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Abstract. We characterize all common notions of behavioral equiva-
lence by one 6-dimensional energy game, where energies bound capabil-
ities of an attacker trying to tell processes apart. The defender-winning
initial credits exhaustively determine which preorders and equivalences
from the (strong) linear-time–branching-time spectrum relate processes.

The time complexity is exponential, which is optimal due to trace
equivalence being covered. This complexity improves drastically on our
previous approach for deciding groups of equivalences where exponential
sets of distinguishing HML formulas are constructed on top of a super-
exponential reachability game. In experiments using the VLTS bench-
marks, the algorithm performs on par with the best similarity algorithm.

Keywords: Bisimulation · Energy games · Process equivalence
spectrum

1 Introduction

Many verification tasks can be understood along the lines of “how equivalent” two
models are. Figure 1 replicates a standard example, known for instance from the
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Fig. 1. A specification of mutual exclusion Mx, and Peterson’s protocol Pe.
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textbook Reactive Systems [3]: A specification of mutual exclusion Mx as two
alternating users A and B entering their critical section ecA/ecB and leaving
lcA/lcB before the other may enter; and the transition system of Peterson’s [28]
mutual exclusion algorithm Pe, minimized by weak bisimilarity, with internal
steps −→ due to the coordination that needs to happen. For Pe to faithfully
implement mutual exclusion, it should behave somewhat similarly to Mx.

Semantics in concurrent models must take nondeterminism into account. Set-
ting the degree to which nondeterminism counts induces equivalence notions with
subtle differences: Pe and Mx weakly simulate each other, meaning that a tree
of options from one process can be matched by a similar tree of the other. This
implies that they have the same weak traces, that is, matching paths. However,
they are not weakly bi-similar, which would require a higher degree of symmetry
than mutual simulation, namely, matching absence of options. There are many
more such notions. Van Glabbeek’s linear-time–branching-time spectrum [21]
(cf. Fig. 3) brings order to the hierarchy of equivalences. But it is notoriously
difficult to navigate. In our example, one might wonder: Are there notions relat-
ing the two besides mutual simulation?

Our recent algorithm for linear-time–branching-time spectroscopy by Bisp-
ing, Nestmann, and Jansen [7,9] is capable of answering equivalence questions
for finite-state systems by deciding the spectrum of behavioral equivalences in one
go. In theory, that is. In practice, the algorithm of [7] runs out of memory when
applied to the weak transition relation of even small examples like Pe. The rea-
son for this is that saturating transition systems with the closure of weak steps
adds a lot of nondeterminism. For instance, Pe may reach 10 different states
by internal steps (−→∗). The spectroscopy algorithm of [7] builds a bisimulation
game where the defender wins if the game starts at a pair of equivalent processes.
To allow all attacks relevant for the spectrum, the [7]-game must consider parti-
tionings of state sets reached through nondeterminism. There are 115,975 ways
of partitioning 10 objects. As a consequence, the game graph of [7] comparing
Pe and Mx has 266,973 game positions. On top of each postion, [7] builds sets
of distinguishing formulas of Hennessy–Milner modal logic (HML) [21,24] with
minimal expressiveness. These sets may grow exponentially. Game over!

Contributions. In this paper, we adapt the spectroscopy approach of [7,9] to
render small verification instances like Pe/Mx feasible. The key ingredients that
will make the difference are: understanding the spectrum purely through depth-
properties of HML formulas; using multidimensional energy games [15] instead of
reachability games; and exploiting the considered spectrum to drastically reduce
the branching-degree of the game as well as the height of the energy lattice.
Figure 2 lays out the algorithm with pointers to key parts of this paper.

– Subsection 2.2 explains how the linear-time–branching-time spectrum can
be understood in terms of six dimensions of HML expressiveness, and Sub-
sect. 3.1 introduces a class of declining energy games fit for our task.

– In Subsect. 3.2, we describe the novel spectroscopy energy game, and, in Sub-
sect. 3.3, prove it to characterize all notions of equivalence definable by the
six dimensions.
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Fig. 2. Overview of the computations → and correspondences ∼ we will discuss.

– Subsection 3.4 shows that a more clever game with only linear branching-
factor still covers the spectrum.

– Subsection 4.1 provides an algorithm to compute winning initial energy levels
for declining energy games with min{...}, which enables decision of the whole
considered spectrum in 2O(|P|) for systems with |P| processes (Subsect. 4.2).

– In Subsect. 4.3, we add fine print on how to obtain equivalences and distin-
guishing formulas in the algorithm.

– Section 5 compares to [7] and [29] through experiments with the widely used
VLTS benchmark suite [18]. The experiments also reveal insights about the
suite itself.

2 Distinctions and Equivalences in Transition Systems

Two classic concepts of system analysis form the background of this paper:
Hennessy–Milner logic (HML) interpreted over transition systems goes back to
Hennessy and Milner [24] investigating observational equivalence in operational
semantics. Van Glabbeek’s linear-time–branching-time spectrum [21] arranges all
common notions of equivalence as a hierarchy of HML sublanguages.

2.1 Transition Systems and Hennessy–Milner Logic

Definition 1 (Labeled transition system). A labeled transition system is
a tuple S = (P, Σ,−→) where P is the set of processes, Σ is the set of actions,
and −→ ⊆ P × Σ × P is the transition relation.

By I(p) we denote the actions enabled initially for a process p ∈ P, that
is, I(p) := {a ∈ Σ | ∃p′. p a−→ p′}. We lift the steps to sets with P

a−→ P ′ iff
P ′ = {p′ | ∃p ∈ P. p

a−→ p′}.
Hennessy–Milner logic expresses observations that one may make on such a
system. The set of formulas true of a process offers a denotation for its semantics.

Definition 2 (Hennessy–Milner logic). The syntax of Hennessy–Milner
logic over a set Σ of actions, HML[Σ], is defined by the grammar:

ϕ ::= 〈a〉ϕ with a ∈ Σ

|
∧

{ψ,ψ, ...}
ψ ::= ¬ϕ | ϕ.
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bisimulation B
(∞, ∞, ∞, ∞, ∞, ∞)

2-nested simulation 2S
(∞, ∞, ∞, ∞, ∞, 1)

ready simulation RS
(∞, ∞, ∞, ∞, 1, 1)

readiness traces RT
(∞, ∞, ∞, 1, 1, 1)

failure traces FT
(∞, ∞, ∞, 0, 1, 1)

readiness R
(∞, 2, 1, 1, 1, 1)

possible futures PF
(∞, 2, ∞, ∞, ∞, 1)

impossible futures IF
(∞, 2, 0, 0, ∞, 1)

simulation 1S
(∞, ∞, ∞, ∞, 0, 0)

revivals RV
(∞, 2, 1, 0, 1, 1)

failures F
(∞, 2, 0, 0, 1, 1)

traces T
(∞, 1, 0, 0, 0, 0)

enabledness E
(1, 1, 0, 0, 0, 0)

Fig. 3. Hierarchy of equivalences/preorders becoming finer towards the top.

Its semantics � · �
S over a transition system S = (P, Σ,−→) is given as the set

of processes where a formula “is true” by:

�〈a〉ϕ�
S := {p ∈ P | ∃p′ ∈ �ϕ�

S
. p

a−→ p′}

�
∧

i∈I

ψi�
S
:=

⋂
{�ψi�

S | i ∈ I ∧ �ϕ.ψi = ¬ϕ}
\

⋃
{�ϕ�

S | ∃i ∈ I. ψi = ¬ϕ}.

HML basically extends propositional logic with a modal observation operation.
Conjunctions then bound trees of future behavior. Positive conjuncts mean lower
bounds, negative ones impose upper bounds. For the scope of this paper, finite
bounds suffice, i.e. , conjunctions are finite-width. The empty conjunction T :=∧

∅ is usually omitted in writing.
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Fig. 4. Example system of internal decision τ−→ against an action
ecA−−→.

We use Hennessy–Milner logic to capture differences between program behav-
iors. Depending on how much of its expressiveness we use, different notions of
equivalence are characterized.

Definition 3 (Distinguishing formulas and preordering languages). A
formula ϕ ∈ HML[Σ] is said to distinguish two processes p, q ∈ P iff p ∈ �ϕ�

S

and q /∈ �ϕ�
S. A sublanguage of Hennessy–Milner logic, OX ⊆ HML[Σ], either

distinguishes two processes, p 	
X q, if it contains a distinguishing formula, or
preorders them otherwise. If processes are preordered in both directions, p 
X q
and q 
X p, then they are considered X-equivalent, p ∼X q.

Fig. 3 charts the linear-time–branching-time spectrum. If processes are pre-
ordered/equated by one notion of equivalence, they also are preordered/equated
by every notion below. We will later formally characterize the notions through
Proposition 1. For a thorough presentation, we point to [23]. For those familiar
with the spectrum, the following example serves to refresh memories.

Example 1. Fig. 4 shows a tiny slice of the weak-step-saturated version of our
initial example from Fig. 1 that is at the heart of why Pe and Mx are not bisimula-
tion-equivalent. The difference between S and S′ is that S can internally transi-
tion to Div (labeled τ−→) without ever performing an ecA action. We can express
this difference by the formula ϕS := 〈τ〉∧{¬〈ecA〉}, meaning “after τ , ecA may
be impossible.” It is true for S, but not for S′. Knowing a distinguishing formula
means that S and S′ cannot be bisimilar by the Hennessy–Milner theorem. The
formula ϕS is called a failure (or refusal) as it specifies a set of actions that
are disabled after a trace. In the other direction of comparison, the negation
ϕS′ :=

∧{¬〈τ〉∧{¬〈ecA〉}} distinguishes S′ from S. The differences between the
two processes cannot be expressed in HML without negation. Therefore the pro-
cesses are simulation-equivalent, or similar, as similarity is characterized by the
positive fragment of HML.

2.2 Price Spectra of Behavioral Equivalences

For algorithms exploring the linear-time–branching-time spectrum, it is conve-
nient to have a representation of the spectrum in terms of numbers or “prices”
of formulas as in [7]. We, here, use six dimensions to characterize the notions
of equivalence depicted in Fig. 3. The numbers define the HML observation lan-
guages that characterize the very preorders/equivalences. Intuitively, the colorful
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〈τ〉 ∧

〈ecA〉 〈lcA〉 ∧

〈τ〉 ∧

¬ 〈ecB〉 ∧

e1 = 3
e2 = 2

e3 = 2 e4 = 1

e5 = 1e6 = 1

Fig. 5. Pricing e of formula 〈τ〉∧{〈ecA〉〈lcA〉T, 〈τ〉T, ¬〈ecB〉T}.

numbers mean: (1) Formula modal depth of observations. (2) Formula nesting
depth of conjunctions. (3) Maximal modal depth of deepest positive clauses in
conjunctions. (4) Maximal modal depth of the other positive clauses in conjunc-
tions. (5) Maximal modal depth of negative clauses in conjunctions. (6) Formula
nesting depth of negations. More formally:

Definition 4 (Energies). We denote as energies, En, the set of N -dimensional
vectors (N)N, and as extended energies, En∞, the set (N ∪ {∞})N .

We compare energies component-wise, i.e. , (e1, . . . , eN ) ≤ (f1, . . . , fN ) iff
ei ≤ fi for each i. Least upper bounds sup are defined as usual as component-
wise supremum, as are greatest lower bounds inf.

Definition 5 (Formula prices). The expressiveness price expr : HML[Σ] →
(N)6 of a formula interpreted as 6-dimensional energies is defined recursively
by:

expr(〈a〉ϕ) :=

⎛

⎜⎜⎜⎜⎜⎜⎝

1+ expr1(ϕ)
expr2(ϕ)
expr3(ϕ)
expr4(ϕ)
expr5(ϕ)
expr6(ϕ)

⎞

⎟⎟⎟⎟⎟⎟⎠
expr(¬ϕ) :=

⎛

⎜⎜⎜⎜⎜⎜⎝

expr1(ϕ)
expr2(ϕ)
expr3(ϕ)
expr4(ϕ)
expr5(ϕ)

1+ expr6(ϕ)

⎞

⎟⎟⎟⎟⎟⎟⎠

expr(
∧
i∈I

ψi) := sup

(
{

⎛

⎜⎜⎜⎜⎜⎜⎝

0
1+ supi∈I expr2(ψi)
supi∈Pos expr1(ψi)

supi∈Pos\R expr1(ψi)
supi∈Neg expr1(ψi)

0

⎞

⎟⎟⎟⎟⎟⎟⎠

} ∪ {expr(ψi) | i ∈ I}
)

Neg := {i ∈ I | ∃ϕ′
i. ψi = ¬ϕ′

i}
Pos := I \ Neg

R :=

{
∅ if Pos = ∅

{r} for some r ∈ Pos where expr1(ψr) maximal for Pos.
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Fig. 6. Cut through the price lattice with dimensions 2 (conjunction nesting) and
5 (negated observation depth).

Figure 5 gives an example how the prices compound. The colors of the lines
match those used for the dimensions and their updates in the other figures.
Circles mark the points that are counted. The formula itself expresses a so-
called ready-trace observation: We observe a trace τ · ecA · lcA and, along the
way, may check what other options would have been enabled or disabled. Here,
we check that τ is enabled and ecB is disabled after the first τ -step. With the
pricing, we can characterize all standard notions of equivalence:

Proposition 1. On finite systems, the languages of formulas with prices below
the coordinates given in Fig. 3 characterize the named notions of equivalence,
that is, p 
X q with respect to equivalence X, iff no ϕ with expr(ϕ) ≤ eX

distinguishes p from q.

Example 2. The formulas of Example 1 have prices: expr(〈τ〉∧{¬〈ecA〉}) =
(2, 2, 0, 0, 1, 1) for ϕS and expr(

∧{¬〈τ〉∧{¬〈ecA〉}}) = (2, 3, 0, 0, 2, 2) for ϕS′ . The
prices of the two are depicted as red marks in Fig. 6. This also visualizes how ϕS′ is
a counterexample for bisimilarity and how ϕS is a counterexample for failure and
finer preorders. Indeed the two preorders are coarsest ways of telling the processes
apart. So, S and S′ are equated by all preorders below the marks, i.e. similarity,
S ∼1S S′, and coarser preorders (S ∼T S′, S ∼E S′). This carries over to the
initial example of Peterson’s mutex protocol from Fig. 1, where weak simulation,
Pe ∼1WS Mx, is the most precise equivalence. Practically, this means that the
specification Mx has liveness properties not upheld by the implementation Px.

Remark 1. Definition 5 deviates from our previous formula pricing of [7] in a
crucial way: We only collect the maximal depths of positive clauses, whereas [7]
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tracks numbers of deep and flat positive clauses (where a flat clause is charac-
terized by an observation depth of 1). Our change to a purely “depth-guided”
spectrum will allow us to characterize the spectrum by an energy game and to
eliminate the Bell-numbered blow up from the game’s branching-degree. The
special treatment of the deepest positive branch is necessary to address revival,
failure trace, and ready trace semantics, which are popular in the CSP commu-
nity [17,31].

3 An Energy Game of Distinguishing Capabilities

Conventional equivalence problems ask whether a pair of processes is related by
a specific equivalence. These problems can be abstracted into a more general
“spectroscopy problem” to determine the set of equivalences from a spectrum
that relate two processes as in [7]. This section captures the spectrum of Fig. 3
by one rather simple energy game.

3.1 Energy Games

Multidimensional energy games are played on graphs labeled by vectors to be
added to (or subtracted from) a vector of “energies” where one player must pay
attention to the energies not being exhausted. We plan to encode the distinction
capabilities of the semantic spectrum as energy levels in an energy game enriched
by min{...}-operations that takes minima of components. This way, energy levels
where the defender has a winning strategy will correspond to equivalences that
hold. We will just need updates decrementing or maintaining energy levels.

Definition 6 (Energy updates). The set of energy updates, Up, contains
vectors (u1, . . . , uN ) ∈ Up where each component is of the form

– uk ∈ {−1, 0}, or
– uk = minD where D ⊆ {1, . . . , N} and k ∈ D.

Applying an update to an energy, upd(e, u), where e = (e1, . . . , eN ) ∈ En (or
En∞) and u = (u1, . . . , uN ) ∈ Up, yields a new energy vector e′ where kth
components e′

k := ek + uk for uk ∈ Z and e′
k := mind∈D ed for uk = minD.

Updates that would cause any component to become negative are illegal.

Definition 7 (Games). An N -dimensional declining energy game G[g0, e0] =
(G,Gd, , w, g0, e0) is played on a directed graph uniquely labeled by energy
updates consisting of

– a set of game positions G, partitioned into
• a set of defender positions Gd ⊆ G
• a set of attacker positions Ga := G \ Gd,

– a relation of game moves ⊆ G × G,
– a weight function for the moves w : ( ) → Up,
– an initial position g0 ∈ G, and
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– an initial energy budget vector e0 ∈ En∞.

The notation g u g′ stands for g g′ and w(g, g′) = u.

Definition 8 (Plays, energies, and wins). We call the (finite or infinite)
paths ρ = g0g1 . . . ∈ G∞ with gi

ui gi+1 plays of G[g0, e0].
The energy level of a play ρ at round i, ELρ(i), is recursively defined as

ELρ(0) := e0 and otherwise as ELρ(i+1) := upd(ELρ(i), ui). If we omit the index,
ELρ, this refers to the final energy level of a finite run ρ, i.e. , ELρ(|ρ| − 1).

Plays where energy levels become undefined (negative) are won by the
defender. So are infinite plays. If a finite play is stuck (i.e. , g0 . . . gn 	 ),
the stuck player loses: The defender wins if gn ∈ Ga, and the attacker wins
if gn ∈ Gd.

Proposition 2. In this model, energy levels can only decline.

1. Updates may only decrease energies, upd(e, u) ≤ e.
2. Energy level changes are monotonic: If ELρg ≤ ELσg and g g′ then

ELρgg′ ≤ ELσgg′ .
3. If e0 ≤ e′

0 and G[g0, e0] has non-negative play ρ, then G[g0, e′
0] also has non-

negative play ρ.

Definition 9 (Strategies and winning budgets). An attacker strategy is a
map from play prefixes ending in attacker positions to next game moves s : (G∗ ×
Ga) → G with s(g0 . . . ga) ∈ (ga ·). Similarly, a defender strategy names
moves starting in defender states. If all plays consistent with a strategy s ensure
a player to win, s is called a winning strategy for this player. The player with
a winning strategy for G[g0, e0] is said to win G from position g0 with initial
energy budget e0. We call Wina(g) = {e | G[g, e] is won by the attacker} the
attacker winning budgets.

Proposition 3. The attacker winning budgets at positions are upward-closed
with respect to energy, that is, e ∈ Wina(g) and e ≤ e′ implies e′ ∈ Wina(g).

This means we can characterize the set of winning attacker budgets in terms
of minimal winning budgets Winmin

a (g) = Min(Wina(g)), where Min(S) selects
minimal elements {e ∈ S | �e′ ∈ S. e′ ≤ e ∧ e′ 	= e}. Clearly, Winmin

a must be an
antichain and thus finite due to the energies being well-partially-ordered [26].
Dually, we may consider the maximal energy levels winning for the defender,
Winmax

d : G → 2En∞ where we need extended energies to bound won half-spaces.

3.2 The Spectroscopy Energy Game

Let us now look at the “spectroscopy energy game” at the center of our contribu-
tion. Figure 7 gives a graphical representation. The intuition is that the attacker
shows how to construct formulas that distinguish a process p from every q in a
set of processes Q. The energies limit the expressiveness of the formulas. The first
dimension bounds for how many turns the attacker may challenge observations
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Fig. 7. Schematic spectroscopy game G� of Definition 10.

of actions. The second dimension limits how often they may use conjunctions
to resolve nondeterminism. The third, fourth, and fifth dimensions limit how
deeply observations may nest underneath a conjunction, where the fifth stands
for negated clauses, the third for one of the deepest positive clauses and the
fourth for the other positive clauses. The last dimension limits how often the
attacker may use negations to enforce symmetry by swapping sides. The moves
closely match productions in the grammar of Definition 2 and prices in Defini-
tion 5.

Definition 10. (Spectroscopy energy game). For a system S = (P, Σ,−→),
the 6-dimensional spectroscopy energy game GS

�[g0, e0] = (G,Gd, , w, g0, e0)
consists of

– attacker positions (p,Q)a ∈ Ga,
– attacker clause positions (p, q)∧

a ∈ Ga,
– defender conjunction positions (p,Q,Q∗)d ∈ Gd,

where p, q ∈ P and Q,Q∗ ∈ 2P, and six kinds of moves:

− observation moves (p,Q)a
(−1,0,0,0,0,0) (p′, Q′)a if p

a−→ p′, Q
a−→ Q′,

− conj. challenges (p,Q)a
(0,−1,0,0,0,0) (p,Q \ Q∗, Q∗)d if Q∗ ⊆ Q,

− conj. revivals (p,Q,Q∗)d
(min{1,3},0,0,0,0,0)

(p,Q∗)a if Q∗ 	= ∅,
− conj. answers (p,Q,Q∗)d

(0,0,0,min{3,4},0,0)
(p, q)∧

a if q ∈ Q,
− positive decisions (p, q)∧

a

(min{1,4},0,0,0,0,0)
(p, {q})a, and

− negative decisions (p, q)∧
a

(min{1,5},0,0,0,0,−1)
(q, {p})a if p 	= q.

The spectroscopy energy game is a bisimulation game in the tradition of Stir-
ling [33].
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Fig. 8. Example 3 spectroscopy energy game, minimal attacker winning budgets, and
distinguishing formulas/clauses. (In order to reduce visual load, only the first compo-
nents of the updates are written next to the edges. The other components are 0.)

Lemma 1. (Bisimulation game, proof see [5]). p0 and q0 are bisimilar
iff the defender wins G�[(p0, {q0})a, e0] for every initial energy budget e0, i.e. if
(∞,∞,∞,∞,∞,∞) ∈ Winmax

d ((p0, {q0})a).
In other words, if there are initial budgets winning for the attacker, then the
compared processes can be told apart. For G�, the attacker “unknown initial
credit problem” in energy games [34] coincides with the “apartness problem” [20]
for processes.

Example 3. Figure 8 shows the spectroscopy energy game starting at (S, {S′})a
from Example 1. The lower part of each node displays the node’s Winmin

a . The
magenta HML formulas illustrate distinctions relevant for the correctness argu-
ment of the following Subsect. 3.3. Section 4 will describe how to obtain attacker
winning budgets and equivalences. The blue “symmetric” positions are definitely
won by the defender—we omit the game graph below them. We also omit the
move (S′, {S,Div})a (0,−1,0,0,0,0) (S′, {S}, {Div})d—it can be ignored as will be
discussed in Subsect. 3.4.
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3.3 Correctness: Tight Distinctions

We will check that winning budgets indeed characterize what equivalences hold
by constructing price-minimal distinguishing formulas from attacker budgets.

Definition 11 (Strategy formulas). Given the set of winning budgets Wina,
the set of attacker strategy formulas Strat for a position with given energy level
e is defined inductively as follows:

〈b〉ϕ ∈ Strat((p,Q)a, e) if (p,Q)a
u (p′, Q′)a, e′ = upd(e, u) ∈ Wina((p′, Q′)a),

p
b−→ p′, Q

b−→ Q′, and ϕ ∈ Strat((p′, Q′)a, e
′),

ϕ ∈ Strat((p,Q)a, e) if (p,Q)a
u (p,Q,Q∗)d, e′ = upd(e, u) ∈ Wina((p,Q,Q∗)d),

and ϕ ∈ Strat((p,Q,Q∗)d, e
′),∧

q∈Qψq ∈ Strat((p,Q, ∅)d, e) if (p,Q, ∅)d
uq (p, q)∧

a , eq = upd(e, uq) ∈
Wina((p, q)∧

a ) and ψq ∈ Strat((p, q)∧
a , eq) for each q ∈ Q,∧

q∈Q∪{∗}ψq ∈ Strat((p,Q,Q∗)d, e) if (p,Q,Q∗)d
uq (p, q)∧

a , eq = upd(e, uq) ∈
Wina((p, q)∧

a ) and ψq ∈ Strat((p, q)∧
a , eq) for each q ∈ Q, and if (p,Q,Q∗)d

u∗

(p,Q∗)a, e∗ = upd(e, u∗) ∈Wina((p,Q∗)a), and ψ∗ ∈ Strat((p,Q∗)a, e∗) is an
observation,

ϕ ∈ Strat((p, q)∧
a , e) if (p, q)∧

a
u (p, {q})a, e′ = upd(e, u) ∈ Wina((p, {q})a)

and ϕ ∈ Strat((p, {q})a, e′) is an observation, and
¬ϕ ∈ Strat((p, q)∧

a , e) if (p, q)∧
a

u (q, {p})a, e′ = upd(e, u) ∈ Wina((q, {p})a)
and ϕ ∈ Strat((q, {p})a, e′) is an observation.

Because of the game structure, we actually know the u needed in each line
of the definition. It is u = (−1, 0, 0, 0, 0, 0) in the first case; (0,−1, 0, 0, 0, 0)
in the second; (0, 0, 0, min{3,4}, 0, 0) in the third; (0, 0, 0, min{3,4}, 0, 0) and
(min{1,3}, 0, 0, 0, 0, 0) in the fourth; (min{1,4}, 0, 0, 0, 0, 0) in the fifth; and
(min{1,5}, 0, 0, 0, 0,−1) in last case. Strat((p, q)∧

a , ·) can contain negative clauses,
which form no proper formulas on their own.

Lemma 2 (Price soundness). ϕ ∈ Strat((p,Q)a, e) implies that expr(ϕ) ≤ e
and that expr(ϕ) ∈ Wina((p,Q)a).

Proof. By induction on the structure of ϕ with arbitrary p,Q, e, exploiting the
alignment of the definitions of winning budgets and formula prices. Full proof
in [5].

Lemma 3 (Price completeness). e0 ∈ Wina((p0, Q0)a) implies there are ele-
ments in Strat((p0, Q0)a, e0).

Proof. By induction on the tree of winning plays consistent with some attacker
winning strategy implied by e0 ∈ Wina((p0, Q0)a). Full proof in [5].

Lemma 4 (Distinction soundness). Every ϕ ∈ Strat((p,Q)a, e) distin-
guishes p from every q ∈ Q.

Proof. By induction on the structure of ϕ with arbitrary p,Q, e, exploiting that
Strat can only construct formulas with the invariant that they are true for p and
false for each q ∈ Q. Full proof in [5].
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Lemma 5 (Distinction completeness). If ϕ distinguishes p from every q ∈
Q, then expr(ϕ) ∈ Wina((p,Q)a).

Proof. By induction on the structure of ϕ with arbitrary p,Q, exploiting the
alignment of game structure and HML semantics and the fact that expr cannot
“overtake” inverse updates. Full proof in [5].

Theorem 1 (Correctness). For any equivalence X with coordinate eX , p 
X

q, precisely if all epq ∈ Winmin
a ((p, {q})a) are above or incomparable, epq 	≤ eX .

Proof. By contraposition, in both directions.

– Assume p 	
X q. This means some ϕ with expr(ϕ) ≤ eX distinguishes p from q.
By Lemma 5, expr(ϕ) ∈ Wina((p, {q})a). Then either expr(ϕ) or a lower price
epq ≤ expr(ϕ) are minimal winning budgets, i.e. , epq ∈ Winmin

a ((p, {q})a) and
epq ≤ eX .

– Assume there is epq ∈ Winmin
a ((p, {q})a) with epq ≤ eX . By Lemma 3, there

is ϕ ∈ Strat((p, {q})a, epq). Due to Lemma 4, ϕ must be distinguishing for p
and q, and due to Lemma 2, expr(ϕ) ≤ epq ≤ eX .

The theorem basically means that by fixing an initial budget in G�, we can
obtain a characteristic game for any notion from the spectrum.

3.4 Becoming More Clever by Looking One Step Ahead

The spectroscopy energy game G� of Definition 10 may branch exponentially
with respect to |Q| at conjunction challenges after (p,Q)a. For the spectrum we
are interested in, we can drastically limit the sensible attacker moves to four
options by a little lookahead into the enabled actions I(q) of q ∈ Q and I(p).
Definition 12 (Clever spectroscopy game). The clever spectroscopy game,
G�, is defined exactly like the previous spectroscopy energy game of Definition 10
with the restriction of the conjunction challenges

(p,Q)a
(0,−1,0,0,0,0)

� (p,Q \ Q∗, Q∗)d with Q∗ ⊆ Q,

to situations where Q∗ ∈ {∅, {q ∈ Q | I(q) ⊆ I(p)}, {q ∈ Q | I(p) ⊆ I(q)},
{q ∈ Q | I(p) = I(q)}}.
Theorem 2 (Correctness of cleverness). Assume modal depth of positive
clauses e4 ∈ {0, 1,∞}, e4 ≤ e3, and that modal depth of negative clauses e5 > 1
implies e3 = e4. Then, the attacker wins G�[(p0, Q0)a, e] precisely if they win
G�[(p0, Q0)a, e].

Proof. The implication from the clever spectroscopy game G� to the full spec-
troscopy game G� is trivial as the attacker moves in � are a subset of those in

� and the defender has the same moves in both games. For the other direc-
tion, we have to show that any move (p,Q)a

(0,−1,0,0,0,0)
� (p,Q \ Q∗, Q∗)d win-

ning at energy level e can be simulated by a winning move (p,Q)a
(0,−1,0,0,0,0)

�
(p,Q \ Q′, Q′)d. Full proof in [5].
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4 Computing Equivalences

The previous section has shown that attacker winning budgets in the spec-
troscopy energy game characterize distinguishable processes and, dually, that
the defender’s wins characterize equivalences. We now examine how to actually
compute the winning budgets of both players.

4.1 Computation of Attacker Winning Budgets

The winning budgets of the attacker (Definition 9) are characterized inductively:

– Where the defender is stuck, g ∈ Gd and g 	 , the attacker wins with any
budget, (0, 0, 0, 0, 0, 0) ∈ Winmin

a (g).
– Where the defender has moves, g ∈ Gd and g

ui g′
i (for some indexing i ∈ I

over all possible moves), the attacker wins if they have a budget equal or
above to all budgets that might be necessary after the defender’s move: If
upd(e, ui) ∈ Wina(g′

i) for all i ∈ I, then e ∈ Wina(g).
– Where the attacker moves, g ∈ Ga and g u g′, upd(e, u) ∈ Wina(g′) implies

e ∈ Wina(g).

By Proposition 3, it suffices to find the finite set of minimal winning budgets,
Winmin

a . Turning this into a computation is not as straightforward as in other
energy game models. Due to the minD-updates, the energy update function
upd(·, u) is neither injective nor surjective.

We must choose an inversion function upd−1 that picks minimal solutions
and that minimally “casts up” inputs that are outside the image of upd(·, u), i.e.,
such that upd−1(e′, u) = inf{e | e′ ≤ upd(e, u)}. We compute it as follows:

Definition 13 (Inverse update). The inverse update function is defined as
upd−1(e′, u) := sup({e} ∪ {m(i) | ∃D.ui = minD}) with ei = e′

i − ui for all i
where ui ∈ {0,−1} and ei = e′

i otherwise, and with (m(i))j = e′
i for ui = minD

and j ∈ D, and (m(i))j = 0 otherwise, for all i, j.

Example 4. Let u := (min{1,3}, min{1,2},−1,−1). (3, 4, 0, 1) /∈ img(upd(·, u)), but:

upd−1((3, 4, 0, 1), u) = sup{(3, 4, 1, 2), (3, 0, 3, 0), (4, 4, 0, 0)} = (4, 4, 3, 2)
upd((4, 4, 3, 2), u) = (3, 4, 2, 1) ≥ (3, 4, 0, 1)

upd−1((3, 4, 2, 1), u) = sup{(3, 4, 3, 2), (3, 0, 3, 0), (4, 4, 0, 0)} = (4, 4, 3, 2)

With upd−1, we only need to find the Winmin
a relation as a least fixed point of

the inductive description. This is done by Algorithm 1. Every time a new way
of winning a position for the attacker is discovered, this position is added to the
todo. Initially, these are the positions where the defender is stuck. The update
at an attacker position in Line 8 takes the inversely updated budgets (upd−1)
of successor positions to be tentative attacker winning budgets. At a defender
position, the attacker only wins if they have winning budgets for all follow-up
positions (Line 12). Any supremum of such budgets covering all follow-ups will
be winning for the attacker (Line 13). At both updates, we only select the minima
as a finite representation of the infinitely many attacker budgets.
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1 def compute_winning_budgets(G = (G, Gd, , w)):
2 attacker_win := [g �→ {} | g ∈ G]
3 todo := {g ∈ Gd | g � · }
4 while todo �= ∅:
5 g := some todo
6 todo := todo \ {g}
7 if g ∈ Ga :
8 new_attacker_win := Min(attacker_win[g] ∪ {upd−1(e ′, u) |

g u g′ ∧ e ′ ∈ attacker_win[g′]})
9 else:

10 defender_post := {g′ | g u g′}
11 options := {(g′, upd−1(e ′, u)) | g u g′ ∧ e ′ ∈ attacker_win[g′]}}
12 if defender_post ⊆ dom(options) :
13 new_attacker_win := Min({supg′∈defender_post strat(g

′) |
strat ∈ (G → En) ∧ ∀g′. strat(g′) ∈ options(g′)})

14 else:
15 new_attacker_win := ∅

16 if new_attacker_win �= attacker_win[g] :
17 attacker_win[g] := new_attacker_win
18 todo := todo ∪ {gp | ∃u. gp

u g}
19 Winmin

a := attacker_win
20 return Winmin

a

Algorithm 1: Algorithm for computing attacker winning budgets of declin-
ing energy game G.

4.2 Complexity and How to Flatten It

For finite games, Algorithm 1 is sure to terminate in exponential time of game
graph branching degree and dimensionality.

Lemma 6 (Winning budget complexity, proof see [5]). For an N -dim-
ensional declining energy game with of branching degree o, Algorithm 1 ter-
minates in O(| | · |G|N · (o + |G|(N−1)·o)) time, using O(|G|N ) space for the
output.

Lemma 7 (Full spectroscopy complexity). Time complexity of computing
winning budgets for the full spectroscopy energy game G� is in 2O(|P|·2|P|).

Proof. Out-degrees o in G� can be bounded in O(2|P|), the whole game graph
| �| ∈ O(| ·−→|·2|P|+ |P|2 ·3|P|), and game positions |G�| ∈ O(|P| ·3|P|). Insert
with N = 6 in Lemma 6. Full proof in [5].

We thus have established the approach to be double-exponential. The complexity
of the previous spectroscopy algorithm [7] has not been calculated. One must
presume it to be equal or higher as the game graph has Bell-numbered branching
degree and as the algorithm computes formulas, which entails more options than
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the direct computation of energies. This is what lies behind the introduction’s
observation that moderate nondeterminism already renders [7] unusable.

Our present energy game reformulation allows us to use two ingredients to
do way better than double-exponentially when focussing on the common linear-
time–branching-time spectrum:

First, Subsect. 3.4 has established that most of the partitionings in attacker
conjunction moves can be disregarded by looking at the initial actions of pro-
cesses.

Second, Fahrenberg et al. [15] have shown that considering just “capped”
energies in a grid EnK = {0, . . . , K}N can reduce complexity. Such a flattening
of the lattice turns the space of possible energies into constant factor (K + 1)N

(with (K + 1)N−1-sized antichains) independent of input size. For Algorithm 1,
space complexity needed for attacker_win drops to O(|G|) and time complexity
to | | ·2O(o). If we are only interested in finitely many notions of equivalence as
in the case of Fig. 3, we can always bound the energies to range to the maximal
appearing number plus one. The last number represents all numbers outside the
bound up to infinity.

Lemma 8 (Clever spectroscopy complexity). Time complexity of com-
puting winning budgets for the clever spectroscopy energy game G� with capped
energies is in 2O(|P|).

Proof. Out-degrees o in G� can be bounded in O(|P|), the whole game graph
| �| ∈ O(| ·−→| · 2|P| + |P|2 · 2|P|), and game positions |G�| ∈ O(|P| · 2|P|).
Inserting in the flattened version of Lemma 6 yields:

O(| �| · 2C0·o) = O((| ·−→| · 2|P| + |P|2 · 2|P|) · 2C1·|P|)

= O((| ·−→| + |P|2) · 2C2·|P|)

= O(| ·−→| · 2C2·|P|).

Deciding trace equivalence in nondeterministic systems is PSPACE-hard and
will thus take at least exponential time. Therefore, the exponential time of the
“clever” spectroscopy algorithm restricted to a finite spectrum is about as good
as it may get, asymptotically speaking.

4.3 Equivalences and Distinguishing Formulas from Budgets

For completeness, let us briefly flesh out how to actually obtain equivalence
information from the minimal attacker winning budgets Winmin

a ((p, {q})a) we
compute.

Definition 14. For an antichain Mn ⊆ En characterizing an upper part of
the energy space, the complement antichain Mn := Min (En∞ ∩ ({(supE′) −
(1, . . . , 1) | E′ ⊆ Mn} ∪ {e(i) ∈ En∞ | (e(i))i = (infMn)i − 1 ∧ ∀j 	= i. (e(i))j =
∞})) has the complement energy space as its downset.
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Winmax
d ((p, {q})a) = Winmin

a ((p, {q})a) characterizes all preordering formula lan-
guages and thus equivalences defined in terms of expressiveness prices for p and
q. This might contain multiple, incomparable, notions from the spectrum. Tak-
ing both directions, Winmin

a ((p, {q})a) ∪ Winmin
a ((q, {p})a), will thus characterize

the finest intersection of equivalences to equate p and q.
If we just wonder which of the equivalences from the spectrum hold, we may

establish this more directly by checking which of them are not dominated by
attacker wins.

From the information, we can also easily build witness relations to certify
that we return sound equivalence results. In particular, the pairs won with arbi-
trary attacker budgets, {(p, q) | (∞,∞,∞,∞,∞,∞) ∈ Winmax

d ((p, {q})a)} are
a bisimulation. Similarly, the strategy formulas of Definition 9 can directly be
computed to explain inequivalence.

If we use symbolic winning budgets capped as proposed at the end of Sub-
sect. 4.2, the formula reconstruction will be harder and the Winmin

a ((p, {q})a)
might be below the maximal defender winning budgets if these exceed the bound.
But this will not matter as long as we choose a cap beyond the natural numbers
that characterize our spectrum.

5 Exploring Minimizations

Our algorithm can be used to analyze the equivalence structure of moderately-
sized real-world transition systems. In this section, we take a brief look at its
performance on the VLTS (“very large transition systems”) benchmark suite [18]
and return to our initial Peterson example.

The energy spectroscopy algorithm has been added to the Linear-Time–
Branching-Time Spectroscope of [7] and can be tried on transition systems at
https://equiv.io/.

Table 1 reports the results of running the implementation of [7] and this
paper’s implementation in variants using the spectroscopy energy game G� and
the clever spectroscopy energy game G�. We tested on the VLTS examples of
up to 25,000 states and the Peterson example (Fig. 1). The table lists the P-
sizes of the input transition systems and of their bisimilarity quotient system
P/∼B . The spectroscopies have been performed on the bisimilarity quotient sys-
tems by constructing the game graph underneath positions comparing all pairs
of enabledness-equivalent states. The middle three groups of columns list the
resource usage for the three implementations using: the [7]-spectroscopy, the
energy game G�, and the clever game G�. For each group, the first column
reports traversed game size, and the second gives the time the spectroscopy
took in seconds. Where the tests ran out of memory or took longer than five
minutes (in the Java Virtual Machine with 8 GB heap space, at 4GHz, single-
threaded), the cells are left blank. The last three columns list the output sizes of
state spaces reduced with respect to enabledness ∼E, traces ∼T, and simulation
∼1S—as one would hope, all three algorithms returned the same results.

https://equiv.io/
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From the output, we learn that the VLTS examples, in a way, lack diversity:
Bisimilarity ∼B and trace equivalence ∼T mostly coincide on the systems (third
and penultimate column).

Concerning the algorithm itself, the experiments reveal that the computation
time grows mostly linearly with the size of the game move graph. Our algorithm
can deal with bigger examples than [7] (which fails at peterson, vasy_10_56
and cwi_1_2, and takes more than 500 s for vasy_8_24). Even where [7] has
a smaller game graph (e.g. cwi_3_14), the exponential formula construction
renders it slower. Also, the clever game graph � indeed is much smaller than

� for examples with a lot of nondeterminism such as peterson.

Table 1. Sample systems, sizes, and benchmark results.

system P P/∼B [7]- t/s � t/s � t/s P/∼E P/∼T P/∼1S

peterson 19 19 348,474 23.31 2,363 0.15 3 11 11
vasy_0_1 289 9 1,118 0.17 1,334 0.02 566 0.02 1 9 9
vasy_1_4 1,183 28 1,125 0.05 1,320 0.02 1,000 0.02 8 28 28
vasy_5_9 5,486 145 3,789 0.14 4,315 0.05 2,988 0.06 109 145 145
vasy_8_24 8,879 416 513,690 540.96 725,113 10.48 145,965 2.15 171 415 415
vasy_8_38 8,921 219 19,595 0.78 19,690 0.21 14,958 0.19 112 218 218
vasy_10_56 10,849 2,112 6,012,676 174.59 13 2,112 2,112
vasy_18_73 18,746 4,087
vasy_25_25 25,217 25,217 100,866 1.15 0 0.32 0 0.33 25,217 25,217 25,217
cwi_1_2 1,952 1,132 22,723,369 384.13 9 1,132 1,132
cwi_3_14 3,996 62 14,761 2.48 25,666 0.28 18,350 0.3 2 62 62

Of those terminating, the heavily nondeterministic cwi_1_2 is the most
expensive example. As many coarse notions must record the nondeterministic
options, this blowup is to be expected. If we compare to the best similarity algo-
rithm by Ranzato and Tapparo [29], they report their algorithm SA to tackle
cwi_1_2 single-handedly. Like our implementation, the prototype of SA [29] ran
out of memory while determining similarity for vasy_18_73. This is in spite
of SA theoretically having optimal complexity and similarity being less com-
plex (cubic) than trace equivalence, which we need to cover. The benchmarks
in [29] failed at vasy_10_56, and vasy_25_25, which might be due to 2010’s
tighter memory requirements (they used 2 GB of RAM) or the degree to which
bisimilarity and enabledness in the models is exploited.

6 Conclusion and Related Work

This paper has connected two strands of research in the field of system analysis:
The strand of equivalence games on transition systems starting with Stirling’s
bisimulation game [7,12,32,33] and the strand of energy games for systems of
bounded resources [2,10,11,14–16,27,30,34].
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The connection rests on the insight that levels of equivalence correspond
to resources available to an attacker who tries to tell two systems apart. This
parallel is present in recent work within the security domain [25] just as much as
in the first thoughts on observable nondeterminism by Hennessy and Milner [24].

The paper has not examined the precise relationship of the games of Sect. 3
to the whole zoo of VASS, energy, mean-payoff, monotonic [1], and counter
games. The spectroscopy energy game deviates slightly from common multi-
energy games due to minD-updates and due to the attacker being energy-bound
(instead of the defender). As the energies cannot be exhausted by defender
moves, the game can also be interpreted as a VASS game [2,10] where the
attacker is stuck if they run out of energy. Our algorithm complexity matches
that of general lower-bounded N -dimensional energy games [15]. Links between
our declining energy games and other games from the literature might enable
slight improvements of the algorithm. For instance, reachability in VASS games
can turn polynomial [11].

In the strand of generalized game characterizations for equivalences [7,12,32],
this paper extends applicability for real-world systems. The implementation per-
forms on par with the most efficient similarity algorithm [29]. Given that among
the hundreds of equivalence algorithms and tools most primarily address bisimi-
larity [19], a tool for coarser equivalences is a worthwhile addition. Although our
previous algorithm [7] is able to solve the spectroscopy problem, its reliance on
super-exponential partitions of the state space makes it ill-fit for transition sys-
tems with significant nondeterminism. In comparison, our new algorithm also
needs one less layer of complexity because it determines equivalences without
constructing distinguishing formulas.

These advances enable a spectroscopy of systems saturated by weak transi-
tions. We can thus analyze weak equivalences such as in the example of Peter-
son’s mutex. For special weak equivalences without a strong counterpart such as
branching bisimilarity [22], deeper changes to the modal logic are necessary [6].

The increased applicability has allowed us to exhaustively consider equiva-
lences on the smaller systems of the widely-used VLTS suite [18]. The exper-
iments reveal that the spectrum between trace equivalence and bisimilarity
mostly collapses for the examined systems. It may often be reasonable to spec-
ify systems in such a way that the spectrum collapses. In a benchmark suite,
however, a lack of semantic diversity can be problematic: For instance, other-
wise sensible techniques like polynomial-time reductions [13] will not speed up
language inclusion testing, and nuances of the weak equivalence spectrum [8]
will falsely seem insignificant. One may also overlook errors and performance
degradations that appear only for transition systems where equal traces do not
imply equivalent branching behavior. We hope this blind spot does not affect
the validity of any of the numerous studies relying on VLTS benchmarks.

Acknowledgments. This work benefited from discussion with Sebastian Wolf, with
David N. Jansen, with members of the LFCS Edinburgh, and with the MTV research
group at TU Berlin, as well as from reviewer comments.
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Data Availibility. Proofs and updates are to be found in the report version of this
paper [5]. The Scala source is on GitHub: https://github.com/benkeks/equivalence-
fiddle/. A webtool implementing the algorithm runs on https://equiv.io/. An artifact
including the benchmarks is archived on Zenodo [4].
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