
Efficient Sensitivity Analysis
for Parametric Robust Markov Chains

Thom Badings1(B) , Sebastian Junges1 , Ahmadreza Marandi2 ,
Ufuk Topcu3 , and Nils Jansen1

1 Radboud University, Nijmegen, The Netherlands
thom.badings@ru.nl

2 Eindhoven University of Technology, Eindhoven,
The Netherlands

3 University of Texas at Austin, Austin, USA

Abstract. We provide a novel method for sensitivity analysis of para-
metric robust Markov chains. These models incorporate parameters and
sets of probability distributions to alleviate the often unrealistic assump-
tion that precise probabilities are available. We measure sensitivity in
terms of partial derivatives with respect to the uncertain transition prob-
abilities regarding measures such as the expected reward. As our main
contribution, we present an efficient method to compute these partial
derivatives. To scale our approach to models with thousands of parame-
ters, we present an extension of this method that selects the subset of k
parameters with the highest partial derivative. Our methods are based
on linear programming and differentiating these programs around a given
value for the parameters. The experiments show the applicability of our
approach on models with over a million states and thousands of parame-
ters. Moreover, we embed the results within an iterative learning scheme
that profits from having access to a dedicated sensitivity analysis.

1 Introduction

Discrete-time Markov chains (MCs) are ubiquitous in stochastic systems mod-
eling [8]. A classical assumption is that all probabilities of an MC are pre-
cisely known—an assumption that is difficult, if not impossible, to satisfy in
practice [4]. Robust MCs (rMCs), or uncertain MCs, alleviate this assumption
by using sets of probability distributions, e.g., intervals of probabilities in the
simplest case [12,39]. A typical verification problem for rMCs is to compute
upper or lower bounds on measures of interest, such as the expected cumula-
tive reward, under worst-case realizations of these probabilities in the set of
distributions [52,59]. Thus, verification results are robust against any selection
of probabilities in these sets.

This research has been partially funded by NWO grant NWA.1160.18.238 (PrimaVera),
the ERC Starting Grant 101077178 (DEUCE), and grants ONR N00014-21-1-2502 and
AFOSR FA9550-22-1-0403.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13966, pp. 62–85, 2023.
https://doi.org/10.1007/978-3-031-37709-9_4

https://doi.org/10.5281/zenodo.7927993
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37709-9_4&domain=pdf
http://orcid.org/0000-0002-5235-1967
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0003-4205-1167
http://orcid.org/0000-0003-0819-9985
http://orcid.org/0000-0003-1318-8973
https://doi.org/10.1007/978-3-031-37709-9_4

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 63

Where to improve my model? As a running example, consider a ground vehicle
navigating toward a target location in an environment with different terrain
types. On each terrain type, there is some probability that the vehicle will slip
and fail to move. Assume that we obtain a sufficient number of samples to
infer upper and lower bounds (i.e., intervals) on the slipping probability on each
terrain. We use these probability intervals to model the grid world as an rMC.
However, from the rMC, it is unclear how our model (and thus the measure of
interest) will change if we obtain more samples. For instance, if we take one more
sample for a particular terrain, some of the intervals of the rMC will change, but
how can we expect the verification result to change? And if the verification result
is unsatisfactory, for which terrain type should we obtain more samples?

Parametric Robust MCs. To reason about how additional samples will change
our model and thus the verification result, we employ a sensitivity analysis [29].
To that end, we use parametric robust MCs (prMCs), which are rMCs whose sets
of probability distributions are defined as a function of a set of parameters [26],
e.g., intervals with parametric upper/lower bounds. With these functions over
the parameters, we can describe dependencies between the model’s states. The
assignment of values to each of the parameters is called an instantiation. Apply-
ing an instantiation to a prMC induces an rMC by replacing each occurrence of
the parameters with their assigned values. For this induced rMC, we compute
a (robust) value for a given measure, and we call this verification result the
solution for this instantiation. Thus, we can associate a prMC with a function,
called the solution function, that maps parameter instantiations to values.

Differentation for prMCs. For our running example, we choose the parameters to
represent the number of samples we have obtained for each terrain. Naturally, the
derivative of this solution function with respect to each parameter (a.k.a. sample
size) then corresponds to the expected change in the solution upon obtaining
more samples. Such differentiation for parametric MCs (pMCs), where parameter
instantiations yield one precise probability distribution, has been studied in [34].
For prMCs, however, it is unclear how to compute derivatives and under what
conditions the derivative exists. We thus consider the following problem:

Problem 1 (Computing derivatives). Given a prMC and a parameter instanti-
ation, compute the partial derivative of the solution function (evaluated at
this instantiation) with respect to each of the parameters.

Our Approach. We compute derivatives for prMCs by solving a parameterized
linear optimization problem. We build upon results from convex optimization
theory for differentiating the optimal solution of this optimization problem [9,15].
We also present sufficient conditions for the derivative to exist.

Improving Efficiency. However, computing the derivative for every parameter
explicitly does not scale to more realistic models with thousands of parameters.
Instead, we observe that to determine for which parameter we should obtain more
samples, we do not need to know all partial derivatives explicitly. Instead, it may
suffice to know which parameters have the highest (or lowest, depending on the
application) derivative. Thus, we also solve the following (related) problem:

64 T. Badings et al.

Fig. 1. Grid world environment (a). The vehicle () must deliver the package ()
to the warehouse (). We obtain the MLEs in (b), leading to the MC in (c).

Problem 2 (k-highest derivatives). Given a prMC with |V | parameters, deter-
mine the k < |V | parameters with the highest (or lowest) partial derivative.

We develop novel and efficient methods for solving Problem 2. Concretely, we
design a linear program (LP) that finds the k parameters with the highest (or
lowest) partial derivative without computing all derivatives explicitly. This LP
constitutes a polynomial-time algorithm for Problem 2 and is, in practice, orders
of magnitude faster than computing all derivatives explicitly, especially if the
number of parameters is high. Moreover, if the concrete values for the partial
derivatives are required, one can additionally solve Problem 1 for only the result-
ing k parameters. In our experiments, we show that we can compute derivatives
for models with over a million states and thousands of parameters.

Learning Framework. Learning in stochastic environments is very data-intensive
in general, and millions of samples may be required to obtain sufficiently tight
bounds on measures of interest [43,47]. Several methods exist to obtain intervals
on probabilities based on sampling, including statistical methods such as Hoeffd-
ing’s inequality [14] and Bayesian methods that iteratively update intervals [57].
Motivated by this challenge of reducing the sample complexity of learning algo-
rithms, we embed our methods in an iterative learning scheme that profits from
having access to sensitivity values for the parameters. In our experiments, we
show that derivative information can be used effectively to guide sampling when
learning an unknown Markov chain with hundreds of parameters.

Contributions. Our contributions are threefold: (1) We present a first algorithm
to compute partial derivatives for prMCs. (2) For both pMCs and prMCs, we
develop an efficient method to determine a subset of parameters with the highest
derivatives. (3) We apply our methods in an iterative learning scheme. We give
an overview of our approach in Sect. 2 and formalize the problem statement in
Sect. 3. In Sect. 4, we solve Problems (1) and (2) for pMCs, and in Sect. 5 for
prMCs. Finally, the learning scheme and experiments are in Sect. 6.

2 Overview

We expand the example from Sect. 1 to illustrate our approach more concretely.
The environment, shown in Fig. 1a, is partitioned into five regions of the same
terrain type. The vehicle can move in the four cardinal directions. Recall that

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 65

Fig. 2. Parametric MC. Fig. 3. Parametric robust MC.

the slipping probabilities are the same for all states with the same terrain. The
vehicle follows a dedicated route to collect and deliver a package to a warehouse.
Our goal is to estimate the expected number of steps f� to complete the mission.

Estimating Probabilities. Classically, we would derive maximum likelihood esti-
mates (MLEs) of the probabilities by sampling. Consider that, using N samples
per slipping probability, we obtained the rough MLEs shown in Fig. 1b and thus
the MC in Fig. 1c. Verifying the MC shows that the expected travel time (called
the solution) under these estimates is f̂ = 25.51 steps, which is far from the
travel time of f� = 21.62 steps under the true slipping probabilities. We want to
close this verification-to-real gap by taking more samples for one of the terrain
types. For which of the five terrain types should we obtain more samples?

Parametric Model. We can model the grid world as a pMC, i.e., an MC with
symbolic probabilities. The solution function for this pMC is the travel time f̂ ,
being a function of these symbolic probabilities. We sketch four states of this
pMC in Fig. 2. The most relevant parameter is then naturally defined as the
parameter with the largest partial derivative of the solution function. As shown
in Fig. 1B, parameter v4 has the highest partial derivative of ∂f̂

∂v4
= 22.96, while

the derivative of v3 is zero as no states related to this parameter are ever visited.

Parametric Robust Model. The approach above does not account for the uncer-
tainty in each MLE. Terrain type v4 has the highest derivative but also the largest
sample size, so sampling v4 once more has likely less impact than for, e.g., v1. So,
is v4 actually the best choice to obtain additional samples for? The prMC that
allows us to answer this question is shown in Fig. 3, where we use (parametric)
intervals as uncertainty sets. The parameters are the sample sizes N1, . . . , N5

for all terrain types (contrary to the pMC, where parameters represent slipping
probabilities). Now, if we obtain one additional sample for a particular terrain
type, how can we expect the uncertainty sets to change?

Derivatives for prMCs. We use the prMC to compute an upper bound f+ on the
true solution f�. Obtaining one more sample for terrain type vi (i.e., increasing
Ni by one) shrinks the interval [g(Ni), ḡ(Ni)] on expectation, which in turn
decreases our upper bound f+. Here, g and ḡ are functions mapping sample

sizes to interval bounds. The partial derivatives ∂f+

∂Ni
for the prMC are also

66 T. Badings et al.

shown in Fig. 1b and give a very different outcome than the derivatives for the
pMC. In fact, sampling v1 yields the biggest decrease in the upper bound f+,
so we ultimately decide to sample for terrain type v1 instead of v4.
Efficient Differentiation. We remark that we do not need to know all derivatives
explicitly to determine where to obtain samples. Instead, it suffices to know
which parameter has the highest (or lowest) derivative. In the rest of the paper,
we develop efficient methods for computing either all or only the k ∈ N highest
partial derivatives of the solution functions for pMCs and prMCs.
Supported Extensions. Our approaches are applicable to general pMCs and prMCs
whose parameters can be shared between distributions (and thus capture depen-
dencies, being a common advantage of parametric models in general [40]). Besides
parameters in transition probabilities, we can handle parametric initial states,
rewards, and policies. We could, e.g., use parameters to model the policy of a
surveillance drone in our example and compute derivatives for these parameters.

3 Formal Problem Statement

Let V = {v1, . . . , v�}, vi ∈ R be a finite and ordered set of parameters. A
parameter instantiation is a function u : V → R that maps a parameter to a real
valuation. The vector function u(v1, . . . , v�) = [u(v1), . . . , u(v�)]� ∈ R

� denotes
an ordered instantiation of all parameters in V through u. The set of polynomials
over the parameters V is Q[V]. A polynomial f can be interpreted as a function
f : R� → R where f(u) is obtained by substituting each occurrence of v by u(v).
We denote these substitutions with f [u].

For any set X, let pFunV (X) = {f | f : X → Q[V]} be the set of functions
that map from X to the polynomials over the parameters V . We denote by
pDistV (X) ⊂ pFunV (X) the set of parametric probability distributions over X,
i.e., the functions f : X → Q[V] such that f(x)[u] ∈ [0, 1] and

∑
x∈X f(x)[u] = 1

for all parameter instantiations u.

Parametric Markov Chain. We define a pMC as follows:

Definition 1 (pMC). A pMC M is a tuple (S, sI , V, P), where S is a finite
set of states, sI ∈ Dist(S) a distribution over initial states, V a finite set of
parameters, and P : S → pDistV (S) a parametric transition function.

Applying an instantiation u to a pMC yields an MC M[u] by replacing each
transition probability f ∈ Q[V] by f [u]. We consider expected reward mea-
sures based on a state reward function R : S → R. Each parameter instantia-
tion for a pMC yields an MC for which we can compute the solution for the
expected reward measure [8]. We call the function that maps instantiations to
a solution the solution function. The solution function is smooth over the set of
graph-preserving instantiations [41]. Concretely, the solution function sol for the
expected cumulative reward under instantiation u is written as follows:

sol(u) =
∑

s∈S

(
sI(s)

∑

ω∈Ω(s)

rew(ω) · Pr(ω,u)
)
, (1)

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 67

where Ω(s) is the set of paths starting in s ∈ S, rew(ω) = R(s0) + R(s1) + · · ·
is the cumulative reward over ω = s0s1 · · · , and Pr(ω,u) is the probability for
a path ω ∈ Ω(s). If a terminal (sink) state is reached from state s ∈ S with
probability one, the infinite sum over ω ∈ Ω(s) in Eq. (1) exist [53].

Parametric Robust Markov Chains. The convex polytope TA,b ⊆ R
n

defined by matrix A ∈ R
m×n and vector b ∈ R

m is the set TA,b = {p ∈ R
n |

Ap ≤ b}. We denote by Tn the set of all convex polytopes of dimension n, i.e.,

Tn = {TA,b | A ∈ R
m×n, b ∈ R

m, m ∈ N}. (2)

A robust MC (rMC) [54,58] is a tuple (S, sI ,P), where S and sI are defined as for
pMCs and the uncertain transition function P : S → T|S| maps states to convex
polytopes T ∈ T|S|. Intuitively, an rMC is an MC with possibly infinite sets of
probability distributions. To obtain robust bounds on the verification result for
any of these MCs, an adversary nondeterministically chooses a precise transition
function by fixing a probability distribution P̂ (s) ∈ P(s) for each s ∈ S.

We extend rMCs with polytopes whose halfspaces are defined by polynomials
Q[V] over V . To this end, let Tn[V] be the set of all such parametric polytopes:

Tn[V] = {TA,b | A ∈ Q[V]m×n, b ∈ Q[V]m, m ∈ N}. (3)

An element T ∈ Tn[V] can be interpreted as a function T : R� → 2(R
n) that

maps an instantiation u to a (possibly empty) convex polytopic subset of Rn.
The set T [u] is obtained by substituting each vi in T by u(vi) for all i = 1, . . . , �.

Example 1. The uncertainty set for state s1 of the prMC in Fig. 3 is the para-
metric polytope T ∈ T2[V] with singleton parameter set V = {N1}, such that

T =
{
[p1,1, p1,2]� ∈ R

2
∣
∣ g

1
(N1) ≤ p1,1 ≤ ḡ1(N1),

1 − ḡ1(N1) ≤ p1,2 ≤ 1 − g
1
(N1), p1,2 + p1,2 = 1

}
.

We use parametric convex polytopes to define prMCs:

Definition 2 (prMC). A prMC MR is a tuple (S, sI , V,P), where S, sI , and V
are defined as for pMCs (Def. 1), and where P : S → T|S|[V] is a parametric and
uncertain transition function that maps states to parametric convex polytopes.

Applying an instantiation u to a prMC yields an rMC MR[u] by replacing each
parametric polytope T ∈ T|S|[V] by T [u], i.e., a polytope defined by a concrete
matrix A ∈ R

m×n and vector b ∈ R
m. Without loss of generality, we consider

adversaries minimizing the expected cumulative reward until reaching a set of
terminal states ST ⊆ S. This minimum expected cumulative reward solR(u),
called the robust solution on the instantiated prMC MR[u], is defined as

solR(u) =
∑

s∈S

(
sI(s) · min

P∈P[u]

∑

ω∈Ω(s)

rew(ω) · Pr(ω,u, P)
)
. (4)

We refer to the function solR : R� → R as the robust solution function.

68 T. Badings et al.

Assumptions on pMCs and prMCs. For both pMCs and prMCs, we assume that
transitions cannot vanish under any instantiation (graph-preservation). That is,
for every s, s′ ∈ S, we have that P (s)[u](s′) (for pMCs) and P(s)[u](s′) (for
prMCs) are either zero or strictly positive for all instantiations u.

Problem Statement. Let f(q1, . . . , qn) ∈ R
m be a differentiable multivariate

function with m ∈ N. We denote the partial derivative of f with respect to q by
∂x
∂q ∈ R

m. The gradient of f combines all partial derivatives in a single vector as
∇qf = [∂f

∂q1
, . . . , ∂f

∂qn
] ∈ R

m×n. We only use gradients ∇uf with respect to the
parameter instantiation u, so we simply write ∇f in the remainder.

The gradient of the robust solution function evaluated at the instantiation u
is ∇solR[u] =

[(
∂solR

∂u(v1)

)
[u], . . . ,

(
∂solR
∂u(v�)

)
[u]

]
. We solve the following problem.

Problem 1. Given a prMC MR and a parameter instantiation u, compute
the gradient ∇solR[u] of the robust solution function evaluated at u.

Solving Problem 1 is linear in the number of parameters, which may lead to
significant overhead if the number of parameters is large. Typically, it suffices to
only obtain the parameters with the highest derivatives:

Problem 2. Given a prMC MR, an instantiation u, and a k ≤ |V |, compute
a subset V � of k parameters for which the partial derivatives are maximal.

For both problems, we present polynomial-time algorithms for pMCs (Sect. 4)
and prMCs (Sect. 5). Section 6 defines problem variations that we study
empirically.

4 Differentiating Solution Functions for pMCs

We can compute the solution of an MC M[u] with instantiation u based on a
system of |S| linear equations; here for an expected reward measure [8]. Let x =
[xs1 , . . . , xs|S|]

� and r = [rs1 , . . . , rs|S|]
� be variables for the expected cumulative

reward and the instantaneous reward in each state s ∈ S, respectively. Then, for
a set of terminal (sink) states ST ⊂ S, we obtain the equation system

xs = 0, ∀s ∈ ST (5a)
xs = rs + P (s)[u]x, ∀s ∈ S\ST . (5b)

Let us set P (s)[u] = 0 for all s ∈ ST and define the matrix P [u] ∈ R
|S|×|S| by

stacking the rows P (s)[u] for all s ∈ S. Then, Eq. (5) is written in matrix form
as (I|S| − P [u])x = r. The equation system in Eq. (5) can be efficiently solved
by, e.g., Gaussian elimination or more advanced iterative equation solvers.

4.1 Computing Derivatives Explicitly

We differentiate the equation system in Eq. (5) with respect to an instantiation
u(vi) for parameter vi ∈ V , similar to, e.g., [34]. For all s ∈ ST , the derivative

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 69

∂xs

∂u(vi)
is trivially zero. For all s ∈ S \ ST , we obtain via the product rule that

∂xs

∂u(vi)
=

∂P (s)x
∂u(vi)

[u] = (x�)�
∂P (s)�

∂u(vi)
[u] + P (s)[u]

∂x

∂u(vi)
, (6)

where x� ∈ R
|S| is the solution to Eq. (5). In matrix form for all s ∈ S, this

yields
(
I|S| − P [u]

) ∂x

∂u(vi)
=

∂Px�

∂u(vi)
[u]. (7)

The solution defined in Eq. (1) is computed as sol[u] = s�
I x�. Thus, the partial

derivative of the solution function with respect to u(vi) in closed form is
(

∂sol

∂u(vi)

)

[u] = s�
I

∂x

∂u(vi)
= s�

I

(
I|S| − P [u]

)−1 ∂Px�

∂u(vi)
[u]. (8)

Algorithm for Problem 1. Let us provide an algorithm to solve 1 for pMCs.
8 provides a closed-form expression for the partial derivative of the solution
function, which is a function of the vector x� in Eq. (5). However, due to the
inversion of (I|S| − P [u]), it is generally more efficient to solve the system of
equations in Eq. (7). Doing so, the partial derivative of the solution with respect
to u(vi) is obtained by: (1) solving Eq. (5) with u to obtain x� ∈ R

|S|, and (2)
solving the equation system in Eq. (7) with |S| unknowns for this vector x�. We
repeat step 2 for all of the |V | parameters. Thus, we can solve Problem 1 by
solving |V | + 1 linear equation systems with |S| unknowns each.

4.2 Computing k-Highest Derivatives

To solve Problem 2 for pMCs, we present a method to compute only the
k ≤ � = |V | parameters with the highest (or lowest) partial derivative with-
out computing all derivatives explicitly. Without loss of generality, we focus on
the highest derivative. We can determine these parameters by solving a combi-
natorial optimization problem with binary variables zi ∈ {0, 1} for i = 1, . . . , �.
Our goal is to formulate this optimization problem such that an optimal value of
z�
i = 1 implies that parameter vi ∈ V belongs to the set of k highest derivatives.

Concretely, we formulate the following mixed integer linear problem (MILP) [60]:

maximize
y∈R|S|, z∈{0,1}�

s�
I y (9a)

subject to
(
I|S| − P [u]

)
y =

�∑

i=1

zi
∂Px�

∂u(vi)
[u] (9b)

z1 + · · · + z� = k. (9c)

Constraint (9c) ensures that any feasible solution to Eq. (9) has exactly k nonzero
entries. Since matrix (I|S|−P [u]) is invertible by construction (see, e.g., [53]), Eq.

70 T. Badings et al.

(9) has a unique solution in y for each choice of z ∈ {0, 1}�. Thus, the objective
value s�

I y is the sum of the derivatives for the parameters vi ∈ V for which
zi = 1. Since we maximize this objective, an optimal solution y�, z� to Eq. (9) is
guaranteed to correspond to the k parameters that maximize the derivative of
the solution in Eq. (8). We state this correctness claim for the MILP:

Proposition 1. Let y�, z� be an optimal solution to Eq. (9). Then, the set
V � = {vi ∈ V | z�

i = 1} is a subset of k ≤ � parameters with maximal derivatives.

The set V � may not be unique. However, to solve Problem 2, it suffices to obtain
a set of k parameters for which the partial derivatives are maximal. Therefore,
the set V � provides a solution to Problem 2. We remark that, to solve Problem 2
for the k lowest derivatives, we change the objective in Eq. (9a) to minimize s�

I y.

Linear Relaxation. The MILP in Eq. (9) is computationally intractable for high
values of � and k. Instead, we compute the set v� via a linear relaxation of
the MILP. Specifically, we relax the binary variables z ∈ {0, 1}� to continuous
variables z ∈ [0, 1]�. As such, we obtain the following LP relaxation of Eq. (9):

maximize
y∈R|S|, z∈R�

s�
I y (10a)

subject to
(
I|S| − P [u]

)
y =

�∑

i=1

zi
∂Px�

∂u(vi)
[u] (10b)

0 ≤ zi ≤ 1, ∀i = 1, . . . , � (10c)
z1 + · · · + z� = k. (10d)

Denote by y+, z+ the solution of the LP relaxation in Eq. (10). For details on
such linear relaxations of integer problems, we refer to [36,46]. In our case, every
optimal solution y+, z+ to the LP relaxation with only binary values z+i ∈ {0, 1}
is also optimal for the MILP, resulting in the following theorem.

Theorem 1. The LP relaxation in Eq. (10) has an optimal solution y+, z+

with z+ ∈ {0, 1}� (i.e., every optimal variable z+i is binary), and every such a
solution is also an optimal solution of the MILP in Eq. (9).

Proof. From invertibility of
(
I|S| − P [u]

)
, we know that Eq. (9) is equivalent to

maximize
z∈{0,1}�

�∑

i=1

zi

(

s�
I

(
I|S| − P [u]

)−1 ∂Px�

∂u(vi)
[u]

)

(11a)

subject to z1 + · · · + z� = k. (11b)

The linear relaxation of Eq. (11) is an LP whose feasible region has integer
vertices (see, e.g., [37]). Therefore, both Eq. (11) and its relaxation Eq. (10)
have an integer optimal solution z+, which constructs z� in Eq. (9). 	

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 71

The binary solutions z+ ∈ {0, 1}� are the vertices of the feasible set of the
LP in Eq. (10). A simplex-based LP solver can be set to return such a solution.1

Algorithm for Problem 2. We provide an algorithm to solve Problem 2 for pMCs
consisting of two steps. First, for pMC M and parameter instantiation u, we solve
the linear equation system in Eq. (7) for x� to obtain the solution sol[u] = s�

I x�.
Second, we fix a number of parameters k ≤ � and solve the LP relaxation in
Eq. (10). The set V � of parameters with maximal derivatives is then obtained as
defined in Proposition 1. The parameter set V � is a solution to Proposition 2.

5 Differentiating Solution Functions for prMCs

We shift focus to prMCs. Recall that solutions solR[u] are computed for the
worst-case realization of the uncertainty, called the robust solution. We derive
the following equation system, where, as for pMCs, x ∈ R

|S| represents the
expected cumulative reward in each state.

xs = 0, ∀s ∈ ST (12a)

xs = rs + inf
p∈P(s)[u]

(
p�x

)
, ∀s ∈ S \ ST . (12b)

Solving Eq. (12) directly corresponds to solving a system of nonlinear equations
due to the inner infimum in Eq. (12b). The standard approach from robust
optimization [12] is to leverage the dual problem for each inner infimum, e.g., as
is done in [20,52]. For each s ∈ S, P(s) is a parametric convex polytope TA,b as
defined in Eq. (3). The dimensionality of this polytope depends on the number of
successor states, which is typically much lower than the total number of states.
To make the number of successor states explicit, we denote by post(s) ⊆ S the
successor states of s ∈ S and define TA,b ∈ T|post(s)|[V] with As ∈ Q

ms×|post(s)|

and bs[u] ∈ Q
ms (recall ms is the number of halfspaces of the polytope). Then,

the infimum in Eq. (12b) for each s ∈ S \ ST is

minimize p�x (13a)
subject to As[u]p ≤ bs[u] (13b)

1�p = 1, (13c)

where 1 denotes a column vector of ones of appropriate size. Let xpost(s) =
[xs]s∈post(s) be the vector of decision variables corresponding to the (ordered)
successor states in post(s). The dual problem of Eq. (13), with dual variables
α ∈ R

ms and β ∈ R (see, e.g., [11] for details), is written as follows:

maximize −bs[u]�α − β (14a)

subject to As[u]�α + xpost(s) + β1 = 0 (14b)
α ≥ 0. (14c)

1 Even if a non-vertex solution y+, z+ is obtained, we can use an arbitrary tie-break
rule on z+, which forces each z+i binary and preserves the sum in Eq. (10d).

72 T. Badings et al.

Fig. 4. Three polytopic uncertainty sets (blue shade), with the vector x, the worst-case
points p�, and the active constraints shown in red. (Color figure online)

By using this dual problem in Eq. (12b), we obtain the following LP with decision
variables x ∈ R

|S|, and with αs ∈ R
ms and βs ∈ R for every s ∈ S:

maximize s�
I x (15a)

subject to xs = 0, ∀s ∈ ST (15b)

xs = rs − (
bs[u]�αs + βs

)
, ∀s ∈ S \ ST (15c)

As[u]�αs + xpost(s) + βs1 = 0, αs ≥ 0, ∀s ∈ S \ ST . (15d)

The reformulation of Eq. (12) to Eq. (15) requires that sI ≥ 0, which is trivially
satisfied because sI is a probability distribution. Denote by x�, α�, β� an optimal
point of Eq. (15). The x� element of this optimum is also an optimal solution of
Eq. (12) [12]. Thus, the robust solution defined in Eq. (4) is solR[u] = s�

I x�.

5.1 Computing Derivatives via pMCs (and When It Does Not
Work)

Toward solving Problem 1, we provide some intuition about computing robust
solutions for prMCs. The infimum in Eq. (12) finds the worst-case point p� in
each set P(s)[u] that minimizes (p�)�x. This minimization is visualized in Fig. 4a
for an uncertainty set that captures three probability intervals p

i
≤ pi ≤ p̄i, i =

1, 2, 3. Given the optimization direction x (arrow in Fig. 4a), the point p� (red
dot) is attained at the vertex where the constraints p

1
≤ p1 and p

2
≤ p2 are

active.2 Thus, we obtain that the point in the polytope that minimizes (p�)�x
is p� = [p

1
, p

2
, 1 − p

1
− p

2
]�. Using this procedure, we can obtain a worst-case

point p�
s for each state s ∈ S. We can use these points to convert the prMC into

an induced pMC with transition function P (s) = p�
s for each state s ∈ S.

For small changes in the parameters, the point p� in Fig. 4a changes smoothly,
and its closed-form expression (i.e., the functional form) remains the same. As
such, it feels intuitive that we could apply the methods from Sect. 4 to compute
partial derivatives on the induced pMC. However, this approach does not always
work, as illustrated by the following two corner cases.
2 An inequality constraint gx ≤ h is active under the optimal solution x� if gx� =
h [15].

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 73

1. Consider Fig. 4b, where the optimization direction defined by x is parallel to
one of the facets of the uncertainty set. In this case, the worst-case point p�

is not unique, but an infinitesimal change in the optimization direction x will
force the point to one of the vertices again. Which point should we choose to
obtain the induced pMC (and does this choice affect the derivative)?

2. Consider Fig. 4c with more than |S| − 1 active constraints at the point p�.
Observe that decreasing p̄3 changes the point p� while increasing p̄3 does not.
In fact, the optimal point p� changes non-smoothly with the halfspaces of the
polytope. As a result, also the solution changes non-smoothly, and thus, the
derivative is not defined. How do we deal with such a situation?

These examples show that computing derivatives via an induced pMC by obtain-
ing each point p�

s can be tricky or is, in some cases, not possible at all. In what
follows, we present a method that directly derives a set of linear equations to
obtain derivatives for prMCs (all or only the k highest) based on the solution to
the LP in Eq. (15), which intrinsically identifies the corner cases above in which
the derivative is not defined.

5.2 Computing Derivatives Explicitly

We now develop a dedicated method for identifying if the derivative of the solution
function for a prMC exists, and if so, to compute this derivative. Observe from
Fig. 4 that the point p� is uniquely defined and has a smooth derivative only in
Fig. 4a with two active constraints. For only one active constraint (Fig. 4b), the
point is underdetermined, while for three active constraints (Fig. 4c), the derivative
may not be smooth. In the general case, having exactly n − 1 active constraints
(whose facets are nonparallel) is a sufficient condition for obtaining a unique and
smoothly changing point p� in the n-dimensional probability simplex.

Optimal Dual Variables. The optimal dual variables α�
s ≥ 0 for each s ∈ S \ ST

in Eq. (15) indicate which constraints of the polytope As[u]p ≤ bs[u] are active,
i.e., for which rows as,i[u] of As[u] it holds that as,i[u]p� = bs[u]. Specifically, a
value of αs,i > 0 implies that the ith constraint is active, and αs,i = 0 indicates
a nonactive constraint [15]. We define Es = [e1, . . . , ems

] ∈ {0, 1}ms as a vector
whose binary values ei ∀i ∈ {1, . . . , ms} are given as ei = [[α�

s,i > 0]].3 Moreover,
denote by D(Es) the matrix with Es on the diagonal and zeros elsewhere. We
reduce the LP in Eq. (15) to a system of linear equations that encodes only the
constraints that are active under the worst-case point p�

s for each s ∈ S \ ST :

xs = 0, ∀s ∈ ST (16a)

xs = rs − (
bs[u]�D(Es)αs + βs

)
, ∀s ∈ S \ ST (16b)

As[u]�D(Es)αs + xpost(s) + βs1 = 0, αs ≥ 0, ∀s ∈ S \ ST . (16c)

Differentiation. However, when does Eq. (16) have a (unique) optimal solution?
To provide some intuition, let us write the equation system in matrix form, i.e.,

3 We use Iverson-brackets: [[x]] = 1 if x is true and [[x]] = 0 otherwise.

74 T. Badings et al.

C
[
x α β

]� = d, where we omit an explicit definition of matrix C and vector d
for brevity. It is apparent that if matrix C is nonsingular, then Eq. (16) has a
unique solution. This requires matrix C to be square, which is achieved if, for
each s ∈ S \ ST , we have |post(s)| = ∑

Es + 1. In other words, the number of
successor states of s is equal to the number of active constraints of the polytope
plus one. This confirms our previous intuition from Sect. 5.1 on a polytope for
|post(s)| = 3 successor states, which required

∑ms

i=1 Ei = 2 active constraints.
Let us formalize this intuition about computing derivatives for prMCs. We

can compute the derivative of the solution x� by differentiating the equation
system in Eq. (16) through the product rule, in a very similar manner to the
approach in Sect. 4. We state this key result in the following theorem.

Theorem 2. Given a prMC MR and an instantiation u, compute x�, α�, β� for
Eq. (15) and choose a parameter vi ∈ V . The partial derivatives ∂x

∂u(vi)
, ∂α

∂u(vi)
,

and ∂β
∂u(vi)

are obtained as the solution to the linear equation system

∂xs

∂u(vi)
= 0, ∀s ∈ ST (17a)

∂xs

∂u(vi)
+ bs[u]�D(Es)

∂αs

∂u(vi)
+

∂βs

∂u(vi)
= −(α�

s)
�D(Es)

∂bs[u]
∂u(vi)

, (17b)

∀s ∈ S \ ST

As[u]�D(Es)
∂αs

∂u(vi)
+

∂xpost(s)

∂u(vi)
+

∂βs

∂u(vi)
1 = −(α�

s)
�D(Es)

∂As[u]
∂u(vi)

, (17c)

∀s ∈ S \ ST .

The proof follows from applying the product rule to Eq. (16) and is provided in
[6, Appendix A.1]. To compute the derivative for a parameter vi ∈ V , we thus
solve a system of linear equations of size |S|+∑

s∈S\ST
|post(s)|. Using Theorem

2, we obtain sufficient conditions for the solution function to be differentiable.

Lemma 1. Write the linear equation system in Eq. (17) in matrix form, i.e.,

C
[

∂x
∂u(vi)

, ∂α
∂u(vi)

, ∂β
∂u(vi)

]�
= d, (18)

for C ∈ R
q×q and d ∈ R

q, q = |S|+∑
s∈S\ST

|post(s)|, which are implicitly given
by Eq. (17). The solution function solR[u] is differentiable at instantiation u if
matrix C is nonsingular, in which case we obtain (∂solR

∂u(vi)
)[u] = s�

I
∂x

∂u(vi)
.

Proof. The partial derivative of the solution function is ∂solR
∂u(vi)

[u] = s�
I

∂x�

∂u(vi
,

where ∂x�

∂u(vi
is (a part of) the solution to Eq. (16). Thus, the solution function

is differentiable if there is a (unique) solution to Eq. (16), which is guaranteed
if matrix C is nonsingular. Thus, the claim in Lemma 1 follows. 	

Algorithm for Problem1. We use Theorem 2 to solve Problem 1 for prMCs,
similarly as for pMCs. Given a prMC MR and an instantiation u, we first solve

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 75

Eq. (15) to obtain x�, α�, β�. Second, we use α�
s to compute the vector Es of

active constraints for each s ∈ S\ST . Third, for every parameter v ∈ V , we solve
the equation system in Eq. (17). Thus, to compute the gradient of the solution
function, we solve one LP and |V | linear equation systems.

5.3 Computing k-Highest Derivatives

We directly apply the same procedure from Sect. 4.2 to compute the parameters
with the k ≤ � highest derivatives. As for pMCs, we can compute the k highest
derivatives by solving a MILP encoding the equation system in Eq. (17) for
every parameter v ∈ V , which we present in [6, Appendix A.2] for brevity. This
MILP has the same structure as Eq. (9), and thus we may apply the same linear
relaxation to obtain an LP with the guarantees as stated in Theorem 1. In other
words, solving the LP relaxation yields the set V � of parameters with maximal
derivatives as in Proposition 1. This set V � is a solution to Problem 2 for prMCs.

6 Numerical Experiments

We perform experiments to answer the following questions about our approach:

1. Is it feasible (in terms of computational complexity and runtimes) to compute
all derivatives, in particular compared to computing (robust) solutions?

2. How does computing only the k highest derivatives compare to computing all
derivatives?

3. Can we apply our approach to effectively determine for which parameters to
sample in a learning framework?

Let us briefly summarize the computations involved in answering these questions.
First of all, computing the solution sol(u) for a pMC, which is defined in Eq.
(1), means solving the linear equation system in Eq. (5). Similarly, computing
the robust solution solR(u) for a prMC means solving the LP in Eq. (15). Then,
solving Problem 1, i.e., computing all |V | partial derivatives, amounts to solving
a linear equation system for each parameter v ∈ V (namely, Eq. (5) for a prMC
and Eq. (17) for a prMC). In contrast, solving Problem 2, i.e., computing a subset
V � of parameters with maximal (or minimal) derivative, means for a pMC that
we solve the LP in Eq. (10) (or the equivalent LP for a prMC) and thereafter
extract the subset of V � parameters using Proposition 1.

Problem 3: Computing the k-highest Derivatives. A solution to Problem 2 is a
set V � of k parameters but does not include the computation of the derivatives.
However, it is straightforward to also obtain the actual derivatives

(
∂sol

∂u(v)

)
[u]

for each parameter v ∈ V �. Specifically, we solve Problem 1 for the k parameters
in V �, such that we obtain the partial derivatives for all v ∈ V �. We remark that,
for k = 1, the derivative follows directly from the optimal value s�

I y+ of the LP
in Eq. (10), so this additional step is not necessary. We will refer to computing
the actual values of the k highest derivatives as Problem 3.

76 T. Badings et al.

Setup. We implement our approach in Python 3.10, using Storm [35] to parse
pMCs, Gurobi [31] to solve LPs, and the SciPy sparse solver to solve equation
systems. All experiments run on a computer with a 4GHz Intel Core i9 CPU
and 64 GB RAM, with a timeout of one hour. Our implementation is available
at https://doi.org/10.5281/zenodo.7864260.

Grid World Benchmarks. We use scaled versions of the grid world from the
example in Sect. 2 with over a million states and up to 10 000 terrain types. The
vehicle only moves right or down, both with 50% probability (wrapping around
when leaving the grid). Slipping only occurs when moving down and (slightly
different from the example in Sect. 2) means that the vehicle moves two cells
instead of one. We obtain between N = 500 and 1 000 samples of each slipping
probability. For the pMCs, we use maximum likelihood estimation (p̄

N , with p̄
the sample mean) obtained from these samples as probabilities, whereas, for the
prMCs, we infer probability intervals using Hoeffding’s inequality (see Q3 for
details).

Benchmarks from Literature. We also use several instances of parametric exten-
sions of MCs and Markov decision processes (MDPs) from standard benchmark
suits [33,44]. We also use pMC benchmarks from [5,23] as these models have
more parameters than the traditional benchmarks. We extend these benchmarks
to prMCs by constructing probability intervals around the pMC’s probabilities.

Results. The results for all benchmarks are shown in [6, Appendix B, Tab. 2–3].

Q1. Computing Solutions vs. Derivatives

We investigate whether computing derivatives is feasible on p(r)MCs. In partic-
ular, we compare the computation times for computing derivatives on p(r)MCs
(Problems 1 and 3) with the times for computing the solution for these models.

0
.0

1

0
.1

1 5 2
0

1
0
0

1
0
0
0

3
0
0
0

0.01

0.1

1

5

20

100

1000

3000

T
im

eo
u
t

Timeout

10× faster

One derivative [s]

C
o
m
p
u
te

so
lu
ti
o
n
[s
]

pMC prMC

0
.0

1

0
.1

1 5 2
0

1
0
0

1
0
0
0

3
0
0
0

0.01

0.1

1

5

20

100

1000

3000

T
im

eo
u
t

Timeout

10× faster

Highest derivative [s]

C
o
m
p
u
te

so
lu
ti
o
n
[s
]

pMC prMC

Fig. 5. Runtimes (log-scale) for computing a single derivative (left, Problem 1) or the
highest derivative (right, Problem 3), vs. computing the solution sol[u]/solR[u].

https://doi.org/10.5281/zenodo.7864260

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 77

Table 1. Model sizes, runtimes, and derivatives for selection of grid world models.

Model statistics Verifying Problem 1 Problem 3 Derivatives

Type |S| |V | #trans sol(R)[u] Time [s] All derivs. [s] k = 1 [s] k = 10[s] Highest Error %
pMC 5000 50 14995 5.07 1.39 3.32 2.64 2.69 1.54e+00 0.0
pMC 5000 100 14995 5.05 1.36 4.17 2.63 2.66 1.28e+00 0.0
pMC 5000 921 14995 4.93 1.87 19.92 4.52 2.87 1.20e+00 0.0
pMC 80000 100 239995 8.01 25.54 98.47 45.18 46.87 1.95e+00 0.0
pMC 80000 1000 239995 8.01 25.64 612.97 48.92 58.20 2.08e+00 0.0
pMC 80000 9831 239995 7.93 25.52 5, 650.25 347.76 1, 343.59 2.10e+00 0.0
pMC 1280000 100 3839995 12.90 902.52 4, 747.43 1, 396.51 1, 507.77 3.32e+00 0.0
pMC 1280000 1000 3839995 12.79 902.67 37, 078.12 1, 550.45 1, 617.27 3.18e+00 0.0
pMC 1280000 10000 3839995 Timeoutb — — — — — —
prMC 5000 100 14995 136.07 23.46 3.55 0.60 1.58 -1.26e-02 -0.0
prMC 5000 921 14995 138.74 29.82 25.23 0.85 1.09 -4.44e-03 -0.0
prMC 20000 100 59995 2,789.77 1, 276.43 15.68 2.40 2.70 -4.96e-01 -0.1
prMC 20000 1000 59995 2,258.41 339.96 159.70 3.53 4.09 -9.51e-02 -0.0
prMC 80000 100 239995 Timeoutb — — — — — —

aExtrapolated from the runtimes for 10 to all |V | parameters.
bTimeout (1 h) occurred for verifying the p(r)MC, not for computing derivatives.

In Fig. 5, we show for all benchmarks the times for computing the solution
(defined in Eqs. (1) and (4)), versus computing either a single derivative for Prob-
lem 1 (left) or the highest derivative of all parameters resulting from Problem 3
(right). A point (x, y) in the left plot means that computing a single derivative
took x seconds while computing the solution took y seconds. A line above the
(center) diagonal means we obtained a speed-up over the time for computing the
solution; a point over the upper diagonal indicates a 10× speed-up or larger.

One Derivative. The left plot in Fig. 5 shows that, for pMCs, the times for
computing the solution and a single derivative are approximately the same. This
is expected since both problems amount to solving a single equation system with
|S| unknowns. Recall that, for prMCs, computing the solution means solving
the LP in Eq. (15), while for derivatives we solve an equation system. Thus,
computing a derivative for a prMC is relatively cheap compared to computing
the solution, which is confirmed by the results in Fig. 5.

Highest Derivative. The right plot in Fig. 5 shows that, for pMCs, computing
the highest derivative is slightly slower than computing the solution (the LP to
compute the highest derivative takes longer than the equation system to compute
the solution). On the other hand, computing the highest derivative for a prMC
is still cheap compared to computing the solution. Thus, if we are using a prMC
anyways, computing the derivatives is relatively cheap.

Q2. Runtime Improvement of Computing only k Derivatives

We want to understand the computational benefits of solving Problem 3 over
solving Problem 1. For Q2, we consider all models with |V | ≥ 10 parameters.

An excerpt of results for the grid world benchmarks is presented in Table 1.
Recall that, after obtaining the (robust) solution, solving Problem 1 amounts
to solving |V | linear equation systems, whereas Problem 3 involves solving a

78 T. Badings et al.

0
.0

1

0
.1

1 5 2
0

1
0
0

1
0
0
0

3
0
0
0

0.01

0.1

1

5

20

100

1000

3000

T
im

eo
u
t

Timeout

10× faster

k = 1 highest derivative [s]

A
ll
d
er
iv
a
ti
v
es

[s
]

pMC prMC

0
.0

1

0
.1

1 5 2
0

1
0
0

1
0
0
0

3
0
0
0

0.01

0.1

1

5

20

100

1000

3000
T
im

eo
u
t

Timeout

10× faster

k = 10 highest derivatives [s]

A
ll
d
er
iv
a
ti
v
es

[s
]

pMC prMC

Fig. 6. Runtimes (log-scale) for computing the highest (left) or 10 highest (right)
derivatives (Problem 3), versus computing all derivatives (Problem 1).

single LP and k equations systems. From Table 1, it is clear that computing k
derivatives is orders of magnitudes faster than computing all |V | derivatives,
especially if the total number of parameters is high.

We compare the runtimes for computing all derivatives (Problem 1) with
computing only the k = 1 or 10 highest derivatives (Problem 3). The left plot
of Fig. 6 shows the runtimes for k = 1, and the right plot for the k = 10 highest
derivatives. The interpretation for Fig. 6 is the same as for Fig. 5. From Fig. 6,
we observe that computing only the k highest derivatives generally leads to
significant speed-ups, often of more than 10 times (except for very small models).
Moreover, the difference between k = 1 and k = 10 is minor, showing that
retrieving the actual derivatives after solving Problem 2 is relatively cheap.

Numerical Stability. While our algorithm is exact, our implementation uses
floating-point arithmetic for efficiency. To evaluate the numerical stability, we
compare the highest derivatives (solving Problem 3 for k = 1) with an empiri-
cal approximation of the derivative obtained by perturbing the parameter by
1 × 103. The difference (column ‘Error. %’ in Table 1 and [6, Appendix B,
Table 2] between both is marginal, indicating that our implementation is suf-
ficiently numerically stable to return accurate derivatives.

Q3. Application in a Learning Framework

Reducing the sample complexity is a key challenge in learning under uncer-
tainty [43,47]. In particular, learning in stochastic environments is very data-
intensive, and realistic applications tend to require millions of samples to provide
tight bounds on measures of interest [16]. Motivated by this challenge, we apply
our approach in a learning framework to investigate if derivatives can be used
to effectively guide exploration, compared to alternative exploration strategies.

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 79

0 250 500 750 1,000
0

50

100

150

200

True solution

Steps (of 25 samples each)

R
o
b
u
st

so
lu
ti
o
n

Derivative

Interval

Uniform

ExpVisits*Width

(a) Slippery grid world.

0 2,500 5,000 7,500 10,000

0.1

0.2

0.3

0.4

True solution

Steps (of 250 samples each)

R
o
b
u
st

so
lu
ti
o
n

Derivative

Interval

Uniform

ExpVisits*Width

(b) Drone motion planning.

Fig. 7. Robust solutions for each sampling strategy in the learning framework for the
grid world (a) and drone (b) benchmarks. Averages values of 10 (grid world) or 5
(drone) repetitions are shown, with shaded areas the min/max.

Models. We consider the problem of where to sample in 1) a slippery grid world
with |S| = 800 and |V | = 100 terrain types, and 2) the drone benchmark from
[23] with |S| = 4179 and |V | = 1053 parameters. As in the motivating example
in Sect. 2, we learn a model of the unknown MC in the form of a prMC, where
the parameters are the sample sizes for each parameter. We assume access to a
model that can arbitrarily sample each parameter (i.e., the slipping probability
in the case of the grid world). We use an initial sample size of Ni = 100 for
each parameter i ∈ {1, . . . , |V |}, from which we infer a β = 0.9 (90%) confidence
interval using Hoeffding’s inequality. The interval for parameter i is [p̂i − εi, p̂i +

εi], with p̂i the sample mean and εi =
√

log 2−log (1−β)
2N (see, e.g., [14] for details).

Learning Scheme. We iteratively choose for which parameter vi ∈ V to obtain 25
(for the grid world) or 250 (for the drone) additional samples. We compare four
strategies for choosing the parameter vi to sample for: 1) with highest derivative,
i.e., solving Problem 3 for k = 1; 2) with biggest interval width εi; 3) uniformly;
and 4) sampling according to the expected number of visits times the interval
width (see [6, Appendix B.1] for details). After each step, we update the robust
upper bound on the solution for the prMC with the additional samples.

Results. The upper bounds on the solution for each sampling strategy, as well as
the solution for the MC with the true parameter values, are shown in Fig. 7. For
both benchmarks, our derivative-guided sampling strategy converges to the true
solution faster than the other strategies. Notably, our derivative-guided strategy
accounts for both the uncertainty and importance of each parameter, which leads
to a lower sample complexity required to approach the true solution.

80 T. Badings et al.

7 Related Work

We discuss related work in three areas: pMCs, their extension to parametric
interval Markov chains (piMCs), and general sensitivity analysis methods.

Parametric Markov Chains. pMCs [24,45] have traditionally been studied in
terms of computing the solution function [13,25,28,29,32]. Much recent litera-
ture considers synthesis (find a parameter valuation such that a specification is
satisfied) or verification (prove that all valuations satisfy a specification). We
refer to [38] for a recent overview. For our paper, particularly relevant are [55],
which checks whether a derivative is positive (for all parameter valuations),
and [34], which solves parameter synthesis via gradient descent. We note that
all these problems are (co-)ETR complete [41] and that the solution function
is exponentially large in the number of parameters [7], whereas we consider a
polynomial-time algorithm. Furthermore, practical verification procedures for
uncontrollable parameters (as we do) are limited to less than 10 parameters.
Parametric verification is used in [51] to guide model refinement by detecting
for which parameter values a specification is satisfied. In contrast, we consider
slightly more conservative rMCs and aim to stepwise optimize an objective.
Solution functions also provide an approach to compute and refine confidence
intervals [17]; however, the size of the solution function hampers scalability.

Parametric interval Markov Chains (piMCs). While prMCs have, to the best of
our knowledge, not been studied, their slightly more restricted version are piMCs.
In particular, piMCs have interval-valued transitions with parametric bounds.
Work on piMCs falls into two categories. First, consistency [27,50]: is there a
parameter instantiation such that the (reachable fragment of the) induced inter-
val MC contains valid probability distributions? Second, parameter synthesis for
quantitative and qualitative reachability in piMCs with up to 12 parameters [10].

Perturbation Analysis. Perturbation analysis considers the change in solution
by any perturbation vector X for the parameter instantiation, whose norm is
upper bounded by δ, i.e., ||X|| ≤ δ (or conversely, which δ ensures the solu-
tion perturbation is below a given maximum). Likewise, [21] uses the distance
between two instantiations of a pMC (called augmented interval MC) to bound
the change in reachability probability. Similar analyses exist for stationary dis-
tributions [1]. These problems are closely related to the verification problem in
pMCs and are equally (in)tractable if there are dependencies over multiple param-
eters. To improve tractability, a follow-up [56] derives asymptotic bounds based on
first or second-order Taylor expansions. Other approaches to perturbation analysis
analyze individual paths of a system [18,19,30]. Sensitivity analysis in (parameter-
free) imprecise MCs, a variation to rMCs, is thoroughly studied in [22].

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 81

Exploration in Learning. Similar to Q3 in Sect. 6, determining where to sample is
relevant in many learning settings. Approaches such as probably approximately
correct (PAC) statistical model checking [2,3] and model-based reinforcement
learning [47] commonly use optimistic exploration policies [48]. By contrast, we
guide exploration based on the sensitivity analysis of the solution function with
respect to the parametric model.

8 Concluding Remarks

We have presented efficient methods to compute partial derivatives of the solu-
tion functions for pMCs and prMCs. For both models, we have shown how to
compute these derivatives explicitly for all parameters, as well as how to compute
only the k highest derivatives. Our experiments have shown that we can compute
derivatives for models with over a million states and thousands of parameters.
In particular, computing the k highest derivatives yields significant speed-ups
compared to computing all derivatives explicitly and is feasible for prMCs which
can be verified. In the future, we want to support nondeterminism in the models
and apply our methods in (online) learning frameworks, in particular for settings
where reducing the uncertainty is computationally expensive [42,49].

References

1. Abbas, K., Berkhout, J., Heidergott, B.: A critical account of perturbation analysis
of markov chains. arXiv preprint arXiv:1609.04138 (2016)

2. Agarwal, C., Guha, S., Kretínský, J., Muruganandham, P.: PAC statistical model
checking of mean payoff in discrete- and continuous-time MDP. In: CAV (2). Lec-
ture Notes in Computer Science, vol. 13372, pp. 3–25. Springer (2022). https://
doi.org/10.1007/978-3-031-13188-2_1

3. Ashok, P., Křetínský, J., Weininger, M.: PAC statistical model checking for markov
decision processes and stochastic games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 497–519. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4_29

4. Badings, T., Simão, T.D., Suilen, M., Jansen, N.: Decision-making under uncer-
tainty: beyond probabilities. Int. J. Softw. Tools Technol. Transf. (2023)

5. Badings, T.S., Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., Topcu, U.:
Scenario-based verification of uncertain parametric MDPs. Int. J. Softw. Tools
Technol. Transf. 24(5), 803–819 (2022)

6. Badings, T.S., Junges, S., Marandi, A., Topcu, U., Jansen, N.: Efficient sensitivity
analysis for parametric robust markov chains (extended version). Tech. rep., CoRR,
abs/2305.01473 (2023)

7. Baier, C., Hensel, C., Hutschenreiter, L., Junges, S., Katoen, J., Klein, J.: Para-
metric markov chains: PCTL complexity and fraction-free gaussian elimination.
Inf. Comput. 272, 104504 (2020)

http://arxiv.org/abs/1609.04138
https://doi.org/10.1007/978-3-031-13188-2_1
https://doi.org/10.1007/978-3-031-13188-2_1
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4_29

82 T. Badings et al.

8. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
9. Barratt, S.: On the differentiability of the solution to convex optimization problems.

arXiv preprint arXiv:1804.05098 (2018)
10. Bart, A., Delahaye, B., Fournier, P., Lime, D., Monfroy, É., Truchet, C.: Reacha-

bility in parametric interval markov chains using constraints. Theor. Comput. Sci.
747, 48–74 (2018)

11. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear programming and network flows.
John Wiley & Sons (2011)

12. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization, Princeton Series
in Applied Mathematics, vol. 28. Princeton University Press (2009)

13. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time markov chains. Inf. Comput. 247, 235–253 (2016)

14. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities - A Nonasymp-
totic Theory of Independence. Oxford University Press, Oxford (2013)

15. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2014)

16. Buckman, J., Hafner, D., Tucker, G., Brevdo, E., Lee, H.: Sample-efficient rein-
forcement learning with stochastic ensemble value expansion. In: NeurIPS, pp.
8234–8244 (2018)

17. Calinescu, R., Ghezzi, C., Johnson, K., Pezzè, M., Rafiq, Y., Tamburrelli, G.: For-
mal verification with confidence intervals to establish quality of service properties
of software systems. IEEE Trans. Reliab. 65(1), 107–125 (2016)

18. Cao, X., Chen, H.: Perturbation realization, potentials, and sensitivity analysis of
markov processes. IEEE Trans. Autom. Control 42(10), 1382–1393 (1997)

19. Cao, X., Wan, Y.: Algorithms for sensitivity analysis of markov systems through
potentials and perturbation realization. IEEE Trans. Control Syst. Technol. 6(4),
482–494 (1998)

20. Chen, T., Feng, Y., Rosenblum, D.S., Su, G.: Perturbation analysis in verification
of discrete-time markov chains. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014.
LNCS, vol. 8704, pp. 218–233. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44584-6_16

21. Chonev, V.: Reachability in augmented interval markov chains. In: Filiot, E.,
Jungers, R., Potapov, I. (eds.) RP 2019. LNCS, vol. 11674, pp. 79–92. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30806-3_7

22. Cooman, G.D., Hermans, F., Quaeghebeur, E.: Sensitivity analysis for finite
markov chains in discrete time. In: UAI, pp. 129–136. AUAI Press (2008)

23. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., Topcu, U.: Convex optimization
for parameter synthesis in MDPs. IEEE Trans. Autom. Control 67(12), 6333–6348
(2022)

24. Daws, C.: Symbolic and Parametric Model Checking of Discrete-Time Markov
Chains. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0_21

http://arxiv.org/abs/1804.05098
https://doi.org/10.1007/978-3-662-44584-6_16
https://doi.org/10.1007/978-3-662-44584-6_16
https://doi.org/10.1007/978-3-030-30806-3_7
https://doi.org/10.1007/978-3-540-31862-0_21

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 83

25. Dehnert, C., et al.: PROPhESY: a probabilistic parameter synthesis tool. In: Kroen-
ing, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_13

26. Delahaye, B.: Consistency for parametric interval markov chains. In: SynCoP.
OASIcs, vol. 44, pp. 17–32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2015)

27. Delahaye, B., Lime, D., Petrucci, L.: Parameter synthesis for parametric interval
markov chains. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS,
vol. 9583, pp. 372–390. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49122-5_18

28. Fang, X., Calinescu, R., Gerasimou, S., Alhwikem, F.: Fast parametric model check-
ing through model fragmentation. In: ICSE, pp. 835–846. IEEE (2021)

29. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE Trans. Softw. Eng. 42(1),
75–99 (2016)

30. Fu, M.C., Hu, J.: Smoothed perturbation analysis derivative estimation for markov
chains. Oper. Res. Lett. 15(5), 241–251 (1994)

31. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2023). https://
www.gurobi.com

32. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
markov models. Int. J. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)

33. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0_20

34. Heck, L., Spel, J., Junges, S., Moerman, J., Katoen, J.-P.: Gradient-descent for ran-
domized controllers under partial observability. In: Finkbeiner, B., Wies, T. (eds.)
VMCAI 2022. LNCS, vol. 13182, pp. 127–150. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-94583-1_7

35. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Softw. Tools Technol. Transf. (2021)

36. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In:
Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R.,
Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming
1958-2008, pp. 49–76. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
540-68279-0_3

37. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. 50
Years of integer programming 1958–2008, p. 49 (2010)

38. Jansen, N., Junges, S., Katoen, J.: Parameter synthesis in markov models: a gentle
survey. In: Principles of Systems Design. Lecture Notes in Computer Science, vol.
13660, pp. 407–437. Springer (2022). https://doi.org/10.1007/978-3-031-22337-
2_20

39. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277. IEEE Computer Society (1991)

40. Junges, S., et al.: Parameter synthesis for markov models. CoRR abs/1903.07993
(2019)

https://doi.org/10.1007/978-3-319-21690-4_13
https://doi.org/10.1007/978-3-662-49122-5_18
https://doi.org/10.1007/978-3-662-49122-5_18
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-94583-1_7
https://doi.org/10.1007/978-3-030-94583-1_7
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1007/978-3-540-68279-0_3
https://doi.org/10.1007/978-3-031-22337-2_20
https://doi.org/10.1007/978-3-031-22337-2_20

84 T. Badings et al.

41. Junges, S., Katoen, J., Pérez, G.A., Winkler, T.: The complexity of reachability in
parametric markov decision processes. J. Comput. Syst. Sci. 119, 183–210 (2021)

42. Junges, S., Spaan, M.T.J.: Abstraction-refinement for hierarchical probabilistic
models. In: CAV (1). Lecture Notes in Computer Science, vol. 13371, pp. 102–123.
Springer (2022). https://doi.org/10.1007/978-3-031-13185-1_6

43. Kakade, S.M.: On the sample complexity of reinforcement learning. Ph.D. thesis,
University of London, University College London (United Kingdom) (2003)

44. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

45. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. Formal Aspects Comput. 19(1), 93–109
(2007)

46. Matousek, J., Gärtner, B.: Integer Programming and LP Relaxation, pp. 29–40.
Springer, Berlin Heidelberg (2007). https://doi.org/10.1007/978-3-540-30717-4_3

47. Moerland, T.M., Broekens, J., Jonker, C.M.: Model-based reinforcement learning:
a survey. CoRR abs/2006.16712 (2020)

48. Munos, R.: From bandits to monte-carlo tree search: The optimistic principle
applied to optimization and planning. Found. Trends Mach. Learn. 7(1), 1–129
(2014)

49. Neary, C., Verginis, C.K., Cubuktepe, M., Topcu, U.: Verifiable and compositional
reinforcement learning systems. In: ICAPS, pp. 615–623. AAAI Press (2022)

50. Petrucci, L., van de Pol, J.: Parameter synthesis algorithms for parametric interval
markov chains. In: Baier, C., Caires, L. (eds.) FORTE 2018. LNCS, vol. 10854, pp.
121–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92612-4_7

51. Polgreen, E., Wijesuriya, V.B., Haesaert, S., Abate, A.: Automated experiment
design for data-efficient verification of parametric markov decision processes. In:
Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 259–274.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7_16

52. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39799-8_35

53. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994)

54. Sen, K., Viswanathan, M., Agha, G.: Model-checking markov chains in the pres-
ence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 394–410. Springer, Heidelberg (2006). https://doi.org/10.1007/
11691372_26

55. Spel, J., Junges, S., Katoen, J.-P.: Finding provably optimal markov chains. In:
TACAS 2021. LNCS, vol. 12651, pp. 173–190. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-72016-2_10

56. Su, G., Feng, Y., Chen, T., Rosenblum, D.S.: Asymptotic perturbation bounds for
probabilistic model checking with empirically determined probability parameters.
IEEE Trans. Software Eng. 42(7), 623–639 (2016)

https://doi.org/10.1007/978-3-031-13185-1_6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-30717-4_3
https://doi.org/10.1007/978-3-319-92612-4_7
https://doi.org/10.1007/978-3-319-66335-7_16
https://doi.org/10.1007/978-3-642-39799-8_35
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/11691372_26
https://doi.org/10.1007/978-3-030-72016-2_10
https://doi.org/10.1007/978-3-030-72016-2_10

Efficient Sensitivity Analysis for Parametric Robust Markov Chains 85

57. Suilen, M., Simão, T.D., Parker, D., Jansen, N.: Robust anytime learning of markov
decision processes. In: NeurIPS, vol. 35, pp. 28790–28802. Curran Associates, Inc.
(2022)

58. Wiesemann, W., Kuhn, D., Sim, M.: Distributionally robust convex optimization.
Oper. Res. 62(6), 1358–1376 (2014)

59. Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain markov decision
processes with temporal logic specifications. In: CDC, pp. 3372–3379. IEEE (2012)

60. Wolsey, L.A.: Integer programming. John Wiley & Sons (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Efficient Sensitivity Analysis for Parametric Robust Markov Chains
	1 Introduction
	2 Overview
	3 Formal Problem Statement
	4 Differentiating Solution Functions for pMCs
	4.1 Computing Derivatives Explicitly
	4.2 Computing k-Highest Derivatives

	5 Differentiating Solution Functions for prMCs
	5.1 Computing Derivatives via pMCs (and When It Does Not Work)
	5.2 Computing Derivatives Explicitly
	5.3 Computing k-Highest Derivatives

	6 Numerical Experiments
	7 Related Work
	8 Concluding Remarks
	References

