
Policy Synthesis and Reinforcement
Learning for Discounted LTL

Rajeev Alur1 , Osbert Bastani1 , Kishor Jothimurugan1 ,
Mateo Perez2(B) , Fabio Somenzi2 , and Ashutosh Trivedi2

1 University of Pennsylvania, Philadelphia, PA, USA
{alur,obastani,kishor}@seas.upenn.edu

2 University of Colorado Boulder, Boulder, USA
{mateo.perez,fabio,ashutosh.trivedi}@colorado.edu

Abstract. The difficulty of manually specifying reward functions has
led to an interest in using linear temporal logic (LTL) to express objec-
tives for reinforcement learning (RL). However, LTL has the downside
that it is sensitive to small perturbations in the transition probabilities,
which prevents probably approximately correct (PAC) learning without
additional assumptions. Time discounting provides a way of removing
this sensitivity, while retaining the high expressivity of the logic. We
study the use of discounted LTL for policy synthesis in Markov decision
processes with unknown transition probabilities, and show how to reduce
discounted LTL to discounted-sum reward via a reward machine when
all discount factors are identical.

1 Introduction

Reinforcement learning [39] (RL) is a sampling-based approach to synthesis in
systems with unknown dynamics where an agent seeks to maximize its accu-
mulated reward. This reward is typically a real-valued feedback that the agent
receives on the quality of its behavior at each step. However, designing a reward
function that captures the user’s intent can be tedious and error prone, and
misspecified rewards can lead to undesired behavior, called reward hacking [5].

Due to the aforementioned difficulty, recent research [8,17,23,31,35] has
shown interest in utilizing high-level logical specifications, particularly linear
temporal logic [7] (LTL), to express intent. However, a significant challenge arises
due to the sensitivity of LTL, similar to other infinite-horizon objectives like aver-
age reward and safety, to small changes in transition probabilities. Even slight
modifications in transition probabilities can lead to significant impacts on the
value, such as enabling previously unreachable states to become reachable. With-
out additional information on the transition probabilities, such as the minimum
nonzero transition probability, LTL is proven to be not probably approximately
correct (PAC) [29] learnable [3,43]. Ideally, it is desirable to maintain PAC learn-
ability while still keeping the benefits of a highly expressive temporal logic.

This research was partially supported by ONR award N00014-20-1-2115, NSF grant
CCF-2009022, and NSF CAREER award CCF-2146563.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13964, pp. 415–435, 2023.
https://doi.org/10.1007/978-3-031-37706-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37706-8_21&domain=pdf
http://orcid.org/0000-0003-1733-7083
http://orcid.org/0000-0001-9990-7566
http://orcid.org/0000-0003-1448-2947
http://orcid.org/0000-0003-4220-3212
http://orcid.org/0000-0002-2085-2003
http://orcid.org/0000-0001-9346-0126
https://doi.org/10.1007/978-3-031-37706-8_21

416 R. Alur et al.

s0 s1s2

1 − p1

p1

1 − p2

p2
a1, a2a1, a2

a1a2

Fig. 1. Example showing non-robustness of safety specifications.

Discounting can serve as a solution to this problem. Typically, discounting
is used to encode time-sensitive rewards (i.e., a payoff is worth more today than
tomorrow), but it has a useful secondary effect that payoffs received in the distant
future have small impact on the accumulated reward today. This insensitivity
enables PAC learning without requiring any prior knowledge of the transition
probabilities. In RL, discounted reward is commonly used and has numerous
associated PAC learning algorithms [29].

In this work, we examine the discounted LTL of [2] for policy synthesis
in Markov decision processes (MDPs) with unknown transition probabilities.
We refer to such MDPs as “unknown MDPs” throughout the paper. This logic
maintains the syntax of LTL, but discounts the temporal operators. Discounted
LTL gives a quantitative preference to traces that satisfy the objective sooner,
and those that delay failure as long as possible. The authors of [2] examined
discounted LTL in the model checking setting. Exploring policy synthesis and
learnability for discounted LTL specifications is novel to this paper.

To illustrate how discounting affects learnability, consider the example [32]
MDP shown in Fig. 1. It consists of a safe state s0, two sink states s1, s2, and
two actions a1, a2. Taking action ai in s0 leads to a sink state with probability
pi and stays in s0 with probability 1− pi. Suppose we are interested in learning
a policy to make sure that the system always stays in the state s0. Now consider
two scenarios—one in which p1 = 0 and p2 = δ and another in which p2 = 0
and p1 = δ where δ > 0 is a small positive value. In the former case, the optimal
policy is to always choose a1 in s0 and in the latter case, we need to choose
a2 in s0. Furthermore, it can be shown that a near-optimal policy in one case
is not near-optimal in another. However, we cannot select a finite number of
samples needed to distinguish between the two cases (with high probability)
without knowledge of δ. In contrast, the time-discounted semantics of the safety
property evaluates to 1 − λk where k is the number of time steps spent in the
state s0. Then, for sufficiently small δ, any policy achieves a high value w.r.t. the
discounted safety property in both scenarios. In general, small changes to the
transition probabilities do not have drastic effects on the nature of near-optimal
policies for discounted interpretations of LTL properties.

Contributions. Table 1 summarizes results of this paper in the context of known
results regarding policy synthesis for various classes of specifications. We consider
three key properties of specifications, namely, (1) whether there is a finite-state
optimal policy and whether there are known algorithms for (2) computing an opti-
mal policy when the MDP is known, as well as for (3) learning a near-optimal

Policy Synthesis and Reinforcement Learning for Discounted LTL 417

Table 1. Policy synthesis in MDPs for different classes of specifications.

Specification Memory Policy Synthesis Algorithm
Known MDP PAC Learning

Reward Machines Finite [24,34] Exists [24,34] Exists [38]
LTL Finite [7] Exists [7] Impossible [3,43]
Discounted LTL Infinite Open Exists
Uniformly Discounted LTL Finite Exists Exists

policy when the transition probabilities are unknown (without additional assump-
tions). The classes of specifications include reward machines with discounted-sum
rewards [24], linear temporal logic (LTL) [7], discounted LTL and a variant of dis-
counted LTL in which all discount factors are identical, which we call uniformly
discounted LTL. In this paper, we show the following.

– In general, finite-memory optimal policies may not exist for discounted LTL
specifications.

– There exists a PAC learning algorithm to learn policies for discounted LTL
specifications.

– There is a reward machine for any uniformly discounted LTL specification
such that the discounted-sum rewards capture the semantics of the specifi-
cation. From this we infer that for any given MDP finite-memory optimal
policies exist and can be computed.

Related Work. Linear temporal logic (LTL) is a popular and expressive formalism
to unambiguously express qualitative safety and progress requirements of Kripke
structures and MDPs [7]. The standard approach to model check LTL formu-
las against MDPs is the automata-theoretic approach where the LTL formulas
are first translated to a class of good-for-MDP automata [20], such as limit-
deterministic Büchi automata [18,36,37,40], and then, efficient graph-theoretic
techniques (computing accepting end-component and then maximizing the prob-
ability to reach states in such components) [13,30,40] over the product of the
automaton with the MDP can be used to compute optimal satisfaction proba-
bilities and strategies. Since LTL formulas can be translated into (deterministic)
automata in doubly exponential time, the probabilistic model checking problem
is in 2EXPTIME with a matching lower bound [11].

Several variants of LTL have been proposed that provide discounted tem-
poral modalities. De Alfaro et al. [15] proposed an extension of μ-calculus with
discounting and showed [14] the decidability of model-checking over finite MDPs.
Mandrali [33] introduced discounting in LTL by taking a discounted sum inter-
pretation of logic over a trace. Littman et al. [32] proposed geometric LTL as a
logic to express learning objectives in RL. However, this logic has unclear seman-
tics for nesting operators. Discounted LTL was proposed by Almagor, Boker, and

418 R. Alur et al.

Kupferman [2], which considers discounting without accumulation. The decid-
ability of the policy synthesis problem for discounted LTL against MDPs is an
open problem.

An alternative approach to discounting that ensuring PAC learnability is to
introduce a fixed time horizon, along with a temporal logic for finite traces. In
this setting, the logic LTLf is the most popular [10,16]. Using LTLf with a
finite horizon yields simple algorithms [41], finite automata suffice for checking
properties, but at the expense of the expressivity of the logic, formulas like GFp
and FGp both mean that p occurs at the end of the trace.

There has been a lot of recent work on reinforcement learning from temporal
specifications [1,9,16,19,21,22,24–28,31,32,42,44]. Such approaches often lack
strong convergence guarantees. Some methods have been developed to reduce
LTL properties to discounted-sum rewards [8,19] while preserving optimal poli-
cies; however they rely on the knowledge of certain parameters that depend
on the transition probabilities of the unknown MDP. Recent work [3,32,43] has
shown that PAC algorithms that do not depend on the transition probabilities do
not exist for the class of LTL specifications. There has also been work on learn-
ing algorithms for LTL specifications that provide guarantees when additional
information about the MDP (e.g., the smallest nonzero transition probability)
is available [6,12,17].

2 Problem Definition

An alphabet Σ is a finite set of letters. A finite word (resp. ω-word) over Σ is
defined as a finite sequence (resp. ω-sequence) of letters from Σ. We write Σ∗

and Σω for the set of finite and ω-words over Σ.
A probability distribution over a finite set S is a function d : S→[0, 1] such

that
∑

s∈S d(s) = 1. Let D(S) denote the set of all discrete distributions over S.

Markov Decision Processes. A Markov Decision Process (MDP) is a tuple M =
(S,A, s0, P), where S is a finite set of states, s0 is the initial state, A is a finite
set of actions, and P : S × A → D(S) is the transition probability function. An
infinite run ψ ∈ (S×A)ω is a sequence ψ = s0a0s1a1 . . ., where si ∈ S and ai ∈ A
for all i ∈ Z≥0. For any run ψ and any i ≤ j, we let ψi:j denote the subsequence
siaisi+1ai+1 . . . aj−1sj . Similarly, a finite run h ∈ (S×A)∗×S is a finite sequence
h = s0a0s1a1 . . . at−1st. We use Z(S,A) = (S×A)ω and Zf (S,A) = (S×A)∗×S
to denote the set of infinite and finite runs, respectively.

A policy π : Zf (S,A) → D(A) maps a finite run h ∈ Zf (S,A) to a distri-
bution π(h) over actions. We denote by Π(S,A) the set of all such policies. A
policy π is deterministic if, for all finite runs h ∈ Zf (S,A), there is an action
a ∈ A with π(h)(a) = 1.

Given a finite run h = s0a0 . . . at−1st, the cylinder of h, denoted by Cyl(h),
is the set of all infinite runs with prefix h. Given an MDP M and a policy
π ∈ Π(S,A), we define the probability of the cylinder set by DM

π (Cyl(h)) =
∏t−1

i=0 π(h0:i)(ai)P (si, ai, si+1). It is known that DM
π can be uniquely extended

Policy Synthesis and Reinforcement Learning for Discounted LTL 419

to a probability measure over the σ-algebra generated by all cylinder sets. Let P
be a finite set of atomic propositions and Σ = 2P denote the set of all valuations
of propositions in P. An infinite word ρ ∈ Σω is a map ρ : Z≥0 → Σ.

Definition 1 (Discounted LTL). Given a set of atomic propositions P, dis-
counted LTL formulas over P are given by the grammar

ϕ := b ∈ P | ¬ϕ | ϕ ∨ ϕ | Xλϕ | ϕ Uλϕ

where λ ∈ [0, 1). Note that, in general, different temporal operators within the
same formula may have different discount factors λ. For a formula ϕ and a word
ρ = σ0σ1 . . . ∈ (2P)ω, the semantics �ϕ, ρ� ∈ [0, 1] is given by

�b, ρ� = 1
(
b ∈ σ0

)

�¬ϕ, ρ� = 1 − �ϕ, ρ�

�ϕ1 ∨ ϕ2, ρ� = max
{
�ϕ1, ρ�, �ϕ2, ρ�

}

�Xλϕ, ρ� = λ · �ϕ, ρ1:∞�

�ϕ1Uλϕ2, ρ� = sup
i≥0

{

min
{

λi[[ϕ2, ρi:∞]], min
0≤j<i

{λj [[ϕ1, ρj:∞]]}
}}

where ρi:∞ = σiσi+1 . . . denotes the infinite word starting at position i.

Conjunction is defined using ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2). We use Fλϕ = trueUλϕ
and Gλϕ = ¬Fλ¬ϕ to denote the discounted versions of finally and globally
operators respectively. Note that when all discount factors equal 1, the semantics
corresponds to the usual semantics of LTL.

For this paper, we consider the case of strict discounting, where λ < 1. We
refer to the case where the discount factor is the same for all temporal operators
as uniform discounting. Our definition differs from [2] in two ways: 1) we discount
the next operator, and 2) we enforce strict, exponential discounting.

Example Discounted LTL Specifications. To develop an intuition of the semantics
of discounted LTL, we now present a few example formulas and their meaning.

– Fλ p obtains a value of λn where n is the first index where p becomes true
in a trace, and 0 if p is never true. An optimal policy attempts to reach a
p-state as soon as possible.

– Gλ p obtains a value of 1−λn where n is the first index that a ¬p occurs in a
trace, and 1 if p always holds. An optimal policy attempts to delay reaching
a ¬p-state as long as possible.

– Xλ p obtains a value of λ if p is in the second position and 0 otherwise.
– p ∨ Xλ q obtains a value of 1 if p is in the first position of the trace, a value

of λ if the trace begins with ¬p followed by q, and a value of 0 otherwise.
– Fλ p ∧ Gλ q evaluates to the minimum of λn and (1−λm), where n is the first

position where p becomes true in a trace and m is the first position where
q becomes false. If n∗ = logλ0.5 is the index where these two competing
objectives coincide, then the optimal policy attempts to stay within q-states
for the first n∗ steps and then attempts to reach a p-state as soon as possible.

420 R. Alur et al.

– Consider the formula Fλ1Gλ2p. Given a trace, consider a p-block of length m
starting at position n, that is, p holds at all positions from n to n + m − 1,
and does not hold at position n − 1 (or n is the initial position). The value
of such a block is λn

1 (1 − λm
2). The value of the trace is then the maximum

over values of all such p-blocks. The optimal policy attempts to have as long
a p-block as possible as early as possible. The discount factor λ1 indicates the
preference for the p-block to occur sooner and the discount factor λ2 indicates
the preference for the p-block to be longer.

– Gλ1Fλ2p obtains a value equivalent to ¬Fλ1Gλ2¬p. Traces which contain
more p’s at shorter intervals are preferred. The discount factor λ1 indicates
the preference for the total number of p’s to be larger and λ2 indicates the
preference for the interval between the consecutive p’s to be shorter.

Policy Synthesis Problem. Given an MDP M = (S,A, s0, P), we assume that we
have access to a labelling function L : S → Σ that maps each state to the set of
propositions that hold true in that state. Given any run ψ = s0a0s1a1 . . . we can
define an infinite word L(ψ) = L(s0)L(s1) . . . that denotes the corresponding
sequence of labels. Given a policy π for M, we define the value of π with respect
to a discounted LTL formula ϕ as

J M(π, ϕ) = E
ρ∼DM

π

�ϕ, ρ� (1)

and the optimal value for M with respect to ϕ as J ∗(M, ϕ) = supπ J M(π, ϕ).
We say that a policy π is optimal for ϕ if J M(π, ϕ) = J ∗(M, ϕ). Let Πopt(M, ϕ)
denote the set of optimal policies. Given an MDP M, a labelling function L and
a discounted LTL formula ϕ, the policy synthesis problem is to compute an
optimal policy π ∈ Πopt(M, ϕ) when one exists.

Reinforcement Learning Problem. In reinforcement learning, the transition prob-
abilities P are unknown. Therefore, we need to interact with the environment to
learn a policy for a given specification. In this case, it is sufficient to learn an ε-
optimal policy π that satisfies J M(π, ϕ) ≥ J ∗(M, ϕ)−ε. We use Πε

opt(M, ϕ) to
denote the set of ε-optimal policies. Formally, a learning algorithm A is an iter-
ative process which, in every iteration n, (i) takes a step in M from the current
state, (ii) outputs a policy πn and (iii) optionally resets the current state to s0.
We are interested in probably-approximately correct (PAC) learning algorithms.

Definition 2 (PAC-MDP). A learning algorithm A is said to be PAC-MDP
for a class of specifications C if, there is a function η such that for any p > 0,
ε > 0, MDP M = (S,A, s0, P), labelling function L, and specification ϕ ∈ C,
taking N = η(|S|, |A|, |ϕ|, 1

p , 1
ε), with probability at least 1 − p, we have

∣
∣
∣
{

n | πn /∈ Πε
opt(M, ϕ)

}∣
∣
∣ ≤ N.

It has been shown that there does not exist PAC-MDP algorithms for LTL
specifications. Therefore, we are interested in the class of discounted LTL spec-
ifications that are strictly discounted, i.e. λ < 1 for every temporal operator.

Policy Synthesis and Reinforcement Learning for Discounted LTL 421

3 Properties of Discounted LTL

In this section, we discuss important properties of discounted LTL regarding
the nature of optimal policies. We first show that, under uniform discounting,
the amount of memory required for the optimal policy may increase with the
discount factor. We then show that, in general, allowing multiple discount factors
may result in optimal policies requiring infinite memory. This motivates our
restriction to the uniform discounting case in Sect. 4. We end this section by
introducing a PAC learning algorithm for discounted LTL.

3.1 Nature of Optimal Policies

It is known that for any (undiscounted) LTL formula ϕ and any MDP M,
there exists a finite memory policy that is optimal—i.e., the policy stores only
a finite amount of information about the history. Formally, given an MDP M =
(S,A, s0, P), a finite memory policy π = (M, δM , μ,m0) consists of a finite set
of memory states M , a transition function δM : M × S × A → M and an
action function μ : M × S → D(A). Given a finite run h = s0a0 . . . st = h′st,
the policy’s action is sampled from μ(δM (m0, h

′), st) where δM is also used to
represent the transition function extended to sequences of state-action pairs. We
use Πf (S,A) to denote the set of finite memory policies. In this paper, we will
show that uniformly discounted LTL admits finite memory optimal policies, but
that infinite memory may be required for the general case.

Unlike (undiscounted) LTL, discounted LTL allows a notion of satisfaction
quality. In discounted LTL, traces which satisfy a reachability objective sooner
are given a higher value, and are thus preferred. If an LTL formula cannot be
satisfied, the corresponding discounted LTL formula will assign higher values to
traces which delay failure as long as possible. These properties of discounted LTL
are desirable for enabling notions of promptness, but may yield more complex
strategies which try to balance the values of multiple competing subformulas.

Example 1. Consider the discounted LTL formula ϕ = Gλp∧Fλ¬p. This formula
contains two competing objectives that cannot both be completely satisfied.
Increasing the value of Gλp by increasing the number of p’s at the beginning of
the trace before the first ¬p decreases the value of Fλ¬p. Under the semantics of
conjunction, the value of ϕ is the minimum of the two subformulas. Specifically,
the value of ϕ w.r.t. a word ρ is

[[Gλp ∧ Fλ¬p, ρ]] = [[¬Fλ¬p ∧ Fλ¬p, ρ]]
= [[¬(Fλ¬p ∨ ¬Fλ¬p), ρ]]
= 1 − max{[[Fλ¬p, ρ]], [[¬Fλ¬p, ρ]]}

= 1 − max
{

sup
i≥0

{λi[[¬p, ρi:∞]]}, 1 − sup
i≥0

{λi[[¬p, ρi:∞]]}
}

.

where ρi:∞ is the trace starting from index i. Now consider a two state (deter-
ministic) MDP with two states S = {s1, s2} and two actions A = {a1, a2} in

422 R. Alur et al.

which the agent can decide to either stay in s1 or move to s2 at any step and
the system stays in s2 upon reaching s2. This MDP can be seen in Fig. 2. We
have one proposition p which holds in state s1 and not in s2. Note that all runs
produced by the example MDP are either of the form sω

1 or sk
1s

ω
2 . The discounted

LTL value of runs of the form sω
1 is 0. The value of runs of the form ψ = sk

1s
ω
2 is

v(k) = �ϕ,L(ψ)� = 1 − max{λk, 1 − λk} .

A finite memory policy stays in s1 for k steps will yield this value. Since λk is
decreasing in k and 1−λk is increasing in k, the integer value of k that maximizes
v(k) lies in the interval [γ − 1, γ +1] where γ ∈ R satisfies λγ = 1− λγ . Figure 2
shows this graphically. We have that γ = log(0.5)

log(λ) which is increasing in λ. Hence,
the amount of memory required increases with increase in λ.

s0
p

s1
⊥

a1

a2

a1, a2
0 200 400

0

0.2

0.4

0.6

0.8

1

γ

k

V
al
ue

Gλp ∧ Fλ¬p

Gλp

Fλ¬p

Fig. 2. An example showing that memory requirements for optimal policies may depend
on the discount factor. The red line is λk, the blue line is 1 − λk and the solid black
line is v(k) = 1−max{λn, 1−λn}, where k is the number of time steps one remains in
s0. The dashed vertical line shows the value γ where v(k) is maximized. We have set
λ = 0.99. Note that changing the value of λ corresponds to rescaling the x-axis. (Color
figure online)

The optimal strategy in the example above tries to balance the value of two
competing subformula. We will now show that extending this idea to the general
case of multiple discount factors requires balancing quantities that are decaying
at different speeds. This balancing may require remembering an arbitrarily long
history of the trace—infinite memory is required.

Theorem 1. There exists an MDP M = (S,A, s0, P), a labelling function
L and a discounted LTL formula ϕ such that for all π ∈ Πf (S,A) we have
JM(π, ϕ) < J ∗(M, ϕ).

Proof. Consider the MDP M depicted in Fig. 3. It consists of three states
S = {s0, s1, s2} and two actions A = {a1, a2}. The edges are labelled with
actions and the corresponding transition probabilities. There are two proposi-
tions P = {p1, p2} and p1 holds true in state s1 and p2 holds true in state s2.
The specification is given by ϕ = Fλ1Gλ2p1 ∧ Fλ2p2 where λ1 < λ2 < 1.

Policy Synthesis and Reinforcement Learning for Discounted LTL 423

s0
⊥

s1
p1

s2
p2

1 − p

p

a1

a2

a1, a2

a1, a2

Fig. 3. The need for infinite memory for achieving optimality in discounted LTL.

For any run ψ that never visits s2, we have �ϕ,L(ψ)� = 0 since
�Fλ2p2, L(ψ)� = 0. Otherwise the run has the form ψ = sk0

0 sk1
1 sω

2 where k0
is stochastic and k1 is a strategic choice by the agent. To show that this requires
an infinite amount of memory to play optimally, one just has to show that the
optimal choice of k1 increases with k0. This means that the agent must remem-
ber k0, the number of steps spent in the initial state, via an unbounded counter.
Note that every value of k0 has a non-zero probability in M and therefore choos-
ing a suboptimal k1 for even a single value of k0 causes a decrease in value from
the policy that always chooses optimal k1.

The value of the run ψ is �ϕ,L(ψ)� = min(λk0
1 (1 − λk1

2), λk0+k1
2). Note that

λk0
1 (1− λk1

2) increases with increase in k1 and λk0+k1
2 decreases with increase in

k1. Therefore taking γ ∈ R to be such that λk0
1 (1 − λγ

2) = λk0+γ
2 , the optimal

choice of k1 lies in the interval [γ−1, γ+1]. Now γ satisfies 1 =
(
(λ2/λ1)k0+1

)
λγ
2 .

Since λ1 < λ2 < 1 we must have that γ increases with increase in k0. Therefore,
k1 also increases with increase in k0. �	

3.2 PAC Learning

In the above discussion, we showed that one might need infinite memory to act
optimally w.r.t a discounted LTL formula. However, it can be shown that for any
MDP M, labelling function L, discounted LTL formula ϕ and any ε > 0, there
is a finite-memory policy π that is ε-optimal for ϕ. In fact, we can show that
this class of discounted LTL formulas admit a PAC-MDP learning algorithm.

Theorem 2 (Existence of PAC-MDP). There exists a PAC-MDP learning
algorithm for discounted LTL specifications.

Proof (sketch). Our approach to compute ε-optimal policies for discounted LTL
is to compute a policy which is optimal for T steps. The policy will depend on
the entire history of atomic propositions that has occured so far.

Given discounted LTL specification ϕ, the first step of the algorithm is to
determine T . We select T such that for any two infinite words α and β where the
first T +1 indices match, i.e. α0:T = β0:T , we have that

∣
∣[[ϕ,α]]− [[ϕ, β]]

∣
∣ ≤ ε. Say

that the maximum discount factor appearing in all temporal operators is λmax .
Due to the strict discounting of discounted LTL, selecting T ≥ log ε

log λmax
ensures

that
∣
∣[[ϕ,α]] − [[ϕ, β]]

∣
∣ ≤ λn ≤ ε.

424 R. Alur et al.

Now we unroll the MDP for T steps. We include the history of the atomic
proposition sequence in the state. Given an MDP M = (S,A, s0, P) and a label-
ing L : S → Σ, the unrolled MDP MT = (S′, A′, s′

0, P
′) is such that

S′ =
T⋃

t=0

S × Σ × . . . × Σ
︸ ︷︷ ︸

t times

,

A′ = A, P ′((s, σ0, . . . , σt−1), a, (s′, σ0, . . . , σt−1, σt)) = P (s, a, s′) if 0 ≤ t ≤ T
and σt = L(s′), and is 0 otherwise (the MDP goes to a sink state if t > T). The
leaves of the unrolled MDP are the states where T timesteps have elapsed. In
these states, there is an associated finite word of length T . For a finite word of
length T , we define the value of any formula ϕ to be zero beyond the end of the
trace, i.e. [[ϕ, ρj:∞]] = 0 for any j > T . We then compute the value of the finite
words associated with the leaves which is then considered as the reward at the
final step. We can use existing PAC algorithms to compute an ε-optimal policy
w.r.t. this reward for the finite horizon MDP MT from which we can obtain a
2ε-optimal policy for M w.r.t the specification ϕ. �	

4 Uniformly Discounted LTL to Reward Machines

In general, optimal strategies for discounted LTL require infinite memory (Theo-
rem 1). However, producing such an example required the use of multiple, varied
discount factors. In this section, we will show that finite memory is sufficient
for optimal policies under uniform discounting, where the discount factors for
all temporal operators in the formula are the same. We will also provide an
algorithm for computing these strategies.

Our approach is to reduce uniformly discounted LTL formulas to reward
machines, which are finite state machines in which each transition is associated
with a reward. We show that the value of a given discounted LTL formula ϕ for
an infinite word ρ is the discounted-sum reward computed by a corresponding
reward machine.

Formally, a reward machine is a tuple R = (Q, δ, r, q0, λ) where Q is a finite
set of states, δ : Q × Σ → Q is the transition function, r : Q × Σ → R is
the reward function, q0 ∈ Q is the initial state, and λ ∈ [0, 1) is the discount
factor. With any infinite word ρ = σ0σ1 . . . ∈ Σω, we can associate a sequence
of rewards c0c1 . . . where ct = r(qt, σt) with qt = δ(qt−1, σt−1) for t > 0. We use
R(ρ) to denote the discounted reward achieved by ρ,

R(ρ) =
∞∑

t=0

λtct,

and R(w) to denotes the partial discounted reward achieved by the finite word
w = σ0σ1 . . . σT ∈ Σ∗—i.e., R(w) =

∑T
t=0 λtct where ct is the reward at time t.

Given a reward machine R and an MDP M, our objective is to maximize
the expected value R(ρ) from the reward machine reading the word ρ produced

Policy Synthesis and Reinforcement Learning for Discounted LTL 425

by the MDP. Specifically, the value for a policy π for M is

J M(π,R) = E
ρ∼DM

π

[R(ρ)]

where π is optimal if J M(π,R) = supπ J M(π,R). Finding such an optimal
policy is straightforward: we consider the product of the reward machine R with
the MDP M to form a product MDP with a discounted reward objective. In
the corresponding product MDP, we can compute optimal policies for maxi-
mizing the expected discounted-sum reward using standard techniques such as
policy iteration and linear programming. If the transition function of the MDP
is unknown, this product can be formed on-the-fly and any RL algorithm for
discounted reward can be applied. Using the state space of the reward machine
as memory, we can then obtain a finite-memory policy that is optimal for R.

We have the following theorem showing that we can construct a reward
machine Rϕ for every uniformly discounted LTL formula ϕ.

Theorem 3. For any uniformly discounted LTL formula ϕ, in which all tempo-
ral operators use a common discount factor λ, we can construct a reward machine
Rϕ = (Q, δ, r, q0, λ) such that for any ρ ∈ Σω, we have Rϕ(ρ) = �ρ, ϕ�.

We provide the reward machine construction for Theorem 3 in the next sub-
section. Using this theorem, one can use a reward machine Rϕ that matches
the value of a particular uniformly discounted LTL formula ϕ, and then apply
the procedure outlined above for computing optimal finite-memory policies for
reward machines.

Corollary 1. For any MDP M, labelling function L and a discounted LTL
formula ϕ in which all temporal operators use a common discount factor λ,
there exists a finite-memory optimal policy π ∈ Πopt(M, ϕ). Furthermore, there
is an algorithm to compute such a policy.

4.1 Reward Machine Construction

For our construction, we examine the case of uniformly discounted LTL formula
with positive discount factors λ ∈ (0, 1). This allows us to divide by λ in our
construction. We note that the case of uniformly discounted LTL formula with
λ = 0 can be evaluated after reading the initial letter of the word, and thus have
trivial reward machines.

The reward machine Rϕ constructed for the uniformly discounted LTL for-
mula ϕ exhibits a special structure. Specifically, all edges within any given
strongly-connected component (SCC) of Rϕ share the same reward, which is
either 0 or 1 − λ, while all other rewards fall within the range of [0, 1 − λ]. We
present an inductive construction of the reward machines over the syntax of
discounted LTL that maintains these invariants.

Lemma 1. For any uniformly discounted LTL formula ϕ there exists a reward
machine Rϕ = (Q, δ, r, q0, λ) such that following hold:

426 R. Alur et al.

q0

q1

q2

p, 1 − λ

¬p, 0

, 1 − λ

, 0

s0 s0

s1

s2

, 0

q, 1 − λ

¬q, 0

, 1 − λ

, 0

Fig. 4. Reward machines for ϕ = p (left) and ϕ = Xλq (right). The transitions are
labeled by the guard and reward.

I1. For any ρ ∈ Σω, we have Rϕ(ρ) = �ρ, ϕ�.
I2. There is a partition of the states Q =

⋃L
	=1 Q	 and a type mapping χ : [L] →

{0, 1 − λ} such that for any q ∈ Q	 and σ ∈ Σ,
(a) δ(q, σ) ∈ ⋃L

m=	 Qm, and
(b) if δ(q, σ) ∈ Q	 then r(q, σ) = χ(�).

I3. For any q ∈ Q and σ ∈ Σ, we have 0 ≤ r(q, σ) ≤ 1 − λ.

Our construction proceeds inductively. We define the reward machine for the
base case of a single atomic proposition, i.e. ϕ = p, and then the construction
for negation, the next operator, disjunction, the eventually operator (for ease of
presentation), and the until operator. The ideas used in the constructions for dis-
junction, the eventually operator, and the until operator build off of each other,
as they all involve keeping track of the maximum/minimum value over a set of
subformulas. We use properties I1 and I3 to show correctness, and properties I2
and I3 to show finiteness. A summary of the construction and detailed proofs
can be found in the full version of this paper [4].

Atomic Propositions. Let ϕ = p for some p ∈ P. The reward machine Rϕ =
(Q, δ, r, q0, λ) for ϕ is such that Q = {q0, q1, q2} and δ(q, σ) = q for all q ∈ {q1, q2}
and σ ∈ Σ. The reward machine is shown in Fig. 4 where edges are labelled with
propositions and rewards. If p ∈ σ, δ(q0, σ) = q1 and r(q0, σ) = 1 − λ. If p /∈ σ,
δ(q0, σ) = q2 and r(q0, σ) = 0. Finally, r(q1, σ) = 1 − λ and r(q2, σ) = 0 for all
σ ∈ Σ. It is clear to see that I1, I2, and I3 hold.

Negation. Let ϕ = ¬ϕ1 for some LTL formula ϕ1 and let Rϕ1 = (Q, δ, r, q0, λ)
be the reward machine for ϕ1. Notice that the reward machine for ϕ can be
constructed from Rϕ1 by simply replacing every reward c with (1 − λ) − c
as

∑∞
i=0 λi(1 − λ) = 1. Formally, Rϕ = (Q, δ, r′, q0, λ) where r′(q, σ) =

(1 − λ) − r(q, σ) for all q ∈ Q and σ ∈ Σ. Again, assuming that invariants
I1, I2, and I3 hold for Rϕ1 , it easily follows that they hold for Rϕ.

Next Operator. Let ϕ = Xλϕ1 for some ϕ1 and let Rϕ1 = (Q, δ, r, q0, λ) be
the reward machine for ϕ1. The reward machine for ϕ can be constructed from

Policy Synthesis and Reinforcement Learning for Discounted LTL 427

Rϕ1 by adding a new initial state q′
0 and a transition in the first step from it

to the initial state of Rϕ1 . From the next step Rϕ simulates Rϕ1 . This has the
resulting effect of skipping the first letter, and decreasing the value by λ. For-
mally, Rϕ = ({q′

0}	Q, δ′, r′, q′
0, λ) where δ′(q′

0, σ) = q0 and δ′(q, σ) = δ(q, σ) for
all q ∈ Q and σ ∈ Σ. Similarly, r′(q′

0, σ) = 0 and r′(q, σ) = r(q, σ) for all q ∈ Q
and σ ∈ Σ. Assuming that invariants I1, I2, and I3 hold for Rϕ1 , it follows that
they hold for Rϕ.

Disjunction. Let ϕ = ϕ1 ∨ ϕ2 for some ϕ1, ϕ2 and let Rϕ1 = (Q1, δ1, r1, q
1
0 , λ)

and Rϕ2 = (Q2, δ2, r2, q
2
0 , λ) be the reward machines for ϕ1 and ϕ2, respectively.

The reward machine Rϕ = (Q, δ, r, q0, λ) is constructed Rϕ1 and Rϕ2 such that
for any finite word it maintains the invariant that the discounted reward is
the maximum of the reward provided by Rϕ1 and Rϕ2 . Moreover, once it is
ascertained that the reward provided by one machine cannot be overtaken by
the other for any suffix, Rϕ begins simulating the reward machine with higher
reward.

The construction involves a product construction along with a real-valued
component that stores a scaled difference between the total accumulated reward
for ϕ1 and ϕ2. In particular, Q = (Q1 × Q2 × R) 	 Q1 	 Q2 and q0 = (q10 , q

2
0 , 0).

The reward deficit ζ of a state q = (q1, q2, ζ) denotes the difference between
the total accumulated reward for ϕ1 and ϕ2 divided by λn where n is the total
number of steps taken to reach q. The reward function is defined as follows.

– For q = (q1, q2, ζ), we let f(q, σ) = r1(q1, σ) − r2(q2, σ) + ζ denote the new
(scaled) difference between the discounted-sum rewards accumulated by Rϕ1

and Rϕ2 . The current reward depends on whether f(q, σ) is positive (accumu-
lated reward from Rϕ1 is higher) or negative and whether the sign is different
from ζ. Formally,

r(q, σ) =

{
r1(q1, σ) + min{0, ζ} if f(q, σ) ≥ 0
r2(q2, σ) − max{0, ζ} if f(q, σ) < 0

– For a state qi ∈ Qi we have r(qi, σ) = ri(qi, σ).

Now we need to make sure that ζ is updated correctly. We also want the transi-
tion function to be such that the (reachable) state space is finite and the reward
machine satisfies I1, I2 and I3.

– First, we make sure that, when the difference ζ is too large, the machine
transitions to the appropriate state in Q1 or Q2. For a state q = (q1, q2, ζ)
with |ζ| ≥ 1, we have

δ(q, σ) =

{
δ1(q1, σ) if ζ ≥ 1
δ2(q2, σ) if ζ ≤ −1.

– For states with |ζ| < 1, we simply advance both the states and update ζ
accordingly. Letting f(q, σ) = r1(q1, σ) − r2(q2, σ) + ζ, we have that for a

428 R. Alur et al.

state q = (q1, q2, ζ) with |ζ| < 1,

δ(q, σ) = (δ1(q1, σ), δ2(q2, σ), f(q, σ)/λ). (2)

– Finally, for qi ∈ Qi, δ(qi, σ) = δi(qi, σ).

Finiteness. We argue that the (reachable) state space of Rϕ is finite. Let Qi =⋃Li

	=1 Qi
	 for i ∈ {1, 2} be the SCC decompositions of Q1 and Q2 that satisfy

property I2 for Rϕ1 and Rϕ2 respectively. Intuitively, if Rϕ stays within Q1
	 ×

Q2
m × R for some � ≤ L1 and m ≤ L2, then the rewards from Rϕ1 and Rϕ2

are constant; this enables us to infer the reward machine (Rϕ1 and Rϕ2) with
the higher total accumulated reward in a finite amount of time after which we
transition to Q1 or Q2. Hence the set of all possible values of ζ in a reachable
state (q1, q2, ζ) ∈ Q1

	 × Q2
m × R is finite. This can be shown by induction.

Property I1. Intuitively, it suffices to show that Rϕ(w) = max{Rϕ1(w),Rϕ2(w)}
for every finite word w ∈ Σ∗. We show this property along with the fact that for
any w ∈ Σ∗ of length n, if the reward machine reaches a state (q1, q2, ζ), then
ζ = (Rϕ1(w) − Rϕ2(w))/λn. This can be proved using induction on n.

Property I2. This property is true if and only if for every SCC C of Rϕ there is a
type c ∈ {0, 1−λ} such that if δ(q, σ) = q′ for some q, q′ ∈ C and σ ∈ Σ, we have
r(q, σ) = c. From the definition of the transition function δ, C cannot contain
two states where one is of the form (q1, q2, ζ) ∈ Q1 × Q2 × R and the other is
qi ∈ Qi for some i ∈ {1, 2}. Now if C is completely contained in Qi for some
i, we can conclude from the inductive hypothesis that the rewards within C are
constant (and they are all either 0 or 1− λ). When all states of C are contained
in Q1 × Q2 ×R, they must be contained in Q̄1 × Q̄2 ×R where Q̄i is some SCC
of Rϕi

. In such a case, we can show that |C| = 1 and in the presence of a self
loop on a state within C, the reward must be either 0 or 1 − λ.

Property I3. We now show that all rewards are bounded between 0 and (1− λ).
Let q = (q1, q2, ζ) and f(q, σ) = r1(q1, σ) − r2(q2, σ) + ζ. We show the bound
for the case when f(q, σ) ≥ 0 and the other case is similar. If ζ ≥ 0, then
r(q, σ) = r1(q1, σ) ∈ [0, 1 − λ]. If ζ < 0, then r(q, σ) ≤ r1(q1, σ) ≤ 1 − λ and

r(q, σ) = r1(q1, σ) + ζ = f(q, σ) + r2(q2, σ) ≥ 0.

This concludes the construction for ϕ1 ∨ ϕ2.

Eventually Operator. For ease of presentation, we treat the until operator as
a generalization of the eventually operator Fλ and present it first. We have that
ϕ = Fϕ1 for some ϕ1. Let Rϕ1 = (Q1, δ1, r1, q

1
0 , λ) be the reward machine for

ϕ1. Let Xi
λ denote the operator Xλ applied i times. We begin by noting that

Fλϕ1 ≡
∨

i≥0

Xi
λϕ1 = ϕ1 ∨ Xλϕ1 ∨ X2

λϕ1 ∨

Policy Synthesis and Reinforcement Learning for Discounted LTL 429

The idea of the construction is to keep track of the unrolling of this formula up
to the current timestep n,

Fn
λϕ1 =

∨

n≥i≥0

Xi
λϕ1 = ϕ1 ∨ Xλϕ1 ∨ X2

λϕ1 ∨ . . . ∨ Xn
λϕ1.

For this, we will generalize the construction for disjunction. In the disjunction
construction, there were states of the form (q1, q2, ζ) where ζ was a bookkeeping
parameter that kept track of the difference between Rϕ1(w) and Rϕ2(w), namely,
ζ = (Rϕ1(w)−Rϕ2(w))/λn where w ∈ Σ∗ is some finite word of length n. To gen-
eralize this notion to make a reward machine for max{R1, . . . ,Rk}, we will have
states of the form {(q1, ζ1), . . . , (qn, ζn)} where ζi = (Ri(w) − maxj Rj(w))/λn.
When ζi ≤ −1 then Ri(w)+λn ≤ maxj Rj(w) and we know that the associated
reward machine Ri cannot be the maximum, so we drop it from our set. We also
note that the value of Xi

λϕ1 can be determined by simply waiting i steps before
starting the reward machine Rϕ1 , i.e. λiRϕ1(ρi:∞) = RXi

λϕ1
(ρ). This allows us

to perform a subset construction for this operator.
For a finite word w = σ0σ1 . . . σn ∈ Σ∗ and a nonnegative integer k, let

wk:∞ denote the subword σk . . . σn which equals the empty word ε if k>n.
We use the notation �Xk

λϕ1, w� = λkRϕ1(wk:∞) and define �Fk
λϕ1, w� =

maxk≥i≥0 �Xk
λϕ1, w� which represents the maximum value accumulated by the

reward machine of some formula of the form Xi
λϕ1 with i ≤ k on a finite word

w. The reward machine for Fλϕ1 will consist of states of the form (v, S), con-
taining a value v for bookkeeping and a set S that keeps track of the states of
all RXi

λϕ1
that may still obtain the maximum given a finite prefix w of length

n, i.e. reward machine states of all subformulas Xi
λϕ1 for n ≥ i ≥ 0 that satisfy

�Xi
λϕ1, w�+λn > �Fn

λϕ1, w� since λn is the maximum additional reward obtain-
able by any ρ ∈ Σω with prefix w. The subset S consists of elements of the form
(qi, ζi) ∈ S where qi = δ1(q10 , wi:∞) and ζi = (�Xi

λϕ1, w� − �Fn
λϕ1, w�)/λn corre-

sponding to each subformula Xi
λϕ1. The value v = max{−1,−�Fn

λϕ1, w�/λn} is
a bookkeeping parameter used to initialize new elements in the set S and to stop
adding elements to S when v ≤ −1. We now present the construction formally.

We form a reward machine Rϕ = (Q, δ, r, q0, λ) where Q = R × 2Q1×R and
q0 = (0, {(q10 , 0)}). We define a few functions that ease defining our transition
function. Let f(ζ, q, σ) = r1(q, σ) + ζ and m(S, σ) = max

(qi,ζi)∈S
f(ζi, qi, σ). For the

subset construction, we define

Δ(S, σ) =
⋃

(q,ζ)∈S

{(δ1(q, σ), ζ ′) : ζ ′ =
(
(f(ζ, q, σ) − m(S, σ))/λ

)
> −1}

The transition function is

δ((v, S), σ) =

{(
v′(S, v, σ), Δ(S, σ) 	 (

q10 , v
′(S, v, σ)

))
if v′(S, v, σ) > −1

(−1, Δ(S, σ)) if v′(S, v, σ) ≤ −1

where v′(S, v, σ) = (v − m(S, σ))/λ. The reward function is r((v, S), σ) =
m(S, σ).

430 R. Alur et al.

We now argue that Rϕ satisfies properties I1, I2 and I3 and the set of reach-
able states in Rϕ is finite assuming Rϕ1 satisfies I1, I2 and I3.

Finiteness. Consider states of the form (v, S) ∈ Q. If v = 0, then it must be that
ζi = 0 for all (qi, ζi) ∈ S since receiving a non-zero reward causes the value of
v to become negative. There are only finitely many such states. If −1 < v < 0,
then we will reach a state (v′, S′) ∈ Q with v′ = −1 in at most n steps, where
n is such that v/λn ≤ −1. Therefore, the number of reachable states (v, S) with
−1 < v < 0 is also finite. Also, the number of states of the form (−1, S) that can
be initially reached (via paths consisting only of states of the form (v, S′) with
v > −1) is finite. Furthermore, upon reaching such a state (−1, S), the reward
machine is similar to that of a disjunction (maximum) of |S| reward machines.
From this we can conclude that the full reachable state space is finite.

Property I1. The transition function is designed so that the following holds true:
for any finite word w ∈ Σ∗ of length n and letter σ ∈ Σ, if δ(q0, w) = (v, S),
then m(S, σ) = (�Fn+1

λ ϕ1, wσ� − �Fn
λϕ1, w�)/λn. Since r((v, S), σ) = m(S, σ),

we get that Rϕ(w) = �Fn
λϕ1, w�. Thus, Rϕ(ρ) = �Fλϕ1, ρ� for any infinite

word ρ ∈ Σω. This property for m(S, σ) follows from the preservation of all the
properties outlined in the above description of the construction.

Property I2. Consider an SCC C in Rϕ such that (v, S) = δ((v, S), w) for some
(v, S) ∈ C and w ∈ Σ∗ of length n > 0. Note that if −1 < v < 0, then
(v′, S′) = δ((v, S), w) is such that v′ < v. Thus, it must be that v = 0 or v = −1.
If v = 0, then all the reward must be zero, since any nonzero rewards result in
v < 0. If v = −1, then it must be that for any (qi, ζi) ∈ S, qi is in an SCC Ci

1 in
Rϕ1 with some reward type ci ∈ {0, 1 − λ}. For all ζi to remain fixed (which is
necessary as otherwise some ζi strictly increases or decreases), it must be that
all ci are the same, say c. Thus, the reward type in Rϕ1 for SCC C equals c.

Property I3. We can show that for any finite word w ∈ Σ∗ of length n and
letter σ ∈ Σ, if δ(q0, w) = (v, S), then the reward is r((v, S), σ) = m(S, σ) =
(�Fn+1

λ ϕ1, wσ� − �Fn
λϕ1, w�)/λn using induction on n. Since property I3 holds

for Rϕ1 , we have that 0 ≤ (�Fn+1
λ ϕ1, wσ� − �Fn

λϕ1, w�) ≤ (1 − λ)λn.

Until Operator. We now present the until operator, generalizing the ideas
presented for the eventually operator. We have that ϕ = ϕ1Uλϕ2 for some ϕ1

and ϕ2. Let Rϕ1 = (Q1, δ1, r1, q
1
0 , λ) and Rϕ2 = (Q2, δ2, r2, q

2
0 , λ). Note that

ϕ1Uλϕ2 =
∨

i≥0

(Xi
λϕ2 ∧ ϕ1 ∧ Xλϕ1 ∧ . . . ∧ Xi−1

λ ϕ1)

= ϕ2 ∨ (Xλϕ2 ∧ ϕ1) ∨ (X2
λϕ2 ∧ ϕ1 ∧ Xλϕ1) ∨

The goal of the construction is to keep track of the unrolling of this formula up
to the current timestep n,

ϕ1Un
λϕ2 =

∨

n≥i≥0

(Xi
λϕ2 ∧ ϕ1 ∧ Xλϕ1 ∧ . . . ∧ Xi−1

λ ϕ1) =
∨

n≥i≥0

ψi.

Policy Synthesis and Reinforcement Learning for Discounted LTL 431

Each ψi requires a subset construction in the style of the eventually opera-
tor construction to maintain the minimum. We then nest another subset con-
struction in the style of the eventually operator construction to maintain the
maximum over ψi. For a finite word w ∈ Σ∗, we use the notation �ψi, w� and
�ϕ1Uk

λϕ2, w� for the value accumulated by reward machine corresponding to
these formula on the word w, i.e. �ψi, w� = min{�Xi

λϕ2�,mini>j≥0{�Xj
λϕ1, w�}

and �ϕ1Uk
λϕ2, w� = maxk≥i≥0 �ψi, w�.

Let S = 2(Q1
Q2)×R be the set of subsets containing (q, ζ) pairs, where q
may be from either Q1 or Q2. The reward machine consists of states of the
form (v, I,X) where the value v ∈ R and the subset I ∈ S are for bookkeeping,
and X ∈ 2S is a subset of subsets for each ψi. Specifically, each element of
X is a subset S corresponding to a particular ψi which may still obtain the
maximum, i.e. �ψi, w� + λn > �ϕ1Un

λϕ2, w�. Each element of S is of the form
(q, ζ). We have that q ∈ Q2 for at most one element where q = δ2(q20 , wk:∞)
and ζ = (�Xk

λϕ2, w� − �ϕ1Un
λϕ2, w�)/λn. For the other elements of S, we have

that q ∈ Q1 with q = δ1(q10 , wk:∞) and ζ = (�Xk
λϕ1, w� − �ϕ1Un

λϕ2, w�)/λn.
If for any of these elements, the value of its corresponding formula becomes
too large to be the minimum for the conjunction forming ψi, i.e. �ψi, w�+ λn ≤
�ϕ1Un

λϕ2, w�+λn ≤ �Xk
λϕt, w� which occurs when ζ ≥ 1, that element is dropped

from S. In order to update X , we add a new S corresponding to ψn on the next
timestep. The value v = max{−1, �ϕ1Un

λϕ2, w�} is a bookkeeping parameter for
initializing new elements in the subsets and for stopping the addition of new
elements when v ≤ −1. The subset I is a bookkeeping parameter that keeps
track of the subset construction for

∧
n>i≥0 X

i
λϕ1, which is used to initialize the

addition of a subset corresponding to ψn = Xn
λϕ2 ∧ (

∧
n>i≥0 X

i
λϕ1). We now

define the reward machine formally.
We define a few functions that ease defining our transition function. We define

δ∗(q, σ) = δi(q, σ) and f∗(ζ, q, σ) = ri(q, σ) + ζ if q ∈ Qi for i ∈ {1, 2}. We also
define n(S, σ) = min(qi,ζi)∈S f∗(ζi, qi, σ) and m(X , σ) = maxS∈X n(S, σ). For the
subset construction, we define

Δ(S, σ,m) =
⋃

(q,ζ)∈S

{(δ∗(q, σ), ζ ′) : ζ ′ < 1}

where ζ ′ = (f∗(ζ, q, σ) − m)/λ and

T (X , σ,m) =
⋃

S∈X
{Δ(S, σ,m) : n(S, σ) > −1}.

We form a reward machine Rϕ = (Q, δ, r, q0, λ) where Q = R × S × 2S and
q0 = (0, ∅, {{(q20 , 0)}}). The transition function is

δ((v, I,X), σ) =

{(
v′, I ′, T (X , σ,m) 	 (

I ′ 	 (q20 , v
′)

))
if v′ > −1

(−1, ∅, T (X , σ,m)) if v′ ≤ −1

where m = m(X , σ), v′ = (v − m)/λ, and I ′ = Δ(I 	 (q10 , v
′), σ,m). The reward

function is r((v, I,X), σ) = m(X , σ).

432 R. Alur et al.

We now show a sketch of correctness, which mimics the proof for the even-
tually operator closely.

Finiteness. Consider states of the form (v, I,X) ∈ Q. If v = 0, then for all S ∈ X
and (qi, ζi) ∈ S it must be that ζi = 0 since receiving a non-zero reward causes
the value of v to become negative. Similarly, all ζi = 0 for (qi, ζi) ∈ I when v = 0.
There are only finitely many such states. If −1 < v < 0, then we will reach a
state (v′, I ′,X ′) ∈ Q with v′ = −1 in at most n steps, where n is such that
v/λn ≤ −1. Therefore, the number of reachable states −1 < v < 0 is also finite.
Additionally, the number of states where v = −1 that can be initially reached is
finite. Upon reaching such a state (−1, ∅,X ′), the reward machine is similar to
that of the finite disjunction of reward machines for finite conjunctions.

Property I1. The transition function is designed so that the following holds true:
for any finite word w ∈ Σ∗ of length n and letter σ ∈ Σ, if δ(q0, w) = (v, I,X),
then m(X , σ) = (�ϕ1Un+1

λ ϕ2, wσ� − �ϕ1Un
λϕ2, w�)/λn. Since r((v, I,X), σ) =

m(X , σ), we get that Rϕ(w) = �ϕ1Un
λϕ2, w�. Thus, Rϕ(ρ) = �ϕ1Uλϕ2, ρ� for

any infinite word ρ ∈ Σω. This property for m(X , σ) follows from the properties
outlined in the construction, which can be shown inductively.

Property I2. Consider an SCC C of Rϕ and a state (v, I,X) ∈ C. If v = 0, then
we must receive zero reward because non-zero reward causes the value of v to
become negative. It cannot be that −1 < v < 0 since if v < 0, we reach a state
(v′, I ′,X ′) ∈ Q with v′ = −1 in at most n steps, where n is such that v/λn ≤ −1.
If v = −1, then we have a state of the form (−1, ∅,X). For this to be an SCC,
all elements of the form (qk, ζk) ∈ S for S ∈ X must be such that qk is in an
SCC of its respective reward machine (either Rϕ1 or Rϕ2) with reward type
tk ∈ {0, 1 − λ}. Additionally, there cannot be a t′k �= tk otherwise there would
be a ζk that changes following a cycle in the SCC C. Thus, the reward for this
SCC C is tk.

Property I3. This property can be shown by recalling the property above that
r((v, I,X), σ) = m(X , σ) = (�ϕ1Un+1

λ ϕ2, wσ� − �ϕ1Un
λϕ2, w�)/λn.

5 Conclusion

This paper studied policy synthesis for discounted LTL in MDPs with unknown
transition probabilities. Unlike LTL, discounted LTL provides an insensitivity
to small perturbations of the transitions probabilities which enables PAC learn-
ing without additional assumptions. We outlined a PAC learning algorithm for
discounted LTL that uses finite memory. We showed that optimal strategies for
discounted LTL require infinite memory in general due to the need to balance
the values of multiple competing objectives. To avoid this infinite memory, we
examined the case of uniformly discounted LTL, where the discount factors for
all temporal operators are identical. We showed how to translate uniformly dis-
counted LTL formula to finite state reward machines. This construction shows
that finite memory is sufficient, and provides an avenue to use discounted reward

Policy Synthesis and Reinforcement Learning for Discounted LTL 433

algorithms, such as reinforcement learning, for computing optimal policies for
uniformly discounted LTL formulas.

References

1. Aksaray, D., Jones, A., Kong, Z., Schwager, M., Belta, C.: Q-learning for robust
satisfaction of signal temporal logic specifications. In: Conference on Decision and
Control (CDC), pp. 6565–6570. IEEE (2016)

2. Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: Ábrahám, E.,
Havelund, K. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, pp. 424–439 (2014)

3. Alur, R., Bansal, S., Bastani, O., Jothimurugan, K.: A Framework for transforming
specifications in reinforcement learning. In: Raskin, J.F., Chatterjee, K., Doyen, L.,
Majumdar, R. (eds.) Principles of Systems Design. LNCS, vol. 13660, pp. 604–624.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22337-2_29

4. Alur, R., Bastani, O., Jothimurugan, K., Perez, M., Somenzi, F., Trivedi, A.:
Policy synthesis and reinforcement learning for discounted LTL. arXiv preprint
arXiv:2305.17115 (2023)

5. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Con-
crete problems in AI safety. arXiv preprint arXiv:1606.06565 (2016)

6. Ashok, P., et al.: PAC statistical model checking for Markov decision processes and
stochastic games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
497–519. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_29

7. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
8. Bozkurt, A.K., Wang, Y., Zavlanos, M.M., Pajic, M.: Control synthesis from lin-

ear temporal logic specifications using model-free reinforcement learning. In: 2020
IEEE International Conference on Robotics and Automation (ICRA), pp. 10349–
10355. IEEE (2020)

9. Brafman, R., De Giacomo, G., Patrizi, F.: LTLf/LDLf non-Markovian rewards. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

10. Camacho, A., Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: LTL
and beyond: formal languages for reward function specification in reinforcement
learning. In: IJCAI, vol. 19, pp. 6065–6073 (2019)

11. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

12. Daca, P., Henzinger, T.A., Kretinsky, J., Petrov, T.: Faster statistical model check-
ing for unbounded temporal properties. ACM Trans. Comput. Logic (TOCL)
18(2), 1–25 (2017)

13. De Alfaro, L.: Formal Verification of Probabilistic Systems. Stanford University
(1998)

14. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model
checking discounted temporal properties. In: Jensen, K., Podelski, A. (eds.) TACAS
2004. LNCS, vol. 2988, pp. 77–92. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24730-2_6

15. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems
theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP
2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-45061-0_79

https://doi.org/10.1007/978-3-031-22337-2_29
http://arxiv.org/abs/2305.17115
http://arxiv.org/abs/1606.06565
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-540-24730-2_6
https://doi.org/10.1007/978-3-540-24730-2_6
https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1007/3-540-45061-0_79

434 R. Alur et al.

16. De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Foundations for restraining
bolts: reinforcement learning with LTLf/LDLf restraining specifications. In: Pro-
ceedings of the International Conference on Automated Planning and Scheduling,
vol. 29, pp. 128–136 (2019)

17. Fu, J., Topcu, U.: Probably approximately correct MDP learning and control with
temporal logic constraints. arXiv preprint arXiv:1404.7073 (2014)

18. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model
checking without determinisation. arXiv preprint arXiv:1311.2928 (2013)

19. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Omega-
regular objectives in model-free reinforcement learning. In: Vojnar, T., Zhang,
L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 395–412. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17462-0_27

20. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.: Good-
for-MDPs automata for probabilistic analysis and reinforcement learning. In:
TACAS 2020. LNCS, vol. 12078, pp. 306–323. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45190-5_17

21. Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G.J., Lee, I.: Rein-
forcement learning for temporal logic control synthesis with probabilistic satisfac-
tion guarantees. In: Conference on Decision and Control (CDC), pp. 5338–5343
(2019)

22. Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained reinforcement learn-
ing. arXiv preprint arXiv:1801.08099 (2018)

23. Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G.J., Lee, I.: Rein-
forcement learning for temporal logic control synthesis with probabilistic satisfac-
tion guarantees. In: 2019 IEEE 58th Conference on Decision and Control (CDC),
pp. 5338–5343. IEEE (2019)

24. Icarte, R.T., Klassen, T., Valenzano, R., McIlraith, S.: Using reward machines
for high-level task specification and decomposition in reinforcement learning. In:
International Conference on Machine Learning, pp. 2107–2116. PMLR (2018)

25. Jiang, Y., Bharadwaj, S., Wu, B., Shah, R., Topcu, U., Stone, P.: Temporal-logic-
based reward shaping for continuing learning tasks (2020)

26. Jothimurugan, K., Alur, R., Bastani, O.: A composable specification language for
reinforcement learning tasks. In: Advances in Neural Information Processing Sys-
tems, vol. 32, pp. 13041–13051 (2019)

27. Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional reinforcement
learning from logical specifications. In: Advances in Neural Information Processing
Systems (2021)

28. Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Specification-guided learning
of Nash equilibria with high social welfare. In: Shoham, S., Vizel, Y. (eds.) Com-
puter Aided Verification, CAV 2022. LNCS, vol. 13372. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-13188-2_17

29. Kakade, S.M.: On the sample complexity of reinforcement learning. University of
London, University College London (United Kingdom) (2003)

30. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic model checking
for performance and reliability analysis. ACM SIGMETRICS Perform. Eval. Rev.
36(4), 40–45 (2009)

31. Li, X., Vasile, C.I., Belta, C.: Reinforcement learning with temporal logic rewards.
In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 3834–3839. IEEE (2017)

http://arxiv.org/abs/1404.7073
http://arxiv.org/abs/1311.2928
https://doi.org/10.1007/978-3-030-17462-0_27
https://doi.org/10.1007/978-3-030-45190-5_17
https://doi.org/10.1007/978-3-030-45190-5_17
http://arxiv.org/abs/1801.08099
https://doi.org/10.1007/978-3-031-13188-2_17

Policy Synthesis and Reinforcement Learning for Discounted LTL 435

32. Littman, M.L., Topcu, U., Fu, J., Isbell, C., Wen, M., MacGlashan,
J.: Environment-independent task specifications via GLTL. arXiv preprint
arXiv:1704.04341 (2017)

33. Mandrali, E.: Weighted LTL with discounting. In: Moreira, N., Reis, R. (eds.)
CIAA 2012. LNCS, vol. 7381, pp. 353–360. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31606-7_32

34. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley (2014)

35. Sadigh, D., Kim, E.S., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based
approach to control synthesis of Markov decision processes for linear temporal logic
specifications. In: 53rd IEEE Conference on Decision and Control, pp. 1091–1096.
IEEE (2014)

36. Sickert, S., et al.: Limit-deterministic Büchi automata for linear temporal logic.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 312–332.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_17

37. Sickert, S., et al.: MoChiBA: probabilistic LTL model checking using limit-
deterministic Büchi automata. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 130–137. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46520-3_9

38. Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC model-free
reinforcement learning. In: Proceedings of the 23rd International Conference on
Machine Learning, pp. 881–888 (2006)

39. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn.
MIT Press (2018)

40. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state pro-
grams. In: 26th Annual Symposium on Foundations of Computer Science, SFCS
1985, pp. 327–338. IEEE (1985)

41. Wells, A.M., Lahijanian, M., Kavraki, L.E., Vardi, M.Y.: LTLf synthesis on prob-
abilistic systems. arXiv preprint arXiv:2009.10883 (2020)

42. Xu, Z., Topcu, U.: Transfer of temporal logic formulas in reinforcement learning.
In: International Joint Conference on Artificial Intelligence, pp. 4010–4018 (7 2019)

43. Yang, C., Littman, M., Carbin, M.: Reinforcement learning for general LTL objec-
tives is intractable. arXiv preprint arXiv:2111.12679 (2021)

44. Yuan, L.Z., Hasanbeig, M., Abate, A., Kroening, D.: Modular deep reinforcement
learning with temporal logic specifications. arXiv preprint arXiv:1909.11591 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1704.04341
https://doi.org/10.1007/978-3-642-31606-7_32
https://doi.org/10.1007/978-3-642-31606-7_32
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/978-3-319-46520-3_9
https://doi.org/10.1007/978-3-319-46520-3_9
http://arxiv.org/abs/2009.10883
http://arxiv.org/abs/2111.12679
http://arxiv.org/abs/1909.11591
http://creativecommons.org/licenses/by/4.0/

	Policy Synthesis and Reinforcement Learning for Discounted LTL
	1 Introduction
	2 Problem Definition
	3 Properties of Discounted LTL
	3.1 Nature of Optimal Policies
	3.2 PAC Learning

	4 Uniformly Discounted LTL to Reward Machines
	4.1 Reward Machine Construction

	5 Conclusion
	References

