Skip to main content

Modeling of Microwave Waveguide Systems of Complex Structure in Nonlinear Media

  • Chapter
  • First Online:
Radio Engineering and Telecommunications Waveguide Systems in the Microwave Range
  • 158 Accesses

Abstract

The second chapter deals with the modeling of complex structural microwave systems in a nonlinear environment. For the first time for a nonlinear medium, a mathematical expression was obtained between the relative dielectric constant and the electric field intensity, and based on this, effective algorithms were developed based on mathematical models of microwave rectangular and circular waveguides and finite differences and finite element numerical methods. As a result, taking into account the nonlinearity of the environment, the electromagnetic field intensities of E-type and H-type waves, H10 mode, microwave rectangular waveguide operating in the frequency range 4.9–7.05 GHz and microwave circular waveguide operating at 9 GHz, H11 mode were determined. Based on the numerical results obtained, the E-type and H-type waveguide, H10 mode, microwave rectangular waveguide operating in the frequency range of 4.9–7.05 GHz and microwave circular waveguide operating in H11 mode at 9 GHz are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, L. (2013). Solution to 3-D electromagnetic problems discretized by a hybrid FEM/MOM method. Computer Physics Communications, 184(1), 73–78.

    Article  MathSciNet  Google Scholar 

  2. Li, M.-Y., et al. (2017). Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone. IET Microwaves, Antennas & Propagation, 11(12), 1810–1816.

    Article  Google Scholar 

  3. Li, Q., & Yang, T. (2021). Compact UWB half-mode SIW bandpass filter with fully reconfigurable single and dual notched bands. IEEE Transactions on Microwave Theory and Techniques, 69, 65–74.

    Article  Google Scholar 

  4. Li, S., & Zhu, Z. (2012). A numerical method to determine mode content in circular waveguide based on an integral identity equation. Applied Mathematical Modelling, 36(7), 2922–2940.

    Article  MathSciNet  MATH  Google Scholar 

  5. Liang, S., et al. (2017). Sidelobe-level suppression for linear and circular antenna arrays via the cuckoo search-chicken swarm optimisation algorithm. IET Microwaves, Antennas & Propagation, 11, 209–218.

    Article  Google Scholar 

  6. Liao, X., et al. (2019). A 90° oversized broadband TE 01 -to-TM 11 mode converter for high-power transmission line. IEEE Transactions on Microwave Theory and Techniques, 67(12), 4692–4699.

    Article  Google Scholar 

  7. Liao, X., et al. (2020). Analysis of the synthesis method for broadband oversized TE 01 -to-TE 11 mode converter. IEEE Transactions on Microwave Theory and Techniques, 68(2), 620–627.

    Article  Google Scholar 

  8. Lin, Q., et al. (2007). Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Optics Express, 15(25), 16604–16644.

    Article  Google Scholar 

  9. Lipworth, G. (2016). Phase and magnitude constrained metasurface holography at W-band frequencies. Optics Express, 24(17), 19372–19387.

    Article  Google Scholar 

  10. Liu, G., et al. (2016). A TE 13 mode converter for high-order mode gyrotron-traveling-wave tubes. IEEE Transactions on Electron Devices, 63(1), 486–490.

    Article  Google Scholar 

  11. Liu, W. E. I., et al. (2020). Broadband low-profile L-probe fed metasurface antenna with TM leaky wave and TE surface wave resonances. IEEE Transactions on Antennas and Propagation, 68(3), 1348–1355.

    Article  Google Scholar 

  12. Liu, W. (2022). Larger-than-unity external optical field confinement enabled by metamaterial-assisted comb waveguide for ultrasensitive long-wave infrared gas spectroscopy. Nano Letters, 22(15), 6112–6120.

    Article  Google Scholar 

  13. Liu, Y., et al. (2019). TCM-based heptaband antenna with small clearance for metal-rimmed mobile phone applications. IEEE Antennas and Wireless Propagation Letters, 18(4), 717–721.

    Article  Google Scholar 

  14. Liu, Z. Q., & Sun, D. Q. (2019). Transition from rectangular waveguide to empty substrate integrated gap waveguide. International Journal of Electronics Letters, 55(11), 654–655.

    Article  Google Scholar 

  15. Liu, Z. et al. (2020). A novel compact diplexer with high isolation based on the mode composite ridged waveguide. In Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT) (pp. 1–3).

    Google Scholar 

  16. Lonkina, D. V., et al. (2017). Electrodynamic analysis and synthesis of the waveguide band-pass filter on resonant diaphragms with C-shaped aperture. Radiation and Scattering of Electromagnetic Waves RSEMW, 434–436.

    Google Scholar 

  17. Lu, R., et al. (2021). SIW cavity-fed filtennas for 5G millimeter-wave applications. IEEE Transactions on Antennas and Propagation, 69, 5269–5277.

    Article  Google Scholar 

  18. Mazur, M., & Mazur, J. (2011). Operation of the phase shifter using complex waves of the circular waveguide with periodical ferrite-dielectric filling. Journal of Electromagnetic Waves and Applications, 25(7), 935–947.

    Article  Google Scholar 

  19. Medran del Rio, J., et al. (2020). Multilayered balanced dual-band bandpass filter based on magnetically coupled open-loop resonators with intrinsic common-mode rejection. Applied Sciences, 10, 3113.

    Article  Google Scholar 

  20. Medvedik, M. Y., et al. (2012). Propagation of TM modes in a circular dielectric waveguide filled with a medium with Kerr nonlinearity. Journal of Communications Technology and Electronics, 57(4), 363–369.

    Article  Google Scholar 

  21. Menachem, Z. (2019). A new technique for the analysis of the physical discontinuity in a hollow rectangular waveguide with dielectric inserts of varying profiles. Journal of Electromagnetic Waves and Applications, 33(9), 1145–1162.

    Article  Google Scholar 

  22. Meyer, A., et al. (2018). Dispersion-minimized rod and tube dielectric waveguides at W-band and D-band frequencies. IEEE Microwave and Wireless Components Letters, 28(7), 555–557.

    Article  Google Scholar 

  23. Miao, M. J. (2016). Acceleration of perturbation-based electric field integral equations using fast Fourier transform. IEEE Transactions on Antennas and Propagation, 64(10), 4559–4564.

    Article  MathSciNet  MATH  Google Scholar 

  24. Mironov, V. L., & Mironov, S. V. (2017). Two types of Lorentz transformations for massless fields. Journal of Geometry and Symmetry in Physics, 44, 83–96.

    Article  MathSciNet  MATH  Google Scholar 

  25. Mitchell, G. A., & Wasykiwskyj, W. (2018). A review of the modal decomposition matrix for calculating the far field of an infinitely flanged rectangular waveguide. Applied Computational Electromagnetics Society Journal, 33(12), 1390–1396.

    Google Scholar 

  26. Moradpour, H., et al. (2015). Three-particle bell-like inequalities under Lorentz transformations. Quantum Information Processing, 14(10), 3913–3931.

    Article  MathSciNet  MATH  Google Scholar 

  27. Muñoz-Enano, J., et al. (2020). Planar microwave resonant sensors: A review and recent developments. Applied Sciences, 10, 2615.

    Article  Google Scholar 

  28. Na, D.-Y., et al. (2016). Local, explicit, and charge-conserving electromagnetic particle-in-cell algorithm on unstructured grids. IEEE Transactions on Plasma Science, 44(8), 1353–1362.

    Article  MathSciNet  Google Scholar 

  29. Nair, D., & Webb, J. P. (2003). Optimization of microwave devices using 3-D finite elements and the design sensitivity of the frequency response. IEEE Transactions on Magnetics, 39(3), 1325–1328.

    Article  Google Scholar 

  30. Nakatake, Y., & Watanabe, K. (2011). Numerical analysis of two-dimensional photonic crystal waveguide devices using periodic boundary conditions. IEICE Transactions on Electronics, E94C(1), 32–38.

    Article  Google Scholar 

  31. Parameswaran, A., & Raghavan, S. (2016). Analysis of mode of propagation in substrate integrated waveguide using FDTD. In Proceedings of the international conference on communication systems and networks (pp. 71–75).

    Google Scholar 

  32. Parment, F., et al. (2016). Double dielectric slab-loaded air-filled SIW phase shifters for high-performance millimeter-wave integration. IEEE Transactions on Microwave Theory and Techniques, 64(9), 2833–2842.

    Article  Google Scholar 

  33. Parvathy, A. R., et al. (2018). Circularly polarized split ring resonator loaded slot antenna. Advanced Electromagnetics, 7(5), 1–6.

    Article  Google Scholar 

  34. Permyakov, V. A., et al. (2019). Analysis of propagation of electromagnetic waves in difficult conditions by the parabolic equation method. IEEE Transactions on Antennas and Propagation, 67(4), 2167–2175.

    Article  MathSciNet  Google Scholar 

  35. Piltyay, S. (2021). Square waveguide polarizer with diagonally located irises for Ka-band antenna systems. Advanced Electromagnetics, 10(3), 31–38.

    Article  Google Scholar 

  36. Potratz, C., & Glock, H.-W. (2011). Time-domain field and scattering parameter computation in waveguide structures by GPU accelerated discontinuous-Galerkin method. IEEE Transactions on Microwave Theory and Techniques, 59(11), 2788–2797.

    Article  Google Scholar 

  37. Pradhan, N. C., et al. (2021). Design of compact substrate integrated waveguide based triple- and quad-band power dividers. IEEE Microwave and Wireless Components Letters, 31, 365–368.

    Article  Google Scholar 

  38. Prazeres, R. (2014). Numerical method for full calculation of the electromagnetic field in a rectangular waveguide within overmoded configuration, using the fast Fourier transform. European Physical Journal-Applied Physics, 68(2), 367–376.

    Article  Google Scholar 

  39. Qu, Y., et al. (2022). Photo-thermal tuning of graphene oxide coated integrated optical waveguides. Micromachines, 13(8), 1194.

    Article  Google Scholar 

  40. Quanxin, R. (2022). Linear antenna array with large element spacing for wide-angle beam scanning with suppressed grating lobes. IEEE Antennas and Wireless Propagation Letters, 21(6), 1258–1262.

    Article  Google Scholar 

  41. Quesada, P. F. D., et al. (2018). Novel spatial domain integral equation formulation for the analysis of rectangular waveguide steps close to arbitrarily shaped dielectric and/or conducting posts. Radio Science, 53(4), 406–419.

    Article  Google Scholar 

  42. Raheem, N., & Qasem, N. (2020). A compact multi-band notched characteristics UWB microstrip patch antenna with a single sheet of grapheme. Telecommunication, Computing, Electronics and Control, 18(4), 1708–1818.

    Google Scholar 

  43. Rahimzadeh, R. M., et al. (2020). Residue-pole methods for variability analysis of S-parameters of microwave devices with 3D FEM and mesh deformation. Journal of Radioengineering, 29(1), 10–20.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islamov, I. (2024). Modeling of Microwave Waveguide Systems of Complex Structure in Nonlinear Media. In: Radio Engineering and Telecommunications Waveguide Systems in the Microwave Range. Springer, Cham. https://doi.org/10.1007/978-3-031-37916-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37916-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37915-4

  • Online ISBN: 978-3-031-37916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics