
Online Causation Monitoring of Signal
Temporal Logic

Zhenya Zhang1(B) , Jie An2 , Paolo Arcaini2 , and Ichiro Hasuo2

1 Kyushu University, Fukuoka, Japan
zhang@ait.kyushu-u.ac.jp

2 National Institute of Informatics, Tokyo, Japan
{jiean,arcaini,hasuo}@nii.ac.jp

Abstract. Online monitoring is an effective validation approach for
hybrid systems, that, at runtime, checks whether the (partial) signals of a
system satisfy a specification in, e.g., Signal Temporal Logic (STL). The
classic STL monitoring is performed by computing a robustness interval
that specifies, at each instant, how far the monitored signals are from
violating and satisfying the specification. However, since a robustness
interval monotonically shrinks during monitoring, classic online moni-
tors may fail in reporting new violations or in precisely describing the
system evolution at the current instant. In this paper, we tackle these
issues by considering the causation of violation or satisfaction, instead
of directly using the robustness. We first introduce a Boolean causation
monitor that decides whether each instant is relevant to the violation or
satisfaction of the specification. We then extend this monitor to a quan-
titative causation monitor that tells how far an instant is from being
relevant to the violation or satisfaction. We further show that classic
monitors can be derived from our proposed ones. Experimental results
show that the two proposed monitors are able to provide more detailed
information about system evolution, without requiring a significantly
higher monitoring cost.

Keywords: online monitoring · Signal Temporal Logic · monotonicity

1 Introduction

Safety-critical systems require strong correctness guarantees. Due to the com-
plexity of these systems, offline verification may not be able to guarantee their
total correctness, as it is often very difficult to assess all possible system behav-
iors. To mitigate this issue, runtime verification [4,29,36] has been proposed as a

Z. Zhang is supported by JSPS KAKENHI Grant No. JP23K16865 and No.
JP23H03372. J. An, P. Arcaini, and I. Hasuo are supported by ERATO HASUO Meta-
mathematics for Systems Design Project (No. JPMJER1603), JST, Funding Reference
number 10.13039/501100009024 ERATO. P. Arcaini is also supported by Engineerable
AI Techniques for Practical Applications of High-Quality Machine Learning-based Sys-
tems Project (Grant Number JPMJMI20B8), JST-Mirai.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13964, pp. 62–84, 2023.
https://doi.org/10.1007/978-3-031-37706-8_4

https://doi.org/10.5281/zenodo.7923888
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37706-8_4&domain=pdf
http://orcid.org/0000-0002-3854-9846
http://orcid.org/0000-0001-9260-9697
http://orcid.org/0000-0002-6253-4062
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-031-37706-8_4

Online Causation Monitoring of STL 63

complementary technique that analyzes the system execution at runtime. Online
monitoring is such an approach that checks whether the system execution (e.g.,
given in terms of signals) satisfies or violates a system specification specified in
a temporal logic [28,34], e.g., Signal Temporal Logic (STL) [30].

Quantitative online monitoring is based on the STL robust semantics [17,21]
that not only tells whether a signal satisfies or violates a specification ϕ (i.e., the
classic Boolean satisfaction relation), but also assigns a value in R ∪ {∞,−∞}
(i.e., robustness) that indicates how robustly ϕ is satisfied or violated. However,
differently from offline assessment of STL formulas, an online monitor needs to
reason on partial signals and, so, the assessment of the robustness should be
adapted. We consider an established approach [12] employed by classic online
monitors (ClaM in the following). It consists in computing, instead of a single
robustness value, a robustness interval ; at each monitoring step, ClaM identifies
an upper bound [R]U telling the maximal reachable robustness of any possible
suffix signal (i.e., any continuation of the system evolution), and a lower bound
[R]L telling the minimal reachable robustness. If, at some instant, [R]U becomes
negative, the specification is violated; if [R]L becomes positive, the specification
is satisfied. In the other cases, the specification validity is unknown.

ClaM

Fig. 1. ClaM – Robustness upper and
lower bounds of �[0,100](v < 10)

Consider a simple example in Fig. 1.
It shows the monitoring of the speed of
a vehicle (in the upper plot); the speci-
fication requires the speed to be always
below 10. The lower plot reports how the
upper bound [R]U and the lower bound
[R]L of the reachable robustness change
over time. We observe that the initial
value of [R]U is around 8 and gradually
decreases.1 The monitor allows to detect
that the specification is violated at time
b = 20 when the speed becomes higher
than 10, and therefore [R]U goes below 0.
After that, the violation severity progres-
sively gets worse till time b = 30, when [R]U becomes −5. After that point, the
monitor does not provide any additional useful information about the system
evolution, as [R]U remains stuck at −5. However, if we observe the signal of the
speed after b = 30, we notice that (i) the severity of the violation is mitigated,
and the “1st violation episode” ends at time b = 35; however, the monitor
ClaM does not report this type of information; (ii) a “2nd violation episode”
occurs in the time interval [40, 45]; the monitor ClaM does not distinguish the
new violation.

The reason for the issues reported in the example is that the upper and lower
bounds are monotonically decreasing and increasing; this has the consequence

1 The value of lower bound [R]L is not shown in the figure, as not relevant. In the
example, it remains constant before b = 100, and the value is usually set either
according to domain knowledge about system signals, or to −∞ otherwise.

64 Z. Zhang et al.

that the robustness interval at a given step is “masked” by the history of previous
robustness intervals, and, e.g., it is not possible to detect mitigation of the viola-
tion severity. Moreover, as an extreme consequence, as soon as the monitor ClaM
assesses the violation of the specification (i.e., the upper bound [R]U becomes
negative), or its satisfaction (i.e., the lower bound [R]L becomes positive), the
Boolean status of the monitor does not change anymore. Such characteristic
directly derives from the STL semantics and it is known as the monotonicity [9–
11] of classic online monitors. Monotonicity has been recognized as a problem
of these monitors in the literature [10,37,40], since it does not allow to detect
specific types of information that are “masked”. We informally define two types
of information masking that can occur because of monotonicity:

evolution masking : the monitor may not properly report the evolution of the
system execution, e.g., mitigation of violation severity may not be detected;

violation masking : as a special case of evolution masking, the first violation
episode during the system execution “masks” the following ones.

The information not reported by ClaM because of information masking, is
very useful in several contexts. First of all, in some systems, the first violation of
the specification does not mean that the system is not operating anymore, and
one may want to continue monitoring and detect all the succeeding violations;
this is the case, e.g., of the monitoring approach reported by Selyunin et al. [37] in
which all the violations of the SENT protocol must be detected. Moreover, having
a precise description of the system evolution is important for the usefulness of
the monitoring; for example, the monitoring of the speed in Fig. 1 could be used
in a vehicle for checking the speed and notifying the driver whenever the speed
is approaching the critical limit; if the monitor is not able to precisely capture
the severity of violation, it cannot be used for this type of application.

Some works [10,37,40] try to mitigate the monotonicity issues, by “resetting”
the monitor at specific points. A recent approach has been proposed by Zhang
et al. [40] (called ResM in the following) that is able to identify each “violation
episode” (i.e., it solves the problem of violation masking), but does not solve
the evolution masking problem. For the example in Fig. 1, ResM is able to detect
the two violation episodes in intervals [20, 35] and [40, 45], but it is not able to
report that the speed decreases after b = 10 (in a non-violating situation), and
that the severity of the violation is mitigated after b = 30.
Contribution. In this paper, in order to provide more information about the
evolution of the monitored system, we propose to monitor the causation of viola-
tion or satisfaction, instead of considering the robustness directly. To do this, we
rely on the notion of epoch [5]. At each instant, the violation (satisfaction) epoch
identifies the time instants at which the evaluation of the atomic propositions of
the specification ϕ causes the violation (satisfaction) of ϕ.

Based on the notion of epoch, we define a Boolean causation monitor (called
BCauM) that, at runtime, not only assesses the specification violation/satisfaction,
but also tells whether each instant is relevant to it. Namely, BCauM marks each
current instant b as (i) a violation causation instant, if b is added to the violation
epoch; (ii) a satisfaction causation instant, if b is added to the satisfaction epoch;

Online Causation Monitoring of STL 65

(iii) an irrelevant instant, if b is not added to any epoch. We show that BCauM is
able to detect all the violation episodes (so solving the violation masking issue),
as violation causation instants can be followed by irrelevant instants. Moreover,
we show that the information provided by the classic Boolean online monitor
can be derived from that of the Boolean causation monitor BCauM.

However, BCauM just tells us whether the current instant is a (violation or
satisfaction) causation instant or not, but does not report how far the instant is
from being a causation instant. To this aim, we introduce the notion of causation
distance, as a quantitative measure characterizing the spatial distance of the
signal value at b from turning b into a causation instant. Then, we propose
the quantitative causation monitor (QCauM) that, at each instant, returns its
causation distance. We show that using QCauM, besides solving the violation
masking problem, we also solve the evolution masking problem. Moreover, we
show that we can derive from QCauM both the classic quantitative monitor ClaM,
and the Boolean causation monitor BCauM.

Experimental results show that the proposed monitors, not only provide more
information, but they do it in an efficient way, not requiring a significant addi-
tional monitoring time w.r.t. the existing monitors.

Outline. Section 2 reports necessary background. We introduce BCauM in Sect.
3, and QCauM in Sect. 4. Experimental assessment of the two proposed monitors
is reported in Sect. 5. Finally, Sect. 6 discusses some related work, and Sect. 7
concludes the paper.

2 Preliminaries

In this section, we review the fundamentals of signal temporal logic (STL) in
Sect. 2.1, and then introduce the existing classic online monitoring approach in
Sect. 2.2.

2.1 Signal Temporal Logic

Let T ∈ R+ be a positive real, and d ∈ N+ be a positive integer. A d-dimensional
signal is a function v : [0, T] → R

d , where T is called the time horizon of v.
Given an arbitrary time instant t ∈ [0, T], v(t) is a d -dimensional real vector;
each dimension concerns a signal variable that has a certain physical meaning,
e.g., speed, RPM, acceleration, etc. In this paper, we fix a set Var of variables
and assume that a signal v is spatially bounded, i.e., for all t ∈ [0, T], v(t) ∈ Ω,
where Ω is a d -dimensional hyper-rectangle.

Signal temporal logic (STL) is a widely-adopted specification language, used
to describe the expected behavior of systems. In Definition 1 and Definition 2,
we respectively review the syntax and the robust semantics of STL [17,21,30].

Definition 1 (STL syntax). In STL, the atomic propositions α and the for-
mulas ϕ are defined as follows:

α :: ≡ f(w1, . . . , wK) > 0 ϕ :: ≡ α | ⊥ | ¬ϕ | ϕ ∧ ϕ | �Iϕ | �Iϕ | ϕ UI ϕ

66 Z. Zhang et al.

Here f is a K-ary function f : RK → R, w1, . . . , wK ∈ Var, and I is a closed
interval over R≥0, i.e., I = [l, u], where l, u ∈ R and l ≤ u. In the case that
l = u, we can use l to stand for I. �,� and U are temporal operators, which
are known as always, eventually and until, respectively. The always operator �

and eventually operator � are two special cases of the until operator U , where
�Iϕ ≡
 UI ϕ and �Iϕ ≡ ¬�I¬ϕ. Other common connectives such as ∨,→ are
introduced as syntactic sugar: ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.

Definition 2 (STL robust semantics). Let v be a signal, ϕ be an STL for-
mula and τ ∈ R+ be an instant. The robustness R(v, ϕ, τ) ∈ R ∪ {∞,−∞} of v
w.r.t. ϕ at τ is defined by induction on the construction of formulas, as follows.

R(v, α, τ) := f(v(τ)) R(v,⊥, τ) := −∞ R(v,¬ϕ, τ) := −R(v, ϕ, τ)
R(v, ϕ1 ∧ ϕ2, τ) := min (R(v, ϕ1, τ),R(v, ϕ2, τ))
R(v,�Iϕ, τ) := inf

t∈τ+I
R(v, ϕ, t) R(v,�Iϕ, τ) := sup

t∈τ+I
R(v, ϕ, t)

R(v, ϕ1 UI ϕ2, τ) := sup
t∈τ+I

min
(

R(v, ϕ2, t), inf
t′∈[τ,t)

R(v, ϕ1, t
′)

)

Here, τ + I denotes the interval [l + τ, u + τ].

The original STL semantics is Boolean, which represents whether a signal
v satisfies ϕ at an instant τ , i.e., whether (v, τ) |= ϕ. The robust semantics
in Definition 2 is a quantitative extension that refines the original Boolean STL
semantics, in the sense that, R(v, ϕ, τ) > 0 implies (v, τ) |= ϕ, and R(v, ϕ, τ) < 0
implies (v, τ) �|= ϕ. More details can be found in [21, Proposition 16].

2.2 Classic Online Monitoring of STL

STL robust semantics in Definition 2 provides an offline monitoring approach
for complete signals. Online monitoring, instead, targets a growing partial signal
at runtime. Besides the verdicts
 and ⊥, an online monitor can also report the
verdict unknown (denoted as ?), which represents a status when the satisfaction
of the signal to ϕ is not decided yet. In the following, we formally define partial
signals and introduce online monitors for STL.

Let T be the time horizon of a signal v, and let [a, b] ⊆ [0, T] be a sub-
interval in the time domain [0, T]. A partial signal va:b is a function which is
only defined in the interval [a, b]; in the remaining domain [0, T]\[a, b], we denote
that va:b = ε, where ε stands for a value that is not defined.

Specifically, if a = 0 and b ∈ (a, T], a partial signal va:b is called a prefix
(partial) signal; dually, if b = T and a ∈ [0, b), a partial signal va:b is called a
suffix (partial) signal. Given a prefix signal v0:b, a completion v0:b · vb:T of v0:b

is defined as the concatenation of v0:b with a suffix signal vb:T .

Definition 3 (Classic Boolean STL online monitor). Let v0:b be a prefix
signal, and ϕ be an STL formula. An online monitor M(v0:b, ϕ, τ) returns a

Online Causation Monitoring of STL 67

verdict in {
,⊥, ?} (namely, true, false, and unknown), as follows:

M(v0:b, ϕ, τ) :=

⎧⎪⎨
⎪⎩

 if ∀vb:T .R(v0:b · vb:T , ϕ, τ) > 0
⊥ if ∀vb:T .R(v0:b · vb:T , ϕ, τ) < 0
? otherwise

Namely, the verdicts of M(v0:b, ϕ, τ) are interpreted as follows:

– if any possible completion v0:b · vb:T of v0:b satisfies ϕ, then v0:b satisfies ϕ;
– if any possible completion v0:b · vb:T of v0:b violates ϕ, then v0:b violates ϕ;
– otherwise (i.e., there is a completion v0:b · vb:T that satisfies ϕ, and there is

a completion v0:b · vb:T that violates ϕ), then M(v0:b, ϕ, τ) reports unknown.

Note that, by Definition 3 only, we cannot synthesize a feasible online moni-
tor, because the possible completions for v0:b are infinitely many. A constructive
online monitor is introduced in [12], which implements the functionality of Def-
inition 3 by computing the reachable robustness of v0:b. We review this monitor
in Definition 4.

Definition 4 (Classic Quantitative STL online monitor (ClaM)). Let v0:b

be a prefix signal, and let ϕ be an STL formula. We denote by Rα
max and Rα

min the
possible maximum and minimum bounds of the robustness R(v, α, τ)2. Then, an
online monitor [R](v0:b, ϕ, τ), which returns a sub-interval of [Rα

min, R
α
max] at the

instant b, is defined as follows, by induction on the construction of formulas.

[R](v0:b, α, τ) :=

{[
f (v0:b(τ)) , f (v0:b(τ))

]
if τ ∈ [0, b][

Rα
min, R

α
max

]
otherwise

[R](v0:b,¬ϕ, τ) := −[R](v0:b, ϕ, τ)

[R](v0:b, ϕ1 ∧ ϕ2, τ) := min
(
[R](v0:b, ϕ1, τ), [R](v0:b, ϕ2, τ)

)

[R](v0:b,�Iϕ, τ) := inf
t∈τ+I

(
[R](v0:b, ϕ, t)

)

[R](v0:b, ϕ1 UI ϕ2, τ) := sup
t∈τ+I

min
(
[R](v0:b, ϕ2, t), inf

t′∈[τ,t)
[R](v0:b, ϕ1, t

′)
)

Here, f is defined as in Definition 1, and the arithmetic rules over inter-
vals I = [l, u] are defined as follows: −I := [−u,−l] and min(I1, I2) :=
[min(l1, l2),min(u1, u2)].

We denote by [R]U(v0:b, ϕ, τ) and [R]L(v0:b, ϕ, τ) the upper bound and the
lower bound of [R](v0:b, ϕ, τ) respectively. Intuitively, the two bounds together
form the reachable robustness interval of the completion v0:b · vb:T , under any
possible suffix signal vb:T . For instance, in Fig. 2, the upper bound [R]U at b = 20
is 0, which indicates that the robustness of the completion of the signal speed,
under any suffix, can never be larger than 0.

The quantitative online monitor ClaM in Definition 4 refines the Boolean one
in Definition 3, and the Boolean monitor can be derived from ClaM as follows:
2 R(v, α, τ) is bounded because v is bounded by Ω. In practice, if Ω is not know, we

set Rα
max and Rα

min to, respectively, ∞ and −∞.

68 Z. Zhang et al.

– if [R]L(v0:b, ϕ, τ) > 0, it implies that M(v0:b, ϕ, τ) =
;
– if [R]U(v0:b, ϕ, τ) < 0, it implies that M(v0:b, ϕ, τ) = ⊥;
– otherwise, if [R]L(v0:b, ϕ, τ) < 0 and [R]U(v0:b, ϕ, τ) > 0, M(v0:b, ϕ, τ) = ?.

The classic online monitors are monotonic by definition. In the Boolean mon-
itor (Definition 3), with the growth of v0:b, M(v0:b, ϕ, τ) can only turn from ? to
{⊥,
}, but never the other way around. In the quantitative one (Definition 4), as
shown in Lemma 1, [R]U(v0:b, ϕ, τ) and [R]L(v0:b, ϕ, τ) are both monotonic, the
former one decreasingly, the latter one increasingly. An example can be observed
in Fig. 2.

Lemma 1 (Monotonicity of STL online monitor). Let [R](v0:b, ϕ, τ) be
the quantitative online monitor for a partial signal v0:b and an STL formula
ϕ. With the growth of the partial signal v0:b, the upper bound [R]U(v0:b, ϕ, τ)
monotonically decreases, and the lower bound [R]L(v0:b, ϕ, τ) monotonically
increases, i.e., for two time instants b1, b2 ∈ [0, T], if b1 < b2, we have (i)
[R]U(v0:b1 , ϕ, τ) ≥ [R]U(v0:b2 , ϕ, τ), and (ii) [R]L(v0:b1 , ϕ, τ) ≤ [R]L(v0:b2 , ϕ, τ).

Proof. This can be proved by induction on the structures of STL formulas. The
detailed proof can be found in the full version [38]. ��

3 Boolean Causation Online Monitor

As explained in Sect. 1, monotonicity of classic online monitors causes differ-
ent types of information masking, which prevents some information from being
delivered. In this section, we introduce a novel Boolean causation (online) mon-
itor BCauM, that solves the violation masking issue (see Sect. 1). BCauM is defined
based on online signal diagnostics [5,40], which reports the cause of violation or
satisfaction of the specification at the atomic proposition level.

Definition 5 (Online signal diagnostics). Let v0:b be a partial signal and ϕ
be an STL specification. At an instant b, online signal diagnostics returns a vio-
lation epoch E�(v0:b, ϕ, τ), under the condition [R]U(v0:b, ϕ, τ) < 0, as follows:

E�(v0:b, α, τ) :=

{
{〈α, τ〉} if [R]U(v0:b, α, τ) < 0
∅ otherwise

E�(v0:b,¬ϕ, τ) := E⊕(v0:b, ϕ, τ)

E�(v0:b, ϕ1 ∧ ϕ2, τ) :=
⋃

i∈{1,2} s.t.

[R]U(v0:b,ϕi,τ)<0

E�(v0:b, ϕi, τ)

E�(v0:b,�Iϕ, τ) :=
⋃

t∈τ+I s.t.

[R]U(v0:b,ϕ,t)<0

E�(v0:b, ϕ, t)

E�(v0:b, ϕ1 UI ϕ2, τ) :=
⋃

t∈τ+I s.t.

[R]U(v0:b,ϕ1Utϕ2,τ)<0

⎛
⎝E�(v0:b, ϕ2, t) ∪

⋃
t′∈[τ,t)

E�(v0:b, ϕ1, t
′)

⎞
⎠

Online Causation Monitoring of STL 69

and a satisfaction epoch E⊕(v0:b, ϕ, τ), under the condition [R]L(v0:b, ϕ, τ) > 0,
as follows:

E⊕(v0:b, α, τ) :=

{
{〈α, τ〉} if [R]L(v0:b, α, τ) > 0
∅ otherwise

E⊕(v0:b,¬ϕ, τ) := E�(v0:b, ϕ, τ)

E⊕(v0:b, ϕ1 ∧ ϕ2, τ) :=
⋃

i∈{1,2} s.t.

[R]L(v0:b,ϕi,τ)>0

E⊕(v0:b, ϕi, τ)

E⊕(v0:b,�Iϕ, τ) :=
⋃

t∈τ+I s.t.

[R]L(v0:b,ϕ,t)>0

E⊕(v0:b, ϕ, t)

E⊕(v0:b, ϕ1 UI ϕ2, τ) :=
⋃

t∈τ+I s.t.

[R]L(v0:b,ϕ1Utϕ2,τ)>0

⎛
⎝E⊕(v0:b, ϕ2, t) ∪

⋃
t′∈[τ,t)

E⊕(v0:b, ϕ1, t
′)

⎞
⎠

If the conditions are not satisfied, E�(v0:b, ϕ, τ) and E⊕(v0:b, ϕ, τ) are both ∅.
Note that the definition is recursive, thus the conditions should also be checked
for computing the violation and satisfaction epochs of the sub-formulas of ϕ.

Computation for other operators can be inferred by the presented ones and
the STL syntax (Definition 1).

Intuitively, when a partial signal v0:b violates a specification ϕ, a violation
epoch starts collecting the evaluations (identified by pairs of atomic propositions
and instants) of the signal at the atomic proposition level, that cause the viola-
tion of the whole formula ϕ (which also applies to the satisfaction cases in a dual
manner). This is done inductively, based on the semantics of different operators:

– in the case of an atomic proposition α, if α is violated at τ , it collects 〈α, τ〉;
– in the case of a negation ¬ϕ, it collects the satisfaction epoch of ϕ;
– in the case of a conjunction ϕ1 ∧ ϕ2, it collects the union of the violation

epochs of the sub-formulas violated by the partial signal;
– in the case of an always operator �Iϕ, it collects the epochs of the sub-formula

ϕ at all the instants t where ϕ is evaluated as being violated.
– in the case of an until operator ϕ1 UI ϕ2, it collects the epochs of the sub-

formula ϕ2 at all the instants t and the epochs of ϕ1 at the instants t′ ∈ [τ, t),
in the case where the clause “ϕ1 until ϕ2” is violated at t.

Example 1. The example in Fig. 2 illustrates how an epoch is collected. The
specification requires that whenever the speed is higher than 10, the car should
decelerate within 5 time units. As shown by the classic monitor, the specification
is violated at b = 25, since v becomes higher than 10 at 20 but a remains positive
during [20, 25]. Note that the specification can be rewritten as ϕ ≡ �[0,100](¬(v >
10) ∨ �[0,5](a < 0)). For convenience, we name the sub-formulas of ϕ as follows:

ϕ′ ≡ ¬(v > 10) ∨ �[0,5](a < 0) ϕ1 ≡ ¬(v > 10) ϕ2 ≡ �[0,5](a < 0)
α1 ≡ v > 10 α2 ≡ a < 0

70 Z. Zhang et al.

Fig. 2. Classic monitor (ClaM)
result for the STL specification:
�[0,100](v > 10 → �[0,5](a < 0))

Fig. 3. The violation epochs (the red parts)
respectively when b = 30 and b = 35

Fig. 4. Boolean causation monitor (BCauM) result

Figure 3 shows the violation epochs at two instants 30 and 35. First, at b = 30,

E�(v0:30, ϕ, 0) =
(⋃

t∈[20,25] E
⊕(v0:30, α1, t)

) ∪ (⋃
t∈[20,30] E

�(v0:30, α2, t)
)

= 〈α1, [20, 25]〉 ∪ 〈α2, [20, 30]〉
Similarly, the violation epoch E�(v0:35, ϕ, 0) at b = 35 is the same as that at
b = 30. Intuitively, the epoch at b = 30 shows the cause of the violation of v0:30;
then since signal a < 0 in [30, 35], this segment is not considered as the cause of
the violation, so the epoch remains the same at b = 35. �

Definition 6 (Boolean causation monitor (BCauM)). Let v0:b be a partial
signal and ϕ be an STL specification. We denote by A the set of atomic propo-
sitions of ϕ. At each instant b, a Boolean causation (online) monitor BCauM
returns a verdict in {�,⊕,�} (called violation causation, satisfaction causation
and irrelevant), which is defined as follows,

M (v0:b, ϕ, τ) :=

⎧⎪⎨
⎪⎩

� if ∃α ∈ A. 〈α, b〉 ∈ E�(v0:b, ϕ, τ)
⊕ if ∃α ∈ A. 〈α, b〉 ∈ E⊕(v0:b, ϕ, τ)
� otherwise

An instant b is called a violation/satisfaction causation instant if M (v0:b, ϕ, τ)
returns �/⊕, or an irrelevant instant if M (v0:b, ϕ, τ) returns �.

Intuitively, if the current instant b (with the related α) is included in the epoch
(thus the signal value at b is relevant to the violation/satisfaction of ϕ), BCauM will

Online Causation Monitoring of STL 71

report a violation/satisfaction causation (�/⊕); otherwise, it will report irrelevant
(�). Notably BCauM is non-monotonic, in that even if it reports � or ⊕ at some
instant b, it may still report � after b. This feature allows BCauM to bring more
information, e.g., it can detect the end of a violation episode and the start of a new
one (i.e., it solves the violation masking issue in Sect. 1); see Example 2.

Example 2. Based on the signal diagnostics in Fig. 3, the Boolean causation
monitor BCauM reports the result shown as in Fig. 4.

Compared to the classic Boolean monitor in Fig. 2, BCauM brings more infor-
mation, in the sense that it detects the end of the violation episode at b = 30,
by going from � to �, when the signal a becomes negative. �

Theorem 1 states the relation of BCauMwith the classic Boolean online monitor.

Theorem 1. The Boolean causation monitor BCauM in Definition 6 refines the
classic Boolean online monitor in Definition 3, in the following sense:
– M(v0:b, ϕ, τ) = ⊥ iff.

∨
t∈[0,b] (M (v0:t, ϕ, τ) = �)

– M(v0:b, ϕ, τ) =
 iff.
∨

t∈[0,b] (M (v0:t, ϕ, τ) = ⊕)
– M(v0:b, ϕ, τ) = ? iff.

∧
t∈[0,b] (M (v0:t, ϕ, τ) = �)

Proof. The proof is based on Definitions 5 and 6, Lemma 1 about the monotonic-
ity of classic STL online monitors, and two extra lemmas in the full version [38].

��
4 Quantitative Causation Online Monitor

Although BCauM in Sect. 3 is able to solve the violation masking issue, it still
does not provide enough information about the evolution of the system signals,
i.e., it does not solve the evolution masking issue introduced in Sect. 1. To tackle
this issue, we propose a quantitative (online) causation monitor QCauM in Defi-
nition 7, which is a quantitative extension of BCauM. Given a partial signal v0:b,
QCauM reports a violation causation distance [R]� (v0:b, ϕ, τ) and a satisfaction
causation distance [R]⊕ (v0:b, ϕ, τ), which, respectively, indicate how far the sig-
nal value at the current instant b is from turning b into a violation causation
instant and from turning b into a satisfaction causation instant.

Definition 7 (Quantitative causation monitor (QCauM)). Let v0:b be a
partial signal, and ϕ be an STL specification. At instant b, the quantitative
causation monitor QCauM returns a violation causation distance [R]� (v0:b, ϕ, τ),
as follows:

[R]� (v0:b, α, τ) :=

{
f(v0:b(τ)) if b = τ

Rα
max otherwise

[R]� (v0:b,¬ϕ, τ) := −[R]⊕ (v0:b, ϕ, τ)

[R]� (v0:b, ϕ1 ∧ ϕ2, τ) := min
(
[R]� (v0:b, ϕ1, τ) , [R]� (v0:b, ϕ2, τ)

)

[R]� (v0:b, ϕ1 ∨ ϕ2, τ) := min

⎛
⎝max

(
[R]� (v0:b, ϕ1, τ) , [R]U(v0:b, ϕ2, τ)

)
,

max
(
[R]U(v0:b, ϕ1, τ), [R]� (v0:b, ϕ2, τ)

)
⎞
⎠

72 Z. Zhang et al.

[R]� (v0:b,�Iϕ, τ) := inf
t∈τ+I

(
[R]� (v0:b, ϕ, t)

)

[R]� (v0:b,�Iϕ, τ) := inf
t∈τ+I

(
max

(
[R]� (v0:b, ϕ, t) , [R]U(v0:b,�Iϕ, τ)

))

[R]� (v0:b, ϕ1 UI ϕ2, τ) := inf
t∈τ+I

⎛
⎜⎝max

⎛
⎜⎝min

(
inf

t′∈[τ,t)
[R]� (v0:b, ϕ1, t

′)

[R]� (v0:b, ϕ2, t)

)

[R]U(v0:b, ϕ1 UI ϕ2, τ)

⎞
⎟⎠

⎞
⎟⎠

and a satisfaction causation distance [R]⊕ (v0:b, ϕ, τ), as follows:

[R]⊕ (v0:b, α, τ) :=

{
f(v0:b(τ)) if b = τ

Rα
min otherwise

[R]⊕ (v0:b,¬ϕ, τ) := −[R]� (v0:b, ϕ, τ)

[R]⊕ (v0:b, ϕ1 ∧ ϕ2, τ) := max

⎛
⎝min

(
[R]⊕ (v0:b, ϕ1, τ) , [R]L(v0:b, ϕ2, τ)

)
,

min
(
[R]L(v0:b, ϕ1, τ), [R]⊕ (v0:b, ϕ2, τ)

)
⎞
⎠

[R]⊕ (v0:b, ϕ1 ∨ ϕ2, τ) := max
(
[R]⊕ (v0:b, ϕ1, τ) , [R]⊕ (v0:b, ϕ2, τ)

)

[R]⊕ (v0:b,�Iϕ, τ) := sup
t∈τ+I

(
min

(
[R]⊕ (v0:b, ϕ, t) , [R]L(v0:b,�Iϕ, τ)

))

[R]⊕ (v0:b,�Iϕ, τ) := sup
t∈τ+I

(
[R]⊕ (v0:b, ϕ, t)

)

[R]⊕ (v0:b, ϕ1 UI ϕ2, τ) := sup
t∈τ+I

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

min

⎛
⎜⎜⎜⎝

sup
t′∈[τ,t)

[R]⊕ (v0:b, ϕ1, t
′)

inf
t′∈[τ,t)

[R]L(v0:b, ϕ1, t
′)

[R]L(v0:b, ϕ2, t)

⎞
⎟⎟⎟⎠

min

(
inf

t′∈[τ,t)
[R]L(v0:b, ϕ1, t

′)

[R]⊕ (v0:b, ϕ2, t)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Intuitively, a violation causation distance [R]� (v0:b, ϕ, τ) is the spatial distance
of the signal value v0:b(b), at the current instant b, from turning b into a violation
causation instant such that b is relevant to the violation of ϕ (also applied to
the satisfaction case dually). It is computed inductively on the structure of ϕ:

– Case atomic propositions α: if b = τ (i.e., at which instant α should be
evaluated), then the distance of b from being a violation causation instant is
f(v0:b(b)); otherwise, if b �= τ , despite the value of f(v0:b(b)), b can never be a
violation causation instant, according to Definition 5, because only f(v0:b(τ))
is relevant to the violation of α. Hence, the distance will be Rα

max;
– Case ¬ϕ: b is a violation causation instant for ¬ϕ if b is a satisfaction causation

instant for ϕ, so [R]� (v0:b,¬ϕ, τ) depends on [R]⊕ (v0:b, ϕ, τ);
– Case ϕ1 ∧ ϕ2: b is a violation causation instant for ϕ1 ∧ ϕ2 if b is a violation

causation instant for either ϕ1 or ϕ2, so [R]� (v0:b, ϕ1 ∧ ϕ2, τ) depends on
the minimum between [R]� (v0:b, ϕ1, τ) and [R]� (v0:b, ϕ2, τ);

Online Causation Monitoring of STL 73

QCauM

[R]

[R]⊕

Fig. 5. Quantitative causation monitor (QCauM) result for Example 1

– Case ϕ1 ∨ ϕ2: b is a violation causation instant for ϕ1 ∨ ϕ2 if, first, ϕ1 ∨ ϕ2

has been violated at b, and second, b is the violation causation instant for
either ϕ1 or ϕ2. Hence, [R]� (v0:b, ϕ1 ∨ ϕ2, τ) depend on both the violation
status (measured by [R]U(v0:b, ϕi, τ)) of one sub-formula and the violation
causation distance of the other sub-formula;

– Case �Iϕ: b is a violation causation instant for �Iϕ if b is the violation
causation instant for the sub-formula ϕ evaluated at any instant in τ + I.
So, [R]� (v0:b,�Iϕ, τ) depends on the infimum of the violation causation
distances regarding ϕ evaluated at the instants in τ + I;

– Case �Iϕ: b is a violation causation instant for �Iϕ if, first, �Iϕ has been
violated at b, and second, b is a violation causation instant for the sub-formula
ϕ evaluated at any instant in τ + I. So, [R]� (v0:b,�Iϕ, τ) depends on both
the violation status of �Iϕ (measured by [R]U(v0:b,�Iϕ, τ)) and the infimum
of the violation causation distances of ϕ evaluated in τ + I.

– Case ϕ1UI ϕ2: [R]� (v0:b, ϕ1 UI ϕ2, τ) depends on, first, the violation status of
the whole formula (measured by [R]U(v0:b, ϕ1UI ϕ2, τ)), and also, the infimum
of the violation causation distances regarding the evaluation of “ϕ1 holds until
ϕ2” at each instant in τ + I.

Similarly, we can also compute the satisfaction causation distance. We use Exam-
ple 3 to illustrate the quantitative causation monitor for the signals in Example 1.

Example 3. Consider the quantitative causation monitor for the signals in
Example 1. At b = 30, the violation causation distance is computed as:

[R]�(v0:30,ϕ,0)= inf
t∈[0,100]

[R]�
(
v0:30,ϕ

′,t
)

= inf
t∈[0,100]

⎛

⎝min

⎛

⎝
max

(
[R]�(v0:30,ϕ1,t),[R]U(v0:30,ϕ2,t)

)
,

max
(
[R]U(v0:30,ϕ1,t),[R]�(v0:30,ϕ2,t)

)

⎞

⎠

⎞

⎠

= inf
t∈[0,100]

⎛

⎜⎜
⎜
⎜
⎝

min

⎛

⎜⎜
⎜
⎜
⎝

max

(

−[R]⊕(v0:30,α1,t), sup
t′∈t+[0,5]

[R]U(v0:30,α2,t
′)

)

max

(

−[R]L(v0:30,α1,t),max

(
[R]U(v0:30,ϕ2,t),

inf
t′∈t+[0,5]

[R]�
(
v0:30,α2,t

′)
))

⎞

⎟⎟
⎟
⎟
⎠

⎞

⎟⎟
⎟
⎟
⎠

=max

(
−[R]L(v0:30,α1,25),[R]U(v0:30,ϕ2,25), inf

t′∈[25,30]
[R]�

(
v0:30,α2,t

′)
)

=max(−3,−3,−5)=−3.

74 Z. Zhang et al.

Similarly, at b = 35, the violation causation distance [R]� (v0:35, ϕ, 0) = 5.
See the result of QCauM shown in Fig. 5. Compared to ClaM in Fig. 2, it is evident
that QCauM provides much more information about the system evolution, e.g.,
it can report that, in the interval [15, 20], the system satisfies the specification
“more”, as the speed decreases. �

By using the violation and satisfaction causation distances reported by QCauM
jointly, we can infer the verdict of BCauM, as indicated by Theorem 2.

Theorem 2. The quantitative causation monitor QCauM in Definition 7 refines
the Boolean causation monitor BCauM in Definition 6, in the sense that:

– if [R]� (v0:b, ϕ, τ) < 0, it implies M (v0:b, ϕ, τ) = �;
– if [R]⊕ (v0:b, ϕ, τ) > 0, it implies M (v0:b, ϕ, τ) = ⊕;
– if [R]� (v0:b, ϕ, τ) > 0 and [R]⊕ (v0:b, ϕ, τ) < 0, it implies M (v0:b, ϕ, τ) = �.

Proof. The proof is generally based on mathematical induction. First, by Def-
inition 7 and Definition 5, it is straightforward that Theorem 2 holds for the
atomic propositions.

Then, assuming that Theorem 2 holds for an arbitrary formula ϕ, we prove
that Theorem 2 also holds for the composite formula ϕ′ constructed by applying
STL operators to ϕ. The complete proof for all three cases is shown in the full
version [38].

As an instance, we show the proof for the first case with ϕ′ = ϕ1 ∨ ϕ2, i.e.,
we prove that [R]� (v0:b, ϕ1 ∨ ϕ2, τ) < 0 implies M (v0:b, ϕ1 ∨ ϕ2, τ) = �.

[R]� (v0:b, ϕ1 ∨ ϕ2, τ) < 0

⇒ max
(
[R]� (v0:b, ϕ1, τ) , [R]U(v0:b, ϕ2, τ)

)
< 0 (by Def. 7 and w.l.o.g.)

⇒[R]� (v0:b, ϕ1, τ) < 0 (by def. of max)

⇒M (v0:b, ϕ1, τ) = � (by assumption)

⇒E�(v0:b, ϕ1 ∨ ϕ2, τ) ⊇ E�(v0:b, ϕ1, τ) (by Def. 5 and Thm. 1)

⇒∃α. 〈α, b〉 ∈ E�(v0:b, ϕ1 ∨ ϕ2, τ) (by def. of ⊇)

⇒M (v0:b, ϕ1 ∨ ϕ2, τ) = � (by Def. 6)

��
The relation between the quantitative causation monitor QCauM and the

Boolean causation monitor BCauM, disclosed by Theorem 2, can be visualized
by the comparison between Fig. 5 and Fig. 4. Indeed, when the violation causa-
tion distance reported by QCauM is negative in Fig. 5, BCauM reports � in Fig. 4.

Next, we present Theorem 3, which states the relation between the quanti-
tative causation monitor QCauM and the classic quantitative monitor ClaM.

Theorem 3. The quantitative causation monitor QCauM in Definition 7 refines
the classic quantitative online monitor ClaM in Definition 4, in the sense that,
the monitoring results of ClaM can be reconstructed from the results of QCauM,
as follows:

Online Causation Monitoring of STL 75

[R]U(v0:b, ϕ, τ) = inf
t∈[0,b]

[R]� (v0:t, ϕ, τ) (1)

[R]L(v0:b, ϕ, τ) = sup
t∈[0,b]

[R]⊕ (v0:t, ϕ, τ) (2)

Proof. The proof is generally based on mathematical induction. First, by Def-
inition 7 and Definition 4, it is straightforward that Theorem 3 holds for the
atomic propositions.

Then, we make the global assumption that Theorem 3 holds for an arbitrary
formula ϕ, i.e., both the two cases inft∈[0,b] [R]� (v0:t, ϕ, τ) = [R]U(v0:b, ϕ, τ)
and supt∈[0,b] [R]⊕ (v0:t, ϕ, τ) = [R]L(v0:b, ϕ, τ) hold. Based on this assumption,
we prove that Theorem 3 also holds for the composite formula ϕ′ constructed
by applying STL operators to ϕ.

As an instance, we prove inft∈[0,b] [R]� (v0:t, ϕ
′, τ) = [R]U(v0:b, ϕ

′, τ) with
ϕ′ = ϕ1 ∨ ϕ2 as follows. The complete proof is presented in the full version [38].

First, if b = τ , it holds that:

inf
t∈[0,b]

[R]�(v0:t,ϕ1∨ϕ2,τ)=[R]�(v0:τ ,ϕ1∨ϕ2,τ)

=max
(
[R]U(v0:τ ,ϕ1,τ),[R]U(v0:τ ,ϕ2,τ)

)
(by Def. 7 and global assump.)

=[R]U(v0:b,ϕ1∨ϕ2,τ) (by Def. 4)

Then, we make a local assumption that, given an arbitrary b, it holds that
inft∈[0,b] [R]� (v0:t, ϕ1 ∨ ϕ2, τ) = [R]U(v0:b, ϕ1 ∨ ϕ2, τ). We prove that, for b′
which is the next sampling point to b, it holds that,

inf
t∈[0,b′]

[R]�(v0:t,ϕ1∨ϕ2,τ)

=min
(
[R]U(v0:b,ϕ1∨ϕ2,τ),[R]�(v0:b′ ,ϕ1∨ϕ2,τ)

)
(by local assump.)

=min

⎛

⎜
⎜
⎜
⎝

max
(
[R]U(v0:b,ϕ1,τ),[R]U(v0:b,ϕ2,τ)

)
,

max
(
[R]�(v0:b′ ,ϕ1,τ),[R]U(v0:b′ ,ϕ2,τ)

)
,

max
(
[R]U(v0:b′ ,ϕ1,τ),[R]�(v0:b′ ,ϕ2,τ)

)

⎞

⎟
⎟
⎟
⎠

(by Defs. 4 & 7)

=min

⎛

⎜
⎜⎜
⎜
⎜
⎝

max
(
[R]U(v0:b,ϕ1,τ),[R]U(v0:b,ϕ2,τ)

)
,

max
(
[R]�(v0:b′ ,ϕ1,τ),[R]U(v0:b,ϕ2,τ)

)
,

max
(
[R]U(v0:b,ϕ1,τ),[R]�(v0:b′ ,ϕ2,τ)

)
,

max
(
[R]�(v0:b′ ,ϕ1,τ),[R]�(v0:b′ ,ϕ2,τ)

)

⎞

⎟
⎟⎟
⎟
⎟
⎠

(by global assump.)

=max

⎛

⎝
min

(
[R]U(v0:b,ϕ1,τ),[R]�(v0:b′ ,ϕ1,τ)

)
,

min
(
[R]U(v0:b,ϕ2,τ),[R]�(v0:b′ ,ϕ2,τ)

)

⎞

⎠ (by def. of min, max)

=max
(
[R]U(v0:b′ ,ϕ1,τ),[R]U(v0:b′ ,ϕ2,τ)

)
(by global assump.)

=[R]U(v0:b′ ,ϕ1∨ϕ2,τ) (by Def. 4)

��

76 Z. Zhang et al.

Fig. 6. Refinement among STL monitors

Theorem 3 shows that the result [R]U(v0:b, ϕ, τ) of ClaM can be derived from
the result of QCauM by applying inft∈[0,b] [R]� (v0:b, ϕ, t). For instance, comparing
the results of QCauM in Fig. 5 and the results of ClaM in Fig. 2, we can find that
the results in Fig. 2 can be reconstructed by using the results in Fig. 5.

Remark 1. Figure 6 shows the refinement relations between the six STL mon-
itoring approaches. The left column lists the offline monitoring approaches
derived directly from the Boolean and quantitative semantics of STL respec-
tively. The middle column shows the classic online monitoring approaches. Our
two causation monitors, namely BCauM and QCauM, are given in the column on
the right. Given a pair (A,B) of the approaches, A ← B indicates that the app-
roach B refines the approach A, in the sense that B can deliver more information
than A, and the information delivered by A can be derived from the informa-
tion delivered by B. It is clear that the refinement relation in the figure ensures
transitivity. Note that blue arrows are contributed by this paper. As shown by
Fig. 6, the relation between BCauM and QCauM is analogous to that between the
Boolean and quantitative semantics of STL.

5 Experimental Evaluation

We implemented a tool3 for our two causation monitors. It is built on the top of
Breach [15], a widely used tool for monitoring and testing of hybrid systems [18].
Being consistent with Breach, the monitors target the output signals given by
Simulink models, as an additional block. Experiments were executed on a MacOS
machine, 1.4 GHz Quad-Core Intel Core-i5, 8 GB RAM, using Breach v1.10.0.

5.1 Experiment Setting

Benchmarks. We perform the experiments on the following two benchmarks.
Abstract Fuel Control (AFC) is a powertrain control system from Toyota [27],
which has been widely used as a benchmark in the hybrid system community [18–
20]. The system outputs the air-to-fuel ratio AF, and requires that the deviation
of AF from its reference value AFref should not be too large. Specifically, we
consider the following properties from different perspectives:

– ϕAFC
1 := �[10,50](|AF − AFref| < 0.1): the deviation should always be small;

3 Available at https://github.com/choshina/STL-causation-monitor, and Zenodo [39].

https://github.com/choshina/STL-causation-monitor

Online Causation Monitoring of STL 77

– ϕAFC
2 := �[10,48.5]�[0,1.5] (|AF − AFref| < 0.08): a large deviation should not

last for too long time;
– ϕAFC

3 := �[10,48](|AF−AFref| > 0.08 → �[0,2](|AF−AFref| < 0.08)): whenever
the deviation is too large, it should recover to the normal status soon.

Automatic transmission (AT) is a widely-used benchmark [18–20], implementing
the transmission controller of an automotive system. It outputs the gear, speed
and RPM of the vehicle, which are required to satisfy this safety requirement:

– ϕAT
1 := �[0,27](speed > 50 → �[1,3](RPM < 3000)): whenever the speed is

higher than 50, the RPM should be below 3000 in three time units.

Baseline and Experimental Design. In order to assess our two proposed
monitors (the Boolean causation monitor BCauM in Definition 6, and the quan-
titative causation monitor QCauM in Definition 7), we compare them with two
baseline monitors: the classic quantitative robustness monitor ClaM (see Defi-
nition 4); and the state-of-the-art approach monitor with reset ResM [40], that,
once the signal violates the specification, resets at that point and forgets the
previous partial signal.

Given a model and a specification, we generate input signals by randomly
sampling in the input space and feed them to the model. The online output
signals are given as inputs to the monitors and the monitoring results are col-
lected. We generate 10 input signals for each model and specification. To account
for fluctuation of monitoring times in different repetitions4, for each signal, the
experiment has been executed 10 times, and we report average results.

5.2 Evaluation

Qualitative Evaluation. We here show the type of information provided by
the different monitors. As an example, Fig. 7 reports, for two specifications of
the two models, the system output signal (in the top of the two sub-figures), and
the monitoring results of the compared monitors. We notice that signals of both
models (top plots) violate the corresponding specifications in multiple points.
Let us consider monitoring results of ϕAFC

1 ; similar observations apply to ϕAT
1 .

When using the ClaM, only the first violation right after time 15 is detected
(the upper bound of robustness becomes negative); after that, the upper bound
remains constant, without reporting that the system recovers from violation at
around time 17, and that the specification is violated again four more times.

Instead, we notice that the monitor with reset ResM is able to detect all
the violations (as the upper bound becomes greater than 0 when the violation
episode ends), but it does not properly report the margin of robustness; indeed,
during the violation episodes, it reports a constant value of around −0.4 for the
upper bound, but the system violates the specification with different degrees of
severity in these intervals; in a similar way, when the specification is satisfied
around after time 17, the upper bound is just above 0, but actually the system
4 Note that only the monitoring time changes across different repetitions; monitoring

results are instead always the same, as monitoring is deterministic for a given signal.

78 Z. Zhang et al.

(a) ϕAFC
1 and signal #4 (b) ϕAT

1 and signal #8

Fig. 7. Examples of the information provided by the different monitors

Table 1. Experimental results – Average (avg.) and standard deviation (stdv.) of
monitoring and simulation times (ms)

ClaM ResM BCauM QCauM

monitor total monitor total monitor total monitor total

avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv.

ϕAFC
1 14.6 0.1 982.8 3.5 8.8 2.4 981.3 6.7 36.9 5.4 1009.7 16.5 15.1 0.1 981.9 4.4

ϕAFC
2 26.8 0.2 998.5 9.0 20.2 5.2 988.0 9.9 50.4 22.4 1023.9 25.1 27.4 0.2 999.5 8.2

ϕAFC
3 42.0 0.3 1016.5 8.9 45.5 4.8 1016.9 7.5 48.4 6.2 1021.2 7.9 81.0 1.2 1060.1 5.3

ϕAT
1 16.7 0.2 966.0 2.6 24.0 17.0 980.4 24.2 96.1 82.6 1065.2 93.4 31.2 0.6 985.0 7.5

satisfies the specification with different margins. As a consequence, ResM provides
sharp changes of the robustness upper bound that do not faithfully reflect the
system evolution.

We notice that the Boolean causation monitor BCauM only reports informa-
tion about the violation episodes, but not on the degree of violation/satisfaction.
Instead, the quantitative causation monitor QCauM is able to provide a very
detailed information, not only reporting all the violation episodes, but also prop-
erly characterizing the degree with which the specification is violated or satisfied.
Indeed, in QCauM, the violation causation distance smoothly increases from vio-
lation to satisfaction, so faithfully reflecting the system evolution.

Quantitative Assessment of Monitoring Time. We discuss the computa-
tion cost of doing the monitoring.

Online Causation Monitoring of STL 79

Table 2. Experimental results of the four monitoring approaches – Monitoring time
(ms) – ΔA = (QCauM−A)/A

ϕAFC
1 ClaM ResM BCauM QCauM

QCauM stat. (%)

ΔClaM ΔResM ΔBCauM

#1 14.5 8.2 37.4 15.2 4.8 85.4 −59.4

#2 14.5 8.1 39.9 15.0 3.4 85.2 −62.4

#3 14.8 8.0 38.2 15.0 1.4 87.5 −60.7

#4 14.7 8.5 38.8 15.3 4.1 80.0 −60.6

#5 14.6 8.0 37.3 14.9 2.1 86.3 −60.1

#6 14.6 8.2 37.6 15.1 3.4 84.1 −59.8

#7 14.6 15.5 21.6 15.0 2.7 -3.2 −30.6

#8 14.7 7.9 39.5 15.0 2.0 89.9 −62.0

#9 14.6 7.8 39.9 15.1 3.4 93.6 −62.2

#10 14.5 8.0 38.4 15.1 4.1 88.8 −60.7

ϕAFC
2 ClaM ResM BCauM QCauM

QCauM stat. (%)

ΔClaM ΔResM ΔBCauM

#1 26.8 19.8 45.9 27.4 2.2 38.4 −40.3

#2 27.1 27.3 27.6 27.8 2.6 1.8 0.7

#3 26.6 26.2 30.0 27.5 3.4 5.0 −8.3

#4 26.6 14.2 107.2 27.0 1.5 90.1 −74.8

#5 26.7 15.8 50.9 27.3 2.2 72.8 −46.4

#6 26.6 15.8 56.4 27.2 2.3 72.2 −51.8

#7 26.8 25.4 33.5 27.5 2.6 8.3 −17.9

#8 26.9 17.0 51.9 27.4 1.9 61.2 −47.2

#9 27.1 25.1 50.9 27.6 1.8 10.0 −45.8

#10 26.7 15.8 50.1 27.3 2.2 72.8 −45.5

ϕAFC
3 ClaM ResM BCauM QCauM

QCauM stat. (%)

ΔClaM ΔResM ΔBCauM

#1 42.1 49.2 49.1 81.2 92.9 65.0 65.4

#2 42.5 42.2 42.2 82.1 93.2 94.5 94.5

#3 41.8 48.8 48.8 81.5 95.0 67.0 67.0

#4 42.0 34.9 63.4 78.8 87.6 125.8 24.3

#5 41.7 48.9 48.7 79.6 90.9 62.8 63.4

#6 41.7 48.5 48.7 79.7 91.1 64.3 63.7

#7 42.3 42.7 42.5 81.9 93.6 91.8 92.7

#8 42.1 42.2 42.0 81.6 93.8 93.4 94.3

#9 42.3 49.1 49.3 82.6 95.3 68.2 67.5

#10 41.6 48.6 49.1 80.8 94.2 66.3 64.6

ϕAT
1 ClaM ResM BCauM QCauM

QCauM stat. (%)

ΔClaM ΔResM ΔBCauM

#1 16.9 30.7 29.6 32.1 89.9 4.6 8.4

#2 16.7 17.4 17.4 31.9 91.0 83.3 83.3

#3 16.7 16.8 253.4 31.0 85.6 84.5 −87.8

#4 16.9 69.7 70.2 31.8 88.2 −54.4 −54.7

#5 16.8 19.6 135.9 31.0 84.5 58.2 −77.2

#6 16.5 26.5 200.5 30.2 83.0 14.0 −84.9

#7 16.6 14.6 37.9 31.0 86.7 112.3 −18.2

#8 16.8 16.4 143.8 31.4 86.9 91.5 −78.2

#9 16.3 13.9 38.6 31.0 90.2 123.0 −19.7

#10 16.5 14.2 33.2 30.9 87.3 117.6 −6.9

In Table 1, we observe that, for all the monitors, the monitor ing time is much
lower than the total time (system execution + monitoring). It shows that, for
this type of systems, the monitoring overhead is negligible. Still, we compare the
execution costs for the different monitors. Table 2 reports the monitoring times
of all the monitors for each specification and each signal. Moreover, it reports
the percentage difference between the quantitative causation monitor QCauM (the
most informative one) and the other monitors.

We first observe that ResM and BCauM have, for the same specification,
high variance of the monitoring times across different signals. ClaM and QCauM,
instead, provide very consistent monitoring times. This is confirmed by the stan-
dard deviation results in Table 1. The consistent monitoring cost of QCauM is a
good property, as the designers of the monitor can precisely forecast how long
the monitoring will take, and design the overall system accordingly.

We observe that QCauM is negligibly slower than ClaM for ϕAFC
1 and ϕAFC

2 , and
at most twice slower for the other two specifications. This additional monitoring
cost is acceptable, given the additional information provided by QCauM. Com-
pared to ResM, QCauM is usually slower (at most around the double); also in this
case, as QCauM provides more information than ResM, the cost is acceptable.

Compared to the Boolean causation monitor BCauM, QCauM is usually faster,
as it does not have to collect epochs, which is a costly operation. However, we
observe that it is slower in ϕAFC

3 , because, in this specification, most of the signals
do not violate it (and so also BCauM does not collect epochs in this case).

80 Z. Zhang et al.

To conclude, QCauM is a monitor able to provide much more information that
exiting monitors, with an acceptable overhead in terms of monitoring time.

6 Related Work

Monitoring of STL. Monitoring can be performed either offline or online.
Offline monitoring [16,30,33] targets complete traces and returns either true or
false. In contrast, online monitoring deals with the partial traces, and thus a
three-valued semantics was introduced for LTL monitoring [7,8], and in further
for MTL and STL qualitative online monitoring [24,31], to handle the situation
where neither of the conclusiveness can be made. In usual, the quantitative online
monitoring provides a quantitative value or a robust satisfaction interval [12–
14,25,26]. Based on them, several tools have been developed, e.g., AMT [32,33],
Breach [15], S-Taliro [1], etc. We refer to the survey [3] for comprehensive intro-
duction. Recently, in [35], Qin and Deshmukh propose clairvoyant monitoring to
forecast future signal values and give probabilistic bounds on the specification
validity. In [2], an online monitoring is proposed for perception systems with
Spatio-temporal Perception Logic [23].

Monotonicity Issue. However, most of these works do not handle the mono-
tonicity issue stated in this paper. In [10], Cimatti et al. propose an assumption-
based monitoring framework for LTL. It takes the user expertise into account and
allows the monitor resettable, in the sense that it can restart from any discrete
time point. In [37], a recovery feature is introduced in their online monitor [25].
However, the technique is an application-specific approach, rather than a general
framework. In [40], a reset mechanism is proposed for STL online monitor. How-
ever, as experimentally evaluated in Sect. 5, it essentially provides a solution
for the Boolean semantics and still holds monotonicity between two resetting
points.

Signal Diagnostics. Signal diagnostics [5,22,32] is originally used in an offline
manner, for the purpose of fault localization and system debugging. In [22], the
authors propose an approach to automatically address the single evaluations
(namely, epochs) that account for the satisfaction/violation of an STL specifi-
cation, for a complete trace. This information can be further used as a reference
for detecting the root cause of the bugs in the CPS systems [5,6,32]. The online
version of signal diagnostics, which is the basis of our Boolean causation moni-
tor, is introduced in [40]. However, we show in Sect. 5 that the monitor based on
this technique is often costly, and not able to deliver the quantitative runtime
information compared to the quantitative causation monitor.

7 Conclusion and Future Work

In this paper, we propose a new way of doing STL monitoring based on causa-
tion that is able to provide more information than classic monitoring based on

Online Causation Monitoring of STL 81

STL robustness. Concretely, we propose two causation monitors, namely BCauM
and QCauM. In particular, BCauM intuitively explains the concept of “causation”
monitoring, and thus paves the path to QCauM that is more practically valuable.
We further prove the relation between the proposed causation monitors and the
classic ones.

As future work, we plan to improve the efficiency the monitoring, by avoiding
some unnecessary computations for some instants. Moreover, we plan to apply
it to the monitoring of real-world systems.

References

1. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

2. Balakrishnan, A., Deshmukh, J., Hoxha, B., Yamaguchi, T., Fainekos, G.: Perce-
Mon: online monitoring for perception systems. In: Feng, L., Fisman, D. (eds.) RV
2021. LNCS, vol. 12974, pp. 297–308. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-88494-9 18

3. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

4. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol.
10457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

5. Bartocci, E., Ferrère, T., Manjunath, N., Ničković, D.: Localizing faults in
Simulink/Stateflow models with STL. In: HSCC 2018, pp. 197–206. ACM (2018).
https://doi.org/10.1145/3178126.3178131

6. Bartocci, E., Manjunath, N., Mariani, L., Mateis, C., Ničković, D.: CPSDebug:
automatic failure explanation in CPS models. Int. J. Softw. Tools Technol. Transfer
23(5), 783–796 (2020). https://doi.org/10.1007/s10009-020-00599-4

7. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836 25

8. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 1–64 (2011). https://doi.org/10.1145/
2000799.2000800

9. Ciccone, L., Dagnino, F., Ferrando, A.: Ain’t no stopping us monitoring now. arXiv
preprint arXiv:2211.11544 (2022)

10. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification with
partial observability and resets. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019.
LNCS, vol. 11757, pp. 165–184. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-32079-9 10

11. Decker, N., Leucker, M., Thoma, D.: Impartiality and anticipation for monitoring of
visibly context-free properties. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS,
vol. 8174, pp. 183–200. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40787-1 11

https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-030-88494-9_18
https://doi.org/10.1007/978-3-030-88494-9_18
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1145/3178126.3178131
https://doi.org/10.1007/s10009-020-00599-4
https://doi.org/10.1007/11944836_25
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
http://arxiv.org/abs/2211.11544
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-642-40787-1_11
https://doi.org/10.1007/978-3-642-40787-1_11

82 Z. Zhang et al.

12. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30
(2017). https://doi.org/10.1007/s10703-017-0286-7

13. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3 19

14. Dokhanchi, A., Hoxha, B., Fainekos, G.: Metric interval temporal logic specifica-
tion elicitation and debugging. In: MEMOCODE 2015, pp. 70–79. IEEE (2015).
https://doi.org/10.1109/MEMCOD.2015.7340472

15. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

16. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Cham
(2013). https://doi.org/10.1007/978-3-642-39799-8 19

17. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

18. Ernst, G., et al.: ARCH-COMP 2021 category report: falsification with valida-
tion of results. In: Frehse, G., Althoff, M. (eds.) 8th International Workshop on
Applied Verification of Continuous and Hybrid Systems (ARCH21). EPiC Series
in Computing, vol. 80, pp. 133–152. EasyChair (2021). https://doi.org/10.29007/
xwl1

19. Ernst, G., et al.: ARCH-COMP 2020 category report: falsification. In: 7th Inter-
national Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH20). EPiC Series in Computing, vol. 74, pp. 140–152. EasyChair (2020).
https://doi.org/10.29007/trr1

20. Ernst, G., et al.: ARCH-COMP 2022 category report: falsification with unbounded
resources. In: Frehse, G., Althoff, M., Schoitsch, E., Guiochet, J. (eds.) Proceedings
of 9th International Workshop on Applied Verification of Continuous and Hybrid
Systems (ARCH22). EPiC Series in Computing, vol. 90, pp. 204–221. EasyChair
(2022). https://doi.org/10.29007/fhnk

21. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009).
https://doi.org/10.1016/j.tcs.2009.06.021

22. Ferrère, T., Maler, O., Ničković, D.: Trace diagnostics using temporal implicants.
In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp.
241–258. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24953-7 20

23. Hekmatnejad, M., Hoxha, B., Deshmukh, J.V., Yang, Y., Fainekos, G.: Formal-
izing and evaluating requirements of perception systems for automated vehi-
cles using spatio-temporal perception logic (2022). https://doi.org/10.48550/arxiv.
2206.14372

24. Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3 15

25. Jakšić, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., Ničkovié, D.: From
signal temporal logic to FPGA monitors. In: MEMOCODE 2015, pp. 218–227.
IEEE (2015). https://doi.org/10.1109/MEMCOD.2015.7340489

https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1109/MEMCOD.2015.7340472
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.29007/xwl1
https://doi.org/10.29007/xwl1
https://doi.org/10.29007/trr1
https://doi.org/10.29007/fhnk
https://doi.org/10.1016/j.tcs.2009.06.021
https://doi.org/10.1007/978-3-319-24953-7_20
https://doi.org/10.48550/arxiv.2206.14372
https://doi.org/10.48550/arxiv.2206.14372
https://doi.org/10.1007/978-3-319-11164-3_15
https://doi.org/10.1109/MEMCOD.2015.7340489

Online Causation Monitoring of STL 83

26. Jakšić, S., Bartocci, E., Grosu, R., Nguyen, T., Ničković, D.: Quantitative moni-
toring of STL with edit distance. Formal Methods Syst. Des. 53(1), 83–112 (2018).
https://doi.org/10.1007/s10703-018-0319-x

27. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: HSCC 2014, pp. 253–262. ACM (2014). https://doi.
org/10.1145/2562059.2562140

28. Koymans, R.: Specifying real-time properties with metric temporal logic. Real
Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/BF01995674

29. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

30. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

31. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits.
Int. J. Softw. Tools Technol. Transf. 15(3), 247–268 (2013). https://doi.org/10.
1007/s10009-012-0247-9

32. Ničković, D., Lebeltel, O., Maler, O., Ferrère, T., Ulus, D.: AMT 2.0: qualitative
and quantitative trace analysis with extended signal temporal logic. Int. J. Softw.
Tools Technol. Transfer 22(6), 741–758 (2020). https://doi.org/10.1007/s10009-
020-00582-z

33. Nickovic, D., Maler, O.: AMT: a property-based monitoring tool for analog sys-
tems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol.
4763, pp. 304–319. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75454-1 22

34. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE
(1977). https://doi.org/10.1109/SFCS.1977.32

35. Qin, X., Deshmukh, J.V.: Clairvoyant monitoring for signal temporal logic. In:
Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 178–195.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8 11

36. Sánchez, C., et al.: A survey of challenges for runtime verification from advanced
application domains (beyond software). Formal Methods Syst. Des. 54(3), 279–335
(2019). https://doi.org/10.1007/s10703-019-00337-w

37. Selyunin, K., et al.: Runtime monitoring with recovery of the SENT communication
protocol. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
336–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 17

38. Zhang, Z., An, J., Arcaini, P., Hasuo, I.: Online causation monitoring of signal
temporal logic. arXiv (2023). https://doi.org/10.48550/arXiv.2305.17754

39. Zhang, Z., An, J., Arcaini, P., Hasuo, I.: Online causation monitoring of signal
temporal logic (Artifact). Zenodo (2023). https://doi.org/10.5281/zenodo.7923888

40. Zhang, Z., Arcaini, P., Xie, X.: Online reset for signal temporal logic monitoring.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(11), 4421–4432 (2022).
https://doi.org/10.1109/TCAD.2022.3197693

https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1145/2562059.2562140
https://doi.org/10.1145/2562059.2562140
https://doi.org/10.1007/BF01995674
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-012-0247-9
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/s10009-020-00582-z
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1007/978-3-540-75454-1_22
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-030-57628-8_11
https://doi.org/10.1007/s10703-019-00337-w
https://doi.org/10.1007/978-3-319-63387-9_17
https://doi.org/10.48550/arXiv.2305.17754
https://doi.org/10.5281/zenodo.7923888
https://doi.org/10.1109/TCAD.2022.3197693

84 Z. Zhang et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Online Causation Monitoring of Signal Temporal Logic
	1 Introduction
	2 Preliminaries
	2.1 Signal Temporal Logic
	2.2 Classic Online Monitoring of STL

	3 Boolean Causation Online Monitor
	4 Quantitative Causation Online Monitor
	5 Experimental Evaluation
	5.1 Experiment Setting
	5.2 Evaluation

	6 Related Work
	7 Conclusion and Future Work
	References

