Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13645))

Included in the following conference series:

  • 313 Accesses

Abstract

As changes in climate lead to rapid changes in Arctic sea ice dynamics, there is a pressing need to provide methods for reliably monitoring sea ice motion. High-resolution sea ice motion estimation from satellite imagery is a task still widely considered unresolved. While various algorithms exist, they are limited in their ability to provide dense and accurate motion estimates with required spatial coverage. This paper presents a novel, hybrid method using a combined feature tracking and Optical Flow approach. It outperforms existing methods in sea ice literature in both density, providing a drift field with a resolution equal to that of the image, and accuracy, with a displacement error of 74 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National snow and ice data center. https://nsidc.org/data/seaice_index/ (2020), https://nsidc.org/cryosphere/icelights/arctic-sea-ice-101, Accessed 03 Oct 2021

  2. Agency, C.S.: What is radarsat-2. https://www.asc-csa.gc.ca/eng/satellites/radarsat2/what-is-radarsat2.asp, January 2021, https://www.asc-csa.gc.ca/eng/satellites/radarsat2/what-is-radarsat2.asp, Accessed 03 Dec 2021

  3. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2911–2918. IEEE (2012)

    Google Scholar 

  4. Berg, A., Eriksson, L.E.: Investigation of a hybrid algorithm for sea ice drift measurements using synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 52(8), 5023–5033 (2013)

    Article  Google Scholar 

  5. Berg, A., Eriksson, L.E., Borenäs, K., Lindh, H.: Observations and analysis of sea ice motion with the ice buoy driva during the 2010 spring field campaign in the bay of bothnia. Chalmers University of Technology, Technical Report (2011)

    Google Scholar 

  6. Bowen, M.M., Emery, W.J., Wilkin, J.L., Tildesley, P.C., Barton, I.J., Knewtson, R.: Extracting multiyear surface currents from sequential thermal imagery using the maximum cross-correlation technique. J. Atmos. Oceanic Technol. 19(10), 1665–1676 (2002)

    Article  Google Scholar 

  7. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools 25(11), 120–123 (2000)

    Google Scholar 

  8. Dierking, W., Stern, H.L., Hutchings, J.K.: Estimating statistical errors in retrievals of ice velocity and deformation parameters from satellite images and buoy arrays. Cryosphere 14(9), 2999–3016 (2020)

    Article  Google Scholar 

  9. Emery, W., Radebaugh, M., Fowler, C., Cavalieri, D., Steffen, K.: A comparison of sea ice parameters computed from advanced very high resolution radiometer and landsat satellite imagery and from airborne passive microwave radiometry. J. Geophys. Res. Oceans 96(C12), 22075–22085 (1991)

    Article  Google Scholar 

  10. Farneback, G.: Very high accuracy velocity estimation using orientation tensors, parametric motion, and simultaneous segmentation of the motion field. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 1, pp. 171–177. IEEE (2001)

    Google Scholar 

  11. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  12. Fily, M., Rothrock, D.: Sea ice tracking by nested correlations. IEEE Trans. Geosci. Remote Sens. 5, 570–580 (1987)

    Article  Google Scholar 

  13. Griebel, J.: Improvements and Analyzes of Sea Ice Drift and Deformation Retrievals from SAR Images. Ph.D. thesis, Universität Bremen (2020)

    Google Scholar 

  14. Hakkinen, S., Proshutinsky, A., Ashik, I.: Sea ice drift in the arctic since the 1950s. Geophys. Res. Lett. 35(19) (2008)

    Google Scholar 

  15. Hollands, T., Dierking, W.: Performance of a multiscale correlation algorithm for the estimation of sea-ice drift from SAR images: initial results. Ann. Glaciol. 52(57), 311–317 (2011)

    Article  Google Scholar 

  16. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  MATH  Google Scholar 

  17. Karvonen, J.: Operational SAR-based sea ice drift monitoring over the Baltic sea. Ocean Sci. 8(4), 473–483 (2012)

    Article  Google Scholar 

  18. Korosov, A.A., Rampal, P.: A combination of feature tracking and pattern matching with optimal parametrization for sea ice drift retrieval from SAR data. Remote Sens. 9(3), 258 (2017)

    Article  Google Scholar 

  19. Kwok, R., Schweiger, A., Rothrock, D., Pang, S., Kottmeier, C.: Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. J. Geophys. Res. Oceans 103(C4), 8191–8214 (1998)

    Article  Google Scholar 

  20. Kwok, R., Curlander, J.C., McConnell, R., Pang, S.S.: An ice-motion tracking system at the Alaska SAR facility. IEEE J. Oceanic Eng. 15(1), 44–54 (1990)

    Article  Google Scholar 

  21. Kwok, R., Rothrock, D.: Decline in arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett. 36(15) (2009)

    Google Scholar 

  22. Lopez-Acosta, R., Schodlok, M., Wilhelmus, M.: Ice floe tracker: an algorithm to automatically retrieve Lagrangian trajectories via feature matching from moderate-resolution visual imagery. Remote Sens. Environ. 234, 111406 (2019)

    Article  Google Scholar 

  23. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  24. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. Vancouver (1981)

    Google Scholar 

  25. Meier, W.N., et al.: Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52(3), 185–217 (2014)

    Article  Google Scholar 

  26. Muckenhuber, S., Sandven, S.: Open-source sea ice drift algorithm for sentinel-1 SAR imagery using a combination of feature tracking and pattern matching. The Cryosphere 11(4), 1835–1850 (2017)

    Article  Google Scholar 

  27. Ninnis, R., Emery, W., Collins, M.: Automated extraction of pack ice motion from advanced very high resolution radiometer imagery. J. Geophys. Res. Oceans 91(C9), 10725–10734 (1986)

    Article  Google Scholar 

  28. Nordberg, K., Farneback, G.: A framework for estimation of orientation and velocity. In: Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429), vol. 3, pp. III-57. IEEE (2003)

    Google Scholar 

  29. Olason, E., Notz, D.: Drivers of variability in a rctic sea-ice drift speed. J. Geophys. Res. Oceans 119(9), 5755–5775 (2014)

    Article  Google Scholar 

  30. Park, J.W., et al.: Feasibility study on estimation of sea ice drift from KOMPSAT-5 and COSMO-SkyMed SAR images. Remote Sens. 13(20), 4038 (2021)

    Article  Google Scholar 

  31. Petrou, Z.I., Tian, Y.: High-resolution sea ice motion estimation with optical flow using satellite spectroradiometer data. IEEE Trans. Geosci. Remote Sens. 55(3), 1339–1350 (2016)

    Article  Google Scholar 

  32. Qiu, Y.J., Li, X.M.: An adaptability for arctic sea ice drift retrieval from spaceborne SAR data. In: 2021 SAR in Big Data Era (BIGSARDATA), pp. 1–4. IEEE (2021)

    Google Scholar 

  33. Rampal, P., Weiss, J., Marsan, D.: Positive trend in the mean speed and deformation rate of arctic sea ice, 1979–2007. J. Geophys. Res. Oceans 114(C5) (2009)

    Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  35. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  36. Thomas, M.V.: Analysis of Large Magnitude Discontinuous Non-Rigid Motion. Ph.D. thesis, USA (2008). aAI3337413

    Google Scholar 

  37. Truong, P., Apostolopoulos, S., Mosinska, A., Stucky, S., Ciller, C., Zanet, S.D.: Glampoints: greedily learned accurate match points. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10732–10741 (2019)

    Google Scholar 

  38. Zhang, M., An, J., Zhang, J., Yu, D., Wang, J., Lv, X.: Enhanced delaunay triangulation sea ice tracking algorithm with combining feature tracking and pattern matching. Remote Sens. 12(3), 581 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Jennifer Hutchings, Dr. Chris Polashenski, Dr. Andy Mahoney and the other members of the SIDEx team for their contributions to this work in the form of data collection and invaluable input and feedback. This work was supported by the Office of Naval Research (ONR), Arctic and Global Prediction Program as part of the Sea Ice Dynamics Experiment (SIDEx) under award number N00014-19-1-2606.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelsey Kaplan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kaplan, K., Kambhamettu, C. (2023). A Novel Methodology for High Resolution Sea Ice Motion Estimation. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13645. Springer, Cham. https://doi.org/10.1007/978-3-031-37731-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37731-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37730-3

  • Online ISBN: 978-3-031-37731-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics