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Abstract. Given a specification as a Boolean relation between inputs
and outputs, Boolean functional synthesis generates a function, called a
Skolem function, for each output in terms of the inputs such that the
specification is satisfied. In general, there may be many possibilities for
Skolem functions satisfying the same specification, and criteria to pick
one or the other may vary from specification to specification.

In this paper, we develop a technique to represent the space of Skolem
functions in a criteria-agnostic form that makes it possible to subse-
quently extract Skolem functions for different criteria. Our focus is on
identifying such a form and on developing a compilation algorithm for
this form. Our approach is based on a novel counter-example guided
strategy for existentially quantifying a subset of variables from a spec-
ification in negation normal form. We implement this technique and
compare our performance with those of other knowledge compilation
approaches for Boolean functional synthesis, and show promising results.

1 Introduction

Manually designing systems that satisfy complex user-provided specifications
can be notoriously tricky. Automated synthesis has therefore attracted signifi-
cant attention of researchers over the past few decades [1–5]. In this paradigm,
a user describes the desired behaviour of a system as a relational specification
between its inputs and outputs, and an algorithm automatically generates an
implementation, such that the specification is provably satisfied. In this paper,
we focus only on systems with Boolean inputs and outputs with relational spec-
ifications given as Boolean formulas. The synthesis problem in this setting is
also called Boolean functional synthesis. Formally, let ϕ(X,Y ) be a Boolean
formula representing the specification, where X = (x1, . . . xm) is a vector of
Boolean inputs and Y = (y1, . . . yn) a vector of Boolean outputs of the system.
Boolean functional synthesis requires us to generate a vector of Boolean func-
tions Ψ(X) =

(
ψ1(X), . . . ψn(X)

)
such that ∀X

(∃Y ϕ(X,Y ) ⇔ ϕ(X,Ψ(X))
)
.

Authors names are in alphabetical order of last names
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13964, pp. 367–389, 2023.
https://doi.org/10.1007/978-3-031-37706-8_19

https://doi.org/10.6084/m9.figshare.22717525.v10
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37706-8_19&domain=pdf
http://orcid.org/0000-0002-2471-5997
http://orcid.org/0000-0002-7527-7675
https://doi.org/10.1007/978-3-031-37706-8_19


368 S. Akshay et al.

For each i ∈ {1, . . . n}, the function ψi(X) is called a Skolem function for yi in
ϕ(X,Y ), and Ψ(X) is called a Skolem function vector.

There are several interesting applications of Boolean functional synthesis,
including automated program synthesis, circuit repair and debugging, crypt-
analysis and the like [2,6–10]. This has motivated researchers to develop novel
algorithms for solving increasingly larger and more complex synthesis bench-
marks [11–19]. Each such algorithm generates a single Skolem function vector
for a given relational specification, thereby providing an implementation of the
system. However, there may be many alternative function vectors that also serve
as Skolem function vectors for the same specification. Some of these may yield
system implementations that are more “desirable” than those obtained from other
Skolem function vectors, when non-functional metrics like size of program/circuit
needed for implementation, ease of understandability etc. are considered. There-
fore, having a tool output a single Skolem function vector (chosen by the tool,
without any user agency in the choice) can be restrictive in terms of implemen-
tation choices available to the user.

One way to address the above problem is to use a knowledge compilation app-
roach, i.e. to compile the specification to a special normal form from which it is
relatively easy to use downstream logic synthesis tools to generate any Skolem
function vector optimizing user-specified criteria. Unfortunately, earlier work on
knowledge compilation for Boolean functional synthesis [13,14,20] does not allow
us to do this easily. They simply allow efficient synthesis of one (among possi-
bly many) Skolem function vector from the compiled representation. Moreover,
the user has no agency in choosing which Skolem function vector is synthesized;
all choices are made implicitly deep inside heuristics of the compilation algo-
rithms. For example, if we compile a relational specification to wDNNF [14] or
SynNNF [13], the only guarantee we have is that the so-called GACKS Skolem
functions (see [14]) can be efficiently synthesized from the compiled forms. But
what if these functions are not the user’s preferred choice of Skolem functions
for an application? Unfortunately, not much can be done if we compile the spec-
ification to wDNNF or SynNNF. Similarly, the compilation approach proposed
in [20] allows efficient synthesis of Skolem functions of yet another form, but
even here, the user hardly has any agency in choosing which (among many alter-
native) Skolem function vectors is actually output. Existing algorithms therefore
effectively restrict the semantic choice of Skolem functions with hardly any way
for the user to influence this choice. Once the semantic choice has been made by
the compiler, the only agency the user has is in optimizing the implementation of
this semantic choice. We believe the inability of existing compilation approaches
to allow the user semantic choice of Skolem functions is a limiting factor in prac-
tical usage of these works. In this paper, we take a first step towards remedying
this problem.

The central question we ask in this paper is: Can we compile a Boolean rela-
tional specification to a representation that does not restrict the semantic choice
of Skolem functions, and yet allows easy deployment of downstream logic synthe-
sis tools to obtain Skolem functions customized to user-provided criteria? Our
main result is an affirmative answer to this question. We also design and imple-
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ment an algorithm that compiles a given specification in negation normal form
to such a representation form, We emphasize that our goal in this paper is not
to identify specific optimization criteria or to synthesize Skolem functions that
optimize some specific criteria. Instead, we focus on developing a representation
that makes it possible to use downstream logic optimization tools to synthesize
Skolem functions satisfying user-provided criteria. Our experiments show that
our approach is competitive performance-wise to earlier approaches that severely
restrict the semantic choice of Skolem functions.

The primary contributions of this paper can be summarized as follows.

– We formalize the problem of symbolically and compactly representing all
Skolem function vectors for a Boolean relational specification in such a way
that it is amenable to downstream optimization by logic synthesis tools.

– We propose a candidate for this representation as a set of pairs of functions,
one for each output, which we call the Skolem basis vector. We show that the
Skolem basis vector is guaranteed to exist for any specification and is unique
with respect to an ordering of the output variables.

– For single-output specifications, we show that the Skolem basis vector can
be computed easily, as a pair of (semantically unique) Boolean functions. For
multi-output specifications, we relate the problem of generating Skolem basis
vector to the question of performing efficient quantification of outputs.

– We investigate two properties, namely unateness and conflict-freeness of out-
puts, that permit efficient quantification of outputs. This, in turn, allows a
Skolem basis vector to be generated in polynomial time in special cases.

– We present a novel counterexample-guided algorithm for transforming a spec-
ification to one where a designated output variable is conflict-free. We call
this process rectification of the output.

– We present an overall algorithm that takes a specification and generates a
Skolem basis vector by successively rendering outputs unate or conflict-free.

– We present a tool implementing our algorithm, and report experimental
results on a suite of publicly available benchmarks.

Related Work. In knowledge compilation, the general goal is to represent a prob-
lem specification in a form that allows specific questions to be answered effi-
ciently (see e.g., [21–23]). In [22,24], representation forms for Boolean functions
were proposed that allow efficient enumeration of all satisfying assignments of
the function. However, this idea cannot be easily extended to enumerate Skolem
functions, since the space of functions is doubly exponentially large in the num-
ber of variables. For Boolean functional synthesis, [13,20,25,26] provide normal
forms and present compilers that render synthesis of a single Skolem function
vector easy. However, they do not provide the user any agency in choosing the
Skolem function vector. In fact, the optimizations used in [13] preclude gen-
eration of all Skolem function vectors for reasons of efficiency. In the current
work, our focus is on symbolically representing the space of all Skolem function
vectors, without necessarily converting the given specification to a semantically
equivalent one in special normal form. Thus, the problem addressed in this paper
is technically different from those addressed in [13,20,25,26]. Nevertheless, our
work can be viewed as knowledge representation for all Skolem functions.
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2 A Motivating Example

We start with a simple example that illustrates some of the problems we wish
to address. Suppose we are designing a memoryless arbiter that must arbitrate
requests from three users for a shared resource. Let the arbiter inputs be Boolean
variables r1, r2, r3, where ri is true iff there is a request from user i. Let the
corresponding arbiter outputs be g1, g2, g3, where gi is true iff access is granted
to user i. We want the arbiter to satisfy the following properties: (a) at most
one user must be granted access at a time, (b) if some user has requested access,
some user must be granted access, and (c) a user should be granted access only
if she has requested. The above properties can be encoded as a specification ϕ ≡
ϕ1∧ϕ2∧ϕ3, where ϕ1 ≡ (

g1 ⇒ ¬(g2∨g3)
)∧(

g2 ⇒ ¬(g1∨g3)
)∧(

g3 ⇒ ¬(g1∨g2)
)
,

ϕ2 ≡ (r1 ∨ r2 ∨ r3) ⇒ (g1 ∨ g2 ∨ g3), and ϕ3 ≡ (g1 ⇒ r1)∧ (g2 ⇒ r2)∧ (g3 ⇒ r3).
It turns out that there are many different Skolem function vectors Ψ =

(ψ1, ψ2, ψ3) for the above specification, where each ψi gives a Skolem function
for gi. We ran two state-of-the-art Boolean functional synthesis tools, viz. Man-
than2 [17] and BFSS [14], on this specification. BFSS required us to also specify
a linear order of outputs (we will shortly see why), and we used g1 ≺ g2 ≺ g3.
Both tools solved the problem in no time, and each reported a Skolem function
vector without any room for the user to influence the choice of Skolem functions.
Specifically, the Skolem functions returned by Manthan2 can be represented by
the And-Inverter Graph (AIG) shown in Fig. 1a. Here, each circle represents
a two-input AND gate, and each dotted (resp. solid) edge represents a con-
nection with (resp. without) logical negation. Thus, the Skolem functions are:
ψ2 ≡ r2 ∧ ¬r1 ∧ ¬r3, ψ1 ≡ r1 ∧ ¬r3 ∧ ¬g2 and ψ3 ≡ r3 ∧ ¬g1 ∧ ¬g2. Running
BFSS on the same specification yields Skolem functions represented by the AIG
in Fig. 1c. Here, ψ3 ≡ r3 ∧ ¬r1 ∧ ¬r2, ψ2 ≡ r2 ∧ ¬g3 and ψ1 ≡ r1 ∧ ¬g2 ∧ ¬g3.

Fig. 1. Unoptimized and optimized AIGs of Skolem functions

Are the Skolem functions generated by the two tools in their simplest forms,
and did they miss out some possibilities of optimization? To answer this, we used
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a widely used logic optimization tool, viz. abc [27], to simplify the two AIGs
using commands to minimize the AND gate count and to balance lengths of
paths in the AIGs. The resulting simplified AIGs are shown in Fig. 1b (obtained
from Fig. 1a) and Fig. 1d (obtained from Fig. 1c). Thus, Manthan2’s solution is
equivalent to ψ3 ≡ r3, ψ2 ≡ r2 ∧ ¬r1 ∧ ¬r3, ψ1 ≡ r1 ∧ ¬r3, while BFSS’ solution
is equivalent to ψ2 ≡ r2, ψ1 ≡ r1 ∧ ¬r2, ψ3 ≡ r3 ∧ ¬r1 ∧ ¬r2. Note that the two
solutions are semantically equivalent modulo permutaton of indices (although
this wasn’t obvious prior to optimization).

There are some important take-aways from this simple experiment. First,
neither Manthan2 nor BFSS gave the user any agency in the semantic choice
of the synthesized Skolem functions. The use of the abc tool with user-provided
optimization criteria at the end simply gave us choice of implementation for
the Skolem functions already determined by each tool. Significantly, there are
choices of Skolem function vectors, viz. ψ1 ≡ r1∧(¬r2∨¬r3), ψ2 ≡ r2∧(¬r1∨r3),
ψ3 ≡ (¬r1 ∧ ¬r2 ∧ r3), that are ignored by both Manthan2 and BFSS (and by
other tools like CADET [11]). This can lead to ignoring “better” Skolem func-
tion vectors in general. The user’s criteria for desirability of Skolem functions
may differ from one problem instance to another, and may be completely dif-
ferent from what is hard-coded in the innards of a tool like Manthan2/BFSS.
For example, the new Skolem function vector considered above admits an AIG
representation in which input-to-output shortest (resp. longest) path lengths are
equal across all outputs. This may indeed be a desirable feature in some appli-
cation where variability of output delays matters. However, there is currently no
way to influence BFSS/Manthan2 to arrive at Skolem functions optimized per
such criteria.

The above example also illustrates the important role played by logic opti-
mization in obtaining efficient implementations of Skolem functions generated
by state-of-the-art synthesis tools. However, using logic optimization as a post-
processor can only provide a better implementation of already chosen (seman-
tically) Skolem functions. Fortunately, more than five decades of research in
logic optimization has resulted in mature (even commercial) tools that can do
much more than just implementation optimization. Specifically, don’t-care based
optimizations [28] can search within a specified space of (semantically distinct)
functions to choose one that is optimized according to a given user criteria. Such
a choice involves a combined optimization across semantic and implementation
choices. Given this capability of logic optimizers, and their indispensable use in
synthesis flows, we posit that logic optimizers are the right engines to choose
between alternative semantic choices of Skolem functions, in addition to opti-
mizing their implementation. Of course, this requires specifying the semantic
space of all (Skolem) functions in a form that can be easily processed by logic
optimizers. State-of-the-art logic optimizers already allow specifying a family of
functions using on-sets and don’t-care sets [29]. Therefore, we propose to use
this representation for representing the space of Skolem functions as well.

Before presenting the details of on-sets and don’t-care sets for Skolem func-
tions in our example, we note that Skolem functions for different outputs cannot
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be chosen independently in general. For example, ψ3 ≡ r3 is generated by Man-
than2, and ψ2 ≡ r2 is generated by BFSS. However, there is no Skolem function
vector with ψ2 ≡ r2 and ψ3 ≡ r3), since this would lead to g2 = g3 = 1 when
r2 = r3 = 1. Therefore, any representation of the semantic space of all Skolem
function vectors must necessarily take into account dependence between Skolem
functions for different outputs. One way to achieve this is to impose a linear
order on the outputs, and to represent the set of Skolem functions for an output
in terms of Skolem functions for preceding (in the order) outputs. With this app-
roach, the semantic space of Skolem functions for each output can be expressed
by two functions: one representing the set of assignments for which every Skolem
function in the represented space must evaluate to 1 (i.e. on-set), and the other
representing assignments for which it is ok for a Skolem function to evaluate to
either 0 or 1 (i.e. don’t-care set).

The above representation is analogous to representing vector spaces using
a small set of mutually orthogonal basis vectors, where every vector in the
space can be expressed as a linear combination of these basis vectors. In a
similar manner, let A denote the on-set of a family of Skolem functions, and
B denote the don’t-care set for the same family. Let GenImpl

(
B

)
denote the

set of all generalized implicants of B, i.e. all formulas ν such that ν ⇒ B.
Every Skolem function in the represented space can then be obtained (mod-
ulo semantic equivalence) as A ∨ ν where ν ∈ GenImpl

(
B

)
. Specifically, for our

example, with g1 ≺ g2 ≺ g3 of outpus (same as that given to BFSS), we have
A1 ≡ (¬r3∧¬r2∧r1), B1 ≡ (r3∨r2)∧r1, A2 ≡ (¬r3∧r2∧¬g1), B2 ≡ r3∧r2∧¬g1,
A3 ≡ r3 ∧ ¬g2 ∧ ¬g1, B3 = 0. The Karnaugh-maps shown below depict how the
space of all Skolem function vectors can be visualized in terms of Ai and Bi.
To obtain a specific Skolem function vector, we must place a 1 in each Ai-cell,
choose a subset of the Bi cells and place 1’s in those cells and 0’s in the bal-
ance Bi cells. Each such choice provides a semantically distinct Skolem function
vector, and every Skolem function vector corresponds to one such choice. Specif-
ically, the Skolem function vector missed by Manthan2/BFSS can now be easily
obtained by choosing the red and blue B1 cells and the teal B2 cell to be 1 in
the Karnaugh-maps. Similarly, Manthan2’s solution is obtained by choosing the
blue B1 cell and teal B2 cell to be 1, and BFSS’ solution is obtained by choosing
the red B1 cell and teal B2 cell to be 1. Allowing a logic optimizer to optimize
Skolem functions with the spaces represented by (A1, B1, A2, B2, A3, B3) there-
fore makes it possible to synthesize each of these Skolem function vectors. This
motivates compiling a given specification into an (Ai, Bi) pair for the Skolem
functions for each output yi.

r2r3 → 00 01 11 10 r2r3 → 00 01 11 10 g2r3 → 00 01 11 10
r1 ↓ g1 ↓ g1 ↓
0 0 0 0 0 0 0 0 B2 A2 0 0 A3 0 0
1 A1 B1 B1 B1 1 0 0 0 0 1 0 0 0 0

Space of Sk fns for g1 Space of Sk fns for g2 Space of Sk fns for g3
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3 Preliminaries and Notation

Let Z = (z1, . . . , zn) be a vector of Boolean variables. A literal is a variable
(zi) or its complement (¬zi), a clause is a disjunction of literals and a cube is a
conjunction of literals. For 1 ≤ i ≤ j ≤ n, we use Zj

i to denote the slice (zi, . . . zj)
of the vector Z. An n-input Boolean function is a mapping from {0, 1}n to
{0, 1}. A Boolean formula ϕ(Z) is a syntactic object whose semantics is given
by a mapping from {0, 1}n to {0, 1}. Thus, every Boolean formula represents
a unique Boolean function, and every Boolean function can be represented by
a (not necessarily unique) Boolean formula. Henceforth, we refer to Boolean
formulas and Boolean functions interchangeably.

The support of ϕ(Z), denoted sup(ϕ), is the set of variables in Z. For ease
of exposition, we will abuse notation and use Z to denote either a vector or the
underlying set of elements, depending on the context. A complete (resp. partial)
assignment π for Z is a complete (resp. partial) mapping from Z to {0, 1}. The
value of variable zi assigned by π is denoted π[zi]. A complete assignment π of
Z is a satisfying assignment for ϕ(Z) if the Boolean function represented by ϕ
evaluates to 1 when all variables in sup(ϕ) are assigned values given by π. In
this case, we say that π |= F . A formula ϕ(Z) is satisfiable if it has at least one
satisfying assignment; otherwise it is unsatisfiable. We say that two formulas on n
variables are equivalent if they represent the same semantic mapping from {0, 1}n

to {0, 1}. Given Boolean formulas ϕ and α with zi ∈ sup(ϕ), we use ϕ[zi �→ α]
to denote the formula obtained by substituting α for every occurrence of zi in
ϕ. We use ϕ

∣
∣
zi=1

(resp. ϕ
∣
∣
zi=0

) to denote the formula obtained by setting zi to
1 (resp. 0) in the formula ϕ(Z). The resulting formulas are also called positive
(resp. negative) co-factors of ϕ w.r.t. zi. For notational convenience, we use ϕ

∣
∣
π

to denote the formula obtained by repeatedly co-factoring ϕ using the (possibly
partial) assignment of variables given by π. As discussed in Sect. 2, we say that
a function ϕ′(Z) is a generalized implicant of ϕ(Z) if ϕ′(Z) ⇒ ϕ(Z). This
generalizes the notion of implicants used in the literature, which are restricted
to be cubes. The set of all generalized implication of ϕ is denoted GenImpl

(
ϕ
)
.

A Boolean formula ϕ(Z) can be represented as a circuit or a Directed Acyclic
Graph (DAG) consisting of ¬, ∧ and ∨ gates, with literals at leaves. Further, it
can be converted to a semantically equivalent formula in Negation Normal Form
(NNF), i.e., with no ¬-labelled internal nodes, in time linear in the size of the
circuit. We consider formulas to be given in NNF unless mentioned otherwise,
and interchangeably refer to a Boolean formula and the circuit representing it.
If an NNF formula in Conjunctive Normal Form (CNF), i.e., as conjunction of
clauses, is unsatisfiable, then there is a subset of its clauses whose conjunction is
unsatisfiable. This set is called its unsatisfiable core, and a minimal unsatisfiable
core is one without any proper subset that is also an unsatisfiable core.

The Boolean functional synthesis problem, and notions of Skolem functions
and Skolem function vectors have already been defined in Sect. 1. Let ϕ(X,Y )
be a Boolean relational specification over inputs X and outputs Y . A commonly
used approach, adopted by several Boolean functional synthesis algorithms [6,
14–16], works as follows. Without loss of generality, let y1 ≺ · · · ≺ yn be a
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linear ordering of the outputs in Y . We first define a set of derived specifications
ϕ(i)(X,Y n

i ) for all i ∈ {1, . . . n}, where ϕ(i) ⇔ ∃Y i−1
1 ϕ(X,Y ). Next, for each

i ∈ {1, . . . n}, we find a Skolem function for yi from the derived specification
ϕ(i)(X,Y n

i ), by treating yi as the sole output and all of X,Y n
i+1 as inputs in

ϕ(i). Let ψi(X,Y n
i+1) denote the Skolem function for yi thus obtained. Finally,

we substitute the Skolem functions ψi+1, . . . ψn for yi+1, . . . yn respectively in
the Skolem function ψi obtained above. This gives a Skolem function for yi only
in terms of X. By repeating the above process for all i in decreasing order from
n − 1 to 1, we obtain a Skolem function vector for ϕ.

4 A New Knowledge Representation for Skolem
Functions

We start with a key definition that is motivated by the desire to represent the
entire space of Skolem functions arising from a specification compactly, and in
a form that is easily amenable to well-established logic synthesis and optimiza-
tion workflows. Recall from Sect. 2 that for a multi-output specification, Skolem
functions for different outputs may be dependent on each other. Hence, the set
of Skolem function vectors cannot be expressed as a Cartesian product of sets
of Skolem functions for individual outputs. Instead, we impose a linear order
on the outputs, and express the Skolem function for one output in terms of the
inputs and other outputs that precede it in the order. Such a linear order may be
automatically generated, user-provided, or even generated with guidance from
the user, e.g., if the user provides a partial order on the outputs. We assume the
availability of such an order ≺ in the definition below.

Definition 1. Let ϕ(X,Y ) be a specification over a linearly ordered set of out-
puts Y = {y1, . . . , yn}. We say that output yi has a Skolem basis in ϕ if there
exists a pair of functions (Ai, Bi) over X ∪ Y n

i+1 such that

1. Ai ∧ Bi is unsatisfiable, and
2. any Skolem function ψi(X,Y n

i+1) for yi in the derived specification ϕ(i) can
be written as ψi ≡ Ai ∨ g for some g ∈ GenImpl

(
Bi

)
.

We call the vector of pairs 〈(Ai, Bi)〉1≤i≤n the Skolem basis vector for ϕ wrt ≺.

The Skolem basis vector can be seen as a succinct representation of the
Skolem function space, i.e., the set of all Skolem function vectors of ϕ. A natu-
ral question that arises at this point is: Given a specification ϕ and order ≺ of
outputs, does there always exist a Skolem basis for ϕ wrt ≺? Fortunately, as we
show in this paper, the answer is a resounding “Yes”. Not only that, the Skolem
basis for a given ϕ and ≺ is unique upto semantic equivalence of the basis func-
tions. It is important to note that not every set of functions can be represented
using just two basis functions. This is easy to see via a counting argument: the
number of sets of Boolean functions over m inputs is 22

2m

. However, the number
of sets that admit a Skolem basis is (loosely) upper bounded by 22·2m . Skolem
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functions are therefore special, since we show that the space of all Skolem func-
tions for every output in every specification always admits representation by two
basis functions, regardless of the order ≺. Interestingly, though the definition of
Skolem basis vector needs us to specify an order ≺ on the outputs, somewhat
surprisingly, the Skolem function space itself does not depend on the order.

Proposition 1. Suppose Ψ is a Skolem function vector for the outputs Y in
terms of inputs X in ϕ. Then, for any order ≺, Ψ can be generated using the
Skolem basis vector of ϕ wrt ≺, and then substituting, for each i ∈ {1, . . . n}, the
Skolem functions ψj for yj where i < j ≤ n, in the Skolem function for ψi.

Proof Sketch: With ordering y1 ≺ y2 ≺ . . . yn, let 〈(Ai, Bi)〉 be the corresponding
Skolem basis vector. The support of An, Bn are only the inputs X, while the
support of Ai, Bi (for i > 1) are X ∪ {yi+1, ...yn}. Let Ψ = (ψ1, . . . ψn) be an
arbitrary Skolem function vector, where each ψi is a function of X. By definition
of Skolem basis, since ψn is a Skolem function for yn, it can be obtained from
An and Bn (each of which has support X). Now consider ψi for 1 ≤ i < n.
By definition of Skolem basis, every Skolem function for yi in terms of X ∪
{yi+1, ...yn} can be obtained from Ai and Bi. In particular, if we set yi+1 to
ψi+1 and so on until yn to ψn, every Skolem function for yi in terms of X can
be obtained from Ai and Bi. ��

Another interesting property about Skolem basis vector is that, when it
exists, it is unique. Later we will show (constructively) that it always exists
and hence we would have also constructed the unique one.

Proposition 2. For any yi in ϕ, its Skolem basis, when it exists, is unique.

Proof. Fix i. Let S be the set of all Skolem functions for yi in ϕ(i). From Defini-
tion 1, we know that for all f ∈ S, Ai ⇒ f . Hence, Ai ⇒ ∧

f∈S f . However, we
also know that Ai ∈ S (corresponds to choosing the generalized implicant 0 from
GenImpl

(
Bi

)
). Therefore,

( ∧
f∈S f

) ⇒ Ai. It follows from the two implications
that A ⇔ ∧

f∈S f .
In a similar manner, Definition 1 implies that for all f ∈ S, f ⇒ Ai ∨ Bi.

Hence
( ∨

f∈S f
) ⇒ Ai ∨Bi. However, we know that Ai ∨Bi ∈ S (corresponds to

choosing the generalized implicant B from GenImpl
(
B

)
). Therefore, Ai ∨ Bi ⇒∨

f∈S f . It follows from the two implications that Bi ⇔ ∨
f∈S f . ��

Finally, we explain how our new representation of Skolem functions using
a Skolem basis vector naturally lends itself to easy processing by downstream
logic synthesis and optimization tools. Thus, a Skolem basis vector is not just an
arbitrary way to represent the space of all Skolem function vectors; instead, it
is strongly motivated by the way modern logic synthesis and optimization tools
work to search the semantic space of partially specified functions (i.e. functions
specified with on-sets and don’t-care sets). Specifically, in logic synthesis and
optimization parlance [29], Ai is the on-set and Bi is the don’t-care set for Skolem
functions for yi in ϕ. In other words, Ai describes all assignments for which every
Skolem function for yi must evaluate to 1 while Bi describes those assignments
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on which a Skolem function can evaluate to either 1 or 0 without violating
the requirement of being a Skolem function for yi in ϕ. Thus, every semantically
distinct Skolem function for yi in ϕ can be obtained by choosing a distinct subset
of satisfying assignments of Bi and choosing the Skolem function to evaluate on
this subset of assignments in addition to those determined by Ai. Indeed, state-
of-the-art logic synthesis and optimization tools (such as abc [27]) use on-sets
and don’t care sets expressed as Boolean functions to represent the space of all
realizations of a partially specified function. The don’t cares are then used to
optimize the semantic and implementation choices when choosing the optimal
realization of such a partially specified function, as per user provided criteria
like area, gate count, delay, power consumption, balance of delays across paths
etc. Indeed, the following guarantee follows rather trivially from Proposition 1.

Proposition 3. Suppose we have access to a logic optimization tool that finds
the optimal semantic and implementation choice of a partially specified function
as per user criteria. Using this tool on the Skolem basis vector of ϕ wrt ≺ yields
the optimal choice among all Skolem functions, where optimality of Skolem func-
tion for yi is conditioned on the choice of Skolem functions for yj, for 1 ≤ j < i.

Having defined and motivated the Skolem basis vector as our new knowledge
representation, in the rest of the paper we will show how it can actually be
computed, in theory and in practice.

5 Towards Synthesizing the Skolem Basis Vector

The Single Output Case: First, we consider the case of a singleton output
and show that here the existence of Skolem basis is easy to establish, and the
basis is also easy to compute.

Theorem 1. For a single-output specification ϕ(X, y), the Skolem basis for y
in ϕ is given by A ≡ ϕ(X, 1)∧ ¬ϕ(X, 0) and B ≡ ϕ(X, 1) ↔ ϕ(X, 0). Thus, in
this case, the Skolem basis vector for ϕ can be computed in time/space linear in
size of the circuit representing ϕ.

Proof. Let 2|X | denote the set of all complete assignments π of X. Define S1 =
{π | π ∈ 2|X |, π |= ϕ(X, 1)} and S0 = {π | π ∈ 2|X |, π |= ϕ(X, 0)}. By
definition of S0 and S1, (with Si denoting complement of set Si), we have:

– π ∈ S1 ∪ S0 iff π |= ∃y ϕ(X, y).
– π ∈ S1 ∩ S0 iff π |= ∀y ϕ(X, y).
– π ∈ S1 ∩ S0 iff π |= ∀y ¬ϕ(X, y).
– For every π ∈ S1 ∩ S0, the only value of y that makes ϕ(π, y) true is 1.
– For every π ∈ S0 ∩ S1, the only value of y that makes ϕ(π, y) true is 0.

Now let ψ(X) be an arbitrary Skolem function for y in ϕ(X). Recall that by
definition a Skolem function satisfies ∀X

(∃y ϕ(X, y) ⇔ ϕ(X, ψ(X))
)
. It then

follows from the above observations that if π ∈ S1 ∩ S0, ψ(π) must evaluate to
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1. Similarly, if π ∈ (S1 ∩ S0) ∪ (S1 ∩ S0), it makes no difference whether ψ(π)
evaluates to 0 or 1. Finally, if π ∈ S0 ∩ S1, ψ(π) must evaluate to 0. Since ψ
was an arbitrary Skolem function for y in ϕ, we infer that the Skolem basis for
AllSk(ϕ) is (A,B), where A ≡ ϕ(X, 1) ∧ ¬ϕ(X, 0) represents the set S1 ∩ S0,
and B ≡ (

ϕ(X, 0) ⇔ ϕ(X, 1)
)

represents the set (S1 ∩ S0) ∪ (S1 ∩ S0). ��
We next consider the multiple output case, where our strategy (as done usually
for Skolem function synthesis) is to reduce to the one-output case above.

Multiple Outputs and Existential Quantification: When we have multi-
ple outputs, from the definition of Skolem basis vector (Definition 1), it fol-
lows that the problem reduces to the single output case, if we can compute the
derived specifications ϕ(i)(X,Y n

i+1). Unfortunately, computing ϕ(i)(X,Y n
i ) can-

not always be done efficiently, even when ϕ(X,Y ) and the order ≺ on Y are
given. We compute ϕ(i) from a given ϕ(i−1), where the variable yi to be quantified
is either chosen on-the-fly (giving a dynamic computation of ≺) or determined
as per a statically provided order. Since ϕ(i+1) ⇔ ∃Y i

1 ϕ ⇔ ∃yiϕ
(i) for all

i ∈ {1, . . . n−1}, we first consider how a single output variable can be quantified
from a derived specification.

The conceptually simplest way to compute ∃yi ϕ(i) is as ϕ(i)
∣
∣
yi=1

∨ϕ(i)
∣
∣
yi=0

.
Unfortunately, this doubles the size of the circuit representation. An alternative
is to find a Skolem function, say ψi, for yi in ϕ(i), and then use ϕ(i)[yi �→
ψi]. This works well when ψi can be represented compactly. However, an NNF
representation of ψi can be as large as that of ϕ(i) (e.g. if ψi ≡ ϕ(i)

∣
∣
yi=1

), in
which case we may double the circuit size. We therefore ask if it is possible
to compute ∃yi ϕ(i) by simply substituting a constant (not necessarily a Skolem
function) for yi in an NNF formula of almost the same size as ϕ(i). It turns out
that this is possible in two practically relevant cases. In other cases, we transform
the circuit to permit such constant substitutions. For notational convenience, in
the rest of this section, we omit i and use y and ϕ for yi and ϕ(i).

The Case of Unates: A variable y is positive (resp. negative) unate in ϕ if
ϕ
∣
∣
y=0

⇒ ϕ
∣
∣
y=1

(resp. ϕ
∣
∣
y=1

⇒ ϕ
∣
∣
y=0

). A variable is unate in ϕ if it is either
positive or negative unate in ϕ. Then, we have: easily proved.

Lemma 1. If y is positive unate in ϕ, then ∃y ϕ ⇔ ϕ
∣
∣
y=1

. Similarly, if y is
negative unate in ϕ, then ∃y ϕ ⇔ ϕ

∣
∣
y=0

.

Proof. The proof immediately from the definition of positive and negative unate-
ness, and from the fact that ∃y ϕ ⇔ ϕ

∣
∣
y=0

∨ ϕ
∣
∣
y=1

. ��

As an example, consider ϕ ≡ (x∧(y1∨y2))∨(¬x∧¬y2). Here, y1 is positive unate
in ϕ, but y2 is not unate in ϕ. However, y2 is negative unate in ϕ

∣
∣
y1=1

, which by
Lemma 1 is equivalent to ∃y1 ϕ. This shows that even if a variable is not unate
to begin with, it may become unate after some variables are quantified. If we use
the order y1 ≺ y2 in our example, both ∃y1 ϕ and ∃y1∃y2 ϕ can be computed by
substituting for y1 and y2 in ϕ. This is however not true for y2 ≺ y1.
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ϕ1

∧

∨

x1 y

∨

y x2

ϕ+
1

∧

∨

x1 y

∨

y x2

ϕ2

∧

∨

x2 ∨

x1 y

∨

¬y x1

ϕ3

∧

∨

x2 ∨

x1 y

∨

¬y ¬x1

Fig. 2. NNF circuit representations of formula ϕ1, ϕ
+
1 , ϕ2, ϕ3.

In general, given a specification ϕ(X,Y ) and a linear ordering ≺ of outputs,
if each output yi is unate in the derived specification ϕ(i) ≡ ∃Y i−1

1 ϕ, then we
can apply Lemma 1, Definition 1 and Theorem 1 to synthesize the entire Skolem
basis vector for ϕ w.r.t. ≺ efficiently. This also suggests a heuristic for finding a
(partial) order on the outputs Y . Specifically, given a derived specification ϕ(i),
we try to find an output variable y in its support such that y is unate in ϕ(i). If
such a variable exists, we use it as the next variable in the ≺ order, and obtain
ϕ(i+1) by using Lemma 1 to compute ∃y ϕ(i). As our experiments show (see
Sect. 7) and has also been observed elsewhere [14], this approach is surprisingly
effective for finding Skolem functions for many benchmarks.

The Case of No Conflicts: Next, we consider another case where quantifi-
cation can be achieved by substituing constants for variables.

Definition 2. Let ϕ be an NNF formula, y ∈ sup(ϕ). Suppose we replace every
occurence of ¬y in ϕ by a fresh variable ŷ (ŷ �∈ sup(ϕ)). The resulting formula
is called the y-positive form of ϕ and is denoted ϕ+y. The variable y is said to
be in conflict in ϕ if there exists an assignment π : sup(ϕ) \ {y} → {0, 1} such
that ϕ+y

∣
∣
π

⇔ y ∧ ŷ. Otherwise, we say that y is conflict-free in ϕ+y.

The assignment π in the above definition is called a counterexample to conflict-
freeness of y in ϕ. It is easy to see that both y and ŷ are positive unate in ϕ+y.
Henceforth, we use ϕ+ instead of ϕ+y when y is clear from the context.

We illustrate conflicts and conflict-freeness in Fig. 2. The y-positive form of
ϕ1 is shown as ϕ+

1 , where ŷ is a fresh variable. Clearly, y is in conflict in ϕ1

since ϕ+
1

∣
∣
π

⇔ y ∧ ŷ for π : x1 �→ 0, x2 �→ 0. Similarly, y is in conflict in ϕ2 (as
seen with π : x1 �→ 0, x2 �→ 0). However, y is not in conflict in ϕ3 as there is no
assignment π of x1, x2 for which ϕ+

3

∣
∣
π

⇔ y ∧ ŷ.

Lemma 2. If y is conflict-free in ϕ, then ∃y ϕ ⇔ ϕ+
∣
∣
y=1,ŷ=1

.

Proof. Since y is conflict-free in ϕ, it follows that ϕ+
∣
∣
y=1,ŷ=1

⇒ (
ϕ+

∣
∣
y=1,ŷ=0

∨
ϕ+

∣
∣
y=0,̂y=1

. Since all internal nodes in ϕ+ are labeled by either ∧ or ∨, it
also follows that y and ŷ are positive unate in ϕ+. Therefore,

(
ϕ+

∣
∣
y=1,ŷ=0

∨
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ϕ+
∣
∣
y=0,ŷ=1

⇒ ϕ+
∣
∣
y=1,ŷ=1

. The proof is completed by observing that by defini-
tion ∃y ϕ ⇔ (

ϕ
∣
∣
y=0

∨ ϕ
∣
∣
y=1

) ⇔ (
ϕ+

∣
∣
y=0,ŷ=1

∨ ϕ+
∣
∣
y=1,ŷ=0

)
. ��

A notion similar to conflict as defined above was used in [13,20] for defining nor-
mal forms for synthesis. The difference is that unlike in [13,20], we do not require
a pre-specified subset of the support to be set to 1 in the assignment π. To iden-
tify conflicts, we define a conflict formula κϕ,y as

(
ϕ+

∣
∣
y=1,ŷ=1

∧ ¬ϕ+
∣
∣
y=1,ŷ=0

∧
¬ϕ+

∣
∣
y=0,ŷ=1

)
. By Definition 2, y is conflict-free in ϕ iff κϕ,y is unsatisfiable.

Proposition 4. For 1 ≤ i ≤ 4, there exist ϕi with yi ∈ sup(ϕi) s.t., (i) y1 is
neither unate nor conflict-free in ϕ1, (ii) y2 is unate but not conflict-free in ϕ2,
(iii) y3 is conflict-free but not unate in ϕ3, (iv) y4 is unate, conflict-free in ϕ4.

The formulas ϕ1, ϕ2, ϕ3 from Fig. 2 satisfy conditions (i), (ii) and (iii) respec-
tively. For (iv), we consider ϕ4 ≡ x ∧ y, in which y is unate and conflict-free.
Lemmas 1, 2 and Proposition 4 show that both unateness and conflict-freeness
are independently useful, and hence combining we directly obtain:

Theorem 2. Given ϕ(X,Y ) and a linear order ≺ on Y , if yi is either unate
or conflict-free in ϕ(i) for all i ∈ {1, . . . n}, then we can effectively synthesize the
Skolem basis vector in time linear in size of ϕ.

We remark that the implications of Theorem 2 go beyond what can be achieved
by earlier work on normal forms for synthesis [13,20]. Indeed, there are formulas
that are neither in SynNNF nor SAUNF but for which Theorem 2 applies.

Finally, unateness is a semantic property; hence if y is not unate in ϕ, it is
not unate in every μ such that ϕ ⇔ μ. However, conflict-freeness has a represen-
tational aspect. If y is in conflict in ϕ, we can always find another NNF formula
μ such that (i) μ ⇔ ϕ, and (ii) y is conflict-free in μ. To see why, note that
if μ ≡ (y ∧ ϕ

∣
∣
y=1

) ∨ (¬y ∧ ϕ
∣
∣
y=0

), i.e. Shannon expansion of ϕ w.r.t. y, then
μ ⇔ ϕ and y is conflict-free in μ. However, taking the Shannon expansion may
not always be the best way to render an output conflict-free, as it often leads
to blow-up in the size of the expanded formula. In the next section, we give a
counterexample guided algorithm to obtain μ from ϕ and y, that works much
more efficiently than Shannon expansion in practice.

6 Counterexample-Guided Rectification

Recall from the previous section that if y is in conflict in ϕ(X,Y ), then there
exists a counterexample (assignment) π : X ∪ Y \ {y} → {0, 1} such that
ϕ+

∣
∣
π

⇔ y ∧ ŷ. In this section, we discuss how we can use such counterexamples
to transform ϕ(X,Y ) to a specification μ(X,Y ) such that μ ⇔ ϕ and y is
conflict-free in μ. We call such a transformation rectification of ϕ w.r.t y, and
the resulting formula μ is said to be rectified w.r.t. y.

Lemma 3. Let π be a counterexample to conflict-freeness of y in ϕ(X,Y ) and
let ξ be a formula satisfying (a) sup(ξ) ⊆ X ∪ Y \ {y}, (b) ϕ ⇒ ξ, and (c)
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ξ
∣
∣
π

is unsatisfiable. Define τ ≡ ϕ ∧ ξ and let τ+ denotes the positive form of τ
w.r.t. y. Then the following hold: (i) τ ⇔ ϕ, (ii) π is not a counterexample to
conflict-freeness of y in τ , and (iii) every counterexample to conflict-freeness of
y in τ is also a counterexample to conflict-freeness of y in ϕ.

Proof. Since ϕ ⇒ ξ, it follows that τ ⇔ ϕ ∧ ξ ⇔ ϕ. This proves claim (i) of
Lemma 3. Next, note that since π is a counterexample to conflict-freeness of y
in ϕ, we must have ϕ+

∣
∣
π

⇔ (y ∧ ŷ). Since ξ does not have y in its support,
it follows that τ+ ⇔ ϕ+ ∧ ξ. Therefore, τ+

∣
∣
π

⇔ ϕ+
∣
∣
π

∧ ξ
∣
∣
π

⇔ (y ∧ ŷ) ∧ ξ
∣
∣
π
.

However, from the premise of Lemma 3, we know that ξ
∣
∣
π

is unsatisfiable. Hence
τ+

∣
∣
π

is false. Specifically, τ+
∣
∣
π

�⇔ (y ∧ ŷ), and hence π is not a counterexample
to conflict-freeness of y in τ . This proves claim (ii) of Lemma 3. Finally, let
π′ : X ∪ Y \ {y} → {0, 1} be a counterexample to conflict-freeness of y in τ . By
definition, τ+

∣
∣
π′ ⇔ (y ∧ ŷ). However, τ+

∣
∣
π′ ⇔ ϕ+

∣
∣
π′ ∧ ξ

∣
∣
π′ . Since all variables in

support of ξ are assigned by π′, we must have ξ
∣
∣
π′ being equivalent to either 0

or 1. If ξ
∣
∣
π′ is 0, then τ+

∣
∣
π′ must also be 0, a contradiction of τ+

∣
∣
π′ ⇔ (y ∧ ŷ).

Therefore, we must have ξ
∣
∣
π′ equivalent to 1, and hence ϕ+

∣
∣
π′ ⇔ (y ∧ ŷ) for

τ+
∣
∣
π′ to be equivalent to (y ∧ ŷ). It follows that π′ must be a counterexample to

conflict-freeness of y in ϕ. This proves claim (iii) of Lemma 3. ��
Henceforth, we call a formula ξ satisfying conditions (a), (b) and (c) of

Lemma 3 a partial rectifier of ϕ w.r.t. y. Given π, it is easy to find a partial
rectifier.

Lemma 4. For all v ∈ X ∪ Y \ {y}, let 
v,π denote v if π[v] = 1, and ¬v if
π[v] = 0. Let ξπ be ¬( ∧

v∈X ∪Y \{y} lv,π

)
. Then ξπ satisfies conditions (a), (b)

and (c) of Lemma 3.

The proof follows immediately from the observations: (i) π is the only satisfying
assignment of ¬ξπ, and (ii) ϕ

∣
∣
π

⇔ (
ϕ+[ŷ �→ ¬y]

)∣∣
π

⇔ (y ∧ ŷ)[ŷ �→ ¬y] ⇔ 0.
Consequently, ¬ξπ ⇒ ¬ϕ. Although Lemma 4 gives a partial rectifier, it prevents
only the assignment π from being a counterexample to conflict-freeness of y in
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τ . Later we will see a partial rectifier that prevents many more assignments
from being counterexamples. For the time being, however, we assume that we
have access to a procedure PartialRectifier that takes as inputs ϕ and π and
outputs a partial rectifier that satisfies conditions (a), (b) and (c) of Lemma 3.

The above discussion suggests a simple algorithm, shown as Algorithm Rec-
tifyOneOutput below, for rectifying a specification ϕ w.r.t. an output y.

The algorithm first initializes a temporary formula μ to ϕ. It then invokes
a propositional satisfiability (SAT) solver to obtain a satisfying assignment π
of the conflict formula κμ,y (defined in Sect. 5 just before Proposition 4). The
assignment π serves as a counterexample to conflict-freeness of y in μ, and is
used to obtain a partial rectifier ξ of μ w.r.t. y. The formula μ is then updated
by conjoining it with ξ. Lemma 3 guarantees that this gives a specification
semantically equivalent to ϕ, while removing π from the set of counterexamples
to conflict-freeness of y in μ. By repeating the process with the updated formula
μ, all counterexamples to conflict-freeness of y in μ are eventually removed.

Theorem 3. Algorithm RectifyOneOutput always terminates with a for-
mula μ s.t. μ ⇔ ϕ and y is conflict-free in μ.

Proof. The following inductive invariants hold at end of every iteration of the loop
in lines 2–8, thanks to Lemma 3: (i) μ ⇔ ϕ, (ii) the set of counterexamples to
conflict-freeness of y in μ has strictly fewer elements than at the start of the itera-
tion. Since the set of counterexamples is finite (at most 2|X |+|Y |−1 elements), even-
tually this set must become empty. By definition of the conflict formula, κμ,y must
be unsatisfiable when this happens. Hence, the algorithm eventually exits the loop
in lines 2–8 and terminates. Since there are no counterexamples to conflict-freeness
of y in μ on termination, y is indeed conflict-free in μ. ��

Rectification by Counterexample Generalization: The idea of counterex-
ample generalization is best illustrated by an example. Consider the specification
ϕ(X, y) ≡ (

(x1 ∧ x2) ∨ ((x2 ∧ x3) ∨ y)
) ∧ (¬y ∨ (¬x3 ∧ x4)

)
, wherein y is in

conflict. To see why this is so, consider ϕ+y (henceforth called ϕ+) represented
as a NNF circuit in Fig. 3. Let π be an assignment that assigns 1 to x1, x3 and
0 to x2, x4. The values in red below the leaves in Fig. 3 represent this assign-
ment. If we propagate these values upstream to the root of the circuit, we get
the values/formulas shown in red adjacent to internal nodes, as shown in Fig. 3.
This process is akin to constant/symbol propagation in symbolic simulation [30].
Note that the root of the circuit is assigned y ∧ ŷ by this process, indicating
that ϕ+

∣
∣
π

⇔ (y ∧ ŷ). Hence, y is in conflict in ϕ and π is a counterexample to
conflict-freeness of y in ϕ.
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0

∨
y

∧
0
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1

y

∨
y

y ∧
0

¬x3
0

x4
0

Fig. 3. Circuit representing ϕ+y

Interestingly, the constant/symbol propa-
gation discussed above can yield many more
counterexamples beyond π. Specifically, let N
denote the set of coloured nodes in the figure.
Suppose we cut the circuit at the nodes in
N , as shown by the dotted line in Fig. 3. Let
the sub-circuit above the cut be denoted CN .
Notice that the leaf nodes of CN are either
nodes in N or leaf nodes of the original cir-
cuit corresponding to y or ŷ. Now consider any
assignment π′ : {x1, x2, x3, x4} → {0, 1} s.t.
when we propagate constants/symbols in the
original circuit starting with π′ at the leaves,
we get the same values as in Fig. 3 at all nodes
in N . This ensures that all leaves of CN have the same constant/symbol as in
Fig. 3. Therefore, further constant/symbol propagation must assign exactly the
same constant/symbol/formula at every internal node of CN as in Fig. 3. Specif-
ically, the root node is assigned y ∧ ŷ, implying that π′ is a counterexample to
conflict-freeness of y in ϕ.

Can we characterize all the counterexamples π′ obtainable by the above
method? It turns out we can do this. First, note from Fig. 3 that the sub-circuits
rooted at the orange, purple and green nodes represent the Boolean formulas
x1 ∧ x2, x2 ∧ x3 and (¬x3 ∧ x4) respectively. Hence, the set of all counterex-
amples π′ obtained above are precisely the satisfying assignment of the formula
β ≡ ¬(x1∧x2)∧¬(x2∧x3)∧¬(¬x3∧x4). Notice that there are many assignments
beyond π that satisfy β, e.g. x1x2x3x4 = 0000 or 0010 or 1000, and so on. Thus,
we have truly generalized the counterexample π.

In general, given a specification ϕ(X,Y ), an output variable y and a coun-
terexample π : X ∪ Y \ {y} → {0, 1} to conflict-freeness of y in ϕ, we first
construct an NNF circuit representing ϕ+. For every node n in the circuit, let
ϕ+

n denote the sub-formula represented by the sub-circuit rooted at n. Next,
we assign values given by π to the leaves of the circuit representing ϕ+ and
propagate these values to the root of the circuit. Let vn,π denote the con-
stant/symbol/formula assigned to node n in the circuit by this process. In
other words, vn,π ⇔ ϕ+

n

∣
∣
π
. We now choose a subset N of nodes n such that

(i) sup(ϕ+
n ) ∩ {y, ŷ} = ∅, (ii) vn,π is a constant, and (iii) every path from a non-

y, non-ŷ leaf to the root passes through a node in N . Such a set N can always be
found, for example, by choosing N to be the set of non-y, non-ŷ leaves. However,
as Fig. 3 shows, N need not include only leaf nodes. Let βπ,N denote the formula∧

n∈N

(
ϕ+

n ⇔ vπ,n

)
.

Lemma 5. Every satisfying assignment of βπ,N is a counterexample to conflict-
freeness of y in ϕ. Moreover, ¬βπ,N satisfies the three conditions required for a
partial rectifier as specified in Lemma 3.

Proof. Since every path from a non-y, non-ŷ leaf to the root passes through a
node in N , we can use nodes in N and the leaves corresponding to y and ŷ to cut
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the circuit (as shown in Fig. 3). Let CN denote the sub-circuit above this cut. Let
π′ be a satisfying assignment (not necessarily same as π) of βπ,N . By definition of
βπ,N , constant/symbol propagation starting from π′ assigns the constant value
vπ,n to every node n ∈ N . It follows that for all leaf nodes l of the sub-circuit CN ,
vπ′,l = vπ,l. Hence, every internal node m of CN must also have vπ′,m = vπ,m.
In particular the root node gets assigned the same value/symbol/formula that it
had when we did constant/symbol propagation starting from π. In other words,
ϕ+

∣
∣
π′ ⇔ ϕ+

∣
∣
π
. However, Since π is a counterexample to conflict-freeness of y in

ϕ, we know ϕ+
∣
∣
π

⇔ (y∧ŷ). Therefore, ϕ+
∣
∣
π′ ⇔ (y∧ŷ) and π′ is a counterexample

to conflict-freeness of y in ϕ+.
To see ¬βπ,N satisfies the conditions required of a partial rectifier in Lemma 3,

note that sup(ϕ+
n )∩{y, ŷ} = ∅. Therefore, sup(¬βπ,N )∩{y, ŷ} is also empty. Next,

by definiton, if an assignment π′ |= βπ,N , every node n ∈ N in the circuit ϕ+ gets
assigned the constant value vπ,n. Using the same argument as in the first part of
the proof, we can then show that ϕ+

∣
∣
π′ ⇔ (y ∧ ŷ). Hence ϕ

∣
∣
π′ ⇔ ϕ+[ŷ �→ ¬y]

∣
∣
π′

⇔ y ∧ ŷ[ŷ �→ ¬y] ⇔ 0. This shows that βπ,N ⇒ ¬ϕ. In other words, ϕ ⇒ ¬βπ,N .
Finally, βπ,N

∣
∣
π

⇔ ∧
n∈N

(
ϕ+

n

∣
∣
π

⇔ vπ,n

)
. However, vπ,n ⇔ ϕ+

n

∣
∣
π

by definition.
Hence βπ,N

∣
∣
π

⇔ 1 and hence ¬βπ,N

∣
∣
π

is unsatisfiable. ��
The above lemma allows us to use ¬βπ,N as a partial rectifier of ϕ w.r.t. y in
Algorithm RectifyOneOutput. Significantly, this eliminates in one shot all
counterexamples to conflict-freeness of y in ϕ that are satisfying assignments of
βπ,N , thereby reducing the number of iterations of the loop in Algorithm Recti-
fyOneOutput. As seen in the example above, βπ,N can indeed have many more
satisfying assignments beyond π. We use this technique to implement the sub-
routine PartialRectifier in Algorithm RectifyOneOutput. Specifically,
we choose the set N such that the longest path of each node n ∈ N from a leaf
of Cμ is within an empirically determined threshold (20 in our experiments).

Generalizing Using Unsatisfiable Cores: It turns out that we can gener-
alize counterexamples even beyond what was achieved above. To see a concrete
example, consider the specification γ(X, y) ≡ ϕ(X, y)∧ (¬y ∨ (x1 ∧ x2)

)
, where

ϕ(X, y) is the same specification considered in Fig. 3. The NNF circuit represent-
ing γ+y (or γ+ for short) is the same as that shown in Fig. 3 with an additional
∧-gate that feeds the root node, and that is fed by the ŷ leaf and output of the
orange node. The same assignment π as considered earlier serves as a counterex-
ample to conflict-freeness of y in γ, and the same set N can be chosen to obtain
the same partial rectifier ¬β, where β ≡ ¬(x1 ∧ x2) ∧ ¬(x2 ∧ x3) ∧ ¬(¬x3 ∧ x4).
Note, however, that in the circuit for γ+, if the orange and purple nodes are
assigned the value 0 by constant propagation starting from an assignment π′,
the root node must be assigned y∧ ŷ, regardless of the value assigned to the green
node. Therefore, we could have used β′ ≡ ¬(x1 ∧ x2) ∧ ¬(x2 ∧ x3), which repre-
sents a larger set of counterexamples than β. Specifically, x1x2x3x4 = 1001 does
not satisfy β but satisfies β′. It follows that rectification using ¬β′ eliminates
more counterexamples in one go than rectification using ¬β.

In general, given ϕ, y, π and N as in our previous discussion, let sn be
a fresh variable for every node n ∈ N , and define the formula ρπ,N ≡ ϕ ∧
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∧
n∈N

(
(sn ⇒ (ϕ+

n ⇔ vπ,n)) ∧ sn

)
. Since ϕ ⇒ ¬βπ,N (see Lemma 5) and since

βπ,N ≡ ∧
n∈N (ϕ+

n ⇔ vπ,n), it follows that ρπ,N is unsatisfiable. Assuming ϕ is
satisfiable (otherwise the synthesis problem is itself trivial), every unsatisfiable
core of ρπ,N must set a subset of the sn variables to 1. Let U ⊆ N be the
set of nodes n s.t. sn = 1 in a minimal unsatisfiable core of ρ. Then ρπ,U ≡
ϕ ∧ ∧

n∈U

(
(sn ⇒ (ϕ+

n ⇔ vπ,n)) ∧ sn

)
is unsatisfiable.

Lemma 6. Lemma 5 holds with βπ,N replaced by βπ,U . Moreover, βπ,N ⇒ βπ,U .

Overall Algorithm: We are now present Algorithm FindSkBasisVec. The
algorithm initializes a running specification α to ϕ. It then repeatedly chooses
the next output yi for whose Skolem functions a Skolem basis needs to be com-
puted. The choice of yi can be as per a static order, or as determined on-the-fly
heuristically. The algorithm then finds Skolem basis (Ai, Bi) using Theorem 1 by
treating yi as the sole output in the specification α. It next updates the running
specification α by existentially quantifying yi from α. In order to do this, it first
checks if yi is unate in α, and if so, substitutes an appropriate constant for yi

in α to quantify it out. Otherwise, the algorithm invokes Algorithm Rectify-
OneOutput. Thanks to Theorem 3, we can effectively and efficiently quantify
yi from α by setting yi = 1 and ŷi = 1 in the positive form of the formula μ
returned by RectifyOneOutput. Once all outputs are processed, the algo-
rithm outputs the vector of (Ai, Bi) pairs computed as the Skolem basis vector.

Theorem 4. Algorithm FindSkBasisVec terminates with a Skolem basis vec-
tor for the specification ϕ(X,Y ).

Proof. The proof of termination follows immediately from Theorem 3. The proof
of correctness follows from Definition 1, Theorems 1, 3, and Lemmas 1, 2. ��

Though we developed rectification as a technique for rendering a variable
conflict free with the objective of generating Skolem basis vectors, it can be
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independently used to compile a Boolean formula to a form that allows efficient
quantifier elimination. However, a performance evaluation of rectification versus
other quantification techniques in such applications is beyond the scope of this
paper.

7 Implementation and Experiments

We implemented the above algorithms in C++ using the abc package [27] and
ran our tool on a set of 602 Boolean functional synthesis benchmarks (also used
in [12,14]). We used an Intel(R) Xeon(R) CPU E5-2660 v2@2.20GHz machine
with 40 cores in single-threaded mode (multiple cores used only to run experi-
ments in parallel). We set an overall timeout of 3600 seconds, within which the
timeout for unate-check was 1000 seconds.

Detailed Analysis of Our Results. We did an ablation study to understand
which part of our approach was most successful in compiling the benchmarks.

DO SO CDO CSO
1 Total Solves 287 298 299 308
2 PAR2 Scores 3839.56 3672.65 3696.90 3565.01
3 Average time 151.28 74.29 146.94 95.24
4 allUnates 98 98 98 98
5 someUnates 146 157 151 160
6 noUnates 43 43 50 50
7 fixedConflicts 71 19 73 21
8 noConflicts 118 181 128 189
9 fixedConflicts

someUnates 68 16 69 17
10 noConflicts

someUnates 78 141 82 143
11 fixedConflicts

noUnates 3 3 4 4
12 noConflicts

noUnates 40 40 46 46

Fig. 4. Table of results

Our results are summarized in
Fig. 4. Here, “Total solves” denotes
the number (out of 602) bench-
marks for which Algorithm Find-
SkBasisVec completed within
the timeout. “PAR2 score” is
a widely used weighted perfor-
mance score, computed as sum
of time taken (in seconds) for
each solved instances and dou-
ble of timeouts (3600 s)s) for each
unsolved instance. For bench-
marks that were rectified, for each
application of rectification, we
verified (using a SAT solver) that
the rectified circuit was seman-
tically equivalent to the original.
The time for this verification is
included when computing PAR2
scores. In row 3, we note the “Average time” taken (including for verification),
in seconds, over all solved instances. In rows 4, 5 and 6, we count, respectively,
the number of solved benchmarks, where (i) all variables were unate (ii) some
but not all were unate and (iii) no variables were unate (these add up to row 1).
In row 7, we list the number of solved benchmarks for which there was at least
one conflict, i.e., a call to the rectification algorithm was needed. Row 8 lists the
solved benchmarks with at least one output that was not unate but no outputs
having conflicts. The other rows are self-explanatory.

Order Dependence. Since a Skolem basis vector depends on the ordering of out-
puts, we considered two order variants. In the first, we considered a heuristically
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determined static order (denoted SO), taken as is from [14]. Then, we tried a
heuristic dynamic order (denoted DO): after each output variable is processed,
the next is obtained on-the-fly by applying the heuristic from [14].

Conflict Optimization in Calculating Skolem Basis Vector. We found several
problem instances where the specification is not realizable, i.e., there exist input
values for which no output values can make the specification true. For such
instances, it is reasonable to restrict the computation of Skolem basis vector to
a set F of Skolem functions, such that for any Skolem function ψ �∈ F , there
exists ψ′ ∈ F such that ψ and ψ′ differ only on the space of input assignments
for which no assignment of outputs would satisfy the specification. It turns out
that this can be easily encoded in Algorithm 1 by modifying the conflict formula
κμ,y to κμ,y ∧ ϕ(X,Y ′), where Y ′ is a fresh set of variables. Doing this, along
with the static/dynamic ordering gives us the “CSO” and “CDO” columns in
Fig. 4.

Observations. With either SO or DO, without conflict optimization, we are able
to compute Skolem basis vectors for 299 of 602 benchmarks (286 were solved by
both, 1 by only DO and 12 by only SO). Interestingly, the static order (SO) had
fewer conflicts compared to the dynamic order (DO), when we had to rectify more
often. Further, in the presence of conflict optimization, we are able to compute
Skolem basis vectors for 309 out of 602 benchmarks. Note is that even though
the PAR2 score is large, the average time taken is less than 2.5min, including
time taken for verification. In other words, when we are able to compute Skolem
basis vectors, we are able to do so in remarkably short duration.

Comparison with Other Tools/Approaches. There are no existing tools that syn-
thesize a represention of the space of all Skolem function vectors. Knowledge
compilation tools e.g., C2Syn [13], NNF2SDD [25,31] come closest as they try
to obtain a single circuit that is semantically equivalent to the original and is in
a normal form: the SynNNF form for C2Syn and the SDD form for NNF2SDD.
Skolem functions hence could be potential alternative approaches. In practice,
C2Syn does refinement (see [13]) operations for performance boosting, thereby
restricting the space of Skolem function vectors. Even with this optimization
for C2Syn it can compile only 218 (out of 602) benchmarks, while NNF2SDD
compiles only 142 to SDD on the same computing platform.

An apples-to-apples performance comparison of Boolean functional synthesis
tools (that synthesize a single Skolem function vector) with our tool (that com-
putes Skolem basis vectors for all Skolem function vectors) is not possible, since
two different problems are being solved. Nevertheless, to understand the per-
formance penalty incurred in computing a representation of all Skolem function
vectors, we observe from [12] that with a 7200 s s timeout and using a more pow-
erful cluster, Manthan [12] (resp. BFSS [14]) could synthesize a single Skolem
function vector for ∼356 (resp. 247) out of the same 602 benchmarks. In com-
parison, with 3600 s s timeout, we are able to compute Skolem basis vector for
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∼ 300 benchmarks. In [17], an improved and highly engineered tool Manthan2
was developed, which could synthesize a single Skolem function vector for 502
benchmarks within 7200 s.s. Interestingly, we are able to compute Skolem basis
vectors for 22 benchmarks (out of which 13 have non-unate variables), for which
even Manthan2 [17] fails to synthesize a single Skolem function vector.

8 Conclusion

In this work, we have introduced a representation for the space of Skolem func-
tions, using the notion of Skolem basis vector. Our representation itself is criteria-
agnostic, but allows the use of other existing techniques to optimize Skolem func-
tions wrt different criteria. We develop a compilation algorithm that uses a com-
bination unate and conflict-detection along with generalized counter-example
guided approach to synthesize the Skolem basis vector. Our next step would
be to identify specific problem contexts and optimization criteria and integrate
our approach with the state-of-the-art logic synthesis tools to synthesize specific
Skolem functions satisfying the given criteria.
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