Skip to main content

Current State of Analysis and Optimal Synthesis of Microwave Waveguide Systems of Complex Structure

  • Chapter
  • First Online:
Radio Engineering and Telecommunications Waveguide Systems in the Microwave Range
  • 174 Accesses

Abstract

The first chapter examines the current state of analysis and optimal synthesis of complex structural microwave radioengineering and telecommunication waveguide systems and identifies the main directions for improving the electrical, magnetic, technical, design, and operational parameters and characteristics of microwave rectangular and circular waveguides. In order to analyze the current state of the analysis of microwave radioengineering and telecommunication facilities, a review of world-class research in this field was given, and it was determined that the nonlinearity of the environment inside rectangular and circular waveguides filled with air was not taken into account in theoretical or experimental studies. On the other hand, in order to analyze the current state of optimal synthesis of microwave radioengineering and telecommunication devices, a review of world research in this area was given, and it was determined that the issue of their multi-criteria optimal synthesis has not been resolved yet. Thus, solving the problem of multi-criteria optimal synthesis of microwave rectangular and circular waveguides will allow to design and develop new physical models with optimal dimensions, while improving the electrical, magnetic, technical, design and operational parameters and characteristics of these devices. Therefore, taking into account the nonlinearity of the environment inside rectangular and circular waveguide devices, microwave is a new model with optimal dimensions, along with the solution of the problem of their multi-criteria optimal synthesis and specification of electromagnetic, design, technical and operational parameters and characteristics of these devices, and there is a need for development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abderrahmane, I., et al. (2023). Efficient 4 and 8 plasmonic wavelength DEMUX with ultra high Q-factor and low FWHM based on nano-rectangular resonators. Optical and Quantum Electronics, 55(2), 1–20.

    Article  Google Scholar 

  2. Abdoli-Arani, A., & Montazeri, M. M. (2018). Dispersion relation and electron acceleration in the combined circular and elliptical metallic-dielectric waveguide filled by plasma. Physics of Plasmas, 25(4), 789–795.

    Article  Google Scholar 

  3. Abdulhameed, M. K., et al. (2018). Controlling the radiation pattern of patch antenna using switchable EBG. Telecommunication, Computing, Electronics and Control, 16(5), 2014–2022.

    Google Scholar 

  4. Abir, T., et al. (2022). Second-harmonic enhancement from a nonlinear plasmonic metasurface coupled to an optical waveguide. Nano Letters, 22(7), 2712–2717.

    Article  Google Scholar 

  5. Adnan, F., et al. (2014). Numerical analysis for 2D waveguide by applying raleigh quotient iteration method. In International conference on mathematics, engineering and industrial applications (Vol. 1660, pp. 437–445)

    Google Scholar 

  6. Alhassoon, K. A., et al. (2021). Complex permittivity and permeability extraction of ferromagnetic materials for magnetically tuned microwave circuits. IEEE Journal of Microwaves, 1(2), 639–645.

    Article  Google Scholar 

  7. Ali, A. K. S., et al. (2022). Stabilization of light bullets in nonlinear metamaterial waveguides. Physical Review A, 105, 033516.

    Article  MathSciNet  Google Scholar 

  8. Ali, M. M. M., et al. (2018). Rectangular waveguide cross-guide couplers: Accurate model for full-band operation. Institute of Electrical and Electronics Engineers Microwave and Wireless Components Letters, 28(7), 561–563.

    Google Scholar 

  9. Al-Sabea, Z. S., et al. (2022). Plasmonic logic gates at optimum optical communications wavelength. Advanced Electromagnetics, 11(4), 10–21.

    Article  Google Scholar 

  10. Alsuyuti, M. M., et al. (2019). Modified Galerkin algorithm for solving multitype fractional differential equations. Mathematical Methods in the Applied Sciences, 42(5), 1389–1412.

    Article  MathSciNet  MATH  Google Scholar 

  11. Altufaili, M. M. S., et al. (2022). Design of circular-shaped microstrip patch antenna for 5G applications. Telecommunication, Computing, Electronics and Control, 20(1), 19–26.

    Google Scholar 

  12. Amin, A. K. (2022). A proposed method for synthesizing the radiation pattern of linear antenna arrays. Journal of Communication, 1(7), 1–6.

    Google Scholar 

  13. Anand, J. K., & Kushwah, H. (2020). Behaviour of poynting vector for dielectric-metal-dielectric optical waveguides and applications. Optical and Quantum Electronics, 52, 410.

    Article  Google Scholar 

  14. Annadhasan, M., et al. (2020). Micromanipulation of mechanically compliant organic single crystal optical microwaveguides. Angewandte Chemie, International Edition, 59, 13821–31380.

    Article  Google Scholar 

  15. Argyropoulos, C., et al. (2012). Enhanced nonlinear effects in metamaterials and plasmonics. Advanced Electromagnetics, 1(1), 46–51.

    Article  MathSciNet  Google Scholar 

  16. Arnberg, P., et al. (2020). High refractive index electromagnetic devices in printed technology based on glide-symmetric periodic structures. Applied Sciences, 10, 3216.

    Article  Google Scholar 

  17. Azeez, Y. F., et al. (2019). Establishing a new form of primary impedance standard at millimeter-wave frequencies. IEEE Transactions on Instrumentation and Measurement, 68(1), 294–296.

    Article  Google Scholar 

  18. Babak, L. I. (2009). Decomposition synthesis approach to design of RF and microwave active circuits. In IEEE MTT-S International microwave symposium digest (Vol. 2, pp. 1167–1170).

    Google Scholar 

  19. Bachiller, C., et al. (2016). Radio-frequency performance comparison of several H-plane rectangular waveguide filters loaded with circular dielectric posts. IET Microwaves, Antennas and Propagation, 10(5), 536–545.

    Article  Google Scholar 

  20. Bakkali, M. A., et al. (2022). Design and experimental validation of a multifunction single layer UHF-RFID tag antenna. Advanced Electromagnetics, 11(1), 22–29.

    Article  Google Scholar 

  21. Balbastre, J. V., & Nuno, L. (2018). Modelling the propagation of electromagnetic waves across complex metamaterials in closed structures. Journal of Computational and Applied Mathematics, 352, 40–49.

    Article  MathSciNet  MATH  Google Scholar 

  22. Bandler, J. W., & Seviora, R. T. (1972). Wave sensitivities of networks. IEEE Transactions on Microwave Theory and Techniques, MTT-20, 138–147.

    Article  Google Scholar 

  23. Basir, A., & Yoo, H. (2019). A stable impedance-matched ultrawideband antenna system mitigating detuning effects for multiple biotelemetric applications. IEEE Transactions on Antennas and Propagation, 67(5), 3416–3421.

    Article  Google Scholar 

  24. Belenguer, A., et al. (2014). Novel empty substrate integrated waveguide for high-performance microwave integrated circuits. IEEE Transactions on Microwave Theory and Techniques, 62(4), 832–839.

    Article  Google Scholar 

  25. Benassi, et al. (2021). A wearable flexible energy-autonomous filtenna for ethanol detection at 2.45 GHz. IEEE Transactions on Microwave Theory and Techniques, 69(9), 4093–4106.

    Article  Google Scholar 

  26. Bird, T. S., et al. (2017). Improved finite-range gain formula for open-ended rectangular waveguides and pyramidal horns. IET Microwaves, Antennas and Propagation, 11(14), 2054–2058.

    Article  Google Scholar 

  27. Bogle, A., et al. (2005). Electromagnetic material characterization using a partially-filled rectangular waveguide. Journal of Electromagnetic Waves and Applications, 19(3), 1291–1306.

    Article  Google Scholar 

  28. Bogolyubov, A. N., et al. (2018). Analysis of a rectangular waveguide with allowance for losses in the walls. Moscow University Physics Bulletin, 473(6), 579–582.

    Article  Google Scholar 

  29. Bozinovic, N., et al. (2013). Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340(6140), 1545–1548.

    Article  Google Scholar 

  30. Bozzi, M., et al. (2014). Modeling of losses in substrate integrated waveguide components. In Proceedings of the IEEE international conference on numerical electromagnetic modeling and optimization for RF, microwave, and terahertz applications (NEMO) (pp. 1–4).

    Google Scholar 

  31. Bozzi, M., et al. (2019). A review of compact substrate integrated waveguide (SIW) interconnects and components. In Proceedings of the IEEE 23rd workshop on signal and power integrity (SPI) (pp. 1–4)

    Google Scholar 

  32. Buesa-Zubiria, A., & Esteban, J. (2017). Design of five-way Bagley polygon power dividers in rectangular waveguide. Institute of Electrical and Electronics Engineers Transactions on Microwave Theory and Techniques, 66(1), 116–127.

    Google Scholar 

  33. Bulashenko, A., et al. (2022). Accuracy and agreement of FDTD, FEM and wave matrix methods for the electromagnetic simulation of waveguide polarizers. Advanced Electromagnetics, 11(3), 1–9.

    Article  Google Scholar 

  34. Butt, M. (2022). Simple and improved plasmonic sensor configuration established on MIM waveguide for enhanced sensing performance. Plasmonics, 17, 1305–1314.

    Article  Google Scholar 

  35. Calignanoa, F., et al. (2019). High-performance microwave waveguide devices produced by laser powder bed fusion process. Proceedings of the CIRP, 79, 85–88.

    Article  Google Scholar 

  36. Camacho, M., et al. (2020). Extraordinary transmission and radiation from finite by infinite arrays of slots. IEEE Transactions on Antennas and Propagation, 68, 581–586.

    Article  Google Scholar 

  37. Cao, W.-K., et al. (2019). Asymmetric transmission of acoustic waves in a waveguide via gradient index metamaterials. Science Bulletin, 64(12), 808–813.

    Article  Google Scholar 

  38. Carceller, C., et al. (2016). Design of hybrid folded rectangular waveguide filters with transmission zeros below the passband. Institute of Electrical and Electronics Engineers Transactions on Microwave Theory and Techniques, 64(2), 475–485.

    Google Scholar 

  39. Cassivi, Y., et al. (2002). Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microwave and Wireless Components Letters, 12, 333–335.

    Article  Google Scholar 

  40. Castillo, R., et al. (2021). Platform-based electrically-small HF antenna with switchable directional radiation patterns. IEEE Transactions on Antennas and Propagation, 69(8), 4370–4379.

    Article  Google Scholar 

  41. Ceccuzzi, S., et al. (2017). Physical mechanisms and design principles in mode filters for oversized rectangular waveguides. IEEE Transactions on Microwave Theory and Techniques, 65(8), 2726–2733.

    Article  MathSciNet  Google Scholar 

  42. Chaiyo, K., & Rattanadecho, P. (2013). Numerical analysis of heat-mass transport and pressure buildup of unsaturated porous medium in a rectangular waveguide subjected to a combined microwave and vacuum system. International Journal of Heat and Mass Transfer, 65, 826–844.

    Article  Google Scholar 

  43. Chakravarthy, M. V. V. S. S. S., et al. (2022). Elliptical antenna array synthesis using evolutionary computing tools. Arabian Journal for Science and Engineering, 47, 2807–2824.

    Article  Google Scholar 

  44. Chandel, R. (2018). Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 66(4), 1677–1684.

    Article  MathSciNet  Google Scholar 

  45. Chang, C.-P., et al. (2018). Waveport modeling for the DGTD simulation of electromagnetic devices. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 66(4), 1701–1712.

    Google Scholar 

  46. Chang, R.-J., & Huang, C.-C. (2022). Simulation of a high-performance polarization beam splitter assisted by two-dimensional metamaterials. Nanomaterials, 12, 1852.

    Article  Google Scholar 

  47. Charles, A. G., & Guo, Y. (2022). A general approach for synthesizing multibeam antenna arrays employing generalized joined coupler matrix. IEEE Transactions on Antennas and Propagation, 256, 1–10.

    Google Scholar 

  48. Che, W., et al. (2010). Investigations on propagation and the band broadening effect of ridged rectangular waveguide integrated in a multilayer dielectric substrate. IET Microwaves, Antennas and Propagation, 4, 674–684.

    Article  Google Scholar 

  49. Chen, H.-H., et al. (2022). Extraordinary optical characteristics of one-dimensional double anti-PT-symmetric ring optical waveguide networks. Chinese Journal of Physics, 77, 816–825.

    Article  MathSciNet  Google Scholar 

  50. Chen, J., & Liu, Q. (2013). Discontinuous Galerkin time-domain methods for multiscale electromagnetic simulations. A review. Proceedings of the IEEE, 101, 242–254.

    Article  Google Scholar 

  51. Chen, J., et al. (2015). Using weakly conditionally stable-body of revolution-finite-difference time-domain met-hod to simulate dielectric film-coated circular waveguide. IET Microwaves, Antennas and Propagation, 9(9), 853–860.

    Article  Google Scholar 

  52. Chen, S., et al. (2021). Optical waveguides based on one-dimensional organic crystals. PhotoniX, 2(2), 1–24.

    Google Scholar 

  53. Chen, S. C., & Chew, W. C. (2016). Discrete electromagnetic theory with exterior calculus. PIERS Proceedings, 896–897.

    Google Scholar 

  54. Chen, S. C., & Chew, W. C. (2017). Electromagnetic theory with discrete exterior calculus. Progress in Electromagnetics Research, 159, 59–78.

    Article  Google Scholar 

  55. Chen, W., et al. (2019). Generalized coupled-mode formalism in reciprocal waveguides with gain loss anisotropy or bianisotropy. Physical Review B, 99(19), 345–357.

    Article  Google Scholar 

  56. Chen, Z., et al. (2015). High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Optics Communications, 340, 1–4.

    Article  Google Scholar 

  57. Chen, Z., et al. (2022). Plasmon-induced transparency for tunable atom trapping in a chiral metamaterial structure. Nanomaterials, 12, 516.

    Article  Google Scholar 

  58. Cheng, Y.-F., et al. (2017). A novel wide-angle scanning phased array based on dual-mode pattern reconfigurable elements. IEEE Antennas and Wireless Propagation Letters, 16, 396–399.

    Article  Google Scholar 

  59. Choo, J., et al. (2019). Evaluation of electromagnetic interference from axially ruptured coaxial cable with multiple dielectrics used in nuclear power plants. IEEE Transactions on Electromagnetic Compatibility, 61(3), 860–869.

    Article  MathSciNet  Google Scholar 

  60. Chowdhury, R., & Chaudhary, R. K. (2020). Investigation of new sectored hemispherical dielectric resonator antennas operating at TM101 and TE111 mode for circular polarization. Progress in Electromagnetics Research, 167, 95–109.

    Article  Google Scholar 

  61. Ciarlet, P., et al. (2017). On the approximation of electromagnetic fields by edge finite elements. Part 2: A heterogeneous multiscale method for Maxwell’s. Computers & Mathematics with Applications, 73(9), 1900–1919.

    Article  MathSciNet  MATH  Google Scholar 

  62. Cole, A. J., et al. (2018). The variation of the attenuation constant of low-loss transmission lines in the presence of standing waves. IEEE Microwave and Wireless Components Letters, 28(8), 639–641.

    Article  Google Scholar 

  63. Collino, F. (2009). Conservative space-time mesh refinement methods for the FDTD solution of Maxwell’s equations. Journal of Computational Physics, 211(1), 9–35.

    Article  MathSciNet  MATH  Google Scholar 

  64. Cui, L. C., & Yang, H. S. (2003). Rectangular-to-circular groove waveguide junction. Science in China Series E: Technological Sciences, 46(4), 343–348.

    Article  Google Scholar 

  65. Cui, X., et al. (2018). High-efficiency, broadband converter from a rectangular waveguide TE10 mode to a circular waveguide TM01 mode for overmoded device measurement. IEEE Access, 6, 14996–15003.

    Article  Google Scholar 

  66. Dadgarpour, A., et al. (2017). High-efficient circularly polarized magnetoelectric dipole antenna for 5G applications using dual-polarized split-ring resonator lens. IEEE Transactions on Antennas and Propagation, 65(8), 4263–4267.

    Article  MathSciNet  Google Scholar 

  67. Dai, L., et al. (2020). Ultrawideband low-profile and miniaturized spoof plasmonic vivaldi antenna for base station. Applied Sciences, 10, 2429.

    Article  Google Scholar 

  68. Datta, S., et al. (2017). Fractal shaped antenna based triband energy harvester. Advanced Electromagnetics, 6(4), 22–26.

    Article  Google Scholar 

  69. Dault, D. (2014). The generalized method of moments for electromagnetic boundary integral equations. IEEE Transactions on Antennas and Propagation Antennas and Propagation, 62(6), 3174–3188.

    Article  MathSciNet  MATH  Google Scholar 

  70. David, P., et al. (2022). Performance comparison of quantized control synthesis methods of antenna arrays. Electronics, 11(7), 994.

    Article  Google Scholar 

  71. Denisov, G. G., & Kulygin, M. L. (2010). Numerical simulation of waveguide TM01-TE11 mode converter using FDTD method. International Journal of Infrared and Millimeter Waves, 26(3), 341–361.

    Article  Google Scholar 

  72. Deslandes, D., & Wu, K. (2002). Design consideration and performance analysis of substrate integrated waveguide components. In Proceedings of the 32nd European Microwave Conference (EuMC) (pp. 23–26)

    Google Scholar 

  73. Dobler, A., et al. (2020). An omnidirectional radial parallel-plate waveguide antenna using wideband mode converters. IEEE Transactions on Antennas and Propagation, 68(5), 3348–3357.

    Article  Google Scholar 

  74. Du, S., et al. (2021). Optical waveguide and photoluminescent polarization in organic cocrystal polymorphs. Journal of Physical Chemistry Letters, 12(38), 9233–9238.

    Article  Google Scholar 

  75. Dumin, O. M., et al. (2009). Transient radiation from the open end of circular waveguide. In 6th international conference on antenna theory and techniques (pp. 181–184).

    Google Scholar 

  76. Duvigneau, R. (2020). CAD consistent adaptive refinement using a NURBS based discontinuous Galerkin method. International Journal for Numerical Methods in Fluids, 92(9), 1096–1117.

    Article  MathSciNet  Google Scholar 

  77. Elmoazzen, Y. E., & Shafai, L. (1975). Numerical solution of coupling between two collinear parallel – Plate waveguides. IEEE Transactions on Microwave Theory and Techniques, no. 11, 871–876.

    Article  Google Scholar 

  78. Epstein, C. L., et al. (2015). Debye sources, Beltrami fields, and a complex structure on Maxwell fields. Communications on Pure and Applied Mathematics, 68(12), 2237–2280.

    Article  MathSciNet  MATH  Google Scholar 

  79. Famoriji, O. J., & Shongwe, T. (2021). An effective antenna array diagnosis method via multivalued neural network inverse modeling approach. Advanced Electromagnetics, 10(3), 58–70.

    Article  Google Scholar 

  80. Feng, L., et al. (2013). Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nature Materials, 12, 108–113.

    Article  Google Scholar 

  81. Ghadami, A., et al. (2018). Damage identification in multi-step waveguides using lamb waves and scattering coefficients. Archive of Applied Mechanics, 88(6), 1009–1026.

    Article  Google Scholar 

  82. Gong, L., et al. (2019). Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light: Science and Applications, 8(1), 1–11.

    Article  MathSciNet  Google Scholar 

  83. Gong, L., & Zhang, K. (1997). A finite element analysis on electromagnetic waves in rectangular dielectric chirowaveguide. Journal of Infrared and Millimeter Waves, 6, 1353–1362.

    Article  Google Scholar 

  84. Gric, T., et al. (2010). Electrodynamical characteristic particularity of open metamaterial square and circular waveguides. Progress in Electromagnetics Research, 109, 361–379.

    Article  Google Scholar 

  85. Guerra, G., et al. (2022). Unified coupled-mode theory for geometric and material perturbations in optical waveguides. Journal of Lightwave Technology, 40(14), 4714–4727.

    Article  Google Scholar 

  86. Gupta, A., et al. (2013). Sound propagation in two-dimensional waveguide with circular wavefront. Acoustical Physics, 59(5), 493–497.

    Article  Google Scholar 

  87. Han, X., et al. (2015). Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate. Optics Express, 23(25), 31945–31955.

    Article  Google Scholar 

  88. Han, Y., et al. (2020). Tunable metamaterial-based silicon waveguide. Optics Letters, 45(24), 6619–6622.

    Article  Google Scholar 

  89. Hassan, A. A. (2014). Multilayer medium technique for nondestructive EM-properties measurement of radar absorbing materials using flanged rectangular waveguide sensor and FDTD method. In IEEE international symposium on innovations in intelligent systems and applications (pp. 68–75)

    Google Scholar 

  90. He, B., et al. (2017). Time decomposition method for the general transient simulation of low-frequency electromagnetics. Progress in Electromagnetics Research, 160, 1–8.

    Article  Google Scholar 

  91. He, S., et al. (2015). Can Maxwell’s fish eye lens really give perfect imaging? Part III. A careful reconsideration of the evidence for subwavelength imaging with positive refraction. Progress in Electromagnetics Research, 152, 1–15.

    Article  Google Scholar 

  92. He, Y., et al. (2015). Hamiltonian time integrators for Vlasov-Maxwell equations. Physics of Plasmas, 22(12), 234–239.

    Article  Google Scholar 

  93. Heidari, M., & Ahmadi, V. (2020). Graphene-based mid-infrared plasmonic isolator with multimode interferometer. Optics Letters, 45(20), 5764–5767.

    Article  Google Scholar 

  94. Helfert, S. F., et al. (2017). Numerical simulation of hollow waveguide arrays as polarization converting elements and experimental verification. Optical and Quantum Electronics, 4(9), 123–132.

    Google Scholar 

  95. Hess, M. W., et al. (2015). Estimating the Inf-sup constant in reduced basis methods for time-harmonic Maxwell’s equations. IEEE Transactions on Microwave Theory and Techniques, 63(11), 3549–3557.

    Article  Google Scholar 

  96. Hong, W. (2017). Solving the 5G mobile antenna puzzle: Assessing future directions for the 5G mobile antenna paradigm shift. IEEE Microwave Magazine, 18(7), 86–102.

    Article  Google Scholar 

  97. Hozen, T. (2019). Design of a planar array antenna on a narrow wall of the rectangular waveguide for linear polarization perpendicular to the axis with standing-wave excitation. IEICE Technical Report, 119(228), 49–54.

    Google Scholar 

  98. Htet, A. T. (2019). Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation TMS. Journal of Neural Engineering, 16(2), 52–65.

    Article  Google Scholar 

  99. Hu, H.-T., et al. (2022). 60 GHz Fabry–Perot cavity filtering antenna driven by an SIW-fed filtering source. IEEE Transactions on Antennas and Propagation, 70, 823–834.

    Article  Google Scholar 

  100. Hui, L. (2022). Synthesis, control, and excitation of characteristic modes for platform-integrated antenna designs: A design philosophy. IEEE Antennas and Propagation Magazine, 64(2), 41–48.

    Article  MathSciNet  Google Scholar 

  101. Hussain, N., et al. (2020). Metasurface-based single-layer wideband circularly polarized MIMO antenna for 5G millimeter-wave systems. IEEE Access, 8, 130293–130304.

    Article  Google Scholar 

  102. Hwi-Min, K., et al. (2018). Monolithic integration of self-aligned nanoisland laser with shifted-air-hole waveguide. Optics Express, 26(10), 12569–12578.

    Article  Google Scholar 

  103. Ikram, M., et al. (2020). Common-aperture Sub-6 GHz and millimeter-wave 5G antenna system. IEEE Access, 8, 199415–199423.

    Article  Google Scholar 

  104. Iqbal, A., et al. (2019). Tunable substrate integrated waveguide diplexer with high isolation and wide stopband. IEEE Microwave and Wireless Components Letters, 29, 456–458.

    Article  Google Scholar 

  105. Islamov, I., & Humbataliyev, E. (2022). General approaches to solving problems of analysis and synthesis of directional properties of antenna arrays. Advanced Electromagnetics, 11(4), 22–33.

    Article  Google Scholar 

  106. Islamov, I. J., & Ismibayli, E. G. (2018). Experimental study of characteristics of microwave devices transition from rectangular waveguide to the megaphone. IFAC-PapersOnLine, 51(30), 477–479.

    Article  Google Scholar 

  107. Islamov, I. J., et al. (2021). Simulation of electrodynamic processes in a cylindrical-rectangular microwave waveguide systems transmitting information. In 11th International conference on theory and application of soft computing, computing with words, perception and artificial intelligence (Vol. 362, pp. 246–253)

    Google Scholar 

  108. Islamov, I. J., et al. (2021). Numerical simulation of characteristics of propagation of symmetric waves in microwave circular shielded waveguide with a radially inhomogeneous dielectric filling. International Journal of Microwave and Wireless Technologies, 14(6), 761–767.

    Article  Google Scholar 

  109. Islamov, I. J., et al. (2019). Modeling of the electromagnetic feld of a rectangular waveguide with side holes. Progress in Electromagnetics Research, 81, 127–132.

    Article  Google Scholar 

  110. Islamov, I. J., et al. (2018). Electrodynamics characteristics of the no resonant system of transverse slits located in the wide wall of a rectangular waveguide. Progress in Electromagnetics Research Letters, 8, 23–29.

    Article  Google Scholar 

  111. Islamov, I. J., et al. (2019). Calculation of the electromagnetic field of a rectangular waveguide with chiral medium. Progress in Electromagnetics Research, 84, 97–114.

    Article  Google Scholar 

  112. Ismibayli, E. G., & Islamov, I. J. (2018). New approach to definition of potential of the electric field created by set distribution in space of electric charges. IFAC-PapersOnLine, 51(30), 410–414.

    Article  Google Scholar 

  113. Ismo, V. L. (2015). Plane-wave propagation in electromagnetic PQ medium. Progress in Electromagnetics Research, 154, 23–33.

    Article  Google Scholar 

  114. Janjan, B., et al. (2022). Efficient second-harmonic generation in an embedded ABC-metamaterial waveguide. IEEE Journal of Quantum Electronics, 58(3), 234–248.

    Google Scholar 

  115. Javanbakht, N., et al. (2021). Side-lobe level reduction of half-mode substrate integrated waveguide leaky-wave antenna. IEEE Transactions on Antennas and Propagation, 69, 3572–3577.

    Article  Google Scholar 

  116. Jeong, M. J., et al. (2019). Millimeter-wave microstrip patch antenna using vertically coupled split ring metaplate for gain enhancement. Microwave and Optical Technology Letters, 6(10), 2360–2365.

    Article  Google Scholar 

  117. Ji, L., et al. (2021). A slow wave ridged half-mode substrate integrated waveguide with spoof surface plasmon polaritons. IEEE Transactions on Plasma Science, 49, 1818–1825.

    Article  Google Scholar 

  118. Ji, Z. Q., et al. (2018). Circularly polarized dielectric rod waveguide antenna for millimeter-wave applications. IEEE Transactions on Antennas and Propagation, 66(10), 5080–5087.

    Article  Google Scholar 

  119. Jilani, S. F., & Alomainy, A. (2018). Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks. IET Microwaves, Antennas and Propagation, 12(5), 672–677.

    Article  Google Scholar 

  120. Kamada, S., & Okamoto, T. (2018). Design optimization and resonance modes of a plasmonic sensor based on a rectangular resonator. Optics Communications, 427, 220–225.

    Article  Google Scholar 

  121. Kancleris, Z., et al. (2010). Interaction of thin conductive sheets with TE10 electromagnetic wave in rectangular waveguide. In 4th Microwave and Radar Week (MRW). 18th International conference on microwaves, radar and wireless communications (Vol. 1 & 2, pp. 35–43)

    Google Scholar 

  122. Kerim, G., & Suad, B. (2015). A quantized water cycle optimization algorithm for antenna array synthesis by using digital phase shifters. International Journal of RF and Microwave Computer-Aided Engineering, 25(1), 21–29.

    Article  Google Scholar 

  123. Kesari, V., & Keshari, J. P. (2019). Hybrid-mode analysis of circular waveguide with chiral dielectric lining for dispersion characteristics for potential application in broadbanding a gyro-traveling-wave tube. Journal of Electromagnetic Waves and Applications, 33(2), 204–214.

    Article  Google Scholar 

  124. Kim, J., et al. (2018). Radiation from a millimeter-wave rectangular waveguide slot array antenna enclosed by a von karman radome. Journal of Electromagnetic Engineering Sciences, 18(3), 154–159.

    Article  Google Scholar 

  125. Kim, S., et al. (2020). Computational characterization of microwave planar cutoff probes for non-invasive electron density measurement in low-temperature plasma: Ring- and bar-type cutoff probes. Applied Sciences, 10, 7066.

    Article  Google Scholar 

  126. Klinaku, S. (2019). The general Galilean transformation versus Lorentz transformation: The motion in an isosceles triangle. Physics Essays, 32(2), 253–254.

    Article  Google Scholar 

  127. Koenen, C., & Hamberger, G. F. (2018). A low-reflectivity vacuum window for rectangular hollow waveguides. IEEE Transactions on Microwave Theory and Techniques, 66, 128–135.

    Article  Google Scholar 

  128. Krysl, P. (2003). Natural hierarchical refinement for finite element methods. International Journal for Numerical Methods in Engineering, 56(8), 1109–1124.

    Article  MathSciNet  MATH  Google Scholar 

  129. Kuhler, L., et al. (2018). The propagation characteristics of 2-D metamaterial waveguides using the modal expansion theory. Institute of Electrical and Electronics Engineers Transactions on Microwave Theory and Techniques, 66(10), 4319–4326.

    Google Scholar 

  130. Kurachka, K. S. (2018). Numerical modeling of a influence of a nanoparticle pair on the electromagnetic field in the near zone by the vector finite elements method. Computer Optics, 42(4), 542–549.

    Article  Google Scholar 

  131. Lan, F., et al. (2012). Study on TE0n nonuniform ripple-wall mode converter in circular waveguide. Acta Physica Sinica, 61, nio. 15, 567–574.

    Google Scholar 

  132. Lan, J., et al. (2020). An aperture-sharing array for 3.5/28 GHz terminals with steerable beam in millimeter wave band. IEEE Transactions on Antennas and Propagation, 68(5), 4114–4119.

    Article  Google Scholar 

  133. Larer, A., et al. (1996). The sonlu elementlər metodui inversion method for cylindrical microwave structures. Journal of Electromagnetic Waves and Application, 10(6), 765–790.

    Article  Google Scholar 

  134. Larer, A., & Tsvetrovskaya, S. (1997). Universal method of the a of analysis multilayered planer lines and complex waveguides. International Journal of Microwave and Millimeter Wave Computer Aided Engineering, 7(6), 483–494.

    Article  Google Scholar 

  135. Li, F., et al. (2017). Design and microwave measurement of a Ka-band HE11 mode corrugated horn for the Faraday rotator. IET Microwaves, Antennas and Propagation, 11(1), 75–80.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islamov, I. (2024). Current State of Analysis and Optimal Synthesis of Microwave Waveguide Systems of Complex Structure. In: Radio Engineering and Telecommunications Waveguide Systems in the Microwave Range. Springer, Cham. https://doi.org/10.1007/978-3-031-37916-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37916-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37915-4

  • Online ISBN: 978-3-031-37916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics