
Synthesizing Permissive Winning Strategy
Templates for Parity Games

Ashwani Anand, Satya Prakash Nayak(B), and
Anne-Kathrin Schmuck

Max Planck Institute for Software Systems, Kaiserslautern,
Germany

{ashwani,sanayak,akschmuck}@mpi-sws.org

Abstract. We present a novel method to compute permissive winning
strategies in two-player games over finite graphs with ω-regular winning
conditions. Given a game graph G and a parity winning condition Φ,
we compute a winning strategy template Ψ that collects an infinite num-
ber of winning strategies for objective Φ in a concise data structure. We
use this new representation of sets of winning strategies to tackle two
problems arising from applications of two-player games in the context
of cyber-physical system design – (i) incremental synthesis, i.e., adapt-
ing strategies to newly arriving, additional ω-regular objectives Φ′, and
(ii) fault-tolerant control, i.e., adapting strategies to the occasional or
persistent unavailability of actuators. The main features of our strat-
egy templates – which we utilize for solving these challenges – are their
easy computability, adaptability, and compositionality. For incremental
synthesis, we empirically show on a large set of benchmarks that our
technique vastly outperforms existing approaches if the number of added
specifications increases. While our method is not complete, our prototype
implementation returns the full winning region in all 1400 benchmark
instances, i.e. handling a large problem class efficiently in practice.

1 Introduction

Two-player ω-regular games on finite graphs are an established modeling and
solution formalism for many challenging problems in the context of correct-by-
construction cyber-physical system (CPS) design [2,7,39]. Here, control software
actuating a technical system “plays” against the physical environment. The win-
ning strategy of the system player in this two-player game results in software
which ensures that the controlled technical system fulfills a given temporal speci-
fication for any (possible) event or input sequence generated by the environment.
Examples include warehouse robot coordination [36], reconfigurable manufac-
turing systems [26], and adaptive cruise control [33]. In these applications, the

S. P. Nayak and A.-K. Schmuck are supported by the DFG project 389792660 TRR
248–CPEC.
A. Anand and A.-K. Schmuck are supported by the DFG project SCHM 3541/1-1.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13964, pp. 436–458, 2023.
https://doi.org/10.1007/978-3-031-37706-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37706-8_22&domain=pdf
https://doi.org/10.1007/978-3-031-37706-8_22

Synthesizing Permissive Winning Strategy Templates for Parity Games 437

Fig. 1. Experimental results over 1400 generalized parity games comparing the per-
formance of our tool PeSTel against the state-of-the-art generalized parity solver
GenZiel [16]. Data points give the average execution time (in ms) over all instances
with the same number of parity objectives. Left: all objectives are given upfront. Right:
objectives are added one-by-one. See Sect. 6 for more details on those experiments.

technical system under control, as well as its requirements, are developing and
changing during the design process. It is therefore desirable to allow for maintain-
able and adaptable control software. This, in turn, requires solution algorithms
for two-player ω-regular games which allow for this adaptability.

This paper addresses this challenge by providing a new algorithm to efficiently
compute permissive winning strategy templates in parity games which enable
rich strategy adaptations. Given a game graph G = (V,E) and an objective Φ
a winning strategy template Ψ characterizes the winning region W ⊆ V along
with three types of local edge conditions – a safety, a co-live, and a live-group
template. The conjunction of these basic templates allows us to capture infinitely
many winning strategies over G w.r.t. Φ in a simple data structure that is both
(i) easy to obtain during synthesis, and (ii) easy to adapt and compose.

We showcase the usefulness of permissive winning strategy templates in the
context of CPS design by two application scenarios: (i) incremental synthesis,
where strategies need to be adapted to newly arriving additional ω-regular objec-
tives Φ′, and (ii) fault-tolerant control, where strategies need to be adapted to
the occasional or persistent unavailability of actuators, i.e., system player edges.

We have implemented our algorithms in a prototype tool PeSTel and run it
on more than 1400 benchmarks adapted from the SYNTCOMP benchmark suite
[21]. These experiments show that our class of templates effectively avoids re-
computations for the required strategy adaptations. For incremental synthesis, our
experimental results are previewed in Fig. 1, where we compare PeSTel against
the state-of-the-art solverGenZiel [16] for generalized parity objectives, i.e., finite
conjunction of parity objectives. We see that PeSTel is as efficient as GenZiel

whenever all conjuncts of the objective are given up-front (Fig. 1(left)) - even out-
performing it in more than 90% of the instances. Whenever conjuncts of the objec-
tive arriveone at a time,PeSTel outperforms the existing approaches significantly
if the number of objectives increases (Fig. 1(right)). This shows the potential of
PeSTel towards more adaptable and maintainable control software for CPS.

438 A. Anand et al.

a b

c d e

f
Φ1 = ¬{f}
Φ2 = {c, d}
Φ3 = ¬{b}

⇒ Ψ1 = Ψunsafe(ede)
⇒ Ψ2 = Ψlive({eac, ead})
⇒ Ψ3 = Ψcolive(eab, edb, ede)

Fig. 2. A two-player game graph with Player 1 (squares) and Player 0 (circles) vertices,
different winning conditions Φi, and corresponding winning strategy templates Ψi.

Illustrative Example. To appreciate the simplicity and easy adaptability of
our strategy templates, consider the game graph in Fig. 2(left). The first winning
condition Φ1 requires vertex f to never be seen along a play. This can be enforced
by Player 0 from vertices W0 = {a, b, c, d} called the winning region. The safety
template Ψ1 ensures that the game always stays in W0 by forcing the edge ede to
never be taken. It is easy to see that every Player 0 strategy that follows this rule
results in plays which are winning if they start in W0. Now consider the second
winning condition Φ2 which requires vertex c or d to be seen infinitely often.
This induces the live-group template Ψ2 which requires that whenever vertex a
is seen infinitely often, either edge eac or edge ead needs to be taken infinitely
often. It is easy to see that any strategy that complies with this edge-condition
is winning for Player 0 from every vertex and there are infinitely many such
compliant winning strategies. Finally, we consider condition Φ3 requiring vertex
b to be seen only finitely often. This induces the strategy template Ψ3 which
is a co-liveness template requiring that all edges from Player 0 vertices which
unavoidably lead to b (i.e., eab, ebd, and ede) are taken only finitely often. We can
now combine all templates into a new template Ψ ′ = Ψ1 ∧ Ψ2 ∧ Ψ3 and observe
that all strategies compliant with Ψ ′ are winning for Φ′ = Φ1 ∧ Φ2 ∧ Φ3.

In addition to their compositionality, strategy templates also allow for local
strategy adaptations in case of edge unavailability faults. Consider again the
game in Fig. 2 with the objective Φ2. Suppose that Player 0 follows the strategy
π: a �→ d and d �→ a, which is compliant with Ψ2. If the edge ead becomes
unavailable, we would need to re-solve the game for the modified game graph
G′ = (V,E \ {ead}). However, given the strategy template Ψ2 we see that the
strategy π′: a �→ c and d �→ a is actually compliant with Ψ2 over G′. This allows
us to obtain a new strategy without re-solving the game.

While these examples demonstrate the potential of templates for strategy
adaptation, there exist scenarios where conflicts between templates or graph
modifications arise, which require re-computations. Our empirical results, how-
ever, show that such conflicts rarely appear in practical benchmarks. This sug-
gests that our technique can handle a large problem class efficiently in practice.
Related Work. The class of templates we use was introduced in [4] and utilized
to represent environment assumptions that enable a system to fulfill its specifi-
cations in a cooperative setting. Contrary to [4], this paper uses the same class
of templates to represent the system’s winning strategies in a zero-sum setting.

Synthesizing Permissive Winning Strategy Templates for Parity Games 439

While the computation of permissive strategies for the control of CPS is
an established concept in the field of supervisory control1 [14,42], it has also
been addressed in reactive synthesis where the considered specification class is
typically more expressive, e.g., Bernet et al. [8] introduce permissive strategies
that encompass all the behaviors of positional strategies and Neider et al. [31]
introduce permissiveness to subsume strategies that visit losing loops at most
twice. Finally, Bouyer et al. [11] take a quantitative approach to measure the
permissiveness of strategies, by minimizing the penalty of not being permissive.
However, all these approaches are not optimized towards strategy adaptation and
thereby typically fail to preserve enough behaviors to be able to effectively satisfy
subsequent objectives. A notable exception is a work by Baier et al. [23]. While
their strategy templates are more complicated and more costly to compute than
ours, they are maximally permissive (i.e., capture all winning strategies in the
game). However, when composing multiple objectives, they restrict templates
substantially which eliminates many compositional solutions that our method
retains. This results in higher computation times and lower result quality for
incremental synthesis compared to our approach. As no implementation of their
method is available, we could not compare both approaches empirically.

Even without the incremental aspect, synthesizing winning strategies for con-
junctions of ω-regular objectives is known to be a hard problem – Chatterjee
et al. [16] prove that the conjunction of even two parity objectives makes the
problem NP-complete. They provide a generalization of Zielonka’s algorithm,
called GenZiel for generalized parity objectives (i.e., finite conjunction of par-
ity objectives) which is compared to our tool PeSTel in Fig. 1. While PeSTel

is (in contrast to GenZiel) not complete—i.e., there exist realizable synthesis
problems for which PeSTel returns no solution—our prototype implementation
returns the full winning region in all 1400 benchmark instances.

Fault-tolerant control is a well-established topic in control engineering [9],
with recent emphasis on the logical control layer [19,30]. While most of this work
is conducted in the context of supervisory control, there are also some approaches
in reactive synthesis. While [29,32] considers the addition of “disturbance edges”
and synthesizes a strategy that tolerates as many of them as possible, we look
at the complementary problem, where edges, in particular system-player edges,
disappear. To the best of our knowledge, the only algorithm that is able to tackle
this problem without re-computation considers Büchi games [15]. In contrast, our
method is applicable to the more expressive class of Parity games.

2 Preliminaries

Notation. We use N to denote the set of natural numbers including zero.
Given two natural numbers a, b ∈ N with a < b, we use [a; b] to denote the
set {n ∈ N | a ≤ n ≤ b}. For any given set [a; b], we write i ∈even [a; b] and
i ∈odd [a; b] as shorthand for i ∈ [a; b] ∩ {0, 2, 4, . . .} and i ∈ [a; b] ∩ {1, 3, 5, . . .}

1 See [18,28,37] for connections between supervisory control and reactive synthesis.

440 A. Anand et al.

respectively. Given two sets A and B, a relation R ⊆ A × B, and an element
a ∈ A, we write R(a) to denote the set {b ∈ B | (a, b) ∈ R}.

Languages. Let Σ be a finite alphabet. The notation Σ∗ and Σω respectively
denote the set of finite and infinite words over Σ, and Σ∞ is equal to Σ∗ ∪ Σω.
For any word w ∈ Σ∞, wi denotes the i-th symbol in w. Given two words u ∈ Σ∗

and v ∈ Σ∞, the concatenation of u and v is written as the word uv.

Game Graphs. A game graph is a tuple G =
(
V = V 0 ·∪ V 1, E

)
where (V,E)

is a finite directed graph with vertices V and edges E, and V 0, V 1 ⊆ V form a
partition of V . Without loss of generality, we assume that for every v ∈ V there
exists v′ ∈ V s.t. (v, v′) ∈ E. A play originating at a vertex v0 is a finite or
infinite sequence of vertices ρ = v0v1 . . . ∈ V ∞.

Winning Conditions/Objectives. Given a game graph G, we consider win-
ning conditions/objectives specified using a formula Φ in linear temporal logic
(LTL) over the vertex set V , that is, we consider LTL formulas whose atomic
propositions are sets of vertices V . In this case the set of desired infinite plays
is given by the semantics of Φ which is an ω-regular language L(Φ) ⊆ V ω.
Every game graph with an arbitrary ω-regular set of desired infinite plays can
be reduced to a game graph (possibly with a different set of vertices) with an
LTL winning condition, as above. The standard definitions of ω-regular lan-
guages and LTL are omitted for brevity and can be found in standard textbooks
[6]. To simplify notation we use e = (u, v) in LTL formulas as syntactic sugar
for u ∧ ©v, with © as the LTL next operator. We further use a set of edges
E′ = {ei}i∈[0;k] as atomic proposition to denote

∨
i∈[0;k] ei.

Games and Strategies. A two-player (turn-based) game is a pair G = (G,Φ)
where G is a game graph and Φ is a winning condition over G. A strategy of
Player i, i ∈ {0, 1}, is a function πi : V ∗V i → V such that for every ρv ∈ V ∗V i

holds that πi(ρv) ∈ E(v). Given a strategy πi, we say that the play ρ = v0v1 . . .
is compliant with πi if vk−1 ∈ V i implies vk = πi(v0 . . . vk−1) for all k. We refer
to a play compliant with πi and a play compliant with both π0 and π1 as a
πi-play and a π0π1-play, respectively. We collect all plays originating in a set S
and compliant with πi, (and compliant with both π0 and π1) in the sets L(S, πi)
(and L(S, π0π1), respectively). When S = V , we drop the mention of the set
in the previous notation, and when S is singleton {v}, we simply write L(v, πi)
(and L(v, π0π1), respectively).

Winning. Given a game G = (G,Φ), a play ρ in G is winning for Player 0, if
ρ ∈ L(Φ), and it is winning for Player 1, otherwise. A strategy πi for Player i is
winning from a vertex v ∈ V if all plays compliant with πi and originating from
v are winning for Player i. We say that a vertex v ∈ V is winning for Player i,
if there exists a winning strategy πi from v. We collect all winning vertices of
Player i in the Player i winning region Wi ⊆ V . We always interpret winning
w.r.t. Player 0 if not stated otherwise.

Strategy Templates. Let π0 be a Player 0 strategy and Φ be an LTL formula.
Then we say π0 follows Φ, denoted π0 � Φ, if for all π0-plays ρ, ρ belongs to

Synthesizing Permissive Winning Strategy Templates for Parity Games 441

L(Φ), i.e. L(π0) ⊆ L(Φ). We refer to a set Ψ = {Ψ1, . . . , Ψk} of LTL formulas as
strategy templates representing the set of strategies that follows Ψ1 ∧ . . . ∧ Ψk.
We say a strategy template Ψ is winning from a vertex v for a game (G,Φ) if
every Player 0 strategy following the template Ψ is winning from v. Moreover,
we say a strategy template Ψ is winning if it is winning from every vertex in W0.
In addition, we call Ψ maximally permissive for G, if every Player 0 strategy π
which is winning in G also follows Ψ . With slight abuse of notation, we use Ψ for
the set of formulas {Ψ1, . . . , Ψk}, and the formula Ψ1 ∧ . . . ∧ Ψk, interchangeably.

Set Transformers. Let G = (V = V 0 ·∪ V 1, E) be a game graph, U ⊆ V be a
subset of vertices, and a ∈ {0, 1} be the player index. Then

upreG(U) ={v ∈ V | ∀(v, u) ∈ E. u ∈ U} (1)

cprea
G(U) ={v ∈ V a | ∃(v, u) ∈ E. u ∈ U} ∪ {v ∈ V 1−a | u ∈ upreG(U)} (2)

The universal predecessor operator upreG(U) computes the set of vertices with
all the successors in U and the controllable predecessor operator cprea

G(U) the
vertices from which Player a can force visiting U in exactly one step. In the
following, we introduce two types of attractor operators: attraG(U) that computes
the set of vertices from which Player a can force at least a single visit to U in
finitely many steps, and the universal attractor uattrG(U) that computes the set
of vertices from which both players are forced to visit U . For the following, let
pre ∈ {upre, cprea}

pre1G(U) = preG(U) ∪ U prei
G(U) = preG(pre

i−1
G (U)) ∪ prei−1

G (U) (3)

attraG(U) = ∪i≥1 cpre
a,i
G (U) uattrG(U) = ∪i≥1 upre

i
G(U) (4)

3 Computation of Winning Strategy Templates

Given a 2-player game G with an objective Φ, the goal of this section is to com-
pute a strategy template that characterizes a large class of winning strategies
of Player 0 from a set of vertices U ⊆ V in a local, permissive, and computa-
tionally efficient way. These templates are then utilized in Sect. 5.1 for computa-
tional synthesis. In particular, this section introduces three distinct template
classes—safety templates (Sect. 3.1), live-group-templates (Sect. 3.2), and co-
live-templates (Sect. 3.3) along with algorithms for their computation via safety,
Büchi, and co-Büchi games, respectively. We then turn to general parity objec-
tives which can be thought of as a sophisticated combination of Büchi and co-
Büchi games. We show in Sect. 3.4 how the three introduced templates can be
derived for a general parity objective by a suitable combination of the previ-
ously introduced algorithms for single templates. All presented algorithms have
the same worst-case computation time as the standard algorithms solving the
respective game. This shows that extracting strategy templates instead of ’nor-
mal’ strategies does not incur an additional computational cost. We prove the
soundness of the algorithms and discuss the complexities in the full version [5,
Appendix A].

442 A. Anand et al.

3.1 Safety Templates

We start the construction of strategy templates by restricting ourselves to games
with a safety objective—i.e., G = (G,Φ) with Φ := �U for some U ⊆ V . A
winning play in a safety game never leaves U ⊆ V . It is well known that such
games allow capturing all winning strategies by a simple local template which
essentially only allows Player 0 moves from winning vertices to other winning
vertices. This is formalized in our notation as a safety template as follows,

Theorem 1 ([8, Fact 7]). Let G = (G,�U) be a safety game with winning
region W0 and S = {(u, v) ∈ E | (

u ∈ V 0 ∩ W0

) ∧ (v /∈ W0)}. Then

Ψunsafe(S) := �
∧

e∈S ¬e, (5)

is a winning strategy template for the game G which is also maximally permissive.

It is easy to see that the computation of the safety template Ψunsafe(S)
reduces to computing the winning region W0 in the safety game (G,�U) and
extracting S. We refer to the edges in S as unsafe edges and we call this algorithm
computing the set S as SafetyTemplate(G,U). Note that it runs in O(m)
time, where m = |E|, as safety games are solvable in O(m) time.

3.2 Live-Group Templates

As the next step, we now move to simple liveness objectives which require a par-
ticular vertex set I ⊆ V to be seen infinitely often. Here, winning strategies need
to stay in the winning region (as before) but in addition always eventually need
to make progress towards the vertex set I. We capture this required progress by
live-group templates—given a group of edges H ⊆ E, we require that whenever
a source vertex v of an edge in H is seen infinitely often, an edge e ∈ H (not
necessarily starting at v) also needs to be taken infinitely often. This template
ensures that compliant strategies always eventually make progress towards I, as
illustrated by the following example.

Example 1. Consider the game graph in Fig. 2 where we require visiting {c, d}
infinitely often. To satisfy this objective from vertex a, Player 0 needs to not
get stuck at a, and should not visit b always (since Player 1 can force visiting
a again, and stop Player 0 from satisfying the objective). Hence, Player 0 has
to always eventually leave a and go to {c, d}. This can be captured by the live-
group {eac, ead}. Now if the play comes to a infinitely often, Player 0 will go to
either c or d infinitely often, hence satisfying the objective.

Formally, such games are called Büchi games, denoted by G = (G = (V,E), Φ)
with Φ := �♦I, for some I ⊆ V . In addition, a live-group H = {ej}j≥0 is a set
of edges ej = (sj , tj) with source vertices src(H) := {sj}j≥0. Given a set of
live-groups H = {Hi}i≥0 we define a live-group template as

Ψlive(H) :=
∧

i≥0

�♦src(Hi) =⇒ �♦Hi. (6)

Synthesizing Permissive Winning Strategy Templates for Parity Games 443

Algorithm 1. BüchiTemplate(G, I)
Input: A game graph G, and a subset of vertices I
Output: A set of unsafe edges S and a set of live-groups H
1: W0 ← Büchi(G, I); S ← SafetyTemplate(G, W0);
2: G ← G|W0 ; I ← I ∩ W0;
3: H ← ReachTemplate(G, I);
4: return (S, H)
5: procedure ReachTemplate(G, I ⊆ V)
6: H ← ∅;
7: while I �= V do
8: A ← uattrG(I); B ← cpre0G(A); H ← H ∪ {Edges(B, A)}; I ← A ∪ B;
9: return H

The live-group template says that if some vertex from the source of a live-group is
visited infinitely often, then some edge from this group should be taken infinitely
often by the following strategy.

Intuitively, winning strategy templates for Büchi games consist of a safety
template conjuncted with a live-group template. While the former enforces all
strategies to stay within the winning region W, the latter enforces progress
w.r.t. the goal set I within W. Therefore, the computation of a winning strategy
template for Büchi games reduces to the computation of the unsafe set S to
define Ψunsafe(S) in (5) and the live-group H to define Ψlive(H) in (6). We
denote by BüchiTemplate(G, I) the algorithm computing the above as detailed
in Algorithm1. The algorithm uses some new notations that we define here.
Here, the function Büchi solves a Büchi game and returns the winning region
(e.g., using the standard algorithm from [17]), Edges(X,Y) = {(u, v) ∈ E |
u ∈ X, v ∈ Y }, is the set of edges between two subsets of vertices X and Y .
G|U :=

(
U = U0 ·∪ U1, E′) s.t. U0 := V 0∩U , U1 := V 1∩U , and E′ := E∩(U×U)

denotes the restriction of a game graph G :=
(
V = V 0 ·∪ V 1, E

)
to a subset of

its vertices U ⊆ V . We have the following formal result.

Theorem 2. Given a Büchi game G = (G,�♦I) for some I ⊆ V , if (S,H) =
BüchiTemplate(G, I) then Ψ = {Ψunsafe(S), Ψlive(H)} is a winning strategy
template for the game G, computable in time O(nm), where n = |V | and m = |E|.

While live-group templates capture infinitely many winning strategies in
Büchi games, they are not maximally permissive, as exemplified next.

Example 2. Consider the game graph in Fig. 2 restricted to the vertex set
{a, b, d} with the Büchi objective �♦d. Our algorithm outputs the live-group
template Ψ = Ψlive({ead}). Now consider the winning strategy with memory
that takes edge eda from d, and takes eab for play suffix bda and ead for play
suffix aba. This strategy does not follow the template—the play (abd)ω is in
L(π0) but not in L(Ψ).

444 A. Anand et al.

3.3 Co-live Templates

We now turn to yet another objective which is the dual of the one discussed
before. The objective requires that eventually, only a particular subset of vertices
I is seen. A winning strategy for this objective would try to restrict staying or
going away from I after a finite amount of time. It is easy to notice that live-
group templates can not ensure this, but it can be captured by co-live templates:
given a set of edges, eventually these edges are not taken anymore. Intuitively,
these are the edges that take or keep a play away from I.

Example 3. Consider the game graph in Fig. 2 where we require eventually stop
visiting b, i.e. staying in I = {a, c, d}. To satisfy this objective from vertex a,
Player 0 needs to stop getting out of I eventually. Hence, Player 0 has to stop
taking the edges {eab, edb, ede}, which can be ensured by marking both edges
co-live. Now since no edges are leading to b, the play eventually stays in I,
satisfying the objective. We note that this can not be captured by live-groups
{eaa, eac, ead} and {eda}, since now the strategy that visits c and b alternatively
from Player 0’s vertices, does not satisfy the objective, but follows the live-group.

Formally, a co-Büchi game is a game G = (G,Φ) with co-Büchi winning
condition Φ := ♦�I, for some goal vertices I ⊆ V . A play is winning for Player 0
in such a co-Büchi game if it eventually stays in I forever. The co-live template
is defined by a set of co-live edges D as follows,

Ψcolive(D) :=
∧

e∈D

♦�¬e.

The intuition behind the winning template is that it forces staying in the
winning region using the safety template, and ensures that the play does not go
away from the vertex set I infinitely often using the co-live template. We provide
the procedure in Algorithm2 and its correctness in the following theorem. Here,
CoBüchi(G, I) is a standard algorithm solving the co-Büchi game with the goal
vertices I, and outputs the winning regions for both players [17]. We also use the
standard algorithm Safety(G, I) that solves the safety game with the objective
to stay in A forever.

Theorem 3. Given a co-Büchi game G = (G,♦�I) for some I ⊆ V , if
(S,D) = coBüchiTemplate(G, I) then Ψ = {Ψunsafe(S), Ψcolive(D)} is a win-
ning strategy template for Player 0, computable in time O(nm) with n = |V | and
m = |E|.

3.4 Parity Games

We now consider a more complex but canonical class of ω-regular objectives.
Parity objectives are of central importance in the study of synthesis problems
as they are general enough to model a huge class of qualitative requirements of
cyber-physical systems, while enjoying the properties like positional determinacy.

Synthesizing Permissive Winning Strategy Templates for Parity Games 445

Algorithm 2. coBüchiTemplate(G, I)
Input: A game graph G, and a subset of vertices I
Output: A set of unsafe edges S and a set of co-live edges D
1: S ← ∅; D ← ∅
2: W0 ← CoBüchi(G, I); S ← SafetyTemplate(G, W0)
3: G ← G|W0 ; I ← I ∩ W0;
4: while V �= ∅ do
5: A ← Safety(G, I); D ← D ∪ Edges(A, V \A);
6: while cpre0G(A) �= A do � Outputs attr0G(A)
7: B ← cpre0G(A);
8: D ← D ∪ Edges(B, V \(A ∪ B)) ∪ Edges(B, B);
9: A ← A ∪ B;

10: G ← G|V \A; I ← I ∩ V \A;
11: return (S, D)

A parity game is a game G = (G,Φ) with parity winning condition Φ =
Parity(P), where

Parity(P) :=
∧

i∈odd[0;k]

(
�♦Pi =⇒ ∨

j∈even[i+1;k] �♦Pj

)
, (7)

with Pi = {q ∈ Q | P(q) = i} for some priority function P : V → [0; d] that
assigns each vertex a priority. A play is winning for Player 0 in such a game if
the maximum of priorities seen infinitely often is even.

Although parity objectives subsume previously described objectives, we can
construct strategy templates for parity games using the combinations of previ-
ously defined templates. To this end, we give the following algorithm.

Theorem 4. Given a parity game G = (G,Parity(P)) with priority function
P : V → [0; d], if ((W0,W1),H,D) = ParityTemplate(G,P), then Ψ =
{Ψunsafe(S), Ψlive(H), Ψcolive(D)} is a winning strategy template for the game
G, where S = Edges(W0,W1). Moreover, the algorithm terminates in time
O(nd+O(1)), which is same as that of Zielonka’s algorithm.

We refer the readers to the full version [5, Appendix A.3] for the complete
proofs, and here we provide the intuition behind the algorithm and the computa-
tion of the algorithm on the parity game in Fig. 3. The algorithm follows the divide-

a

p1

b

p4

c

p5

d

p6

e

p2

f

p2

g

p1

h

p3

Fig. 3. A parity game, where a vertex with priority i has label pi. The dotted edge in
red is a co-live edge, while the dashed edges in blue are singleton live-groups. (Color
figure online)

446 A. Anand et al.

Algorithm 3. ParityTemplate(G,P)
Input: A game graph G, and a priority function P : V → {0, . . . , d}
Output: Winning regions (W0, W1), live-groups H, and co-live edges D
1: if d is odd then
2: A = attr1G(Pd)
3: if A = V then return (∅, V), ∅, ∅
4: else
5: (W0, W1), H, D ← ParityTemplate(G|V \A,P)
6: if W0 = ∅ then return (∅, V), ∅, ∅
7: else
8: B = attr0G(W0)
9: D ← D ∪ Edges(W0, V \W0)

10: H ← H ∪ ReachTemplate(G, W0)
11: (W ′

0, W ′
1), H′, D′ ← ParityTemplate(G|V \B ,P)

12: return (W ′
0 ∪ B, W ′

1), H ∪ H′, D ∪ D′

13: else � If d is even
14: A = attr0G(Pd)
15: if A=V then return (V, ∅),ReachTemplate(G, Pd), ∅
16: else
17: (W0, W1), H, D ← ParityTemplate(G|V \A,P)
18: if W1 = ∅ then return (V, ∅), H ∪ ReachTemplate(G|A, Pd), D
19: else
20: B = attr1G(W1)
21: (W ′

0, W ′
1), H′, D′ ← ParityTemplate(G|V \B ,P)

22: return (W ′
0, W ′

1 ∪ B), H′, D′

and-conquer approach of Zeilonka’s algorithm. Since the highest priority occurring
is 6which is even, we first find the vertices A = {d, h} from which Player 0 can force
visiting {d} (vertices with priority 6) in line 14. Then since A �= V , we find the
winning strategy template in the rest of the graph G1 = G|V \A. Then the highest
priority 5 is odd, hence we compute the region {c} from which Player 1 can ensure
visiting 5. We again restrict our graph to G2 = G|{a,b,e,f,g}. Again, the highest pri-
ority is even. We further compute the region A2 = {a, b} from which Player 0 can
ensure visiting the priority 4, giving us G3 = G|{e,f,g}. In G3, Player 0 can ensure
visiting the highest priority 2, hence satisfying the condition in line 15. Then since
in this small graph, Player 0 needs to keep visiting priority 2 infinitely often, which
gives us the live-groups {egf} and {eff} in line 15. Coming one recursive step back
to G2, since G3 doesn’t have a winning vertex for Player 1, the if condition in the
line 18 is satisfied. Hence, for the vertices in A2, it suffices to keep visiting priority
4 to win, which is ensured by the live-group {eab} added in the line 18. Now, again
going one recursive step back to G1, we have W0 = {a, b, e, f, g}. If Player 0 can
ensure reaching and staying in W0 from the rest of the graph G1, it can satisfy the
parity condition. Since from the vertex c, W0 will anyway be reached, we get a co-
live edge ebc in line 9 to eventually keep the play in W0. Coming back to the initial
recursive call, since now again G1 was winning for Player 0, they only need to be
able to visit the priority 6 from every vertex in A, giving another live-group {ehd}.

Synthesizing Permissive Winning Strategy Templates for Parity Games 447

4 Extracting Strategies from Strategy Templates

This section discusses how a strategy that follows a computed winning strategy
template can be extracted from the template. As our templates are just par-
ticular LTL formulas, one can of course use automata-theoretic techniques for
this. However, as the types of templates we presented put some local restrictions
on strategies, we can extract a strategy much more efficiently. For instance, the
game in Fig. 2 with strategy template Ψ = Ψlive({eac, ead}) allows the strategy
that simply uses the edges eac and ead alternatively from vertex a.

However, strategy extraction is not as straightforward for every template,
even if it only conjuncts the three template types we introduced in Sect. 3. For
instance, consider again the game graph from Fig. 2 with a strategy template
Ψ = {Ψunsafe(eac, ead), Ψcolive(eaa, eab)}. Here, non of the four choices of Player 0
(i.e., outgoing edges) from vertex a can be taken infinitely often, and, hence, the
only way a play satisfies Ψ is to not visit vertex a infinitely often. On the other
hand, given strategy template Ψ ′ = {Ψcolive(eab, edb), Ψlive({eab, eac, edb})}, edge
edb is both live and co-live, which raises a conflict for vertex d. Hence, the only
way a strategy can follow Ψ ′ is again to ensure that d is not visited infinitely
often. We call such situations conflicts. Interestingly, the methods we presented
in Sect. 3 never create such conflicts and the computed templates are therefore
conflict-free, as formalized next and proven in the full version [5, Appendix A.4].

Definition 1. A strategy template Ψ = {Ψunsafe(S), Ψcolive(D), Ψlive(H)} in a
game graph G = (V,E) is conflict-free if the following are true:

(i) or every vertex v, there is an outgoing edge that is neither co-live nor unsafe,
i.e., v × E(v) �⊆ D ∪ S, and

(ii) for every source vertex v in a live-group H ∈ H, there exists an outgoing
edge in H which is neither co-live nor unsafe, i.e., v × H(v) �⊆ D ∪ S.

Proposition 1. Algorithms 1, 2, and 3 always return conflict-free templates.

Due to the given conflict-freeness, winning strategies are indeed easy to
extract from winning strategy templates, as formalized next.

Proposition 2. Given a game graph G = (V,E) with conflict-free winning
strategy template Ψ = {Ψunsafe(S), Ψcolive(D), Ψlive(H)}, a winning strategy π0

that follows Ψ can be extracted in time O(m), where m is the number of edges.

The proof is straightforward by constructing the winning strategy as follows.
We first remove all unsafe and co-live edges from G and then construct a strategy
π0 that alternates between all remaining edges from every vertex in W0. This
strategy is well defined as condition (i) in Definition 1 ensures that after removing
all the unsafe and co-live edges a choice from every vertex remains. Moreover, if
the vertex is a source of a live-group edge, condition (ii) in Definition 1 ensures
that there are outgoing edges satisfying every live-group. It is easy to see that
the constructed strategy indeed follows Ψ and is hence winning from vertices in
W0, as Ψ was a winning strategy template. We call this procedure of strategy
extraction ExtractStrategy(G,Ψ).

448 A. Anand et al.

5 Applications of Strategy Templates

This section considers two concrete applications of strategy templates which
utilize their structural simplicity and easy adaptability.

In the context of CPS control design problems, it is well known that the
game graph of the resulting parity game used for strategy synthesis typically has
a physical interpretation and results from behavioral constraints on the existing
technical system that is subject to control. In particular, following the well-
established paradigm of abstraction-based control design (ABCD) [2,7,39], an
underlying (stochastic) disturbed non-linear dynamical system can be automat-
ically abstracted into a two-player game graph using standard abstraction tools,
e.g. SCOTS [35], ARCS [13], MASCOT [20], P-FACES [22], or ROCS [27].

In contrast to classical problems in reactive synthesis, it is very natural in
this context to think about the game graph and the specification as two different
objects. Here, specifications are naturally expressed via propositions that are
defined over sets of states of this underlying game graph, without changing its
structure. This separation is for example also present in the known LTL fragment
GR(1) [10]. Arguably, this feature has contributed to the success of GR(1)-based
synthesis for CPS applications, e.g. [1,3,24,25,38,40,41].

Given this insight, it is natural to define the incremental synthesis problem
such that the game graph stays unchanged, while newly arriving specifications
are modeled as new parity conditions over the same game graph. Formally, this
results in a generalized parity game where the different objectives arrive one at a
time. We show an incremental algorithm for synthesizing winning strategies for
such games in Sect. 5.1. Similarly, fault-tolerant control requires the controller to
adapt to unavailable actuators within the technical system under control. This
naturally translates to the removal of Player 0 edges within the game graph
given its physical interpretation. We show how strategy templates can be used
to adapt winning strategies to these game graph modifications in Sect. 5.2.

5.1 Incremental Synthesis via Strategy Templates

In this section we consider a 2-player game G with a conjunction Φ =
∧k

i=1 Φi of
multiple parity objectives Φi, also called a generalized parity objective. However,
in comparison to existing work [12,16], we consider the case that different objec-
tives Φi might not arrive all at the same time. The intuition of our algorithm
is to solve each parity game (G,Φi) separately and then combine the resulting
strategy templates Ψi to a global template Ψ =

∧k
i=1 Ψi. This allows to easily

incorporate newly arriving objectives Φk+1. We only need to solve the parity
game (G,Φk+1) and then combine the resulting template Ψk+1 with Ψ .

While Proposition 1 ensures that every individual template Ψi is conflict-
free, this does unfortunately not imply that their conjunction is also conflict-
free. Intuitively, combinations of strategy templates can cause the condition (i)
and (ii) in Definition 1 to not hold anymore, resulting in a conflict. As already
discussed in Sect. 4, this requires source vertices U ⊆ V with such conflicts to

Synthesizing Permissive Winning Strategy Templates for Parity Games 449

Algorithm 4. ComposeTemplate(G, (W ′
0,H′,D′, (Φi)i<�), (Φi)�≤i≤k) where

Φi = Parity(Pi)
Input: A generalized parity game G = (V, E) and objectives (Φi)i≤k with Φi =

Parity(Pi) such that Pi : V → [0; 2di +1] along with a partial winning region, live-
groups, and co-live edges (W0, H, D) for the generalized parity game (G,

∧
i<� Φi).

Output: A partial winning region W0, live-groups H, co-live edges D, and modified
parity objectives (Φ′

i)i≤k.
1: (Wi, V \ Wi), Hi, Di ← ParityTemplate(G|W0 , Φi) for each � ≤ i ≤ k
2: H = H′ ∪ ⋃

�≤i≤k Hi; D = D′ ∪ ⋃
�≤i≤k Di; W0 = W ′

0 ∩ ⋂
�≤i≤k Wi

3: C1 = {u ∈ W0 | u × (E(u) ∩ W0) ⊆ D}
4: C2 = {u ∈ W0 | u × (H(u) ∩ W0) ⊆ D, H ∈ H, H(u) �= ∅}
5: if C1 ∪ C2 = ∅ then
6: return (W0, H, D, (Φi)i≤k)
7: else
8: P

′
i(u) ← P[C1 ∪ C2 → 2d′

i + 1] for each i ≤ k
9: return ComposeTemplate(G, (W0, ∅, ∅, ∅), (Φ′

i)i≤k) with Φ′
i = Parity(P′

i))

eventually not be visited anymore. We therefore resolve such conflicts by adding
the specification ♦�¬U to every objective and recomputing the templates.

To efficiently formalize this objective change, we note that a parity objective
Parity(P) with an additional specification ♦�¬U for some U ⊆ V is equivalent to
another parity objective Parity(P′), where priority function P

′ can be obtained
from P : V → [0; 2d+1] just by modifying the priorities of vertices in U to 2d+1.
Let us denote such a priority function by P[U → 2d + 1]. In particular, we have
the following result:

Lemma 1. Given a game graph G and two parity objectives Φ = Parity(P),
Φ′ = Parity(P′) such that P : V → [0; 2d + 1] and P

′ = P[U → 2d + 1] for some
vertex set U ⊆ V , it holds that L(Φ′) = L(Φ ∧ ♦�¬U). Moreover, if a strategy
template is winning from some vertex u in the game G′ = (G,Φ′), then it is also
winning from u in the game G = (G,Φ).

Using the above ideas, we present Algorithm 4 to solve generalized parity
games (possibly incrementally). If no partial solution to the synthesis problem
exists so far we have � = 0, otherwise the game (G,

∧
i<� Φi) was already solved

and the respective winning region and templates are known. In both cases, the
algorithm starts with computing a winning strategy template for each game
(G,Φi) for i ∈ {� + 1, k} (line 1) and conjuncts them with the already com-
puted ones (line 2). Then the algorithm checks for conflicts (line 3–4). If there is
some conflict the algorithm modifies the objectives to ensure that the conflicted
vertices are eventually not visited anymore (line 8), and then re-computes the
templates in the game graph restricted to the intersection of winning regions
for all objectives (line 9). If there is no conflict, then the algorithm returns the
conjunction of the templates which is conflict-free, and hence, is winning from
the intersection of winning regions for every objective (line 6). The latter is for-

450 A. Anand et al.

malized in the following theorem. The proof can be found in the full version [5,
Appendix B.2].

Theorem 5. Given a generalized parity game G = (G,
∧

i≤k Φi) with
Φi = Parity(Pi) and priority functions Pi : V → [0; 2di + 1], if
(W0,H,D, (Φ′

i)i≤k) = ComposeTemplate(G, ∅, (V, ∅, ∅), (Φi)i≤k), then Ψ =
{Ψunsafe(S), Ψlive(H), Ψcolive(D)} is an conflict-free strategy template that is
winning from W0 in the game G, where S = Edges(W0, V \ W0). Further,
Ψ is computable in time O(kn2d+3) time, where n = |V | and d = maxi≤k di.

Due to the conflict checks carried out within Algorithm 4 the returned modi-
fied objectives Φ′

i ensure that the conjunction Ψ :=
∧k

i=1 Ψ ′
i of winning strategy

templates Ψ ′
i for the games (G,Φ′

i) is indeed conflict-free. In particular, the con-
juncted template Ψ is actually returned by the algorithm. Hence, incrementally
running Algorithm4 is actually sound. This is an immediate consequence of
Theorem 5 and stated as a corollary next.
Corollary 1. Given a generalized parity game G = (G,

∧
i≤k Φi) with Φi =

Parity(Pi) and priority functions Pi : V → [0; 2di + 1], s.t.

(W ′
0, H′, D′, (Φ′

i)i<�) := ComposeTemplate(G, (V, ∅, ∅, ∅), (Φi)i<�), and
(W0, H, D, (Φ′′

i)i≤k) := ComposeTemplate(G, (W ′
0, H′, D′, (Φ′

i)i<�), (Φi)�≤i≤k)

then Ψ = {Ψunsafe(S), Ψlive(H), Ψcolive(D)} is an conflict-free strategy template
that is winning from W0 in the game G, where S = Edges(W0, V \W0). Further,
Ψ is computable in time O(kn2d+3), where n = |V | and d = maxi≤k di.

We note that the generalized Zielonka algorithm [16] for solving generalized
parity games has time complexity O(mn

∑
2di)

(∑
di

d1,d2,...,dk

)
for a game with n ver-

tices, m edges and k priority functions: Pi with 2di priorities for each i. Clearly,
Algorithm4 has a much better time complexity. However, it is not complete,
i.e., it does not always return the complete winning region. This is due to tem-
plates being not maximally permissive and hence potentially raising conflicts
which result in additional specifications that are not actually required. The next
example shows such an incomplete instance for illustration. We however note
that Algorithm4 returned the full winning region on all benchmarks considered
during evaluation, suggesting that such instances rarely occur in practice.

Example 4. Consider the game in Fig. 2 with objectives Φ3 ∧ Φ4 with Φ4 =
Parity(P), where P maps vertices a, b, c, d, e, f to 0, 2, 1, 1, 1, 1, respectively. The
winning strategy templates computed by ParityTemplate for objectives Φ3

and Φ4 are Ψ3 = Ψcolive(eab, edb, ede) and Ψ4 = Ψlive({eab, edb, ede}), respectively.
The conjunction of both templates marks all outgoing edges of vertex a and d in
the live-group co-live. Hence, the algorithm would ensure that these conflicted
vertices a and d are eventually not visited anymore. However, the only way to
satisfy Φ3∧Φ4 is by eventually looping on vertex a. But this solution was skipped
by the strategy template Ψ4 by putting edge eab in a live-group. Therefore,
the algorithm returns the empty set as the winning region, whereas the actual
winning region is the whole vertex set.

Synthesizing Permissive Winning Strategy Templates for Parity Games 451

5.2 Fault-Tolerant Strategy Adaptation

In this section we consider a 2-player parity game G = (G,Parity(P)) and a set of
faulty Player 0 edges F ⊆ E ∩ (V 0 ×V) which might become unavailable during
runtime. Given a strategy template Ψ for G, we can use Ψ ′ = {Ψ, Ψunsafe(F)} for
the (linear-time) extraction of a new strategy for the game, if Ψ ′ is conflict-free for
G. In this case, no re-computation is needed. If Ψ ′ is not conflict-free for G, then
we can remove the edges in F and compute a new winning strategy template
using Algorithm3. This is formalized in Algorithm5, where we slightly abuse
notation and assume that ParityTemplate only outputs strategy templates.
The correctness of Algorithm 5 follows directly from Theorem 4.

Corollary 2. Given a 2-player parity game G = (G,Parity(P)) with a strategy
template Ψ = ParityTemplate(G,P) and faulty edge set F ⊆ E ∩ (V 0 × V) it
holds that Ψ ′ obtained from Algorithm5 is a winning strategy template for G|E\F .

Faulty edges introduce an additional safety specification for which our templates
are maximally permissive. This implies that Algorithm5 is sound and complete
– if there exists a winning strategy for (G|E\F ,Parity(P)) Algorithm5 finds one.

Let us now assume that F collects all edges controlling vulnerable actuators
that might become unavailable. In this scenario, Algorithm5 returns a conserva-
tive strategy that never uses vulnerable actuators. It might however be desirable
to use actuators as long as they are available to obtain better performance. For-
mally, this application scenario can be defined via a time-dependent graph who’s
edges change over time, i.e., Et with E0 = E are the edges available at time
t ∈ N and F := {e ∈ E | e �∈ Ei, for some i}. Given the original parity game
G = (G,Parity(P)) with a winning strategy template Ψ we can easily modify
ExtractStrategy(G, Ψ) to obtain a time-dependent strategy πg which reacts
to the unavailability of edges, i.e., at time t, πg takes an edge e ∈ Et\(S ∪D) for
all vertices without any live-group, and for the ones with live-groups, it alter-
nates between the edges satisfying the live-groups whenever they are available,
and an edge e ∈ Et\(S ∪ D) when no live-group edge is available.

The online strategy πg can be implemented even without knowing when edges
are available2, i.e., without knowing the time dependent edge sequence {Et}t∈N

Algorithm 5. FaultCorrection(G,Ψ, F)
Input: A parity game G = (G,Parity(P)), a strategy template Ψ , and a set of faulty

edges F
Output: A new strategy template Ψ ′

1: Ψ ′ ← {Ψ, Ψunsafe(F)}
2: if CheckTemplate(G,Ψ ′) then return Ψ ′

3: else
4: return ParityTemplate(G|E\F ,P|E\F)

2 We note that it is reasonable to assume that current actuator faults are visible to
the controller at runtime, see e.g. [34] for a real water gate control example.

452 A. Anand et al.

up front. In this case πg is obviously winning in G = (G,Parity(P)) if Ψ is
conflict-free for G|E\F . If this is not the case, one needs to ensure that edges
that cause conflicts are always eventually available again, as formalized next.

Definition 2. Given a parity game G = (G,Parity(P)) we call the dynamic
edge set {Ei}i≥0 a guaranteed availability fault (GAF) if ∀ plays ρ = v0v1 . . .,
∀v ∈ V , if v ∈ inf(ρ), then ∀e = (v, w) ∈ F , ∃ infinitely many times t0, t1 . . .
such that vtj = v and e ∈ Etj , ∀j ≥ 0.

Intuitively, guaranteed availability faults (GAF) ensure that a faulty edge is
always eventually available when a play is in its source vertex. Under this fault,
the following fault-correction result holds, which is proven in the full version [5,
Appendix B.3].

Proposition 3. Given a game graph G with a parity objective Φ, a strategy
template Ψ = {Ψunsafe(S), Ψlive(H), Ψcolive(D)} computed by Algorithm3 and a
set F = {e ∈ E | e �∈ Ei, for some i} of faulty edges, the game with the objective
is realizable under GAF if for every vertex v ∈ V 0, there is an outgoing edge
which is not in S ∪ D ∪ F .

This proposition allows a simple linear-time algorithm to check if the tem-
plates computed by Algorithm3 are GAF-tolerant: check if every vertex in the
winning region has an outgoing edge which is not in S ∪D ∪F . If this is not the
case, the recomputation is non-trivial and is out of scope of this paper. We can
however collect the vertices which do not satisfy the above property and alert the
system engineer that these vulnerable actuators require additional maintenance
or protective hardware. Our experimental results in Sect. 6 show that conflicts
arising from actuator faults are rare and very local. Our strategy templates allow
to easily localize them, which supports their use for CPS applications.

6 Empirical Evaluation

We have developed a C++-based prototype tool PeSTel
3 (computing

Permissive Strategy Templates) that implements Algorithms 1–5. We have
used PeSTel to show its superior performance on the two applications con-
sidered in Sect. 5, suggesting its practical relevance. All our experiments were
performed on a computer equipped with Apple M1 Pro 8-core CPU and 16GB
RAM.

Incremental Synthesis. We used PeSTel to solve generalized parity games
both in one shot and incremental. We compare our algorithm with existing algo-
rithms, i.e., GenZiel from [16] and three partial solvers4 from [12], by executing
3 Repository URL: https://github.com/satya2009rta/pestel.
4 While GenZiel is sound and complete [16], we found different randomly generated

games where the algorithms from [12] either return a superset or a subset of the
winning region, hence compromising soundness and completeness. Since [12] lacks
rigorous proof, it is not clear whether this is an implementation bug or a theoretical
mishap, leaving soundness and completeness guarantees of these algorithms open.

https://github.com/satya2009rta/pestel

Synthesizing Permissive Winning Strategy Templates for Parity Games 453

Table 1. Aggregated experimental results on generalize parity game benchmarks with
objectives given up-front (top) and one-by-one (bottom). Subrows: 1st row (mean time)
– average computation time (in ms); 2nd row (incomplete) – number of examples where
the corresponding tool failed to compute the complete winning region; 3rd row (faster
than) – number of examples where PeSTel is faster than the respective tool; 4th row
(timeouts) – number of examples where the respective tool timed out (10000 ms).

PeSTel GenZiel [16]
GenZiel &

GenBüchi [12]
GenZiel &

GenGoodEp[12]
GenZiel &
GenLay[12]

Benchmark A
(one shot)

mean time 343 64 68 553 1224
incomplete 0 - 3 3 2
faster than - 74% 75% 96% 85%
timeouts 0 0 0 2 20

Benchmark B
(one shot)

mean time 60 47 58 112 171
incomplete 0 - 28 27 2
faster than - 93% 93% 97% 95%
timeouts 1 0 2 4 18

Overall faster than - 90% 90% 97% 94%

Benchmark B
(incremental)

mean time 91 208 215 338 394
incomplete 0 - 24 23 2
faster than - 97% 97% 98% 99%
timeouts 2 0 0 8 23

them on a large set of benchmarks. We have generated two types of benchmarks
from the games used for the Reactive Synthesis Competition (SYNTCOMP) [21].
Benchmark A was generated by converting parity games into Street games using
standard methods, and as each Streett pair can be represented by a {0, 1, 2}-
priority parity game, we represented the complete Streett objective as a con-
junction of multiple {0, 1, 2}-priority parity objectives, resulting in a generalized
parity game. Benchmark B was generated by adding randomly5 generated parity
objectives to given parity games. We considered 200 examples in Benchmark A
and more than 1400 examples in Benchmark B.

We summarize the complete set of results of the experiments in6 Table 1 and
Fig. 1. We performed two kinds of experiments. First, we solved every generalized
parity game in Benchmark A and B in one shot using the different methods.
The results are shown in Table 1(top) and Fig. 1(left). Although the average
time taken by PeSTel is higher than GenZiel and one partial solver, it is
fastest in more than 90% of the games in both benchmarks. Thus, it shows that
PeSTel is as efficient as the other methods in most cases. Moreover, for every

5 The random generator takes three parameters: game graph “G”, number of objectives
“k”, and maximum priority “m”; and then it generates “k” random parity objectives
with maximum priority “m” as follows: 50% of the vertices in “G” are selected ran-
domly, and those vertices are assigned priorities ranging from 0 to “m” (including 0
and m) such that 1/m-th (of those 50%) vertices are assigned priority 0 and 1/m-
th are assigned priority 1 and so on. The rest 50% are assigned random priorities
ranging from 0 to “m”. Hence, for every priority, there are at least 1/(2m)-th vertices
(i.e., 1/m-th of 50% vertices) with that priority.

6 See the full version of this paper [5, Appendix C] for a version of Fig. 1 including all
solvers considered in Table 1.

454 A. Anand et al.

Fig. 4. Experimental results for parity games with faulty edges. Left: percentage of
instances with conflicts given a certain percentage of faulty edges. Right: average per-
centage of vertices that created conflicts given a certain percentage of faulty edges.

game in both benchmarks, PeSTel succeeded to compute the complete winning
region, whereas the partial solvers failed to do so in some cases7. We note that
the instances which are hard for PeSTel are those where the winning region
becomes empty, which is quickly detected by GenZiel but only seen by PeSTel

after most objectives are (separately) considered.
Second, we solved the examples in Benchmark B by adding the objectives

one-by-one, i.e., we solved the game with one objective, then we added one more
objective and solved it again, and so on. The results are shown in Table 1(bottom)
and Fig. 1(right). As PeSTel can use the pre-computed strategy templates if we
add a new objective to a game, it outperforms all the other solvers significantly
as they need to re-solve the game from scratch every time.
Fault-Tolerant Control. As discussed in Sect. 5.2, strategy templates can be
used to implement a fault tolerant time-dependent strategy, if the set of faulty
edges F does not cause conflicts with the strategy template. We have used PeS-

Tel on over 200 examples of parity games from SYNTCOMP [21] to evaluate
the relevance of such conflicts in practice. For this, we randomly selected different
percentages of edges to be faulty and checked for conflicts with the given tem-
plate. The results are summarized in Fig. 4. The left plot shows the number of
instances for which a conflict occurs if a certain percentage of randomly selected
edges is faulty. We see that the majority of the instances never faces a conflict
even when 30% of the edges are faulty. Looking more closely into the instances
with conflicts, Fig. 4(right) shows the average number of conflicting vertices in
these benchmarks. Here we see that conflicts occur very locally at a very small
number of vertices. Our strategy templates allow for a linear-time algorithm to
localize them, allowing to mitigate them in practice by additional hardware.

Remark 1. We remark again that our results are directly applicable to CPS
with continuous dynamics via the paradigm of abstraction-based control
design (ABCD). In particular, standard abstraction tools such as SCOTS [35],
7 Additionally, we outperform all algorithms on the benchmarks considered by Bruyère

et al. [12]. We have however chosen to not include them in our analysis as many of
their generalized parity games have only one objective and are therefore trivial.

Synthesizing Permissive Winning Strategy Templates for Parity Games 455

ARCS [13], MASCOT [20], P-FACES [20], or ROCS [27] automatically compute
a game graph from the (stochastic) continuous dynamics that can directly be
used as an input to PeSTel. The winning strategy computed by PeSTel can
further be refined into a correct-by-construction continuous feedback controller
for the original dynamical system using standard methods from ABCD. We leave
these tool integrations to future work.

References

1. Maoz, S., Ringert, J.O.: Synthesizing a lego forklift controller in GR(1): a case
study. In: Cerný, P., Kuncak, V., Madhusudan, P. (eds.) Proceedings Fourth Work-
shop on Synthesis, SYNT 2015, San Francisco, CA, USA, 18th July 2015. EPTCS,
vol. 202, pp. 58–72 (2015). https://doi.org/10.4204/EPTCS.202.5

2. Alur, R.: Principles of Cyber-Physical Systems. MIT Press (2015)
3. Alur, R., Moarref, S., Topcu, U.: Counter-strategy guided refinement of GR(1) tem-

poral logic specifications. In: Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, 20–23 October 2013, pp. 26–33. IEEE (2013). https://
ieeexplore.ieee.org/document/6679387/

4. Anand, A., Mallik, K., Nayak, S.P., Schmuck, A.K.: Computing adequately permis-
sive assumptions for synthesis. In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems. TACAS 2023. Lec-
ture Notes in Computer Science, vol. 13994, pp. 211–228. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30820-8_15

5. Anand, A., Nayak, S.P., Schmuck, A.K.: Synthesizing permissive winning strategy
templates for parity games (2023)

6. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
7. Belta, C., Yordanov, B., Aydin Gol, E.: Formal Methods for Discrete-Time Dynam-

ical Systems. SSDC, vol. 89. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-50763-7

8. Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to
safety games. RAIRO Theor. Inform. Appl. 36(3), 261–275 (2002). https://doi.
org/10.1051/ita:2002013

9. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-
Tolerant Control. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-
35653-0

10. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78, 911–938 (2012). https://doi.org/10.1016/
j.jcss.2011.08.007

11. Bouyer, P., Markey, N., Olschewski, J., Ummels, M.: Measuring permissiveness
in parity games: mean-payoff parity games revisited. In: Bultan, T., Hsiung, P.
(eds.) Proceedings of the 9th International Symposium on Automated Technology
for Verification and Analysis, ATVA 2011, Taipei, Taiwan, 11–14 October 2011.
LNCS, vol. 6996, pp. 135–149. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24372-1_11

12. Bruyère, V., Pérez, G.A., Raskin, J., Tamines, C.: Partial solvers for generalized
parity games. In: Filiot, E., Jungers, R.M., Potapov, I. (eds.) Proceedings of the
13th International Conference on Reachability Problems, RP 2019, Brussels, Bel-
gium, 11–13 September 2019. LNCS, vol. 11674, pp. 63–78. Springer, Heidelberg
(2019). https://doi.org/10.1007/978-3-030-30806-3_6

https://doi.org/10.4204/EPTCS.202.5
https://ieeexplore.ieee.org/document/6679387/
https://ieeexplore.ieee.org/document/6679387/
https://doi.org/10.1007/978-3-031-30820-8_15
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1007/978-3-319-50763-7
https://doi.org/10.1051/ita:2002013
https://doi.org/10.1051/ita:2002013
https://doi.org/10.1007/978-3-540-35653-0
https://doi.org/10.1007/978-3-540-35653-0
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1007/978-3-642-24372-1_11
https://doi.org/10.1007/978-3-642-24372-1_11
https://doi.org/10.1007/978-3-030-30806-3_6

456 A. Anand et al.

13. Bulancea, O.L., Nilsson, P., Ozay, N.: Nonuniform abstractions, refinement and
controller synthesis with novel BDD encodings. IFAC-PapersOnLine 51(16), 19–
24 (2018)

14. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 3rd edn.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-72274-6

15. Chatterjee, K., Henzinger, M.: Efficient and dynamic algorithms for alternating
büchi games and maximal end-component decomposition. J. ACM 61(3) (2014).
https://doi.org/10.1145/2597631

16. Chatterjee, K., Henzinger, T.A., Piterman, N.: Generalized parity games. In: Seidl,
H. (ed.) Proceedings of the 10th International Conference on Foundations of Soft-
ware Science and Computational Structures, FOSSACS 2007, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2007.
LNCS, Braga, Portugal, 24 March–1 April 2007, vol. 4423, pp. 153–167. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71389-0_12

17. Chatterjee, K., Henzinger, T.A., Piterman, N.: Algorithms for büchi games. CoRR
abs/0805.2620 (2008). https://doi.org/10.48550/ARXIV.0805.2620

18. Ehlers, R., Lafortune, S., Tripakis, S., Vardi, M.Y.: Supervisory control and reactive
synthesis: a comparative introduction. Discrete Event Dyn. Syst. 27(2), 209–260
(2016). https://doi.org/10.1007/s10626-015-0223-0

19. Fritz, R., Zhang, P.: Overview of fault-tolerant control methods for discrete event
systems. IFAC-PapersOnLine 51(24), 88–95 (2018). https://doi.org/10.1016/j.
ifacol.2018.09.533

20. Hsu, K., Majumdar, R., Mallik, K., Schmuck, A.K.: Multi-layered abstraction-
based controller synthesis for continuous-time systems. In: HSCC 2018, pp. 120–
129. ACM (2018)

21. Jacobs, S., et al.: The reactive synthesis competition (SYNTCOMP): 2018–2021.
CoRR abs/2206.00251 (2022). https://doi.org/10.48550/arXiv.2206.00251

22. Khaled, M., Zamani, M.: pFaces: an acceleration ecosystem for symbolic control.
In: HSCC 2019, pp. 252–257. ACM (2019)

23. Klein, J., Baier, C., Klüppelholz, S.: Compositional construction of most general
controllers. Acta Informatica 52(4–5), 443–482 (2015). https://doi.org/10.1007/
s00236-015-0239-9

24. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Where’s Waldo? Sensor-based tem-
poral logic motion planning. In: 2007 IEEE International Conference on Robotics
and Automation, ICRA 2007, 10–14 April 2007, Roma, Italy, pp. 3116–3121. IEEE
(2007). https://doi.org/10.1109/ROBOT.2007.363946

25. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009). https://
doi.org/10.1109/TRO.2009.2030225

26. Lesi, V., Jakovljevic, Z., Pajic, M.: Towards plug-n-play numerical control for
reconfigurable manufacturing systems. In: 21st IEEE International Conference on
Emerging Technologies and Factory Automation, ETFA 2016, Berlin, Germany,
6–9 September 2016, pp. 1–8. IEEE (2016). https://doi.org/10.1109/ETFA.2016.
7733524

27. Li, Y., Liu, J.: ROCS: a robustly complete control synthesis tool for nonlinear
dynamical systems. In: HSCC 2018, pp. 130–135. ACM (2018)

28. Majumdar, R., Schmuck, A.: Supervisory controller synthesis for nonterminating
processes is an obliging game. IEEE Trans. Autom. Control 68(1), 385–392 (2023).
https://doi.org/10.1109/TAC.2022.3143108

https://doi.org/10.1007/978-3-030-72274-6
https://doi.org/10.1145/2597631
https://doi.org/10.1007/978-3-540-71389-0_12
https://doi.org/10.48550/ARXIV.0805.2620
https://doi.org/10.1007/s10626-015-0223-0
https://doi.org/10.1016/j.ifacol.2018.09.533
https://doi.org/10.1016/j.ifacol.2018.09.533
https://doi.org/10.48550/arXiv.2206.00251
https://doi.org/10.1007/s00236-015-0239-9
https://doi.org/10.1007/s00236-015-0239-9
https://doi.org/10.1109/ROBOT.2007.363946
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/ETFA.2016.7733524
https://doi.org/10.1109/ETFA.2016.7733524
https://doi.org/10.1109/TAC.2022.3143108

Synthesizing Permissive Winning Strategy Templates for Parity Games 457

29. Meira-Góes, R., Kang, E., Lafortune, S., Tripakis, S.: On synthesizing tolerable and
permissive controllers for labeled transition systems. IFAC-PapersOnLine 55(28),
158–164 (2022). https://doi.org/10.1016/j.ifacol.2022.10.338

30. Moor, T.: A discussion of fault-tolerant supervisory control in terms of formal
languages. Annu. Rev. Control. 41, 159–169 (2016). https://doi.org/10.1016/j.
arcontrol.2016.04.001

31. Neider, D., Rabinovich, R., Zimmermann, M.: Down the Borel hierarchy: solving
muller games via safety games. Theor. Comput. Sci. 560, 219–234 (2014). https://
doi.org/10.1016/j.tcs.2014.01.017

32. Neider, D., Weinert, A., Zimmermann, M.: Synthesizing optimally resilient con-
trollers. Acta Informatica 57(1–2), 195–221 (2020). https://doi.org/10.1007/
s00236-019-00345-7

33. Nilsson, P., et al.: Correct-by-construction adaptive cruise control: two approaches.
IEEE Trans. Control Syst. Technol. 24(4), 1294–1307 (2016). https://doi.org/10.
1109/TCST.2015.2501351

34. Reijnen, F.F.H., Leliveld, E., van de Mortel-Fronczak, J.M., van Dinther, J.,
Rooda, J.E., Fokkink, W.J.: Synthesized fault-tolerant supervisory controllers, with
an application to a rotating bridge. Comput. Ind. 130, 103473 (2021). https://doi.
org/10.1016/j.compind.2021.103473

35. Rungger, M., Zamani, M.: SCOTS: a tool for the synthesis of symbolic controllers.
In: HSCC, pp. 99–104. ACM (2016)

36. Scher, G., Kress-Gazit, H.: Warehouse automation in a day: from model to imple-
mentation with provable guarantees. In: 16th IEEE International Conference on
Automation Science and Engineering, CASE 2020, Hong Kong, 20–21 August 2020,
pp. 280–287. IEEE (2020). https://doi.org/10.1109/CASE48305.2020.9217012

37. Schmuck, A.-K., Moor, T., Majumdar, R.: On the relation between reactive syn-
thesis and supervisory control of non-terminating processes. Discrete Event Dyn.
Syst. 30(1), 81–124 (2019). https://doi.org/10.1007/s10626-019-00299-5

38. Svorenová, M., Kretínský, J., Chmelik, M., Chatterjee, K., Cerná, I., Belta, C.:
Temporal logic control for stochastic linear systems using abstraction refinement of
probabilistic games, pp. 259–268 (2015). https://doi.org/10.1145/2728606.2728608

39. Tabuada, P.: Verification and Control of Hybrid Systems - A Symbolic Approach.
Springer, New York (2009). https://doi.org/10.1007/978-1-4419-0224-5

40. Wong, K.W., Ehlers, R., Kress-Gazit, H.: Resilient, provably-correct, and high-
level robot behaviors. IEEE Trans. Robot. 34(4), 936–952 (2018). https://doi.org/
10.1109/TRO.2018.2830353

41. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon control for tem-
poral logic specifications. In: Johansson, K.H., Yi, W. (eds.) Proceedings of the
13th ACM International Conference on Hybrid Systems: Computation and Con-
trol, HSCC 2010, Stockholm, Sweden, 12–15 April 2010, pp. 101–110. ACM (2010).
https://doi.org/10.1145/1755952.1755968

42. Wonham, W.M., Cai, K., et al.: Supervisory control of discrete-event systems
(2019)

https://doi.org/10.1016/j.ifacol.2022.10.338
https://doi.org/10.1016/j.arcontrol.2016.04.001
https://doi.org/10.1016/j.arcontrol.2016.04.001
https://doi.org/10.1016/j.tcs.2014.01.017
https://doi.org/10.1016/j.tcs.2014.01.017
https://doi.org/10.1007/s00236-019-00345-7
https://doi.org/10.1007/s00236-019-00345-7
https://doi.org/10.1109/TCST.2015.2501351
https://doi.org/10.1109/TCST.2015.2501351
https://doi.org/10.1016/j.compind.2021.103473
https://doi.org/10.1016/j.compind.2021.103473
https://doi.org/10.1109/CASE48305.2020.9217012
https://doi.org/10.1007/s10626-019-00299-5
https://doi.org/10.1145/2728606.2728608
https://doi.org/10.1007/978-1-4419-0224-5
https://doi.org/10.1109/TRO.2018.2830353
https://doi.org/10.1109/TRO.2018.2830353
https://doi.org/10.1145/1755952.1755968

458 A. Anand et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Synthesizing Permissive Winning Strategy Templates for Parity Games
	1 Introduction
	2 Preliminaries
	3 Computation of Winning Strategy Templates
	3.1 Safety Templates
	3.2 Live-Group Templates
	3.3 Co-live Templates
	3.4 Parity Games

	4 Extracting Strategies from Strategy Templates
	5 Applications of Strategy Templates
	5.1 Incremental Synthesis via Strategy Templates
	5.2 Fault-Tolerant Strategy Adaptation

	6 Empirical Evaluation
	References

