NA is
really needed for this. �

Semilattices with operators. Let Σ be a set of unary2 function symbols.
We consider the extension SLatΣ = SLat ∪ Mon(Σ) of SLat with new function
symbols in Σ satisfying the monotonicity axioms MonΣ =

⋃
f∈Σ Mon(f), where:

Mon(f) ∀x, y(x ≤ y → f(x) ≤ f(y))
and also extensions SLat ∪Mon(Σ) ∪ K, where K is a set of axioms of the form:

∀x f(x) ≤ g(x) (2)
∀x, y y ≤ g(x) → f(y) ≤ h(x) (3)

where f, g, h ∈ Σ, not necessarily all different.

Lemma 9. The following extensions satisfy a locality property:

(i) The theory of semilattices SLat is local.
(ii) SLat ∪ MonΣ is a local extension of SLat.
(iii) SLat ∪ MonΣ ∪ K is a Ψ -local extension of SLat, where Ψ is the closure

operator on ground terms defined as follows:

Ψ(G) =
⋃

i≥0

Ψ i(G), with Ψ0(G) = est(G) (the set of ground terms in G
starting with extension functions), and

Ψ i+1(G) = {h(c) | ∀x(g(x) ≤ h(x)) ∈ K and g(c) ∈ Ψ i(G)}∪
{g(c) | ∀x(g(x) ≤ h(x)) ∈ K and h(c) ∈ Ψ i(G)}∪
{h(c) | ∀x, y(y ≤ g(x) → f(y) ≤ h(x)) ∈ K and g(c) ∈ Ψ i(G)}∪
{g(c) | ∀x, y(y ≤ g(x) → f(y) ≤ h(x)) ∈ K and h(c) ∈ Ψ i(G)}.

Proof: (i) follows from a result on the locality of lattices by Skolem [20], or by
results in [9], since every partial semilattice weakly embeds into a total one.
(ii) follows from results in [27,28]. (iii) Since the axioms in K are not always
2 We assume that the function symbols are unary to simplify the presentation, and

because in the applications to description logics we need only unary function symbols.
All the results can be extended to function symbols of higher arity.
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linear, we use the locality criterion for non-linear sets of clauses mentioned in
Theorem 5, and the fact that every semilattice P = (S,�, {f}f∈Σ) with partially
defined monotone operators satisfying the axioms K, and with the property that
if a variable occurs in two terms g(x), h(x) in a clause in K, then for every s ∈ S,
g(s) is defined iff h(s) is defined, weakly embeds into a semilattice with totally
defined operators satisfying K, which was proved in Lemma 4.5 from [26]. �

Given two sets of conjunctions of ground literals A and B over the signature of
semilattices with operators, we consider the lattice operation � to be interpreted
and the function symbols in Σ to be uninterpreted. Let ΣA be the function
symbols in Σ occurring in A and ΣB those occurring in B. We consider the
following variants for “shared uninterpreted function symbols”:

– Intersection-sharing: The shared function symbols of A and B are the function
symbols in ΣA ∩ ΣB .

– ΘK-sharing: Let ΘK(ΣA) and ΘK(ΣB) be defined as explained in Exam-
ple 1. The ΘK-shared function symbols are the function symbols in ΘK(ΣA)∩
ΘK(ΣB).

Theorem 10. For every set K containing clauses of the form (2) and (3) above,
the theory SLat ∪ MonΣ ∪ K of semilattices with monotone operators satisfying
axioms K is ≤-interpolating with the notion of ΘK-sharing for uninterpreted
function symbols.

Proof: The clauses of type (2) and (3) satisfy the conditions in the statement
of Proposition 6 and Theorem 7. The result is therefore a consequence of the
fact that SLat is convex and {≈,≤}-interpolating, and of Proposition 6 and
Theorem 7. �

We illustrate the way Theorem 4, Proposition 6 and Theorem 7 and the algorithm
in Sect. 4 can be used for computing intermediate terms below:

Example 4. Consider the extension SLO = SLat ∪ Monf ∪ Mong ∪ K of SLat
with two monotone functions f, g satisfying: K = {y ≤ g(x) → f(y) ≤ g(x)}.
Consider the following conjunctions of atoms: A := d ≤ g(a) ∧ a ≤ c ∧ g(c) ≤ a
and B := b ≤ d ∧ b ≤ f(b). It can be checked that A ∧ B |= b ≤ a.

To obtain a separating term we proceed as follows: By the definition of SLO,
A ∧ B |=SLO b ≤ a iff SLat ∧ Monf ∧ Mong ∧ K ∧ A ∧ B ∧ ¬(b ≤ a) |=⊥. By
Theorem 4, this is the case iff SLat ∧ (Monf ∧ Mong ∧ K)[Ψ(G)] ∧ G |=⊥, where
G = A ∧ B ∧ ¬(b ≤ a), est(G) = {g(a), g(c), f(b)} and Ψ(G) = {g(a), g(c), f(b)}.

– Monf [Ψ(G)] = {b ≤ b → f(b) ≤ f(b)} (redundant).
– Mong[Ψ(G)] = {d1 ≤ d2 → g(d1) ≤ g(d2) | d1, d2 ∈ {a, c}}.
– K[Ψ(G)] = {b ≤ g(a) → f(b) ≤ g(a), b ≤ g(c) → f(b) ≤ g(c)}.

Step 1: We purify (Monf ∧Mong ∧K)[Ψ(G)]∧G, by introducing constants a1 for
g(a), c1 for g(c) and b1 for f(b) and obtain the formula Def∧A0∧B0∧Mon0∧K0:
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Def A0 ∧ B0 Mon0 ∧ K0

DA :a1 ≈ g(a) ∧ c1 ≈ g(c) A0 : d ≤ a1 ∧ a ≤ c ∧ c1 ≤ a MonA a � c → a1 � c1
DB :b1 ≈ f(b) B0 : b ≤ d ∧ b ≤ b1 Kmix b ≤ a1 → b1 ≤ a1

� ∈ {≤,≥} b ≤ c1 → b1 ≤ c1

Step 2. Δ := �. Find clauses in Mon0∧K0 with premises entailed by A0∧B0∧Δ.

C = a ≤ c → a1 ≤ c1: C is not mixed. Since A0 ∧B0 |=SLat a ≤ c, A0 ∧B0 ∧ (a ≤
c → a1 ≤ c1) is equivalent to A0 ∧ B0 ∧ a1 ≤ c1. Let Δ := {a1 ≤ c1}.

C = b ≤ a1 → b1 ≤ a1: C is mixed. Since A0 ∧ B0 ∧ a1 ≤ c1 |= b ≤ a1 we
find a separating term. For this we use the method described in the proof of
Lemma 8. We consider the encoding NB ∧Pb := (Pb → Pd)∧ (Pb → Pb1)∧Pb.
Using ordered resolution with an ordering in which Pb, Pb1 � Pd we derive
the unit clauses Pd and Pb1 . Since d is the only shared constant, t = d is the
separating term. Thus, A0 ∧ B0 ∧ a1 ≤ c1 |= b ≤ d ∧ d ≤ a1. We now can
separate the instance b ≤ a1 → b1 ≤ a1 of the clause in K by introducing
a new shared constant d1 as a name for f(d) and replacing the clause, as
described in the algorithm at the end of Sect. 4, with the conjunction of

(1) b ≤ d → b1 ≤ d1 and
(2) d ≤ a1 → d1 ≤ a1

((1) is an instance of a monotonicity axiom, (2) is another instance of K), and
A0 ∧ B0 ∧ a1 ≤ c1 ∧ (b ≤ d → b1 ≤ d1) ∧ (d ≤ a1 → d1 ≤ a1) is equivalent to
A0 ∧ B0 ∧ a1 ≤ c1 ∧ b1 ≤ d1 ∧ d1 ≤ a1. Let Δ := Δ ∧ b1 ≤ d1 ∧ d1 ≤ a1.
Step 3: The last conjunction entails b ≤ a. To compute a separating term, we
again use Lemma 8. We consider the encoding N ′

B ∧ Pb := (Pb → Pd) ∧ (Pb →
Pb1) ∧ (Pb1 → Pd1) ∧ Pb of the B-part of the conjunction, B0 ∧ b1 ≤ d1. Using
ordered resolution with an ordering in which Pb, Pb1 � Pd, Pd1 we derive the unit
clauses Pd, Pb1 and Pd1 . Since d, d1 are the shared constants, t = d � d1 is the
separating term. (It can be seen that already d is a separating term.) �

If K contains axioms of type (3) then the theory of semilattices with oper-
ators is not ≤-interpolating when sharing is regarded as intersection-sharing.
Indeed, assume that for every K containing axioms of type (3), SLatΣ(K) is ≤-
interpolating w.r.t. intersection-sharing. Then it would also be ≈-interpolating
w.r.t. intersection-sharing. This cannot be the case, as can be seen from the
following example.

Example 5. Consider the theory SLatΣ(K) of semilattices with monotone oper-
ators f, g satisfying the axioms K = {x ≤ g(y) → f(x) ≤ g(y)}, and let C be
a set of constants containing constants a, b, d, e. We show that this theory does
not have the ΣS-Beth-definability property, where ΣS = {g, e}.

Consider the conjunction of literals A = (a ≤ f(e)) ∧ (e ≤ g(b)) ∧ (g(b) ≤ a).
One can prove that a is implicitly definable w.r.t. {g, e} by proving, using the
hierarchical reduction for local theory extensions in Theorem 4, that:

(a≤f(e))∧(e≤g(b))∧(g(b)≤a)∧(a′≤f ′(e))∧(e≤g(b′))∧(g(b′)≤a′)|=SlatΣ(K∪K′)a≈a′.



432 D. Peuter et al.

We show that a is not explicitly definable w.r.t. {g, e}. If there exists a term t
containing only g and e such that (a≤f(e))∧ (e≤g(b))∧ (g(b)≤a) |=SlatΣ(K) a≈t,
then the interpretations of a and t are equal in every model of SLatΣ(K) which is
a model of A. We show that this is not the case. Let S = ({a, e, b, d},�, f, g) be
the semilattice where d ≤ e ≤ a, d ≤ b and a�b = e�b = d, and f(a) = f(e) = a,
f(b) = f(d) = d, g(a) = g(e) = g(d) = d and g(b) = a. Then S satisfies A, f and
g are monotone, and S is a model of K: Assume that x ≤ g(y). If y ∈ {a, e, d}
then g(y) = d so x = d, and f(d) = d ≤ g(y). If y = b then g(b) = a, so x
can be a, e or d, and f(a) = f(e) = a, f(d) = d, so f(x) ≤ g(b) = a. A term
t containing only g and e can be e or can contain occurrences of g. If t = e
then the interpretation of t in S is not a. If t contains occurrences of g it can be
proven that the interpretation of t in S is d, i.e. is again different from a.
Thus T = SLatΣ(K) does not have the Beth definability property w.r.t. ΣS ,
hence, by Theorem 3, T ∪ T ′ = SLatf,g(K) ∪ SLatf ′,g(K′) = SLatf,f ′,g(K ∪ K′),
where K′ = {y ≤ g(x) → f ′(y) ≤ g(x)}, does not have the ≈-interpolation
property w.r.t. intersection-sharing, hence it does not have the ≤-interpolation
property w.r.t. intersection-sharing. (By Theorem 10 and Theorem 3, T has
the ΘK(ΣS)-Beth definability property, where ΘK(ΣS) = {f, g, e}. Indeed, then
A |= a ≈ f(e).) �

6 Applications to EL and EL+-Subsumption

We now explain how these results can be used in the study of the description
logics EL and EL+. In any description logic a set NC of concept names and a
set NR of roles is assumed to be given. Concept descriptions can be defined with
the help of a set of concept constructors. The available constructors determine
the expressive power of a description logic. If we only allow intersection and
existential restriction as concept constructors, we obtain the description logic
EL [1], a logic used in terminological reasoning in medicine [29,30]. The table
below shows the constructor names used in EL and their semantics.

Constructor name Syntax Semantics

conjunction C1 	 C2 CI
1 ∩ CI

2

existential restriction ∃r.C {x | ∃y((x, y) ∈ rI and y ∈ CI)}

The semantics is given by interpretations I = (Δ, ·I), where CI ⊆ Δ and
rI ⊆ Δ2 for every C ∈ NC , r ∈ NR. The extension of ·I to concept descriptions is
inductively defined using the semantics of the constructors. In [2,3], the extension
EL+ of EL with role inclusion axioms is studied.

A TBox (or terminology) is a finite set consisting of general concept inclusions
(GCI) of the form C � D, where C and D are concept descriptions. A CBox
consists of a TBox and a set of role inclusions of the form r1 ◦ · · · ◦ rn � s, so we
view CBoxes as unions GCI∪R of a set GCI of general concept inclusions and a
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set R of role inclusions of the form r1 ◦· · ·◦rn � s, with n≥1.3 An interpretation
I is a model of the CBox C = GCI ∪ R if it is a model of GCI, i.e., CI⊆DI for
every C�D ∈ GCI, and satisfies all role inclusions in C, i.e., rI

1 ◦ · · · ◦ rI
n ⊆ sI

for all r1 ◦ · · · ◦ rn ⊆ s ∈ R. If C is a CBox and C1, C2 are concept descriptions,
then C |= C1 � C2 if and only if CI

1 ⊆ CI
2 for every model I of C.

In [23] we studied the link between TBox subsumption in EL and uniform
word problems in the corresponding classes of semilattices with monotone func-
tions. In [25], we showed that these results naturally extend to CBoxes and to
the description logic EL+. When defining the semantics of EL or EL+ with role
names NR we use a class of �-semilattices with monotone operators of the form
SLatΣ , where Σ = {fr | r ∈ NR}. Every concept description C can be repre-
sented as a term C; the encoding is inductively defined: Every concept name
C ∈ NC is regarded as a constant C = C. We define C1 � C2 := C1 � C2 and
∃rC = fr(C). If R is a set of role inclusions of the form r � s and r1 ◦ r2 � s,
let K be the set of all axioms of the form:

∀x (fr(x) ≤ fs(x)) for all r � s ∈ R
∀x (fr1(fr2(x)) ≤ fs(x)) for all r1 ◦ r2 � s ∈ R

Theorem 11 ([25]). Assume that the only concept constructors are intersection
and existential restriction. Then for all concept descriptions D1,D2 and every
EL+ CBox C=GCI∪R – where R consists of role inclusions of the form r � s
and r1 ◦ r2 � s – with concept names NC = {C1, . . . , Cn} and set of roles NR:

C |= D1�D2 iff
(�

C
D∈GCI
C≤D

)
|=SLatΣ(K) D1≤D2,

where Σ is associated with NR and K with R as described above.

In [8,31] the following notion of interpolation which we call �-interpolation is
defined: A description logic has the �-interpolation property if for any CBoxes
CA = GCIA∪RA, CB = GCIB∪RB and any concept descriptions C,D such that
CA ∪ CB |= C � D there exists a concept description T containing only concept
and role symbols “shared” by {CA, C} and {CB ,D} such that CA ∪ CB |= C � T
and CA ∪ CB |= T � D. By Theorem 11, CA ∪ CB |= C � D iff A ∧ B |=SLatΣ(K)

C≤D, where A =
�

C1
C2∈GCIA
C1≤C2, B =

�
C1
C2∈GCIB

C1≤C2, and K =
KA ∪ KB , the union of the axioms associated with the set inclusions RA resp.
RB . By Theorem 10, there exists a term containing only constants and function
symbols ΘKA∪KB

-shared by A and B such that A∧B |=SLatΣ(KA∪KB) C≤t∧t≤D.
From t we can construct a concept description T containing only concept names
and roles shared by CA and CB , and by Theorem 11, CA ∧CB |= C � T ∧T � D.
Therefore, the �-interpolation problem studied for description logics in [8,31] can
be expressed in the case of EL and EL+ as a ≤-interpolation problem in the class
of semilattices with operators, and the hierarchical method for ≤-interpolation
can be used in this case. We distinguish between intersection-sharing and ΘR-
sharing, where ΘR is the analogon of ΘK where K is the translation of R.
3 It can be shown that it is sufficient to consider role inclusions of the form r � s or
r1 ◦ r2 � s, where r, s, r1, r2 are role names [3].
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Corollary 12. EL and EL+ have the �-interpolation property w.r.t. ΘR-
sharing. EL+ with role inclusions of the form r1 ◦ r2 � s does not have �-
interpolation w.r.t. intersection-sharing.

7 Conclusions and Future Work

In this paper we gave a hierarchical method for P -interpolation in certain classes
of local theory extensions T0 ⊆ T0 ∪ K. We used these results for proving ≤-
interpolation in classes of semilattices with monotone operators satisfying addi-
tional clauses K with a suitable notion of ΘK-sharing we defined. We defined
a form of Beth definability w.r.t. a subsignature ΣS and used it to show that
the class of semilattices with operators under consideration does not have the
≤-interpolation property if only the common function symbols and constants are
considered to be “shared”. We discussed how these results can be used for the
study of interpolation in EL and EL+.

The ideas were implemented in a prototype implementation4 for the theory
of semilattices with operators satisfying axioms of type (1) considered in this
paper. The program is written in Python and uses Z3 [7] and SPASS [33] as
external provers. The program implements Steps 1–3 in the algorithm presented
at the end of Sect. 4 with the following optimization: In Step 1 after instantiation
and purification, in order to reduce the size of the set of instances of axioms to
be considered, an unsatisfiable core is computed with Z3. The program separates
the mixed instances by computing intermediate terms for their premises using
Theorem 8 and Proposition 6; for applying ordered resolution the prover SPASS
is used. In Step 3, the intermediate term T for C ≤ D is computed using the
method described in Theorem 8, again using SPASS.

For the use for interpolation in EL and EL+, the CBoxes CA and CB and
the subsumption C � D are given as an input. A minimal subset of CA ∪ CB

is computed from which C � D can be derived. (The user can choose between
a precise translation to SPASS or a propositional translation to Z3 which is
not always precise, but turned out to be a good approximation. Standard imple-
mentations available for computing justifications of entailments from description
logic ontologies could be used as well.) The problem is then translated into a
problem for ≤-interpolation in semilattices with operators. After computing the
interpolating term, the result is expressed in the syntax of description logics.

In future work we will explore other application areas of these results, both to
classes of non-classical logics and to theories relevant in the verification. We plan
to extend the implementation with possibilities of choosing the base theory and
the methods for P -interpolation in the base theory. We will further investigate
the links with Beth definability and possibilities of using Beth definability for
computing explicit definitions for implicitly definable terms – and analyze the
applicability of such results in description logics but also in verification.

4 The implementation and some tests can be found here: https://userpages.uni-
koblenz.de/~sofronie/p-interpolation-and-el/.

https://userpages.uni-koblenz.de/~sofronie/p-interpolation-and-el/
https://userpages.uni-koblenz.de/~sofronie/p-interpolation-and-el/
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Abstract. Higher-order logic HOL offers a very simple syntax and semantics
for representing and reasoning about typed data structures. But its type system
lacks advanced features where types may depend on terms. Dependent type the-
ory offers such a rich type system, but has rather substantial conceptual differ-
ences to HOL, as well as comparatively poor proof automation support.

We introduce a dependently-typed extension DHOL of HOL that retains the
style and conceptual framework of HOL. Moreover, we build a translation from
DHOL to HOL and implement it as a preprocessor to a HOL theorem prover,
thereby obtaining a theorem prover for DHOL.

1 Introduction and Related Work

Theorem proving in higher-order logic (HOL) [5,11] has been a long-running research
strand producing multiple mature interactive provers [10,13,17] and automated provers
[2,4,23]. Similarly, many, mostly interactive, theorem provers are available for various
versions of dependent type theory (DTT) [7,9,15,18]. However, it is (maybe surpris-
ingly) difficult to develop theorem provers for dependently-typed higher-order logic
(DHOL).

In this paper, we use HOL to refer to a version of Church’s simply-typed λ -calculus
with a base type bool for Booleans, simple function types →, and equality =A: A →
A→ bool. This already suffices to define the usual logical quantifiers and connectives.1

Intuitively, it is straightforward to develop DHOL accordingly on top of the depen-
dently-typed λ -calculus, which uses a dependent function type Πx :A. B instead of →.
However, several subtleties arise that seem deceptively minor at first but end up present-
ing fundamental theoretical issues. They come up already in the elementary expression
x=A y ⇒ f (x) =B(x) f (y) for some dependent function f : Πx :A. B(x).

Firstly, the equality f (x) =B(x) f (y) is not even well-typed because the terms f (x) :
B(x) and f (y) : B(y) do not have the same type. Intuitively, it is obvious that the type
system can (and maybe should) be adjusted so that the equality x =A y between terms

1 We do not assume a choice operator or the axiom of infinity.
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carries over to an equality B(x) ≡ B(y) between types.2 However, this means that the
undecidability of equality leaks into the equality of types and thus into type-checking.

While some interactive provers successfully use undecidable type systems [6,16], most
formal systems for DTT commit to keeping type-checking decidable. The typical app-
roach goes back to Martin-Löf type theory [14] and the calculus of constructions [8]
and uses two separate equality relations, a decidable meta-level equality for use in the
type-checker and a stronger undecidable one subject to theorem proving. Moreover,
it favors the propositions-as-types representation and deemphasizes or omits a type of
classical Booleans. This approach has been studied extensively [7,9,15] and is not the
subject of this paper.

Instead, our motivation is to retain a single equality relation and classical Booleans.
This is arguably more intuitive to users, especially to those outside the DTT community
such as typical HOL users or mathematicians, and it is certainly much closer to the
logics of the strongest available ATP systems. This means we have to pay the price of
undecidable type-checking. The current paper was prompted by the observation that
this price may be acceptable for two reasons:

1. If our ultimate interest is theorem proving, undecidability comes up anyway.
Indeed, it is plausible that the cost of showing the well-typedness of a conjecture
will be negligible compared to the cost of proving it.

2. As the strength of ATPs for HOL increases, the practical drawbacks of undecidable
type-checking decrease, which indicates revisiting the trade-off from time to time.
Indeed, if we position DHOL close to an existing HOL ATP, it is plausible that the
price will, in practice, be affordable.

Secondly, even if we add a rule like “if � x =A y, then � B(x) ≡ B(y)” to our type
system, the above expression is still not well-typed: Above, the equality x =A y on the
left of ⇒ is needed to show the well-typedness of the equality f (x) =B(x) f (y) on the
right. This intertwines theorem proving and type-checking even further. Concretely,
we need a dependent implication, where the first argument is assumed to hold while
checking the well-typedness of the second one. Formally, this means that to show �
F ⇒ G : bool, we require � F : bool and F � G : bool. Similarly, we need a dependent
conjunction. And if we are classical, we may also opt to add a dependent disjunction
F∨G, where ¬F is assumed in G. Naturally, dependent conjunction and disjunction are
not commutative anymore. This may feel disruptive, but similar behavior of connectives
is well-known from short-circuit evaluation in programming languages.

The meta-logical properties of dependent connectives are straightforward. However,
interestingly, these connectives can no longer be defined from just equality. At least one
of them (we will choose dependent implication) must be taken as an additional primitive
in DHOL along with =A.

Finally, the above generalizations require a notion of DHOL-contexts that is more com-
plex than for HOL. HOL-contexts can be stratified into (a) a set of variable declarations

2 Note that while term equality =A is a bool-valued connective, type equality ≡ is not. Instead,
in HOL, ≡ is a judgment at the same level as the typing judgment t : A.
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xi : Ai, and (b) a set of logical assumptions F possibly using the variables xi. Moreover,
the former are often not explicitly listed at all and instead inferred from the remainder of
the sequent. But in DHOL, the well-formedness of an Ai may now depend on previous
logical assumptions. To linearize this inter-dependency, DHOL contexts must consist
of a single list alternating between variable declarations and assumptions.

Contribution. Our contribution is twofold. Firstly, we introduce a new logic DHOL
designed along the lines described above. Moreover, we further extend DHOL with
predicate subtypes A|p for a predicate p : A → bool on the type A. Besides dependent
types, these constitute a second important source of terms occurring in types. Because
they also make typing undecidable, they are often avoided. The most prominent excep-
tion is PVS [16], whose kernel essentially arises by adding predicate subtypes to HOL.
In current HOL ITPs going back to [10], their use is usually restricted to the subtype
definition principle: here a definition b := A|p may occur on toplevel and is elaborated
into a fresh type b that is axiomatized to mimic the subtype A|p . Because we are com-
mitted to undecidable typing anyway, predicate subtypes fit naturally into our approach.

Secondly, we develop and implement a sound and complete translation of DHOL into
HOL. This setup allows the use of DHOL as the expressive user-facing language and
HOL as the internal theorem-proving language. We position our implementation close
to an existing HOL ATP, namely the LEO-III system. From the LEO-III perspective,
DHOL serves as an additional input language that is translated into HOL by an external
logic embedding tool [21,22] in the LEO-III ecosystem. Because LEO-III already sup-
ports such embeddings and because the TPTP syntax [24] foresees the use of dependent
types in ATPs and provides syntax for them (albeit without a normative semantics), we
were able to implement the translation with no disruptions to existing workflows.

The general idea of our translation of dependent into simple type theory is not new [3].
In that work, Martin-Löf-style dependent type theory is translated into Gordon’s HOL
ITP [10]. This work differs critically from ours because it uses DTT in propositions-
as-types style. Our work builds DHOL with classical Booleans and equality predicate,
which makes the task of proving the translation sound and complete very different.
Moreover, their work targets an interactive prover while ours targets automated ones.

Overview. In Sect. 2 we recap the HOL logic. In Sect. 3 we extend it to DHOL and
define our translation from DHOL to HOL. In Sect. 4 we add subtyping and predicate
subtypes. In Sect. 5 we prove the soundness and completeness of the translation. In
Sect. 6 we describe how to use our translation and a HOL ATP to implement a theorem
prover for DHOL.

2 Preliminaries: Higher-Order Logic

We introduce the syntax and rules of HOL. Our definitions are standard except that we
tweak a few details in order to later present the extension to DHOL more succinctly.
We use the following grammar for HOL:
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T ::= ◦ | T, a : tp | T, c : A | T, c : F theories
Γ ::= . | Γ,x : A | Γ,x : F contexts
A,B ::= a | A → B | bool types
s, t, f ,F,G ::= c | x | λx :A. t | f t | s =A t | F ⇒ G terms

A theory T is a list of base type declarations a : tp, typed constant declarations c : A,
and named axioms c : F asserting the formula F . A context Γ has the same form except
that no type variables are allowed. It is not strictly necessary to use named axioms and
assumptions, but it makes our extensions to DHOL later on simpler. We write ◦ and .
for the empty theory and context, respectively. At this point, it is possible to normalize
contexts into a set of variable declarations followed by a set of assumptions because
the well-formedness of a type A can never depend on a variable or an assumption. But
that property will change when going to DHOL, which is why we allow Γ to alternate
between variables and assumptions.

Types A are either user-declared types a, the built-in base type bool, or function types
A→ B. Terms are constants c, variables x, λ -abstractions λx :A. t, function applications
f t, or obtained from the built-in bool-valued connectives =A or ⇒. As usual [1], this
suffices to define all the usual quantifiers and connectives true, false, ¬, ∧, ∨, ∀ and ∃.
This includes ⇒, but we make it a primitive here because we will change it in DHOL.
As usual, E[x/t] denotes the capture-avoiding substitution of the variable x with the term
t within expression E.

The type and proof system uses the judgments given below. Note that we need a meta-
level judgment for the equality of types because ≡ is not a bool-valued connective. On
the contrary, the equality of terms � s =A t is a special case of the validity judgment
� F . In HOL, ≡ is trivial, and the judgment is redundant. But we include it here already
because it will become non-trivial in DHOL.

Name Judgment Intuition

theories � T Thy T is well-formed theory

contexts �T Γ Ctx Γ is well-formed context

types Γ �T A tp A is well-formed type

typing Γ �T t : A t is a well-formed term of type well-formed type A

validity Γ �T F well-formed Boolean F is provable

equality of types Γ �T A ≡ B well-formed types A and B are equal

The rules are given in Fig. 1. We assume that all names in a theory or a context are
unique without making that explicit in the rules. Following common practice, we further
assume that HOL types are non-empty.
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Fig. 1. HOL Rules
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3 Dependent Function Types

3.1 Language

We have carefully defined HOL in such a way that only a few surgical changes are
needed to define DHOL. A consolidated summary of DHOL is given in Appendix A.2
in the extended preprint [20]. The grammar is as follows with unchanged parts shaded
out:

T ::= ◦ | T, a :(Πx :A. )∗tp | T, c : A | T, c : F theories
Γ ::= . | Γ,x : A | Γ,ass : F contexts
A,B ::= a t1 . . . tn | Πx :A. B | bool types
s, t, f ,F,G ::= c | x | λx :A. t | f t | s =A t | F ⇒ G terms

Concretely, base types a may now take term arguments and simple function types
A → B are replaced with dependent function types Πx :A. B. As usual we will retain
the notation A → B for the latter if x does not occur free in B. DHOL is a conservative
extension of HOL, and we recover HOL as the fragment of DHOL in which all base
types a have arity 0.

Example 1 (Category Theory). As a running example, we formalize the theory of a
category in DHOL. It declares the base type ob j for objects and the dependent base
type mor a b for morphisms. Further it declares the constants id and comp for identity
and composition, and the axioms for neutrality. We omit the associativity axiom for
brevity.

obj :tp

mor :Πx,y :obj. tp

id :Πa :obj. mor a a

comp :Πa,b,c :obj. mor a b → mor b c → mor a c

neutL :∀x,y : obj.∀m : mor x y. m◦idx =mor x y m

neutR :∀x,y : obj. ∀m : mor x y. idy ◦m =mor x y m

Here we use a few intuitive notational simplifications such as writing Πx,y :obj. for
binding two variables of the same type. We also use the notations idx for id x and h◦g
for comp _ _ _ g h where the _ denote inferable arguments of type obj.

The judgments stay the same and we only make minor changes to the rules, which we
explain in the sequel. Firstly we replace all rules for → with the ones for Π:

Γ �T A tp Γ, x : A�T B tp

Γ �TΠx :A. B tp

Γ �T A ≡ A′ Γ,x : A�T B ≡ B′

Γ �TΠx :A. B≡Πx :A′. B′

Γ, x : A �T t : B

Γ �T (λx :A. t) :Πx :A. B

Γ �T f :Πx :A. B Γ �T t : A

Γ �T f t :B[x/t]

Γ �T A ≡ A′ Γ, x : A �T t =B t ′

Γ �T λx :A. t =Πx:A. B λx :A′. t ′
Γ �T t =A t ′ Γ �T f =Πx:A. B f ′

Γ �T f t =B f ′ t ′
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Γ �T t :Πx :A. B

Γ �T t =Πx:A. B λx :A. t x

Then we replace the rules for declaring, using, and equating base types with the ones
where base types are applied to arguments:

�T x1 : A1, . . . ,xn : An Ctx

�T , a :Πx1 :A1. . . .Πxn :An. tp Thy

�T Γ Ctx a :Πx1 :A1. . . .Πxn :An. tp in T
Γ �T t1 : A1 . . . Γ �T tn : An[x1/t1] . . . [xn−1/tn−1]

Γ �T a t1 . . . tn tp

�T Γ Ctx a :Πx1 :A1. . . .Πxn :An. tp in T
Γ �T s1 =A1 t1 . . . Γ �T sn =An[x1/t1]...[xi−1/ti−1] tn

Γ �T a s1 . . . sn≡a t1 . . .tn

The last of these is the critical rule via which term equality leaks into type equality.
Thus, typing of expressions may now depend on equality assumptions and thus typing
becomes undecidable.

Example 2 (Undecidability of Typing). Continuing Example 1, consider terms � f :
mor u v and � g : mor v′ w for terms � u,v,v′,w : obj. Then � g◦ f : mor u w holds iff
� f : mor u v′, which holds iff � v =obj v′. Depending on the axioms present, this may
be arbitrarily difficult to prove.

Finally, we modify the rule for the non-emptiness of types: we allow the existence of
empty dependent types and only require that for each HOL type in the image of the
translation there exists one non-empty DHOL type translated to it (rather than requiring
all dependent types translated to it to be non-empty). And we replace the typing rule for
implication with the dependent one. The proof rules for implications are unchanged.

Γ �T F : bool Γ, x : F�T G : bool

Γ �T F ⇒ G : bool

Example 3 (Dependent Implication). Continuing Example 1, consider the formula

x : obj, y : obj � x =obj y ⇒ idx =mor x x idy : bool

which expresses that equal objects have equal identity morphisms. It is easy to prove.
But it is only well-typed because the typing rule for dependent implication allows using
x =obj y while type-checking idx =mor x x idy : bool, which requires deriving idy :
mor x x and thus mor y y ≡ mor x x.
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All the usual connectives and quantifiers can be defined in any of the usual ways now.
However, the details matter for the dependent versions of the connectives. In particular,
we choose F∧G :=¬(F ⇒ ¬G) and F∨G :=¬F ⇒G in order to obtain the dependent
versions of conjunction and disjunction, in which the well-formedness of G may depend
on the truth or falsity of F , respectively.

3.2 Translation

We define a translation function X → X that maps any DHOL-syntax X to HOL-syntax.
Its intuition is to erase type dependencies by translating all types at1 . . . , tn to a and
replacing every Π with →. To recover the information of the erased dependencies, we
additionally define a partial equivalence relation (PER) A∗ on A for every DHOL-type
A.

In general, a PER r on typeU is a symmetric and transitive relation onU . This is equiv-
alent to r being an equivalence relation on a subtype ofU . The intuitive meaning of our
translation is that the DHOL-type A corresponds in HOL to the quotient of the appro-
priate subtype of A by the equivalence A∗. In particular, the predicate A∗ t t captures
whether t represents a term of type A. More formally, the correspondence is:

DHOL HOL

type A type A and PER A∗ : A → A → bool

term t : A term t : A satisfying A∗ t t

Definition 1 (Translation). We translate DHOL-syntax by induction on the grammar.
Theories and contexts are translated declaration-wise:

◦ := ◦ T, D := T , D . := . T, D := T , D

where D is a list of declarations.

The translation a : Πx1 :A1. . . .Πxn :An. tp of a base type declaration is given by

a : tp, a∗ : A1 → . . . → An → a → a → bool

aPER : ∀x1 :A1. . . .∀xn :An. ∀u,v :a. a∗ x1 . . . xn u v ⇒ u =a v

Thus, a is translated to a base type of the same name without arguments and a trivial
PER for every argument tuple. Intuitively, a∗ t1 . . . tn u u defines the subtype of the
HOL-type a corresponding to the DHOL-type a t1 . . . tn.

Constant and variable declarations are translated by adding the assumptions that they
are in the PER of their type, and axioms and assumptions are translated straightfor-
wardly:

c : A := c : A, c∗ : A∗ c c x : A := x : A, x∗ : A∗ x x
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c : F := c : F x : F := x : F

The cases of A and A∗ for types A are:

a t1 . . . tn := a (a t1 . . . tn)
∗ s t := a∗ t1 . . . tn s t

Πx :A. B := A → B (Πx :A. B)∗ f g := ∀x,y :A. A∗ x y ⇒ B∗ ( f x) (g y)

bool := bool bool∗ s t := s =bool t

Finally, the cases for terms are straightforward except for, crucially, translating equality
to the respective PER:

c := c x := x λx :A. t := λx :A. t f t := f t

F ⇒ G := F ⇒ G s =A t := A∗ s t

Example 4 (Translating Derived Connectives). If we define true, false, ¬ as usual in
HOL and use the definition for dependent conjunction from above, it is straightforward
to show that all DHOL-connectives are translated to their HOL-counterparts. For exam-
ple, we have (up to logical equivalence in HOL) that F ∧G= F ∧G.

We also define the quantifiers in the usual way, e.g., using ∀x : A.F(x) := λx :
A. F(x) =A→bool λx :A. true. Then applying our translation yields

∀x : A.F(x) = (A → bool)∗ λx : A.F(x) λx : A.true

= ∀x,y : A.A∗ x y ⇒ bool∗ F(x) true

This looks clunky, but (because A∗ is a PER as shown in Theorem 1) is equivalent to
∀x : A.A∗ x x ⇒ F(x). Thus, DHOL-∀ is translated to HOL-∀ relativized using A∗ x x.
The corresponding rule ∃x : A.F(x) = ∃x : A.A∗ x x∧F(x) can be shown accordingly.

Example 5 (Categories in HOL). We give a fragment of the translation of Example 1:

obj : tp obj∗ : obj → obj → bool
mor : tp mor∗ : obj → obj → mor → mor → bool
id : obj → mor id∗ : ∀x,y : obj.obj∗ x y ⇒ mor∗ x x (id x) (id y)
comp : obj → obj → obj → mor → mor → mor
neutL : ∀x : obj.obj∗ x x ⇒ ∀y : obj.obj∗ y y ⇒

∀m : mor.mor∗ x y m m ⇒ mor∗ x y (comp x x y (id x) m) m

Here, for brevity, we have omitted objPER, morPER, and comp∗ and have already used
the translation rule for ∀ from Example 4. The result is structurally close to what a
native formalization of categories in HOL would look like, but somewhat clunkier.
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Fig. 2. Additional Rules for Predicate Subtypes

4 Predicate Subtypes

To add predicate subtypes, we extend the grammar with the production A ::= A|F .
No new productions for terms are needed because the inhabitants of A|F use the same
syntax as those of A.

Example 6 (Isomorphisms). We continue Example 1 and use predicate subtypes to
write the type isomorphisms u of automorphisms on u as a subtype of mor u u. We
can define isomorphisms u := (mor u u)|p where the predicate p is given by

λm : mor u u.∃i : mor u u. (i◦m =mor u u idu)∧ (m◦ i =mor u u idu)

Adding subtyping requires a few extensions to our type system. First we add a judg-
ment Γ �T A <: B and replace the lookup rules for variables and constants with their
subtyping-aware variants:

c : A′ in T Γ �T A′ <: A

Γ �T c : A

x : A′ in Γ Γ �T A′ <: A

Γ �T x : A
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Then we add the rules given in Fig. 2. These induce an algorithm for deciding sub-
typing relative to an oracle for the undecidable validity judgment. The latter enters the
algorithm when two predicate subtypes are compared. Note that the type-equality rule
for A|p |q uses a dependent conjunction.

The resulting system is a conservative extension of the variants of HOL and DHOL
without subtyping: we recover these systems as the fragments that do not use A|p . In
particular, in that case A <: B is trivial and holds iff A ≡ B holds.

Finally, we extend our translation by adding the cases for predicate subtypes:

Definition 2 (Translation). We extend Definition 1 with

A|p := A (A|p )∗ s t := A∗ s t ∧ p s∧ p t

5 Soundness and Completeness

Now we establish that our translation is faithful, i.e. sound and complete. We will use
the terms sound and complete from the perspective of using a HOL-ATP for theorem
proving in DHOL, e.g., sound means if F is a HOL-theorem, then F is a DHOL-
theorem, and complete is the dual.3

The completeness theorem states that our translation preserves all DHOL-judgments.
Moreover, the theorem statement clarifies the intuition behind the translations invari-
ants:

Theorem 1 (Completeness). We have

if in DHOL then in HOL
� T Thy � T Thy
�T Γ Ctx �T Γ Ctx

Γ �T A tp Γ �T A tp and Γ �T A∗ : A → A → bool and A∗ is PER
Γ �T A ≡ B Γ �T A ≡ B and Γ, x,y : A �T A∗ x y =bool B∗ x y
Γ �T A <: B Γ �T A ≡ B and Γ, x,y : A �T A∗ x y ⇒ B∗ x y
Γ �T t : A Γ �T t : A and Γ �T A∗ t t
Γ �T F Γ �T F

Additionally the substitution lemma holds, i.e.,

Γ, x : A �T t : B and Γ � u : A implies Γ �T t[x/u] =B t[x/u]

Proof. The proof proceeds by induction and can be found in Appendix B of the
extended preprint [20].

3 If, however, we think of our translation as an interpretation function that maps syntax to seman-
tics, we could also justify swapping the names of the theorems.
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The reverse direction is much trickier. To understand why, we look at two canaries in
the coal mine that we have used to reject multiple intuitive but untrue conjectures:

Example 7 (Non-Injectivity of the Translation). Continuing Example 1, assume terms
u,v : obj and consider the identify functions Iu := λ f : mor u u. f and Iv := λ f :
mor v v. f . Both are translated to the same HOL-term Iu = Iv = λ f : mor. f (because
Iu and Iv only differ in the type indices, which are erased by our translation).

Consequently, the ill-typed DHOL-Boolean b := Iu =mor u u→mor u u Iv is translated to
the HOL-Boolean λ f : mor. f =mor→mor λ f : mor. f , which is not only well-typed but
even a theorem.

To better understand the underlying issue we introduce the notion of spurious terms.
The well-typed translation t of a DHOL-term t is called spurious if t is ill-typed (other-
wise it is called proper). Intuitively, we should be able to use the PERs A∗ to deal with
spurious terms: to type-check t : A in DHOL, we want to use A∗ t t in HOL. But even
that is tricky:

Example 8 (Trivial PERs for Built-In Base Types). Consider the property bool∗ x x. Our
translation guarantees bool∗ true true and bool∗ false false. Thus, we can use Boolean
extensionality to prove in HOL that ∀x : bool.bool∗ x x, making the property trivial. In
particular, we can prove bool∗ b b for the spurious Boolean b from Example 7. Even
worse, the property (Πx :A. B)∗ x x is trivial in this way whenever it is for B and thus
for all n-ary bool-valued function types.

More generally, this degeneration effect occurs for every base type that is built into both
DHOL and HOL and that is translated to itself. bool is the simplest example of that kind,
and the only one in the setting described here. But reasonable language extensions like
built-in base types a for numbers, strings, etc. would suffer from the same issue. This
is because all of these types would come with built-in induction principles that derive a
universal property from its ground instances, at which point a∗ x x becomes trivial.

Note, however, that the degeneration effect does not occur for user-declared base types.
For example, consider a theory that declares a base type N for the natural numbers and
an induction axiom for it. N would not be translated to itself but to a fresh HOL-type in
whose induction axiom the quantifier ∀ is relativized by N∗ x x. Consequently, N∗ x x is
not trivial and can be used to reject spurious terms.

These examples show that we cannot expect the reverse directions of the statements
in Theorem 1 to hold in general. However, we can show the following property that is
sufficient to make our translation well-behaved:

Theorem 2 (Soundness). Assume a well-formed DHOL-theory � T Thy.

If Γ �T F : bool and Γ �T F , then Γ �T F

In particular, if Γ �T s : A and Γ �T t : A and Γ �T A∗ s t, then Γ � s =A t.
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Proof. The key idea is to transform a HOL-proof of F into one that is in the image of
the translation, at which point we can read off a DHOL-proof of F . The full proof is
given in Appendix B of the extended preprint [20].

Intuitively, the reverse directions of Theorem 1 holds once we establish that all involved
expressions are well-typed in DHOL. Thus, we can use a HOL-ATP to prove DHOL-
conjectures if we validate independently that the conjecture is well-typed all along. In
the remainder of the section, we develop the necessary type-checking algorithm for
DHOL.

Type-Checking. Inspecting the rules of DHOL, we observe that all DHOL-judgments
would be decidable if we had an oracle for the validity judgment Γ �T F . Indeed, our
DHOL-rules are already written in a way that essentially allows reading off a bidirec-
tional type-checking algorithm. It only remains to split the typing judgment Γ �T t : A
into two algorithms for type-inference (which computes A from t) and type-checking
(which takes t and A and returns yes or no) and to aggregate the rules for subtyping into
an appropriate pattern-match.

The construction is routine, and we have implemented the resulting algorithm in our
MMT/LF logical framework [12,19].4 The oracle for the validity judgment is provided
by our translation and a theorem prover for HOL (see Sect. 6). It remains to show that
whenever the algorithm calls the oracle for Γ �T F , we do in fact have that Γ �T F : bool
so that Theorem 2 is applicable. Formally, we show the following:

Theorem 3. Relative to an oracle for Γ �T F, consider a derivation of some DHOL-
judgment, in which the children of each node are ordered according to the left-to-right
order of the assumptions in the statement of the applied rule.

If the oracle calls are made in depth-first order, then each such call satisfies Γ �T F :
bool.

Proof. We actually prove, by induction on derivations, the more general statement
requires that each rule preserves the following preconditions:

Judgment Precondition

�T Γ Ctx � T Thy

Γ �T A tp �T Γ Ctx

Γ �T t : A Γ �T A tp (post-condition when used as type-inference)

Γ �T F Γ �T F : bool

Γ �T A ≡ B or Γ �T A <: B Γ �T A tp and Γ �T B tp

4 The formalization of DHOL in MMT is available at https://gl.mathhub.info/MMT/LATIN2/-/
blob/devel/source/logic/hol_like/dhol.mmt. The example theories given throughout this paper
and a few example conjectures are available at https://gl.mathhub.info/MMT/LATIN2/-/blob/
devel/source/casestudies/2023-cade.

https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/logic/hol_like/dhol.mmt
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/logic/hol_like/dhol.mmt
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade
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Note that rules whose conclusion is a validity judgment can be ignored because they
are replaced by the oracle anyway.

The most interesting case is the rule for Γ �T a s1 . . . sn ≡ a t1 . . . tn. Here, the left-to-
right order of assumptions is critical because Γ �T s1 =A1 t1 may be needed to show,
e.g., Γ �T s2 =A2[x1/t1] t2 : bool.

6 Theorem Prover Implementation

We have integrated our translation as a preprocessor to the HOL ATP LEO-III [23].
We chose this ATP because its existing preprocessor infrastructure already includes a
powerful logic embedding tool [21,22].However, with a little more effort, other HOL
ATPs work as well.

Furthermore, we developed a bridge between the MMT logical framework [19] and
LEO-III (both of which are written in the same programming language).This allows us
to use our MMT-based type-checker for DHOL with our Leo-III-based theorem prover
to obtain a full-fledge implementation of DHOL. Moreover, this system can immedi-
ately use MMT’s logic-independent frontend features like IDE and module system.

Alternatively, we can use LEO-III as a general purpose DHOL-ATP that accepts input
in TPTP. Even though TPTP does not officially sanction DHOL as a logic, it antici-
pates dependent function types and already provides syntax for them (although—to our
knowledge—no ATP system has made use of it so far). Concretely, TPTP represents
the type Πx : A. B as !>[X:A]:B and a base type a t1 . . . tn as a @ t1 ... @ tn.
TPTP does not yet provide syntax for predicate subtypes, i.e., this approach is currently
limited to the no-subtyping fragment of DHOL. But extending the TPTP syntax with
predicate subtypes would be straightforward, e.g., by using A ?| p to represent the
type A|p .

The encoding of the conjecture given in Example 3 using the theory from Example 1 is
given at https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-
cade/CategoryTheory/category-theory-lemmas-dhol.p (which also includes further
example conjectures relative to the same theory). Running the logic embedding tool
translates it into the TPTP TH0 problem given at https://gl.mathhub.info/MMT/
LATIN2/-/blob/devel/source/casestudies/2023-cade/CategoryTheory/category-theory-
lemmas-hol.p. Unsurprisingly, LEO-III can prove this simple theorem easily.

Practical Evaluation. In order to evaluate the practical usefulness of the translation
we studied various example conjectures about function composition in set theory and
category theory. We considered 5 further lemmas based on the theory in Example 1
which are written directly in TPTP and can all be proven by E, Vampire and cvc5. We
also studied various harder lemmas about function composition and category theory.
Those examples are written in MMT and take advantage of advanced MMT features to
improve readability, such as definitions, user-defined notations, and implicit arguments
that are inferred by the prover.

https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade/Category Theory/category-theory-lemmas-dhol.p
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade/Category Theory/category-theory-lemmas-dhol.p
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade/Category Theory/category-theory-lemmas-hol.p
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade/Category Theory/category-theory-lemmas-hol.p
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade/Category Theory/category-theory-lemmas-hol.p
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The examples can be found at https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/
source/casestudies/2023-cade. The MMT prover successfully type-checks all problems
and translates them into TPTP problems to be solved by HOL ATPs.

Since LEO-III can solve none of the 6 function composition examples, we also tested
other HOL ATPs on the generated TPTP problems. Running all HOL ATP provers
supported at https://www.tptp.org/cgi-bin/SystemOnTPTP on the function composition
problems shows that many provers can solve 3 of the problems, Vampire can solve 4 of
them, and 5 out of the 6 conjectures can be solved by at least one HOL ATP.

We also studied 6 more difficult theorems about limits in category theory including the
uniqueness, commutativity, and associativity of some limits. To better evaluate the use-
fulness of our translation, we also formalized these lemmas in native HOL (in MMT)
and compared the results. Naturally, the DHOL formalization is significantly more
readable and benefits from the more expressive type system that can help spot mis-
takes in the formalization. Running the HOL ATPs from https://www.tptp.org/cgi-bin/
SystemOnTPTP on the generated TPTP problems (with 60 s timeout) yields the results
in the table below (where we omit provers that proved none of the theorems in either
formalization).

HOL ATP lemma 1 proven lemma 2 proven lemma 3 proven

DHOL native HOL DHOL native HOL DHOL native HOL

agsyHOL yes no no no yes no

cocATP yes no no no no no

cvc5 yes yes no no yes no

cvc5-SAT yes no no no no no

E yes yes no no no yes

HOLyHammer yes yes no no yes yes

Lash yes yes no no no no

LEO-II yes no no no no no

Leo-III yes yes no no no no

Leo-III-SAT yes yes no no no no

Satallax yes yes no no yes no

Vampire yes yes no no no yes

Zipperpin yes yes no no yes yes

total 13 9 0 0 5 4

https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/2023-cade
https://www.tptp.org/cgi-bin/SystemOnTPTP
https://www.tptp.org/cgi-bin/SystemOnTPTP
https://www.tptp.org/cgi-bin/SystemOnTPTP


Theorem Proving in Dependently-Typed Higher-Order Logic 453

HOL ATP lemma 4 proven lemma 5 proven lemma 6 proven

DHOL native HOL DHOL native HOL DHOL native HOL

agsyHOL no no no no no no

cocATP no no no no no no

cvc5 no yes no no no no

cvc5-SAT no no no no no no

E no yes no yes no yes

HOLyHammer no yes no no no yes

Lash no no no no no no

LEO-II no no no no no no

Leo-III no no no no no no

Leo-III-SAT no no no no no no

Satallax no no yes no no no

Vampire no yes no yes no yes

Zipperpin no yes yes yes no yes

total 0 5 2 3 0 4

Overall more problems generated from the native HOL formalization can be solved by
some HOL ATP (5/6 compared to 3/6 for the DHOL formalization). The HOL ATPs
found 25 successful proofs for the native HOL problems and 20 for the DHOL prob-
lems. This suggests that current HOL ATPs can prove native HOL problems somewhat
better than their translated DHOL counterparts, but not much better. In 8 cases a prover
can prove the DHOL conjecture but not the native HOL analogue, indicating that the
two formalizations have different advantages.

Furthermore, our translation has so far been engineered for generality and soundness/-
completeness and not for ATP efficiency. Indeed, future work has multiple options to
boost the ATP performance on translated DHOL, e.g., by

– developing sufficient criteria for when simpler HOL theories can be produced

– inserting lemmas into the translated theories that guide proof search in ATPs, e.g.,
to speed up equality reasoning

– adding definitions to translated DHOL problems and developing better criteria
when to expand them

Thus, we consider the test results to be very promising. In particular, the translation
could serve as a useful basis for type-checkers and hammer tools for DHOL ITPs.

7 Conclusion and Future Work

We have combined two features of standard languages, higher-order logic HOL and
dependent type theory DTT, thereby obtaining the new dependently-typed higher-order
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logic DHOL. Contrary to HOL, DHOL allows for dependent function types. Contrary
to DTT, DHOL retains the simplicity of classical Booleans and standard equality.

On the downside, we have to accept that DHOL, unlike both HOL and DTT, has an
undecidable type system. Further work will show how big this disadvantage weighs in
practical theorem proving applications. But we anticipate that the drawback is manage-
able, especially if, as in our case, an implementation of DHOL is coupled tightly with
a strong ATP system. We accomplish this with a sound and complete translation from
DHOL into HOL that enables using existing HOL ATPs to discharge the proof obliga-
tions that come up during type-checking. We have implemented our novel translation as
a TPTP-to-TPTP preprocessor for HOL ATP systems and outlined the implementation
of a type-checker and hammer tool for DHOL based on the resulting prover.

Moreover, once this design is in place, it opens up the possibility to add certain type
constructors to DHOL that are often requested by users but difficult to provide for sys-
tem developers because they automatically make typing undecidable. We have shown
an extension of DHOL with predicate subtypes as an example. Quotients, partial func-
tions, or fixed-length lists are other examples that can be supported in future work.

We expect our translation remains sound and complete if DHOL is extended with
other features underlying common HOL systems such as built-in types for numbers,
the axiom of infinity, or the subtype definition principle. How to extend DHOL with
a choice operator remains a question for future work — if solved, this would allow
extending existing HOL ITPs to DHOL.

Acknowledgment. Chad Brown and Alexander Steen provided valuable feedback on earlier ver-
sions of this paper.
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Abstract. This paper describes anti-unification algorithms for comput-
ing least general generalizations of two expressions in a functional pro-
gramming language with recursive let. First, by exploring a semantic app-
roach to the problem, we argue for an improvement of the technique used
in previous papers which avoids infinite chains of properly descending
generalizations. Second, we present a (non-deterministic) nominal gen-
eral anti-unification algorithm applicable to general expressions, which is
complete, terminating and requires polynomial time. Third, we propose a
specialized anti-unification algorithm applicable to two or more garbage-
free ground expressions that produces a single least general generaliza-
tion in polynomial time, and which can also exploit further semantically
correct equivalences. Our results have potential applications in finding
clones in functional programs.

Keywords: Anti-Unification · Nominal Techniques · Generalization ·
Functional Programming · Recursive Let

1 Introduction

Anti-unification problems (a.k.a. generalization problems) consist in finding a
least general generalization (lgg) of two or more given expressions. This prob-
lem has interesting applications in computer science and software engineering,
such as, symbolic mathematical computing [21], proof generalization [10], clone
detection [8], among others; an overview is [6]. Early proposals to apply gener-
alization for analyzing and improving programs by syntactic manipulations was
given by Plotkin [12] and Reynolds [13].

We are interested in the anti-unification problem for languages with binders,
such as the lambda-calculus, the pi-calculus, or the more general nominal lan-
guage [11]. For instance, λx.Z is a generalization of the lambda-expressions
λa.app(a, a), λa.λb.a, and λc.c. In fact, from λx.Z one can retrieve any of the
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three expressions in the set by considering the appropriate instance of Z (where
capturing is permitted), modulo renaming of bound variables: Z �→ app(x, x),
Z �→ λb.x and Z �→ x, respectively.

In the context of languages with recursive let (letrec), techniques for solv-
ing anti-unification problems would allow, for instance, to identify the program
scheme letr b.(λx.N); a.(λx.M) in b(y) as a generalization of the program [1]

letr even.(λx.if-else (x = 0) (true) (odd(x − 1)));
odd.(λx.if-else(x = 0)(false)(even(x − 1)))
in (even y)

or even identify both fragments of programs as possible clones [8].
In general, and as illustrated above, reasoning and automated deduction in

higher order languages often require – as a very basic operation – to iden-
tify expressions up to α-equivalence. This means expressions are identified if
they are syntactically equal up to a renaming of bound variables (which rep-
resent the binding structure). In addition, one has to have in mind that the
letrec construct also satisfies laws like commutativity and associativity of its
environment (e.g. we could permute the environment b.(λx.N); a.(λx.M) as
a.(λx.M); b.(λx.N) above), which will be working in combination with bind-
ing primitives (i.e., also rename the bindings within the environment obtaining,
e.g., c.(λx.M ′); d.(λx.N ′)), and they also may occur nested.

Checking expressions for α-equivalence is an operation that is often per-
formed on large and complex expressions. Ad-hoc algorithms for checking α-
equivalence of such expressions are worst-case exponential due to searching for
all possible permutations and renamings. An approach to handle α-equivalence
in deduction systems is to use nominal techniques [5,11], where the focus is to
ease formula specification and deduction rather than speeding up α-equivalence
checking. In general, checking α-equivalence with the language extended with
letrec using nominal techniques is a GI-hard problem [18]. Here, we follow the
nominal approach to handle binding of names and their renaming.

In [17] we have proposed a semantic approach to anti-unification based on
nominal techniques which uses atom-variables, and significantly improves an
existing approach [4] to anti-unification for languages with binders, since it pro-
vides a finitary set of least general generalizations. In this work we propose a
simplification of this semantic approach to a nominal language extended by the
letrec construct, which we call NLLX .

Our Results. We provide a nominal anti-unification algorithm (AntiUnifLetr)
for NLLX which preserves the good properties of our semantic approach: it is ter-
minating, sound, computes an exponential number of generalizations (Theorem
1) and weakly complete (Theorem 2). Completeness is achieved after further
specialization of the computed generalization (Theorem 3).

The observation that garbage might be present in letrec expressions (for
example, useless bindings in environments), and that they can be avoided by a
semantically correct garbage collection algorithm, allows to apply the results and
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methods in [18], which shows that α-equivalence and further algorithms could
be considerably improved for garbage-free expressions. This leads to the design
of AntiUnifNoGarbage, an anti-unification algorithm for ground garbage-free
expressions, that is terminating, runs in polynomial time and produces one least
general generalization, i.e. it is unitary (Theorem 4).

2 Preliminaries

We consider a countable infinite set of atoms A of (concrete) symbols a, b which
we usually denote in a meta-fashion; so we can use symbols a, b also with indices
(the variables in lambda-calculus). We also consider a set F of function symbols
with arity ar(·), and a countably infinite set of expression-variables Var ranged
over by X,Y . We will use mappings on atoms from A: a swapping (a b) is a
bijective function that maps atom a to atom b, atom b to a, and is the identity
on other atoms. We will also use finite permutations π on atoms from A, which
consists of a composition of swappings: in fact, every finite permutation π can
be represented by a composition of at most (|dom(π)| − 1) swappings, where
dom(π) = {a ∈ A | π(a) �= a}. The identity permutation is denoted Id. Com-
position π1 ◦ π2 and the inverse π−1 can be immediately computed, where the
complexity is polynomial in the size of dom(π).

Ground Expressions. The syntax of expressions ē of the (ground) language NLL
with recursive let is:

ē ::= a | λa.ē | (f ē1 . . . ēar(f)) | (letr a1.ē1; . . . ; an.ēn in ē)

Ground expressions are either atoms, abstractions of an atom in an expres-
sion, function application, or a letrec expression. We assume that binding atoms
a1, . . . , an in a letrec-expression (letr a1.ē1; . . . ; an.ēn in ē) are pairwise distinct.
Sequences of bindings a1.ē1; . . . ; an.ēn may be abbreviated as env (environ-
ment). The scope of atom a in λa.ē is standard: a has scope ē. The letr-construct
has a special scoping rule: in (letr a1.ē1; . . . ; an.ēn in ē), every atom ai that is
free in some ēj or ē is bound by the environment a1.ē1; . . . ; an.ēn. This defines
in NLL the notion of free atoms FA(ē), bound atoms BA(ē) in expression ē, and
all atoms AT (ē) that occur in ē. For an environment env = {a1.ē1, . . . , an.ēn},
we define the set of letrec-atoms as LA(env) = {a1, . . . , an}. We say a is fresh
for ē iff a �∈ FA(ē), denoted as a#ē.

Remark 1. The base language NLL is a lambda calculus extended with function
constant and a recursive let constructor letr, and can also be interpreted as an
untyped fragment of Haskell [7]. The function application operator in functional
languages (implicit in some languages) can be encoded by a binary function app,
and the case-construct in its plain form can be encoded as an application.

Example 1. The letrec-expression (letr a.cons ē1 b; b.cons ē2 a in a) represents
an infinite list (cons ē1 (cons ē2 (cons ē1 (cons ē2 . . .)))), where ē1, ē2 are
expressions and cons is the usual list constructor taken as a function symbol.



Towards Fast Nominal Anti-unification of Letrec-Expressions 459

Syntactic α-equivalence on NLL is defined, following [16], as an
extension of usual α-equivalence, where in addition the expressions
(letr a1.ē1; . . . ; an.ēn in ē) and (letr a′

1.ē
′
1; . . . ; a

′
n.ē′

n in ē′) are α-equivalent iff
the expressions can be made equal by correctly renaming them, possibly reorder-
ing the environment.

Definition 1. The α-equivalence ∼α on ē ∈ NLL is defined as follows:

– a ∼α a for atoms a.
– if ēi ∼α ē′

i for all i, then (f ē1 . . . ēn) ∼α (f ē′
1 . . . ē′

n) for n-ary f ∈ F .
– If ē ∼α ē′, then λa.ē ∼α λa.ē′.
– If a#ē′ and ē ∼α (a b) · ē′, then λa.ē ∼α λb.ē′.
– (letr a1.ē1; . . . ; an.ēn in ē) ∼α (letr aρ(1).ēρ(1); . . . ; aρ(n).ēρ(n) in ē)

for any permutation ρ of {1, . . . , n}.
– The following holds for a permutation π on atoms {a1, . . . , an}∪{a′

1, . . . , a
′
n}:

∀i. π(a′
i) = ai π · ē′

i ∼α ei π · ē′ ∼α ē ai#(letr a′
1.ē

′
1; . . . ; a

′
n.ē′

n in ē′)
(letr a1.ē1; . . . ; an.ēn in ē) ∼α (letr a′

1.ē
′
1; . . . ; a

′
n.ē′

n in ē′)

where, for i = 1, . . . , n: ai’s are pairwise distinct, and a′
i’s are pairwise

distinct.

Permutations operate on NLL-expressions by recursing on their structure. For
example, π·(letr a1.ē1; . . . ; an.ēn in ē) = (letr π·a1.π·ē1; . . . ;π·an.π·ēn in π·ē).

General Expressions. The syntax of the nominal higher-order language NLLX

with letrec and variables is:

e, s, t ::= a | π·X | λa.e | (f e1 . . . ear(f)) | (letr a1.e1; . . . ; an.en in e)
π := ∅ | (a b)·π

General expressions extend NLL with suspensions, i.e., expressions of the form
π · X, which denotes a variable X (also called a generalization variable) in
which a permutation is suspended: π is waiting for some instantiation of X
before its action. The basic properties and functions of NLL such as FA(e),
BA(e), scope, fresh, etc., extend to NLLX as expected. In particular, AT (e)
is extended to suspensions as AT (π · X) = {a | a ∈ dom(π)}. The suspen-
sion Id ·X is written simply as X. We define Head(s) either as the top func-
tion symbol in {a, f, λ, letr} or Head(π · X) as X. More generally, for a non-
variable expression e, the expression π·e means an operation, which is per-
formed by shifting π into the expression, using the additional simplification
π1·(π2·e) → (π1 ◦ π2)·e, where after the shift, π only remains in suspensions.
For instance, (a c) · (letr a.(λb.X) in f(a)) denotes a renaming of a to c and
vice-versa, which is equal to (letr c.(λb.(a c) · X) in f(c)).

An NLLX -freshness constraint is an expression of the form a#e, expressing
that a is not free in (or is fresh for) e, where e is an NLLX -expression. A conjunc-
tion (or set) of freshness constraints is called freshness context which is written
using the notation ∇,Δ. Every NLLX -freshness context can be transformed into
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Fig. 1. Simplification of freshness constraints in NLLX

a simpler one (flattened form) using the rules in Fig. 1 exhaustively until consist-
ing only of constraints of the form a#X or ⊥ (fail), which are called atomic. An
NLLX -freshness context ∇ is consistent if its flattened form does not contain ⊥.
The definition of α-equivalence extends to NLLX as expected. In the following,
[s]α denotes the equivalence class of the expression s induced by the equivalence
relation ∼α.

Lemma 1. Simplification using rules of Fig. 1 constitutes a polynomial decision
algorithm for satisfiability of ∇: If ⊥ is in the result, then unsatisfiable; other-
wise, satisfiable.

An NLLX -substitution ρ is a finite mapping from generalization vari-
ables to NLLX -expressions. Substitutions act on expressions homomorphically
and this action extends to freshness constraints and contexts as follows:
(a#X)ρ iff a#Xρ and ∇ρ = {a#eρ | a#e ∈ ∇}. We will denote the domain
of substitutions by dom(·). A substitution is ground if it maps (generalization)
variables to NLL-expressions. For a ground substitution ρ: ∇ρ is called valid iff
∇ρ is consistent.

Permutations and Cycles. A cycle τ in A is a permutation represented by
a sequence of different atoms a1, a2, . . . , an, such that τ(ai) = ai+1 for i =
1, . . . , n − 1 and τ(an) = a1. As standard, such cycle will be denoted as
τ = (a1 a2 . . . an). Every permutation π has a representation τ1τ2 . . . τn (which
abbreviates τ1 ◦ τ2 ◦ . . . ◦ τn) where τi are disjoint (primitive) cycles.

The disjoint cycles can be permuted. For instance, the permutation
(a b)(b d)(c e) has the cycle presentation (a b d)(c e) which is the same as
(c e)(a b d).

2.1 Data-Structures of Anti-unification Algorithms

Anti-unification algorithms will produce as a result expressions that are
restricted by a freshness context. These are called expressions-in-context and
denoted as (∇, s), where ∇ is a freshness context and s is an NLLX -expression.
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The semantics of expressions-in-context follow the idea that syntactically
used names of atoms in expressions are fixed, and atoms occurring in ∇, but not
in s are viewed as existentially quantified: these are treated as arbitrary names
of atoms.

Definition 2. An expression-in-context is a pair (∇, e), where e is an expres-
sion and ∇ is a (consistent) freshness context. The semantics of (∇, e) is the set
of ground instances of e that satisfy ∇, i.e.,

�(∇, e)� = {[r]α | ∃ρ̂ : ∀a ∈ AT (e). aρ̂ = a and [r]α = [eρ̂]α and ∇ρ̂ valid}

where ρ̂ is a mapping from Var ∪ A to ground expressions such that ρ̂|A is a
bijection on atoms.

The existential quantification on valid instances of expressions gives addi-
tional power to the semantics of expressions-in-context: by considering a as exis-
tentially quantified, we obtain that �({a#X},X)� is the same as �(∅,X)�.

Example 2. Consider the expression-in-context ({a#X}, f(X)). We will argue
that �({a#X}, f(X))� = �(∅, f(X))�. First, notice that a does not occur syn-
tactically in f(X) and therefore we can take ρ̂ mapping a to an arbitrary atom
that does not break validity of ∇. In fact:

– It is obvious that �({a#X}, f(X))� ⊆ �(∅, f(X))�, since the left one has more
restriction on its elements than the right one.

– �(∅, f(X))� ⊆ �({a#X}, f(X))�: Let ρ̂ be a bijection on atoms that is the
identity on the atoms occurring in f(X) (there is none). Then, we select
aρ̂ �∈ [f(X)]α which trivially implies that aρ̂#Xρ̂ holds.

Our semantics for ({a#X},X) differs from the one in Baumgartner et al. [3]
where �({a#X},X)�B is the set of all ground instances of X, where a is
not permitted to occur free. This will induce the negative effect of prop-
erly infinite descending chains1 of expressions-in-context such as . . . ≺B

({a#X, b#X}, f(X)) ≺B ({a#X}, f(X)) ≺B (∅, f(X)), which is eliminated in
our approach since in all these expressions-in-context have the same semantics.

Next we define an order relation on expressions-in-context which establishes
when one expression-in-context is more general or more specific than another.

Definition 3 (Ordering, Generalization).

– An expression-in-context (Δ, r) is more specific (or less general) than an
expression-in-context (∇, s), denoted (∇, s) � (Δ, r), if �(Δ, r)� ⊆ �(∇, s)�.
The strict part of � is denoted ≺. This defines equivalence of two expressions-
in-context via their semantics: (∇, s) ≈ (∇′, t) iff �(∇, s)� = �(∇′, t)�.

– An expression-in-context (Δ, r) is a generalization of (∇, s) and (∇′, t), if
(Δ, r) � (∇, s) and (Δ, r) � (∇′, t).

1 �·�B and ≺B denote the semantics and order relation in [4], resp.
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– A generalization (Δ′, r′) of (∇, s) and (∇′, t) is the most specific (the least
general) one, if for all generalizations (Δ, r) of (∇, s) and (∇′, t), we have
(Δ, r) � (Δ′, r′).

For instance, the expression-in-context (∅, λe.app(e,X)) is a generalization of
(∅, λa.app(a, c)) and (∅, λb.app(b, Z)), for a new atom e. It is easy to verify that
(∅, λe.app(e,X)) � (∅, λa.app(a, c)) and (∅, λe.app(e,X)) � (∅, λb.app(b, Z)).

3 The Anti-unification Problem for NLLX

We are interested in the anti-unification problem for NLLX :
Given two expressions-in-context (∇, s) and (∇, t),
Find a least general generalization, i.e., another expression-in-context (Δ, r) that
satisfies (Δ, r) � (∇, s) and (Δ, r) � (∇, t).

The challenge in treating letrec-expressions in anti-unification algorithms is,
on the one hand, its unusual scoping and; on the other hand, the multiple pos-
sibilities to formulate the same problem in several syntactically different ways.

Remark 2 [Permutations in the generalization of suspensions]. Generalization
of suspensions, say (∅, π1·Z) and (∅, π2·Z), need some preparations based on
properties of permutations: first, we decompose π1 and π2 into their cycle pre-
sentation, say π1 = μ1 . . . μn and π2 = μ′

1 . . . μ′
m; second, we work on generalizing

(∅, μ1 . . . μn ·Z) and (∅, μ′
1 . . . μ′

m·Z) as follows: let π3 be a permutation obtained
from the set of common cycles of π1 and π2, say π1 = π3π

′
1 and π2 = π3π

′
2.

Then, π3 · X is a generalization for (∅, π1 · Z) and (∅, π2 · Z). In the following we
will denote the common cycles of permutations π1 and π2 as π1 ∩ π2. This will
be addressed in details with the specific rule for suspensions in Fig. 2.

3.1 The Algorithm AntiUnifLetr and Its Rules

We first define the nominal generalization algorithm AntiUnifLetr that (non-
deterministically) computes a single generalization of the input expressions,
where the generalization can also be nonlinear in the generalization variables
due to merging. We will argue that the algorithm is sound and weakly complete,
and one run can be performed in polynomial time.

The data structure of the algorithm AntiUnifLetr is (Γ,M,∇, L) where:

– Γ is a set of generalization triples of the form X : s � t, where X is a fresh
(generalization-) variable, and s, t are NLLX -expressions;

– M is a set of solved generalization triples;
– ∇ is a set of freshness constraints, without freshness constraints for the fresh

generalization variable for the input generalization triple;
– L is a substitution represented as a set of bindings; the empty set is [].

The result of applying the substitution L on the generalization variable X is
denoted as X ◦ L.
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We call such a tuple a state. The rules of the algorithm AntiUnifLetr,
given in Fig. 2, operate on states and ·∪ denotes disjoint union. Given two NLL
expressions s and t, and a freshness context Δ (possibly empty), to compute
generalizations for (Δ, s) and (Δ, t), we start with ({X : s � t}; ∅;Δ; []), the
initial state (sometimes abbreviated to (Δ, {X : s � t})), where X is a fresh
generalization variable, and we apply the rules from Fig. 2 and Fig. 4 until no
more rule applications are possible and we reach the final state which has the
form (∅,M,∇, L), where M must be completely merged. We will denote the
computation from initial to a final state: (Γ ; ∅;Δ; []) =⇒∗ (∅;M ;∇, L).

The output is an expression-in-context obtained from the generated substi-
tution L and the final freshness constraint ∇, i.e. the output is (∇,X ◦ L), also
called the result computed by the AntiUnifLetr algorithm. We say it is com-
plete if every least general generalization (lgg) is found and it is weakly complete
if every lgg is found up to some set of freshness constraints.

Fig. 2. Rules of the algorithm AntiUnifLetr

Rules in Fig. 2 are similar to the ones in [3] without the parameter for the
set of atoms occurring in the initial state and throughout the computation, and
deal with abstractions, function application, and suspensions. The subalgorithm
Eqvm, defined by the rules in Fig. 3, computes a matching permutation, say π, of
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Fig. 3. The permutation matching (sub-)algorithm Eqvm

Fig. 4. Rules for letrec of the algorithm AntiUnifLetr

two expressions-in-context (say s � t in Ψ with context ∇), where EqvBiEx(Π)
checks whether the set of swappings is injective and then adds a minimal set of
mappings such that the result is a bijection, i.e. a permutation (on atoms). Rules
in Fig. 4 are new and will be described in detail:

Rule (Letraa) acts as a decomposition rule with the letr construct and can
only be applied if the bindings in the environment are the same, respecting
the given order.

Rule (Letrperm) is branching and exhaustively tries to generalize the expres-
sions by considering all permutations of the letr environment.

Rule (Letrab) deals with renaming of bound names; it consistently swaps the
binding atoms of the letr environment with fresh names and propagates the
obtained permutation throughout both expressions.
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The latter rule exploits the following idea: if λa.s and λb.t are α-equivalent, then
one can rename a and b with the same fresh name c and propagate the renaming
within s and t and still obtain α-equivalent expressions.

Example 3. A generalization for the expressions-in-context (∅, letr a.a; b.c
in f(a, b)) and (∅, letr b.a; c.c in f(a, b)) is computed as follows:

1. We cannot apply rule (Letraa) since the binding atoms in the environment
are not corresponding to each other. We may rearrange the bindings using
(Letperm). Then we apply rule Letrab for renaming: we choose d, e as fresh
atoms and use the renaming (a d)(b e) and (c d)(b e), which leads to the check
∇′ = {d, e#(letr a.a; b.c in f(a, b))} ∪ {d, e#(letr c.c; b.a in f(a, b))} = ∅
which holds and evaluates to ∅, since the terms are ground. After an applica-
tion (Letraa), which decomposes the letrec environments:

({X : letr a.a; b.c in f(a, b) � letr b.a; c.c in f(a, b)}, ∅, ∅, [])

{X:letr a.a; b.c in f(a, b) � letr c.c; b.a in f(a, b)}, ∅, ∅, [])

({X:letr d.d; e.c in f(d, e) � letr d.d; e.a; in f(a, e)}, ∅, ∅, [])

({X1:d � d, X2:c � a, Y :f(d, e) � f(a, e)}, ∅, ∅, {X �→ letr d.X1; e.X2 in Y })

2. After three applications of (Dec), one (Solve) and one (Mer) we obtain
(∅, {X2 : c � a}, ∅, {X �→ letr d.d; e.X2 in f((c d) · X2, e)}). The output
generalization is (∅, letr d.d; e.X2 in f((c d) · X2, e)).

Another Solution: from (X : letr a.a; b.c in f(a, b) � letr b.a; c.c in f(a, b))
we could have immediately applied the rule (Letrab) using π1 = (a d)(b e) for
the left and π2 = (b d)(c e) for the right expression. This finally leads to a
generalization of the form letr d.X1, e.X2 in f(X3,X4) which is “weaker” (too
general) than the one above.

Note that the environments of one of the expressions to be generalized con-
tains garbage: the binding c.c is not used in f(a, b).

Theorem 1. The algorithm AntiUnifLetr is terminating and sound. A single
run requires polynomial time. The overall computation requires exponential time
and may compute an exponential number of generalizations.

Proof. Soundness and termination can be easily checked by inspection of the
rules of Figs. 2, 4 and 3. The number of nondeterministic alternatives is expo-
nential in the worst case, and it is induced by the rule (Letperm). A single run
(one branch) can be performed in polynomial time.

Notice that except for rule (Letrab), all the rules in AntiUnifLetr algorithm
preserve the context ∇. This differs from the approach taken in [3] which might
add new freshness constraints with a rule similar to our rule (SolveYY), based on
a set A of all atoms appearing throughout the computation of a generalization.
We show in the next example that this choice of initially preserving the freshness
context leads to a weak completeness result, but completeness is regained with
a specialization algorithm that will be presented next.
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Example 4 (Weak Completeness). The expressions-in-context (∅, f(c1, a)) and
(∅, f(c2, a)) have the generalization (∅, f(X1, a)) computed by the rules of Fig. 2.
However, this is not the lgg since ({a#X1}, f(X1, a)) is a more specific general-
ization. In fact, f(a, a) ∈ �(∅, f(X1, a)�, but f(a, a) /∈ �({a#X1}, f(X1, a)�.

Theorem 2 (Weak Completeness). Given NLLX expressions e and e′, and a
freshness context Δ. If (∇′, r) is a generalization of (Δ, e) and (Δ, e′), then there
exists a ∇′′ and a derivation ({X : e � e′}, ∅,Δ, []) =⇒∗ (∅,M,∇, σ) such that
(∇∪∇′′,Xσ) is a generalization of (Δ, e) and (Δ, e′) and (∇∪∇′′,Xσ) � (∇′, r).

Proof. The proof is by induction on the structure of r.

Example 5 (Cont. Example 4). We remark another behaviour that can be seen
from the execution of AntiUnifLetr: ({X:f(c1, a) � f(c2, a)}, ∅, ∅, []) reduces
to (∅, {X1:c1 � c2}, ∅, {X �→ f(X1, a)}). Notice that (i) f(a, a) is clearly not
an element of �(∅, f(c1, a))� nor �(∅, f(c2, a))�; (ii) the information that c1 and
c2 were free names in the input problem was “forgotten” by the generalization
f(X1, a), but it can be retrieved from the solved triple in the final state. (iii)
a#c1 and a#c2 hold trivially.

3.2 From Weak Completeness to Completeness

Given a result (∇, s) of a run of the algorithm AntiUnifLetr, the result is
in general only weakly complete, since the expressivity of the language may
permit a better generalization. The true most specific generalization may have
additional freshness constraints, as it was shown in Example 4. The problem of
specializing the generalizer output by AntiUnifLetr is subtle: a different but
related behaviour can be seen with the next example.

Example 6. Consider the expressions-in-context (∅, f(g(c1, a), a)) and (∅, f(c2,
a)) as input for AntiUnifLetr. The output generalization is (∅, f(X1, a)), and
this is the lgg. In fact, a run of the algorithm would terminate with the final
state (∅, {X1:g(c1, a) � c2}, ∅, {X �→ f(X1, a)}).

We can use the information in the solved part of the final state to build the
substitutions σ1 = {X1 �→ g(c1, a)} and σ2 = {X1 �→ c2} that instantiate the
generalization f(X1, a) back to the input terms. Notice that a#X1σ1 is equal to
a#g(c1, a) and does not hold. Thus, we cannot add {a#X1} as a constraint to the
generalization, since ({a#X1}, f(X1, a)) cannot be instantiated to f(g(c1, a), a).

Let γ = (∅;M ;∇;L) be a final state. We define ATf (γ) as the set of unbound
atoms that occur in M,∇ or codom(L). We say that a generalization variable X
occurs in γ when it occurs in ∇, or as a subterm in M , or in codom(L).
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Algorithm 1 AntiUnifLetr- Phase 2
1: Input: (Δ, s) and (Δ, t)

2: ({X : s � t}; ∅;Δ; [])
∗

=⇒ γ = (∅;M ;∇;L)
3: Let (∇, r) = (∇, X ◦ L) be the resulting generalization.
4: Let X be a generalization variable occurring in r. � Repeat for each X
5: if a ∈ AT (r)\BA(r) and a /∈ RelAtomsγ(X) then � Repeat for each a ∈ AT (t)
6: ∇ := ∇ ∪ {a#X}
7: end if

Definition 4 (Relevant Atoms). Let γ = (∅;M ;∇;L) be a final state in a
run of AntiUnifLetr. Let X be a generalization variable occurring in γ. The
set of relevant atoms for X, denoted RelAtomsγ(X), is defined recursively:

– If there is no solved triple for X in M . Then, the relevant atoms are
RelAtomsγ(X) = ATf (γ)\{a | a#X ∈ ∇}, i.e., all atoms that are not bound
and that occur syntactically in the state, but not the atoms that were excluded
due to the freshness constraints in ∇.

– If there is a solved triple X : s � t ∈ M . Then, RelAtomsγ(X) =
RelAtomsγ(s) ∪ RelAtomsγ(t). The other cases are defined recursively in the
structure of the expression:

• RelAtomsγ(a) = a, RelAtomsγ(f s1 . . . sn) =
⋃

i RelAtomsγ(si);
• RelAtomsγ(π·s) = π·RelAtomsγ(s);
• RelAtomsγ(λa.s) = RelAtomsγ(s)\{a}; and
• RelAtomsγ(letr a1.s1; . . . ; an.sn in r) = RelAtomsγ(s1, . . . , sn, r)\

{a1, . . . , an}.
For example, if we take M = {X:f(a, b) � g((a c)·Y ), Y :f(c, d) � g(e)} and

∇ = {a#Y }, then the set of relevant atoms for Y is {c, d, e}, and for X it is
{a, b}∪ (a c){c, d, e} = {a, b, d, e}, where it is noteworthy that atom c is missing.

We formulate a postprocessing algorithm (Algorithm 1) for AntiUnifLetr
which is able to compute least general generalizations.

Theorem 3. Adding (Algorithm 1) makes AntiUnifLetr complete.

Note, however, that due to the non-determinism, it may be possible that one
of the runs generates a generalization that is strictly less specific than the result
in another run, see Example 3.

Example 7. This example shows the result of generalizing more complex expres-
sions. Consider the generalization problem, and the sequence of generalization
steps, where the last step abbreviates several steps.

({X1 : λa.f(a, a, c) � λb.f(b, d, c)}, ∅, [ ])

({X1 : λe.f(e, e, c) � λe.f(e, d, c)}, ∅, [ ])

({X2 : f(e, e, c) � f(e, d, c)}, ∅, {X1 �→ λe.X2})
(∅, {X3 : e � d}, {X1 �→ λe.X2, X2 �→ f(e, X3, c)})
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Now the resulting lgg can be computed by adding only one freshness constraint:
({g#X3}, λe.f(e,X3, c)). This holds, since d ∈ RelAtomsγ(X3), and hence does
not occur in the freshness context. Notice that c#X3 is added as a freshness con-
straint since c occurs in the generalization expression, but c /∈ RelAtomsγ(X3).

4 Generalization Algorithm Under Semantic Equalities

We use semantic equivalences to specialize and extend our anti-unification algo-
rithm to ground expressions. In particular, we exploit the fact that removal of
garbage is semantically correct: it does not alter the meaning of the program.
First, we develop a standardization algorithm for garbage-free expressions that
helps in comparing the letrec-expressions and computing generalizations in poly-
nomial time. Second, we propose a variation of our anti-unification algorithm
called AntiUnifNoGarbage.

NLL-expressions may contain irrelevant bindings in the letrec environment:
for instance, in (letr a.Nil; b.b in f(a, a)), the binding b.b is useless for the
expression, and will be considered as garbage. The garbage bindings do not con-
tribute to the meaning of the functional expressions. It is shown in [18], that
α-equivalence of garbage-free letrec-expressions can be checked in polynomial
time, and that, in general, this problem is group-isomorphism-complete [2,20].

Definition 5. Let ē be an NLL-expression. We say that ē contains garbage
iff there is a subexpression (letr a1.ē1, . . . , an.ēn in ē′) in ē such that the
environment a1.ē1, . . . , an.ēn can be split into two nonempty sub-environments
ai1 .ēi1 , . . . , aik .ēik and aj1 .ēj1 , . . . , ajk′ .ējk′ , and the binding atoms aih , h =
i1, . . . , ik do not occur free in letr aj1 .ej1 , . . . , ajk .ējk in ē′. We say that ē is
garbage-free (or garbage-collected) iff it does not contain garbage.

Making an expression garbage-free may require an iterated removal of
garbage, using the garbage removal rewriting rules below:

(gr1) letr a1.e1; . . . ; an.en; b1.e
′
1; . . . ; bm.e′

m in e′
m+1 −→

letr b1.e
′
1; . . . ; bm; e′

m in e′
m+1, if

⋃
FA(e′

i) ∩ {a1, . . . , an} = ∅
(gr2) letr a1.e1; . . . ; an.en in e −→ e, if FA(e) ∩ {a1, . . . , an} = ∅

We illustrate our ideas for the generalization of garbage-free expressions. Note
that the used equality of expressions makes a notable difference for the results
as well as for the algorithmic steps.

Example 8. Let s̄ = let c.a in f(g(c)) and t̄ = let d.b in f(h(d)) two
garbage-free ground expressions. A generalization of s and t w.r.t. ∼α is
s̄′ = let c.X1 in f(X2), which is also an lgg. If we would allow more equal-
ities on the expressions, like ∼gc as a part of the equality or even an equality
∼α,gc,letcp that allows also copying let-bindings, then s̄ would be equivalent to
f(g(a)) and t̄ equivalent to f(h(b), which have f(X) as a generalization. The
generalisation algorithm, however, would be much more complex.
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Fig. 5. Different lengths of letrec-environments in AntiUnifLetr

The next step is to standardize the sequence of bindings in garbage-collected
expressions, which greatly supports further operations.

Standardization Algorithm. Consider let a1.ē1; . . . ; an.ēn in ē be a garbage-free
NLL-expression. Then, rearrange the bindings as follows:

1. Let aj be the atom from {a1, . . . , an} that has the earliest occurrence as a
free atom in the expression ē, in its printed string. Then select aj .ēj as the
leftmost binding in the fresh environment, i.e. r0 = ē; r1 = letr aj .ēj in ē.

2. Iterate this to compute rk from rk−1 = letr envk−1 in ē by selecting among
the remaining binding atoms aj′ ∈ {a1, . . . , an}\{aj} again the one which first
occurs free in the printed string of rk−1, and then add aj′ .ēj′ as the leftmost
binding in the letr-environment obtaining rk = letr aj′ .ēj′ ; envk−1 in ē.

These steps are to be used iteratively: apply them to the smallest subexpres-
sion ē′ of ē, which is not yet correctly arranged. The result is a gc-standardized
expression tgcst of t.

Example 9. Consider the garbage-free expression let a.app(b, λc.c); b.λd.d in a,
where app is a binary function symbol for denoting the usual application of
the lambda calculus. The standardization algorithm returns the gc-standardized
expression let b.λd.d; a.app(b, λc.c) in a.

Proposition 1. For every garbage-free NLL-expression ē, the gc-standardized
expression ē′ of ē with ē ∼α ē′, has a sequence of bindings in all letrec envi-
ronments that is unique and has a fixed ordering. The computation can be done
in polynomial time.

Proof. Garbage collection is polynomial: after every step the expression will be
smaller, and a single step of detecting a set of redundant bindings is also poly-
nomial. The rearrangement also can be done first for subexpressions of smaller
size, and a single rearrangement of the top binding takes polynomial time.

4.1 Anti-unification of Garbage-Free Expressions

In this and the next subsection on generalization we will use a syntactically fixed
ordering of bindings in a let environments, and denote this as letf.

AntiUnifLetr is adapted to the ground situation in several aspects: (i)
There are no freshness constraints; (ii) expressions are first gc-standardized; (iii)
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we permit that n ≥ 2 expressions are to be generalized in one step; (iv) in a set
of expressions to be generalized, we make all top-level letrec environments to be
of the same (minimal) length by adding bindings a.a with fresh atoms a; and
(v) we fix the sequence of bindings in a let indicated by letf.

We remark that an iterated generalization of pairs (i.e., to generalize s1, s2
and s3 one first generalizes s1 and s2, and from the result, say r, one repeat the
generalization process with r and s3) has the disadvantage that from the second
step, after the first application of rule, there are generalization variables, and
the semantic properties get lost, which means that, e.g., the standardization is
no longer usable, and so the method does no longer work properly in the next
generalization steps.

Therefore, for generalizing more than 2 expressions, the data structure
adopted is: the generalized state is as ({X:s1 � . . . � sn};M ;∇;L), and we
use generalization tuples of the form {X:s1 � . . . � sn} to denote that X is a
variable generalizing expressions s1, . . . , sn. Examples for the modified rules are

(Decm)

{X:f(s1,1, . . . , s1,n) � . . . � f(sm,1, . . . , sm,n)} ·∪Γ, M, L
Xi are fresh variables n = 0 is permitted

Γ ·∪{X1:s1,1 � . . . � sm,1, . . . , Xn:s1,n � . . . � sm,n},
M, L ∪ {X �→ f(X1, . . . , Xn)}

(Absaam)
{X:λa.s1 � . . . � λa.sn} ·∪Γ, M, L

Γ ·∪{Y :s1 � . . . � sn}, M, L ∪ {X �→ λa.Y }

(Merm)

Γ, {X:s1 � . . . � sn, Y :t1 � . . . � tn} ·∪M, L
Eqvm({(s1, . . . , sn) � (t1, . . . , tn)}) = π

Γ, M ∪ {X1:s1 � t1}, L ∪ {X �→ π·Y }

Thus, we adapt the rules of AntiUnifLetr: it accepts n ≥ 2 ground expres-
sions; the permutation-rule (Letrperm) is inactive due to fixing the ordering of
bindings; merging is supported, and the subalgorithms Eqvm and EqvBiEx are
almost trivial and applied to larger tuples. Also the sequence of bindings in lets
is fixed. All these adaptations can be done within the polynomial complexity.

These explanations suggest the algorithm AntiUnifNoGarbage, for n ≥
2 (ground) arguments, operating on a triple: (Γ,M,L). It is defined non-
deterministically, but only one run will be done.

Example 10 (Fixed letr bindings). Generalizing the garbage-collected expres-
sions let a′.a; b′.b; c′.c in f(g(a′, b′, c′)) and let a′.b; b′.c; c′.a in f(h(a′, b′, c′))
produces let a′.a; b′.b; c′.c in f(X) since bindings can be rearranged, which
requires exponential complexity for trying rearrangements. If we fix the
sequence of bindings and generalize, then the algorithm requires only poly-
nomial time in this step, then for letf a′.a; b′.b; c′.c in f(g(a′, b′, c′)) and
letf a′.b; b′.c; c′.a in f(h(a′, b′, c′)), we obtain letf a′.X1; b′.X2; c′.X3 in f(X).
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Theorem 4. Algorithm AntiUnifNoGarbage is sound, terminating and
complete. It will compute a single least general generalization in polynomial time.

Proof (Sketch). The main argument is that if no rule applies, then the result is
already a generalization. Second, every applied rule keeps the semantics, i.e., does
not lose information. The complexity has two components: one is the preparation
of the input, which is polynomial. The second part is the test and computation
of every rule, which is polynomial since there are no ∇-sets, and the execution
of every rule requires polynomial time in the input size. Moreover, the size of
the problem is decreased in every step.

4.2 Exploiting Semantic Equalities

Since we focus application of the algorithms in (functional) higher-order pro-
gramming languages, it makes sense to take more semantic equations and proper-
ties into account to recognize semantic equality of syntactically different expres-
sions, which improves the power of generalization algorithms.

Since there are various approaches and definitions to semantics, like variants
of contextual equivalences or bisimulations [9,14,15,19] and we want to be con-
sistent with most of them, we only investigate the equalities that are correct in
a majority of the cases. By “cases” we mean different programming languages
permitting letr, but with different operational and equational semantics.

The following semantically correct equalities, expressed as rewrite rules, in
languages with letrec could also be used for further standardization of expres-
sions, where we assume that there are no conflicts with variable names.

1. x.f(s1, . . . , sn) → x.f(y1, . . . , yn); y1.s1; . . . ; yn.sn

2. let (x = letr env in r); env ′ in s → let x = r; env ; env ′ in s
3. let env in (let env ′ in s) → let env ; env ′in s.
4. f (let env in s1) s2 → let env in (f s1 s2).

Note that these equalities if used to standardize expressions keep the poly-
nomial complexity of generalizations of ground expressions.

5 Conclusion and Future Work

We formulated an anti-unification algorithm for expressions in a functional
higher-order language with a let constructor that has mutually recursive bind-
ings. We constructed a weakly complete anti-unification algorithm that in the
general case is finitary, which is improved to being complete by a post-processing.
In the worst case, the time for the computation as well as the number of gener-
alizations are exponential.

In case the expressions are specialized to be ground and garbage-free, then the
problem becomes unitary and the computation is polynomial. These properties
make the method more friendly to applications. We also considered modifica-
tions of the generalization algorithm for functions in functional programming



472 M. Schmidt-Schauß and D. Nantes-Sobrinho

languages with letr that has a wider coverage by abstracting from the syntac-
tical details and by observing semantic equalities.

Further work is to generalize algorithms to other patterns and to experiment
with the generalization method in practice.
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Abstract. Numerous confluence criteria for plain term rewrite systems
are known. For logically constrained rewrite system, an attractive exten-
sion of term rewriting in which rules are equipped with logical con-
straints, much less is known. In this paper we extend the strongly-closed
and (almost) parallel-closed critical pair criteria of Huet and Toyama to
the logically constrained setting. We discuss the challenges for automa-
tion and present crest, a new tool for logically constrained rewriting in
which the confluence criteria are implemented, together with experimen-
tal data.

Keywords: Confluence · Term Rewriting · Constraints · Automation

1 Introduction

Logically constrained rewrite systems constitute a general rewrite formalism with
native support for constraints that are handled by SMT solvers. They are use-
ful for program analysis, as illustrated in numerous papers [2,3,5,13]. Several
results from term rewriting have been lifted to constrained rewriting. We men-
tion termination analysis [6,7,12], rewriting induction [3], completion [12] as well
as runtime complexity analysis [13].

In this paper we are concerned with confluence analysis of logically con-
strained rewrite systems (LCTRSs for short). Only two sufficient conditions for
confluence of LCTRSs are known. Kop and Nishida considered (weak) orthogo-
nality in [8]. Orthogonality is the combination of left-linearity and the absence
of critical pairs, in a weakly orthogonal system trivial critical pairs are allowed.
Completion of LCTRSs is the topic of [12] and the underlying confluence con-
dition of completion is the combination of termination and joinability of critical
pairs. In this paper we add two further confluence criteria. Both of these extend
known conditions for standard term rewriting to the constrained setting. The
first is the combination of linearity and strong closedness of critical pairs, intro-
duced by Huet [4]. The second, also due to [4], is the combination of left-linearity
and parallel closedness of critical pairs. We also consider an extension of the lat-
ter, due to Toyama [11].
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Overview. The remainder of this paper is organized as follows. In the next
section we summarize the relevant background. Section 3 recalls the existing
confluence criteria for LCTRSs and some of the underlying results. The new
confluence criteria for LCTRSs are reported in Sect. 4. In Sect. 5 the automation
challenges we faced are described and we present our prototype implementation
crest. Experimental results are reported in Sect. 6, before we conclude in Sect. 7.

2 Preliminaries

We assume familiarity with the basic notions of term rewrite systems (TRSs) [1],
but shortly recapitulate terminology and notation that we use in the remainder.
In particular, we recall the notion of logically constrained rewriting as defined
in [3,8].

We assume a many-sorted signature F and a set V of (many-sorted) variables
disjoint from F . The signature F is split into term symbols from Fte and theory
symbols from Fth. The set T (F ,V) contains the well-sorted terms over this
signature and T (Fth) denotes the set of well-sorted ground terms that consist
entirely of theory symbols. We assume a mapping I which assigns to every
sort ι occurring in Fth a carrier set I(ι), and an interpretation J that assigns
to every symbol f ∈ Fth with sort declaration ι1 × · · · × ιn → κ a function
fJ : I(ι1) × · · · × I(ιn) → I(κ). Moreover, for every sort ι occurring in Fth we
assume a set Valι ⊆ Fth of value symbols, such that all c ∈ Valι are constants
of sort ι and J constitutes a bijective mapping between Valι and I(ι). Thus
there exists a constant symbol in Fth for every value in the carrier set. The
interpretation J naturally extends to a mapping [[·]] from ground terms in T (Fth)
to values in Val =

⋃
ι∈Dom(I) Valι: [[f(t1, . . . , tn)]] = fJ ([[t1]], . . . , [[tn]]) for all

f(t1, . . . , tn) ∈ T (Fth). So every ground term in T (Fth) has a unique value.
We demand that theory symbols and term symbols overlap only on values, i.e.,
Fte ∩ Fth ⊆ Val. A term in T (Fth,V) is called a logical term.

Positions are strings of positive natural numbers used to address subterms.
The empty string is denoted by ε. We write q � p and say that p is below q if
qq′ = p for some position q′, in which case p\q is defined to be q′. Furthermore,
q < p if q � p and q �= p. Finally, positions q and p are parallel, written as q ‖ p, if
neither q � p nor p < q. The set of positions of a term t is defined as Pos(t) = {ε}
if t is a variable or a constant, and as Pos(t) = {ε} ∪ {iq | 1 � i � n and q ∈
Pos(ti)} if t = f(t1, . . . , tn) with n � 1. The subterm of t at position p ∈ Pos(t)
is defined as t|p = t if p = ε and as t|p = ti|q if p = iq and t = f(t1, . . . , tn). We
write s[t]p for the result of replacing the subterm at position p of s with t. We
write PosV(t) for {p ∈ Pos(t) | t|p ∈ V } and PosF (t) for Pos(t) \ PosV(t). The
set of variables occurring in the term t is denoted by Var(t). A term t is linear
if every variable occurs at most once in it. A substitution is a mapping σ from
V to T (F ,V) such that its domain {x ∈ V | σ(x) �= x} is finite. We write tσ for
the result of applying σ to the term t.

We assume the existence of a sort bool such that I(bool) = B = {	,⊥},
Valbool = {true, false}, [[true]] = 	, and [[false]] = ⊥ hold. Logical terms of sort
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bool are called constraints. A constraint ϕ is valid if [[ϕγ]] = 	 for all substitutions
γ such that γ(x) ∈ Val for all x ∈ Var(ϕ).

A constrained rewrite rule is a triple � → r [ϕ ] where �, r ∈ T (F ,V) are terms
of the same sort such that root(�) ∈ Fte \Fth and ϕ is a logical term of sort bool.
If ϕ = true then the constraint is often omitted, and the rule is denoted as � → r.
We denote the set Var(ϕ)∪(Var(r)\Var(�)) of logical variables in ρ : � → r [ϕ ] by
LVar(ρ). We write EVar(ρ) for the set Var(r)\ (Var(�)∪Var(ϕ)) of variables that
appear only in the right-hand side of ρ. Note that extra variables in right-hand
sides are allowed, but they may only be instantiated by values. This is useful
to model user input or random choice [3]. A set of constrained rewrite rules is
called a logically constrained rewrite system (LCTRS for short).

The LCTRS R introduced in the example below computes the maximum of
two integers.

Example 1. Before giving the rules, we need to define the term and theory sym-
bols, the carrier sets and interpretation functions:

Fte = {max : int × int ⇒ int} ∪ {0, 1, . . . : int} Ibool = B Iint = Z

Fth = {0, 1, . . . : int} ∪ {true, false : bool} ∪ {¬ : bool ⇒ bool}
∪ {− : int ⇒ int} ∪ {∧ : bool × bool ⇒ bool}
∪ {+,− : int × int ⇒ int} ∪ {≤,≥, <,>,= : int × int ⇒ bool}

The interpretations for theory symbols follow the usual semantics given in the
SMT-LIB theory Ints1 used by the SMT-LIB logic QF_LIA. The LCTRS R
consists of the following constrained rewrite rules

max(x, y) → x [x ≥ y ] max(x, y) → y [y ≥ x ] max(x, y) → max(y, x)

In later examples we refrain from spelling out the signature and interpreta-
tions of the theory Ints. We now define rewriting using constrained rewrite rules.
LCTRSs admit two kinds of rewrite steps. Rewrite rules give rise to rule steps,
provided the constraint of the rule is satisfied. In addition, theory calls of the
form f(v1, . . . , vn) with f ∈ Fth \Val and values v1, . . . , vn can be evaluated in a
calculation step. In the definition below, a substitution σ is said to respect a rule
ρ : � → r [ϕ ], denoted by σ � ρ, if Dom(σ) = Var(�)∪Var(r)∪Var(ϕ), σ(x) ∈ Val
for all x ∈ LVar(ρ), and ϕσ is valid. Moreover, a constraint ϕ is respected by σ,
denoted by σ � ϕ, if σ(x) ∈ Val for all x ∈ Var(ϕ) and ϕσ is valid.

Definition 1. Let R be an LCTRS. A rule step s →ru t satisfies s|p = �σ
and t = s[rσ]p for some position p and constrained rewrite rule � → r [ϕ ] that
is respected by the substitution σ. A calculation step s →ca t satisfies s|p =
f(v1, . . . , vn) and t = s[v]p for some f ∈ Fth \ Val, v1, . . . , vn ∈ Val with v =
[[f(v1, . . . , vn)]]. In this case f(x1, . . . , xn) → y [y = f(x1, . . . , xn)] with a fresh
variable y is a calculation rule. The set of all calculation rules is denoted by Rca.
The relation →R associated with R is the union of →ru ∪ →ca.
1 http://smtlib.cs.uiowa.edu/Theories/Ints.smt2.

http://smtlib.cs.uiowa.edu/Theories/Ints.smt2
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We sometimes write →p |ρ |σ to indicate that the rewrite step takes place at
position p, using the constrained rewrite rule ρ with substitution σ.

Example 2. We have max(1 + 2, 4) →R max(3, 4) →R max(4, 3) →R 4 in the
LCTRS of Example 1. The first step is a calculation step. In the third step we
apply the rule max(x, y) → x [x ≥ y ] with substitution σ = {x �→ 4, y �→ 3}.

3 Confluence

In this paper we are concerned with the confluence of LCTRSs. An LCTRS R
is confluent if t →∗

R · ∗
R← u for all terms s, t and u such that t ∗

R← s →∗
R u.

Confluence criteria for TRSs are based on critical pairs. Critical pairs for LCTRS
were introduced in [8]. The difference with the definition below is that we add
dummy constraints for extra variables in right-hand sides of rewrite rules.

Definition 2. An overlap of an LCTRS R is a triple 〈ρ1, p, ρ2〉 with rules
ρ1 : �1 → r1 [ϕ1 ] and ρ2 : �2 → r2 [ϕ2 ], satisfying the following conditions:

1. ρ1 and ρ2 are variable-disjoint variants of rewrite rules in R ∪ Rca,
2. p ∈ PosF (�2),
3. �1 and �2|p are unifiable with a mgu σ such that σ(x) ∈ Val ∪ V for all

x ∈ LVar(ρ1) ∪ LVar(ρ2),
4. ϕ1σ ∧ ϕ2σ is satisfiable, and
5. if p = ε then ρ1 and ρ2 are not variants, or Var(r1) � Var(�1).

In this case we call �2σ[r1σ]p ≈ r2σ [ϕ1σ ∧ϕ2σ ∧ψσ ] a constrained critical pair
obtained from the overlap 〈ρ1, p, ρ2〉. Here

ψ =
∧

{x = x | x ∈ EVar(ρ1) ∪ EVar(ρ2)}

The set of all constrained critical pairs of R is denoted by CCP(R).

In the following we drop “constrained” and speak of critical pairs. The con-
dition Var(r1) � Var(�1) in the fifth condition is essential to correctly deal with
extra variables in rewrite rules. The equations (ψ) added to the constraint of a
critical pair save the information which variables in a critical pair were intro-
duced by variables only occurring in the right-hand side of a rewrite rule and
therefore should only be instantiated by values. Critical pairs as defined in [8,12]
lack this information. The proof of Theorem 2 in the next section makes clear
why those trivial equations are essential for our confluence criteria, see also
Example 9.

Example 3. Consider the LCTRS consisting of the rule

ρ : f(x) → z [x = z^2 ]

The variable z does not occur in the left-hand side and the condition Var(r1) �

Var(�1) ensures that ρ overlaps with (a variant of) itself at the root position.
Note that R is not confluent due to the non-joinable local peak −4 ← f(16) → 4.
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Example 4. The LCTRS R of Example 1 admits the following critical pairs:

x ≈ y [x ≥ y ∧ y ≥ x ] 〈1, ε, 2〉
x ≈ max(y, x) [x ≥ y ] 〈1, ε, 3〉
y ≈ max(y, x) [y ≥ x ] 〈2, ε, 3〉

The originating overlap is given on the right, where we number the rewrite rules
from left to right in Example 1.

Actually, there are three more overlaps since the position of overlap (ε) is
the root position. Such overlaps are called overlays and always come in pairs.
For instance, max(y, x) ≈ x [x ≥ y ] is the critial pair originating from 〈3, ε, 1〉.
For confluence criteria based on symmetric joinability conditions of critical pairs
(like weak orthogonality and joinability of critical pairs for terminating systems)
we need to consider just one critical pair, but this is not true for the criteria
presented in the next section.

Logically constrained rewriting aims to rewrite (unconstrained) terms with
constrained rules. However, for the sake of analysis, rewriting constrained terms
is useful. In particular, since critical pairs in LCTRSs come with a constraint,
confluence criteria need to consider constrained terms. The relevant notions
defined below originate from [3,8].

Definition 3. A constrained term is a pair s [ϕ ] of a term s and a constraint ϕ.
Two constrained terms s [ϕ ] and t [ψ ] are equivalent, denoted by s [ϕ ] ∼ t [ψ ],
if for every substitution γ respecting ϕ there is some substitution δ that respects
ψ such that sγ = tδ, and vice versa. Let R be an LCTRS and s [ϕ ] a constrained
term. If s|p = �σ for some constrained rewrite rule ρ : � → r [ψ ], position p, and
substitution σ such that σ(x) ∈ Val∪ Var(ϕ) for all x ∈ LVar(ρ), ϕ is satisfiable
and ϕ ⇒ ψσ is valid then

s [ϕ ] →ru s[rσ]p [ϕ ]

is a rule step. If s|p = f(s1, . . . , sn) with f ∈ Fth \ Fte and s1, . . . , sn ∈ Val ∪
Var(ϕ) then

s [ϕ ] →ca s[x]p [ϕ ∧ x = f(s1, . . . , sn)]

is a calculation step. Here x is a fresh variable. We write →R for →ru ∪ →ca

and the rewrite relation ∼→R on constrained terms is defined as ∼ · →R · ∼.

Positions in connection with ∼→R steps always refer to the underlying steps
in →R. We give an example of constrained rewriting.

Example 5. Consider again the LCTRS R of Example 1. We have

max(x + y, 6) [x ≥ 2 ∧ y ≥ 4 ] →R max(z, 6) [x ≥ 2 ∧ y ≥ 4 ∧ z = x + y ]
→R z [x ≥ 2 ∧ y ≥ 4 ∧ z = x + y ]

The first step is a calculation step. The second step is a rule step using the rule
max(x, y) → x [x ≥ y ] with the substitution σ = {x �→ z, y �→ 6}. Note that the
constraint (x ≥ 2 ∧ y ≥ 4 ∧ z = x + y) ⇒ z ≥ 6 is valid.
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Definition 4. A critical pair s ≈ t [ϕ ] is trivial if sσ = tσ for every substitution
σ with σ � ϕ.2 A left-linear LCTRS having only trivial critical pairs is called
weakly orthogonal. A left-linear TRS without critical pairs is called orthogonal.

The following result is from [8].

Theorem 1. Weakly orthogonal LCTRS are confluent. ��
Example 6. The following left-linear LCTRS computes the Ackermann function
using term symbols from Fte = {ack : int × int ⇒ int} ∪ {0, 1, · · · : int} and the
same theory symbols, carrier sets and interpretations as in Example 1:

ack(0, n) → n + 1 [n ≥ 0 ]
ack(m, 0) → ack(m − 1, 1) [m > 0 ]
ack(m,n) → ack(m − 1, ack(m,n − 1)) [m > 0 ∧ n > 0 ]
ack(m,n) → 0 [m < 0 ∨ n < 0 ]

Since the conjunction of any two constraints is unsatisfiable, R lacks critical
pairs. Hence R is confluent by Theorem 1.

The following result is proved in [12] and forms the basis of completion of
LCTRSs.

Lemma 1. Let R be an LCTRS. If t R← s →R u then t ↓R u or t ←−−−→
CCP(R)

u.
��

In combination with Newman’s Lemma, the following confluence criterion is
obtained.

Corollary 1. A terminating LCTRS is confluent if all critical pairs are join-
able.

This is less obvious than it seems. Joinability of a critical pair s ≈ t [ϕ ]
cannot simply be defined as s [ϕ ] ∼→∗

R · ∗
R

∼← t [ϕ ], as the following example
shows.

Example 7. Consider the terminating LCTRS R consisting of the rewrite rules

f(x, y) → g(x, 1+ 1) h(f(x, y)) → h(g(y, 1+ 1))

The single critical pair h(g(x, 1 + 1)) ≈ h(g(y, 1 + 1)) should not be joinable
because R is not confluent, but we do have

h(g(x, 1+ 1)) →ca h(g(x, z)) [z = 1+ 1 ] ∼ h(g(y, v)) [v = 1+ 1 ]
h(g(y, 1+ 1)) →ca h(g(y, v)) [v = 1+ 1 ]

due to the equivalence relation ∼ on constrained terms; since x and y do not
appear in the constraints, there is no demand that they must be instantiated
with values.
2 The triviality condition in [8] is wrong. Here we use the corrected version in an

update of [8] announced on Cynthia Kop’s website (accessible at https://www.cs.ru.
nl/~cynthiakop/frocos13.pdf).

https://www.cs.ru.nl/~cynthiakop/frocos13.pdf
https://www.cs.ru.nl/~cynthiakop/frocos13.pdf
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The solution is not to treat the two sides of a critical pair in isolation but
define joinability based on rewriting constrained term pairs. So we view the
symbol ≈ in a constrained equation s ≈ t [ϕ ] as a binary constructor symbol
such that the constrained equation can be viewed as a constrained term. Steps
in s take place at positions � 1 whereas steps in t use positions � 2. The same
is done in completion of LCTRSs [12].

Definition 5. We call a constrained equation s ≈ t [ϕ ] trivial if sσ = tσ for any
substitution σ with σ � ϕ. A critical pair s ≈ t [ϕ ] is joinable if s ≈ t [ϕ ] ∼→∗

R
u ≈ v [ψ ] and u ≈ v [ψ ] is trivial.

We revisit Example 7.

Example 8. For the critical pair in Example 7 we obtain

h(g(x,1+ 1)) ≈ h(g(y, 1+ 1))
→ca h(g(x, v)) ≈ h(g(y, 1+ 1)) [v = 1+ 1 ]
→ca h(g(x, v)) ≈ h(g(y, z)) [v = 1+ 1 ∧ z = 1+ 1 ]

The substitution σ = {v �→ 2, z �→ 2} respects the constraint v = 1+1∧z = 1+1
but does not equate h(g(x, v)) and h(g(y, z)).

The converse of Corollary 1 also holds, but note that in contrast to TRSs,
joinability of critical pairs is not a decidable criterion for terminating LCTRSs,
due to the undecidable triviality condition. Moreover, for the converse to hold,
it is essential that critical pairs contain the trivial equations ψ in Definition 2.

Example 9. Consider the LCTRS R consisting of the rules

f(x) → g(y) g(y) → a [y = y ]

which admits the critical pair g(y) ≈ g(y′) [y = y ∧ y′ = y′ ] originating from the
overlap 〈f(x) → g(y), ε, f(x′) → g(y′)〉. This critical pair is joinable as y and y′

are restricted to values and thus both sides rewrite to a using the second rule.
As R is also terminating, it is confluent by Corollary 1. If we were to drop ψ in
Definition 2, we would obtain the non-joinable critical pair g(y) ≈ g(y′) instead
and wrongly conclude non-confluence.

4 Main Results

We start with extending a confluence result of Huet [4] for linear TRSs. Below
we write →�p to indicate that the position of the contracted redex in the step
is below position p.

Definition 6. A critical pair s ≈ t [ϕ ] is strongly closed if

1. s ≈ t [ϕ ] ∼→∗
�1 · ∼→=

�2 u ≈ v [ψ ] for some trivial u ≈ v [ψ ], and
2. s ≈ t [ϕ ] ∼→∗

�2 · ∼→=
�1 u ≈ v [ψ ] for some trivial u ≈ v [ψ ].
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A binary relation → on terms is strongly confluent if t →∗ · =← u for all
terms s, t and u with t ← s → u. (By symmetry, also t →= · ∗← u is required.)
Strong confluence is a well-known sufficient condition for confluence. Huet [4]
proved that linear TRSs are strongly confluent if all critical pairs are strongly
closed. Below we extend this result to LCTRSs, using the above definition of
strongly closed constrained critical pairs.

Theorem 2. A linear LCTRS is strongly confluent if all its critical pairs are
strongly closed.

We give full proof details in order to illustrate the complications caused by
constrained rewrite rules. The following result from [12] plays an important role.

Lemma 2. Suppose s ≈ t [ϕ ] ∼→p u ≈ v [ψ ] and γ � ϕ. If p � 1 then sγ → uδ
and tγ = vδ for some substitution δ with δ � ψ. If p � 2 then sγ = uδ and
tγ → vδ for some substitution δ with δ � ψ. ��

Proof (of Theorem 2). Consider an arbitrary local peak

t ←p1 |ρ1 |σ1 s →p2 |ρ2 |σ2 u

with rewrite rules ρ1 : �1 → r1 [ϕ1 ] and ρ2 : �2 → r2 [ϕ2 ] from R ∪ Rca. We
may assume that ρ1 and ρ2 have no variables in common, and consequently
Dom(σ1) ∩ Dom(σ2) = ∅. We have s|p1 = �1σ1, t = s[r1σ1]p1 and σ1 � ϕ1.
Likewise, s|p2 = �2σ2, u = s[r2σ2]p2 and σ2 � ϕ2. If p1 ‖ p2 then

t →p2 |ρ2 |σ2 t[r2σ2]p2 = u[r1σ1]p1 ←p1 |ρ1 |σ1 u

Hence both t →∗ · =← u and t →= · ∗← u. If p1 and p2 are not parallel
then p1 � p2 or p2 < p1. Without loss of generality, we consider p1 � p2. Let
q = p2\p1. We do a case analysis on whether or not q ∈ PosF (�1).

– First suppose q /∈ PosF (�1). Let q = q1q2 such that q1 ∈ PosV(�1) and let x be
the variable in �1 at position q1. We have �2σ2 = xσ1|q2 and thus σ1(x) /∈ Val.
Define the substitution σ′

1 as follows:

σ′
1(y) =

{
xσ1[r2σ2]q2 if y = x

σ1(y) otherwise

We show t →= s[r1σ′
1]p1 ← u, which yields t →∗ · =← u and t →= · ∗← u.

Since R is left-linear, �1σ
′
1 = �1σ1[xσ′

1]q1 = �1σ1[xσ1[r2σ2]q2 ]q1 = �1σ1[r2σ2]q
and thus u = s[r2σ2]p2 = s[�1σ1[r2σ2]q]p1 = s[�1σ′

1]p1 . If we can show σ′
1 � ρ1

then u → s[r1σ′
1]p1 . Consider an arbitrary variable y ∈ LVar(ρ1). If y �= x

then σ′
1(y) = σ1(y) ∈ Val since σ1 � ρ1. If y = x then x ∈ Var(ϕ) since

x ∈ Var(�1). However, this contradicts σ1 � ρ1 as σ1(x) /∈ Val. So σ′
1(y) =

σ1(y) for all y ∈ LVar(ρ1) and thus σ′
1 � ρ1 is an immediate consequence of

σ1 � ρ1. It remains to show t →= s[r1σ′
1]p1 . If x /∈ Var(r1) then r1σ

′
1 = r1σ1

and thus t = s[r1σ′
1]p1 . If x ∈ Var(r1) then there exists a unique position
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q′ ∈ PosV(r1) such that r1|q′ = x, due to the right-linearity of R. Hence
r1σ

′
1 = r1σ1[xσ1[r2σ2]q2 ]q′ = r1σ1[r2σ2]q′q2 . Since r1σ1|q′q2 = �2σ2 we obtain

t = s[r1σ1]p1 →p1q′q2 |ρ2 |σ2 s[r1σ′
1]p1 as desired.

– Next suppose q ∈ PosF (�1). The substitution σ′ = σ1 ∪ σ2 satisfies �1|qσ′ =
�1|qσ1 = �2σ2 = �2σ

′ and thus is a unifier of �1|q and �2. Since σ1 � ρ1
and σ2 � ρ2, σ′(x) ∈ Val for all x ∈ LVar(ρ1) ∪ LVar(ρ2). Let σ be an
mgu of �1|q and �2. Since σ is at least as general as σ′, σ(x) ∈ Val ∪ V
for all x ∈ LVar(ρ1) ∪ LVar(ρ2). Since ϕ1σ

′ = ϕ1σ1 and ϕ2σ
′ = ϕ2σ2 are

valid, ϕ1σ ∧ ϕ2σ is satisfiable. Hence conditions 1, 2, 3 and 4 in Definition 2
hold for the triple 〈ρ2, q, ρ1〉. If condition 5 is not fulfilled then q = ε (and
thus p1 = p2), ρ2 and ρ1 are variants, and Var(r2) ⊆ Var(�2) (and thus also
Var(r1) ⊆ Var(�1)). Hence �1σ1 = �2σ2 and r1σ1 = r2σ2, and thus t = u. In
the remaining case condition 5 holds and hence 〈ρ2, q, ρ1〉 is an overlap. By
definition, �1σ[r2σ]q ≈ r1σ [ϕ2σ ∧ ϕ1σ ∧ ψσ ] with

ψ =
∧

{x = x | x ∈ EVar(ρ1) ∪ EVar(ρ2)}

is a critical pair. To simplify the notation, we abbreviate �1σ[r2σ]q to s′,
r1σ to t′, and ϕ2σ ∧ ϕ1σ ∧ ψσ to ϕ′. Critical pairs are strongly closed by
assumption, and thus both
1. s′ ≈ t′ [ϕ′ ] ∼→∗

�1 · ∼→=
�2 u ≈ v [ψ′ ] for some trivial u ≈ v [ψ′ ], and

2. s′ ≈ t′ [ϕ′ ] ∼→∗
�2 · ∼→=

�1 u ≈ v [ψ′ ] for some trivial u ≈ v [ψ′ ].
Let γ be the substitution such that σγ = σ′. We claim that γ respects ϕ′. So
let x ∈ Var(ϕ′) = Var(ϕ2σ ∧ ϕ1σ ∧ ψσ). We have

LVar(ρ1) = Var(ϕ1) ∪ EVar(ρ1) LVar(ρ2) = Var(ϕ2) ∪ EVar(ρ2)

Together with Var(ψ) = EVar(ρ1) ∪ EVar(ρ2) we obtain

LVar(ρ1) ∪ LVar(ρ2) = Var(ϕ1) ∪ Var(ϕ2) ∪ Var(ψ)

Since σ′(x) ∈ Val for all x ∈ LVar(ρ1) ∪ LVar(ρ2), we obtain γ(x) ∈ Val
for all x ∈ Var(ϕ′) and thus γ � ϕ′. At this point repeated applications of
Lemma 2 to the constrained rewrite sequence in item 1 yields a substitution
δ respecting ψ′ such that s′γ →∗ uδ and t′γ = vδ. Since u ≈ v [ψ′ ] is trivial,
uδ = vδ and hence s′γ →∗ · =← t′γ. Likewise, s′γ →= · ∗← t′γ is obtained
from item 2. We have

s′γ = (�1σ[r2σ]q)γ = �1σ
′[r2σ′]q = �1σ1[r2σ2]q t′γ = r1σ

′ = r1σ1

Moreover, t = s[r1σ1]p1 = s[t′γ]p1 and u = s[�1σ1[r2σ2]q]p1 = s[s′γ]p1 . Since
rewriting is closed under contexts, we obtain u →∗ · =← t and u →= · ∗← t.
This completes the proof. ��

Example 10. Consider the LCTRS R of Example 1 and its critical pairs in Exam-
ple 4. The critical pair

x ≈ max(y, x) [x ≥ y ]
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is not trivial, so Theorem 1 is not applicable and the rule max(x, y) → max(y, x)
precludes the use of Corollary 1 to infer confluence. We do have

x ≈ max(y, x) [x ≥ y ]
�2−−→ x ≈ x [x ≥ y ]

by applying the rule max(x, y) → y [y ≥ x ] and the resulting constrained equa-
tion x ≈ x [x ≥ y ] is obviously trivial. The same reasoning applies to the critical
pair y ≈ max(y, x) [y ≥ x ]. The first critical pair x ≈ y [x ≥ y ∧ y ≥ x ]
in Example 4 is trivial since any (value) substitution satisfying its constraint
x ≥ y ∧ y ≥ x equates x and y. By symmetry, all critical pairs of R are strongly
closed. Since R is linear, confluence follows from Theorem 2.

The second main result is the extension of Huet’s parallel closedness condition
on critical pairs in left-linear TRSs [4] to LCTRSs. To this end, we first define
parallel rewriting for LCTRSs.

Definition 7. Let R be an LCTRS. The relation −→‖ R is defined on terms induc-
tively as follows:

1. x −→‖ R x for all variables x,
2. f(s1, . . . , sn) −→‖ R f(t1, . . . , tn) if si −→‖ R ti for all 1 � i � n,
3. �σ −→‖ R rσ with � → r [ϕ ] ∈ R and σ � � → r [ϕ ],
4. f(v1, . . . , vn) −→‖ v with f ∈ Fth \ Val, v1, . . . , vn ∈ Val and

v = [[f(v1, . . . , vn)]].

We write −→‖ �p to indicate that all positions of contracted redexes in the
parallel step are below p. In the next definition we add constraints to parallel
rewriting.

Definition 8. Let R be an LCTRS. The relation −→‖ R is defined on constrained
terms inductively as follows:

1. x [ϕ ] −→‖ R x [ϕ ] for all variables x,
2. f(s1, . . . , sn) [ϕ ] −→‖ R f(t1, . . . , tn) [ϕ ∧ ψ ] if si [ϕ ] −→‖ R ti [ϕ ∧ ψi ] for all

1 � i � n and ψ = ψ1 ∧ · · · ∧ ψn,
3. �σ [ϕ ] −→‖ R rσ [ϕ ] with ρ : � → r [ω ] ∈ R, σ(x) ∈ Val ∪ Var(ϕ) for all

x ∈ LVar(ρ), ϕ is satisfiable and ϕ ⇒ ωσ is valid,
4. f(v1, . . . , vn) [ϕ ] −→‖ v [ϕ ∧ v = f(v1, . . . , vn)] with v1, . . . , vn ∈ Val∪ Var(ϕ),

f ∈ Fth \ Val and v is a fresh variable.

Here we assume that different applications to case 4 result in different fresh
variables. The constraint ψ in case 2 collects the assignments introduced in earlier
applications of case 4. (If there are none, ψ = true is omitted.) The same holds
for ψ1, . . . , ψn. We write ∼−→‖ for the relation ∼ · −→‖ R · ∼.

In light of the earlier developments, the following definition is the obvious
adaptation of parallel closedness for LCTRSs.



484 J. Schöpf and A. Middeldorp

Definition 9. A critical pair s ≈ t [ϕ ] is parallel closed if

s ≈ t [ϕ ] ∼−→‖ �1 u ≈ v [ψ ]

for some trivial u ≈ v [ψ ].

Note that the right-hand side t of the constrained equation s ≈ t [ϕ ] may
change due to the equivalence relation ∼, cf. the statement of Lemma 2.

Theorem 3. A left-linear LCTRS is confluent if its critical pairs are parallel
closed.

To prove this result, we adapted the formalized proof presented in [10] to
the constrained setting. The required changes are very similar to the ones in the
proof of Theorem 2.

Example 11. Consider the LCTRS R with rules

f(x, y) → g(a, y + y) [y ≥ x ∧ y = 1 ] a → b

h(f(x, y)) → h(g(b, 2)) [x ≥ y ] g(x, y) → g(y, x)

The single critical pair h(g(a, y + y)) ≈ h(g(b, 2)) [y ≥ x ∧ y = 1 ∧ x ≥ y ] is
parallel closed:

h(g(a, y + y)) ≈ h(g(b, 2)) [y ≥ x ∧ y = 1 ∧ x ≥ y ]
−→‖ �1 h(g(b, z)) ≈ h(g(b, 2)) [y ≥ x ∧ y = 1 ∧ x ≥ y ∧ z = y + y ]

and the obtained equation is trivial. Hence R is confluent by Theorem 3. Note
that the earlier confluence criteria do not apply.

We also consider the extension of Huet’s result by Toyama [11], which has a
less restricted joinability condition on critical pairs stemming from overlapping
rules at the root position. Such critical pairs are called overlays whereas critical
pairs originating from overlaps 〈ρ1, p, ρ2〉 with p > ε are called inner critical
pairs.

Definition 10. An LCTRS R is almost parallel-closed if every inner critical
pair is parallel closed and every overlay s ≈ t [ϕ ] satisfies

s ≈ t [ϕ ] ∼−→‖ �1 · ∼→∗
�2 u ≈ v [ψ ]

for some trivial u ≈ v [ψ ].

Theorem 4. Left-linear almost parallel-closed LCTRSs are confluent.

Again, the formalized proof of the corresponding result for plain TRSs in [10]
can be adapted to the constrained setting.

Example 12. Consider the following variation of the LCTRS R in Example 11:

f(x, y) → g(a, y + y) [y ≥ x ∧ y = 1 ] a → b

f(x, y) → g(b, 2) [x ≥ y ] g(x, y) → g(y, x)

The overlay g(b, 2) ≈ g(a, y + y) [x ≥ y ∧ y ≥ x ∧ y = 1 ] is not parallel closed
but one readily confirms that the condition in Definition 10 applies.
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5 Automation

As it is very inconvenient and tedious to test by hand if an LCTRS satisfies
one of the confluence criteria presented in the preceding sections, we provide an
implementation. The natural choice would be to extend the existing tool Ctrl [9]
because it is currently the only tool capable of analyzing confluence of LCTRSs.
However, Ctrl is not actively maintained and not very well documented, so we
decided to develop a new tool for the analysis of LCTRSs. Our tool is called crest
(constrained rewriting software). It is written in Haskell, based on the Haskell
term-rewriting3 library and allows the logics QF_LIA, QF_NIA, QF_LRA.

The input format of crest is described on its website.4 After parsing the input,
crest checks that the resulting LCTRS is well-typed. Missing sort information
is inferred. Next it is checked concurrently whether one of the implemented
confluence criteria applies. crest supports (weak) orthogonality, strong closedness
and (almost) parallel closedness. The tool outputs the computed critical pairs
and a “proof” describing how these are closed, based on the first criterion that
reports a YES result. Below we describe some of the challenges that one faces
when automating the confluence criteria presented in the preceding sections.

First of all, how can we determine whether a constrained critical pair or
more generally a constrained equation s ≈ t [ϕ ] is trivial? The following result
explains how this can be solved by an SMT solver.

Definition 11. Given a constrained equation s ≈ t [ϕ ], the formula T (s, t, ϕ)
is inductively defined as follows:

T (s, t, ϕ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

true if s = t

s = t if s, t ∈ Val ∪ Var(ϕ)
n∧

i=1

T (si, ti, ϕ) if s = f(s1, . . . , sn) and t = f(t1, . . . , tn)

false otherwise

Lemma 3. A constrained equation s ≈ t [ϕ ] is trivial if and only if the formula
ϕ =⇒ T (s, t, ϕ) is valid.

Proof. First suppose ϕ =⇒ T (s, t, ϕ) is valid. Let σ be a substitution with
σ � ϕ. Since σ(x) ∈ Val for all x ∈ Var(ϕ), we can apply σ to the formula
ϕ =⇒ T (s, t, ϕ). We obtain [[ϕσ]] = 	 from σ � ϕ. Hence also [[T (s, t, ϕ)σ]] = 	.
Since T (s, t, ϕ) is a conjunction, the final case in the definition of T (s, t, ϕ) is
not used. Hence Pos(s) = Pos(t), s(p) = t(p) for all internal positions p in s and
t, and s|pσ = t|pσ for all leaf positions p in s and t. Consequently, sσ = tσ. This
concludes the triviality proof of s ≈ t [ϕ ].

For the only if direction, suppose s ≈ t [ϕ ] is trivial. Note that the variables
appearing in the formula ϕ =⇒ T (s, t, ϕ) are those of ϕ. Let σ be an arbitrary

3 https://hackage.haskell.org/package/term-rewriting-0.4.0.2.
4 http://cl-informatik.uibk.ac.at/software/crest/.

https://hackage.haskell.org/package/term-rewriting-0.4.0.2
http://cl-informatik.uibk.ac.at/software/crest/
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assignment such that [[ϕσ]] = 	. We need to show [[T (s, t, ϕ)σ]] = 	. We can
view σ as a substitution with σ(x) ∈ Val for all x ∈ Var(ϕ). We have σ � ϕ and
thus sσ = tσ by the triviality of s ≈ t [ϕ ]. Hence T (s, t, ϕ) is a conjunction of
equations between values and variables in ϕ, which are turned into identities by
σ. Hence [[T (s, t, ϕ)σ]] = 	 as desired. ��

The second challenge is how to implement rewriting on constrained equations
in particular, how to deal with the equivalence relation ∼ defined in Definition 3.

Example 13. The LCTRS R

f(x) → z [z = 3 ] g(f(x)) → a g(3) → a

over the integers admits two critical pairs:

z ≈ z′ [z = 3 ∧ z′ = 3 ] g(z) ≈ a [z = 3 ]

The first one is trivial, but to join the second one, an initial equivalence step is
required:

g(z) ≈ a [z = 3 ] ∼ g(3) ≈ a [z = 3 ] → a ≈ a [z = 3 ]

The transformation introduced below avoids having to look for an initial
equivalence step before a rule becomes applicable.

Definition 12. Let R be an LCTRS. Given a term t ∈ T (F ,V), we replace
values in t by fresh variables and return the modified term together with the
constraint that collects the bindings:

tf(t) =

⎧
⎪⎨

⎪⎩

(t, true) if t ∈ V
(z, z = t) if t ∈ Val and z is a fresh variable
(f(s1, . . . , sn), ϕ1 ∧ · · · ∧ ϕn) if t = f(t1, . . . , tn)and tf(ti) = (si, ϕi)

Applying the transformation tf to the left-hand sides of the rules in R produces

tf(R) = {�′ → r [ϕ ∧ ψ ] | � → r [ϕ ] ∈ R and tf(�) = (�′, ψ)}

Example 14. Applying the transformation tf to the LCTRS R of Example 13
produces the rules

f(x) → z [z = 3 ] g(f(x)) → a g(z) → a [z = 3 ]

The critical pair g(z) ≈ a [z = 3 ] can now be joined by an application of the
modified third rule. Note that the modified rule does not overlap with the second
rule because z may not be instantiated with f(x). Hence the modified LCTRS
tf(R) is strongly closed and, because it is linear, also confluent.

In the following we show the correctness of the transformation. In particular
we prove that the initial rewrite relation is preserved.



Confluence Criteria for Logically Constrained Rewrite Systems 487

Table 1. Specific experimental results.

result method time (in ms)

[12, Example 23] Timeout – 10017.70
[12, Example 23] corrected YES strongly closed 103.71
Example 6 YES orthogonal 34.35
[8, Example 3] YES weakly orthogonal 50.87
Example 1 YES strongly closed 115.33
[10, Example 1] YES strongly closed 3806.84
Example 11 YES parallel closed 38.42
Example 12 YES almost parallel closed 130.36

Lemma 4. The relations →R and →tf(R) coincide on unconstrained terms.

Proof. Consider s, t ∈ T (F ,V). Since the transformation tf does not affect cal-
culation steps, it suffices to consider rule steps. First assume s = C[�σ] →ru

C[rσ] = t by applying the rule � → r [ϕ ] ∈ R and let �′ → r [ϕ′ ] ∈ tf(R) be its
transformation. So tf(�) = (�′, ψ) and ϕ′ = ϕ ∧ ψ. Define the substitution

σ′ = {�′|p �→ �|p | (�′, ψ) = tf(�), p ∈ Pos(�) and �|p ∈ Val}

and let τ = σ ∪ σ′. Since Dom(σ) ∩ Dom(σ′) = ∅ by construction, τ is well-
defined. From σ � � → r [ϕ ] and σ′ � ψ we immediately obtain τ � �′ → r [ϕ′ ],
which yields s = C[�′τ ] →ru C[rτ ] = t in tf(R).

For the other direction consider s = C[�′σ] →ru C[r′σ] = t by applying the
rule �′ → r′ [ϕ′ ] ∈ tf(R). The difference between �′ and its originating left-
hand side � in R is that value positions in � are occupied by fresh variables in
�′. Because σ′ respects ϕ′ = ϕ ∧ ψ, σ′ substitutes the required values at these
positions in �. As σ � �′ → r′ [ϕ′ ], there exists a rule � → r [ϕ ] which is respected
by σ and thus s = C[�σ] →ru C[rσ] = t in R. ��

As the transformation is used in the implementation and rewriting on con-
strained terms plays a key role, the following result is needed. The proof is similar
to the first half of the proof of Lemma 4 and omitted.

Lemma 5. The inclusion →R ⊆ →tf(R) holds on constrained terms.

6 Experimental Results

In order to evaluate our tool we performed some experiments. As there is no
official database of interesting confluence problems for LCTRSs, we collected
several LCTRSs from the literature and the repository of Ctrl. The problem files
in the latter that contain an equivalence problem of two functions for rewriting
induction were split into two separate files. The experiments were performed
on an AMD Ryzen 7 PRO 4750U CPU with a base clock speed of 1.7GHz, 8



488 J. Schöpf and A. Middeldorp

Table 2. Comparison between confluence criteria implemented in crest.

O W S P A

orthogonality (O) 74 74 11 74 74
weak orthogonality (W) 78 13 78 78
strongly closed (S) 20 16 20
parallel closed (P) 83 83
almost parallel closed (A) 89

cores and 32 GB of RAM. The full set of benchmarks consists of 127 problems
of which crest can prove 90 confluent, 11 result in MAYBE and 26 in a timeout.
With a timeout of 5 s crest needs 141.09 s to analyze the set of benchmarks.
We have tested the implementation with 3 well-known SMT solvers: Z3, Yices
and CVC5. Among those Z3 gives the best performance regarding time and the
handling of non-linear arithmetic. Hence we use Z3 as the default SMT solver in
our implementation. In Table 1 we list some interesting systems from this paper
and the relevant literature. Full details are available from the website of crest.
We choose 5 as the maximum number of steps in the →∗ parts of the strongly
closed and almost parallel closed criteria.

From Table 2 the relative power of each implemented confluence criterion on
our benchmark can be inferred, i.e., it depicts how many of the 127 problems
both methods can prove confluent. This illustrates that the relative applicability
in theory (e.g., weakly orthogonal LCTRSs are parallel closed), is preserved in
our implementation. We conclude this section with an interesting observation
discovered by crest when testing [12, Example 23].

We also tested the applicability of Corollary 1, using the tool Ctrl as a black
box for proving termination. Of the 127 problems, Ctrl claims 102 to be termi-
nating and 67 of those can be shown locally confluent by crest, where we limit
the number of steps in the joining sequence to 100. It is interesting to note that
all of these problems are orthogonal, and so proving termination and finding a
joining sequence is not necessary to conclude confluence, on the current set of
problems. Of the remaining 35 problems, crest can show confluence of 5 of these
by almost parallel closedness.

Example 15. The LCTRS R is obtained by completing a system consisting of
four constrained equations:

1. f(x, y) → f(z, y) + 1 [x ≥ 1 ∧ z = x − 1 ]
2. f(x, 0) → g(1, x) [x ≤ 1 ]
3. g(0, y) → y [x ≤ 0 ] 5. h(x) → g(1, x) + 1 [x ≤ 1 ]
4. g(1, 1) → g(1, 0) + 1 6. h(x) → f(x − 1, 0) + 2 [x ≥ 1 ]

Calling crest on R results in a timeout. As a matter of fact, the LCTRS is not
confluent because the critical pair

g(1, x) + 1 ≈ f(x − 1, 0) + 2 [x ≤ 1 ∧ x ≥ 1 ]
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between rules 5 and 6 is not joinable. Inspecting the steps in [12, Example 23]
reveals some incorrect applications of the inference rules of constrained comple-
tion, which causes rule 6 to be wrong. Replacing it with the correct rule

6′. h(x) → (f(z, 0) + 1) + 1 [x > 1 ∧ z = x − 1]

causes crest to report confluence by strong closedness.

7 Concluding Remarks

In this paper we presented new confluence criteria for LCTRSs as well as a new
tool in which these criteria have been implemented. We clarified the subtleties
that arise when analyzing joinability of critical pairs in LCTRSs and reported
experimental results.

For plain rewrite systems many more confluence criteria are known and imple-
mented in powerful tools that compete in the yearly Confluence Competition
(CoCo).5 In the near future we will investigate which of these can be lifted to
LCTRSs. We will also advance the creation of a competition category on con-
fluence of LCTRSs in CoCo.

Our tool crest has currently no support for termination. Implementing ter-
mination techniques in crest is of clear interest. The starting point here are the
methods reported in [6,7,12]. Many LCTRSs coming from applications are actu-
ally non-confluent.6 So developing more powerful techniques for LCTRSs is on
our agenda as well.

Acknowledgments. We thank Fabian Mitterwallner for valuable discussions on the
presented topics and our Haskell implementation. The detailed comments by the
reviewers improved the presentation. Cynthia Kop and Deivid Vale kindly provided
us with instructions and a working implementation of Ctrl.
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Abstract. Using Isabelle/HOL, we verify the state-of-the-art decision
procedure for multi-level syllogistic with singleton (MLSS for short),
which is a quantifier-free fragment of set theory. We formalise its syntax
and semantics as well as a sound and complete tableau calculus for it.
We also provide an executable specification of a decision procedure that
exhaustively applies the rules of the calculus and prove its termination.
Furthermore, we extend the calculus with a lightweight type system that
paves the way for an integration of the procedure into Isabelle/HOL.

Keywords: Decision procedures · Semantic tableaux · Interactive
theorem proving · Set theory

1 Introduction

In Isabelle/HOL, there are specialised procedures for dealing with e.g. natural
numbers, linear arithmetic, and metric spaces. Some of these procedures have
been verified in Isabelle/HOL, such as a procedure for Presburger arithmetic [12]
that was later extended to mixed real-integer arithmetic [11]. This procedure,
though, uses reflection to work on goals in Isabelle/HOL, which, during execu-
tion, either sacrifices speed by going through the simplifier or requires trusting
the code generator. More recently, Stevens and Nipkow [25] presented a verified
decision procedure for orders that produces certificates. This approach offers
efficient execution by using generated code as well as soundness because the
certificates are replayed through Isabelle’s inference kernel.

This paper focuses on another ubiquitous structure in mathematics, namely
sets. To the best of our knowledge, we present the first formally verified decision
procedure for (a fragment of) set theory. In particular, we consider a quantifier-
free fragment which Cantone and Zarba [9] call multi-level syllogistic with single-
ton (MLSS). The fragment includes the usual set operations of union, intersec-
tion, difference, membership, equality and, in addition, it allows the construction
of singleton sets.

Since MLSS admits a tableau calculus, generating certificates will be
straightforward. Like with the aforementioned order solver, this paves the way
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for an integration of the decision procedure into Isabelle, adding to its growing
body of verified decision procedures.

1.1 Contributions

We present a formalisation in Isabelle/HOL of a tableau calculus for MLSS due
to Cantone and Zarba [9] [7, Chapter 14]. We prove soundness and complete-
ness of the calculus and give an abstract specification of a decision procedure
that exhaustively applies the rules of the calculus. To obtain total correctness
of the procedure, we prove its termination. Additionally, we naively refine the
abstract to an executable specification from which we can generate code. The
formalisation initially follows the paper but offers a more thorough account of
some important details:

– We deliver the omitted proof of Lemma 2 in the paper [9], a key building
block for the completeness proof of the calculus.

– The formal proof of completeness reveals that the calculus lacks a rule for
eliminating double negation.

– We derive an explicit upper bound for the number of formulas in a tableau
branch.

In the context of Isabelle/HOL, there is one crucial aspect that requires us
to modify the calculus in the paper: the calculus works under the assumption
that every variable is a set; however, this is not the case in Isabelle/HOL, e.g.
consider the expression n ∈ A where n is a natural number. We call these vari-
ables urelements. To deal with them, we extend the calculus with a lightweight
type system and a verified inference algorithm that identifies the urelements.

The modification of the calculus required non-trivial changes to the complete-
ness proof. Here, the formalisation was instrumental because Isabelle immedi-
ately revealed which proofs had been broken. This illustrates the usefulness of
ITPs for developing logic calculi: they allow us to confidently make modifications
without compromising correctness.

All in all, the formalisation amounts to over 6000 lines of theory. It is part of
the Archive of Formal Proofs (AFP) [24]. The entry provides an overview theory
MLSS Proc All.thy that highlights the (mostly syntactic) differences between
paper and formalisation and references the constants and theorems that are
introduced in this paper.

1.2 Related Work

Since the literature on decidable fragments of set theory is vast, we only focus on
MLSS here. Ferro et al. [14] were the first to show the decidability of the frag-
ment. Subsequent work [6] found the decision problem to be NP-complete. To
obtain a practical decision procedure, Cantone [4] proposed a tableau calculus,
which was later improved by Beckert and Hartmer [1]. Both of these procedures
construct a model during execution that guides the proof search. Beckert and

https://www.isa-afp.org/theories/mlss_decision_proc/#MLSS_Proc_All
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Hartmer also cover an extension of the calculus with uninterpreted functions,
which Cantone and Zarba [10] later revisited while avoiding the construction
of a model during execution. In this paper, we consider a version of the latter
procedure due to Cantone and Zarba [9] that is specialised to MLSS and where
the branching rules of the calculus are set up to guarantee the mutual exclusivity
of the branches. Later extensions of the calculus added certain interpreted func-
tions, such as monotone functions [8] and the inverse of a function [5]. The latter
extension notably includes the Cartesian product. Those extensions, though, did
not improve upon the tableau calculus for MLSS.

There is a large body of work at the intersection of ITPs and tableau methods,
but to keep with this paper’s theme we only consider formalisations of correctness
here. For first-order logic, there are abstract completeness proofs using the Beth-
Hintikka style of possibly infinite derivation trees [3] as well as the Henkin style
of maximally consistent sets [17]. Both are abstract enough to be instantiated
with a wide range of concrete calculi. A more concrete formalisation [19] verifies a
sequent calculus for first-order logic whose completeness proof is via a translation
to semantic tableau.

Beyond completeness, we target decidability, which is more attainable for
propositional logic. There is a verified tableau calculus for the modal logic S5 [2]
in Lean and one for hybrid logic [18] in Isabelle/HOL. Both of these do not prove
termination but there is a formalisation of a tableau calculus for the temporal
logic CTL in Coq [13] that does.

1.3 Notation

Isabelle/HOL [21] conforms to everyday mathematical notation for the most
part. We establish notation and in particular some essential data types together
with their primitive operations that are specific to Isabelle/HOL.

We write t :: ’a to specify that the term t has the type ’a and ’a ⇒ ’b
for the space of total functions from type ’a to type ’b.

Sets with elements of type ’a have the type ’a set. The cardinality of a set
A is denoted by |A| and the image of A under f by f ‘ A.

We use ’a list to describe the type of lists, which are constructed using
the empty list [] constructor or the infix cons constructor #, and are appended
with the infix operator @. The function set converts a list into a set.

We remark that ←→ is equivalent to = on the type of Booleans bool and
≡ is definitional equality of the meta-logic of Isabelle/HOL, which is called
Isabelle/Pure. Meta-implication is denoted by =⇒ and a chain of implications
A1 =⇒ · · · =⇒ Ak =⇒ C can be abbreviated by � A1; . . . ;Ak � =⇒ C.

2 Syntax and Semantics of MLSS

2.1 Syntax

At the heart of MLSS, we have the type of set terms, which is the disjoint
union of the empty set and variables as well as the operations union, intersection,
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difference, and the singleton set represented by the constructor Single. We keep
the type of variables abstract by making it a parameter of the set term data
type. The only restriction on the type of variables is that it needs to be infinite.
Isabelle/HOL’s data type package automatically defines a function that gives us
the set of variables in a set term, which we name vars. In what follows, we will
overload the function vars to also work on set atoms, formulas, and branches.

datatype (vars: ’a) pset_term =
∅ | Var ’a | Single (’a pset_term)

| ’a pset_term �s ’a pset_term
| ’a pset_term 	s ’a pset_term
| ’a pset_term −s ’a pset_term

We can combine two set terms to form a set atom by using the membership or
the equality operator.

datatype (vars: ’a) pset_atom =
’a pset_term ∈s ’a pset_term

| ’a pset_term =s ’a pset_term

With the above operators we can also represent the subset operator 
s and
enumerate finite sets: s 
s t is equivalent to s �s t =s t and a finite set of
elements {t1,. . .,tk} can be expressed by Single t1 �s . . . �s Single tk.

We use the propositional fragment of formulas due to Nipkow [20] with set
atoms as propositional atoms to form the quantifier-free fragment MLSS of set
theory.

datatype (atoms: ’a) fm =
A ’a

| ¬ (’a fm)
| ’a fm ∧ ’a fm
| ’a fm ∨ ’a fm

type_synonym ’a pset_fm = ’a pset_atom fm

We will often drop the atom constructor A to reduce clutter. Additionally, we use
s /∈s t and s �=s t to denote ¬ A (s ∈s t) and ¬ A (s =s t), respectively.

Similarly to vars, we get the function atoms :: ’a fm ⇒ ’a set for free
that retrieves all set atoms in a formula. We combine these functions to extract
all the variables occurring in a set formula.

definition vars φ ≡ ⋃
(vars ‘ atoms φ)

Likewise, we fix the constant subterms :: ’b ⇒ ’a pset_term set that is
polymorphic in its argument type ’b. We overload this constant to return the set
terms that are subterms of a set term, set atom, or formula, respectively. Lastly,
we introduce the function subfms :: ’a fm ⇒ ’a fm set that computes the
subformulas of a formula. The functions subterms and subfms are implemented
in the expected way.
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2.2 Semantics

The original paper [9] bases the semantics of MLSS on the von Neumann hier-
archy of sets V. We instead use the hierarchy of hereditarily finite sets (HF sets)
which fulfil all the same axioms as V – that is, the axioms of ZF – except for the
axiom of infinity. In particular, the membership relation is well-founded. The HF
sets, as we will see, are sufficient to construct a model for any satisfiable MLSS
formula. In contrast to V, the HF sets are directly representable in Isabelle/HOL,
and indeed, an AFP entry [23] formalises them. The entry defines a type hf that
comes with the following functionality:

– The function HF :: hf set ⇒ set that converts a finite set of HF sets into
an HF set.

– The usual set operations such as equality (=), membership (∈), union (�),
intersection (	), and difference (−) are defined.

– Finally, the empty set coincides with the ordinal 0, so it is denoted by
0 :: hf.

Equipped with the above, we define the interpretation functions

– Ist :: (’a ⇒ hf) ⇒ ’a pset_term ⇒ hf and
– Isa :: (’a ⇒ hf) ⇒ ’a pset_atom ⇒ hf

in the standard way, i.e. by mapping each syntactic construct to the correspond-
ing operation on HF sets and interpreting variables with respect to a given
valuation function M :: ’a ⇒ hf. For the concrete definition we refer to the
formalisation.

We write M |= φ for the judgement that the formula φ holds under the val-
uation function M. The implementation of |= coincides with the interpretation
function of Nipkow [20]. As usual, we call a formula φ satisfiable if there exists
a model M with M |= φ. Otherwise, we say that φ is unsatisfiable.

3 A Tableau Calculus for MLSS

We formalise the tableau calculus for MLSS as described by Cantone and
Zarba [9]. Inspired by the formalisation of a tableau calculus for hybrid logic
by From [16], we use lists to represent the branches of the tableau tree. Note
that we add formulas to the front of the list during branch expansion, so last b
for a branch b is always the formula we are trying to disprove with the tableau.
We sometimes call this formula the initial formula.

type_synonym ’a branch = ’a pset_fm list

We lift the functions vars and subterms to branches in the expected way.
In the standard tableau calculus for propositional logic as Fitting [15]

describes it, a branch is called closed if it contains both the negation of a formula
and the formula itself; conversely, it is called open if it is not closed. For MLSS,
we extend the notion of closedness with three additional rules; the first two are
straightforward while the last one states that a branch is closed when the branch
contains a membership cycle t0 ∈s t1, t1 ∈s t2, . . ., tk ∈s t0.
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Table 1. Linear expansion rules. All rules except the double negation rule coincide
with the original paper [9]. For brevity, we omit the rules for �s and −s.

Propositional Rules Rules for �s

p ∧ q =⇒ p, q

¬ (p ∨ q) =⇒ ¬ p, ¬ q

p ∨ q, ¬ p =⇒ q

p ∨ q, ¬ q =⇒ p

¬ (p ∧ q), p =⇒ ¬ q

¬ (p ∧ q), q =⇒ ¬ p

¬ (¬ p) =⇒ p

s /∈s t1 �s t2 =⇒ s /∈s t1, s /∈s t2

s ∈s t1 =⇒ s ∈s t1 �s t2

s ∈s t2 =⇒ s ∈s t1 �s t2

s ∈s t1 �s t2,
s /∈s t1

=⇒ s ∈s t2

s ∈s t1 �s t2,
s /∈s t2

=⇒ s ∈s t1

s /∈s t1, s /∈s t2 =⇒ s /∈s t1 �s t2

Rules for �s Rules for −s

...
...

Rules for Single Rules for =s

=⇒ s ∈s Single s

s ∈s Single t =⇒ s =s t

s /∈s Single t =⇒ s �=s t

t1 =s t2, l =⇒ l{t2/t1}

t1 =s t2, l =⇒ l{t1/t2}

s1 ∈s t, s2 /∈s t =⇒ s1 �=s s2

inductive bclosed :: ’a branch ⇒ bool where
� φ ∈ set b; ¬ φ ∈ set b � =⇒ bclosed b

| (t ∈s ∅) ∈ set b =⇒ bclosed b
| (t �=s t) ∈ set b =⇒ bclosed b
| � member_cycle cs; set cs ⊆ set b � =⇒ bclosed b

abbreviation bopen b ≡ ¬ bclosed b

A tableau is called closed if all of its branches are closed.

3.1 Linear Expansion Rules

The calculus considers two kinds of branch expansion rules: linear and branch-
ing rules. As the name suggests, branching rules lead to the creation of new
branches in the tableau while linear rules only extend a branch b with new for-
mulas b’ = [ψ1,. . .,ψn], which we denote by b’ b. Table 1 shows the linear
expansion rules. Note that in the first two rules for =s, l is a literal occurring
in the branch. Furthermore, the term-for-term substitution l{s/t} is restricted
to the top-level set terms of l, i.e. the set terms that occur directly under one
of the atom constructors ∈s or =s; for example, given the literal

l = ¬ ((s �s u) −s s =s s �s u)

we have
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Table 2. Branching expansion rules. We write φ for last b here. All rules coincide
with the original paper [9] so we only show an illustrative subset.

Rule Precondition Subsumption condition

p ¬ p
p ∨ q ∈ set b

p ∈ set b ∨
¬ p ∈ set b

s ∈s t1 s /∈s t1

(s ∈s t1 �s t2) ∈ set b

t1 �s t2 ∈ subterms φ

(s ∈s t1) ∈ set b

∨ (s /∈s t1) ∈ set b

...
...

...

Var x ∈s t1
Var x /∈s t2

Var x /∈s t1
Var x ∈s t2

(t1 �=s t2) ∈ set b

t1 ∈ subterms φ

t2 ∈ subterms φ

x /∈ vars b

∃s. (s ∈s t1) ∈ set b

∧ (s /∈s t2) ∈ set b

∨
∃s. (s /∈s t1) ∈ set b

∧ (s ∈s t2) ∈ set b

(¬ ((s �s u) −s s =s s �s u)){t/s �s u}
= ¬ ((s �s u) −s s =s t).

A more crucial restriction of the linear rules is that no new subterm may be
created by their application; for instance, the second rule for �s is

s ∈s t1 =⇒ s ∈s t1 �s t2,

which formally represents

(s ∈s t1) ∈ set b =⇒ [s ∈s t1 �s t2] b,

and may only be used under the condition t1 �s t2 ∈ subterms (last b).
The purpose of this restriction is to prevent unbounded expansion of the branch.
In fact, we give an explicit upper bound for the number of formulas in a branch
in Sect. 7.

Due to boundedness, repeated expansion with linear rules eventually results
in a linearly saturated branch, i.e. a branch where no application of linear rules
would produce new formulas.

definition lin_sat b ≡ ∀b’. b’ b −→ set b’ ⊆ set b

Finally, we remark that the original paper [9] is missing the last propositional
rule dealing with double negation. This rule is required for completeness, though,
considering that the branch [¬ ¬ ¬ p, p, ¬ ¬ ¬ p ∧ p] is saturated—neither
linear nor branching rules apply—and open, but there clearly is no model for
the initial formula ¬ ¬ ¬ p ∧ p.
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3.2 Branching Rules

After running out of linear rules to apply, only the branching rules shown in
Table 2 remain. A rule is applicable if its precondition is met and, to prevent
unnecessary branching, if it is not subsumed as indicated by the subsumption
condition. These rules create multiple branches in the tableau, so we represent
the different possibilities bs’ to expand a branch b as a set and write bs’ b.
Accordingly, we get a new branch b’ @ b in the tableau for each b’ ∈ bs’.

A linearly saturated branch where no further branching is possible is called
a saturated branch.

definition sat b ≡ lin_sat b ∧ (�bs’. bs’ b)

Note that even branching rules are defined such that they never create new
subterms, except for the last rule that adds a new variable to the branch. These
variables serve to manifest an inequality; hence, we call them witnesses.

definition wits b ≡ vars b - vars (last b)

4 A Decision Procedure for MLSS

The mechanics of the decision procedure are typical for a procedure based on a
tableau calculus: it decides the satisfiability of a given formula φ by determining
whether the formula has a closed tableau. More specifically, it initialises the
tableau with the singleton branch [φ] and checks whether this branch can be
expanded to a closed tableau.

We only discuss the abstract specification here and refer the reader to the
formalisation for the executable specification. The implementation uses a couple
of features of Isabelle/HOL’s function package: instead of defining the function
via pattern matching, we specify the equations of the function as conditional
rewrite rules. This requires us to prove that the assumptions of the equations
are non-overlapping, which is done by automation. The other concern is that
Isabelle/HOL requires functions to be total, so a recursive function needs to ter-
minate for it to be well-defined; nevertheless, the termination proof is separated
from the definition of the function for modularity. The function package main-
tains the soundness of the definition by introducing a so-called domain predicate
mlss_proc_branch_dom which characterises the arguments for which the func-
tion terminates. Each equation of the function is guarded by an assumption that
the predicate holds for the argument. In Sect. 7, we will show that the domain
predicate holds for the context in which the function mlss_proc_branch is called
in. Before we go into more detail on how the termination is proved, we discuss
the definition of the function, as shown below.

function mlss_proc_branch :: ’a branch ⇒ bool where
¬ lin_sat b =⇒ mlss_proc_branch b =
mlss_proc_branch ((SOME b’. b’ b ∧

set b ⊂ set (b’ @ b)) @ b)
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| � lin_sat b; bclosed b � =⇒ mlss_proc_branch b = True
| � ¬ sat b; bopen b; lin_sat b � =⇒ mlss_proc_branch b =

(∀b’ ∈ (SOME bs. bs b). mlss_proc_branch (b’ @ b))
| � lin_sat b; sat b � =⇒ mlss_proc_branch b = bclosed b

definition mlss_proc :: ’a pset_fm ⇒ bool where
mlss_proc φ ≡ mlss_proc_branch [φ]

The purpose of the function is to determine whether we can expand a given
branch to a closed tableau. As stated before, we first use linear expansion rules
in order to prevent premature branching; to this end, we recursively expand the
branch with linear rules until the branch is linearly saturated. Note that we
use Hilbert’s ε-operator in the form of SOME1 to choose some rule that actually
adds new formulas to the branch. As soon as the branch is linearly saturated,
we terminate if the branch is closed as the second equation shows. Otherwise,
we choose an applicable branching rule and recursively check whether all newly
created branches can be closed. The final equation applies once no further branch
expansion is possible, in which case we just test for closedness of the branch.

The procedure mlss_proc then calls mlss_proc_branch with a singleton
branch [φ] to determine the satisfiability of a given formula φ.

Thus, we use mlss_proc_branch is only on branches that result from apply-
ing the expansion rules. We call this kind of branch well-formed. In the definition
below, the expression b’ ∗ b denotes that b’ is one of the branches that results
from applying (potentially zero) expansion rules to b.

definition wf_branch b ≡ ∃φ. b ∗ [φ]

We use this notion in Sect. 7 to state an upper bound for the cardinality of
well-formed branches. The upper bound justifies the termination of the decision
procedure. Before we come to that, though, we prove soundness and completeness
in Sect. 6 and 5, respectively. In Sect. 7, we also show that both properties easily
transfer to mlss_proc, which, together with termination, establishes that it is a
decision procedure.

5 Completeness of the Calculus

For completeness of the calculus, we need to show that every unsatisfiable for-
mula has a closed tableau or, conversely, that the formula is satisfiable if there
is a saturated and open branch in the tableau. To facilitate inductive reasoning,
we show a stronger statement by constructing a model M such that M |= φ for
all φ ∈ set b. At the core of the model, there is a realisation function that
maps set terms to sets of type hf. A subset of the witnesses, which we call pure
witnesses, receives special treatment from the realisation function for reasons
that will become apparent in Sect. 5.1. The collection of set terms of a branch
can thus be partitioned into two collections, as defined below.
1 In the formalisation, the function mlss_proc_branch is actually parametrised by

choice functions to allow for refinement.
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definition pwits :: ’a branch ⇒ ’a set where
pwits b ≡ {c ∈ wits b. ∀t ∈ subterms (last b).

AT (Var c =s t) /∈ set b ∧ AT (t =s Var c) /∈ set b}

definition subterms’ :: ’a branch ⇒ ’a pset_term set where
subterms’ b ≡ subterms (last b) ∪ Var ‘ (wits b - pwits b)

We aim to construct a syntactic model that we derive from the membership
literals s ∈s t in the branch. To this end, we construct a graph whose vertices
are the disjoint union of the sets above and there is an edge from s to t in
the graph if, and only if, s ∈s t is in b. Note that we use Noschinski’s graph
library [22] which represents a graph as a record of vertices, arcs (directed edges),
and two functions tail and head that map an arc to its source and target vertex,
respectively.

definition bgraph b ≡ let vs = Var ‘ pwits b ∪ subterms’ b
in � verts = vs, arcs = {(s, t). (s ∈s t) ∈ set b},

tail = fst, head = snd �

The realisation function is defined relative to this graph. As mentioned before,
the realisation function treats the pure witnesses differently than the rest of the
set terms. The function evaluates terms in the latter set in accordance to the
structure of the graph, i.e. the realisation of a vertex is defined as the union of
the realisations of the parent vertices. For the former set, we choose a function
I that assigns the pure witnesses pairwise distinct sets with cardinality greater
than that of the vertices. We can always choose such a function since we assume
an infinite universe of variables. Then, we return the singleton set HF {I x},
which, together with the cardinality constraint, guarantees that realisations are
distinct between pure witnesses themselves as well as between pure witnesses
and set terms. The notation u →G s in the definition below indicates that there
is an edge from u to s in the graph G.

abbreviation parents G s ≡ {u. u →G s}

function realise :: ’a pset_term ⇒ V where
x ∈ Var ‘ pwits b =⇒ realise x = HF {I x}

| x ∈ subterms’ b
=⇒ realise t = HF {realise ‘ parents (bgraph b) s}

| x /∈ verts G =⇒ realise x = 0

Again, we need to ensure that the assumptions of the equations are non-
overlapping and that the function terminates. The former is taken care of by
automation, leaving us to prove termination. The assumption that b is open
implies that there are no membership cycles, thus bgraph b is acyclic. Further-
more, the graph is finite by definition. Thus, we can use the cardinality of the
set of ancestors as a measure that decreases in each recursive call.

Before we prove that the realisation function constitutes a model in Sect. 5.2,
we will first explain the significance of the pure witnesses.



Towards a Verified Tableau Prover for MLSS 501

5.1 Characterisation of the Pure Witnesses

Recall that the pure witnesses of a branch b are those witnesses that are not
related to other subterms in last b by equality. In the context of a well-formed
branch, we can strengthen this characterisation to any set term and, in addition,
we also get that there is no membership literal where a pure witness is on the
right-hand side. Intuitively speaking, the realisation of a pure witness does not
depend on the realisation of any other set term.

lemma lemma_2:
assumes wf_branch b and c ∈ pwits b
shows (Var c =s t) /∈ set b and (t =s Var c) /∈ set b

and (t ∈s Var c) /∈ set b

So why are pure witnesses treated differently? According to the definition of
realise, it would evaluate the pure witnesses would to the empty set 0 :: hf,
were they not treated separately. To see that this is a problem, consider the
branch b = [Var s �=s Var t, Var t �=s Var u] which expands to several
open and saturated branches, one of which is

[Var x �=s Var y, Var x ∈s Var s, Var x /∈s Var t,
Var y ∈s Var t, Var y /∈s Var u] @ b

for some fresh x and y. Assigning both Var x and Var y a value of 0 would con-
tradict the literal Var x �=s Var y. To prevent this, we assign the pure witnesses
pairwise different values.

The proof of lemma_2 is more technical than interesting so we refer the reader
to the formalisation.

5.2 Realisation of an Open Branch

Remember that for completeness, we need to show that the realisation function
for an open and saturated branch b actually constitutes a model for all formulas
in the branch. We start by verifying that the realisation function models all
literals in the branch; more formally, the following propositions hold:

(1) We have realise s ∈ realise t if it holds that s ∈s t is in b.
(2) We have realise s = realise t if s =s t is in b.
(3) We have realise s �= realise t if s �=s t is in b.
(4) We have realise s /∈ realise t if it holds that s /∈s t is in b.

To illustrate the usefulness of lemma_2, we prove Proposition (2). The proofs of
all propositions translate well into Isabelle, so we refer to the original paper [9]
for the remaining proofs.

Proof. (Proof of Proposition (2)). Assume that s =s t is in b. If there exists
a c ∈ pwits b where s = Var c or t = Var c, we arrive at a contradiction
due to lemma_2. Therefore, both s ∈ subterms’ b and t ∈ subterms’ b must
hold. Now, assume for contradiction that realise s �= realise t. Without
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loss of generality—the other case is symmetric—we obtain an e such that
e ∈ realise s and e /∈ realise t. Considering that s ∈ subterms’ b and
the definition of realise, we obtain a d with e = realise d and d →bgraph b s.
This, in turn, yields that d ∈s s must be in b. Together with the assumption
(s =s t) ∈ set b and the saturation of b, it follows that d ∈s t must also be
in b. But then we have realise d ∈ realise t ←→ e ∈ realise t using
Proposition (1), which is a contradiction to the assumption e /∈ realise t.

We now lower the results on literals to set terms. All of the proofs are straight-
forward so we refer the reader to the formalisation.

(a) It holds that realise ∅ = 0.
(b) Let �s ∈ {�s, −s, 	s}. If the term s �s t occurs in subterms b, then

realise (s �s t) = realise s � realise t.

(c) If Single t ∈ subterms b, then

realise (Single t) = HF {realise t}.

The final step for obtaining a proper model is to connect the realisation
function to the semantics as defined in Sect. 2. For set terms, we can use the
Propositions (a)–(c) to prove the lemma below by induction on t.

lemma assumes t ∈ subterms b
shows Ist (λx. realise (Var x)) t = realise t

Lifting the above result to formulas yields the coherence of b, as the original
paper [9] calls it. The proof is a tedious but straightforward induction on the
the size of the formulas.

lemma coherence:
assumes φ ∈ set b shows (λx. realise (Var x)) |= φ

The coherence property finishes the proof of completeness of the calculus as it
gives us a model for every formula in an open and saturated branch.

6 Soundness of the Calculus

A tableau calculus is sound if the corresponding formula is unsatisfiable for any
closed tableau. We prove the following two properties to establish soundness:

(1) It is impossible to satisfy all formulas in a closed branch simultaneously.
(2) The expansion rules maintain satisfiability.

We formalise the first property in Isabelle below.

lemma bclosed_sound:
assumes bclosed b shows ∃φ ∈ set b. M �|= φ
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Proof. It is clear that, for any s, neither does M model s ∈ ∅ nor s �=s s. Fur-
thermore, no model can satisfy both φ and ¬φ at the same time. Lastly, a mem-
bership cycle is impossible since the membership relation of hf is well-founded.

We are left with showing that both linear and branching expansion rules preserve
satisfiability. As for the linear rules, a straightforward proof by case analysis on
b’ b suffices to obtain the lemma below.

lemma lexpands_sound:
assumes b’ b and φ ∈ set b’ and

∧
ψ. ψ ∈ set b =⇒ M |= ψ

shows M |= φ

A similar argument would work for the branching rules if it were not for the last
rule adding new variables. Those variables need to be assigned specific values;
hence, we modify the model as shown in the proof below.

lemma bexpands_sound:
assumes bs’ b and

∧
ψ. ψ ∈ set b =⇒ M |= ψ

shows ∃M’. ∃b’ ∈ bs’. ∀ψ ∈ set (b’ @ b). M’ |= ψ

Proof. We only consider the case where bs’ b was proved by applying the
last branching expansion rule to s �=s t for some s and t. We have

bs’ = {[Var x ∈s s, Var x /∈s t], [Var x ∈s t, Var x /∈s s]}

for some fresh variable x. Since s �=s t is in b, we have that Ist M s �= Ist M t
because M is a model. Without loss of generality, this inequality manifests itself
through some y with y ∈ Ist M s and y /∈ Ist M t. We update M to map x to
y to obtain the assignment M’. Note that M’ is still a model for formulas in b
because x is fresh with respect to b. Furthermore, it is also a model for the first
branch in bs’, which finishes the proof.

7 Total Correctness of the Decision Procedure

We first demonstrate the termination of the procedure for well-formed branches,
i.e. every well-formed branch is in the domain of mlss_proc_branch. To this end,
we derive an upper bound for the number of distinct formulas in a branch whose
proof we omit here for brevity. We should point out that this bound is not to
be construed as the complexity of the procedure as it may create exponentially
many branches in general.

lemma card_wf_branch_ub:
assumes wf_branch b
shows |set b| ≤ 2 * |subfms (last b)| + 16 * |subterms (last b)|4

Remember that mlss_proc_branch only applies a linear expansion rule to a
branch if the application results in new formulas. Moreover, the subsumption
conditions of the branching expansion rules ensure that each of the newly created
branches contain new formulas. Ultimately, we conclude that the procedure must
terminate for well-formed branches because the number of formulas increases in
each step but is also bounded.



504 L. Stevens

lemma assumes wf_branch b shows mlss_proc_branch_dom b

The above lemma allows us to utilise the computation induction rule of
mlss_proc_branch on well-formed branches, which we use to prove soundness
and completeness. As both proofs are essentially an application of soundness,
respectively completeness, of the calculus, we refer the reader to the formalisa-
tion.

lemma mlss_proc_branch_complete:
fixes b :: ’a branch
assumes wf_branch b and ¬ mlss_proc_branch b
assumes infinite (UNIV :: ’a set)
shows ∃M. M |= last b

lemma mlss_proc_branch_sound:
assumes wf_branch b and ∀ψ ∈ set b. M |= ψ
shows ¬ mlss_proc_branch b

To finish the proof of total correctness, note that every singleton branch
is trivially well-formed; thus, termination, completeness, and soundness easily
transfer to mlss_proc.

theorem mlss_proc_complete:
fixes φ :: ’a pset_fm
assumes ¬ mlss_proc φ and infinite (UNIV :: ’a set)
shows ∃M. M |= φ

theorem mlss_proc_sound:
assumes M |= φ shows ¬ mlss_proc φ

8 Dealing with Urelements

In the introduction, we stated the goal of integrating mlss_proc as a tactic
into Isabelle. For this to work, we must map every branch expansion rule to a
corresponding theorem in Isabelle/HOL. This is straightforward for all expansion
rules except for the last branching expansion rule. To illustrate, suppose that we
are to disprove a statement of the form

s �= (t :: ’a) ∧ s ∈ (A :: ’a set) ∪ B ∧ . . .

in Isabelle/HOL. By way of reification, we convert this to a formula of the shape

s’ �=s t’ ∧ s’ ∈s A’ �s B’ ∧ . . .

in our set syntax for some s’, t’, A’, and B’. When we apply the decision
procedure to this formula, it might return a tableau proof that contains an
application of the last branching rule to (s’ �=s t’) ∈ set b. This results
in two branches, one of which is [Var x ∈s s’, Var x /∈s t’] @ b; however,
there is no matching rule in Isabelle/HOL since s and t are not sets.
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To deal with this problem, we formalise a lightweight type system as displayed
in Fig. 1. The type of a set term in this system is just a natural number which
we call level. Intuitively speaking, the level l means that the corresponding term
t in Isabelle/HOL has type

’a set . . . set︸ ︷︷ ︸
l times

for some ’a. Note that the constructor ∅ now receives an additional argument
indicating the level of each instance of ∅.

Moreover, the typing judgement extends to set atoms by matching up the
levels of its component set terms.

Ultimately, we define Γ � φ ≡ ∀a ∈ atoms φ. Γ � a in order to type
formulas.

We can now define the urelements with respect to a formula. An urelement
is a set term whose corresponding type in Isabelle/HOL might not be a set.

definition urelem :: ’a pset_fm ⇒ ’a pset_term ⇒ bool where
urelem φ t ≡ ∃Γ. Γ � φ ∧ Γ � t : 0

Using this definition, we make two changes to the specification of the calculus:
(1) First and foremost, we require that neither s nor t is an urelement in the
precondition of the last branching expansion rule. (2) As mentioned above, we
add an argument to the ∅ constructor. This argument is only used for the typing
judgement; it has no impact on the semantics.

Soundness, of course, is not affected by these changes but we have to make
a few amendments to maintain completeness: (1) The first equation of realise
now also must account for the urelements. In particular, it has to ensure that ure-
lements receive pairwise different values unless they are related through equality
atoms. This does not affect pure witnesses since they can not be related through
equality atoms due to lemma_2. (2) We must adjust the completeness proof in
those places where it directly refers to the definition of realise to account for
the case where a given term is an urelement. (3) The completeness theorem
receives the additional assumption that Γ � φ holds for the initial formula φ.

Fig. 1. The type system for set terms and atoms.
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(4) For the completeness proof, we must show that the typing judgement is
invariant under branch expansion.

The modifications above ensure that the proof can be replayed through
Isabelle/HOL. To actually use the calculus, we must determine the urelements of
the initial formula φ, though. In other words, we have to implement an inference
algorithm for our lightweight type system. The algorithm is, in essence, a sim-
plified version of Hindley-Milner type inference so it has the same two phases:
it generates constraints using syntax directed rules and then passes them to a
constraint solver.

Since we are only interested in the level of a term, we can encode all con-
straints into the theory of 0, the successor function S, and equality (but no dis-
equality). Note that constraints of the form l �= 0 can be replaced by l = S i
with i being a fresh variable. A solver for this theory is straightforward to
implement and verify; nevertheless, we have to be careful that it computes the
minimum assignment Γ from variables to levels that fulfils the constraints. This
guarantees that a set term t is not an urelement if, and only if, Γ t > 0.
Conversely, all terms s with Γ s = 0 are urelements.

9 Conclusion and Future Work

We developed a formalisation of a tableau calculus for a quantifier-free fragment
of set theory called MLSS based on a paper by Cantone and Zarba [9]. The for-
malisation includes an abstract description of a decision procedure that builds
on the calculus. To make the decision procedure compatible with Isabelle/HOL,
we extended the calculus with a lightweight type system while maintaining com-
pleteness. We also refined the abstract specification to an executable specification
from which code can be generated.

In future work, we plan to implement an efficient executable specification in
the style of a worklist algorithm. This specification should also generate certifi-
cates that can be replayed through Isabelle’s inference kernel to facilitate the
integration of the procedure into Isabelle.

Acknowledgements. The author thanks Kevin Kappelmann and Tobias Nipkow for
their comments on a draft version of this paper and the anonymous referees for their
thorough reviews.
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Abstract. We describe an experimental implementation of a logic-based
end-to-end pipeline of performing inference and giving explained answers
to questions posed in natural language. The main components of the
pipeline are semantic parsing, integration with large knowledge bases,
automated reasoning using extended first order logic, and finally the
translation of proofs back to natural language. While able to answer
relatively simple questions on its own, the implementation is targeting
research into building hybrid neurosymbolic systems for gaining trust-
worthiness and explainability. The end goal is to combine machine learn-
ing and large language models with the components of the implementa-
tion and to use the automated reasoner as an interface between natural
language and external tools like database systems and scientific calcula-
tions.

1 Introduction

Question answering and inference using natural language is a classic A.I. area,
with a long history of little success using symbolic methods, able to solve only
small problems with a limited structure. The recent machine learning (ML)
systems, in particular, the Large Language Model (LLM) implementations of
the BERT and GPT families are, in contrast, often able to give satisfactory
answers to nontrivial questions.

However, the current LLMs are neither trustworthy nor explainable. They
have a well-known tendency of “hallucinating”, i.e. giving wrong answers and
inventing actually nonexistent entities and facts. The problems of explicitly con-
trolling the output and giving explanations for the solutions appear to be very
hard for LLMs. An optimistic view of LLMs suggests that end-to-end learning
can be improved to overcome these issues, while a more pessimistic view sug-
gests that the problems are inherent and stem from the lack of an internal world
model. The proponents of the latter view propose to build hybrid neurosymbolic
systems, combining machine learning and symbolic methods of various kinds.
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Indeed, the research in the field of neurosymbolic systems has become quite
active. The recent survey [14] points to a wider interest in connecting natural
language systems to external software like databases and scientific calculations.

Using logic for natural language inference (NLI) in combination with ML
may potentially alleviate the problems with LLMs and provide a glue to connect
external systems to natural language interfaces. However, using logic directly for
processing natural language is hard, for a number of reasons:

– Semantic parsing, i.e. translating natural language to logic, is extremely hard
due to the highly complex and exception-rich nature of natural language.

– Existing knowledge bases of “common sense” do not cover a critical mass of
the basic understanding of the world even a small child possesses.

– Classical first order reasoning itself cannot cope with contradictory knowledge
items, probabilistic or uncertain information and exceptions to rules.

– Finding logic-based proofs often requires long proofs and the huge knowledge
base causes a quick combinatorial explosion of the search space.

The motivation behind the research described in the paper is the following
hypothesis: all the main problems described above can be alleviated by using ML
techniques tailored separately for each particular problem. The current paper
does not introduce any ML techniques for the problems above. The goal of our
system is to serve as a backbone for research into combining the symbolic meth-
ods with ML. Our hypothesis is that by gradual improvement and combination
of the existing symbolic subsystems with ML techniques it is possible to eventu-
ally build a question answering system which has enough power, trustworthiness
and explainability to be practically useful in various application areas.

In other words, the envisioned end goal of this research is neither to replace
LLMs nor to verify their output, but to develop systems combining LLMs and
symbolic reasoning for specific areas where it is feasible to build sets of domain-
specific rules and factual databases.

2 Related Work

Here we will only consider projects building a full NLP inference system. The
performance of older pure symbolic or logic-based methods like LogAnswer [7]
remained at the level of specific toy examples and never achieved capabilities
required for wider applicability. The long-running CYC project [22], although
having several successes, did not succeed with its original stated goals, which is
often used as an argument against symbolic systems.

A popular area for language processing is converting human queries to SQL
or SPARQL queries. These systems typically do not handle rules expressed in
natural language. The projects closest to ours use reasoners with a relatively lim-
ited capacity, like BRAID [12], which uses extended SLD+ reasoner with prob-
abilistic rules and fuzzy unification, CASPR [18], which uses an ASP reasoner
incorporating default logic, NatPro [1,2], which uses a Natural Logic prover. The
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latter is the only such project we know to be publicly available: https://github.
com/kovvalsky/prove SICK NL.

The majority of research in neurosymbolic reasoning for natural language
combines ML with weak forms of symbolic systems, typically taxonomies and
triple graph knowledge bases like ConceptNet [25]. We approach the problem
from the less common direction: starting from the symbolic/reasoning side and
moving towards ML. There are already a few research projects combining ML
with reasoning in quantified first order logic, although we are not aware of any
such systems being publicly available. Noteworthy projects involving quantified
logic are SQuARE [4], BRAID [12] and STAR [21]. The recent work in using large
language models (LLM) mapping informal proofs to formal Isabelle [17] proof
sketches guiding an automated prover [34] and using LLMs directly to generate
Isabelle code [11] shows clear promise in combining LLMs with provers.

3 Natural Language Inference and Question Answering

The described pipeline is able to handle both the natural language inference
(NLI) tasks (given a premise, determine whether a given hypothesis is true, false
or indeterminate) and the closely related question answering tasks of finding a
specific object matching a given criterion.

We will use a few simple examples throughout the paper. The expected
answer to the first example “If an animal likes honey, then it is probably a bear.
Most bears are big, although young bears are not big. John is an animal who
likes honey. Mike is a young bear. Who is big?” is “Likely John”. The expected
answer to the second example “The length of the red car is 4m. The length of
the black car is 5m. The length of the red car is less than 5m?” is “True”.

It is worth noting that these examples are solved correctly by the current
(May 2023) versions of GPT: ChatGPT using the text-davinci-002 model and
the API using the gpt-3.5-turbo and gpt-4 models: moreover, they are able to
give a satisfactory explanation of the reasoning behind the answers. However, if
we insert additional irrelevant information to the first example, our system still
finds the expected answer, while none of the GPT models above give a correct
answer: “If an animal likes honey, then it is probably a bear. Most bears are big,
although young bears are not big. John is an animal who likes honey. Mike is
a young bear. Mike can eat a lot. Penguins are birds who cannot fly. John took
the block from the colored table. The table was really nice. The robot arm lifted
a blue block from the table. Who is big?”.

Similarly, when we modify the second example by using meaningless words
and adding irrelevant text, our system finds the expected answer, while all
the referred GPT models give confusing answers: “The length of the barner
is 200000000m. The length of the red foozer is 312435m. Most barners are
1000000m long. Sun is larger than the moon. John saw the sun rising over an
enormous foozer. A huge robot filled the sky. The length of the red foozer is less
than 312546m?” However, the answers given by GPT versions may vary over
time, i.e. experiments with GPT are not reproducible.

https://github.com/kovvalsky/prove_SICK_NL
https://github.com/kovvalsky/prove_SICK_NL
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4 The Question Answering Pipeline

Our system is publicly available at http://github.com/tammet/nlpsolver. It
requires Linux and should be easy to install. The implementation consists of
four main software systems. The pipeline driver calls the external Stanza parser
[20] from Stanford, giving a Universal Dependencies (UD, see [5]) graph, then
runs the semantic parser on the UD graph, calls the reasoner, and finally builds a
natural language answer along with the explanation built from the proofs given
by the reasoner. The pipeline driver, parser and answer construction compo-
nents consist of over 400 Kbytes of Python code. Before running the solver, a
small Python server component has to be started, to initialize the external UD
parser Stanza and read a commonsense knowledge base into shared memory. For
reasoning the pipeline calls our commonsense reasoner GK, written in C: this
is the largest and the most complex part of the pipeline. There is a separate
Python program for regression tests, along with several Python files containing
sub-tests, currently over 1600 separate NLI tasks. The pipeline driver is called
from a command line, with a natural language text and question as a command
line argument, plus a number of optional arguments to control the behaviors like
the amount of output.

4.1 Semantic Parsing

The parser takes English strings of natural language text as input and outputs
extended clausified first-order logic formulas encoded in JSON as proposed in
JSON-LD-LOGIC [29]. The main extension is adding numerical confidence to
clauses and implementing default logic [23] by including special literals to encode
exceptions, as presented in our papers [28] and [27].

Parsing consists of a number of phases, each adding new structural details
to the results of the previous phases. For the most part, the phases are imple-
mented procedurally, without using explicit transformation rules: we found that
the more complex aspects of translation cannot be easily expressed with the
help of simple transformation rules. In particular, the correct interpretation of
a sentence depends heavily on previous sentences and a collected database of
objects which have been talked about.

Conversion to Universal Dependencies (UD) Format. We use the exter-
nal Stanza parser to get the UD format dependency graphs from input sentences.
Stanza itself uses pretrained neural models. We first preprocess English strings
to avoid several typical mistakes of the Stanza conversion, and then use Stanza
to get the UD graph. The graph is then fed to our small set of simplifying trans-
formations returning a simplified text, which is again fed to Stanza to get the
final UD graph. The simplification phase reduces the amount of complexities
and edge case handling necessary in the UD-to-logic converter, and is a prime
candidate for experimenting with using LLMs for simplifications.

http://github.com/tammet/nlpsolver.
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Converting UD to Logic. One of the strengths of UD representation given
by Stanza is a high level of detail. The first subphase of conversion is restruc-
turing the UD graph to a semi-logical representation explicating the outward
logical structure around the subject/verb, object/verb or subject/verb/object
tuples. The following subphases attach different kinds of properties to words.
For example, the outmost structure constructed for the sentence “Most bears
are big, although young bears are not big.” is
[and, svo[bear,be,big], svo[bear,be,big]] which is then extended to
[and, svo[bear,be,big], svo[[props,young,bear],be,big]].
The words in these structures are key-value objects containing both the initial
UD information and additional details added during the phases.

The next subphase results in the extended logic in a non-clausified form, i.e.
using explicit quantifiers. The conversion uses the previous structure recursively,
taking into account the details of the original UD structure to find additional
critical information like articles, negation, different kinds of quantifiers etc. We
follow the approach of Davidsonian semantics, introducing event identification
variables, while not taking the neo-Davidsonian path of splitting all relations to
their minimal components (see [33])

For the coreference resolution we calculate the weighted heuristic scores for all
candidate words, using also taxonomies of Wordnet. Another inherently complex
task is determining whether a noun stands for a concrete object or should be
quantified over. Importantly, any object detected is stored in a special data
structure with new information about the object possibly added as the parsing
process proceeds.

Let us consider an example sentence “John is a nice animal who likes honey.”
It would be first converted to a conjunction of three formulas

isa(animal, c1 John)
prop(nice, c1 John, generic, generic, ctxt(Pres, 1))
def0(c1 John)
∀S (def0(c1 John) ↔

∃X isa(honey, X) & (∃A do2(like, c1 John, X, A, ctxt(Pres, S))))

The system determined that in this sentence “John” refers to a concrete object
and immediately created a Skolem constant c1 John, storing it for possible later
use and extension. Here it also created a new definition def0 for encoding the
complex property of “John”: liking honey. The properties of objects like given in
the second formula above also encode the intensity of the property (slightly/very)
and the comparative class: for example, saying “John is a very large animal
...” would create prop(large, c1 John, 3, animal, ctxt(Pres, 1)). The constant
generic indicates that intensity is not known or that the property is not com-
parative, i.e. does not relate to a specific class. The term ctxt(Pres, 1) encodes
contextual aspects: the present tense and a concrete situation number in a possi-
ble sequence of situations created by different actions. The variable A in the last
formula is an identifier of an action, which can be given additional properties,
like place, time or assistive objects of an action, in the Davidsonian style.
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In the representations above we have omitted the information about con-
fidence and the possibility of exceptions. Indeed, the sentence we looked at is
considered to be certain and without exceptions. However, the first part of the
sentence “Most bears are big, although young bears are not big” attaches con-
fidence 0.85 to the formula and includes a blocker literal encoding an exception
in the sense of default logic, along with the comparative priority of the blocker:

0.85 : ∀X isa(bear, X) →
(prop(big, X, generic, generic, ctxt(Pres, 1)))∨
block(h(bear, 1), neg(prop(big, X, generic, generic, ctxt(Pres, 1))))

The blocker literals are used by the GK prover to recursively check the proof
candidates found, with dimishing time limits: GK uses a part of a given time
limit to attempt to prove each blocker literal in the proof. Whenever a blocker
is proved, the candidate proof containing the blocker is considered invalid and
thus discarded; see [27] for details.

The system is also able to handle simpler questions involving sizes of sets, like
“An animal had two strong legs. The animal had a strong leg?”, “John has three
big nice cars. John has two big cars?”, and measures, like “The length of the red
car is 4 m. The length of the black car is 5 m. The length of the red car is less than
5 m?”. We use terms encoding the sets and measures: for example, the first sen-
tence of the last question is translated to a formula containing a standard equality
predicate, an integer and several properties involving the measure term, including
the main statement 4 = count(measure1(length, c1 car, meter, ctxt(Pres, 1))

Instance Generation. In order to answer questions without indicating con-
crete objects, like “Adult bears are large animals. Cats are small animals. Who
is a large animal?” we need constants representing an anonymous instance of a
class, essentially a “default adult bear”, a “default bear” and a “default cat”.
For each such object the system generates a constant along with the formulas
indicating its class and properties, enabling the system to produce an answer
“An adult bear”.

Question Handling. Actual questions like “Who is big?” or “The length of
the red car is less than 5 m?” require special handling. The automated reasoner
GK used in the pipeline employs the well-known answer predicate technique
to construct and output the required substitution term. All the variables in
the question formula will be instantiated and output, potentially resulting in
a large combination of different answers. The “Who is big?” question will be
first translated to ∃X, Y, Z prop(big, X, generic, Y, Z) indicating that we are not
restricting the “bigness” or context in the question. However, we do not want
to enumerate different “bigness” values or contexts in the answer, thus we wrap
the formula into a definition (say, def2 ) over a single variable X, and search
for different substitutions into def2(X) only. Asking questions about location
and time is implemented by constructing a number of questions over relations
“near”, “on”, “at”, etc.

Clausification and Simplification. The system contains a clausifier skolem-
izing the formulas and converting these to a conjunctive normal form. The
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clausification phase also performs several simplifications, some of which are pos-
sible due to the known properties of the constructed formulas. Since nontrivial
formulas may be converted into several clauses, the clausifier decides how to
spread the numeric confidence of the formula and the exception literals in the
formula into the clauses.

4.2 Integration with Knowledge Bases

The knowledge base provides the world model of our reasoning system. To answer
the query “Tweety is a bird. Can Tweety fly?”, the system needs to have the
background knowledge that birds can fly. We construct the knowledge base (KB)
using default logic rules augmented with numeric confidences. A small part of
the knowledge base forms a core world model and is built by hand, while the
bulk of the knowledge is integrated automatically from existing common sense
knowledge (CSK) sources as described in [10].

We have integrated eight published knowledge graphs: ConceptNet [25],
WebChild [30], Aristo TupleKB [15], Quasimodo [24], Ascent++ [16], UnCom-
monSense [3], ATOMIC20

20 [9] and ATOMIC10x [32]. These CSK sources are col-
lections of relation triples. The majority of the sources contain natural language
clauses or fragments in the triple elements. We have built a specialized pattern
matching semantic parser to convert the relations to first order logic rules with
the default logic extensions and estimated numeric confidence. The full knowl-
edge base contains 18.5 million rules, with over 15 million of those are related
to taxonomy: inferring a property or an event from the class of an entity.

4.3 Automated Reasoning

We use our automated reasoner GK to solve the problems generated by semantic
parser. The reasoner uses both the parser output and a selected subset of the
world knowledge to solve the questions. Wordnet taxonomies are used to solve
the precedence problem of exceptions. Large datasets are parsed, indexed and
kept in shared memory for quick re-use. GK is built on top of a conventional
high-performance resolution-based reasoner GKC [26] for conventional first order
logic. Thus GK inherits most of the capabilities and algorithms of GKC. The
main additional features of GK are following:

– Using a well-known answer clause mechanism for finding a number of different
answers, with a configurable limit.

– Finding expected proofs even if a knowledge base is inconsistent. Basically,
GK only accepts proofs which contain a clause originating from the question.

– Searching for both a proof of the question and a negation of the ques-
tion/negation of each concrete answer.

– Estimating the numeric confidence in the statements derived from knowledge
bases containing uncertain contrary and supporting evidence obtained from
different sources.

– Handling exceptions by implementing default logic via recursively deepening
iterations of searches with diminishing time limits.
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– Performing reasoning by analogy via employing known similarity scores of
words along with exceptions.

The first four features are covered in our previous paper [28] and the fol-
lowing two are covered in [27]. The word similarity handling is currently in an
experimental phase: the initial experiments show that a naive implementation
creates an unmanageable search space explosion, and thus a layered approach is
necessary.

As a simple example of the basic features, consider sentences “John is nice.
John is not nice. Mike is nice. Steve is not nice.” GK output to the parsed
versions of the following questions will directly lead to these answers: “John is
nice?”: “Unknown”, “Mike is nice?”: “True”, “Mike is not nice?”: “False”, “Who
is nice?”: “Mike”, “Who is not nice?”: “Steve”. For a slightly more complex
example, consider the earlier “If an animal likes honey, then it is probably a
bear. Most bears are big, although young bears are not big. John is an animal
who likes honey. Mike is a young bear. Who is big?”. GK will output the following
proof in JSON, where we have removed quotation marks and a number of steps:

{result:answer found,

answers:[
{
answer:[[$ans,some_bear]],
blockers:

[[$block,[$,bear,1],[$not,[prop,big,some_bear,$generic,$generic,[$ctxt,Pres,1]]]]],
confidence:0.85,
positive proof:
[
...,
[7,[mp,[5,1],6,fromgoal,0.85],

[[$block,[$,bear,1],[$not,[prop,big,some_bear,$generic,$generic,[$ctxt,Pres,1]]]],
[$ans,some_bear]]]

]},
{
answer:[[$ans,c1_John]],
blockers:[[$block,[$,bear,1],[$not,[prop,big,c1_John,$generic,$generic,[$ctxt,Pres,1]]]],

[$block,[$,animal,3],[$not,[isa,bear,c1_John]]]],
confidence:0.765,
positive proof:
[
[1,[in,frm_10,axiom,0.85],

[[$block,[$,bear,1],[$not,[prop,big,?:X,$generic,$generic,[$ctxt,Pres,1]]]],
[prop,big,?:X,$generic,$generic,[$ctxt,Pres,1]],
[-isa,bear,?:X]]],

[2,[in,frm_9,axiom,0.9],
[[$block,[$,animal,3],[$not,[isa,bear,?:X]]],
[-do2,like,?:X,?:Y,?:Z,[$ctxt,Pres,1]],
[-isa,honey,?:Y],[-isa,animal,?:X],[isa,bear,?:X]]],

...,
[18,[mp,[1,2],[17,1],fromaxiom,0.765],

[[$block,[$,bear,1],[$not,[prop,big,c1_John,$generic,$generic,[$ctxt,Pres,1]]]],
[$block,[$,animal,3],[$not,[isa,bear,c1_John]]],
[prop,big,c1_John,$generic,$generic,[$ctxt,Pres,1]]]],

...,
[21,[in,frm_30,goal,1],[[-$def2,?:X],[$ans,?:X]]],
[22,[mp,[20,2],21,fromgoal,0.765],

[[$block,[$,bear,1],[$not,[prop,big,c1_John,$generic,$generic,[$ctxt,Pres,1]]]],
[$block,[$,animal,3],[$not,[isa,bear,c1_John]]],
[$ans,c1_John]]]

]}
]}
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Observe that we get two answers. The following NLP pipeline step removes
the generic [[$ans,some bear]], since the more informative [[$ans,c1 John]]
is available. Here both proofs contain only positive parts, although in the general
case we may find both a positive and a negative proof, each with their own con-
fidences. GK will throw away both the clauses produced during search and the
final answers which have a summary confidence below a configurable threshold.
GK will also throw away proofs which do not contain a goal clause. The confi-
dences stemming from input sentences like “Most bears are big . . .” are taken
from our ad-hoc mapping of words like “most” to numeric values. By default,
“normal” rule sentences are given a confidence below one and include a blocker
literal for allowing exceptions.

The answers contain blocker literals, which have been recursively checked by
separate proof searches before the final proof is accepted by GK. The details
of these failed searches are not shown in the final proof. Had we included the
sentence “John is not big” in our example, then the proof of the first blocker of
the main answer would have been found, thus disqualifying the proof and leaving
us with the final answer “Likely a bear.”.

4.4 Answers and Explanations in Natural Language

Answers and explanations are generated from the proof, with additional details
taken from the database of objects along with their properties as detected during
semantic parsing. While some of the principles were described in the previous
section, there are two major tasks to perform: give a suitably detailed representa-
tion of objects in a proof (say, select between “a car”, “a red car”, “the red car”,
“Mike’s car” etc.) and create a grammatically correct and easy-to-understand
textual representation of clauses. The system translates clauses in a proof one-
to-one to English sentences, as exemplified by the explanation generated from
the previously presented proof:

Likely john:
Confidence 76%.
Sentences used:
(1) If an animal likes honey, then it is probably a bear.
(2) Most bears are big, although young bears are not big.
(3) John is an animal who likes honey.
(4) Who is big?
Statements inferred:
(1) If X is a bear, then X is big. Confidence 85%. Why: sentence 2.
(2) If X does like Y and Y is a honey and X is an animal, then X is a bear.

Confidence 90%. Why: sentence 1.
(4) If John has a property def1, then John does like cs4. Why: sentence 3.
...
(18) John is big. Confidence 76%. Why: statements 1, 17.
...
(21) If X matches the query, then X is an answer. Why: the question.
(22) John is an answer. Confidence 76%. Why: statements 20, 21.

5 Performance and the Test Set

The system has miserable performance on most well-known natural language
inference or question answering benchmarks, the majority of which are ori-
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ented towards machine learning. As an exception, the performance on the anti-
machine-learning question set HANS [13] is ca 95%, in contrast to the ca 60%
performance of LLM systems before the GPT3 family (random choice would
give 50% performance). The loss of 5% of HANS is due to the wrong UD parses
chosen by Stanza.

However, the system is able to solve almost all of the demonstration examples
of the Allen AI ProofWriter system https://proofwriter.apps.allenai.org/ and
is able to solve inference problems the current LLM systems cannot, like the
examples presented in the introduction. For regression testing we have built a
set of ca 1600 simple questions with answers, structured over different types of
capabilities. This test set may be of use for people working towards similar goals.

The runtime for the small examples presented in the paper is ca 0.5 s on a
Linux laptop with a graphics card usable by Stanza. Of this time, Stanza UD
parsing takes ca 0.17 s, UD to logic takes ca 0.04 s, and the rest is spent by the
reasoner. For more complex examples the reasoner may spend unlimited time,
i.e. the question is rather how complex questions can be solved in a preconfigured
time window. In case the size of the input problem is relatively small and a tiny
world model suffices for the solution, the correct answer is found in ca 1–2 s.
However, in case the system is given a large knowledge base (KB) with a size
of roughly one gigabyte, and the answer actually depends on the KB, then the
search space may explode and the system may fail to find answer in a reasonable
time. Efficiently handling a very large knowledge base clearly requires suitable
heuristics based on the semantics and interdependence of rules/facts in the KB.

6 Towards a Hybrid Neurosymbolic System

Although the scope of the sentences successfully parsed and questions answered
could be improved by adding more and more specialized cases to the current
system, the cost/benefit ratio of this work would rapidly decrease. We’ll describe
the most promising avenues of extending the system with ML hybridization as
we currently see them.

Semantic Parsing. The two main approaches would be (a) end-to-end learning
from sentences directly to extended logic as exemplified in [31], and (b) using
existing LLMs or training specialized LLMs to perform simplification of sen-
tences to the level where a hand-made semantic parser is able to convert the
sentence to logic. Our initial experiments with the GPT models have shown
that using a suitable prompt causes the LLMs to successfully split and simplify
complex sentences.

Automated Reasoning. Despite being optimized for large knowledge bases and
performing well in reasoning competitions on such problems, our system often
fails to find nontrivial proofs in reasonable time in case a large knowledge base
is used. The main approaches here would be (a) learning to find a proof, based
on the experience of previous proofs (see [19] for an example), (b) using machine
learning along with measures of semantic relatedness of formulas to the assump-
tion and the question (see [6]) for an example), (c) using LLMs to predict inter-
mediate results or relevant facts and rules. A significant boost in the terms of

https://proofwriter.apps.allenai.org/
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usability could be achieved by integrating external systems like databases and
scientific computing with the automated reasoners.

The Knowledge Base. Publicly available knowledge bases do not focus on for-
malizing a basic world model, arguably critical for common-sense reasoning. It
is possible that a core part needs to be built by hand. On the other hand, the
existing knowledge bases along with large text corpuses can be extended by
creating crucial new uncertain rules using both simpler statistical methods and
more complex ML techniques: see [8] for a review.

7 Summary and Future Work

We have described an implementation of a full natural language inference and
question answering pipeline built around an extended first order reasoner. The
system is capable of understanding relatively simple sentences and giving rea-
sonable answers to questions, including the types currently out of scope of the
capabilities of LLMs. We plan to enhance the capabilities of the system by
incorporating machine learning techniques to the components of pipeline, while
keeping the overall architecture, including the semantic parser, word knowledge
and a reasoner. At the time of this writing we are experimenting with using
off-the-shelf LLMs without finetuning, but with a suitable prompt, to split and
simplify complex sentences to a degree where our semantic parser is able to
properly convert the meaning of the resulting sentences to logic.
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Abstract. We make two contributions to the study of theory combina-
tion in satisfiability modulo theories. The first is a table of examples for the
combinations of the most common model-theoretic properties in theory
combination, namely stable infiniteness, smoothness, convexity, finite wit-
nessability, and strong finite witnessability (and therefore politeness and
strong politeness as well). All of our examples are sharp, in the sense that
we also offer proofs that no theories are available within simpler signatures.
This table significantly progresses the current understanding of the vari-
ous properties and their interactions. The most remarkable example in this
table is of a theory over a single sort that is polite but not strongly polite
(the existence of such a theory was only known until now for two-sorted
signatures). The second contribution is a new combination theorem show-
ing that in order to apply polite theory combination, it is sufficient for one
theory to be stably infinite and strongly finitely witnessable, thus showing
that smoothness is not a critical property in this combinationmethod. This
result has the potential to greatly simplify the process of showing which
theories can be used in polite combination, as showing stable infiniteness
is considerably simpler than showing smoothness.

Keywords: Satisfiability modulo theories · Theory combination ·
Theory politeness

1 Introduction

Theory combination focuses on the following problem: given procedures for deter-
mining the satisfiability of formulas over individual theories, can we find a pro-
cedure for the combined theory? One of the foundational results in this field
is in Nelson and Oppen’s paper [9], where the authors show how to combine
theories with disjoint signatures as long as they are both stably infinite, i.e., for
every quantifier-free formula that is satisfied in the theory, there is an infinite
interpretation of the theory that satisfies it.

With the introduction of stable infiniteness was born the notion of identifying
model-theoretic properties that enable theory combination. It soon became clear,
c© The Author(s) 2023
B. Pientka and C. Tinelli (Eds.): CADE 2023, LNAI 14132, pp. 522–541, 2023.
https://doi.org/10.1007/978-3-031-38499-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38499-8_30&domain=pdf
http://orcid.org/0000-0002-6539-398X
http://orcid.org/0000-0002-2972-6695
http://orcid.org/0000-0002-9522-3084
https://doi.org/10.1007/978-3-031-38499-8_30


Combining Combination Properties 523

however, that this first step was insufficient, since some important theories with
real-world applications (like the theories of bit-vectors and finite datatypes) turned
out not to be stably infinite. Early attempts to find alternatives for stable infinite-
ness in theory combination included the introduction of gentle [5], shiny [12], and
flexible [7] theories. We focus here on the notion of politeness, which forms the basis
for theory combination in the state-of-the-art SMT solver cvc5 [1].

First considered in [10], polite theories were originally defined as those theo-
ries that are both smooth and finitely witnessable. Both notions are much harder
to test for than stable infiniteness, but once a theory is known to be polite, it
can be combined with any other theory, even non-stably-infinite ones.

A small problem in the proof of the main result of the paper was corrected in
later work [6]. This paper introduces a slightly different, more strict, definition
of politeness, together with a correct proof showing that polite theories can be
combined with arbitrary theories. Following [4], we refer to theories satisfying
the new definition as strongly polite, which is defined as being both smooth and
strongly finitely witnessable; with that in mind, we call theories satisfying the
earlier definition simply polite.

For some time, it was not known whether there exists a theory that is polite
but not strongly polite. Then, in 2021 Sheng et al. [11] provided an example.
This suggests the need for a more thorough analysis of properties such as stable
infiniteness, smoothness, finite witnessability, and strong finite witnessability, as
they appear to interact with each other in sometimes surprising or unforeseeable
ways. We add to this list convexity, which was shown to be closely related to
stable infiniteness in [2].

In this paper, we provide an exhaustive analysis, with examples whenever
possible, of whether and how these properties can coexist. Some combinations
are obviously impossible, such as a strongly finitely witnessable theory that is
not finitely witnessable; the feasibility of other combinations is more elusive; for
instance, it is initially unclear whether there can be a one-sorted, non-stably-
infinite theory that is also not finitely witnessable (we show that this is also
impossible). A main result is a comprehensive table describing what is known
about all possible combinations of these properties.

During the course of filling the table, we were also able to improve polite
combination: by making the involved proof slightly more difficult, we can simplify
the main polite theory combination result: we show that in order to combine
theories, it is enough for one theory to be stably infinite and strongly finitely
witnessable; there is no need for smoothness. This result simplifies the process
of qualifying a theory for polite combination, as showing stable infiniteness is
considerably simpler than showing smoothness.

The paper is organized as follows. Section 2 defines the basic notions we will
make use of throughout the paper. Section 3 proves several theorems showing
the unfeasibility of certain combinations of properties. Section 4 describes the
example theories that populate the feasible entries of the table. Section 5 offers
a new combination theorem. And finally, Sect. 6 gives concluding remarks and
directions for future work.1

1 Due to space limitations, proofs are included in an appendix to [13].
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Fig. 1. Cardinality Formulas. −→x stands for x1, . . . , xn.

2 Preliminary Notions

2.1 First-Order Signatures and Structures

A many-sorted signature Σ is a triple formed by a countable set SΣ of sorts, a
countable set of function symbols FΣ , and a countable set of predicate symbols
PΣ which contains, for every sort σ ∈ SΣ , an equality symbol =σ (often denoted
by =); each function symbol has an arity σ1 × · · · × σn → σ and each predicate
symbol an arity σ1×· · ·×σn, where σ1, . . . , σn, σ ∈ SΣ and n ∈ N. Each equality
symbol =σ has arity σ × σ. A signature with no function or predicate symbols
other than equalities is called empty.

A many-sorted signature Σ is one-sorted if SΣ has one element; we may refer
to many-sorted signatures simply as signatures. Two signatures are said to be
disjoint if they share only sorts and equality symbols.

We assume for each sort in SΣ a distinct countably infinite set of variables,
and define terms, literals, and formulas (atomic or not) in the usual way. If s is a
function symbol of arity σ → σ and x is a variable of sort σ, we define recursively
the term sk(x), for k ∈ N, as follows: s0(x) = x, and sk+1(x) = s(sk(x)). We
denote the set of free variables of sort σ in a formula ϕ by varsσ(ϕ), and given
S ⊆ SΣ , varsS(ϕ) =

⋃
σ∈S varsσ(ϕ) (we use vars(φ) as shorthand for varsSΣ

).
A Σ-structure A is composed of sets σA for each sort σ ∈ SΣ , called the

domain of σ, equipped with interpretations fA and PA of the function and
predicate symbols, in a way that respects their arities. Furthermore, =A

σ must
be the identity on σA.

A Σ-interpretation A is an extension of a Σ-structure that also interprets
variables, with the value of a variable x of sort σ being an element xA of σA; we
will sometimes say that an interpretation B is an interpretation on a structure
A (over the same signature) to mean that B has A as its underlying structure.
We write αA for the interpretation of the term α under A; if Γ is a set of terms,
we define ΓA = {αA : α ∈ Γ}. We write A � ϕ if A satisfies ϕ. A formula ϕ is
called satisfiable if it is satisfied by some interpretation A.

We shall make use of standard cardinality formulas, given in Fig. 1. ψσ
≥n is

only satisfied by a structure A if |σA| is at least n, ψσ
≤n is only satisfied by

A if |σA| is at most n, and ψσ
=n is only satisfied by A if |σA| is exactly n. In

one-sorted signatures, we may drop σ from the formulas, giving us ψ≥n, ψ≤n

and ψ=n.
The following lemmas are generalizations of the standard compactness and

downward Skolem-Löwenheim theorems of first-order logic to the many-sorted
case. They are proved in [8].
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Lemma 1 ([8]). A set of formulas is satisfiable iff each of its finite subsets is
satisfiable.

Lemma 2 ([8]). If a set of formulas is satisfiable, there exists an interpretation
A which satisfies it and where σA is countable whenever it is infinite, for every
sort σ.

A theory T is a class of all Σ-structures that satisfy some set of closed
formulas (formulas without free variables), called the axiomatization of T which
we denote as Ax(T ); such structures will be called the models of T , a model being
called trivial when σA is a singleton for some sort σ in SΣ . A Σ-interpretation
A whose underlying structure is in T is called a T -interpretation. A formula is
said to be T -satisfiable if there is a T -interpretation that satisfies it; a set of
formulas is T -satisfiable if there is a T -interpretation that satisfies each of its
elements. Two formulas are T -equivalent when every T -interpretation satisfies
one if and only if it satisfies the other. We write �T ϕ and say that ϕ is T -valid
if A � ϕ for every T -interpretation A. Let Σ1 and Σ2 be disjoint signatures;
by Σ = Σ1 ∪ Σ2, we mean the signature with the union of the sorts, function
symbols, and predicate symbols of Σ1 and Σ2, all arities preserved. Given a
Σ1-theory T1 and a Σ2-theory T2, the Σ1 ∪ Σ2-theory T = T1 ⊕ T2 is the theory
axiomatized by the union of the axiomatizations of T1 and T2.

2.2 Model-Theoretic Properties

Let Σ be a signature. A Σ-theory T is said to be stably infinite w.r.t. S ⊆ SΣ if,
for every T -satisfiable quantifier-free formula φ, there exists a T -interpretation
A satisfying φ such that, for each σ ∈ S, σA is infinite. T is smooth w.r.t. S ⊆ SΣ

when, for every quantifier-free formula φ, T -interpretation A satisfying φ, and
function κ from S to the class of cardinals such that κ(σ) ≥ |σA| for every σ ∈ S,
there exists a T -interpretation B satisfying φ with |σB| = κ(σ), for every σ ∈ S.

Theorem 1. Let Σ be a signature, S ⊆ SΣ, and T a Σ-theory. If T is smooth
w.r.t. S, then it is also stably infinite w.r.t. S.

For a finite set of sorts S, finite sets of variables Vσ of sort σ for each σ ∈ S,
and equivalence relations Eσ on Vσ, the arrangement on V =

⋃
σ∈S Vσ induced by

E =
⋃

σ∈S Eσ, denoted by δV or δE
V , is the quantifier-free formula given by δV =

∧
σ∈S

[ ∧
xEσy(x = y) ∧

∧
xEσy ¬(x = y)

]
, where Eσ denotes the complement of

the equivalence relation Eσ.
A theory T is said to be finitely witnessable w.r.t. the set of sorts S ⊆

SΣ when there exists a function wit, called a witness, from the quantifier-free
formulas into themselves that is computable and satisfies for every quantifier-
free formula φ: (i) φ and ∃−→w .wit(φ) are T -equivalent, where −→w = vars(wit(φ))\
vars(φ); and (ii) if wit(φ) is T -satisfiable, then there exists a T -interpretation
A satisfying wit(φ) such that σA = varsσ(wit(φ))A for each σ ∈ S. T is said
to be strongly finitely witnessable if it has a strong witness wit, which has the
properties of a witness with the exception of (ii), satisfying instead: (ii′) given
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a finite set of variables V and an arrangement δV on V , if wit(φ) ∧ δV is T -
satisfiable, then there exists a T -interpretation A satisfying wit(φ) ∧ δV such
that σA = varsσ(wit(φ) ∧ δV

)A for all σ ∈ S.
From the definitions, the following theorem directly follows:

Theorem 2. Let Σ be a signature, S ⊆ SΣ, and T a Σ-theory. If T is strongly
finitely witnessable w.r.t. S then it is also finitely witnessable w.r.t. S.

A theory that is both smooth and finitely witnessable w.r.t. (a set of sorts)
S is said to be polite w.r.t. S; a theory that is both smooth and strongly finitely
witnessable w.r.t. S is called strongly polite w.r.t. S. For theories over one-sorted
empty signatures, we have the following theorem from [11]:

Theorem 3 ([11]). Every one-sorted theory over the empty signature that is
polite w.r.t. its only sort is strongly polite w.r.t. that sort.

A one-sorted theory T is said to be convex if, for any conjunction of literals
φ and any finite set of variables {u1, v1, ..., un, vn}, �T φ →

∨n
i=1 ui = vi implies

�T φ → ui = vi, for some i ∈ [1, n].
Given a one-sorted theory T , its mincard function takes a quantifier-free

formula φ and returns the countable cardinal min{|σA| : A is a T -interpretation
that satisfies φ}.2

Throughout this paper, we will use SI for stably infinite, SM for smooth,
FW for finitely witnessable, SW for strongly finitely witnessable, and CV for
convex.

3 Negative Results

If it were possible, we would present examples of every combination of proper-
ties using only the one-sorted empty signature, which is the simplest signature
imaginable.

Of course, this is not always possible: smooth theories are necessarily sta-
bly infinite, and strongly finitely witnessable theories are obligatorily finitely
witnessable. But there are several other connections we now proceed to show,
which further restrict the combinations of properties that are possible.

In Sect. 3.1, we show that, under reasonable conditions, a convex theory must
be stably infinite, while the reciprocal is also true over the empty signature. In
Sect. 3.2, we show that over the empty one-sorted signature, theories that are not
stably infinite are necessarily finitely witnessable (a somewhat counter-intuitive
result, since we usually look for theories that are, simultaneously, smooth and
strongly finitely witnessable) and, more importantly, that stably-infinite and
strongly finitely witnessable one-sorted theories are also strongly polite.

2 Note that this definition was generalized in two different ways to the many-sorted
case in [4] and [10]. However, for our investigation, the single-sorted case is enough.
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3.1 Stable-Infiniteness and Convexity

Convexity is typically defined over one-sorted signatures. Here we offer the fol-
lowing generalization to arbitrary signatures.

Definition 1. A theory T is said to be convex w.r.t. a set of sorts S ⊆ SΣ if,
for any conjunction of literals φ and any finite set of variables {u1, v1, ..., un, vn}
with sorts in S, if �T φ →

∨n
i=1 ui = vi then �T φ → ui = vi, for some i ∈ [1, n].

If we assume, as it is often natural to, that our theories have no trivial models,
then convexity implies stable infiniteness. This is true for the one-sorted case,
as proved in [2], but also for the many-sorted case as we show here. The proof is
similar, though here we need to account for several sorts at once. In particular,
the proof relies on Lemma 1.

Theorem 4. If a Σ-theory T is convex w.r.t. some set S of sorts and, for each
σ ∈ S, �T ψσ

≥2, then T is stably infinite w.r.t. S.

Reciprocally, we may also obtain convexity from stable infiniteness, but only
over empty signatures.

Theorem 5. Any theory over an empty signature that is stably infinite w.r.t.
the set of all of its sorts is convex w.r.t. any set of sorts.

As we shall see in Sect. 4, this result is tight: there are theories over non-empty
signatures that are stably infinite but not convex.

3.2 More Connections

We next present more connections between the properties. First, over the one-
sorted empty signature, a theory must be either stably infinite or finitely wit-
nessable.

Theorem 6. Every one-sorted, non-stably-infinite theory T with an empty sig-
nature is finitely witnessable w.r.t. its only sort.

The following theorem shows that for one-sorted theories, strong politeness
is a corollary of strong finite witnessability and stable infiniteness (rather than
smoothness).

Theorem 7. Every one-sorted theory that is stably infinite and strongly finitely
witnessable w.r.t. its only sort is smooth, and therefore strongly polite w.r.t. that
sort.

Generalizing this theorem to the case of many-sorted signatures is left for future
work.

Finally, by combining previous results, we can also get the following theorem,
which relates stable infiniteness, strong finite witnessability, and convexity.
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Fig. 2. A diagram of combinations over a one-sorted, empty signature: gray regions
are empty.

Theorem 8. A one-sorted theory T with an empty signature that is neither
strongly finitely witnessable nor stably infinite w.r.t. its only sort cannot be con-
vex.

To summarize, while Theorem 4 is restricted to structures with no domains
of cardinality 1, the remaining theorems of this section are not restricted to
such structures. Theorem 5 applies to empty signatures, Theorem 7 applies to
one-sorted signatures, and Theorems 6 and 8 apply to signatures that are both
empty and one-sorted. Put together, we see that many combinations of properties
for theories over a one-sorted empty signature are actually impossible. This is
depicted in Fig. 2, in which all areas but the white ones are empty. For example,
Theorem 6 shows that the area outside the SI and FW circles (representing
theories that are neither stably infinite nor finitely witnessable) is empty, as every
theory (over an empty one-sorted signature) must have one of these properties.
Similarly, Theorem 8 further shows that within the CV (convex) circle, even
more is empty, namely anything outside the SI and SW circles.

4 Positive Results

We now proceed to systematically address all possible combinations of stable-
infiniteness, smoothness, finite witnessability, strong finite witnessability, and
convexity.

The results are summarized in Table 1. Each row corresponds to a possible
combination of properties, as determined by the truth values in the first five
columns. For example, in the first row, the entries in the first five columns are
all true, indicating that in this row, all theory examples must be stably-infinite,
smooth, finitely witnessable, strongly finitely witnessable, and convex. The rest
of the columns correspond to different possibilities for the theory signatures:
either empty or non-empty, and either one-sorted or many-sorted. Again, looking
at the first row, we see four different theories listed, one for each of the signature
possibilities.

Some entries in the table list theorems instead of providing example theories.
The listed theorems tell us that there do not exist any example theories for these



Combining Combination Properties 529

entries. For example, lines 3 and 4 cannot provide examples over a one-sorted
empty signature because of Theorem 3.

When an example is available, its name is given in corresponding cell of the
table. The theories themselves are defined in Sect. 4.1 to 4.4. The examples on
lines 25, 27 and 31 must have at least one structure with a trivial domain (i.e.,
a domain with exactly one element) because of Theorem 4.

Lines 9, 10, 13, and 14 cover theories that are stably infinite and strongly
finitely witnessable but not smooth. We call these unicorn theories because we
could not find any such theories, nor do we believe they exist, but (ignoring the
obvious cases ruled out by Theorems 2, 5 and 7) we have no proof that they do
not exist.

Definition 2. A unicorn theory is stably infinite and strongly finitely witness-
able but not smooth.

Theorem 7 shows that there are no one-sorted unicorn theories. We believe it
may be possible to provide a generalization of the upwards Löwenheim-Skolem
theorem to many-sorted logic in such a way that it would prove the non-existence
of unicorn theories, which leads to the following conjecture:

Conjecture 1. There are no unicorn theories.

Before defining the theories of Table 1, we introduce the following signatures.

Definition 3. Σ1 is the empty one-sorted signature with sort σ, Σ2 is the empty
two-sorted signature with sorts σ and σ2, and Σs is the one-sorted signature with
a single unary function symbol s.

We now describe the theories: Sect. 4.1 describes the theories that are over the
empty one-sorted signature; Sect. 4.2 then continues to the next column, describ-
ing theories over many-sorted empty signatures. Some build on the theories of the
previous column, but some are also new. Section 4.3 describes the next column,
one-sorted theories over a non-empty signature. Here, we use two constructions
to generate new theories from previously introduced ones. One construction adds
a function symbol to an empty signature (in a way that preserves all proper-
ties), and the second preserves all properties but convexity, making it possible
to construct non-convex examples in a uniform way. We also present new theo-
ries when the constructions are not sufficient. Finally, Sect. 4.4 describes theories
over non-empty many-sorted signatures.3

3 Proofs that each theory has the claimed properties can be found in the appendix
to [13].
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Table 1. Summary of all possible combinations of theory properties. Shaded cells
represent impossible combinations. In line 26: n > 1; in line 28: m > 1, n > 1 and
|m − n| > 1.

Empty Non-empty
SI SM FW SW CV One-sorted Many-sorted One-sorted Many-sorted No

T

T

T
T

T T≥n (T≥n)
2 (T≥n)s ((T≥n)

2)s 1
F Theorem 5 (T≥n)∨ ((T≥n)

2)∨ 2

F
T T2,3 Tf (Tf )s 3
F

Theorem 3 Theorem 5 T s
f (T2,3)∨ 4

F
T

T 5
F

Theorem 2 6

F
T T∞ (T∞)2 (T∞)s ((T∞)2)s 7
F Theorem 5 (T∞)∨ ((T∞)2)∨ 8

F

T
T

T Unicorn 9
F

Theorem 7 Theorem 5 Theorem 7 Unicorn 10

F
T T ∞

even (T ∞
even)

2 (T ∞
even)s ((T ∞

even)
2)s 11

F Theorem 5 (T ∞
even)∨ ((T ∞

even)
2)∨ 12

F
T

T 13
F

Theorem 2 14

F
T Tn,∞ (Tn,∞)2 (Tn,∞)s ((Tn,∞)2)s 15
F Theorem 5 (Tn,∞)∨ ((Tn,∞)2)∨ 16

F

T

T
T

T 17
F 18

F
T 19
F

Theorem 1

20

F
T

T 21
F

Theorems 1 and 2 22

F
T 23
F

Theorem 1 24

F

T
T

T T≤1 (T≤1)
2 (T≤1)s ((T≤1)

2)s 25
F T≤n (T≤n)

2 (T≤n)s ((T≤n)
2)s 26

F
T Theorem 8 T odd

1 T �=
odd (T odd

1 )s 27
F T〈m,n〉 (T〈m,n〉)

2 (T〈m,n〉)s ((T〈m,n〉)
2)s 28

F
T

T 29
F

Theorem 2 30

F
T T ∞

1 T �=
1,∞ (T ∞

1 )s 31
F

Theorem 6 T ∞
2 T �=

2,∞ (T ∞
2 )s 32

4.1 Theories over the One-Sorted Empty Signature

Table 2. Σ1-theories

Name Axiomatization

T≥n {ψ≥n}
T∞ {ψ≥k : k ∈ N}
T ∞
even {¬ψ=2k+1 : k ∈ N}

Tn,∞ {ψ=n ∨ ψ≥k : k ∈ N}
T≤n {ψ≤n}
T〈m,n〉 {ψ=m ∨ ψ=n}

Table 3. Σ2-theories

Name Axiomatization

T2,3 {(ψσ
=2 ∧ ψ

σ2
≥k

) ∨ (ψσ
≥3 ∧ ψ

σ2
≥3) : k ∈ N}

T odd
1 {ψσ

=1} ∪ {¬ψ
σ2
=2k : k ∈ N}

T ∞
1 {ψσ

=1} ∪ {ψ
σ2
≥k

: k ∈ N}
T ∞
2 {ψσ

=2} ∪ {ψ
σ2
≥k

: k ∈ N}

The axiomatizations for theories over the one-sorted empty signature Σ1 are
given in Table 2. We briefly describe them here.
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For each n > 0, T≥n includes all structures with domains of cardinality at
least n; T∞ is the theory including all structures whose domains are infinite;
T ∞
even has structures with either an even or an infinite number of elements in

their domains and was defined in [11], where it was proved to be finitely wit-
nessable, but neither smooth nor strongly finitely witnessable. The proofs justify-
ing Table 1 show additionally that it is stably infinite and convex. Tn,∞ contains
those structures whose domains have either exactly n or an infinite number of
elements; T≤n includes all structures with at most n elements in their domains;
and for positive integers m and n, T〈m,n〉 has structures whose domains have
either precisely m elements, or precisely n elements. This completes the first
column of theory examples.

Example 1. The theory T≥n admits all considered properties, while T〈m,n〉
admits only finite witnessability.

4.2 Theories over the Two-Sorted Empty Signature

We next introduce the theories over empty two-sorted signatures. For many
cases, we can simply add a trivial sort to one of the theories defined in Sect. 4.1.
When this is not possible, we introduce new theories.

Adding a Sort to a Theory. Any Σ1-theory can be used to generate a Σ2-
theory simply by adding the sort σ2 to the signature (without changing the
axiomatization). This is formalized as follows:

Definition 4. Let T be a Σ1-theory. (T )2 is the Σ2-theory axiomatized by
Ax(T ).

Lemma 3. A Σ1-theory T is stably infinite, smooth, finitely witnessable,
strongly finitely witnessable, or convex w.r.t. {σ} if and only if (T )2 is, respec-
tively, stably infinite, smooth, finitely witnessable, strongly finitely witnessable,
or convex w.r.t. {σ, σ2}.

Using Definition 4 and Lemma 3, we can populate many lines in the second
column of examples by extending the corresponding theory from the previous
column.

Example 2. (T≥n)2 is a theory over two sorts, σ and σ2, whose structures must
have at least n elements in the domain of σ (but have no restrictions on the
size of the domain of σ2). As seen in the first line of Table 1, T≥n admits all the
considered properties. By Lemma 3, so does (T≥n)2.

Additional Theories over Σ2. On some lines, e.g., line 3, there is no Σ1-theory
to extend. In such cases, we cannot use Definition 4 to construct a many-sorted
variant.

We introduce the theories shown in Table 3 to cover these cases. The theory
T2,3 contains two kinds of structures: (i) structures whose domains both have at
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least 3 elements; and (ii) structures with exactly two elements in the domain of
σ and an infinite number of elements in the domain of σ2. The theory T odd

1 has
structures with exactly one element in the domain of σ and either an odd or an
infinite number of elements in the domain of σ2. The theory T ∞

1 is similar: it has
structures with exactly one element in the domain of σ and an infinite number
of elements in the domain of σ2. Finally, T ∞

2 is similar to T ∞
1 except that its

structures have exactly 2 elements in the domain of σ.

Example 3. The theory T2,3 was first defined in [4] and later used in [11], where
it was proved to be polite (and therefore smooth, stably infinite, and finitely
witnessable) without being strongly polite (and therefore not strongly finitely
witnessable). The justification proofs for Table 1 show that T2,3 is convex as
well.4

4.3 Theories over a One-Sorted Non-empty Signature

We continue to the next column, with one-sorted non-empty signatures.
Section 4.3 shows how to construct non-empty theories from one-sorted theo-
ries over the empty signature, while preserving all their properties. In Sect. 4.3,
we provide a similar construction which generates non-convex theories from the
theories in the first column of examples. And in Sect. 4.3, we introduce addi-
tional theories not captured by the above constructions. Two of these theories
are described in more detail in Sect. 4.3.

Extending a Theory with a Unary Function Symbol While Preserv-
ing Properties. Whenever we have a theory over an empty signature, we can
construct a variant of it over a non-empty signature by introducing a function
symbol and interpreting it as the identity function. This extension preserves all
the properties that we consider. This is formalized as follows.

Definition 5. Let Σn be an empty signature with sorts S = {σ1, . . . , σn}, and
let T be a Σn-theory. The signature Σn

s has sorts S and a single unary function
symbol s of arity σ1 → σ1, and (T )s is the Σn

s -theory axiomatized by Ax(T ) ∪
{∀x. [s(x) = x]}, where x is a variable of sort σ1.

Lemma 4. For every theory T over an empty signature Σn with sorts S =
{σ1, . . . , σn}: T is stably infinite, smooth, finitely witnessable, strongly finitely
witnessable, or convex w.r.t. S if and only if (T )s is, respectively, stably infinite,
smooth, finitely witnessable, strongly finitely witnessable, or convex w.r.t. S.

We use the operator (·)s in various places in Table 1 in order to obtain examples
in non-empty signatures from existing examples over Σ1 and Σ2.

Example 4. (T≥n)s is a one-sorted theory, whose structures have at least n ele-
ments and interpret the function symbol s as the identity. As seen above, T≥n

admits all the considered properties. By Lemma 4, so does (T≥n)s.
4 We thank Oded Padon for raising the question of whether there exists a theory that

is polite and convex, but not strongly polite.
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Making a Theory Non-convex. The last general construction that we present
aims at taking a theory and creating a non-convex variant of it while preserving
the other properties we consider. This can be done with the addition of a single
unary function symbol s. To define such a theory, we make use of the formula
ψ∨ from Fig. 3. Intuitively, ψ∨ states that in an interpretation A in which it
holds, sA(sA(a)) must equal either sA(a) or a itself; in other words, either a =
sA(a) = sA(sA(a)), a = sA(sA(a)) �= sA(a), or a �= sA(a) = sA(sA(a)), as
shown in Fig. 4.

Fig. 3. The formula ψ∨ for non-convex theories.

This is especially useful for defining non-convex theories, since (s2(x) = x)∨
(s2(x) = s(x)) is valid in the theory, but neither s2(x) = x nor s2(x) = s(x) is.
Notice, of course, that non-convexity is only possible when there are at least two
elements available in the domain – otherwise, all equalities are satisfied.

Fig. 4. Possible scenarios when ψ∨ holds.

Definition 6. Let T be a theory over an empty signature with sorts S =
{σ1, . . . , σn}. Then (T )∨ is the Σn

s -theory axiomatized by Ax(T ) ∪ {ψ∨}.

Lemma 5. Let T be a theory over an empty signature Σn with sorts S =
{σ1, . . . , σn}. Then: (T )∨ is stably infinite, smooth, finitely witnessable, or
strongly finitely witnessable w.r.t. S if and only if T is, respectively, stably infi-
nite, smooth, finitely witnessable, or strongly finitely witnessable w.r.t. S. In
addition, if T has a model A with |σA

1 | ≥ 2, (T )∨ is not convex with respect to
S.

Example 5. The theory (T≥n)∨ is one-sorted, and its structures have at least n
elements. they interpret the symbol s in a way that satisfies ψ∨. In particular, for
each element a of the domain, one of the scenarios from Fig. 4 holds. According
to Lemma 5, since T≥n admits all properties, (T≥n)∨ admits all properties but
convexity.
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Additional Theories over Σs. Whenever there is a Σ1-theory with some
properties, we can obtain a Σs theory with the same properties using one of the
techniques above. To cover cases for which there is no corresponding Σ1-theory,
we use the theories presented in Table 4 and described below.

Table 4. Σs-theories

Name Axiomatization

Tf {[ψ=
≥f1(k) ∧ ψ �=

≥f0(k)
] ∨

∨k
i=1[ψ

=
=f1(i) ∧ ψ �=

=f0(i)
] : k ∈ N \ {0}}

T s
f Ax(Tf ) ∪ {ψ∨}

T �=
odd {ψ=1 ∨ [¬ψ=2k ∧ ∀ x. ¬(s(x) = x)] : k ∈ N}

T �=
1,∞ {ψ=1 ∨ [ψ≥k ∧ ∀ x. ¬(s(x) = s)] : k ∈ N}

T �=
2,∞ {[ψ=2 ∧ ∀ x. (s(x) = x)] ∨ [ψ≥k ∧ ∀ x. ¬(s(x) = x)] : k ∈ N}

We start with T =
odd , T =

1,∞, and T =
2,∞, deferring the discussion on Tf and T s

f

to Sect. 4.3. The theory T =
odd has structures A with either an infinite or an odd

number of elements and with the property that if A is not trivial, then sA(a) �= a

for all a ∈ σA. The theory T =
1,∞ has all structures A that either: (i) are trivial;

or (ii) have infinitely many elements and for which sA(a) �= a for each a ∈ σA.
Similarly, T =

2,∞ has structures A that either: (i) have exactly two elements and
interpret s as the identity; or (ii) have infinitely many elements and interpret s
in such a way that sA(a) �= a for all a ∈ σA.

On the Theories T f and T s
f . We now introduce the theories Tf and T s

f . The
importance of these theories is that both of them are one-sorted theories that
are polite but not strongly polite (the first is also convex and the second is not).
Their existence improves on the result of [11], which introduced a two-sorted
theory that is polite but not strongly polite (namely T2,3).

For their axiomatizations, we use the formulas from Fig. 5, in which s is a
unary function symbol. ψ=

≥n (ψ=
=n) states that a structure A has at least (exactly)

n elements a satisfying sA(a) = a; similarly, ψ =
≥n (ψ =

=n) states that a structure
A has at least (exactly) n elements a satisfying sA(a) �= a.

Further, the axiomatization requires a function f from positive integers to
{0, 1} that is not computable with the property that for k > 0, f maps half of
the numbers in the interval [1, 2k] to 1 and the other half to 0. The existence of
such a function is formalized below. We start by defining counting functions f0
and f1.

Definition 7. Let f : N \ {0} → {0, 1}. For i ∈ {0, 1} and n ∈ N, fi(n) is
defined by: fi(n) = |f−1(i) ∩ [1, n]|.
Intuitively, f0(n) counts how many numbers between 1 and n (inclusive) are
mapped by f to 0 and f1(n) counts how many are mapped to 1. Because f(n)
always equals 0 or 1, it is easy to see that for every n > 0, n = f1(n) + f0(n).
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Fig. 5. Cardinality formulas for signatures with a unary function symbol s. −→x stands
for x1, . . . , xn, p(x) for s(x) = x, and δn for

∧
1≤i<j≤n ¬(xi = xj).

Lemma 6. There exists a function f : N \ {0} → {0, 1} such that f(1) = 1 with
the properties that: f is not computable; and, for every k ∈ N \ {0}, f0(2k) =
f1(2k).

Example 6. The constant function that assigns 0 to all positive integers satisfies
neither the first nor the second condition of Lemma 6. The function that assigns
0 to even numbers and 1 to odd numbers satisfies the second condition, but not
the first. Of course, any non-computable function satisfies the first condition. An
example could be found by a function that returns 1 if the Turing machine that
is encoded by the given number halts and 0 otherwise, under some encoding.
Finding a function that admits both conditions is more challenging.

Let f be some function with the properties listed in Lemma 6. We can now
define Tf over Σs (note that f itself is not a part of the signature, but is rather
used to help define the axioms of Tf ). Tf consists of those structures A that
either (i) have a finite cardinality n, with f1(n) elements satisfying sA(a) = a,
and f0(n) elements satisfying sA(a) �= a (and thus A satisfies ψ=

≥f1(k)
∧ ψ =

≥f0(k)

for k ≤ n, and ψ=
=f1(n)

∧ψ =
=f0(n)

and hence
∨k

i=1[ψ
=
=f1(i)

∧ψ =
=f0(i)

] for all k ≥ n);
or (ii) have infinitely many elements, with infinitely many elements satisfying
each condition, sA(a) = a and sA(a) �= a (and thus A satisfies ψ=

≥f1(k)
∧ ψ =

≥f0(k)

for all k ∈ N). Note that the description is well-defined because an element must
always satisfy either sA(a) = a or sA(a) �= a, but never both or neither of these.
The theory T s

f is similar to Tf , but in addition to Ax(Tf ) its structures must
also satisfy ψ∨.

Remark 1. The construction of T s
f from Tf is very similar to the general con-

struction of Definition 6. However, the corresponding result, Lemma 5, accord-
ing to which all properties but convexity are preserved by this operation, is only
shown in Lemma 5 for cases where the original signature is empty, which is not
the case for Tf . Obtaining T s

f from Tf is not done by adding a function sym-
bol, but rather by changing the axiomatization of the already existing function
symbol. While we do prove that T s

f has the required properties, a general result
in the style of Lemma 5 for arbitrary signatures, with the ability to preserve an
existing function symbol instead of adding a new one, is left for future work.
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Example 7. Let An be a Σs-model with domain {a1, . . . , an} such that: sAn(ai)
equals ai if 1 ≤ i ≤ f1(n), and a1 if f1(n) < i ≤ n (the second condition may be
void if n = 1). Then An is a model of both Tf and T s

f .
If κ is an infinite cardinal, let Aκ be a Σs-model with domain A ∪ {an : n ∈

N \ {0}} (where A is a set of cardinality κ disjoint from {an : n ∈ N \ {0}}) such
that sAκ(ai) = ai for each i ∈ N \ {0}, and sAκ(a) = a1 for each a ∈ A. Then
Aκ is a model of both Tf and T s

f .

To show that Tf is smooth and finitely witnessable, we construct, given a
Tf -interpretation. another Tf -interpretation by (possibly) adding two disjoint
sets of elements to the interpretation, one whose elements will satisfy s(a) = a,
and one whose elements will satisfy s(a) �= a.

To show that it is not strongly finitely witnessable, we use the following
lemmas, which are interesting in their own right. According to the first, the
mincard function of Tf is not computable.

Lemma 7. The mincard function of Tf is not computable.

The second lemma that is needed in order to prove that Tf is not strongly
finitely witnessable, is quite surprising. As it turns out, for quantifier-free formu-
las, the set of Tf -satisfiable formulas coincides with the set of satisfiable formulas.
That is, even though the definition of Tf is very complex, it induces the same sat-
isfiability relation, over quantifier-free formulas, as the simplest theory possible
– the theory axiomatized by the empty set (or, equivalently, all valid first-order
sentences).

Lemma 8. Every quantifier-free Σs-formula that is satisfiable is Tf -satisfiable.

Note that Lemma 8 does not hold for quantified formulas in general. For example,
the formula ∀x. s(x) �= x is satisfiable but not Tf -satisfiable: because f(1) = 1,
every Tf -interpretation A must have at least one element a with sA(a) = a.

Using Lemma 7 and 8, it is possible to show that Tf is not strongly finitely
witnessable:

Lemma 9. Tf is not strongly finitely witnessable.

The idea of the proof of Lemma 9 goes as follows: assume for contradiction
that there is a strong witness wit. The mincard function for Tf can then be
defined as

mincard(φ) = min{|V/E| : E ∈ eq andwit(φ) ∧ δE
V is Tf -satisfiable}, (1)

where eq is the set of all equivalence relations E on V = vars(wit(φ)), being
the corresponding arrangements denoted by δE

V . Clearly, the sets V and eq can
be effectively computed. Also, by Lemma 8, testing for the Tf -satisfiability of
quantifier-free formulas is decidable. Together with our assumption that wit is
computable, we get that the mincard function of Tf is computable, which con-
tradicts Lemma 7.

The arguments for T s
f are very similar, and require minor changes in the

corresponding proofs for Tf .
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Remark 2. We remark on the connection between the results regarding Tf and
T s

f , and those of [3]. What we show here is that Tf (T s
f ) is polite but not

strongly polite. Figure 1 of [3] summarizes the relations between these two prop-
erties for the one-sorted case. It shows that polite theories that are axiomatized
by a universal set of axioms, and whose quantifier-free satisfiability problem is
decidable, are strongly polite. While Tf is decidable for quantifier-free formulas
(this is a corollary of Lemma 8), its presentation here is definitely not as a uni-
versal theory. On the other hand, [3] also shows that decidable polite theories
for which checking if a finite interpretation belongs to the theory is decidable
are also strongly polite. However, it is undecidable, given an interpretation, to
check whether it belongs to Tf (and T s

f ): such an algorithm would lead to an
algorithm to compute f as well. Thus, the theories Tf and T s

f are polite, but
do not meet the criteria for strong politeness from [3]. And indeed, they are not
strongly polite.

4.4 Theories over Many-Sorted Non-empty Signatures

For the last column of Table 1, all possible theories can be obtained from theories
that were already defined, using a combination of Definitions 4 to 6, and so there
is no need to present additional theories specifically for many-sorted non-empty
signatures.

Example 8. Line 1 includes the theory ((T≥n)2)s, obtained from (T≥n)2 using
Definition 5, where the latter theory is obtained from T≥n using Definition 4.
This theory admits all properties, including convexity. To obtain a non-convex
variant, the theory ((T≥n)2)∨ is constructed in a similar fashion, using Definition
6 instead of Definition 5.

With many-sorted non-empty signatures, we can always find an example for
each combination of properties, except for those that are trivially impossible due
to Theorems 1 and 2 (i.e., theories that are strongly finitely witnessable but not
finitely witnessable and theories that are smooth but not stably infinite). This
is nicely depicted by Fig. 6. Theorems 1 and 2 are represented in this figure by
the location of the circles: the circle for smooth theories is entirely inside the
circle for stably infinite theories, and similarly for strongly finitely witnessable
and finitely witnessable theories. Then, for every region in this figure, the right-
most column of Table 1 has an example, the sole exception being the region that
represents unicorn theories.

Remark 3. For non-empty signatures, we chose to include functions rather than
predicates. This is not essential as we can replace function symbols by predicate
symbols by including the sort of the result of the function as the last component
of the arity of the predicate, and then adding an axiom that forces the predicate
to be a function.
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5 Polite Combination Without Smoothness

Polite combination of theories was introduced in [10]. There, it was claimed that
in order to combine a theory T with any other theory using polite combination, it
suffices for T to be smooth and finitely witnessable (that is, polite). Later, in [6],
this condition was corrected, and it was shown that in fact a stronger requirement
is needed from T : it has to be smooth and strongly finitely witnessable (that is,
strongly polite) to be applicable for the combination method.

Given that weakening strong finite witnessability to finite witnessability
results in a condition that does not suffice, it is natural to ask whether there is
any other way to weaken the required conditions for polite combination. Rather
than weakening strong finite witnessability to finite witnessability, here we con-
sider another option: weakening the smoothness condition to stable infiniteness.
Thus, the main result of this section is that polite combination can be done for
theories that are stably infinite and strongly finitely witnessable, even if they
are not smooth.

Fig. 6. A diagram of the various notions studied in this paper. (Color figure online)

Our contribution can be understood by viewing Fig. 6, ignoring the circle that
represents convexity (a property unrelated to the current section). [6] shows
that polite combination can be done for the purple region, which represents
smooth and strongly finitely witnessable theories. [6] also presented an example
showing that expanding the same combination method to the blue region, which
represents smooth and finitely witnessable theories, results in an error. Here we
instead expand polite combination to the red region, which represents stably
infinite and strongly finitely witnessable theories. Now, the red region, if not
empty, is only populated by unicorn theories (see Sect. 4). If such theories do not
exist, the result follows immediately. Until this is settled, however, we provide a
direct proof, regardless of the existence of unicorn theories.

The next theorem shows that polite theory combination can be done for
theories that are not necessarily strongly polite (smooth and strongly finitely
witnessable), but rather that are simply stably infinite and strongly finitely wit-
nessable.
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Theorem 9. Let Σ1 and Σ2 be disjoint signatures with sorts S1 and S2; let T1

be a Σ1-theory, T2 be a Σ2-theory, and T = T1⊕T2; and let φ1 be a quantifier-free
Σ1-formula and φ2 a quantifier-free Σ2-formula.

Assume that T2 is stably-infinite and strongly finitely witnessable w.r.t. S =
S1∩S2, with strong witness wit. Let ψ = wit(φ2), Vσ = varsσ(ψ) for every σ ∈ S
and V =

⋃
σ∈S varsσ(ψ). Then the following are equivalent:

1. φ1 ∧ φ2 is T -satisfiable;
2. there exists an arrangement δV over V such that φ1 ∧ δV is T1-satisfiable and

ψ ∧ δV is T2-satisfiable.

It relies heavily on the following lemma, that proves that stable infiniteness and
strong finite witnessability imply a weaker notion of smoothness. In this weaker
notion, uncountable domains in the original structure A are reduced to countable
ones, and the function κ, that dictates the cardinalities of models, is assumed to
never assign an uncountable cardinal to any of the sorts.

Lemma 10. Let Σ be a signature with S ⊆ SΣ, and T a theory over Σ. If T is a
stably-infinite and strongly finitely witnessable theory, both w.r.t. the set of sorts
S, then: for every quantifier-free Σ-formula φ; T -interpretation A that satisfies
φ; and function κ from SA

ω = {σ ∈ S : |σA| ≤ ω} to the class of cardinals such
that |σA| ≤ κ(σ) ≤ ω for every σ ∈ SA

ω , there exists a T -interpretation B that
satisfies φ with |σB| = κ(σ) for every σ ∈ SA

ω , and |σB| = ω for every σ ∈ S\SA
ω .

The proof of Theorem 9 goes as follows: first, we make the infinite domains
corresponding to shared sorts of a model A of φ1 ∧ δV at most countable, by
applying Lemma 2. We then proceed similarly to the proof of the polite com-
bination method in [6]: decrease a model B of ψ ∧ δB by using wit as a strong
witness; and then make the cardinalities of the shared sorts in B equal those of
A (which are at most countable), by using Lemma 10.

This result greatly improves the state-of-the-art in polite theory combination,
which requires proving that one of the theories is both smooth and strongly
finitely witnessable. Thanks to this theorem, proving smoothness can be replaced
by proving stable infiniteness, which is typically a much easier task.

6 Conclusion

As mentioned, there are two main contributions offered in this paper, both asso-
ciated with the theme of theory combination. In Sect. 4, we provide a table with
examples for almost all the combinations of stable infiniteness, smoothness, con-
vexity, finite witnessability, and strong finite witnessability known not to be
impossible. Section 3 provides theorems proving the sharpness of the examples
provided. The second contribution is a new combination theorem, according to
which polite theory combination can be done without smoothness, provided we
have instead stable infiniteness.

Many ideas for future work rise from the studies here presented. A first
direction would be to settle the question of whether unicorn theories exist: if
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they do not, a proof would probably involve an interesting generalization of
the upward Löwenheim-Skolem theorem for many-sorted logic and would imply
that strongly polite theories are just simply stably-infinite and strongly finitely
witnessable theories, thus greatly simplifying the proof of Theorem 9; if unicorn
theories do exist, one wonders if they can be combined in some meaningful
way. Another direction of future work involves considering other model-theoretic
properties in our table, such as shininess, gentleness, flexibility, and so on, as well
as the effect of taking proper subsets of sorts for signatures containing more than
one sort.
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Abstract. First-order logic fragments mixing quantifiers, arithmetic,
and uninterpreted predicates are often undecidable, as is, for instance,
Presburger arithmetic extended with a single uninterpreted unary pred-
icate. In the SMT world, difference logic is a quite popular fragment
of linear arithmetic which is less expressive than Presburger arithmetic.
Difference logic on integers with uninterpreted unary predicates is known
to be decidable, even in the presence of quantifiers. We here show that
(quantified) difference logic on real numbers with a single uninterpreted
unary predicate is undecidable, quite surprisingly. Moreover, we prove
that difference logic on integers, together with order on reals, combined
with uninterpreted unary predicates, remains decidable.

Keywords: First-order logic · Decidability · SMT · Arithmetic ·
Uninterpreted predicates

1 Introduction

The success of satisfiability modulo theories (SMT) solvers in verification can
be attributed to several things, but one of them is indisputably the omnipres-
ence, in the combination of theories, of arithmetic reasoners. As SMT solvers
get stronger in quantified reasoning, it becomes more interesting to get a clear
picture of decidability frontiers when arithmetic is used in a quantified SMT
context. Some pure arithmetic theories are already undecidable, even in their
quantifier-free fragment, e.g., Peano arithmetic [12], i.e., a first-order theory
of the natural numbers with addition and multiplication. However, Presburger
arithmetic, somehow the linear restriction of Peano arithmetic, is decidable even
in the quantified case [10], but augmenting Presburger arithmetic with a single
unary uninterpreted predicate already yields undecidability [7,11,19]. To obtain
a decidable fragment mixing arithmetic and uninterpreted predicates, one must
further restrict the expressiveness.

In the SMT world, difference logic used to be a popular fragment of arith-
metic, because of its low complexity in the quantifier-free case. In this fragment,
arithmetic is limited to difference constraints of the form x − y �� c where x
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and y are variables, c is an integer constant and �� belongs to {<,≤,=,≥, >}.
Difference constraints can, e.g., express conditions on the distance between two
variables, the atomic formula x−y = 2 stating that the distance between the val-
ues of x and y must be exactly 2. Notice that since difference constraints involve
only two variables (c is an integer constant) those constraints are strictly less
expressive than linear constraints in Presburger arithmetic. The decidability of
the logic mixing difference constraints and unary uninterpreted predicates, when
interpreted over N (or similarly Z) reduces to the decidability of the monadic
second-order theory of one successor, usually referred to as S1S. The decidability
of S1S has been established thanks to the concept of infinite-word automaton [4].

On the real domain, it is well known that the first-order theory of real-
closed fields, which is in a sense the real counterpart of Peano arithmetic, is
decidable [20] even in the presence of quantifiers. Whereas this might give the
impression that decidability is more often obtained on the reals than on the
integers, we here prove that the logic mixing difference constraints and unary
uninterpreted predicates, when interpreted over R, is undecidable.

Further restricting the arithmetic language, and considering order on the
real domain only, it is known that the monadic second-order theory of order is
undecidable [9,17], but its universal fragment is decidable [5]. In this work, we
establish that the fragment mixing unary uninterpreted predicates, difference
constraints over integer variables, and order constraints over real variables is
decidable.

Section 2 provides some prerequisites and the precise definition of the stud-
ied fragments. In Sect. 3, we prove the decidability of the fragment mixing unary
uninterpreted predicates, difference constraints over integer variables, and order
constraints over real variables. This was already the subject of a work-in-progress
workshop paper [1]. In Sect. 4, we prove that the fragment of quantified differ-
ence constraints over real variables extended with a single unary uninterpreted
predicate is undecidable.

2 Preliminaries

We refer to e.g., [8] for a general introduction to first-order logic with equal-
ity, and assume that the reader is familiar with the notions of signature, term,
variable, and formula. We use the usual logical connectives (∨, ∧, ¬, ⇒, ⇔)
and first-order quantification ∃x. ϕ and ∀x. ϕ, respectively equivalent to writing
∃x (ϕ) and ∀x (ϕ), i.e., the dot stands for an opening parenthesis that is closed
at the end of the formula. Variable symbols are denoted by x, y, z, . . . and are
meant to be interpreted as real numbers.

Our signature contains the interpreted arithmetic symbols 0, 1, +, −, <, ≤,
≥, >, =, and other constants in N that stand for terms 1 + 1 + · · · + 1. We
furthermore use a monadic (i.e., unary) interpreted predicate x ∈ Z to denote
that x has an integer value. The signature also contains uninterpreted predicate
symbols P , Q, . . . In the whole article, we only consider unary predicate symbols.
Indeed, including binary uninterpreted predicates without restriction on first-
order quantification directly yields undecidability. Our language is the set of all
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well-formed formulas, in the usual sense, built using symbols from the signature.
Further specific restrictions will be introduced later.

An interpretation specifies a domain (i.e., a set of elements), assigns a value
in the domain to each free variable, and assigns relations of appropriate arity on
the domain to predicate symbols in the signature. Throughout the article, the
interpretation domain is always R. The arithmetic symbols 0, 1, +, −, <, ≤, ≥,
>, = are interpreted as expected on R, and x ∈ Z is true if and only if x has
an integer value1. An interpretation assigns an arbitrary subset of the domain R

to each unary predicate. By extension, an interpretation assigns a value in R to
every term, and a truth value to every formula. We denote the interpretation I
of a variable x by I[x], and the interpretation of a predicate P by I[P ]. A model
of a formula is an interpretation that assigns true to this formula. A formula is
satisfiable on a domain (here R) if it has a model on that domain.

2.1 Difference Arithmetic with Unary Predicates

We consider several fragments where the language is restricted, in particular in
the way that the arithmetic relations can be used. A fragment is decidable if
there exists a procedure to check whether a given formula in this fragment is
satisfiable.

In the various fragments introduced below, all arithmetic atoms are either
order constraints of the form x��y, or difference constraints of the form x−y �� c,
where x and y are variables, c is a constant in Z, and �� ∈ {<,≤,=,≥, >}. As
a reminder, the language of our formulas only contains unary predicates. The
only atoms besides the arithmetic ones are of the form P (x) where P is an
uninterpreted predicate symbol and x is a variable, and x ∈ Z where x is a
variable. Note that the addition of constraints of the form x �� c, where x is a
variable and c is an integer constant, to fragments that already admit difference
constraints does not increase their expressive power: constraints x �� c can be
replaced by difference constraints x − v0 �� c, where v0 is a particular variable
in Z intended to be interpreted as zero. Indeed, shifting an interpretation by a
fixed integer j — i.e., the new interpretation of any variable x is the old value
of x plus j, and the new value of any predicate P for a real number d+ j is the
old value of P for d — preserves the assigned value of formulas in our fragments.
Therefore any model where v0 is an arbitrary integer can be shifted into a model
where v0 is zero.

As syntactic sugar, conjunctions of order constraints will be merged to
improve readability, i.e., we will often write x < y < z rather than x < y∧y < z.
Finally, we use the shorthand P (x + c) instead of ∃y. y − x = c ∧ P (y), where x
is a free variable and c ∈ Z.

We now introduce our fragments of interest. Their names are inspired from
the SMT-LIB nomenclature, where acronyms stand for the theories that appear
in the combinations:

1 In the current context, this choice of notation for mixed integer-real arithmetic is
simpler than using a multi-sorted logic.
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– uf1: the theory of uninterpreted functions, with the restriction that uninter-
preted symbols may only correspond to monadic predicates;

– ro: the theory of order on the reals only;
– iro: the theory of order on the reals and integers;
– idl: difference logic on the integers;
– rdl: difference logic on the reals.

uf1·ro. The fragment uf1·ro is the fragment with unary uninterpreted predi-
cates and order constraints between variables interpreted over R. Difference logic
constraints and atoms of the form x ∈ Z are not allowed.
Example: The formula ∀x∃ y, z . y < x < z ∧ ∀t . (y < t < z ∧ P (t)) ⇒ t = x
describes a predicate P that is true only on isolated real numbers.
uf1·iro. The fragment uf1·iro is the extension of uf1·ro where atoms of the
form x ∈ Z are allowed. This fragment can express order relations between real
and integer variables.
Example: The formula ∀x, y. (x < y ∧ x ∈ Z ∧ y ∈ Z) ⇒ ∃v. x < v < y ∧ P (v)
describes a predicate P that is true for at least one value located between any
two integers.
uf1·idl·iro. The fragment uf1·idl·iro is an extension of the fragment uf1·iro
(and therefore of uf1·ro). It is also interpreted over R. Order constraints between
variables and atoms of the form x ∈ Z are allowed. Additionally, difference logic
constraints are allowed, but they can only involve integer-guarded variables.

In order to enforce this integer-guard restriction on difference logic con-
straints, uf1·idl·iro formulas must be well-guarded, i.e., difference logic con-
straints can only appear in the two following contexts:

– x ∈ Z ∧ y ∈ Z ∧ x − y �� c,
– (x ∈ Z ∧ y ∈ Z) ⇒ x − y �� c,

where x and y are variables, c ∈ Z is a constant, and �� ∈ {<,≤,=,≥, >}.
Example: The following formula describes a predicate that is either true on all
odd numbers and false on all even numbers, or the opposite, as well as true on
all non-integer numbers:[∀x, y.

(
x ∈ Z ∧ y ∈ Z ∧ y − x = 2

) ⇒ (
P (x) ⇔ P (y)

)]

∧[∃x, y. x ∈ Z ∧ y ∈ Z ∧ P (x) ∧ ¬P (y)
] ∧ [∀z.¬(z ∈ Z) ⇒ P (z)

]

uf1·rdl. The fragment uf1·rdl is the fragment interpreted over R, where order
constraints, difference logic constraints and unary predicate atoms are allowed
without any restriction. The use of atoms of the form x ∈ Z is forbidden. Since
order constraints are a special case of difference logic constraints, the name of
the fragment only refers to rdl and not ro.
Example: The formula ∀x∃y. 0 < y − x < 3∧ P (y) describes a predicate P such
that any subinterval of R of length greater or equal to 3 contains a value for
which P is true.
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Note: It might appear to the reader that a missing logic in this nomenclature
is uf1·irdl, with difference logic constraints on both real and integer variables.
We will later show that uf1·rdl is already undecidable, so it makes little sense
to introduce any extension of it.

3 Decidability of uf1·idl·iro
The fragment uf1·ro is actually a restriction of the universal fragment of the
monadic second-order theory of the real order R, i.e., uf1·ro augmented with
universal quantification of predicate variables. It has been established in [5] that
the universal fragment of the monadic second-order theory of the real order R

is decidable, which trivially implies the decidability of uf1·ro. We show here
that its extension uf1·idl·iro (and therefore uf1·iro) is also decidable, by a
reduction to uf1·ro.

Theorem 1. uf1·idl·iro and uf1·iro are decidable.

Note that the decidability of uf1·iro is a direct consequence of the decidabil-
ity of uf1·idl·iro, since uf1·idl·iro is an extension of uf1·iro. The remaining
of this section is thus dedicated to proving that uf1·idl·iro is decidable.

3.1 Recognizing Integer Values

We first show how to define in uf1·ro a predicate Pint over R that is <-
isomorphic to Z, i.e., such that there exists a bijection between the sets described
by Pint and Z that preserves the order relation over their elements. Integer guards
in uf1·idl·iro will later be translated using Pint. Intuitively, an integer-guarded
variable in a uf1·idl·iro formula will correspond to a variable taking its value
in the set described by Pint in the translated uf1·ro formula.

We axiomatize Pint in uf1·ro as follows:

• Every element of Pint is isolated:
∀x∃ y, z. y < x < z ∧ ∀t. [y < t < z ∧ Pint(t)] ⇒ t = x.

• Every point in R has a unique successor in Pint:
∀x∃ y. x < y ∧ Pint(y) ∧ ∀t. x < t < y ⇒ ¬Pint(t).

• Similarly, every point in R has a unique predecessor in Pint:
∀x∃ y. y < x ∧ Pint(y) ∧ ∀t. y < t < x ⇒ ¬Pint(t).

The set of all integers is a model for Pint, therefore the above axiomatization
is consistent. The set of elements satisfying Pint is necessarily infinite and does
not admit a maximal or a minimal element. This is a direct consequence of the
successor and predecessor axioms. More interestingly, this set is also necessarily
countable. Indeed, since each point is isolated, there exists an application that
maps the elements satisfying Pint to disjoint open intervals. Any set of disjoint
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intervals in R with non-zero length is necessarily countable [18], since each of
them contains a rational value that does not belong to the others.
It is now possible to define a successor relation on the real numbers satisfying Pint
with the formula Succ(x, y)=Pint(x)∧ Pint(y)∧ y<x ∧ ∀z. y<z<x ⇒ ¬Pint(z),
i.e., x is the successor of y, or equivalently, y is the predecessor of x.
The axiomatization of Pint is, in fact, precise enough to have the following lemma.

Lemma 1. For any model M of Pint, the set M [Pint] is <-isomorphic to Z.

For convenience in the proof, we define 0int as an arbitrary existentially
quantified value that belongs to the set described by Pint.

Proof. Given a model M of the axiomatization of Pint, we need to define a
bijection between the set M [Pint] and Z that preserves order.

Let us define an application f from M [Pint] to Z. We set f(0int) = 0, and
then define recursively:

– f(y) = f(x) + 1 for each x, y ∈ M [Pint] such that y > 0int and Succ(y, x),
– f(y) = f(x) − 1 for each x, y ∈ M [Pint] such that y < 0int and Succ(x, y).

Thanks to the fact that every element of M [Pint] has a unique predecessor
and successor, it follows that f ranges over the whole set Z, proving that f is
surjective. Since it is clear that f preserves order, it follows that f is strictly
increasing, and therefore injective. It remains to show that f is well defined for
every element in M [Pint].

If there exists some element y ∈ M [Pint] for which f is not defined, it means
that f is not well-defined, in the sense that there exists either an element y > 0int
such that the interval [0int, y] contains an infinite number of elements satisfying
Pint, or there exists an element y < 0int such that the interval [y, 0int] contains an
infinite number of elements satisfying Pint. Since both cases are symmetric, we
only address the former. There must exist a strictly increasing infinite series of
elements in M [Pint] bounded by y. Let us consider its limit z ∈ R. Because there
must exist an element of M [Pint] smaller than z and arbitrarily close to z, it
follows that z cannot have a predecessor, which contradicts an axiom. Therefore
f is well-defined, and every element of M [Pint] is associated to an integer number.
The application f is therefore a bijection. ��

3.2 Translating Formulas

We are now able to describe the satisfiability-preserving translation of formulas
from uf1·idl·iro to uf1·ro. Consider a uf1·idl·iro formula ϕ. Without loss of
generality, we assume that Pint does not appear in ϕ. The translation of ϕ is
defined as

AXIOMSint(Pint) ∧ �ϕ�

where AXIOMSint(Pint) is the conjunction of the axioms of Pint, and �·� is a
translation operator. This translation operator �·� distributes over all Boolean
operators and quantifiers, and corresponds to the identity transformation for
most considered atoms, except in the following cases:
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– �x ∈ Z� = Pint(x);
– �x − y �� c� = ∃z0, . . . zc . (y = z0) ∧ (x �� zc) ∧ ∧

0≤i<c Succ(zi+1, zi),
for c ∈ N and �� ∈ {<,≤,=,≥, >}. We assume that z0, . . . zc are fresh vari-
ables w.r.t. x and y.

Example: �x − y ≤ 2� = ∃z0, z1, z2. y = z0 ∧ Succ(z1, z0) ∧ Succ(z2, z1) ∧ x ≤ z2.
Notice that we only deal with the case c∈N since every atom of the form x−y �� c
with c ∈ Z\N and �� ∈ {<,≤,=,≥, >} can be rewritten as y−x ��′ −c with the
following correspondences: (��, ��′) ∈ {(=,=), (<,>), (>,<), (≥,≤), (≤,≥)}.

3.3 Establishing Equisatisfiability

Given a uf1·idl·iro formula ϕ, the translation that we have introduced generates
a corresponding uf1·ro formula ψ. To establish that they are equisatisfiable, we
need to prove that if ϕ admits a model, then ψ also admits one, and reciprocally.

Lemma 2. Given a uf1·idl·iro formula ϕ, consider its translation into uf1·ro
ψ = AXIOMSint(Pint) ∧ �ϕ�. The formulas ϕ and ψ are equisatisfiable.

Proof. If ϕ is satisfiable, let M be one of its models. Then, since ψ shares the
same free variables and predicates than ϕ with the only addition of Pint, we
can directly construct a model M ′ of ψ that is similar to M for the shared
variables and predicates, and that interprets Pint so that Pint(x) holds whenever
x ∈ Z. This is always possible since the only constraints on Pint generated by
the construction of ψ are the axioms stated above.

If ψ is satisfiable, then there exists a model M of ψ. Let us construct a
model M ′ of ϕ. Let 0int ∈ R be an arbitrary element of M [Pint]. We define an
automorphism g of R, such that g(0int) = 0, and recursively g(y) = g(x) + 1 for
x, y ∈ M [Pint], y > 0int and Succ(y, x), and g(y) = g(x) − 1 for x, y ∈ M [Pint],
y < 0int and Succ(x, y). The automorphism g maps each open interval between
the k-th and (k + 1)-th successors (resp. predecessors) of 0int in M [Pint], onto
the open interval (k, k + 1) (resp. (−(k+1),−k)) while preserving order.

M ′ is defined by M ′[x] = g(M [x]) for each free variable x of the formula
ϕ, and M ′[P ] = {g(x) |x ∈ M [P ]} for each uninterpreted predicate P of ϕ.
No unary predicate atom can be violated by M ′ by definition. Furthermore, no
order constraint can be violated by M ′ either since g preserves order. Regarding
the difference logic constraints, the intermediate variables zi introduced in the
translation are necessarily mapped to values in M [Pint] since the Succ relation
enforces this property. Hence for each such variable, we have g(M [zi]) ∈ Z.
Intuitively, this ensures that in M ′ the difference between the values taken by
the integer variables is consistent with the difference logic constraints. It follows
that M ′ is a model of ϕ. ��

4 Undecidability of uf1·rdl
The result presented in the previous section establishes a lower bound for the
decidability of our family of fragments. A natural follow-up problem is to estab-
lish a corresponding upper bound, i.e., to find an extension of this logic that
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yields undecidability. We show here that, when combined with uninterpreted
unary predicates, as soon as difference logic constraints on reals are allowed, the
logic becomes undecidable.

We actually show a stronger result which is that a single unary predicate sym-
bol is enough to yield undecidability. More precisely, we establish the undecid-
ability of the restriction of uf1·rdl where only one predicate symbol is allowed,
by reducing the halting problem of a Turing machine to the satisfiability problem
over this restriction of uf1·rdl.
Theorem 2. Satisfiability is undecidable for uf1·rdl with a single predicate.

Corollary 1. Satisfiability is undecidable for uf1·rdl.
The remaining of this section is dedicated to proving Theorem 2. We consider

w.l.o.g. Turing machines defined over an alphabet with only two symbols and no
explicit blank symbol [16]. This choice leads to a simpler proof.

4.1 Definitions

The proof is by reduction from the halting problem for a Turing machine with
a single bi-infinite tape, starting from a blank tape (i.e., a tape filled with the
symbol 0). Consider a Turing machine M = (Q,Σ, qI , qF ,Δ), where

– Q is a finite nonempty set of states,
– Σ is the alphabet {0, 1},
– qI ∈ Q is the initial state,
– qF ∈ Q is the halting state,
– Δ ⊆ {(Q\{qF })×Σ ×Q×Σ ×{L,R}} is the transition relation, assumed to

be total over its first two components, i.e., for any pair (q, α) ∈ (Q\{qF })×Σ,
there exists a tuple (q, α, q′, α′, λ) ∈ Δ.

A configuration C of such a Turing machine is a triplet containing the current
state q, the content of the tape t ∈ {0, 1}Z and the position of the head h ∈ Z.
Since the machine starts from a blank tape, the initial configuration is C0 =
(qI , 0Z, 0).

A run ρ of length n ∈ N (resp. n = +∞) of such a Turing machine is a finite
(resp. infinite) sequence of configurations (Ci)i∈[0,n] (resp. (Ci)i∈N), such that for
any two consecutive configurations Ci = (qi, ti, hi) and Ci+1 = (qi+1, ti+1, hi+1)
there exists a transition (q, α, q′, α′, λ) ∈ Δ such that:

– q = qi and q′ = qi+1,
– ti[hi] = α, i.e., the tape cell at position hi contains the symbol α,
– ti+1[hi] = α′,
– ti+1[k] = ti[k], for every k ∈ Z, k �= hi,
– hi+1 = hi + 1 if λ = R, and hi+1 = hi − 1 if λ = L.

A halting run is a finite run such that the state of its last configuration is the
halting state qF .



550 B. Boigelot et al.

4.2 Encoding Runs

Our goal is to encode a run of a Turing machine (as described before), i.e., encode
the state, the tape content, and the position of the head for each configuration
of such a run. Starting from the initial configuration, we must also ensure the
coherence of the run w.r.t. the Turing machine transition relation, by connecting
every two consecutive configurations. Our idea is to define an infinite sequence
of intervals on the real line, such that each interval contains the encoding of its
corresponding configuration (i.e., the first interval will contain the first configu-
ration of the run, and so on). Difference constraints can then be used to connect
consecutive configurations.

Let N = �log2(|Q|)�. Each state q ∈ Q of M can therefore be uniquely
encoded with N Boolean values bq

1, . . . b
q
N . We want to encode consecutive con-

figurations of the Turing machine using a single predicate P over R. In order to
do so, we first need to describe a subset of R that will act as a grid supporting
the encoding of the state, the tape content, and the head position of the current
configuration.

We use the concept of linear ordering [15] to describe the shape of the grid.
A linear ordering J is a totally ordered set, i.e., a set equipped with a binary
relation < which is irreflexive (for all j in J , j �< j), asymmetric (for all j, k in
J , if j < k, then k �< j), transitive (for all i, j, k in J , if i < j and j < k, then
i < k), and complete (for all j, k ∈ J , either j = k, j < k, or k < j). The order
type of a linear ordering J is the class of all linear orderings <-isomorphic to J .
The order types of a singleton, the set composed of the N first natural numbers,
N, and Z are respectively denoted by 1, N , ω, and ζ. The concatenation of two
linear orderings J and K (where their associated order relations are respectively
<J and <K) is denoted by J+K. It corresponds to the linear ordering composed
of the set of pairs {(j, 1) | j ∈ J} ∪ {(k, 2) | k ∈ K}, and equipped with the order
relation <, defined by (j1, 1) < (j2, 1) if j1 <J j2, (k1, 2) < (k2, 2) if k1 <K k2,
and (j, 1) < (k, 2) for every j ∈ J and k ∈ K. More generally, given two linear
orderings J and K, the linear ordering (J)K is the set of pairs (j, k) with j ∈ J
and k ∈ K, with the order relation < such that (j1, k1) < (j2, k2) if either
k1 <K k2, or k1 =K k2 and j1 <J j2. These operators are naturally extended on
order types. For instance, the order type (ω)ω is the class of all linear orderings
<-isomorphic to N

2.
The grid we consider is a linear ordering that is a subset of R, of order type(

N + ζ + 1 + ζ
)ω. An ordering of order type N + ζ + 1 + ζ within the interval

[0, 3) is depicted in Fig. 1. Each dot corresponds to a natural number and each
vertical line corresponds to an element of the linear ordering. The first N points
will support the encoding of a state. The first subordering that is <-isomorphic
to Z (i.e., of order type ζ) will be used to encode the position of the head, while
the second one will support the encoding of the tape content. The whole grid is
composed of an infinite repetition of the subordering N + ζ + 1 + ζ (i.e., it is
repeated on the intervals [3k, 3k + 3) for all k ∈ N), hence the ω exponent.
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Fig. 1. A visual representation of a linear ordering of order type N + ζ + 1 + ζ.

4.3 Defining the Support of the Encoding

Let us first define concretely the support of the encoding of the Turing machine
configurations. The difficulty lies in describing the grid using a single predicate
P , without meddling with the actual encoding of the configurations afterwards.
Our solution is to characterize the points that belong to the grid by enforcing
that such a point is surrounded by an open interval where P is uniformly true
on the left, and by an open interval where P is uniformly false on the right, such
as depicted in Fig. 2. We do not specify yet how P behaves on x, as this is how
the configurations will actually be encoded later.

Fig. 2. The real number x belongs to the grid, since it is surrounded by a true (black)
open interval on the left, and a false (white) open interval on the right.

Such a characterization is easy to express in our restriction of uf1·rdl:

Support(x)=(∃y. y<x∧∀z. y<z<x ⇒ P (z))∧(∃y. x<y∧∀z. x<z<y ⇒ ¬P (z))

Let us now partially axiomatize the predicate P such that the set of support-
ing points constitutes a linear ordering of order type

(
N + ζ + 1 + ζ

)ω:

(a) Let 0 be a variable and 1,2 and 3 be respectively the +1-successor of 0, 1
and 2:
Axiom1 = (1 = 0+ 1) ∧ (2 = 1+ 1) ∧ (3 = 2+ 1)
These free variables are implicitly existentially quantified in the final for-
mula.
Notice that the variable 0 can be interpreted as any real value, which only
acts as a landmark for the beginning of the grid.

(b) 0, 1 and 2 are supporting points:
Axiom2 = Support(0) ∧ Support(1) ∧ Support(2)

(c) P is uniformly true before 0, i.e., there are no supporting points before 0:
Axiom3 = ∀x. x < 0 ⇒ P (x)
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(d) There are exactly N − 2 supporting points within the interval (0,1):
Axiom4 = ∃x1, x2, . . . xN . x1 = 0 ∧ xN = 1

∧∧
1≤i<N

(
0 ≤ xi < 1 ∧ SuccSupp(xi+1, xi)

)

where SuccSupp(x, y) is a formula that states that x is the first supporting
real value that is strictly greater than y, i.e., x is the successor of y on the
grid. It is defined as follows:
SuccSupp(x, y) = y < x ∧ Support(x) ∧ Support(y) ∧ ∀ z. y < z < x ⇒ ¬Support(z)
We also define an analogous formula to express that x is the predecessor of
y: PredSupp(x, y) = SuccSupp(y, x).

(e) The set of supporting points within (1,2) is <-isomorphic to Z. This is
done similarly to the axiomatization of Pint (cf. Section 3.1). But because 1
(resp. 2) is a supporting point, there must exist a uniformly false (resp. true)
interval of P at its right (resp. left) where no other supporting points can
appear. All the supporting points will therefore be constrained to appear
within a smaller interval (b1, b2) with 1 < b1 < b2 < 2, as illustrated in
Fig. 3.

Axiom5 = [∃b1, b2.1 < b1 < b2 < 2] (1)
∧ [∀x. (b1 < x < b2) ⇒ ∃y. x < y < b2 ∧ Support(y)

∧ ∀z. x < z < y ⇒ ¬Support(z)] (2)
∧ [∀x. (b1 < x < b2) ⇒ ∃y. b1 < y < x ∧ Support(y)

∧ ∀z. y < z < x ⇒ ¬Support(z)] (3)
[∀x. (1 < x < 2 ∧ Support(x)) ⇒ b1 < x < b2] (4)

This axiom can be broken down into these elementary pieces:
(1) there exists an open interval (b1, b2) such that 1 < b1 < b2 < 2,
(2) each real value in (b1, b2) has a supporting successor,
(3) each real value in (b1, b2) has a supporting predecessor,
(4) there are no supporting points within (1, b1), nor within (b2,2).

(f) The pattern of supporting points within (1,2) is repeated onto the interval
(2,3) with an exact offset of 1:
Axiom6 = ∀x.1 < x < 2 ⇒ (Support(x) ⇔ Support(x + 1))

(g) The pattern of supporting points within [0,3) is repeated onto every interval
[3k,3k+ 3) for k ∈ N:
Axiom7 = ∀x. x ≥ 0 ⇒ (Support(x) ⇔ Support(x + 3))

Notice that for Axiom7, it is not enough that a similar pattern appears within
each interval [3k,3k+ 3): there must be an exact offset of 3 with the previous
interval. This is mandatory to connect two consecutive configurations and ensure
that they are coherent with the transition relation of the Turing machine, as
defined later. The same goes for Axiom6, where the exact offset of 1 will allow to
connect the position of the head to the tape content within a single configuration.
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The formula AXIOMSSupp =
∧

1≤k≤7

Axiomk axiomatizes the predicate P .

Fig. 3. The points of the grid surrounded by open true (black) and false (white)
intervals within (1,2).

Fig. 4. A model for the axiomatization of P over the interval (−∞, 1).

Lemma 3. The formula AXIOMSSupp is consistent.

The proof sketch below provides the key ideas to construct a model of
AXIOMSSupp. The complete construction is described in [2].

Proof. Let us construct a subset S of R that is a model of AXIOMSSupp. Firstly,
we make every negative number belong to S, which ensures that there do not
exist negative supporting points. The interval [0, 1] is then cut into 2N − 2
intervals of equal length, which alternate between being included in S, and being
disjoint from S. This ensures the existence of exactly N − 1 supporting points
within the interval (−∞, 1), 0 being the first; 1 will be considered later. These
N − 1 supporting points are referred to as s1, s2, . . . sN−1 and are depicted in
Fig. 4. Recall that the supporting points are exactly those surrounded by an
interval of S (i.e., black on the figure) on the left, and an interval disjoint from
S (i.e., white) on the right.

In order to make the real value 1 the N -th supporting point, it is enough
to make an interval on its right disjoint from S, e.g., the interval (1, 1 + 1

4 ).
Symmetrically, we make the interval (2 − 1

4 , 2) included in S, satisfying the left
part of the requirement for the real value 2 to be a supporting point.
We further characterize S such that the set of supporting points within the
interval (1+ 1

4 , 2− 1
4 ) is <-isomorphic to Z. This can be done by partitioning the

Fig. 5. A model for the axiomatization of P over the interval (1, 2).
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open interval (1+ 1
4 , 2− 1

4 ) into a bi-infinite sequence of open intervals alternating
between being included and disjoint from S, as depicted in Fig. 5.

The whole pattern described on the interval (1, 2) can be directly transposed
onto the interval (2, 3) with an exact offset of +1. Similarly, the distribution of
S over the interval (0, 3) can be transposed onto every interval (3k, 3k+3) with
an offset of +3k, for k > 0. The only real values for which we do not describe
their relation with S are the points surrounded by an interval included in S on
one side, and an interval disjoint from S on the other side. These points never
conflict with the axiomatization AXIOMSSupp which only deals with non-empty
open intervals.

By construction, S satisfies each axiom of the formula AXIOMSSupp, and is
therefore a model of this formula. ��

4.4 Encoding a Configuration of the Turing Machine

Now that the supporting grid has been properly defined, the actual encoding of
a given configuration can be addressed. That is, the state, the tape content and
the head position of the (k + 1)-th configuration of a run are encoded on the
supporting points contained within the interval [3k, 3k + 3).

Encoding the State. Encoding the state of a given configuration is rather
direct since we defined the grid to contain N consecutive supporting points
within every interval [3k, 3k + 1] for k ∈ N, that can support the encoding
of a state. We only need to indicate that we start reading the encoding on a
multiple of 3. However the logic uf1·rdl does not allow to express periodicity
constraints on variables. Nevertheless, thanks to our axiomatization, 0 and every
other positive multiple of 3 are the only points that simultaneously have no
supporting predecessor, while admitting a supporting successor. These properties
are expressible as follows:
NoPredSupp(x) = ∀z. (z < x ∧ Support(z)) ⇒ ∃y. z < y < x ∧ Support(y)
HasSuccSupp(x) = ∃z. x < z ∧ Support(z) ∧ ∀y. x < y < z ⇒ ¬Support(y)
For convenience, we introduce the formula EncodingBegins to characterize a real
value x on which the encoding of a state starts:
EncodingBegins(x) = Support(x) ∧ NoPredSupp(x) ∧ HasSuccSupp(x)
Furthermore, the formula Stateq expresses that a state q ∈ Q is encoded on a
given real number x and its N − 1 supporting successors:

Stateq(x) = EncodingBegins(x) ∧ ∃y1, . . . yN . x = y1

∧
∧

1≤i<N

SuccSup(yi+1, yi) ∧
∧

1≤i≤N

P (yi) = bq
i

where P (yi) = bq
i is a shorthand for P (yi) if bq

i = �, and ¬P (yi) if bq
i = ⊥.

Encoding the Head Position. The position of the head is encoded in the
second part of the grid, that is, in the interval (3k +1, 3k +2) for the (k +1)-th
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configuration (cf. Fig. 1). The grid on this interval is <-isomorphic to Z. Each
element of this subordering will correspond to a position of the tape. When the
predicate P is true at such a point, it means that the head points towards that
cell. Since the Turing machines that we consider here have a single read/write
head, it must point towards a unique cell for each configuration. Therefore P
must be true only for a single element of that subordering.

Encoding the Tape Content. Similarly, the tape content is encoded in the
third part of the grid, that is, in the interval (3k + 2, 3k + 3) for the (k + 1)-th
configuration (cf. Fig. 1). Again, the grid on this interval is <-isomorphic to Z.
And again, each element x of this subordering will correspond to a cell of the
tape, matching the cell that corresponds to x − 1 in the head position interval.
Figure 6 illustrates the connections between the suborderings, within a single
configuration and with the next one. The idea of the encoding is to simply set
the value of P to true on the elements of the subordering that correspond to
cells containing a 1, and to false for cells containing a 0.

Fig. 6. The first two consecutive configuration encodings.

4.5 Enforcing a Valid Run

Let us now define formally the formulas characterizing an accepting run of M.
We will decompose the global formula into three main parts: the initial con-
ditions STARTM, the conditions on the transitions STEPM and the halting
condition ENDM. For the sake of clarity, we use capital letters for these higher-
level formulas.
The initial conditions of M are that the state encoded on 0 and its N − 1 sup-
porting successors is the initial state q0, that the head points towards a unique
initial unspecified cell of the tape, and finally that the tape is initially filled with
0’s. These conditions are expressed by the following formula:

STARTM = Stateq0(0) ∧ [∃y.1 < y < 2 ∧ Support(y) ∧ P (y)

∧ ∀x. (1 < x < 2 ∧ Support(x) ∧ P (x)) ⇒ x = y
]

∧ [∀y. (2 < y < 3 ∧ Support(y)) ⇒ ¬P (y)
]

The requirements on the transition are more complex. Intuitively, if before
reaching the step i ∈ N, we have not yet encountered the halting state qF ,
then we must ensure that the configuration at Step i can be obtained from the
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configuration at the previous step i−1 by following a transition (q, α, q′, α′, λ) ∈
Δ. The overall formula for this condition is the following:

STEPM = ∀y. (y > 0 ∧ EncodingBegins(y) ∧ NotEndedM(y))
⇒ ∃x. y = x + 3 ∧ TransitionM(x, y)

The subformula NotEndedM(y) expresses that no valid real value prior to y
(i.e., a positive multiple of 3 strictly smaller than y) encodes the halting state.
This formula is defined by:

NotEndedM(y) = ∀x. (x < y ∧ EncodingBegins(x)) ⇒ ¬(StateqF (x))

The subformula TransitionM(x, y) expresses that there exists a transition
(q, α, q′, α′, λ) ∈ Δ that allows to move in one step from the configuration
encoded at x (i.e., that the encoding of the configuration starts exactly on x),
to the configuration corresponding to y. To improve readability, we decompose
the condition on the transition relation as follows:

TransitionM(x, y) =
∨

(q,α,q′,α′,λ)∈Δ

[
Stateq(x) ∧ Stateq′(y) ∧ Tapeα,α′(x, y) ∧ Headλ(x, y)

]

For a given transition (q, α, q′, α′, λ) ∈ Δ, the conditions on the states, tape
and head are expressed as follows:

– The state q must be encoded on the real value x, and the state q′ on y:
Stateq(x) ∧ Stateq′(y)

– The tape must contain α ∈ {0, 1} at the position of the head for the step
corresponding to x. Additionally, for the step corresponding to y, the tape
must contain α′ at the previous position of the head, and remain unchanged
at all other positions.

Tapeα,α′(x, y) =
[∀z. (x + 1 < z < x + 2 ∧ Support(z) ∧ P (z))

⇒ P (z + 1) = α ∧ P (z + 4) = α′]

∧[∀z. (x + 1 < z < x + 2 ∧ Support(z) ∧ ¬P (z)) ⇒ (P (z + 1) ⇔ P (z + 4))
]

where P (z + k) = α is a shorthand for ∃u. u = z + k ∧ P (u) if α = 1, and
∃u. u = z + k ∧ ¬P (u) if α = 0. The “ + 1” operator allows us to connect the
encoding of the head position with the encoding of the tape content within
the same configuration. The “ + 4” operator does the same while jumping to
the next configuration (cf. Fig. 4). Notice that this formula does not involve y;
it assumes (rightfully, given the formula STEPM) that the equality y = x+3
holds.

– The head is moved in the direction specified by λ ∈ {L,R}, i.e., left for L and
right for R. This can be expressed by exploiting the predecessor and successor
relations defined for supporting real values.

Headλ(x, y) = ∀z. (x + 1 < z < x + 2 ∧ Support(z) ∧ P (z))
⇒ ∃v. fλ(v, z + 3) ∧ P (v) ∧ ¬P (z)
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where fR = SuccSupp and fL = PredSupp. Since in the initial configuration
of the Turing machine the head points towards a single cell, the formula
Headλ ensures that this remains the case throughout every run of the Turing
machine.

Finally, the existence of a halting run is expressed by the formula:

ENDM = ∃x.StateqF (x)

The global formula that expresses that the Turing machine M halts on some
run encoded by the value of the predicate P is the following:

HALTM = STARTM ∧ STEPM ∧ ENDM ∧ AXIOMSSupp

where AXIOMSSupp is the axiomatization of the supporting points as described
in Sect. 4.3.

By construction, satisfiability of the global formula HALTM is equivalent to
the existence of a halting run for the Turing machine M. It follows that the
satisfiability problem for uf1·rdl is undecidable, which proves Theorem 2.

5 Conclusion

This work provides a lower and an upper bound for the decidability of first-
order fragments with quantifiers mixing uninterpreted unary predicates and weak
forms of real arithmetic. This draws a precise picture of the frontier of decid-
ability in fragments mixing real arithmetic and uninterpreted predicates.

We proved the decidability of the fragment uf1·idl·iro, where uninterpreted
unary predicates, order constraints between real and integer variables, and dif-
ference logic constraints between integer variables are allowed. This result is
a consequence of the already established decidability of its restriction uf1·ro,
where only uninterpreted unary predicates and order constraints between real
values are allowed. To the best of our knowledge, there does not exist yet a
practical decision procedure for uf1·ro.

There exist fragments of arithmetic that are more expressive than difference
logic, but still weaker than full Presburger arithmetic. It would be interesting
to investigate if decidability for these is preserved in presence of uninterpreted
unary predicates. Note however that our proof of decidability strongly relies on
the translation of the constraints into the first-order theory of order over R, with
unary predicates. This translation is not suitable for, e.g., constraints of the form
x + y �� 0, where x and y are variables, and �� ∈ {<,≤,=,≥, >}.

In another result, we established the undecidability of the fragment uf1·rdl,
where uninterpreted unary predicates and difference logic constraints between
real variables are allowed. It is worth mentioning that this result can be adapted
straightforwardly to the same logic interpreted over the domain Q.

Our long term goal is to design an effective decision procedure for the decid-
able fragment. Complexity results have been established [6,13,14] for the tempo-
ral logic counterpart of the theory of order, to which we reduce the decidability of
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our fragment of interest. We are currently designing a decision procedure relying
on the concept of automata on linear orderings introduced in [3]. We hope that
the insight we obtained through this decision procedure will eventually guide the
design of new powerful instantiation techniques for SMT in a more expressive
context, and that these techniques will happen to be complete in particular for
this decidable fragment.

Acknowledgments. We are thankful to Tanja Schindler and the reviewers of this
paper and of our previous work-in-progress workshop paper for their comments.

References

1. Boigelot, B., Fontaine, P., Vergain, B.: Decidability of difference logics with unary
predicates. In: Proceedings, 7th International Workshop on Satisfiability Checking
and Symbolic Computation (2022)

2. Boigelot, B., Fontaine, P., Vergain, B.: Decidability of difference logic over the reals
with uninterpreted unary predicates. arXiv preprint arXiv:2305.15059 (2023)

3. Bruyère, V., Carton, O.: Automata on linear orderings. J. Comput. Syst. Sci. 73(1),
1–24 (2007)

4. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science (1962)

5. Burgess, J.P., Gurevich, Y.: The decision problem for linear temporal logic. Notre
Dame J. Formal Logic 26(2), 115–128 (1985)

6. Cristau, J.: Automata and temporal logic over arbitrary linear time. In: FSTTCS
2009. LIPIcs, vol. 4, pp. 133–144 (2009)

7. Downey, P.J.: Undecidability of Presburger arithmetic with a single monadic pred-
icate letter. Center for Research in Computer Technology, Harvard University,
Technical report (1972)

8. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press,
Boston (2001)

9. Gurevich, Y., Shelah, S.: Monadic theory of order and topology in ZFC. Ann.
Math. Logic 23(2–3), 179–198 (1982)

10. Haase, C.: A survival guide to Presburger arithmetic. ACM SIGLOG News 5(3),
67–82 (2018)

11. Halpern, J.Y.: Presburger arithmetic with unary predicates is Π1
1 complete. J.

Symbolic Logic 56(2), 637–642 (1991)
12. Matiyasevich, Y.V.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)
13. Rabinovich, A.: Temporal logics over linear time domains are in PSPACE. Inf.

Comput. 210, 40–67 (2012)
14. Reynolds, M.: The complexity of temporal logic over the reals. Ann. Pure Appl.

Logic 161(8), 1063–1096 (2010)
15. Rosenstein, J.G.: Linear Orderings. Academic Press, Cambridge (1982)
16. Shannon, C.E.: A universal Turing machine with two internal states. Automata

Stud. 34, 157–165 (1956)
17. Shelah, S.: The monadic theory of order. Ann. Math. 102(3), 379–419 (1975)
18. Sierpiński, W.: Cardinal and ordinal numbers, 2nd edn. PWN, Warszawa (1965)
19. Speranski, S.O.: A note on definability in fragments of arithmetic with free unary

predicates. Arch. Math. Log. 52(5–6), 507–516 (2013)
20. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn.

University of California Press, Berkeley (1951)

http://arxiv.org/abs/2305.15059


Decidability of Difference Logic over the Reals 559

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Incremental Rewriting Modulo SMT

Gerald Whitters1(B), Vivek Nigam3, and Carolyn Talcott2

1 UPENN, Philadelphia, USA
whitters@seas.upenn.edu

2 SRI International, Menlo Park, USA
3 Federal University of Paráıba, João Pessoa, Brazil

Abstract. Rewriting Modulo SMT combines two powerful automated
deduction techniques (1) rewriting and (2) SMT-solving. Rewriting
enables the specification of behavior of systems using rewriting rules,
while SMT theories specify system properties. Rewriting Modulo SMT
is enabled by combining existing tools, such as Maude and SMT solvers.
Search algorithms used for carrying out Rewriting Modulo SMT, how-
ever, cannot exploit the incremental solving features available in SMT
solvers as they are based on breadth-first search. This paper addresses
this limitation by proposing Incremental Rewriting Modulo SMT The-
ories, which is a syntactical restriction to rewriting rules. This restric-
tion turns out to naturally be used in several applications of Rewriting
Modulo SMT, including the verification of algorithms, cyber-physical
systems, and security protocols. Moreover, we propose a Hybrid-Search
algorithm for Incremental Rewriting Modulo SMT Theories that com-
bines breadth-first search and depth-first search, thus enabling incre-
mental SMT-solving. We demonstrate through a collection of existing
benchmarks that the Hybrid-Search algorithm can achieve a 10 times
performance improvement in verification times.

1 Introduction

Rewriting modulo SMT [14] is the result of the combination of two powerful
automated deduction methods: rewriting logic and SMT-solving. It is supported
by the integration [11] of powerful tools, such as Maude [6] and Z3 [8]. During
rewriting, a set of constraints on the symbols appearing in a term are generated.
These constraints can be, for example, non-linear arithmetic constraints that
specify possible values that can be assumed by the configuration parameters.
Demonstrating properties of such specifications amounts to search using these
rewrite rules and satisfiability checking of the accumulated constraints using
SMT solvers. Rewriting modulo SMT has been successfully applied in several
case-studies from several domains, including safety of cyber-physical systems
(CPSes) [13]; verification of algorithms [2]; and for network security analysis [16].

One important aspect that has not been addressed until now is how to exploit
an SMT solver’s capability of incrementally solving problems. In this solving
method, instead of checking for the satisfiability of a formula from scratch, it re-
uses data previously computed by prior checks. For example, if the satisfiability
c© The Author(s) 2023
B. Pientka and C. Tinelli (Eds.): CADE 2023, LNAI 14132, pp. 560–576, 2023.
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of a formula b has been checked, the check on b∧bI may re-use the intermediate
results obtained while checking for the satisfiability of b. It has been shown
that incremental solving can greatly improve performance by a factor of 2–5
times [10].1

The search algorithms used to implement rewriting modulo SMT are similar
to those implemented in the Maude search engine [6]. They use a breadth-first
search (BFS) algorithm with memoization techniques in order to improve per-
formance. This type of search seems incompatible with incremental solving as
constraints appearing in different branches of the search tree are generated under
different conditions. Thus, it is hard to define what the increment (bI mentioned
above) would be.

This paper’s goal is to enable rewriting modulo SMT that can exploit incre-
mental solving. To achieve this, we make the following contributions:

– Incremental Rewriting Modulo SMT by identifying a class of rewrite
rules that are amenable to incremental solving. More specifically, rewrite rules
are applied to terms containing symbols paired with a set of boolean terms
constraining the values of these symbols. Moreover, any rewrite rule can only
add new constraints, i.e., not change the existing set of constraints on the term
that is being rewritten. We show that a variety of theories used in published
case studies can be seen to be amenable to incremental solving.

– A Hybrid Search Algorithm for Incremental Theories which combines
breadth and depth-first search (DFS) strategies. The combination is param-
eterized by a level of depth parameter which specifies how many depth-first
search steps shall be performed before switching to a breath-first search. The
proposed hybrid search algorithm enjoys the benefits of BFS, namely better
coverage as it alternates through different branches of the search tree, and
the benefits of DFS, namely incremental solving.

We carried out a collection of experiments (the case studies mentioned above)
on algorithm verification, cyber-physical systems verification, and network secu-
rity analysis. The experiments show that in all these benchmarks, the hybrid
search algorithm outperforms current BFS techniques, in some experiments
achieving a 10 factor performance improvement.

Section 2 illustrates the problems of existing BFS methods for Rewriting
Modulo SMT and proposes Incremental Rewriting Theories which formalizes the
notion of increments. Section 3 describes the Hybrid algorithm proposed illus-
trating how it enables incremental SMT solving. Section 4 describes experiments
that compare different search mechanisms (BFS, DFS, and Hybrid) on existing
benchmarks from the literature. Finally, we conclude by discussing Related Work
in Sect. 5 and Future Work in Sect. 6.

2 Incremental Rewriting Modulo SMT

Rewriting logic [12] is a logical formalism that is based on two ideas: states of
a system are represented as elements of an algebraic data type, specified in an
1 Albeit, incremental solving can also reduce performance depending on the theories

that are used.
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equational theory, and the behavior of a system is given by local transitions
between states described by rewrite rules. A rewrite rule has the form t → t′ if
b, where t and t′ are terms possibly containing variables and b is a condition (a
boolean term). Such a rule applies to a system in state s (a ground term) if t can
be matched to a part of s by supplying the right values for the variables, and if
the condition b holds when supplied with those values. In this case, the rule can
be applied by replacing the part of s matching t by t′ using the matching values
for the variables in t′.

Maude is a language and tool based on rewriting logic [6]. Maude provides
a high performance rewriting engine featuring matching modulo associativity,
commutativity, and identity axioms; and search and model-checking capabilities.
Thus, given a specification S of a concurrent system, one can execute S to find
one possible behavior; use search to see if a state meeting a given condition can
be reached; or model-check S to see if a temporal property is satisfied, and if
not, to see a computation that is a counterexample.

Symbolic rewriting modulo SMT [13,14] allows rewriting symbolic states
(t, b), where t is a term possibly containing variables and b a boolean term con-
straining the allowed values of variables of t. The symbolic state (t, b) represents
the set of (concrete) states that are instances of t such that the instantiating
substitution satisfies b. Thus a rewrite to a symbolic state t′, b′) such that b′

is not satisfiable represents the empty set of concrete rewrites and satisfiability
can be checked at each step to avoid useless work. This independent of checking
that a goal is satisfied by a symbolic state. To implement symbolic rewriting in
Maude, variables are replaced by symbols, treated as constants by Maude, and
translated as variables when using an SMT solver to check satisfiability of the
constraint. Symbolic rewriting allows us to reason about open systems, and to
reason about all (possibly infinitely many) instances of a configuration.

Verification problems are expressed as reachability problems expressed as
statements for the form

search(t0, b0) ⇒ (t′, b′) such that goalCond(t′, b′)

where (t′, b′) is a pattern and goalCond is a boolean function that checks whether
a state satisfies some condition. Typically, goalCond(t′, b′) also makes calls to the
SMT solver to check whether some constraints derived from b′ are satisfiable.

As illustrated by Fig. 1, Rewriting Modulo SMT implementations [11] tra-
verse the search tree derived from the rewrite rules using BFS-based algorithms.
At each step, e.g., (t0, b0) → (t1, b1), the engine checks for the satisfiability of
the condition b1. If the check fails, then search backtracks following BFS strat-
egy. Otherwise, if the check succeeds, then the engine checks (1) whether (t1, b1)
matches the pattern (t′, b′) and (2) if this is the case, it checks the condition
goalCond(t1, b1), which may make further calls to the SMT solver, written as
SMT(goalCond(t1, b1)). If goalCond returns true, then a solution for the reach-
ability problem is found. Otherwise, the algorithm continues search following
BFS.

From the sequence of calls to the SMT solver, one can observe the following
difficulties of exploiting incremental SMT solving when using BFS based search
strategy:
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Fig. 1. Illustration of the search tree and SMT-calls when using Rewriting Modulo
SMT following a BFS algorithm. The sequence of SMT-calls of a BFS algorithm is
depicted to the left, where SMT(goalCond(ti, bi)) denotes possible SMT-calls required
by the goal condition goalCond. The numbers inside the circles specify the order in
which nodes are traversed.

– Definitions of Increments: Given the generality of the accepted theory,
it is not possible for the search engine to determine whether constraints,
b1 and b2, used in subsequent calls to the SMT, SMT(b1) and SMT(b2), are
constructed using some increment, i.e., whether b2 = b1∧b1,2. This is because
b1 and b2 are derived by applying different instances of rules which normally
add/modify constraints in different ways.

– Not possible to chain incremental calls: As it is not possible to define
increments when using rewrites rules in general, it is not possible to effec-
tively use incremental solving by chaining calls, such as in SMT(b1);SMT(b1∧
b1,2);SMT(b1 ∧ b1,2 ∧ b2,3) . . ..

To address this problem, we introduce a special class of rewrite theories,
called Incremental Rewrite Theories.

Definition 1. An incremental rewrite theory is a rewrite theory specification
〈Σ, E ,R〉 where Σ is a typed alphabet; E is an equational theory; and R is a set
of rewrite rules of the forms:

(t, b) → (t1, b ∧ bI) and (t, b) → (t1, b ∧ bI) if cond

where t, tI are well-formed terms; b, bI are boolean formulas (in a given theory);
and cond is a conjunction of equations. 2

2 The rule on the left is an unconditional rewrite rule that can be applied whenever
it matches a subterm of the current state. The rule on the right is conditional. cond
specifies conditions under which the rule can be applied. The condition is checked
using using the equational theory to determine if the equations are satisfied by a
candidate matching substitution. The term (t, b) represents a set of values, namely all
instances for which the constraint b is true. A constraint solver is used to determine
if b is satisfiable, that is, if the set of values is non-empty. In brief, the difference
between b and cond is how they are used in reasoning.
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The verification problem for incremental problems is a specialized reachabil-
ity problem as defined below.

Definition 2. Let T be an incremental rewrite theory. An incremental reacha-
bility problem over T is of the form:

search(t0, b0) ⇒ (t′, b′) such that goalTerm(t′) and SMT(b′ ∧ bI)

where goalTerm is a function that takes a term and returns a boolean value and
bI = goal(t′) is a boolean formula constructed from t′.

The following three examples illustrate how incremental theories can model
different types of systems. These examples are based on specifications from the
literature [2,13,16]. For ease of exposition, we simplify the rules in the descrip-
tion below. In Sect. 4, the full specifications from the literature are used in our
experiments.

Example 1. This example is based on the work [2] for verification of the CASH
scheduling algorithm [4]. In this algorithm, each task has a worst-case execution
time. Whenever a task is completed before its deadline, the unused processing
time is added to a global queue of unused budget, which can then be used by
other tasks. Rewriting modulo SMT has been used to verify whether it is possible
for a task to miss its deadline [2]. In particular, constraints keep track of the
processing times and the available time budgets.

It turns out that the specification of this algorithm as rewrite rules and
the verification problem are an incremental rewrite theory and an incremental
reachability problem, respectively. For example, the following rule specifies when
a deadline is missed:

(〈id1 : global | deadlineMiss : missStat,Ats〉,
〈id0 : server | state : st, usedBudget : t, timeDeadline : t1,maxBudget : n〉 rest, b)
→ (〈id1 : global | deadlineMiss : true,Ats〉,
〈id0 : server | state : st, usedBudget : t, timeDeadline : t1,maxBudget : n〉 rest,
b ∧ bI) if (st = waiting ∨ st = executing)

where rest is the specification of the remaining tasks, Ats are other attributes of
the server, bI is the set of constraints t ≥ 0 ∧ t1 ≥ 0 ∧ n > 0 ∧ (n − t) > t1. This
rule specifies that the deadline is missed if there is a task id0 that is not finished,
i.e., either waiting or executing, such that the time to finish (t1) cannot be met
by the available time budget n − t required by the task.

The verification problem of checking whether for some given configuration
(t0, b0) of server and tasks, a task can miss its deadline is specified by the fol-
lowing search command which is an incremental reachability problem

search(t0, b0) ⇒ (〈id1 : global | deadlineMiss : true,Ats〉 rest, b′) such that SMT(b′)

Example 2. Rewriting Modulo SMT has been used for verifying whether resource
bounded intruders can slowly deny access to webservers [16]. This type of attack
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was inspired by application layer DDoS attacks such as Slowloris [7] where the
attacker attempts to exhaust all the resources of a webserver by periodically
sending bursts of multiple requests. When receiving such bursts of requests, the
webserver has to allocate resources for at least some period of time, called time-
out. As the webserver has limited resources, the attacker is capable of denying
service to legitimate users by sending enough bursts.

Constraints were used in previous work [16] to keep track of (1) the number
of resources available by the webservers, and (2) the timeout period of bursts.
While we refer to the previous work [16] for the complete formalization, we
illustrate the incrementality of such specifications with a simplified version of
the protocol initialization rule from reference [16].

([iid | pxs | ri | Trec] [sid | pxs′ | rs], b) →
([iid | px(num, rp) pxs | riν | Trec] [sid | px(num, rp) pxs′ | rsν ], b ∧ bI)

This rule specifies that the intruder iid with ri resources creates a new burst of
protocol session instances px(num, rp) with num instances each using rp resources,
where num is a symbol. These instance requests are received by the server sid
which has rs resources. The resources of the intruder, ri, and the resources of
the server rs are updated to the fresh symbols riν and rsν . These symbols are
constrained by the boolean increment bI defined as riν = (ri− num× rp) ∧ rsν =
(rs − num × rp) ∧ num > 0 ∧ riν ≥ 0. Similar rules specify when the protocol
sessions timeout and are cleaned up by the server thus releasing resources.

The verification property is to check whether a bounded intruder with some
limited number of resources ri can deny service by consuming the server sid’s
resources. This can be expressed by an incremental reachability property as
follows where (t0, b0) specifies the initial condition when all intruder and server
resources are free:

search(t0, b0) ⇒ ([iid | pxs | ri | Trec] [sid | pxs′ | rs], b′) such that SMT(b′ ∧ bI)

where bI is the constraint rs ≤ 0 specifying that the resources of the server sid
are depleted.

Example 3. This example of verification of cyber-physical systems (CPSes) is
based on reference [13]. A CPS is represented by a set of agents (ag1, . . . , agn)
that interact with the environment (env) to achieve some goal while not violating
properties, such as the minimum distance to other objects.

Constraints are used to specify agent’s physical attributes, such as its posi-
tion, at(ag, (x, y)), speed, spd(ag, v), acceleration, acc(ag, acc), and direction
dir(ag, dir) of an agent ag. The evolution of a system with one agent can be
specified by the following incremental rule when assuming, for simplicity, that
the agent’s direction is on the x-axis.

([env | at(ag, (x, y)), spd(ag, v), acc(ag, acc), dir(ag, dir), kb] conf, b) →
([env | at(ag, (x1, y1)), spd(ag, v1), acc(ag, acc), dir(ag, dir), kb] conf, b ∧ bI)
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Here kb is the set of other knowledge-base elements, conf contains the agent’s
internal representation, x1, y1, v1 are fresh symbols and bI is set of constraints:
x1 = (x + (v + v1) × dt/2) ∧ y1 = y ∧ v1 = v + acc× dt. These constraints specify
the agent’s new position and speed using classical physics equations.

The verification property bad where an agent is too close to an obstacle, such
as a pedestrian, is specified by the search command:

search(t0, b0) ⇒
([env | at(ag1, (x1, y1)), at(ag2, (x2, y2)), kb] conf, b

′) such that SMT(b′ ∧ bI)

where bI is the set of constraints: x1 = x2 ∧ y1 = y2, specifying that two agents
ag1 and ag2 are in the same position, i.e., colliding.

3 Hybrid BFS-DFS Algorithm

The definition of Incremental Rewrite Theories addresses the problem of the
Definition of Increments discussed above. The second problem (Not pos-
sible to chain incremental calls) still needs to be addressed. Indeed, BFS
procedures do not enable the chaining of incremental calls. To illustrate this,
consider again the search tree and BFS execution in Fig. 1. Assume that
b1 = b0 ∧ b0,1, b2 = b0 ∧ b0,2 and that goalCond(t, b) has the form b ∧ bI as
one would expect when using incremental rewrite theories. It is possible to
call the SMT solver incrementally during the sequence of calls SMT(b1) and
SMT(goalCond(t1, b1)), but not chain incrementally the call SMT(b2). This is
because it is not possible to define an increment between b1 and b2 as they lie
in different branches of the search tree.

The first obvious alternative is using Depth-First Search (DFS) instead of
BFS. This would indeed lead to an execution that could chain incremental calls
to the SMT solver. For example, in the tree depicted in Fig. 1, the sequence of
calls would be

SMT(b0);SMT(goalCond(t0, b0));SMT(b1);SMT(goalCond(t1, b1));
SMT(b3);SMT(goalCond(t3, b3)) . . .

Since b3 is of the form b0 ∧ b0,1 ∧ b1,3, we know the increment is b1,3. There are,
however, two problems with DFS. The first problem is that DFS may not find
a solution that could be found using BFS due to an infinite branch. The second
problem is that the sequence of call using goalCond(t, b) appears in between the
increments, e.g., SMT(b0);SMT(goalCond(t0, b0));SMT(b1).

We propose the algorithm hybrid search described in Fig. 2 that addresses
these two problems of DFS by combining BFS and DFS and using the PUSH
and POP features of SMT solvers for incremental solving. These features enable
the creation of backtracking scopes of learned clauses. By default, sequential
calls to SMT will attempt to use incremental solving based on the constraints
solved in previous calls. A call to PUSH will add to the solver stack any learned
clauses from calls to SMT while a call to POP will remove any learned clauses
since the last PUSH.
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Fig. 2. Pseudo-code of the Hybrid Search Algorithm hybrid search.

The hybrid search algorithm takes as input the search tree T 3, a non-negative
natural number d, and a goal condition g. Intuitively, the parameter d specifies
the depth to which the algorithm shall perform DFS before switching to BFS.

We start with Queue empty and a Solver . hybrid search starts at line 4 with
the next few lines initializing found to be NULL and pushing the root of T onto
Queue. The while loop starts with line 7 continuing while Queue is non empty
and no solution has been found. It pops the next node off the Queue on line
8, then calls dfs bounded on the next line using this node as the root starting
on line 12. dfs bounded is a modified depth-bounded depth-first search. It starts

3 Notice that in practice, there is a mechanism that constructs the tree on the fly.
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Fig. 3. Illustration of an hybrid search algorithm execution using the goal condition g
and depth two. The POP surrounded by a box indicates the points when the algorithm
back-tracks in the search tree. The numbers inside the circles specify the order in which
nodes are traversed.

with creating a backtracking scope on Solver by calling PUSH and storing the
result SMT(b) where b is the boolean constraint of the current node.

Subsequently, in line 16, it checks if SMT(b) returned UNSAT, and if so, we
POP and return immediately and not explore any children of this node. Any
descendent nodes would have a boolean constraint of the form b ∧ bI for some
bI , and since SMT(b) is UNSAT it must be the case that b ∧ bI is also UNSAT.
Otherwise, we continue with checking if goal(node) is true on line 20 and if so
setting found to this node and then terminating dfs bounded and hybrid search.
If found is not set, then line 24 checks when the current depth is equal to the
depth parameter d and if it is we add all of the children nodes, i.e., all the nodes
that are d+1 depth away from the initial root node called from line 9, to Queue
and no more nodes at a lower depth are visited for now. After all such nodes
are added, the execution returns to line 7 to start another dfs bounded from the
next element in Queue. Until then, it continues traversing the tree in a DFS-like
manner on line 30 ensuring that when dfs bounded backtracks, we call POP for
each node, and hence it backtracks such that Solver can properly unlearn clauses
that it no longer needs.

We illustrate the execution of hybrid search with the tree shown in Fig. 3. It
also contains the sequence of calls to PUSH,POP and SMT due to the initial
call to dfs bounded. The sequence of calls illustrates the chaining of incremental
calls to the SMT solver. For example, the data-structures constructed in the call
SMT(b1) are used in the SMT calls for b3, b4, including the calls goal(b3) and
goal(b4). This makes sense as b1 is sub-formula of b3, b4, goal(b3) and goal(b4).
However, the data-structures constructed in the SMT call for goal(b1) are not
stored due to the subsequent POP call, as goal(b1) is not necessarily a subformula
of b3, b4, goal(b3) and goal(b4). The second observation is the combination of
DFS and BFS. While the subtree of depth d = 2 is traversed, the algorithm
removes the data-structures constructed during the call of SMT(b1), indicated
by the 2 × POP in Fig. 3, as b1 is not necessarily a subformula of b2.
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Notice that the depth parameter (d) plays the role of specifying how much
incremental solving one is willing to use with the risk of traversing longer a
branch of the search tree that may not have a solution. For example, in the tree
and execution shown in Fig. 3, the algorithm will traverse the node (t7, b7) and
will call SMT(b7), but without using the data-structures constructed previously
for b3, that is, it will not solve it incrementally.

The following results relate hybrid search with BFS and with DFS.

Proposition 1. Let T be a tree and g be a decidable goal condition. Then,
hybrid search(T, 0, g) will traverse T in the same order as BFS.

Proof Sketch. A DFS search bounded by depth 0 will only traverse a single
node, the node it starts at. Then, it adds nodes to a FIFO queue in the same
manner as BFS. Hence, hybrid search(T, 0, g) will traverse T in the same order
as BFS. QED.

Proposition 2. Let T be a tree and g be a decidable goal condition. Suppose
the depth of T is d. Then, for any k ≥ d, hybrid search(T, k, g) will traverse T
in the same order as DFS.

Proof Sketch. If k is greater than or equal to the depth of T , then a
k depth-bounded DFS from the root node would traverse all of T . Hence,
hybrid search(T, k, g) traverses the T in the same order as DFS. QED.

The following statement provides coverage guarantees.

Proposition 3. Let d > 0, T be a tree of finite branching, and g be a decidable
goal condition. Then, hybrid search(T, d, g) finds a solution in finite time, i.e.,
some node n in T such that g(n) is true, if such a solution exists.

Proof. Let Bi be the number of nodes in T at depth i. Suppose that the solution
node n exists at depth r and no solutions exist at a lower depth. Let 0 ≤ r ≤ qd
for some q. The first depth-bounded DFS will traverse all nodes up to depth
d. This then adds Bd+1 nodes to Queue. Running the depth-bounded DFS run
these nodes will traverse all the nodes to 2d. Traversing all nodes up to qd would
take 1+Bd+1+Bd+2+ ...+Bqd iterations of depth-bounded depth first searches.
Since n exists at depth r ≤ qd and each Bi is finite since T has finite branching,
n would be found in finite time. QED.

To address the fact that search trees may have infinite depth, often one
uses bounded search that searches the tree until only some given depth d. The
following proposition states that in these cases it is best to deploy hybrid search
with depth d to search through all nodes of the sub-tree, provided incremental
SMT calls are more efficient than SMT calls from scratch.

Proposition 4. Let T be a tree of finite branching with branching factor b and
g be a decidable goal condition. Let T (d) be the sub-tree of T of depth d with
d > 0. Assume that incremental SMT calls, i.e., using PUSH, take less time
than calls from scratch, i.e., without using PUSH. Then for any d′ ≥ 0 such that
d′ 
= d, the time required by hybrid search(T, d, g) to traverse all nodes in T (d) is
less than the time of hybrid search(T, d′, g) to traverse all nodes in T (d).
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Proof. Let 0 < r < 1 be the average performance benefit from incremental
SMT calls and t be the time it takes for non-incremental SMT calls. Let Bi be
the number of nodes at depth i. Since b is finite, each Bi is finite. The time
required by hybrid search(T, d, g) to traverse all nodes in T (d) is t + rtB1 +
rtB2 + ... + rtBd. Suppose that 0 < d′ < d. Let pd′ < d ≤ (p + 1)d′ for some
p. For hybrid search(T, d′, g) to traverse all nodes in T (d), it must traverse all
nodes in T ((p + 1)d′) because each dfs bounded must travel exactly d′ depth,
hybrid search(T, d′, g) will traverse only depths that are multiples of d′. Then, the
time required for hybrid search(T, d′, g) is t+rtB1+...+rtBd′ +tBd′+1+rtBd′+2+
...rtB2d′ + ... + tBpd′ + rtBpd′+1 + ... + rtB(p+1)d′ . There are p + 1 terms that do
not get the benefit from incremental SMT calls for hybrid search(T, d′, g) while
there is 1 term that does not get this benefit for hybrid search(T, d, g). Hence, the
time required for hybrid search(T, d, g) to traverse all nodes in T (d) is less than
the time required for hybrid search(T, d′, g) to traverse all nodes in T (d). Now,
suppose that d′ > d. Then, for hybrid search(T, d′, g) to traverse all nodes in T (d),
it must traverse all nodes in T (d′). The time required for hybrid search(T, d′, g)
is t + rtB1 + rtB2 + ... + rtBd′ . But, because d′ > d and each rtBi > 0 the
time required for hybrid search(T, d, g) is less than hybrid search(T, d′, g). Hence,
the time required for hybrid search(T, d, g) to traverse all nodes in T (d) is less
than the time required for hybrid search(T, d′, g) to traverse all nodes in T (d).
Therefore, for any d′ 
= d the the time required for hybrid search(T, d, g) to
traverse all nodes in T (d) is less than the time required for hybrid search(T, d′, g)
to traverse all nodes in T (d). QED.

4 Implementation and Experiments

Our implementation is based on Python with the Z3 SMT solver and Maude
integrated using Python bindings [15] as depicted in Fig. 4. The Z3 Solver is
responsible for checking the incremental satisfiability of constraints using SMT,
PUSH and POP, while Maude is responsible for executing rewriting rules. The
Maude bindings allow for loading Maude files into the Python implementation of
hybrid search. The search is done with a Python function that repeatedly calls the
Maude search with one step (Search1) so that the traversal of the search space
can be controlled. The original Maude specifications were modified to replace
calls to SMT with calls to functions defined using the Maude hook mechanism
for attaching external code to function symbols. This mechanism is exposed by
the Maude Python bindings. There are two types of function, one that checks
satisfiability while keeping any learned clauses from the check, and one that just
checks without adding any learned clauses. The functions keep track of the SMT
solver state using appropriate calls to PUSH and POP. The implementation is
available at [17].

Figures 5, 6 and 7 summarize the experiments carried out using implemen-
tations available in the literature [3,13,16] for the verification of the systems
described in Examples 1, 2, and 3. All experiments were run on a Windows 10
machine, Intel Core i7-10700J, 16 GB of RAM, on Python 3.10.2, using Maude



Incremental Rewriting Modulo SMT 571

Fig. 4. Overview of the implementation used for the experiments using hybrid search,
the SMT solver Z3 and the rewriting tool Maude.

Python bindings 1.1.2 and Z3 4.11.2.0. We measure the runtime for these three
applications of rewriting modulo SMT to determine the performance gain from
using hybrid search at various depth parameters compared to BFS and DFS.
Each table shows the initial configuration for the system, then statistics for
searches for BFS, DFS, and using hybrid search at various depths terminating
when finding a single goal node. The statistics have the form n/m/p which
specify the time n in seconds to perform verification, the number of states m
traversed, and the percentage p of verification time required by SMT-solving.
DNF indicates that no solution was found within 30 min. For example, the first
row for cashOK1 using the BFS mechanism for instance, the execution time was
6.9 seconds, requiring 91 state traversals while spending 77% of execution time
in Z3.

For our experiments, we used the same subsets of the verification problems
used in references [3,13,16]:

– cashOK(I0, I1, I2, I3, b) and cashBad(I0, I1, I2, I3, b) correspond to symbolic
initial configurations of a CASH scheduling problem with two servers (see
Example 1). I0 and I1 specify, respectively, the maximum budget and the
period of the first server, while I2 and I3 specify, respectively, the maximum
budget and period of the second server. b is a constraint on the values of
I1, I2, I3, and I4. cashOK uses a correct implementation of the scheduler,
while cashBad uses an incorrect specification.

– Slowloris(P1, P2,DoSDur) corresponds to symbolic initial configurations of a
Slowloris verification problem (see Example 2). P1 specifies the bound on the
number of parallel bursts of symbolic protocols, and P2 specifies the bound
on the number of different types of messages sent in parallel, where P2 = 0
denotes no bound. Moreover, DoSDur specifies the minimum duration for
which the server’s resources are depleted in order to consider the DoS attack
successful.

– pedestrian(t,Safer,Safe,Unsafe) specifies a pedestrian crossing scenario prob-
lem where an autonomous vehicle is approaching a pedestrian crossing. The
verification problem is to avoid an unsafe situation. The three levels of safety
are defined according to the parameters Safer > Safe > Unsafe specifying
bounds on the distance to between the vehicle and the pedestrian measured
in terms of time to travel. The verification problem is to determine whether a
given vehicle controller cannot reach an unsafe situation within t time units
when starting at a safe situation. The size of a time unit is 0.1s.

The results for the CASH verification experiments show that hybrid search
finishes up to about 10 times faster than BFS and terminates in all cases as
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Fig. 5. CASH Verification Experiments. cashOK1 = cashOK(I0, I1, I2, I3, true),
cashOK2 = cashOK(I0, I1, I2, I3, I0+I3 > I1+I2), and caseOK3 = caseOK(I0, I1, I2,
I1, I0 + I2 > I1), and mutatis mutandis for cashBad1, cashBad2 and cashBad3.

Fig. 6. Slowloris Experiments. Slow1 = Slowloris(1, 0, 24), Slow2 = Slowloris(1, 0, 36),
Slow3 = Slowloris(1, 1, 12), Slow4 = Slowloris(1, 1, 24), Slow5 = Slowloris(1, 1, 36).

Fig. 7. Cyber-Physical System Verification Experiments, where cps1 = pedestrian(3, 3,
2, 1), cps2 = pedestrian(4, 3, 2, 1), cps3 = pedestrian(5, 3, 2, 1), cps4 = pedestrian(3, 4,
2, 1), cps5 = pedestrian(4, 4, 2, 1), cps6 = pedestrian(5, 4, 2, 1). The bound t, 2 × t and
3 × t is determined according to the t parameter of the scenario.

opposed to two of the DFS cases where it does not finish within 30 min. The
overhead of Z3 is reduced from about 70% to 80% down to 6% to 25% from BFS
to hybrid search. This indicates the effectiveness of the incremental SMT solving
for the types of constraints used in this example.

Similarly, in the Slowloris examples, hybrid search finishes up to 10 times
faster than BFS with termination while two of the DFS cases do not finish
within 30 min. In these cases the overhead of Z3 goes from about 80% to 90% in
BFS while it goes from about 30% to 60% in hybrid search, demonstrating the
effectiveness of the incremental solving. Interestingly, even when there is a much
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larger number of states traversed, e.g., in case Slow2 and HYBRID d = 4 with
3314 states traversed as opposed to 775 states traversed by BFS, the verification
time is one third, from about 40s to 13s. This indicates that the main overhead
of BFS is indeed SMT solving.

For the Cyber-Physical System (CPS) Verification experiments, hybrid search
completes up to about 5 times faster than BFS. The overhead of Z3 does not
change significantly in these experiments, which indicates that the incremental
solving is not as effective as in the other two examples (CASH and Slowloris).
The reason for this may be the non-linear nature of the constraints for CPS
systems which contrast with the former two examples that use linear arithmetic
constraints. Despite this, hybrid search and DFS still outperform BFS because
they need to traverse fewer nodes before finding a goal node.

5 Related Work

We consider three related areas of work in optimizing symbolic execution mod-
ulo SMT, hybrid search strategies, incremental constraint solving methods, and
tradeoffs between search space and constraint complexity.

Hybrid Search Strategies. There have been others that have previously explored
techniques of combining BFS and DFS so to take advantage of both of their
benefits while reducing the drawbacks of each.

Reference [5] proposes a hybrid algorithm for Binary Decision Diagrams
(BDDs). BDDs are are often used to represent and manipulate boolean functions
symbolically. Traditionally, depth-first approaches were used in the construction
of BDDs as it had relatively low memory overhead. Though, it had been dis-
covered that using a breadth-first approach instead had better performance due
to better memory access locality at the cost of larger memory overhead. To
improve upon both approaches a hybrid of the two is used. Essentially, the algo-
rithm switches between the two techniques based on its memory overhead. When
the memory overhead is computed to be low, a breadth-first search is used and
when it is high a depth-first search is used.

Reference [1] constructs a “breadth-first, depth-next” algorithm for building
Random Forest (RF) models. An RF model is a machine learning model that
uses decision trees. Both DFS and BFS approaches are used in machine learn-
ing frameworks. They observe that BFS has memory efficient access patterns
at lower depths. As the depth increases it loses this benefit and virtually has
random access to memory. At this point, DFS performs better. As a result, their
algorithm starts with a breadth-first approach until it is computed that is no
longer has efficient access pattern, switching to a depth-first approach.

Reference [9] introduces “depth-first iterative-deepening (DFID).” One of
the issues with BFS is that it has exponential memory complexity. DFS can
circumvent this drawback as its memory complexity is linear, but comes with its
own problems. It generally requires some depth bound and check for repeated
nodes, otherwise the search may not terminate. The actual depth bound needed
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may not be knowable at runtime and choosing a bound too low may result in
the search ending without finding the solution. To counteract the downsides of
BFS and DFS, DFID is used. DFID starts with DFS bounded by depth one,
then performs a DFS bounded by depth two, and continue this process with
incrementally larger bounded depths until a solution is found. It must visit the
same nodes multiple times, but it is shown that the runtime complexity is not
effected by it.

Unfortunately, none of these algorithms seem particularly helpful with
respect to rewriting modulo SMT. For example, prior algorithms [1,5] attempt
to take advantage of memory locality as much as possible. In our case, it would
not give us much performance increase. Reference [9] requires nodes to be vis-
ited multiple times. This would lead to duplicate calls the SMT solver, only
increasing the bottleneck.

Incremental Solving. In reference [10] the authors compare cache-based and
stack-based incremental constraint solving methods in the context of symbolic
execution for test generation. Cached-based incrementality works outside the
solver to cache results and attempt to reuse them. Stack-based incrementality
uses a solvers ability to reuse information learned when solving a subproblem
and the associated push/pop interface. Implementations of the two methods
and a baseline (no incrementality) were compare on large benchmark set of C
programs and on randomly generated programs. The space of symbolic execu-
tion paths was searched using bounded depth first search. The authors found
that caching generally increased average solving time over baseline (by a factor
of 2–5 depending on code size), while stack-based methods decreased average
solving time by roughly a factor of 20. This is consistent with our observations
even though the source of search tree is different and the class of constraints is
different.

Trading Search Space for Constraint Complexity. A notion of guarded term
is introduced in reference [2] as a method to reduce the search state space in
symbolic rewriting modulo SMT by replacing non-determinism by disjunction.
The effect of using guarded terms is demonstrated in a study of the CASH algo-
rithm for task scheduling. Many properties that could not be checked using sym-
bolic execution modulo SMT (due to size of search space and timeout) became
tractable using guarded terms.

A study of the tradeoff between search space size and constraint size
using symbolic execution modulo SMT in the context of analyzing safety of
autonomous systems such as platooning scenarios is presented in reference [13].
The results in that paper suggest that not only the size of state space matters
for automation, but also the size of constraints that are sent to the SMT solver
as many searches fail to terminate due to non-termination of constraint solving
when constraints get large, while the same searches terminate with disjunctions
are turned into branching in the search space.

None of these approaches, however, investigate the use of incremental SMT
solving for improving performance of Rewriting Modulo SMT.
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6 Conclusions and Future Work

This paper proposes Incremental Rewrite Theories that enable incremental SMT
solving for rewriting modulo SMT. This is accomplished by the search procedure
hybrid search which combines BFS and DFS. The effectiveness of hybrid search
is demonstrated by using a collection of verification problems taken from the
literature, including algorithm verification, network security analysis, and cyber-
physical systems safety verification. In all examples, the time taken to verify by
hybrid search improved by a factor between 5–10 when compared to traditional
BFS approaches, showing the great benefits of using incremental solving.

The current notion of incremental rewrite theory is essentially a syntactic
notion although equational theories are used to reduce terms and matching may
be modulo axioms, such as associativity and commutativity. This makes identi-
fing the boolean increment efficient and thus well suited for the hybrid algorithm.
An interesting direction for future work is to investigate less restrictive notions
of incremental and indentify more general classes of rewrite theories where incre-
mental solving is effective. Another direction of future work we are investigating
is the trade-offs of incremental solving and the shape of constraints, e.g., use dis-
junctions to reduce search space versus split disjunctions to reduce SMT solving
time. We also are investigating the incorporation of incremental solving algo-
rithms in tool implementations such as Maude.
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Abstract. The need to verify symbolic computation arises in diverse
application areas. In this paper, based on earlier work on verifying com-
putation of definite integrals in HolPy, we present a tool Iscalc for per-
forming a variety of symbolic computations interactively, taking a middle
ground in terms of easy of use and rigor between computer algebra sys-
tems and interactive theorem provers. The tool supports user-level defi-
nitions and dependency among computations, allowing construction and
reuse of custom theories. Side conditions are checked on a best-effort
basis. The tool is applied to highly non-trivial computations from the
textbook Inside Interesting Integrals.

Keywords: Symbolic computation · User interface · Computer algebra

1 Introduction

Symbolic computations arise in many mathematical proofs as well as in sci-
ence and engineering. The use of computers to ensure their correctness is hence
an important problem. Interactive theorem provers and computer algebra sys-
tems provide two alternative approaches. Most interactive theorem provers have
extensive libraries in analysis [6], based upon which one can verify correctness of
computations with a very high level of confidence. However, the learning curve for
using such libraries is quite steep. On the other hand, computer algebra systems,
such as Mathematica, Maple, etc, aim to perform computations automatically.
However, it is difficult to guide the computation if the automatic procedure fails,
and the correctness is not fully guaranteed. Indeed there have been examples of
mistakes made by such computer algebra systems in the past [11].

Previous work [18] introduces a system for performing and verifying sym-
bolic computation as an extension to the HolPy interactive theorem prover [19].
The user can perform calculation of definite integrals step-by-step, using rules
c© The Author(s) 2023
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such as substitution, integration by parts, etc. Each step has a relatively simple
implementation, and proofs in higher-order logic can be constructed automat-
ically from the sequence of steps, which in turn can be checked by the HolPy
kernel. This provides a user experience which can be seen as a mix between the
two approaches discussed above, combining the more intuitive feel of computer
algebra systems with higher level of confidence in the results.

In this paper, we present a significant extension to the work in [18], forming
an independent tool named Iscalc (Interactive symbolic calculations). In partic-
ular, we make the following extensions aimed at greater safety, extensibility, and
ability to handle a wider range of examples.

1. We introduce user-level definitions and dependency among computations,
allowing construction and reuse of custom theories. This is achieved by main-
taining contexts, which contain the list of existing definitions and identities,
as well as assumptions in the current computation.

2. We introduce systematic checks on wellformedness of expressions and side-
conditions for applying certain rules within Iscalc (rather than only when
reconstructing proofs). This increases confidence in the computation without
proof reconstruction.

3. In addition to definite integrals, the tool now supports computation with
limits, series, and indefinite integrals. We also support improper integrals,
and many more techniques of computation, such as series expansions and
differentiating under the integral sign.

4. With only few exceptions (such as partial fraction decomposition), all func-
tionalities are now implemented independently rather than depending on
SymPy. We found this approach, aimed at avoiding problems caused by lim-
itations of SymPy, to be more flexible and extensible in the end.

One of our main aims and yardstick for measuring progress is verifying com-
putations from the textbook Inside Interesting Integrals [17]. This book contains
many computations of integrals using a variety of techniques, including differen-
tiating under the integral sign, series expansions, and so on. Many computations
are quite involved (the longest example we did, Ahmed’s Integral, is 4 pages long
in the book). We also carry over and complete some of the case studies in [18].

Our aim is to provide a user interface that is more intuitive and accessible
to mathematicians and engineers. In particular, computations are displayed in
LATEX form, and whenever there is tension between conventional mathematical
language and the more precise formal language, we prefer the former. We take
the best-effort approach to correctness, providing systematic checks for the usual
mistakes, such as cancelling expressions that may be zero, or exchange of sums
that are not absolutely convergent. However, full correctness guarantees in the
sense of interactive theorem proving is not achieved without proof reconstruction,
which we leave to future work. In this respect, our approach is more similar to
SMT solvers and program verification tools based on them, which sacrifice some
correctness guarantees for more efficiency and speed of development.

We now give an outline for the rest of this paper1. Section 2 describes the
overall architecture of Iscalc. Section 3 shows results of case studies, and gives
1 Source code and examples are available at https://github.com/bzhan/iscalc.

https://github.com/bzhan/iscalc
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some interesting examples. Section 4 discusses some lessons we took from this
work, especially for user interface design. Section 4.1 discusses related work and
Sect. 5 concludes the paper.

2 Architecture

Iscalc has a layered architecture consisting of several modules, as shown in Fig. 1.
In this section, we begin with some preliminary definitions, then describe the
functionality of each module in turn.

Fig. 1. Overall Architecture

2.1 Preliminaries

The term language of Iscalc inherits from that in [18], but with extensions for
limits, summation, and indefinite integrals. The full syntax is as follows.

e := v | c | e1 op e2 | f(e) |Deriv(e, v) | Integral(e, v, a, b) |
Limit(e, v, a, dir) |Sum(e, i, a, b) | IndefiniteIntegral(e, v, deps) |Skolem(n, deps)

Constructors on the first line stand for variables, constants, operators, func-
tion applications, derivatives, and definite integrals, respectively. Constants are
extended to include positive and negative infinities. Constructors on the second
line are new, and we explain them in more detail.

Limit(e, v, a, dir) represents the limit of expression e as variable v goes to
expression a, here dir represents the direction of the limit. That is, we distinguish
between limx→0+ f(x) and limx→0− f(x), etc. Sum(e, i, a, b) represents summa-
tion of expression e as the integer index i goes from a to b (inclusive, except
when b = ∞). IndefiniteIntegral(e, v, deps) and Skolem(n, dep) are used together
for computing with indefinite integrals. The former represents indefinite integral
of e with respect to v. When this is evaluated to an expression plus “C”, this
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C is represented by a Skolem term. Here deps represent the additional variables
that C may depend on, which comes from the list of dependent variables deps
of the indefinite integral. The use of dependent variables in evaluating indefinite
integrals is illustrated by an example in Sect. 3.1.

Another extension compared to [18] is the addition of formulas. These are
used to specify goals, wellformedness conditions on terms, as well as assumptions
on goals and definitions. Currently we support the following constructors for
formulas:2

f := e1 op e2 | isInt(e) | notInt(e) | converges(e)

where the binary operator op is one of =, �=, <,≤, >,≥. isInt(e) and notInt(e)
represent e is/is not an integer. converges(e) represents e is convergent, where e
is a series whose upper limit is ∞.

2.2 Context

In [18], each computation is independent from each other, and all available def-
initions and identities are built into the kernel. In contrast, Iscalc develops a
system of user-level definitions and dependency between computations similar
to usual interactive theorem provers. This is achieved by a hierarchy of books,
files, definitions and goals. Each book consists of an ordered list of axioms, def-
initions, and files, and may depend on other books. Each file contains a list of
goals, whose computation may depend on previous items in the book. Each defi-
nition specifies a new function along with assumptions on the arguments of that
function. Each axiom or goal specifies a single expression to be proved under a
set of premises. It may be marked with attributes to specify its type or how it
is to be used (e.g. whether it can be used during simplification).

In the implementation, a Context object maintains the list of definitions,
identities, and inequality rules available at the current file. It also contains the
premises and inductive hypothesis for the current computation (these are mod-
ified when performing a case analysis or induction, as described in Sect. 2.5).

2.3 Algorithms

Iscalc implements several basic algorithms in computer algebra, for checking
inequalities, simplification and normalization of expressions, computing limits,
and solving equations. All of these take a Context object as input, and depend
on the context information.

2 Currently we do not use logical operators, as negation is unnecessary for the current
list of formulas, and conjunction and disjunction are represented using internal data
structures. This may change as new needs arise in the future.
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Inequality Checking. Unlike in the previous paper, condition checking is imple-
mented entirely from scratch rather than relying on SymPy. It is well-known that
checking inequalities involving transcendental functions is undecidable. Our goal
is to perform simple rule-based reasoning automatically, leaving more involved
inequalities to be proved with user guidance. The overall approach is saturation:
we maintain a dictionary mapping expressions to conditions on them. Given
an expression for which we wish to derive some conditions, saturation works
recursively on each subexpression, matching it against the main argument of
each rule (left side of inequalities, or the last argument of predicates). For each
match, it looks in the dictionary for existing facts that justifies assumptions of
the rule. Special reasoning is performed on numerical constants (e.g. x < c1 can
be used to justify x < c2 if c1 ≤ c2). Comparison between numerical constants
are currently done with floating-point approximation.

The approach described here is relatively simple, and it is not difficult to
ensure termination, as we only get conditions on expressions that already appear.
However, in practice it can be quite powerful when combined with user-guided
rewriting, as shown by the example in Sect. 3.2.

Simplification. Simplification of expressions works in mostly the same way
as [18], and we restate the main ideas. We normalize with respect to AC-property
of addition and multiplication, and combine equal terms. When trying to com-
bine tatb into ta+b, we check using the current context that either t is nonzero
and a, b are integers, or t is nonnegative. This prevents cancellation of e.g. t/t
into 1 when t may be zero.

Moreover, we apply identities in the context that are marked with the simplify
attribute. These cover evaluation of functions at special values, as well as issues
like removal of absolute value sign (e.g. |x| = x if x ≥ 0).

Normalization. There are situations where different forms of an expression are
desirable for different purposes, e.g. factorized vs. expanded form of a polyno-
mial, single quotient vs. a sum of quotients, etc. We designed the simplifier to
not make a choice in such situations. Instead, if the user wishes to convert an
expression to a different form, she can specify the rewriting explicitly. Iscalc then
normalizes both old and new expressions and check whether they are equal. Nor-
malization expands polynomials and combines quotients (e.g. for checking partial
fraction decomposition), and performs (among others) rewriting of logarithm and
exponentials.

Computing Limits. For limit computations, we implement a simplified version of
the approach by Gruntz [10]. To compute limx→∞ e, we evaluate recursively the
limit of each subexpression in e, as well as the asymptotics of approaching that
limit. Possible asymptotics include powers of polynomials and logarithms, as
well as exponentials. Finding the limit as x approaches other values is converted
to computing the limit at infinity.

As with other algorithms, the aim is not to achieve high level of automation,
but to perform the simpler limits, leaving more complex cases to human guid-
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ance (e.g. using L’Hopital’s rule or with rewriting). On the other hand, using
the complete algorithm of Gruntz, or the algorithm implemented by Eberl in
Isabelle [8], would certainly increase automation and range of applications.

Solving Equations. We implement simple equation solving, including isolating
the expression to be solved, and solving linear equations. This is used when
performing substitutions and in transforming/applying an existing equality.

2.4 Rules

Based upon the collection of algorithms in the previous section, Iscalc implements
a set of rules for transforming the current expression in a computation. Currently
37 rules are available. We give some representative examples below.

Integration Rules. The list of integration rules are mostly inherited from [18].
They include Substitution, IntegrationByParts, etc. Integration identities can be
applied by lookup from the context. There are also rules for more advanced
techniques such as differentiating under the integral sign (illustrated in Sect. 3.1),
and exchange of integral and sum (illustrated in Sect. 3.3).

Rewriting Rules. The most basic rewriting rule is FullSimplify, which applies
simplification to the current expression. ApplyIdentity applies an identity from
the context. This generalizes the use of Fu’s rules for trigonometric identities [9].
The rule Equation supports rewriting to another form of an expression with
equal normal form. Series expansion and evaluation of series are available as two
different rules (again looking up identities from the context).

Equality Transformation Rules. These rules transform one equality into another.
IntegralEquation transforms an equation of the form Deriv(e, x) = g(x) into e =
IndefiniteIntegral(g, x, fvars), where fvars is the list of free variables in Deriv(e, x).
Another very flexible rule is SolveEquation, which solves for some expression e in
an equality s = t to give another equality e = e′. Other examples include taking
limit on both sides, applying a function to both sides, and so on.

Other Rules. Besides the above three major categories, other rules include the
L’Hopital’s rule for computing limits, and rules for series manipulations.

2.5 Proof Methods

In [18], the only way to perform a computation is starting from a single expres-
sion, and applying rules to transform that expression. More complex applications
necessitate more structures in the computation. We describe those supported by
Iscalc briefly, as they are all familiar from other theorem provers.

Proof by Computation. To show an equality a = b, perform computation on both
sides until they become identical. Likewise, for inequalities, perform computation
on both sides until the inequality can be shown automatically.
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Proof by Transformation. Starting from a known equality a = b, apply the equal-
ity transformation rules in Sect. 2.4 to obtain new equalities, until the desired
one is obtained.

Case Analysis. To show a goal, divide into cases either by whether some compar-
ison formula is true, or according to whether some expression is less than, equal
to, or greater than 0. We shown an example with inequality goals in Sect. 3.2.

Induction. Some integrals involve an integer parameter n ≥ 0, and may be
proved by induction on n. We support such inductive reasoning in Iscalc. The
rule ApplyInductHyp can be used to apply inductive hypothesis at any time in
the inductive branch of the proof.

2.6 Top-Level Computation, Automation, and User Interface

Based on the above rules and proof methods, Iscalc supports performing a variety
of symbolic computation, including showing inequalities, checking convergence,
evaluating limits, and performing indefinite and definite integrals. It is also pos-
sible to build higher-level automation on top of the rules. An implementation of
Slagle’s method is inherited from [18]. It performs best-first search using algo-
rithmic and heuristic steps for performing an integral. If the search succeeds, it
outputs a sequence of rules to apply, which can then be replayed in Iscalc.

The user interface of Iscalc is mostly inherited from [18]. The primary goal
is to provide a visual interface that feels similar to that of a computer algebra
system, and which allows mostly point-and-click based interactions. In particu-
lar, computation steps are performed by selecting rules to apply from the menu.
For certain rules, the user may need to select a subexpression of the current
expression to apply the rule on, and/or choose from suggestions given by the
computer (e.g. when rewriting using identities).

Additional features in the current work, such as book and file hierarchy, and
proof methods, are also supported in the user interface. This includes display
and navigation of book and file contents. To begin the proof of an equation, the
user selects from the menu one of the proof methods in Sect. 2.5. The structured
computation is then displayed in a reader-friendly format. An example showing
display of file contents and a computation is given in Fig. 2.

3 Examples

We applied Iscalc on computations of limits, indefinite integrals, and definite
integrals from a variety of sources. Three sources are inherited from [18]: an
exam preparation book (Tongji), online problem lists by D. Kouba [13], and the
MIT integration Bee [1]. The range of applicability is greater on these problem
sets. For example, we can now perform all examples in the exponentials and
trigonometric category from D. Kouba’s problem lists, while the previous work
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Fig. 2. Screenshot of the user interface, showing part of the example given in Sect. 3.1.
The menu groups related rules into categories. The Proof category contains general
actions such as proof by calculation and induction. The remaining five menu categories
contain rewriting rules. The left side of the main window shows division of the com-
putation into several parts, and the right side shows the selected part as a series of
computation steps. On the bottom (not shown) are space for users to enter additional
information for a computation step.

can perform only 7/12 and 22/27 examples respectively, due to limitations of
SymPy as well as other unsupported features.

The main additional benchmark comes from the textbook Inside Interesting
Integrals [17]. 71 integral calculations are performed in Iscalc, covering about
half the content of the book, including early results about Gamma and zeta
functions. Many of the remaining examples involve complex numbers and contour
integration, which are not supported by the current version of the tool.

Next, we illustrate some special functionality of Iscalc using examples.
From these examples, we wish to emphasize how different algorithms and rules
described in Sect. 2.3 and 2.4 interact with each other, enabling a computation
process that is very close to human writing.

3.1 Working with Indefinite Integrals and C

The goal is to evaluate Frullani’s integral (Sect. 3.3 of [17]).

I(a, b) =
∫ ∞

0

tan−1(ax) − tan−1(bx)
x

dx

under the condition a > 0, b > 0. The computation starts by computing
d
daI(a, b) = π

2a , which follows by exchanging derivative and integral, then using
the formula for the definite integral

∫ ∞
0

1
u2+1 dx. The key step is integrating both

sides of d
daI(a, b) = π

2a using rule IntegralEquation to obtain I(a, b) =
∫

π
2a da,

which evaluates to
I(a, b) =

π log a

2
+ C(b)
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Here it is important to keep track of the dependency of the constant in
∫

π
2a da

on the variable b, which is kept in the argument deps of the expression. This
variable is then shown explicitly as an argument to the Skolem term C when the
indefinite integral is evaluated.

Next, substitute b by a in the above equation, and from I(a, a) = 0 obtain
C(a) = −π log a

2 . Substituting back in the above equation gives the final answer

I(a, b) =
π log a

2
− π log b

2
.

The entire computation can be carried out in Iscalc much as described above,
consisting one definition and four goals, and using 17 rule applications.

3.2 Wellformedness Checks

An example from Sect. 2.3 in [17], illustrating partial fraction decomposition,
involves computing the following integral:

I(a) =
∫ ∞

0

1
x4 + 2x2 cos(2a) + 1

dx

under the condition cos(a) �= 0. One particularly tricky point is that it is not
obvious why the denominator is always nonzero. This cannot be shown automat-
ically by Iscalc. However, we can state a separate goal showing this fact by case
analysis. One of the step during the computation involves an integral with the
same denominator, but with bounds (−∞,∞), so we perform the check without
any assumption on x.

We perform case analysis on whether x is equal to 0. If x = 0 then the goal
simply reduces to 1 �= 0. If x �= 0, we rewrite the goal as follows (the name of
the rule applied is shown at right):

x4 + 2x2 cos(2a) + 1

= (x2 − 1)2 + 2x2(1 + cos(2a)) (Equation)

= (x2 − 1)2 + 2x2(1 + (2 cos2(a) − 1)) (ApplyIdentity)

= 4x2 cos2(a) + (x2 − 1)2 (FullSimplify)

Now, from x �= 0 and cos(a) �= 0 we get 4x2 cos2(a) > 0. Also (x2 − 1)2 ≥ 0, so
the whole expression is greater than zero (and hence nonzero). The inequality
checking algorithm in Sect. 2.3 is able to perform this reasoning automatically,
hence showing the expression in the integral is well-defined. Interestingly, the
answer π

4 cos(a) given in the book is not fully correct. It only holds when cos(a) >

0. If cos(a) < 0 the correct answer is − π
4 cos(a) (we can easily check there is a

mistake since the integrand is always positive).
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3.3 Convergence Checks

For the final example, we illustrate integration using series, as well as checking
convergence. The example comes from Sect. 5 of [17]. The goal is to evaluate

∫ 1

0

log(1 + x)
x

dx

The technique used is to expand the Taylor series for log(1 + x) (using rule
SeriesExpansionIdentity), then exchange integration and summation. During the
exchange the body of the sum and integral is (−1)nxn

n+1 . As the body changes sign
for different values of n, there is potential danger that the sum is not absolutely
convergent, and the exchange of sum and integral is incorrect even if the final
answer is finite. To exclude this possibility, Iscalc requires the user to first show
the convergence of

∑∞
n=0

∫ 1

0
xn

n+1 dx. This is checked after the computation

∞∑
n=0

∫ 1

0

xn

n + 1
dx =

∞∑
n=0

1
n + 1

∫ 1

0

xn dx =
∞∑

n=0

1
(n + 1)2

which is convergent by the p-series test implemented within Iscalc. This shows
the exchange of sum and integral is indeed safe. The final result of the integral
is π

12 , which can be computed in Iscalc using 10 rule applications (including 3
for showing convergence), assuming the value of some standard infinite series is
already known.

4 Discussion

While there has been a long line of research on visual user-interfaces for inter-
active theorem proving, one persistent issue is that they are mostly limited to
simple examples or narrow application areas. For large scale formalizations, the
number of actions the user can perform steadily increases, so it becomes more
and more difficult to organize them in the user interface. Our work can be seen
as an exploration of how far we can go in the limited, but still wide area of
symbolic computation. We believe the results are positive. In particular, the
following design decisions contribute to controlling complexity:

– Apply rules automatically as much as possible, so they never need to be
explicitly selected by the user (e.g. normalization and inequality checking).

– Group related identities into a single rule (e.g. integrals, series expansions,
etc.). After the user selects one of these rules, performing matching on the
list of available identities and provide choices to the user.

– Group related rules into categories. For example, rules for evaluating integrals,
rules for series manipulation, etc. This results in a two-level menu where the
user may find appropriate rules more easily.

The end result is that the user does not need to recall names of any existing
identity (in fact no names are assigned at all). Instead, all results are either
applied automatically, or selected after matching from a list of suggested choices.
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4.1 Related Work

There is a large body of work combining theorem proving and symbolic com-
putation, and in user interface design for theorem provers. Some earlier works
include Harrison and Théry’s “skeptic’s” approach to invoking computer algebra
systems from a theorem prover [12], and Bauer et al’s Analytica [5], which imple-
ments automatic theorem proving for elementary analysis within Mathematica.
We leave a detailed review to [18,19]. More recently, Lewis and Wu [14] imple-
mented a bi-directional interface between Lean [16] and Mathematica. Donato et
al. designed an interface for constructing proofs using drag-and-drop actions [7].

There are also many implementations of proof procedures related to computer
algebra. For example, the tool MetiTarski for proving inequalities by Akbarpour
and Paulson [2], and the heuristic-based prover Polya by Avigad et al [4]. For
computation of limits, Eberl implemented verified computation of asymptotics
with generated proofs in Isabelle [8]. We do not claim our procedures to be more
effective than the ones listed above, but focus on their combination with user
guidance to allow performing more complex symbolic computations.

5 Conclusion

In this paper, we introduced Iscalc for performing symbolic computation inter-
actively, as a significant extension to the system described in [18]. This results
in a more extensible tool with greater range of applicability, in particular able
to check difficult computations from the textbook [17], and find some mistakes
in the process.

In future work, we wish to extend the functionality of Iscalc to handle complex
numbers, multiple integrals, and vector calculus. One particularly interesting
question is how to support evaluation of contour integrals (the formalization of
which have been done in Isabelle by Li and Paulson [15]). On the applications
side, we intend to explore verification of control systems [3].

Finally, more work would be required to extend the proof reconstruction
in [18] to the larger set of functionality available, as well as linking with library
of theorems in analysis. The custom language of expressions defined here is
independent of particular choice of logical foundation, hence proof reconstruction
should be possible in any interactive theorem prover.
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