Skip to main content

Osteoclasts at Bone Remodeling: Order from Order

  • Chapter
  • First Online:
Syncytia: Origin, Structure, and Functions

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 71))

Abstract

Osteoclasts are multinucleated bone-resorbing cells derived from the monocyte/macrophage lineage. The macrophage colony-stimulating factor/receptor activator of nuclear factor κB ligand (M-CSF/RANKL) signaling network governs the differentiation of precursor cells into fusion-competent mononucleated cells. Repetitive fusion of fusion-competent cells produces multinucleated osteoclasts. Osteoclasts are believed to die via apoptosis after bone resorption. However, recent studies have found that osteoclastogenesis in vivo proceeds by replacing the old nucleus of existing osteoclasts with a single newly differentiated mononucleated cell. Thus, the formation of new osteoclasts is minimal. Furthermore, the sizes of osteoclasts can change via cell fusion and fission in response to external conditions. On the other hand, osteoclastogenesis in vitro involves various levels of heterogeneity, including osteoclast precursors, mode of fusion, and properties of the differentiated osteoclasts. To better understand the origin of these heterogeneities and the plasticity of osteoclasts, we examine several processes of osteoclastogenesis in this review. Candidate mechanisms that create heterogeneity involve asymmetric cell division, osteoclast niche, self-organization, and mode of fusion and fission. Elucidation of the plasticity or fluctuation of the M-CSF/RANKL network should be an important topic for future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, p 983

    Google Scholar 

  • Anastasilakis AD, Polyzos SA, Makras P, Aubry-Rozier B, Kaouri S, Lamy O (2017) Clinical features of 24 patients with rebound-associated vertebral fractures after Denosumab discontinuation: systematic review and additional cases. J Bone Miner Res 32:1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Aoki S, Honma M, Kariya Y, Nakamichi Y, Ninomiya T, Takahashi N, Udagawa N, Suzuki H (2010) Function of OPG as a traffic regulator for RANKL is crucial for controlled osteoclastogenesis. J Bone Miner Res 25:1907–1921

    Article  CAS  PubMed  Google Scholar 

  • Asagiri M, Takayanagi H (2007) The molecular understanding of osteoclast differentiation. Bone 40:251–264

    Article  CAS  PubMed  Google Scholar 

  • Baron R, Neff L, Louvard D, Courtoy PJ (1985) Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 101:2210–2222

    Article  CAS  PubMed  Google Scholar 

  • Baron R, Neff L, Van PT, Nefussi JR, Vignery A (1986) Kinetic and cytochemical identification of osteoclast precursors and their differentiation into multinucleated osteoclasts. Am J Pathol 122:363–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binder NB, Niederreiter B, Hoffmann O, Stange R, Pap T, Stulnig TM, Mack M, Erben RG, Smolen JS, Redlich K (2009) Estrogen-dependent and C-C chemokine receptor-2-dependent pathways determine osteoclast behavior in osteoporosis. Nat Med 15:417–424

    Article  CAS  PubMed  Google Scholar 

  • Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR, Czerwinski E, Fahrleitner-Pammer A, Kendler DL, Lippuner K, Reginster J-Y, Roux C, Malouf J, Bradley MN, Daizadeh NS, Wang A, Dakin P, Pannacciulli N, Dempster DW, Papapoulos S (2017) 10 Years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol 5:513–523

    Article  CAS  PubMed  Google Scholar 

  • Bovellan M, Romeo Y, Biro M, Boden A, Chugh P, Yonis A, Vaghela M, Fritzsche M, Moulding D, Thorogate R, Jégou A, Thrasher AJ, Romet-Lemonne G, Roux PP, Paluch EK, Charras G (2014) Cellular control of cortical actin nucleation. Curr Biol 24:1628–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandi ML, Collin-Osdoby P (2006) Vascular biology and the skeleton. J Bone Miner Res 21:183–192

    Article  CAS  PubMed  Google Scholar 

  • Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599

    Article  CAS  PubMed  Google Scholar 

  • Bretschneider T, Anderson K, Ecke M, Müller-Taubenberger A, Schroth-Diez B, Ishikawa-Ankerhold HC, Gerisch G (2009) The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization. Biophys J 96:2888–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenzli PR, Sims NA (2015) Quantifying the osteocyte network in the human skeleton. Bone 75:144–150

    Article  CAS  PubMed  Google Scholar 

  • Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone–role of the lacuno-canalicular network. FASEB J 13:S101–S112

    Article  CAS  PubMed  Google Scholar 

  • Buss DJ, Kröger R, McKee MD, Reznikov N (2022) Hierarchical organization of bone in three dimensions: A twist of twists. J Struct Biol X 6:10057

    Google Scholar 

  • Cendrowski J, Mamińska A, Miaczynska M (2017) Endocytic regulation of cytokine receptor signaling. Cytokine Growth Factor Rev 32:63–73

    Article  Google Scholar 

  • Chabadel A, Bañon-Rodríguez I, Cluet D, Rudkin BB, Wehrle-Haller B, Genot E, Jurdic P, Anton IM, Saltel F (2007) CD44 and beta3 integrin organize two functionally distinct actin-based domains in osteoclasts. Mol Biol Cell 18:4899–4910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen A, Leikina E, Melikov K, Podbilewicz B, Kozlov MM, Chernomordik LV (2008) Fusion-pore expansion during syncytium formation is restricted by an actin network. J Cell Sci 121:3619–3628

    Article  CAS  PubMed  Google Scholar 

  • Chernomordik LV, Kozlov MM (2003) Protein-lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 72:175–207

    Article  CAS  PubMed  Google Scholar 

  • Chernomordik LV, Zimmerberg J, Kozlov MM (2006) Membranes of the world unite! J Cell Biol 175:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chugh P, Paluch EK (2018) The actin cortex at a glance. J Cell Sci 131:jcs186254

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen FS, Melikyan GB (2004) The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J Membr Biol 199:1–14

    Article  CAS  PubMed  Google Scholar 

  • Collin O, Na S, Chowdhury F, Hong M, Shin ME, Wang F, Wang N (2008) Self-organized podosomes are dynamic mechanosensors. Curr Biol 18:1288–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collin-Osdoby P, Rothe L, Anderson F, Nelson M, Maloney W, Osdoby P (2001) Receptor activator of NF-kappa B and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis. J Biol Chem 276:20659–20672

    Article  CAS  PubMed  Google Scholar 

  • De Lozanne A, Spudich JA (1987) Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science 236:1086–1091

    Article  PubMed  Google Scholar 

  • Destaing O, Saltel F, Géminard JC, Jurdic P, Bard F (2003) Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14:407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elson A, Anuj A, Barnea-Zohar M, Reuven N (2022) The origins and formation of bone-resorbing osteoclasts. Bone 164:116538

    Article  CAS  PubMed  Google Scholar 

  • Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11:219–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng W, Guo J, Li M (2019) RANKL-independent modulation of osteoclastogenesis. J Oral Biosci 61:16–21

    Article  PubMed  Google Scholar 

  • Fiorino C, Harrison RE (2016) E-cadherin is important for cell differentiation during osteoclastogenesis. Bone 86:106–118

    Article  CAS  PubMed  Google Scholar 

  • Flemming S, Font F, Alonso S, Beta C (2020) How cortical waves drive fission of motile cells. Proc Natl Acad Sci USA 117:6330–6338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritzsche M, Lewalle A, Duke T, Kruse K, Charras G (2013) Analysis of turnover dynamics of the submembranous actin cortex. Mol Biol Cell 24:757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt M, Ecke M, Walz M, Stengl A, Beta C, Gerisch G (2014) Actin and PIP3 waves in giant cells reveal the inherent length scale of an excited state. J Cell Sci 127:4507–4517

    CAS  PubMed  Google Scholar 

  • Gerisch G, Ecke M, Schroth-Diez B, Gerwig S, Engel U, Maddera L, Clarke M (2009) Self-organizing actin waves as planar phagocytic cup structures. Cell Adhes Migr 3:373–382

    Article  Google Scholar 

  • Gerisch G, Ecke M, Neujahr R, Prassler J, Stengl A, Hoffmann MS, Neumann US, E. (2013) Membrane and actin reorganization in electropulse-induced cell fusion. J Cell Sci 126:2069–2078

    CAS  PubMed  Google Scholar 

  • Gronthos S, Zannettino AC (2007) The role of the chemokine CXCL12 in osteoclastogenesis. Trends Endocrinol Metab 18:108–113

    Article  CAS  PubMed  Google Scholar 

  • Guha M, Zhou MW, YL. (2005) Cortical actin turnover during cytokinesis requires myosin II. Curr Biol 15:732–736

    Article  CAS  PubMed  Google Scholar 

  • Hall BK (2005) Bones and cartilage: developmental and evolutionary skeletal biology. Elsevier, p 207

    Google Scholar 

  • Haluska CK, Riske KA, Marchi-Artzner V, Lehn JM, Lipowsky R, Dimova R (2006) Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution. Proc Natl Acad Sci USA 103:15841–15846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582

    Article  CAS  PubMed  Google Scholar 

  • Hobolt-Pedersen AS, Delaissé JM, Søe K (2014) Osteoclast fusion is based on heterogeneity between fusion partners. Calcif Tissue Int 95:73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honma M, Ikebuchi Y, Kariya Y, Hayashi M, Hayashi N, Aoki S, Suzuki H (2013) RANKL subcellular trafficking and regulatory mechanisms in osteocytes. J Bone Miner Res 28:1936–1949

    Article  CAS  PubMed  Google Scholar 

  • Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan H-L, Elliott G, Kelly MJ, Sarosi I, Wang L, Xia X-Z, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WL (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96:3540–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu S, Planus E, Georgess D, Place C, Wang X, Albiges-Rizo C, Jurdic P, Géminard JC (2011) Podosome rings generate forces that drive saltatory osteoclast migration. Mol Biol Cell 22:3120–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda T, Kasai M, Utsuyama M, Hirokawa K (2001) Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus. Endocrinology 142:1419–1426

    Article  CAS  PubMed  Google Scholar 

  • Insall RH, Weiner OD (2001) PIP3, PIP2, and cell movement–similar messages, different meanings? Dev Cell 1:743–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irie A, Yamamoto K, Miki Y, Murakami M (2017) Phosphatidylethanolamine dynamics are required for osteoclast fusion. Sci Rep 7:46715

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishii M, Kikuta J (2013) Sphingosine-1-phosphate signaling controlling osteoclasts and bone homeostasis. Biochim Biophys Acta 1831:223–227

    Article  CAS  PubMed  Google Scholar 

  • Ishii M, Egen JG, Klauschen F, Meier-Schellersheim M, Saeki Y, Vacher J, Proia RL, Germain RN (2009) Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458:524–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii M, Kikuta J, Shimazu Y, Meier-Schellersheim M, Germain RN (2010) Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med 207:2793–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Wakabayashi K, Ubukata O, Hayashi S, Okada F, Hata T (2002) Crystal structure of the extracellular domain of mouse RANK ligand at 2.2-A resolution. J Biol Chem 277:6631–6636

    Article  CAS  PubMed  Google Scholar 

  • Jacome-Galarza CE, Percin GI, Muller JT, Mass E, Lazarov T, Eitler J, Rauner M, Yadav VK, Crozet L, Bohm M, Loyher PL, Karsenty G, Waskow C, Geissmann F (2019) Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568:541–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen ID, Vermeer JA, Bloemen V, Stap J, Everts V (2012) Osteoclast fusion and fission. Calcif Tissue Int 90:515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaworski ZF, Duck B, Sekaly G (1981) Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. J Anat 133:397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jimi E, Akiyama S, Tsurukai T, Okahashi N, Kobayashi K, Udagawa N, Nishihara T, Takahashi N, Suda T (1999) Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. J Immunol 163:434–442

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa K, Kudo A (2005) Self-assembled RANK induces osteoclastogenesis ligand-independently. J Bone Miner Res 20:2053–2060

    Article  CAS  PubMed  Google Scholar 

  • Kariya Y, Honma M, Aoki S, Chiba A, Suzuki H (2009) Vps33a mediates RANKL storage in secretory lysosomes in osteoblastic cells. J Bone Miner Res 24:1741–1752

    Article  CAS  PubMed  Google Scholar 

  • Kartsogiannis V, Zhou H, Horwood NJ, Thomas RJ, Hards DK, Quinn JM, Niforas P, Ng KW, Martin TJ, Gillespie MT (1999) Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone 25:525–534

    Article  CAS  PubMed  Google Scholar 

  • Kenkre JS, Bassett J (2018) The bone remodelling cycle. Ann Clin Biochem 55:308–327

    Article  CAS  PubMed  Google Scholar 

  • Khamviwath V, Hu J, Othmer HG (2013) A continuum model of actin waves in Dictyostelium discoideum. PLoS One 8:e64272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knecht DA, Loomis WF (1987) Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science 236:1081–1086

    Article  CAS  PubMed  Google Scholar 

  • Köster DV, Mayor S (2016) Cortical actin and the plasma membrane: inextricably intertwined. Curr Opin Cell Biol 38:81–89

    Article  PubMed  Google Scholar 

  • Kukita T, Hiura H, Gu JY, Zhang JQ, Kyumoto-Nakamura Y, Uehara N, Murata S, Sonoda S, Yamaza T, Takahashi I, Kukita A (2021) Modulation of osteoclastogenesis through adrenomedullin receptors on osteoclast precursors: initiation of differentiation by asymmetric cell division. Lab Invest 101:1449–1457

    Article  CAS  PubMed  Google Scholar 

  • Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

    Article  CAS  PubMed  Google Scholar 

  • Lam J, Nelson CA, Ross FP, Teitelbaum SL, Fremont DH (2001) Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J Clin Invest 108:971–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levaot N, Ottolenghi A, Mann M, Guterman-Ram G, Kam Z, Geiger B (2015) Osteoclast fusion is initiated by a small subset of RANKL-stimulated monocyte progenitors which can fuse to RANKL-unstimulated progenitors. Bone 79:21–28. https://doi.org/10.1016/j.bone.2015.05.021

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Walter TS, Huang P, Zhang S, Zhu X, Wu Y, Wedderburn LR, Tang P, Owens RJ, Stuart DI, Ren J, Gao B (2010) Structural and functional insights of RANKL-RANK interaction and signaling. J Immunol 184:6910–6919

    Article  CAS  PubMed  Google Scholar 

  • Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    CAS  PubMed  Google Scholar 

  • Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teti A, Zambonin-Zallone A (1984) Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol 99:1696–1705

    Article  CAS  PubMed  Google Scholar 

  • Marks SC, Seifert MF (1985) The lifespan of osteoclasts: experimental studies using the giant granule cytoplasmic marker characteristic of beige mice. Bone 6:451–455

    Article  PubMed  Google Scholar 

  • Martin SG (2016) Role and organization of the actin cytoskeleton during cell-cell fusion. Semin Cell Dev Biol 60:121–126

    Article  CAS  PubMed  Google Scholar 

  • McCusker D (2020) Cellular self-organization: generating order from the abyss. Mol Biol Cell 31:143–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, Kyaw W, Pathmanandavel K, Grootveld AK, Moran I, Butt D, Nguyen A, Corr A, Warren S, Biro M, Butterfield NC, Guilfoyle SE, Komla-Ebri D, Dack MRG, Dewhurst HF, Logan JG, Li Y, Mohanty ST, Byrne N, Terry RL, Simic MK, Chai R, Quinn JMW, Youlten SE, Pettitt JA, Abi-Hanna D, Jain R, Weninger W, Lundberg M, Sun S, Ebetino FH, Timpson P, Lee WM, Baldock PA, Rogers MJ, Brink R, Williams GR, Bassett JHD, Kemp JP, Pavlos NJ, Croucher PI, Phan TG (2021a) Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell 184:1330–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald MM, Kim AS, Mulholland BS, Rauner M (2021b) New insights into osteoclast biology. JBMR Plus 5:e10539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mensah KA, Ritchlin CT, Schwarz EM (2010) RANKL induces heterogeneous DC-STAMP(lo) and DC-STAMP(hi) osteoclast precursors of which the DC-STAMP(lo) precursors are the master fusogens. J Cell Physiol 223:76–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Bhattacharya S, Banerjee T, Abubaker-Sharif B, Long Y, Inoue T, Iglesias PA, Devreotes PN (2019) Wave patterns organize cellular protrusions and control cortical dynamics. Mol Syst Biol 15:e8585

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Arai F, Ohneda O, Takagi K, Anderson DM, Suda T (2000) An adherent condition is required for formation of multinuclear osteoclasts in the presence of macrophage colony-stimulating factor and receptor activator of nuclear factor kappa B ligand. Blood 96:4335–4343

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Muto A, Udagawa N, Arai A, Yamashita T, Hosoya A, Ninomiya T, Nakamura H, Yamamoto Y, Kinugawa S, Nakamura M, Nakamichi Y, Kobayashi Y, Nagasawa S, Oda K, Tanaka H, Tagaya M, Penninger JM, Ito M, Takahashi N (2009) Identification of cell cycle-arrested quiescent osteoclast precursors in vivo. J Cell Biol 184:541–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motiur Rahman M, Takeshita S, Matsuoka K, Kaneko K, Naoe Y, Sakaue-Sawano A, Miyawaki A, Ikeda K (2015) Proliferation-coupled osteoclast differentiation by RANKL: Cell density as a determinant of osteoclast formation. Bone 81:392–399

    Article  CAS  PubMed  Google Scholar 

  • Mukhina S, Wang YL, Murata-Hori M (2007) Alpha-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev Cell 13:554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulari MT, Zhao H, Lakkakorpi PT, Väänänen HK (2003) Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake. Traffic 4:113–125

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Kobayashi Y, Yamasaki S, Kawakami A, Eguchi K, Sasaki H, Sakai H (2000) Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun 275:768–775

    Article  CAS  PubMed  Google Scholar 

  • Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, Bonewald LF, Kodama T, Wutz A, Wagner EF, Penninger JM, Takayanagi H (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231–1234

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt SA, Horton MA (1997) Trafficking of matrix collagens through bone-resorbing osteoclasts. Science 276:266–269

    Article  CAS  PubMed  Google Scholar 

  • Nevius E, Pinho F, Dhodapkar M, Jin H, Nadrah K, Horowitz MC, Kikuta J, Ishii M, Pereira JP (2015) Oxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis. J Exp Med 212:1931–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien CA (2010) Control of RANKL gene expression. Bone 46:911–919

    Article  PubMed  Google Scholar 

  • Oikawa T, Itoh T, Takenawa T (2008) Sequential signals toward podosome formation in NIH-src cells. J Cell Biol 182:157–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa T, Oyama M, Kozuka-Hata H, Uehara S, Udagawa N, Saya H, Matsuo K (2012) Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell-cell fusion. J Cell Biol 197:553–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onan D, Allan EH, Quinn JM, Gooi JH, Pompolo S, Sims NA, Gillespie MT, Martin TJ (2009) The chemokine Cxcl1 is a novel target gene of parathyroid hormone (PTH)/PTH-related protein in committed osteoblasts. Endocrinology 150:2244–2253

    Article  CAS  PubMed  Google Scholar 

  • Parfitt AM (1994) Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55:273–286

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Lee NK, Lee SY (2017) Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol Cells 40:706–713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pauksch L, Rohnke M, Schnettler R, Lips KS (2014) Silver nanoparticles do not alter human osteoclastogenesis but induce cellular uptake. Toxicol Rep 1:900–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennanen P, Alanne MH, Fazeli E, Deguchi T, Näreoja T, Peltonen S, Peltonen J (2017) Diversity of actin architecture in human osteoclasts: network of curved and branched actin supporting cell shape and intercellular micrometer-level tubes. Mol Cell Biochem 432:131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinho S, Frenette PS (2019) Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 20:303–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piper K, Boyde A, Jones SJ (1992) The relationship between the number of nuclei of an osteoclast and its resorptive capability in vitro. Anat Embryol (Berl) 186:291–299

    Article  CAS  PubMed  Google Scholar 

  • Platta HW, Stenmark H (2011) Endocytosis and signaling. Curr Opin Cell Biol 23:393–403

    Article  CAS  PubMed  Google Scholar 

  • Reznikov N, Shahar R, Weiner S (2013) Three-dimensional structure of human lamellar bone: The presence of two different materials and new insights into the hierarchical organization. Bone 59:93–104

    Article  PubMed  Google Scholar 

  • Reznikov N, Bilton M, Lari L, Stevens MM, Kroger R (2018) Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360:eaao2189

    Article  PubMed  PubMed Central  Google Scholar 

  • Robling AG, Bonewald LF (2020) The osteocyte: new insights. Annu Rev Physiol 82:485–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rottner K, Faix J, Bogdan S, Linder S, Kerkhoff E (2017) Actin assembly mechanisms at a glance. J Cell Sci 130:3427–3435

    Article  CAS  PubMed  Google Scholar 

  • Salo J, Lehenkari P, Mulari M, Metsikkö K, Väänänen HK (1997) Removal of osteoclast bone resorption products by transcytosis. Science 276:270–273

    Article  CAS  PubMed  Google Scholar 

  • Saltel F, Chabadel A, Bonnelye E, Jurdic P (2008) Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation. Eur J Cell Biol 87:459–468

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Weivoda MM, Søe K (2022) Functional heterogeneity within osteoclast populations-a critical review of four key publications that may change the paradigm of osteoclasts. Curr Osteoporos Rep 20:344–355

    Article  PubMed  Google Scholar 

  • Sheikh MS, Fornace AJ (2000) Death and decoy receptors and p53-mediated apoptosis. Leukemia 14:1509–1513

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Kim YM, Li SZ, Lim SK, Lee W (2008) Structure-function of the TNF receptor-like cysteine-rich domain of osteoprotegerin. Mol Cells 25:352–357

    CAS  PubMed  Google Scholar 

  • Shin NY, Choi H, Neff L, Wu Y, Saito H, Ferguson SM, De Camilli P, Baron R (2014) Dynamin and endocytosis are required for the fusion of osteoclasts and myoblasts. J Cell Biol 207:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvestrini G, Ballanti P, Patacchioli F, Leopizzi M, Gualtieri N, Monnazzi P, Tremante E, Sardella D, Bonucci E (2005) Detection of osteoprotegerin (OPG) and its ligand (RANKL) mRNA and protein in femur and tibia of the rat. J Mol Histol 36:59–67

    Article  CAS  PubMed  Google Scholar 

  • Sims NA, Martin TJ (2020) Osteoclasts provide coupling signals to osteoblast lineage cells through multiple mechanisms. Annu Rev Physiol 82:507–529

    Article  CAS  PubMed  Google Scholar 

  • Sims NA, Vrahnas C (2014) Regulation of cortical and trabecular bone mass by communication between osteoblasts, osteocytes and osteoclasts. Arch Biochem Biophys 561:22–28

    Article  CAS  PubMed  Google Scholar 

  • Sivaraj KK, Adams RH (2016) Blood vessel formation and function in bone. Development 143:2706–2715

    Article  CAS  PubMed  Google Scholar 

  • Søe K, Hobolt-Pedersen AS, Delaisse JM (2015) The elementary fusion modalities of osteoclasts. Bone 73:181–189

    Article  PubMed  Google Scholar 

  • Søe K, Andersen TL, Hinge M, Rolighed L, Marcussen N, Delaisse JM (2019) Coordination of Fusion and Trafficking of Pre-osteoclasts at the Marrow-Bone Interface. Calcif Tissue Int 105:430–445

    Article  PubMed  Google Scholar 

  • Søe K, Delaisse JM, Borggaard XG (2021) Osteoclast formation at the bone marrow/bone surface interface: importance of structural elements matrix and intercellular communication. Semin Cell Dev Biol 112:8–15. https://doi.org/10.1016/j.semcdb.2020.05.016

    Article  CAS  PubMed  Google Scholar 

  • Solari F, Domenget C, Gire V, Woods C, Lazarides E, Rousset B, Jurdic P (1995) Multinucleated cells can continuously generate mononucleated cells in the absence of mitosis: a study of cells of the avian osteoclast lineage. J Cell Sci 108:3233–3241

    Article  CAS  PubMed  Google Scholar 

  • Song RL, Liu XZ, Zhu JQ, Zhang JM, Gao Q, Zhao HY, Sheng AZ, Yuan Y, Gu JH, Zou H, Wang QC, Liu ZP (2014) New roles of filopodia and podosomes in the differentiation and fusion process of osteoclasts. Genet Mol Res 13:4776–4787

    Article  CAS  PubMed  Google Scholar 

  • Stephens AS, Stephens SR, Morrison NA (2011) Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages. BMC Res Notes 4:410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streicher C, Heyny A, Andrukhova O, Haigl B, Slavic S, Schüler C, Kollmann K, Kantner I, Sexl V, Kleiter M, Hofbauer LC, Kostenuik PJ, Erben RG (2017) Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells. Sci Rep 7:6460

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi N, Udagawa N, Suda T (1999) A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem Biophys Res Commun 256:449–455

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Kukita A, Li YJ, Zhang JQ, Nomiyama H, Yamaza T, Ayukawa Y, Koyano K, Kukita T (2013) Tunneling nanotube formation is essential for the regulation of osteoclastogenesis. J Cell Biochem 114:1238–1247

    Article  CAS  PubMed  Google Scholar 

  • Takegahara N, Kim H, Mizuno H, Sakaue-Sawano A, Miyawaki A, Tomura M, Kanagawa O, Ishii M, Choi Y (2016) Involvement of receptor activator of nuclear factor-κB ligand (RANKL)-induced incomplete cytokinesis in the polyploidization of osteoclasts. J Biol Chem 291:3439–3454

    Article  CAS  PubMed  Google Scholar 

  • Takito J, Nakamura M (2012) Precursors linked via the zipper-like structure or the filopodium during the secondary fusion of osteoclasts. Commun Integr Biol 5:453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takito J, Nakamura M (2020) Heterogeneity and actin cytoskeleton in osteoclast and macrophage multinucleation. Int J Mol Sci 21:6629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takito J, Nakamura M, Yoda M, Tohmonda T, Uchikawa S, Horiuchi K, Toyama Y, Chiba K (2012) The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts. J Cell Sci 125:662–672

    Article  CAS  PubMed  Google Scholar 

  • Takito J, Inoue S, Nakamura M (2017a) Emerging role of actin flow in the organization of podosomes in osteoclasts. Macrophage 4:e1614

    Google Scholar 

  • Takito J, Otsuka H, Inoue S, Kawashima T, Nakamura M (2017b) Symmetrical retrograde actin flow in the actin fusion structure is involved in osteoclast fusion. Biol Open 6:1104–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takito J, Inoue S, Nakamura M (2018) The sealing zone in osteoclasts: a self-organized structure on the bone. Int J Mol Sci 19:984

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, Kurokawa T, Suda T (1993) Macrophage colony-stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin. Invest 91:257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka S, Miyazaki T, Fukuda A, Akiyama T, Kadono Y, Wakeyama H, Kono S, Hoshikawa S, Nakamura M, Ohshima Y, Hikita A, Nakamura I, Nakamura K (2006) Molecular mechanism of the life and death of the osteoclast. Ann N Y Acad Sci 1068:180–186

    Article  CAS  PubMed  Google Scholar 

  • Tsukasaki M, Huynh NC, Okamoto K, Muro R, Terashima A, Kurikawa Y, Komatsu N, Pluemsakunthai W, Nitta T, Abe T, Kiyonari H, Okamura T, Sakai M, Matsukawa T, Matsumoto M, Kobayashi Y, Penninger JM, Takayanagi H (2020) Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution. Nat Metab 12:1382–1390

    Article  Google Scholar 

  • Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, Higashio K, Gillespie MT, Martin TJ, Suda T (1999) Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor. Bone 25:517–523

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Leikina E, Melikov K, Chernomordik LV (2014) Late stages of the synchronized macrophage fusion in osteoclast formation depend on dynamin. Biochem J 464:293–300

    Article  CAS  PubMed  Google Scholar 

  • Walker DG (1975) Control of bone resorption by hematopoietic tissue. The induction and reversal of congenital osteopetrosis in mice through use of bone marrow and splenic transplants. J Exp Med 142:651–663

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Gu JH, Feng LL, Tong XS, Song RL, Zhao HY, Bian JC, Liu XZ, Yuan Y, Liu ZP (2018) 1-alpha,25-dihydroxyvitamin D3 potentiates avian osteoclast activation by increasing the formation of zipper-like structure via Src/Rac1 signaling. Biochem Biophys Res Commun 501:576–583

    Article  CAS  PubMed  Google Scholar 

  • Weiner OD, Marganski WA, Wu LF, Altschuler SJ, Kirschner MW (2007) An actin-based wave generator organizes cell motility. PLoS Biol 5:e221

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong J, Piemontese M, Onal M, Campbell J, Goellner JJ, Dusevich V, Bonewald L, Manolagas SC, O’Brien CA (2015) Osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling bone. PLoS One 10:e0138189

    Article  PubMed  PubMed Central  Google Scholar 

  • Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Mailhot G, MacKay CA, Mason-Savas A, Aubin J, Odgren PR (2006) Chemokine and chemokine receptor expression during colony stimulating factor-1-induced osteoclast differentiation in the toothless osteopetrotic rat: a key role for CCL9 (MIP-1gamma) in osteoclastogenesis in vivo and in vitro. Blood 107:2262–2270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S (1990) The murine mutation osteopetorosis is in the coding region of macrophage colony stimulating factor gene. Nature 345:442–444

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Huang Y, Collin-Osdoby P, Osdoby P (2003) Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration. J Bone Miner Res 18:1404–1418

    Article  CAS  PubMed  Google Scholar 

  • Yu CH, Rafiq NB, Krishnasamy A, Hartman KL, Jones GE, Bershadsky AD, Sheetz MP (2013) Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep 5:1456–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi M, Yuen T, Sun L, Rosen CJ (2018) Regulation of skeletal homeostasis. Endocr Rev 39:701–718

    Article  PubMed  PubMed Central  Google Scholar 

  • Zambonin Zallone A, Teti A, Primavera MV (1984) Monocytes from circulating blood fuse in vitro with purified osteoclasts in primary culture. J Cell Sci 66:335–342

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiro Takito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takito, J., Nonaka, N. (2024). Osteoclasts at Bone Remodeling: Order from Order. In: Kloc, M., Uosef, A. (eds) Syncytia: Origin, Structure, and Functions. Results and Problems in Cell Differentiation, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-031-37936-9_12

Download citation

Publish with us

Policies and ethics