Skip to main content

A Finite Element Level-Set Approach for Optimizing the Topology of Complete Disc Replacement in the Lumbar Spine

  • Conference paper
  • First Online:
Towards a Smart, Resilient and Sustainable Industry (ISIEA 2023)

Abstract

The study aims to optimize the topology of the complete disc replacement. In this paper, we present a stress-based topology optimization of a complete disc replacement for the lumbar spine using the finite element level set method (LS). The disc was optimized to reduce stress and strain at the level of two segments. The new modified pro disc design was proposed to increase the space for bone ingrowth and increase the stability of fixation. The intact model was tested in six degrees of freedom (compression, extension, flexion, lateral bending, and torsion). The volume of the intact model was reduced by 50% by optimizing the topology, and validation showed more significant results under biomechanical loading conditions. The Von Mises stress remains the same with minor differences. Topology optimization allows to increase bone ingrowth and reduces stress-shield effects in the cortical bone and cancellous bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wellington, I.J., et al.: Cervical and lumbar disc arthroplasty: a review of current implant design and outcomes. Bioengineering 9(5), 1–12 (2022). https://doi.org/10.3390/bioengineering9050227

    Article  Google Scholar 

  2. Zigler, J., Gornet, M.F., Ferko, N., Cameron, C., Schranck, F.W., Patel, L.: Comparison of lumbar total disc replacement with surgical spinal fusion for the treatment of single-level degenerative disc disease: a meta-analysis of 5-year outcomes from randomized controlled trials. Glob. Spine J. 8(4), 413–423 (2018). https://doi.org/10.1177/2192568217737317

    Article  Google Scholar 

  3. Yuan, W., Zhang, H., Zhou, X., Wu, W., Zhu, Y.: The influence of artificial cervical disc prosthesis height on the cervical biomechanics: a finite element study. World Neurosurg. 113, e490–e498 (2018). https://doi.org/10.1016/j.wneu.2018.02.062

    Article  Google Scholar 

  4. Phan, K., Mobbs, R.J.: Evolution of design of interbody cages for anterior lumbar interbody fusion. Orthop. Surg. 8(3), 270–277 (2016). https://doi.org/10.1111/os.12259

    Article  Google Scholar 

  5. Patwardhan, A.G., Havey, R.M.: Biomechanics of cervical disc arthroplasty-a review of concepts and current technology. Int. J. Spine Surg. 14(s2), S14–S28 (2020). https://doi.org/10.14444/7087

    Article  Google Scholar 

  6. Choi, J., Shin, D.A., Kim, S.: Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine. Spine (Phila. Pa. 1976) 42(6), E332–E339 (2017). https://doi.org/10.1097/BRS.0000000000001789

  7. Wei, H.W., Chuang, S.M., Chen, C.S.: Biomechanical evaluation of the lumbar spine by using a new interspinous process device: a finite element analysis. Appl. Sci. 11(21) (2021). https://doi.org/10.3390/app112110486

  8. Lu, T., Lu, Y.: Comparison of biomechanical performance among posterolateral fusion and transforaminal, extreme, and oblique lumbar interbody fusion: a finite element analysis. World Neurosurg. 129, e890–e899 (2019). https://doi.org/10.1016/j.wneu.2019.06.074

    Article  Google Scholar 

  9. Ngo, J., Mousselli, M., Lee, Y.P.: Cage and graft options in lateral lumbar interbody fusion. Semin. Spine Surg. 34(2), 100943 (2022). https://doi.org/10.1016/j.semss.2022.100943

    Article  Google Scholar 

  10. Taghizadeh, S.A., et al.: Characterization of compressive behavior of PVC foam infilled composite sandwich panels with different corrugated core shapes. Thin-Walled Struct. 135, 160–172 (2019). https://doi.org/10.1016/j.tws.2018.11.019

  11. Alomar, Z., Concli, F.: Compressive behavior assessment of a newly developed circular cell-based lattice structure. Mater. Des. 205, 109716 (2021). https://doi.org/10.1016/j.matdes.2021.109716

  12. Gandhi, R., Maccioni, L., Concli, F.: Significant advancements in numerical simulation of fatigue behavior in metal additive manufacturing-review. Appl. Sci. 12(21), 11132 (2022). https://doi.org/10.3390/app122111132

    Article  Google Scholar 

  13. Qi, J., et al.: Design and 3D printing of interbody fusion cage based on tpms porous structure. Appl. Sci. 11(23) (2021). https://doi.org/10.3390/app112311149

  14. Zhang, H., et al.: Biomaterials for interbody fusion in bone tissue engineering. Front. Bioeng. Biotechnol. 10, 1–21 (2022). https://doi.org/10.3389/fbioe.2022.900992

    Article  Google Scholar 

  15. Živčák, J., Hudák, R., Schnitzer, M., Kula, T.: Numerical simulation and experimental testing of topologically optimized PLA cervical implants made by additive manufacturing methodics. Acta Mech. Autom. 12(2), 141–144 (2018). https://doi.org/10.2478/ama-2018-0022

    Article  Google Scholar 

  16. Zahaf, S., Kebdani, S.: Study and analysis of mechanical behavior between rigid and dynamic fixation systems analyzed by the finite element method. J. Biomimetics Biomater. Biomed. Eng. 33, 12–31 (2017). https://doi.org/10.4028/www.scientific.net/JBBBE.33.12

  17. McGilvray, K.C., et al.: Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J. 18(7), 1250–1260 (2018). https://doi.org/10.1016/j.spinee.2018.02.018

    Article  Google Scholar 

  18. Ragul, G., Jayakumar, V., Sha, S.U., Biswas, R., Kumar, C.: Tensile strength improvement using human hair reinforcement in recycled high density polyethylene. J. Sci. Ind. Res. (India) 77(7), 410–413 (2018)

    Google Scholar 

  19. Pagliari, L., Nezzi, C., Fraccaroli, L., Concli, F.: Development of a FEM model for the digital twin application and the monitoring of cor-ten road barriers in the autonomous province of Bozen/Bolzano. In: Matt, D.T., Vidoni, R., Rauch, E., Dallasega, P. (eds.) ISIEA 2022. LNNS, vol. 525, pp. 139–150. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14317-5_12

    Chapter  Google Scholar 

  20. Bayat, A., et al.: Experimental investigation on the quasi-static mechanical behavior of autoclaved aerated concrete insulated sandwich panels. J. Sandw. Struct. Mater. (2019). https://doi.org/10.1177/1099636219857633

  21. Jebaseelan, D.D., Jebaraj, C., Yoganandan, N., Rajasekaran, S.: Validation efforts and flexibilities of an eight-year-old human juvenile lumbar spine using a three-dimensional finite element model. Med. Biol. Eng. Comput. 48(12), 1223–1231 (2010). https://doi.org/10.1007/s11517-010-0691-1

    Article  Google Scholar 

  22. Biswas, J.K., Rana, M., Malas, A., Roy, S., Chatterjee, S., Choudhury, S.: Effect of single and multilevel artificial inter-vertebral disc replacement in lumbar spine: a finite element study. Int. J. Artif. Organs 45(2), 193–199 (2022). https://doi.org/10.1177/03913988211001875

    Article  Google Scholar 

  23. Chemmami, A., et al.: Biomechanical comparison of three total artificial discs: Sb-charite iii®, prodisc-l® and maverick® reinforced by a posterior fixation system in the spinal column: a three-dimensional finite element analysis. Struct. Integr. Life 21(1), 65–83 (2021)

    Google Scholar 

  24. Nguyen, S.H., Nguyen, T.N., Nguyen-Thoi, T.: A finite element level-set method for stress-based topology optimization of plate structures. Comput. Math. with Appl. 115, 26–40 (2022). https://doi.org/10.1016/j.camwa.2022.04.001

    Article  MathSciNet  MATH  Google Scholar 

  25. Gui, X., Xiao, M., Zhang, Y., Gao, L., Liao, Y.: Structural topology optimization based on parametric level set method under the environment of ANSYS secondary development. 74(Iccia), 841–850 (2017). https://doi.org/10.2991/iccia-17.2017.152

  26. Ördek, B., Borgianni, Y., Coatanea, E.: Classification framework for machine learning support in manufacturing. In: Matt, D.T., Vidoni, R., Rauch, E., Dallasega, P. (eds.) ISIEA 2022. LNNS, vol. 525, pp. 61–73. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14317-5_6

    Chapter  Google Scholar 

  27. Fan, W., Guo, L.X.: Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: a finite element study. Comput. Biol. Med. 86(3), 75–81 (2017). https://doi.org/10.1016/j.compbiomed.2017.05.004

    Article  Google Scholar 

  28. Huang, S., Chang, C., Liao, C., Chan, Y., Li, Z., Lin, C.: Biomechanical evaluation of an osteoporotic anatomical 3D printed posterior lumbar interbody fusion cage with internal lattice design based on weighted topology optimization. X(X) (2023)

    Google Scholar 

  29. Kim, Y.H., Khuyagbaatar, B., Kim, K.: Recent advances in finite element modeling of the human cervical spine. J. Mech. Sci. Technol. 32(1), 1–10 (2018). https://doi.org/10.1007/s12206-017-1201-2

    Article  Google Scholar 

  30. Sun, J., et al.: A lattice topology optimization of cervical interbody fusion cage and finite element comparison with ZK60 and Ti-6Al-4V cages. BMC Musculoskelet. Disord. 22(1), 1–14 (2021). https://doi.org/10.1186/s12891-021-04244-2

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragul Gandhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gandhi, R., Concli, F., Maccioni, L. (2023). A Finite Element Level-Set Approach for Optimizing the Topology of Complete Disc Replacement in the Lumbar Spine. In: Borgianni, Y., Matt, D.T., Molinaro, M., Orzes, G. (eds) Towards a Smart, Resilient and Sustainable Industry. ISIEA 2023. Lecture Notes in Networks and Systems, vol 745. Springer, Cham. https://doi.org/10.1007/978-3-031-38274-1_51

Download citation

Publish with us

Policies and ethics