Skip to main content

Optimization of the BOLD Hemodynamic Response Function for EEG-FMRI Studies in Epilepsy

  • Conference paper
  • First Online:
The Latest Developments and Challenges in Biomedical Engineering (PCBEE 2023)

Abstract

Simultaneous EEG-fMRI measurements are used to study epileptic patients in order to localize brain regions associated with interictal epileptiform discharges (IEDs). The common approach to this analysis uses the generalized linear model (GLM) with a canonical hemodynamic response function (HRF) to relate EEG activity to predicted BOLD responses. The study aimed to determine whether the canonical HRF is optimal for IED-induced hotspot fMRI analysis and develop optimized HRFs. The optimization of four HRF models was performed on BOLD responses derived from SPM activation clusters from 36 epileptic patients. The results showed that the optimized HRF models improved the sensitivity of the EEG-fMRI analysis of IED events in epilepsy patients compared to standard HRFs. This was evidenced by an increase in the size, number, and maximum t-score values of activated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 87(24), 9868–9872 (1990)

    Article  Google Scholar 

  2. Binnie, C.D., Prior, P.F.: Electroencephalography. J. Neurol. Neurosurg. Psychiatry 57(11), 1308–1319 (1994)

    Article  Google Scholar 

  3. Ritter, P., Villringer, A.: Simultaneous EEG–fMRI. Neurosci. Biobehav. Rev. 30(6), 823–838 (2006)

    Article  Google Scholar 

  4. Ives, J.R., Warach, S., Schmitt, F., Edelman, R.R., Schomer, D.L.: Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr. Clin. Neurophysiol. 87(6), 417–420 (1993)

    Article  Google Scholar 

  5. Sadjadi, S.M., Ebrahimzadeh, E., Shams, M., Seraji, M., Soltanian-Zadeh, H.: Localization of epileptic foci based on simultaneous EEG-fMRI data. Front. Neurol. 12 (2021)

    Google Scholar 

  6. Kowalczyk, M.A., Omidvarnia, A., Abbott, D.F., Tailby, C., Vaughan, D.N., Jackson, G.D.: Clinical benefit of presurgical EEG-fMRI in difficult-to-localize focal epilepsy: A single-institution retrospective review. Epilepsia 61(1), 49–60 (2019)

    Article  Google Scholar 

  7. Penny, W., Friston, K., Ashburner, J., Kiebel, S., Nichols, T.: Statistical parametric mapping: The analysis of functional brain images. 1st edn., Elsevier (2007)

    Google Scholar 

  8. Aguirre, G.K., Zarahn, E., D’esposito, M.: The variability of human bold hemodynamic responses. NeuroImage 8(4), 360–369 (1998)

    Article  Google Scholar 

  9. Ciuciu, P., Poline, J.B., Marrelec, G., Idier, J., Pallier, C., Benali, H.: Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment. IEEE Trans. Med. Imaging 22(1), 1235–1251 (2003)

    Article  Google Scholar 

  10. Prokopiou, P.C., Xifra-Porxas, A., Kassinopoulos, M., Boudrias, M.-H., Mitsis, G.D.: Modeling the hemodynamic response function using EEG-fMRI data during eyes-open resting-state conditions and motor task execution. Brain Topogr. 35(3), 302–321 (2022)

    Article  Google Scholar 

  11. Kang, J.K., Benar, C., Al-Asmi, A., Khani, Y.A., Pike, G.B., Dubeau, F., Gotman, J.: Using patient-specific hemodynamic response functions in combined EEG-fMRI studies in epilepsy. Neuroimage 20(2), 1162–1170 (2003)

    Article  Google Scholar 

  12. Pedregosa, F., Eickenberg, M., Ciuciu, P., Thirion, B., Gramfort, A.: Data-driven HRF estimation for encoding and decoding models. Neuroimage 104, 209–220 (2015)

    Article  Google Scholar 

  13. Lu, Y., Bagshaw, A.P., Grova, C., Kobayashi, E., Dubeau, F., Gotman, J.: Using voxel-specific hemodynamic response function in EEG-fMRI data analysis. Neuroimage 32(1), 238–247 (2006)

    Article  Google Scholar 

  14. Bagshaw, A.P., Hawco, C., Benar, C.G., Kobayashi, E., Aghakhani, Y., Dubeau, F., Pike, G.B., Gotman, J.: Analysis of the EEG-fMRI response to prolonged bursts of interictal epileptiform activity. Neuroimage 24(4), 1099–1112 (2005)

    Article  Google Scholar 

  15. Buxton, R.B., Wong, E.C., Frank, L.R.: Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magn. Reson. Med. 39(6), 855–864 (1998)

    Article  Google Scholar 

  16. Buxton, R.B., Uludag, K., Dubowitz, D.J., Liu, T.T.: Modeling the hemodynamic response to brain activation. Neuroimage 23, 220–233 (2004)

    Article  Google Scholar 

  17. Adaszewski, S., Slater, D., Melie-Garcia, L., Draganski, B., Bogorodzki, P.: Simultaneous estimation of population receptive field and hemodynamic parameters from single point BOLD responses using Metropolis-Hastings sampling. NeuroImage 172, 175–193 (2018)

    Google Scholar 

  18. Obata, T., Liu, T.T., Miller, K.L., Luh, W.M., Wong, E.C., Frank, L.R., Buxton, R.B.: Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: Application of the balloon model to the interpretation of BOLD transients. Neuroimage 21(1), 144–153 (2004)

    Article  Google Scholar 

  19. Savoy, R.L., O’Craven, K.M., Weisskoff, R.M., Davis, T.L., Baker, J., Rosen, B.: Exploring the temporal boundaries of fMRI: measuring responses to very brief visual stimuli. Society for Neuroscience 24th Annual Meeting, Miami Beach, FL, p. 518 (1994)

    Google Scholar 

  20. Cohen, M.S.: Parametric analysis of fMRI data using linear systems methods. Neuroimage 6(2), 93–103 (1997)

    Article  Google Scholar 

  21. Glover, G.H.: Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9(4), 416–429 (1999)

    Article  Google Scholar 

  22. Worsley, K.J., Liao, C.H., Aston, J., Petre, V., Duncan, G.H., Morales, F., Evans, A.C.: A general statistical analysis for fMRI data. Neuroimage 15(1), 1–15 (2002)

    Article  Google Scholar 

  23. Bogorodzki, P., Rogowska, J., Yurgelun-Todd, D.A.: Structural group classification technique based on regional fMRI BOLD responses. IEEE Trans Med Imaging 24(3), 389–398 (2005)

    Article  Google Scholar 

  24. Ito, Y., Maesawa, S., Bagarinao, E., Okai, Y., Nakatsubo, D., Yamamoto, H., Kidokoro, H., Usui, N., Natsume, J., Hoshiyama, M., Wakabayashi, T., Sobue, G., Ozaki, N.: Subsecond EEG-fMRI analysis for presurgical evaluation in focal epilepsy. J Neurosurg. 134(3), 1027–1036 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikodem Hryniewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hryniewicz, N., Rola, R., Lipiński, K., Piątkowska-Janko, E., Bogorodzki, P. (2024). Optimization of the BOLD Hemodynamic Response Function for EEG-FMRI Studies in Epilepsy. In: Strumiłło, P., Klepaczko, A., Strzelecki, M., Bociąga, D. (eds) The Latest Developments and Challenges in Biomedical Engineering. PCBEE 2023. Lecture Notes in Networks and Systems, vol 746. Springer, Cham. https://doi.org/10.1007/978-3-031-38430-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38430-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38429-5

  • Online ISBN: 978-3-031-38430-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics