
Bounded Verification
for Finite-Field-Blasting

In a Compiler for Zero Knowledge Proofs

Alex Ozdemir1(B), Riad S. Wahby2, Fraser Brown2, and Clark Barrett1

1 Stanford University, Stanford, USA
aozdemir@cs.stanford.edu
2 Carnegie Mellon University,

Pittsburgh, USA

Abstract. Zero Knowledge Proofs (ZKPs) are cryptographic protocols
by which a prover convinces a verifier of the truth of a statement without
revealing any other information. Typically, statements are expressed in
a high-level language and then compiled to a low-level representation on
which the ZKP operates. Thus, a bug in a ZKP compiler can compro-
mise the statement that the ZK proof is supposed to establish. This paper
takes a step towards ZKP compiler correctness by partially verifying
a field-blasting compiler pass, a pass that translates Boolean and bit-
vector logic into equivalent operations in a finite field. First, we define
correctness for field-blasters and ZKP compilers more generally. Next,
we describe the specific field-blaster using a set of encoding rules and
define verification conditions for individual rules. Finally, we connect the
rules and the correctness definition by showing that if our verification
conditions hold, the field-blaster is correct. We have implemented our
approach in the CirC ZKP compiler and have proved bounded versions
of the corresponding verification conditions. We show that our partially
verified field-blaster does not hurt the performance of the compiler or its
output; we also report on four bugs uncovered during verification.

1 Introduction

Zero-Knowledge Proofs (ZKPs) are powerful tools for building privacy-pre-
serving systems. They allow one entity, the prover P, to convince another, the
verifier V, that some secret data satisfies a public property, without revealing
anything else about the data. ZKPs underlie a large (and growing!) set of criti-
cal applications, from billion-dollar private cryptocurrencies, like Zcash [24,53]
and Monero [2], to research into auditable sealed court orders [20], private gun
registries [26], privacy-preserving middleboxes [23], and zero-knowledge proofs
of exploitability [11]. This breadth of applications is possible because of the gen-
erality of ZKPs. In general, P knows a secret witness w, whereas V knows a
property φ and a public instance x. P must show that φ(x,w) = �. Typically,
x and w are vectors of variables in a finite field F, and φ can be any system of
equations over the variables, using operations + and ×. Because φ itself is an
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input to P and V, and because of the expressivity of field equations, a single
implementation of P and V can serve many different purposes.

Humans find it difficult to express themselves directly with field equations,
so they use ZKP compilers. A ZKP compiler converts a high-level predicate φ′

into an equivalent system of field equations φ. In other words, a ZKP compiler
generalizes a ZKP: by compiling φ′ to φ and then using a ZKP for φ, one obtains
a ZKP for φ′. There are many industrial [3,5,6,14,21,45,55,66] and academic
[4,18,28,29,46,48,50,54,63] ZKP compilers.

The correctness of a ZKP compiler is critical for security— a bug in the
compiler could admit proofs of false statements— but verification is challenging
for three reasons. First, the definition of correctness for a ZKP compiler is non-
trivial; we discuss later in this section. Second, ZKP compilers span multiple
domains. The high-level predicate φ′ is typically expressed in a language with
common types such as Booleans and fixed-width integers, while the output φ is
over a large, prime-order field. Thus, any compiler correctness definition must
span these domains. Third, ZKP compilers are evolving and performance-critical;
verification must not inhibit future changes or degrade compiler performance.

In this work, we develop tools for automatically verifying the field-blaster of
a ZKP compiler. A ZKP compiler’s field-blaster is the pass that converts from a
formula over Booleans, fixed-width integers, and finite-field elements, to a system
of field equations; as a transformation from bit-like types to field equations, the
field-blaster exemplifies the challenge of cross-domain verification.

Our paper makes three contributions. First, we formulate a precise correct-
ness definition for a ZKP compiler. Our definition ensures that a correct compiler
preserves the completeness and soundness of the underlying ZK proof system.1
More specifically, given a ZK proof system where statements are specified in a
low-level language L, and a compiler from a high-level language H to L, if the
compiler is correct by our definition, it extends the ZK proof system’s soundness
and completeness properties to statements in H. Further, our definition is pre-
served under sequential composition, so proving the correctness of each compiler
pass individually suffices to prove correctness of the compiler itself.

Second, we give an architecture for a verifiable field-blaster. In our architec-
ture, a field-blaster is a set of “encoding rules.” We give verification conditions
(VCs) for these rules, and we show that if the VCs hold, then the field-blaster
is correct. Our approach supports automated verification because (bounded ver-
sions of) the VCs can be checked automatically. This reduces both the up-front
cost of verification and its maintenance cost.

Third, we do a case study. Using our architecture, we implement a new
field-blaster for CirC [46] (“SIR-see”), an infrastructure used by state-of-the-
art ZKP compilers. We verify bounded versions of our field-blaster’s VCs using
SMT-based finite-field reasoning [47], and show that our field blaster does not
compromise CirC’s performance. We also report on four bugs that our verifica-
tion effort uncovered, including a soundness bug that allowed the prover to “lie”
about the results of certain bit-vector comparisons. We note that the utility of

1 Roughly speaking, a ZK proof system is complete if it is possible to prove every true
statement, and is sound if it is infeasible to prove false ones.
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our techniques is not limited to CirC: most ZKP compilers include something
like the field-blaster we describe here.

In the next sections, we discuss related work (Sect. 1.1), give background on
ZKPs and CirC (Sect. 2), present a field-blasting example (Sect. 3), describe our
architecture (Sect. 4), give our verification conditions (Sect. 5), and present the
case study (Sect. 6).

1.1 Related Work

Verified Compilers. There is a rich body of work on verifying the correctness of
traditional compilers. We focus on compilation for ZKPs; this requires different
correctness definitions that relate bit-like types to prime field elements. In the
next paragraphs, we discuss more fine-grained differences.

Compiler verification efforts fall into two broad categories: automated—verif-
ication leveraging automated reasoning solvers—and foundational—manual ver-
ification using proof assistants (e.g., Coq [8] or Isabelle [44]). CompCert [36],
for example, is a Coq-verified C compiler with verified optimization passes
(e.g., [40]). Closest to our work is backend verification, which proves correct the
translation from an intermediate representation to machine code. CompCert’s
lowering [37] is verified, as is CakeML’s [31] lowering to different ISAs [19,57].
While such foundational verification offers strong guarantees, it imposes a heavy
proof burden; creating CompCert, for example, took an expert team eight
years [56], and any updates to compiler code require updates to proofs.

Automated verification, in contrast, does not require writing and maintaining
manual proofs.2 Cobalt [34], Rhodium [35], and PEC [32] are domain-specific
languages (DSLs) for writing automatically-verified compiler optimizations and
analyses. Most closely related to our work is Alive [39], a DSL for expressing
verified peephole optimizations, local rewrites that transform snippets of LLVM
IR [1] to better-performing ones. Alive addresses transformations over fixed types
(while we address lowering to finite field equations) and formulates correctness
in the presence of undefined behavior (while we formulate correctness for ZKPs).
Beyond Alive, Alive2 [38] provides translation validation [41,51] for LLVM [33],
and VeRA [10] verifies range analysis in the Firefox JavaScript engine.

There is also work on verified compilation for domains more closely related
to ZKPs. The Porcupine [15] compiler automatically synthesizes representations
for fully-homomorphic encryption [62], and Gillar [58] proves that optimization
passes in the Qiskit [60] quantum compiler are semantics-preserving. While these
works compile from high-level languages to circuit representations, the correct-
ness definitions for their domains do not apply to ZKP compilers.

Verified Compilation to Cryptographic Proofs. Prior works on verified compi-
lation for ZKPs (or similar) take the foundational approach (with attendant
proof maintenance burdens), and they do not formulate a satisfactory defini-
tion of compiler correctness. PinocchioQ [18] builds on CompCert [36]. The
2 Automated verification generally leverages solvers. This is a particularly appealing

approach in our setting, since CirC (our compiler infrastructure of interest) already
supports compilation to SMT formulas.
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authors formulate a correctness definition that preserves the existential sound-
ness of a ZKP but does not consider completeness, knowledge soundness, or
zero-knowledge (see Sect. 2.2). Leo [14] is a ZKP compiler that produces (partial)
ACL2 [27] proofs of correct compilation; work to emit proofs from its field-blaster
is ongoing.

Recent work defines security for reductions of knowledge [30]. These let P
convince V that it knows a witness for an instance of relation R1 by proving it
knows a witness for an instance of an easier-to-prove relation R2. Unlike ZKP
compilers, P and V interact to derive R2 using V’s randomness (e.g., proving that
two polynomials are nonzero w.h.p. by proving that a random linear combination
of them is), whereas ZKP compilers run ahead of time and non-interactively.

Further afield, Ecne [65] is a tool that attempts to verify that the input to
a ZKP encodes a deterministic computation. It does not consider any notion
of a specification of the intended behavior. A different work [25] attempts to
automatically verify that a “widget” given to a ZKP meets some specification.
They consider widgets that could be constructed manually or with a compiler.
Our focus is on verifying a compiler pass.

2 Background

2.1 Logic

We assume usual terminology for many-sorted first-order logic with equality (
[17] gives a complete presentation). We assume every signature includes the sort
Bool, constants True and False of sort Bool, and symbol family ≈σ (abbreviated
≈) with sort σ × σ → Bool for each sort σ. We also assume a family of condi-
tionals: symbols iteσ (“if-then-else”, abbreviated ite) of sort Bool × σ × σ → σ.

A theory is a pair T = (Σ, I), where Σ is a signature and I is a class of Σ-
interpretations. A Σ-formula is a term of sort Bool. A Σ-formula φ is satisfiable
(resp., unsatisfiable) in T if it is satisfied by some (resp., no) interpretation
in I. We focus on two theories. The first is TBV , the SMT-LIB theory of bit-
vectors [52,61], with signature ΣBV including a bit-vector sort BV[n] for each
n > 0 with bit-vector constants c[n] of sort BV[n] for each c ∈ [0, 2n − 1], and
operators including & and | (bitwise and, or) and +[n] (addition modulo 2n). We
write t[i] to refer to the ith bit of bit-vector t, where t[0] is the least-significant
bit. The other theory is TFp

, which is the theory corresponding to the finite field
of order p, for some prime p [47]. This theory has signature ΣFp

containing the
sort FFp, constant symbols 0, . . . , p − 1, and operators + and ×.

In this paper, we assume all interpretations interpret sorts and symbols in
the same way. We write dom(v) for the set interpreting the sort of a variable
v. We assume that Bool, True, and False are interpreted as {�,⊥}, �, and
⊥, respectively; ΣBV -interpretations follow the SMT-LIB standard; and ΣFp

-
interpretations interpret symbols as the corresponding elements and operations
in Fp, a finite field of order p (for concreteness, this could be the integers modulo
p). Note that only the values of variables can vary between two interpretations.

For a signature Σ, let t be a Σ-term of sort σ, with free variables x1, . . . , xn,
respectively of sort σ1, . . . , σn. We define the function t̂ : dom(x1) × · · · ×
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Fig. 1. The information flow for a zero-knowledge proof.

dom(xn) → dom(t) as follows. Let x ∈ dom(x1) × · · · × dom(xn). Let M be an
interpretation that interprets each xi as xi. Then t̂(x) = tM (i.e., the interpreta-
tion of t in M). For example, the term t = a∧¬a defines t̂ : Bool → Bool = λx.⊥.
In the following, we follow the convention used above in using the standard font
(e.g., x) for logical variables and a sans serif font (e.g., x) to denote meta-variables
standing for values (i.e., elements of σM for some σ and M). Also, abusing nota-
tion, we’ll conflate single variables (of both kinds) with vectors of variables when
the distinction doesn’t matter. Note that a formula φ is satisfiable if there exist
values x such that φ̂(x) = �. It is valid if for all values x, φ̂(x) = �.

For terms s, t and variable x, t[x �→ s] denotes t with all occurrences of x
replaced with s. For a sequence of variable-term pairs, S = (x1 �→ s1, . . . , xn �→
sn), t[S] is defined to be t[x1 �→ s1] · · · [xn �→ sn].

2.2 Zero Knowledge Proofs

As mentioned above, Zero-knowledge proofs (ZKPs) make it possible to prove
that some secret data satisfies a public property—without revealing the data
itself. See [59] for a full presentation; we give a brief overview here, and then
describe how general-purpose ZKPs are used.

Overview and Definitions. In a cryptographic proof system, there are two parties:
a verifier V and a prover P. V knows a public instance x and asks P to show that
it has knowledge of a secret witness w satisfying a public predicate φ(x,w) from
a predicate class Φ (a set of formulas) (i.e., φ̂(x,w) = �). Figure 1 illustrates the
workflow. First, a trusted party runs an efficient (i.e., polytime in an implicit
security parameter λ) algorithm Setup(φ) which produces a proving key pk and
a verifying key vk. Then, P runs an efficient algorithm Prove(pk, x,w) → π and
sends the resulting proof π to V. Finally, V runs an efficient verification algorithm
Verify(vk, x, π) → {�,⊥} that accepts or rejects the proof. A zero-knowledge
argument of knowledge for class Φ is a tuple Π = (Setup,Prove,Verify) with
three informal properties for every φ ∈ Φ and every x ∈ dom(x),w ∈ dom(w):

– perfect completeness: if φ̂(x,w) holds, then Verify(vk, x, π) holds;
– computational knowledge soundness [9]: an efficient adversary that does not

know w cannot produce a π such that Verify(vk, x, π) holds; and
– zero-knowledge [22]: π reveals nothing about w, other than its existence.

Technically, the system is an “argument” rather than a “proof” because sound-
ness only holds against efficient adversaries. Also note that knowledge soundness
requires that an entity must “know” a valid w′ to produce a proof; it is not enough
for a valid w′ to simply exist. We give more precise definitions in Appendix A.
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Representations for ZKPs. As mentioned above, ZKP applications are manifold
(Sect. 1)—from cryptocurrencies to private registries. This breadth of applica-
tions is possible because ZKPs support a broad class of predicates. Most com-
monly, these predicates are expressed as rank-1 constraint systems (R1CSs).
Recall that Fp is a prime-order finite field (also called a prime field). We will
drop the subscript p when it is not important. In an R1CS, x and w are vectors of
elements in F; let z ∈ F

m be their concatenation. The function φ̂ can be defined
by three matrices A,B,C ∈ F

n×m; φ̂(x,w) holds when Az◦Bz = Cz, where ◦ is the
element-wise product. Thus, φ can be viewed as n conjoined constraints, where
each constraint i is of the form (

∑
j aijzj) × (

∑
j bijzj) ≈ (

∑
j cijzj) (where

the aij , bij and cij are constant symbols from ΣFp
, and the zj are a vector

of variables of sort FFp). That is, each constraint enforces a single non-linear
multiplication.

2.3 Compilation Targeting Zero Knowledge Proofs

To write a ZKP about a high-level predicate φ, that predicate is first compiled to
an R1CS. A ZKP compiler from class Φ (a set of Σ-formulas) to class Φ′ (a set
of Σ′-formulas) is an efficient algorithm Compile(φ ∈ Φ) → (φ′ ∈ Φ′,Extx,Extw).
Given a predicate φ(x,w), it returns a predicate φ′(x′, w′) as well as two efficient
and deterministic algorithms, instance and witness extenders: Extx : dom(x) →
dom(x′) and Extw : dom(x) × dom(w) → dom(w′).3 For example, CirC [46] can
compile a Boolean-returning C function (in a subset of C) to an R1CS.

At a high-level, φ and φ′ should be “equisatisfiable”, with Extx and Extw
mapping satisfying values for φ to satisfying values for φ′. That is, for all x ∈
dom(x) and w ∈ dom(w) such that φ̂(x,w) = �, if x′ = Extx(x) and w′ =
Extw(x,w), then φ̂′(x′,w′) = �. Furthermore, for any x, it should be impossible to
(efficiently) find w′ satisfying φ̂′(Extx(x),w′) = � without knowing a w satisfying
φ̂(x,w) = �. In Sect. 5.1, we precisely define correctness for a predicate compiler.

One can build a ZKP for class Φ from a compiler from Φ to Φ′ and a ZKP for
Φ′. Essentially, one runs the compiler to get a predicate φ′ ∈ Φ′, as well as Extx
and Extw. Then, one writes a ZKP to show that φ̂′(Extx(x),Extw(x,w)) = �. In
Appendix A, we give this construction in full and prove it is secure.

Optimization. The primary challenge when using ZKPs is cost: typically, Prove
is at least three orders of magnitude slower than checking φ directly [64]. Since
Prove’s cost scales with n (the constraint count), it is critical for the compiler
to minimize n. The space of optimizations is large and complex, for two reasons.
First, the compiler can introduce fresh variables. Second, only equisatifiability—
not logical equivalence—is needed. Compilers in this space exploit equisatisfia-
bility heavily to efficiently represent high-level constructs (e.g., Booleans, bit-
vectors, arrays, . . . ) as an R1CS.

3 For technical reasons, the runtime of Extx and the size of its description must be
poly(λ, |x|)—not just poly(λ) (Appendix A). .
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Fig. 2. The architecture of CirC

As a (simple!) example, consider the Boolean computation a ≈ c1 ∨ · · · ∨ ck.
Assume that c′

1, . . . , c
′
k are variables of sort FF and that we add constraints

c′
i(1 − c′

i) ≈ 0 to ensure that c′
i has to be 0 or 1 for each i. Assume further

that (c′
i ≈ 1) encodes ci for each i. How can one additionally ensure that a′

(also of sort FF) is also forced to be equal to 0 or 1 and that (a′ ≈ 1) is a
correct encoding of a? Given that there are k − 1 ORs, natural approaches use
Θ(k) constraints. One clever approach is to introduce variable x′ and enforce
constraints x′(

∑
i c′

i) ≈ a′ and (1 − a′)(
∑

i c′
i) ≈ 0. In any interpretation where

any ci is true, the corresponding interpretation for a′ must be 1 to satisfy the
second constraint; setting x′ to the sum’s inverse satisfies the first. If all ci are
false, the first constraint ensures a′ is 0. This technique assumes the sum does
not overflow; since ZKP fields are typically large (e.g., with p on the order of
2255), this is usually a safe assumption.

CirC. CirC [46] is an infrastructure for building compilers from high-level lan-
guages (e.g., a C subset), to R1CSs. It has been used in research projects [4,12],
and in industrial R&D. Figure 2 shows the structure of an R1CS compiler built
with CirC. First, the front-end of the compiler converts the source program
into CirC-IR. CirC-IR is a term IR based on SMT-LIB that includes: Booleans,
bit-vectors, fixed-size arrays, tuples, and prime fields.4 Second, the compiler
optimizes and simplifies the IR so that the only remaining sorts are Booleans,
bit-vectors, and the target prime field. Third, the compiler lowers the simplified
IR to an R1CS predicate over the target field. For ZKPs built with CirC, the
completeness, soundness, and zero-knowledge of the end-to-end system depend
on the correctness of CirC itself.

3 Overview and Example

To start, we view CirC’s lowering pass as two passes (Fig. 2). The first pass,
“(finite-)field-blasting,” converts a many-sorted IR (representable as a (ΣBV ∪
ΣF)-formula) to a conjunction of field equations (ΣF -equations). The second
pass, “flattening,” converts this conjunction of field equations to an R1CS.

Our focus is on verifying the first pass. We begin with a worked example
of how to field-blast a small snippet of CirC-IR (Sect. 3.1). This example will
illustrate four key ideas (Sect. 3.2) that inspire our field-blaster’s architecture.
4 We list all CirC-IR operators for Booleans, bit-vectors, and prime fields in

Appendix C. Almost all are from SMT-LIB.
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Table 1. New variables and assertions when compiling the example φ.

clause term from φ assertions new variables notes

1 x0 x′
0

w0 w′
0(w

′
0 − 1) ≈ 0 w′

0

x0 ⊕ w0 1 ≈ 1 − w′
0 − x′

0 + 2w′
0x

′
0

2 x1 x′
1,u

w1 w′
1,i(w

′
1,i − 1) ≈ 0 w′

1,i i ∈ [0, 3]

x1 +[4] w1 s′ ≈ x′
1,u +

∑3
i=0 2

iw′
1,i s′

s′
i(s

′
i − 1) ≈ 0 s′

i i ∈ [0, 4]

s′ ≈ ∑4
i=0 2

is′
i

x1 +[4] w1 ≈ w1 s′
i ≈ w′

1,i i ∈ [0, 3]

3 x2 x′
2,u

x2 (bits) x′
2,i(x

′
2,i − 1) ≈ 0 x′

2,i i ∈ [0, 3]

x′
2,u ≈ ∑3

i=0 2
ix′

2,i

x2 & w1 ≈ x2 x′
2,iw

′
1,i ≈ x′

2,i i ∈ [0, 3]

4 x3, w2 x′
3, w

′
2

x3 ≈ w2 × w2 x′
3 ≈ w′

2 × w′
2

3.1 An Example of Field-Blasting

We start with an example CirC-IR predicate expressed as a (ΣBV ∪ΣF)-formula:

φ � (x0 ⊕ w0) ∧ (w1 +[4] x1 ≈ w1) ∧ (x2 & w1 ≈ x2) ∧ (x3 ≈ w2 × w2) (1)

The predicate includes: the XOR of two Booleans (“⊕”), a bit-vector sum, a bit-
vector AND, and a field product. x0 and w0 are of sort Bool, x1, x2, and w1 are
of sort BV[4], and x3 and w2 are of sort FFp. We’ll assume that p  24. Table 1
summarizes the new variables and assertions we create during field-blasting; we
describe the origin of each assertion and new variable in the next paragraphs.

Lowering Clause One (Booleans). We begin with the Boolean term (x0 ⊕ w0).
We will use 1 and 0 to represent � and ⊥. We introduce variables x′

0 and w′
0 of

sort FFp to represent x0 and w0 respectively. To ensure that w′
0 is 0 or 1, we assert:

w′
0(w

′
0−1) ≈ 0. 5 x0⊕w0 is then represented by the expression 1−x′

0−w′
0+2x′

0w
′
0.

Setting this equal to 1 enforces that x0 ⊕ w0 must be true. These new assertions
and fresh variables are reflected in the first three rows of the table.

Lowering Clause Two and Three (Bit-vectors). Before describing how to bit-
blast the second and third clauses in φ, we discuss bit-vector representations in

5 Later (Sect. 5), we will see that “well-formedness” constraints like this are unnecessary
for instance variables, such as x0. .
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general. A bit-vector t can be viewed as a sequence of b bits or as a non-negative
integer less than 2b. These two views suggest two natural representations in a
prime-order field: first, as one field element t′u, whose unsigned value agrees with
t (assuming the field’s size is at least 2b); second, as b elements t′0, . . . , t

′
b−1,

that encode the bits of t as 0 or 1 (in our encoding, t′0 is the least-significant
bit and t′b−1 is the most-significant bit). The first representation is simple, but
with it, some field values (e.g., 2b) don’t corresponding to any possible bit-vector.
With the second approach, by including equations t′i(t

′
i−1) ≈ 0 in our system, we

ensure that any satisfying assignment corresponds to a valid bit-vector. However,
the extra b equations increase the size of our compiler’s output.

We represent φ’s w1 bit-wise: as w′
1,0, . . . , w

′
1,3, and we represent the instance

variable x1 as x′
1,u.6 For the constraint w1 +[4] x1 ≈ w1, we compute the sum

in the field and bit-decompose the result to handle overflow. First, we introduce
new variable s′ and set it equal to x′

1,u +
∑3

i=0 2iw′
1,i. Then, we bit-decompose

s′, requiring s′ ≈
∑4

i=0 2is′
i, and s′

i(s
′
i − 1) ≈ 0 for i ∈ [0, 4]. Finally, we assert

s′
i ≈ w′

1,i for i ∈ [0, 3]. This forces the lowest 4 bits of the sum to be equal to w1.
The constraint x2 & w1 ≈ x2 is more challenging. Since x2 is an instance

variable, we initially encode it as x′
2,u. Then, we consider the bit-wise AND.

There is no obvious way to encode a bit-wise operation, other than bit-by-
bit. So, we convert x′

2,u to a bit-wise representation: We introduce witness
variables x′

2,0, . . . , x
′
2,3 and equations x′

2,i(x
′
2,i − 1) ≈ 0 as well as equation

x′
2,u ≈

∑3
i=0 2ix′

2,i. Then, for each i we require x′
2,iw

′
1,i ≈ x′

2,i.

Lowering the Final Clause (Field Elements). Finally, we consider the field equa-
tion x2 ≈ w2 ×w2. Our target is also field equations, so lowering this is straight-
forward. We simply introduce primed variables and copy the equation.

3.2 Key Ideas

This example highlights four ideas that guide the design of our field-blaster:

1. fresh variables and assertions: Field-blasting uses two primitive operations:
creating new variables in φ′ (e.g., w′

0 to represent w0) and adding new asser-
tions to φ′ (e.g., w′

0(w
′
0 − 1) ≈ 0).

2. encodings: For a term t in φ, we construct a field term (or collection of field
terms) in φ′ that represent the value of t. For example, the Boolean w0 is
represented as the field element w′

0 that is 0 or 1.
3. operator rules: if t is an operator applied to some arguments, we can encode

t given encodings of the arguments. For example, if t is x0 ⊕ w0, and x0 is
encoded as x′

0 and w0 as w′
0, then t can be encoded as 1 − x′

0 − w′
0 + 2x′

0w
′
0.

4. conversions: Some sorts can be represented by encodings of different kinds.
If a term has multiple possible encodings, the compiler may need to convert
between them to apply some operator rule. For example, we converted x2

from an unsigned encoding to a bit-wise encoding before handling an AND.
6 We represent w1 bit-wise so that we can ensure the representation is well-formed with

constraints w′
1,i(w

′
1,i −1) ≈ 0. As previously noted, such well-formedness constraints

are not needed for an instance variable like x1.(See footnote 5).
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Table 2. Encodings for each term sort. Only bit-vectors have two encoding kinds.

Variant Contents Semantics
encoded_term kind terms Validity Condition

t: Bool bit f f ≈ ite(t, 1, 0)

t: BV[b] uint f f ≈ ∑
i ite(t[i] ≈ 1[1], 2

i, 0)

t: BV[b] bits f0, . . . , fb−1

∧
i fi ≈ ite(t[i] ≈ 1[1], 1, 0)

t: FF field f t ≈ f

4 Architecture

In this section, we present our field-blaster architecture. To compile a predicate
φ to a system of field equations φ′, our architecture processes each term t in φ
using a post-order traversal. Informally, it represents each t as an “encoding” in
φ′: a term (or collection of terms) over variables in φ′. Each encoding is produced
by a small algorithm called an “encoding rule”.

Below, we define the type of encodings Enc (Sect. 4.1), the five different types
of encoding rules (Sect. 4.2), and a calculus that iteratively applies these rules
to compile all of φ (Sect. 4.3).

4.1 Encodings

Table 2 presents our tagged union type Enc of possible term encodings. Each vari-
ant comprises the term being encoded, its tag (the encoding kind), and a sequence
of field terms. The encoding kinds are bit (a Boolean as 0/1), uint (a bit-vector as
an unsigned integer), bits (a bit-vector as a sequence of bits), and field (a field
term trivially represented as a field term). Each encoding has an intended seman-
tics: a condition under which the encoding is considered valid. For instance, a bit
encoding of Boolean t is valid if the field term f is equal to ite(t, 1, 0).

4.2 Encoding Rules

An encoding rule is an algorithm that takes and/or returns encodings, in order
to represent some part of the input predicate as field terms and equations.

Primitive Operations. A rule can perform two primitive operations: creating
new variables and emitting assertions. In our pseudocode, the primitive func-
tion fresh(name, t, isInst) → x′ creates a fresh variable. Argument isInst is a
Boolean indicating whether x′ is an instance variable (as opposed to a witness).
Argument t is a field term (over variables from φ and previously defined primed
variables) that expresses how to compute a value for x′. For example, to cre-
ate a field variable w′ that represents Boolean witness variable w, a rule can
call fresh(w′, ite(w, 1, 0),⊥). The compiler uses t to help create the Extx and
Extw algorithms. A rule asserts a formula t′ (over primed variables) by calling
assert(t′).
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Fig. 3. Pseudocode for some bit-vector rules: variable uses a uint encoding for instances
and bit-splits witnesses to ensure they’re well-formed, const bit-splits the constant it’s
given, assertEq asserts unsigned or bit-wise equality, and convert either does a bit-sum
or bit-split.

Rule Types. There are five types of rules: (1) Variable rules variable(t, isInst) →
e take a variable t and its instance/witness status and return an encoding of
that variable made up of fresh variables. (2) Constant rules const(t) → e take a
constant term t and produce an encoding of t comprising terms that depend only
on t. Since t is a constant, the terms in e can be evaluated to field constants (see
the calculus in Sect. 4.3).7 The const rule cannot call fresh or assert. (3) Equality
rules assertEq(e, e′) take two encodings of the same kind and emit assertions that
equate the underlying terms. (4) Conversion rules convert(e, kind′) → e′ take an
encoding and convert it to an encoding of a different kind. Conversions are only
non-trivial for bit-vectors, which have two encoding kinds: uint and bits. (5)
Operator rules apply to terms t of form o(t1, . . . , tn). Each operator rule takes t,
o, and encodings of the child terms ti and returns an encoding of t. Some operator
rules require specific kinds of encodings; before using such an operator rule, our
calculus (Sect. 4.3) calls the convert rule to ensure the input encodings are the
correct kind. Figure 3 gives pseudocode for the first four rule types, as applied
to bit-vectors. Figure 4 gives pseudocode for two bit-vector operator encoding
rules. A field blaster uses many operator rules: in our case study (Sect. 6) there
are 46.

7 Having const(t) return terms that depend on t (rather than directly returning con-
stants) is useful for constructing verification conditions for const.
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Fig. 4. Pseudocode for some bit-vector operator rules. bvZeroExt zero-extends a bit-
vector; for bit-wise encodings, it adds zero bits, and for unsigned encodings, it sim-
ply copies the original encoding. bvMulUint multiplies bit-vectors, all assumed to be
unsigned encodings. We show only the case where the multiplication cannot overflow
in the field: in this case the rule performs the multiplication in the field, and bit-splits
the result to implement reduction modulo 2b. The rules use ff2bv, which converts from
a field element to a bit-vector (discussed in Sect. 6.1).

4.3 Calculus

We now give a non-deterministic calculus describing how our field-blaster applies
rules to compile a predicate φ(x,w) into a system of field equations.

A calculus state is a tuple of three items: (E,A, F ). The encoding store E is
a (multi-)map from terms to sets of encodings. The assertions formula A is a
conjunction of all field equations asserted via assert. The fresh variable definitions
sequence F is a sequence consisting of pairs, where each pair (v, t) matches a
single call to fresh(v, t, . . . ).

Figure 5 shows the transitions of our calculus. We denote the result of a rule
as A′, F ′, e′ ← r(. . . ), where A′ is a formula capturing any new assertions, F ′ is
a sequence of pairs capturing any new variable definitions, and e′ is the rule’s
return value. We may omit one or more results if they are always absent for a
particular rule. For encoding store E, E∪(t �→ e) denotes the store with e added
to t’s encoding set.

There are five kinds of transitions. The Const transition adds an encoding
for a constant term. The const rule returns an encoding e whose terms depend
on the constant c; e′ is a new encoding identical to e, except that each of its
terms has been evaluated to obtain a field constant. The Var transition adds an
encoding for a variable term. The Conv transition takes a term that is already
encoded and re-encodes it with a new encoding kind. The kinds operator returns
all legal values of kind for encodings of a given sort. The Opr transition applies
operator rule r. This transition is only possible if r’s operator kind agrees with o,
and if its input encoding kinds agree with �e. The Finish transition applies when φ
has been encoded. It uses const and assertEq to build assertions that hold when
φ = �. Rather than producing a new calculus state, it returns the outputs of
the calculus: the assertions and the variable definitions.
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Fig. 5. The transition rules of our rewriting calculus.

To meet the requirements of the ZKP compiler, our calculus must return two
extension function: Extx and Extw (Sect. 2.2). Both can be constructed from the
fresh variable definitions F . One subtlety is that Extx(x) (which assigns values
to fresh instance variables) is a function of x only—it cannot depend on the
witness variables of φ. We ensure this by allowing fresh instance variables to
only be created by the variable rule, and only when it is called with isInst = �.

Strategy. Our calculus is non-deterministic: multiple transitions are possible in
some situations; for example, some conversion is almost always applicable. The
strategy that decides which transition to apply affects field blaster performance
(Appendix D) but not correctness.

5 Verification Conditions

In this section, we first define correctness for a ZKP compiler (Sect. 5.1). Then,
we give verification conditions (VCs) for each type of encoding rule (Sect. 5.2).
Finally, we show that if these VCs hold, our calculus is a correct ZKP compiler
(Sect. 5.3).

5.1 Correctness Definition

Definition 1 (Correctness). A ZKP compiler Compile(φ) → (φ′,Extx,Extw)
is correct if it is demonstrably complete and demonstrably sound.

• demonstrable completeness: For all x ∈ dom(x),w ∈ dom(w) such that
φ̂(x,w) = �,

φ̂′(Extx(x),Extw(x,w)) = �
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• demonstrable soundness: There exists an efficient algorithm Inv(x′,w′) → w

such that for all x ∈ dom(x),w′ ∈ dom(w′) such that φ̂′(Extx(x),w′) = �,

φ̂(x, Inv(Extx(x),w′)) = �

Demonstrable completeness (respectively, soundness) requires the existence
of a witness for φ′ (resp., φ) when a witness exists for φ (resp., φ′); this existence
is demonstrated by an efficient algorithm Extw (resp., Inv) that computes the
witness.

Correct ZKP compilers are important for two reasons. First, since sequential
composition preserves correctness, one can prove a multi-pass compiler is correct
pass-by-pass. Second, a correct ZKP compiler from Φ to Φ′ can be used to
generalize a ZKP for Φ′ to one for Φ. We prove both properties in Appendix A.

Theorem 1 (Compiler Composition). If Compile′ and Compile′′ are correct,
then the compiler Compose(Compile′,Compile′′) (Appendix A) is correct.

Theorem 2 (ZKP Generalization). (informal) Given a correct ZKP com-
piler Compile from Φ to Φ′ and a ZKP for Φ′, we can construct a ZKP for Φ.

5.2 Rule VCs

Recall (Sect. 4) that our language manipulates encodings through five types of
encoding rules. We give verification conditions for each type of rule. Intuitively,
these capture the correctness of each rule in isolation. Next, we’ll show that they
imply the correctness of a ZKP compiler that follows our calculus.

Our VCs quantify over valid encodings. That is, they have the form: “for any
valid encoding e of term t, . . . ” We can quantify over an encoding e by making
each ti ∈ terms(e) a fresh variable, and quantifying over the ti. Encoding validity
is captured by a predicate valid(e, t), which is defined to be the validity condi-
tion in Table 2. Each VC containing encoding variables e implicitly represents a
conjunction of instances of that VC, one for each possible tuple of kinds of e,
which is fixed for each instance. If a VC contains valid(e, t), the sort of t is con-
strained to be compatible with kind(e). For a kind and a sort to be compatible,
they must occur in the same row of Table 2. We define the equality predicate
equal(e, e′) as

∧
i terms(e)[i] ≈ terms(e′)[i].

Encoding Uniqueness. First, we require the uniqueness of valid encodings, for
any fixed encoding kind. Table 3 shows the VCs that ensure this. Each row is a
formula that must be valid, for all compatible encodings and terms. The first two
rows ensure that there is a bijection from terms to their valid encodings (in the
first row, we consider only instances for which kind(e) = kind(e′)). The function
fromTerm(t, kind) → e maps a term and an encoding kind to a valid encoding of
that kind, and the function toTerm(e) → t maps a valid encoding to its encoded
term. The third and fourth rows ensure that fromTerm and toTerm are correctly
defined. We will use toTerm in our proof of calculus soundness (Appendix B)
and we will use fromTerm to optimize VCs for faster verification (Sect. 6.1).
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Table 3. VCs related to encoding uniqueness.

Property Condition

valid encoding uniqueness (valid(e, t) ∧ valid(e′, t)) → equal(e, e′)

valid encoding uniqueness (valid(e, t) ∧ valid(e, t′)) → t ≈ t′

fromTerm correctness valid(fromTerm(t, kind), t)

toTerm correctness valid(e, toTerm(e))

Table 4. VCs for encoding rules.

Rule Property Condition

Operator Sound (A ∧ ∧
i valid(ei, ti)) → valid(e′, o(t ))

e′ ← ro(e ) Complete
(
(
∧

i valid(ei, ti)) → (A ∧ valid(e′, o(t )))
)
[F ]

Equality Sound (A ∧ ∧
i valid(ei, ti)) → (t1 ≈ t2)

r=(e1, e2) Complete
(
((t1 ≈ t2) ∧ ∧

i valid(ei, ti)) → A
)
[F ]

Conversion Sound (A ∧ valid(e, t)) → valid(e′, t)

e′ ← r→(e) Complete ((valid(e, t)) → (A ∧ valid(e′, t))) [F ]

Variable Sound (t ∈ w) A → ∃t′. valid(e′, t′)

Sound (t ∈ x) (A → valid(e′, t))[Fx]

e′ ← rv(t) Complete (A ∧ valid(e′, t))[F ]

Constant — valid(e, t)

e ← rc(t)

For an example of the valid , fromTerm, and toTerm functions, consider a
Boolean b encoded as an encoding e with kind bit and whose terms consist
of a single field element f . Validity is defined as valid(e, b) = f ≈ ite(b, 1, 0),
toTerm(f) is defined as f ≈ 1, and fromTerm(b, bit) is (b, bit, ite(b, 1, 0)).

VCs for Encoding Rules. Table 4 shows our VCs for the rules of Fig. 5. For each
rule application, A and F denote, respectively, the assertions and the variable
declarations generated when that rule is applied. We explain some of the VCs
in detail.

First, consider a rule ro for operator o applied to inputs t1, . . . , tk. The rule
takes input encodings e1, . . . , ek and returns an output e′. It is sound if the
validity of its inputs and its assertions imply the validity of its output. It is
complete if the validity of its inputs implies its assertions and the validity of its
output, after substituting fresh variable definitions.

Second, consider a variable rule. Its input is a variable term t, and it returns
e′, a putative encoding thereof. Note that e′ does not actually contain t, though
the substitutions in F may bind the fresh variables of e′ to functions of t. For
the rule to be sound when t is a witness variable (t ∈ w), the assertions must
imply that e′ is valid for some term t′. For the rule to be sound when t is an
instance variable (t ∈ x), the assertions must imply that e′ is valid for t, when
the instance variables in e′ are replaced with their definition (Fx denotes F ,
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restricted to its declarations of instance variables).8 For the variable rule to be
complete (for an instance or a witness), the assertions and the validity of e′ for
t must follow from F .

Third, consider a constant rule. Its input is a constant term t, and it returns
an encoding e. Recall that the terms of e are always evaluated, yielding e′ which
only contains constant terms. Thus, correctness depends only on the fact that e
is always a valid encoding of the input t. This can be captured with a single VC.

5.3 A Correct Field-Blasting Calculus

Given rules that satisfy these verification conditions, we show that the calculus
of Sect. 4.3 is a correct ZKP compiler. The proof is in Appendix B.

Theorem 3 (Correctness). With rules that satisfy the conditions of Sect. 5.2,
the calculus of Sect. 4.3 is demonstrably complete and sound (Def. 1).

6 Case Study: A Verifiable Field-Blaster for CirC

We implemented and partially verified a field-blaster for CirC [46]. Our imple-
mentation is based on a refactoring of CirC’s original field blaster to conform
to our encoding rules (Sect. 4.2) and consists of ≈850 lines of code (LOC).9 As
described below, we have (partially) verified our encoding rules, but trust
our calculus (Sect. 4.3, ≈150 LOC) and our flattening implementations (Fig. 2,
≈160 LOC).

While porting rules, we found 4 bugs in CirC’s original field-blaster
(see Appendix G), including a severe soundness bug. Given a ZKP compiled with
CirC, the bug allowed a prover to incorrectly compare bit-vectors. The prover,
for example, could claim that the unsigned value of 0010 is greater than or less
than that of 0001. A patch to fix all 4 bugs (in the original field blaster) has
been upstreamed, and we are in the process of upstreaming our new field blaster
implementation into CirC.

6.1 Verification Evaluation

Our implementation constructs the VCs from Sect. 5.2 and emits them as SMT-
LIB (extended with a theory of finite fields [47]). We verify them with cvc5,
because it can solve formulas over bit-vectors and prime fields [47]. The verifica-
tion is partial in that it is bounded in two ways. We set b ∈ N to be the maximum
bit-width of any bit-vector and a ∈ N to be the maximum number of arguments
to any n-ary operator. In our evaluation, we used a = 4 and b = 4. These bounds
are small, but they were sufficient to find the bugs mentioned above.
8 The different soundness conditions for instance and witness variables play a key role

in the proof of Theorem 3. Essentially: since the condition for instances replaces
variables with their definitions, the validity of the encodings of instance variables
need not be explicitly enforced in A. This is why some constraints could be omitted
in our field-blasting example.(See footnote 5).

9 Our implementation is in Rust, as is CirC.
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Optimizing Completeness VCs. Generally, cvc5 verifies soundness VCs more
quickly than completeness VCs. This is surprising at first glance. To see why,
consider the soundness (S) and completeness (C) conditions for a conversion
rule from e to e′ that generates assertions A and definitions F :

S � (A ∧ valid(e, t)) → valid(e′, t) C � (valid(e, t) → (A ∧ valid(e′, t)))[F ]

In both, t is a variable, e contains variables, and there are variables in e′ and
A that are defined by F . In C, though, some variables are replaced by their
definitions in F—which makes the number of variables (and thus the search
space)—seem smaller for C than S. Yet, cvc5 is slower on C.

The problem is that, while the field operations in A are standard (e.g., +, ×,
and =), the definitions in F use a CirC-IR operator that (once embedded into
SMT-LIB) is hard for cvc5 to reason about. That operator, (ff2bv b), takes a
prime field element x and returns a bit-vector v. If x’s integer representative is
less than 2b, then v’s unsigned value is equal to x; otherwise, v is zero.

The ff2bv operator is trivial to evaluate but hard to embed. cvc5’s SMT-
LIB extension for prime fields only supports +, × and =, so no operator can
directly relate x to v. Instead, we encode the relationship through b Booleans
that represent the bits of v. To test whether x < 2b, we use the polynomial
f(x) =

∏2b−1
i=0 (x−i), which is zero only on [0, 2b−1]. The bit-splitting essentially

forces cvc5 to guess v’s value; further, f ’s high degree slows down the Gröbner
basis computations that form the foundation of cvc5’s field solver.

To optimize verification of the completeness VCs, we reason about
CirC-IR directly. First, we use the uniqueness of valid encodings and the
fromTerm function. Since the VC assumes valid(e, t), we know e is equal to
fromTerm(t, kind(e)). We use this equality to eliminate e from the completeness
VC, leaving:

(A ∧ valid(e′, t))[F ][e �→ fromTerm(t, kind(e))]

Since F defines all variables in A and e′, the only variable after substitution
is t. So, when t is a Boolean or small bit-vector, an exhaustive search is very
effective;10 we implemented such a solver in 56 LOC, using CirC’s IR as a library.

For soundness VCs, this approach is less effective. The fromTerm substitution
still applies, but if F introduces fresh field variables, they are not eliminated and
thus, the final formula contains field variables, so exhaustion is infeasible.

Verification Results. We ran our VC verification on machines with Intel Xeon E5-
2637 v4 CPUs.11 Each attempt is limited to one physical core, 8GB memory, and
30min. Figure 6 shows the number of VCs verified by cvc5 and our exhaustive
solver. As expected, the exhaustive solver is effective on completeness VCs for
Boolean and bit-vector rules, but ineffective on soundness VCs for rules that
introduce fresh field variables. There are four VCs that neither solver verifies
10 So long as the exhaustive solver reasons directly about all CirC-IR operators.
11 We omit the completeness VCs for ff2bv. See Appendix C.
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Fig. 6. VCs verified by different solvers. ‘uniq’
denotes the VCs of Table 3; others are from Table 4.
‘C’ denotes completeness; ‘S’: soundness.

Fig. 7. The performance of CirC
with the verified and unverified
field-blaster. Metrics are summed
over the 61 functions in the Z#
standard library.

within 30min: bvadd with (b = 4, a = 4), and bvmul with (b = 3, a = 4) and
(b = 4, a ≥ 3). Most other VCs verify instantly. In Appendix E, we analyze how
VC verification time depends on a and b.

6.2 Performance and Output Quality Evaluation

We compare CirC with our field-baster (“Verified”) against CirC with its original
field-blaster (“Unverified”)12 on three metrics: compiler runtime, memory usage,
and the final R1CS constraint count. Our benchmark set is the standard library
for CirC’s Z# input language (which extends ZoKrates [16,68] v0.6.2). Our
testbed runs Linux with 32GB memory and an AMD Ryzen 2700.

There is no difference in constraints, but the verified field-blaster slightly
improves compiler performance: –8% time and –2% memory (Fig. 7). We think
that the small improvement is unrelated to the fact that the new field blaster is
verified. In Appendix E, we discuss compiler performance further.

7 Discussion

In this work, we present the first automatically verifiable field-blaster. We view
the field-blaster as a set of rules; if some (automatically verifiable) conditions
hold for each rule, then the field-blaster is correct. We implemented a performant
and partially verified field-blaster for CirC, finding 4 bugs along the way.

Our approach has limitations. First, we require the field-blaster to be written
as a set of encoding rules. Second, we only verify our rules for bit-vectors of
bounded size and operators of bounded arity. Third, we assume that each rule
is a pure function: for example, it doesn’t return different results depending on
12 After fixing the bugs we found. See Sect. 6.
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the time. Future work might avoid the last two limitations through bit-width-
independent reasoning [42,43,67] and a DSL (and compiler) for encoding rules.
It would also be interesting to extend our approach to: a ZKP with a non-
prime field [7,13], a compiler IR with partial or non-deterministic semantics, or
a compiler with correctness that depends on computational assumptions.
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A Zero-Knowledge Proofs and Compilers
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B Compiler Correctness Proofs

This appendix is available in the full version of the paper [49].

C CirC-IR

This appendix is available in the full version of the paper [49].

D Optimizations to the CirC Field-Blaster

This appendix is available in the full version of the paper [49].

E Verified Field-Blaster Performance Details

This appendix is available in the full version of the paper [49].

F Verifier Performance Details

This appendix is available in the full version of the paper [49].

G Bugs Found in the CirC Field Blaster

This appendix is available in the full version of the paper [49].
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