Skip to main content

Single Image Inpainting Method Using Wasserstein Generative Adversarial Networks and Self-attention

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13644))

Included in the following conference series:

  • 306 Accesses

Abstract

Due to various factors, some parts of images can be lost. Recovering the damaged regions of images is essential. In this paper, a single image inpainting method using Wasserstein Generative Adversarial Networks (WGAN) and self-attention is proposed. The global consistency of the inpainting region is established and the Wasserstein distance is used to measure the similarity of the two distributions. Finally, self-attention is embedded to exploit the self-similarity of local features. The experiments confirm that the proposed method can recover the global correlation of corrupted images better than similar methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of 2017 International Conference on Machine Learning, Sydney (2017)

    Google Scholar 

  2. Ballester, C., Bertalmio, M., et al.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnes, C., Shechtman, E., et al.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28(3), 1–11 (2009)

    Article  Google Scholar 

  4. Bertalmio, M., Sapiro, G., et al.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans (2000)

    Google Scholar 

  5. Carion, N., Massa, F., Synnaeve, G., et al.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision – ECCV 2020, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

  6. Criminisi, A., Patrick, P., Kentaro, T.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16 × 16 words: transformers for image recognition at scale (2020). arXiv:2010.11929

  8. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles (2001)

    Google Scholar 

  9. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu (1999)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  11. Gulrajani, I., et al.: Improved training of Wasserstein GANS. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  12. Guo, M.H., Xu, T.X., et al.: Attention mechanisms in computer vision: a survey (2021). arXiv:2111.07624

  13. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas (2016)

    Google Scholar 

  14. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design (2021). arXiv:2103.02907

  15. Hu, J., Shen, L., Albanie, S., et al.: Squeeze-and-excitation networks (2017). arXiv:1709.01507

  16. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  17. Jaderberg, V., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks (2015). arXiv:1506.02025

  18. Kechaou, A., Martinez, M., Haurilet, M., et al.: Detective: an attentive recurrent model for sparse object detection. In: Proceedings of 25th International Conference on Pattern Recognition (ICPR), Milan (2021)

    Google Scholar 

  19. Li, J., et al.: Recurrent feature reasoning for image inpainting. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington (2020)

    Google Scholar 

  20. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  21. Mao, J., Niu, M., Bai, H., et al.: Pyramid R-CNN: towards better performance and adaptability for 3D object detection (2021). arXiv:2109.02499

  22. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention (2014). arXiv:1406.6247

  23. Nazeri, K., Ng, E., Joseph, T., et al.: EdgeConnect: generative image inpainting with adversarial edge learning (2019). arXiv:1901.00212

  24. Pathak, D., Krahenbuhl, P., et al.: Context encoders: feature learning by inpainting. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas (2016)

    Google Scholar 

  25. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015). arXiv:1511.06434

  26. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need (2017). arXiv:1706.03762

  27. Wang, X., Girshick, R., Gupta, A., et al.: Non-local Neural Networks. In: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City (2018)

    Google Scholar 

  28. Wang, Y., Tao, X., et al.: Image inpainting via generative multi-column convolutional neural networks. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montreal (2018)

    Google Scholar 

  29. Woo, S., Park, J., Lee, J.Y., et al.: CBAM: convolutional block attention module (2018). arXiv:1807.06521

  30. Yang, C., et al.: High-resolution image inpainting using multi-scale neural patch synthesis. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Washington (2017)

    Google Scholar 

  31. Yu, J., et al.: Free-form image inpainting with gated convolution. In: Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul (2019)

    Google Scholar 

  32. Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle (2020)

    Google Scholar 

  33. Zheng, C., Tat-Jen, C., Cai, J.: Pluralistic image completion. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach (2019)

    Google Scholar 

  34. Thanh, D.N.H., Dvoenko, S.D.: A denoising of biomedical images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-5/W6, 73–78 (2015), https://doi.org/10.5194/isprsarchives-XL-5-W6-73-2015

Download references

Funding

This research was funded by University of Economics Ho Chi Minh City (UEH), Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang N. H. Thanh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, Y., Zhang, T., Fu, B., Thanh, D.N.H. (2023). Single Image Inpainting Method Using Wasserstein Generative Adversarial Networks and Self-attention. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37742-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37741-9

  • Online ISBN: 978-3-031-37742-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics