
A Unified Model for Real-Time Systems:
Symbolic Techniques and Implementation

S. Akshay1 , Paul Gastin2,4 , R. Govind1(B) , Aniruddha R. Joshi1 ,
and B. Srivathsan3,4

1 Department of CSE, Indian Institute of Technology Bombay, Mumbai, India
{akshayss,govindr,aniruddhajoshi}@cse.iitb.ac.in

2 Université Paris-Saclay, ENS Paris-Saclay, CNRS, LMF, 91190 Gif-sur-Yvette,
France

paul.gastin@ens-paris-saclay.fr
3 Chennai Mathematical Institute, Chennai, India

sri@cmi.ac.in
4 CNRS, ReLaX, IRL 2000, Siruseri, India

Abstract. In this paper, we consider a model of generalized timed
automata (GTA) with two kinds of clocks, history and future, that can
express many timed features succinctly, including timed automata, event-
clock automata with and without diagonal constraints, and automata
with timers.

Our main contribution is a new simulation-based zone algorithm for
checking reachability in this unified model. While such algorithms are
known to exist for timed automata, and have recently been shown for
event-clock automata without diagonal constraints, this is the first result
that can handle event-clock automata with diagonal constraints and
automata with timers. We also provide a prototype implementation for
our model and show experimental results on several benchmarks. To the
best of our knowledge, this is the first effective implementation not just
for our unified model, but even just for automata with timers or for
event-clock automata (with predicting clocks) without going through a
costly translation via timed automata. Last but not least, beyond being
interesting in their own right, generalized timed automata can be used for
model-checking event-clock specifications over timed automata models.

Keywords: Real-time systems · Timed automata · Event-clock
automata · Clocks · Timers · Verification · Zones · Simulations ·
Reachability

This work was supported by UMI ReLaX, IRL 2000 and DST/CEFIPRA/INRIA
Project EQuaVE. S Akshay was supported in part by DST/SERB Matrics Grant
MTR/2018/000744. Paul Gastin was partially supported by ANR project Ticktac
(ANR-18-CE40-0015).
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13964, pp. 266–288, 2023.
https://doi.org/10.1007/978-3-031-37706-8_14

https://www.doi.org/10.6084/m9.figshare.22734839
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37706-8_14&domain=pdf
http://orcid.org/0000-0002-2471-5997
http://orcid.org/0000-0002-1313-7722
http://orcid.org/0000-0002-1634-5893
http://orcid.org/0000-0003-1884-7894
http://orcid.org/0000-0003-2666-0691
https://doi.org/10.1007/978-3-031-37706-8_14

A Unified Model for Real-Time Systems 267

q0 q1
a

x := 0

y := 0

x = 1?

x := 0

b

x

y

0
1
2

q0 q1
a

tx : [1, 1]

ty : [0,]

timeout(tx)

tx : [1, 1]

b

1 < ty tx <

Fig. 1. An automaton with clocks on left, and timers on right for same constraints.

1 Introduction

The idea of adding real-time dynamics to formal verification models started as
a hot topic of research in the 1980 s [6,11]. Over the years, timed automata [8,9]
has emerged as a leading model for finite-state concurrent systems with real-time
constraints. Timed automata make use of clocks, real-valued variables which
increase along with time. Constraints over clock values can be used as guards
for transitions, and clocks can be reset to 0 along transitions. It is notable that
the early works in this area made use of timers to deal with real-time [13,22,32].
Timers are started by setting them to some initial value within a given interval.
Their values decrease with time, and an timeout event can be used in transitions
to detect the instant when the timers become 0. Quoting from [6], the shift from
timers to clocks in timed automata, as we know them today, is attributed to the
fact that: “apart from some technical conveniences in developing the emptiness
algorithm and proving its correctness, the reformulation allows a simple syntac-
tic characterization of determinism for timed automata”. Over the last thirty
years, the study of timed automata has led to the development of rich theory
and industry-strength verification tools. The use of clocks has also allowed for
the extension of the model to more complex constraints and assignments to
clocks in transitions [14,17]. Furthermore, considering more sophisticated rates
of evolution for clocks gives the yet another well-established model of hybrid
automata [7].

When it comes to the reachability problem, timers do have some nice proper-
ties. Let us explain with an example. Figure 1 shows a timed automaton on the
left, and an automaton with timers on the right, for the set of words ab∗ such
that the time between every consecutive letters is 1. The timed automaton sets
clock x to 0 and checks for the guard x = 1? to enforce the timing constraint.
The automaton with timers, on the right, sets a timer tx to 1, and asks for its
expiry in the immediate next action. Clock y and timer ty are not necessary for
the required timing property, but we add them to illustrate a different aspect
that we will describe now. To solve the reachability problem, a symbolic enumer-
ation of the state space is performed. In the timed automaton, at state q1, the
enumeration gives constraints y −x = n for every n ≥ 0. Starting from y −x = n
and executing b gives y − x = n + 1, due to the combination of guard x = 1?
and reset x := 0. This shows that a naïve symbolic enumeration is not bound

268 S. Akshay et al.

to terminate. The question of developing finite abstractions for timed automata
has been a central problem of study which started in the late 90s and continues
till date (see recent surveys [18,38]). Such an issue does not occur with timers.
In the automaton with timers on the right, tx is set to 1 and ty is set to some
arbitrary value in the transition to q1. This gives −1 ≤ ty − tx ≤ ∞ for the set
of all possible timer values. When tx times out, the value of ty could still be any
value from 0 to ∞. When tx is set to 1 again, the set of possible timer values still
satisfies the same constraint −1 ≤ ty − tx ≤ ∞ leading to a fixed point with a
finite reachable state space. The fact that symbolic enumeration terminates on
an automaton with timers was already observed in [22]. To our knowledge, later
works on timed automata reachability never went back to timers, and there is
no tool support that we know of to deal with models with timers directly. We
find this surprising given that timers occur naturally while modeling real-time
systems and moreover they enjoy this finiteness property.

In addition to clocks and timers, event-clocks are another special type of clock
variables that are used to deal with timing constraints [10], which are attached
to events. An event-recording clock for event a maintains the time since the
previous occurrence of a, whereas an event-predicting clock for a gives the time
to the next occurrence of a. Event-clocks have been used in the model of event-
clock automata (ECA), and also in the logic of event-clocks [36]. These works
argue that event-clocks can express typical real-time requirements. Theoretically,
ECA can be determinized, and hence complemented. Therefore, model-checking
an event-clock (logic or automaton) specification ϕ over a timed automaton A
can be reduced to reachability on the product of A and the ECA for ¬ϕ. This
makes event-clocks a convenient feature in specifications.

Recently, a symbolic enumeration algorithm for ECA was proposed [3]. It was
noticed that when restricted to event-predicting clocks, the symbolic enumera-
tion terminates without any additional checks (similar to the case of timers),
whereas for the combination involving event-recording clocks, one needs simu-
lation techniques from the timed automata literature. The same work showed
how to adapt the best known simulation technique from timed automata into
the setting of ECA. However, as discussed above, for model-checking we need
a model containing both conventional clocks, timers and event-clocks. To our
knowledge, no tool can directly work on such models.

Our goal in this work is to provide a one stop solution to real-time verification,
be it reachability analysis or model-checking (over event-clock specifications), be
it using models with clocks, or models with timers. We consider a unified model
of a timed automaton over variables that can simulate normal clocks, timers and
event-clocks. Here are our key contributions:

1. We define a new model of generalized timed automata (GTA) which have
two types of variables, called history clocks and future clocks. History clocks
generalize normal clocks as well as event-recording clocks, while future clocks
generalize event-predicting clocks and timers. However, unlike event-clocks,
clocks in GTA are not necessarily associated with events. We also consider a
generic syntax that allows for diagonal constraints between variables.

A Unified Model for Real-Time Systems 269

2. We show undecidability of reachability for GTA, and study a safe subclass
that makes the model decidable. Safe GTA already subsume timed automata,
event-clock automata (with diagonal constraints) and automata with timers.

3. We adapt state-of-the-art symbolic enumeration techniques from timed
automata literature to safe GTA. While we make use of ideas presented in [22]
and [3], these works do not contain diagonal constraints between variables.
Our main technical and theoretical innovation lies in a new termination anal-
ysis of the symbolic enumeration in the presence of diagonal constraints. Sur-
prisingly, we show that the enumeration terminates as long as the diagonal
constraints are restricted to usual clocks and event-clocks, but not timers.

4. We develop a prototype implementation of our model and algorithm in
Tchecker, an open-source platform for timed automata analysis, and show
promising results on several existing and new benchmarks. To the best of
our knowledge, our tool is the first that can handle event-clock automata, a
model that till date has been the subject of many theoretical results.

Related Works. In the work that first introduced ECA, a translation from ECA
to a timed automaton was also proposed. However, this translation is not effi-
cient: in the worst case, this translation incurs a blowup in the number of clocks
and states. In [27,28], an extrapolation approach using maximal constants has
been studied for ECA. However, it has been observed that simulation-based tech-
niques are both more effective [14,16] and efficient [5,24–26] than extrapolation
for checking reachability. Recently, [3] proposed a zone-based reachability algo-
rithm for diagonal-free ECA, using simulations for finiteness, but there was no
accompanying implementation. Diagonal constraints have long been known to
allow succinct modeling [15] for the class of timed-automata, but only recently a
zone-based algorithm that directly works on such automata, was proposed. ECA
with diagonals are more expressive than ECA [19]. In this work, we propose a
zone-based algorithm for a unified model that subsumes ECA with diagonals.

The use of history clocks and prophecy clocks in ECAs is in the same spirit
as past and future modalities in temporal logics - this makes ECAs an attractive
model for writing timed specifications. Indeed, this has also led to a develop-
ment of various temporal logics with event-clocks [1,23,36]. ECA with diagonal
constraints have been well-studied, such as in the context of timeline based
planning [19,20]. Finally, while there has been substantial advances in the the-
ory of ECA, to the best of our knowledge, the only tool that handles ECA is
Tempo [37], and even this tool is restricted to just history clocks.
Structure of the Paper. In Sect. 2 we start by defining the generalized model.
Section 3 examines its expressiveness, while Sect. 4 deals with the reachability
problem and the safe subclass. Section 5 develops the symbolic enumeration tech-
nique, while Sect. 6 explains how distance graphs can be extended to this setting.
Section 7 is dedicated to finiteness. Finally, we provide our experimental results
in Sect. 8 and conclude with Sect. 9. All the missing proofs can be found in the
full version of the paper [2].

270 S. Akshay et al.

2 Generalized timed automata

In this section we introduce the unified model. While we build on classical ideas
from timed automata, almost every aspect is extended and below we highlight
these changes. We define X = XH �XF to be a finite set of real-valued variables
called clocks, where XH is the set of history clocks, and XF is the set of future
clocks. History clocks always have a non-negative value and can increase arbi-
trarily along with time. Future clocks always have a non-positive value and can
only increase until their values hit 0. History clocks simulate the usual clocks
in timed automata and recording clocks of event-clock automata (ECA), and
future clocks simulate timers and prophecy clocks of ECA. Both these clocks
can take a special “undefined value” which marks that they are inactive. To deal
with this naturally, we consider an extension of the reals with +∞ and −∞ as
in [3]. The difference here is that we also have the so-called diagonal constraints.

Extending Clock Constraints. Let R = R∪ {−∞, +∞} denote the set of all
real numbers along with −∞ and +∞. The usual < order on reals is extended to
deal with {−∞, +∞} as: −∞ < c < +∞ for all c ∈ R and −∞ < ∞. Similarly,
Z = Z ∪ {−∞, +∞} denotes the set of all integers along with −∞ and +∞.
Let R≥0 (resp. R≤0) be the set of non-negative (resp. non-positive) reals. Let
C = {(�, c) | c ∈ R and � ∈ {≤, <}}, called the set of weights.

Let X ∪ {0} be the set obtained by extending the clocks of GTA with the
special constant clock 0. Note that this clock will always have the value 0. Let
Φ(X) denote a set of clock constraints generated by the following grammar:
ϕ ::= x − y � c | ϕ ∧ ϕ where x, y ∈ X ∪ {0}, (�, c) ∈ C and c ∈ Z. The
introduction of the special constant clock 0 allows us to treat constraints with
just a single clock as special cases: the constraint x � c is equivalent to x − 0 � c
and the constraint c � x is equivalent to 0 − x � −c. We often write x = c
as a shorthand for x ≤ c ∧ c ≤ x. Constraints of the form x − y � c will be
called atomic constraints. A constraint of the form x − y � c is a diagonal (resp.
non-diagonal) constraint if x, y 	= 0 (resp. x = 0 or y = 0).

To evaluate the constraints allowed by Φ(X), we extend addition on real
numbers with the convention that (+∞) + α = α + (+∞) = +∞ for all α ∈ R

and (−∞) + β = β + (−∞) = −∞, as long as β 	= +∞. We also extend the
unary minus operation from real numbers to R by setting −(+∞) = −∞ and
−(−∞) = +∞. Abusing notation, we write β −α for β +(−α). Notice that with
this extended addition, the minus operation does not distribute over addition1.

Extending Valuations. A valuation of clocks is a function v : X ∪ {0}
→ R

which maps the special clock 0 to 0, history clocks to R≥0 ∪ {+∞} and future
clocks to R≤0 ∪ {−∞}. We denote by V(X) or simply by V the set of valuations
over X. We say that clock x is defined (resp. undefined) in v when v(x) ∈ R

(resp. v(x) ∈ {−∞, +∞}). Let x, y ∈ X ∪ {0} be clocks (including 0) and let
(�, c) be a weight. For valuations v ∈ V, define v |= y − x � c as v(y) − v(x) � c.

1 Notice that −(a + b) = (−a) + (−b) when a or b is finite or when a = b. But, when
a = +∞ and b = −∞ then −(a + b) = −∞ whereas (−a) + (−b) = +∞.

A Unified Model for Real-Time Systems 271

We say that a valuation v satisfies a constraint ϕ in Φ(X), denoted as v |= ϕ,
when v satisfies all atomic constraints in ϕ.

By definition, we easily check that the constraint y − x � c is equivalent to
true (resp. false) when (�, c) = (≤, +∞) (resp. (�, c) = (<, −∞)). Constraints
that are equivalent to true or false will be called trivial, whereas all others are
non-trivial constraints. If (�, c) 	= (≤, +∞) then v |= y − x � c never holds when
v(x) = −∞. Also, if v(x) = v(y) ∈ {−∞, +∞} then v |= y − x � c only holds for
(�, c) = (≤, +∞). For a non-trivial constraint y − x � c, we have

– v |= y − x � c iff v(y) < +∞ = v(x) or (v(x) is finite and v(y) � v(x) + c).
– v |= y − x ≤ −∞ iff v(y) < +∞ = v(x) or v(y) = −∞ < v(x).
– v |= y − x < +∞ iff v(x) 	= −∞ and v(y) 	= +∞.

We abuse notation and for Y ⊆ X, we define Y � c as
∧

y∈Y y � c, and Y = c
as

∧
y∈Y y = c. We denote by v + δ the valuation obtained from valuation v

by increasing by δ ∈ R≥0 the value of all clocks in X. Note that, from a given
valuation, not all time elapse result in valuations since future clocks need to stay
at most 0. For example, from a valuation with v(x) = −3 and v(y) = −2, where
x, y are future clocks, one can elapse at most 2 time units.

Extending Resets. For history clocks, the reset operation sets the clock to 0.
For future clocks, the reset operation says that all constraints on the clock must
be discarded, i.e., the clock is released. Given that the set of clocks is partitioned
into history clocks and future clocks, we use the same notation [R]v to talk about
the change of clocks in R, whether it be reset/release. Formally, given a set of
clocks R ⊆ X, we define [R]v as {v′ ∈ V | v′(x) = 0 ∀ x ∈ R ∩ XH and v′(x) =
v(x) ∀ x 	∈ R}. Observe that the release operation is implicit: each future clock in
R could take any value (not necessarily the same) from [−∞, 0] in [R]v. Note that
[R]v is a singleton when R contains only history clocks - this corresponds exactly
to the reset operation in timed automata. Then, we simply write v′ = [R]v
instead of {v′} = [R]v. When R contains only future clocks, [R]v is the set
of valuations obtained by releasing each clock in R while keeping the value of
all other clocks unchanged. For W ⊆ V, we let [R]W =

⋃
v∈W [R]v. We have

[R′ ∪ R′′]W = [R′]([R′′]W).

Extending Guards and Transitions. Before we define GTA, let us focus
on the language to specify transitions. In normal timed automata, as shown in
Fig. 2, a transition reads a letter, checks a guard g ∈ Φ(XH) and then resets a
subset R of (history) clocks. But in any one transition only a pair of guard, reset
is performed and one cannot interleave them.

p q

a, g,R

p q

a, prog

Fig. 2. A transition of TA (left) and of a GTA (right)

272 S. Akshay et al.

We generalize this to our setting with history and future clocks but also to
allow arbitrary interleaving of guards and changes (to model this with a TA one
may use a sequence of multiple transitions without delays in-between.) Formally,
an instantaneous timed program is generated by the following grammar:

prog := guard | change | prog; prog

where guard = g ∈ Φ(X) and change = [R] for some R ⊆ X. While guard and
change are atomic programs, prog; prog refers to sequential composition. The
set of all programs generated by the above grammar will be denoted Programs.
Then on a transition, we simply have a pair of letter label and an instantaneous
timed program, e.g., (a, prog) in Fig. 2 (right).

The semantics for programs on a transition must generalize semantics for
guards (defined using satisfaction relation |= above) and resets/release (defined
using [R] above). But there is an obvious difference between these two: a guard
may be crossed only if the valuation before the guard satisfies it, whereas a
change (reset or release) defines a relation between the valuations before and
after the change. To capture both in a uniform way, we define the semantics
of programs as relations on pairs of valuations. Formally, for v, v′ ∈ V, prog ∈
Programs we define (v, v′) |= prog, more conveniently written as v

prog−−−→ v′,
inductively:

– v
g−→ v′ if v |= g and v′ = v,

– v
[R]−−→ v′ if v′ ∈ [R]v,

– v
prog1;prog2−−−−−−−→ v′ if ∃v′′ ∈ V such that v

prog1−−−→ v′′ and v′′ prog2−−−→ v′.

Now, we have all the pieces necessary to define our generalized model.

Definition 1 (Generalized timed automata). A generalized timed
automata A is given by a tuple (Q, Σ, X, Δ, (q0, g0), (Qf , gf)), where Q is a
finite set of states, Σ is a finite alphabet of actions, X = XF � XH is a set of
clocks partitioned into future and history clocks, the initialization condition is a
pair comprising of an initial state q0 ∈ Q and an initial guard g0 ∈ Φ(X) which
should be satisfied by initial valuations, similarly, the final condition is a pair
comprising of a set of final states Qf ⊆ Q along with a final guard gf that must
be satisfied by final valuations, and Δ ⊆ (Q × Σ × Programs × Q) is a finite set
of transitions. Δ contains transitions of the form (q, a, prog, q′), where q is the
source state, q′ is the target state, a is the action triggering the transition, and
prog is the instantaneous timed program that is executed in sequence (from left
to right) while firing the transition.

The semantics of a GTA A = (Q, Σ, X, Δ, (q0, g0), (Qf , gf)) is given by a tran-
sition system TSA whose states are configurations (q, v) of A, where q ∈ Q and
v ∈ V is a valuation. A configuration (q, v) is initial if q = q0 and v |= g0. A
configuration (q, v) is accepting if q ∈ Qf and v |= gf . Transitions of TSA are
of two forms: (1) delay transition: (q, v) δ−→ (q, v + δ) if (v + δ) |= XF ≤ 0, and

A Unified Model for Real-Time Systems 273

(2) discrete transition: (q, v) t−→ (q′, v′) if t = (q, a, prog, q′) ∈ Δ and v
prog−−−→ v′.

Thus, a discrete transition t = (q, a, prog, q′), where prog = prog1; . . . ; progn can
be taken from (q, v) if there are valuations v1, . . . , vn such that v

prog1−−−→ v1
prog2−−−→

· · · progn−−−−→ vn = v′. A run of a GTA is a finite sequence of transitions from an
initial configuration of TSA. A run is said to be accepting if its last configuration
is accepting.

3 Expressivity of GTA and Examples

The GTA model defined above is rather expressive. Figure 3 illustrates an exam-
ple which accepts words of the form anbm with m ≤ n, where each a occurs
at time 0, after which b’s are seen one by one, with distance 1 between them.
The history clock x is used to ensure the timing constraint. For every a that is
read, the future clocks y, z decrease by 1. Hence the future clocks y, z maintain
the opposite of the number of a’s seen. When the automaton starts reading b,
the future clocks also start elapsing time and since they cannot go above 0, the
number of b’s is at most the number of a’s. Such a language cannot be accepted
by timed automata since the untimed language obtained by removing the time
stamps needs to be regular in the case of timed automata. The GTA model is
not only expressive, it is also convenient for use. To see this we now show that
three classical models of timed systems can be easily captured using GTA. We
also illustrate the modeling convenience provided by GTA in Sect. 8 based on
experiments.

q0 q1

a,prog1

b,prog2

b,prog2 History clocks: x , Future clocks: y, z
prog1 : x = 0; [y]; y = z 1; [z]; z = y prog2 : x = 1; [x]
Initial condition: y = z = 0 Final condition: true

Fig. 3. Example of a GTA

Timed automata. Timed automata (TA) of Alur-Dill [9] can be modeled as a
GTA as follows: (1) The set of states of the GTA is the same as the set of states
of the TA. (2) There are no future clocks in the GTA and its history clocks are
the clocks of the TA. (3) Each transition of the form q

a,g,R−−−→ q′ in a TA , where
g is a guard, a a letter and R a subset of clocks to be reset, is replaced by a
transition q

a,prog−−−−→ q′ where prog = 〈g; [R]〉. (4) Initially, all clocks must be 0,
captured by setting g0 = (XH = 0). (5) The final guard is empty: gf = True.

Event-clock Automata. Event-clock automata (ECA) of [10] can be modeled
as a GTA as follows: (1) The set of states of the GTA is the same as the set
of states of the ECA. (2) For each a ∈ Σ, the GTA has a history clock ←−a and
a future clock −→a . (3) Each transition of the form q

a,g−−→ q′ in a ECA, where

274 S. Akshay et al.

g is a guard of the ECA, a a letter, is replaced by a transition q
a,prog−−−−→ q′

where prog := 〈(−→a = 0); [−→a]; g; [←−a]〉. (4) At initialization, history clocks must
be undefined (set to ∞), captured by g0 = (XH = ∞). (5) At acceptance, all
future clocks must be undefined, i.e., gf = (XF = −∞).

Automata with Timers. The third model we consider is that of automata
with timers. Timers are timing constructs that are started/initialized with a
certain time value at some point/event and count down to 0. They measure
the time from when they were started till the timer hits 0, where the event of
hitting 0 is called timeout. However, they can be stopped using a stop event at
any intermediate point instead and in which case the timer must be freed for
reuse later. Timers are a common construct in protocol specification, e.g., the
ITU standard which uses timers rather than clocks [30] and Mealy machines
with timers [31].

In our setting, a timer can be seen as a specific instance of a future clock.
More precisely Automata with timers (A
�) can be modeled as GTA as follows:
(1) The set of states of the GTA is the same as the set of states of A
�. (2)
The future clocks of GTA are the timers of A
� and there are no history clocks.
Initially, the timers are undefined, captured by g0 = (XF = −∞) and gf = True.
(4) A transition of A
� with action a from q to q′ is encoded as q

a,prog−−−−→ q′ with:

– if the transition starts timer x with value c ∈ R≥0, then prog = 〈x =
−∞; [x]; x = −c〉.

– if the transition is guarded by timeout(x), then prog = 〈x = 0; [x]; x = −∞〉.
– if the transition stops timer x, then prog = 〈[x]; x = −∞〉.

We note that the timer above differs from a prophecy-event-clock (of ECA)
though both are future clocks. Prophecy-clocks are released only when the event
is seen, so at that point the value of the prophecy-clock must be 0. On the other
hand timers can be stopped and released even when their value is not 0. This
subtle difference has a surprising impact when we allow diagonal guards.

4 The Reachability Problem for GTA

We are interested in the reachability problem for GTA: given a GTA A, does
it have an accepting run? For normal TA, the reachability problem is decid-
able and PSPACE complete as shown in [9]. This was shown using the so-called
region abstraction, by proving the existence of a finite time-abstract bisimu-
lation. However, this is not the case for GTA. As explained in the previous
subsection, GTA capture ECA, and as shown in [27,28], there exists ECA for
which there is no finite time-abstract bisimulation. However, reachability is still
decidable in the specific case of ECA, as again shown in [10]. We note that for
ECA model of [27,28] there are no diagonal constraints. In this case they show
decidability via zone-extrapolation. In [3], another approach for decidability via
zone simulations is shown. But again even in this model diagonal constraints
are disallowed. Even more critically in GTA, we can capture timers and a priori

A Unified Model for Real-Time Systems 275

we can have diagonal constraints even among timers. So, the question we ask is
whether reachability is still decidable for GTA. Surprisingly, the answer is no.
The intuition is that with future clocks and diagonal constraints, we get the
ability to count (cf. Fig. 3).
Theorem 2. Reachability for GTA is undecidable.
Proof. We reduce from counter machines. Given a counter machine, we will build
a GTA with one future clock yC for each counter C and one extra future clock
z. The reduction uses diagonal constraints between z and the future clocks yC .

Initially and after each transition, the value of the future clock z will be 0.
Since a future clock has to be non-positive, time elapse is impossible. As an
invariant, the value of the future clock yC is the opposite of the value of counter
C. The operations on counter C are encoded with the following programs: (1)
zeroC = 〈yC = 0〉 (2) incC = 〈[z]; z = yC − 1; [yC]; yC = z; [z]; z = 0〉 (3)
decC = 〈yC ≤ −1; [z]; z = yC +1; [yC]; yC = z; [z]; z = 0〉. In programs incC and
decC , each release of a future clock is followed by a constraint which restricts the
value non-deterministically chosen during the release. For instance, [z]; z = yC−1
is equivalent to z := yC − 1. Hence, the overall effect of incC is yC := yC − 1,
maintaining all other clocks unchanged, including the invariant z = 0. ��

Given this negative result, what can we do? A careful observation of the
proof tells us that it is the interplay between diagonal constraints and arbitrary
releases of future clocks that leads to undecidability. More precisely, the encoding
depends on the fact that clocks z and yC which are used in diagonal constraints
(z = yC − 1, z = yC + 1 and yC = z) may have arbitrary values when they are
released. This suggests a restricted subclass that we formalize next.
Definition 3 (Safe GTA). Let XD ⊆ XF be a subset of future clocks.

A program prog = 〈g1; [R1]; g2; [R2]; . . . ; gk; [Rk]; gk+1〉 is XD-safe if
– diagonal constraints between future clocks are restricted to clocks in XD: if

x − y � c with x, y ∈ XF occurs in some gi then x, y ∈ XD;
– clocks in XD should be 0 or −∞ before being released: if x ∈ XD ∩ Ri then

x = 0 or x = −∞ occurs in gi.
A GTA A is XD-safe if it only uses XD-safe programs on its transitions and the
initial guard g0 sets each history clock to either 0 or ∞.

Observe that the three examples discussed in Sect. 3 are safe. Timed
automata do not have future clocks so the condition is vacuously true. In ECA,
event-predicting clocks are always checked for 0 before being released, hence
they are safe as well with XD = XF . Automata with timers without diagonal
constraints are also trivially safe with XD = ∅. The importance of safety is the
following theorem which is the center-piece of this article.
Theorem 4. Reachability for XD-safe GTA is decidable.

We will establish this theorem by showing a finite, sound and complete zone
based reachability algorithm for XD-safe GTA. If the given GTA is not XD-
safe, then we lose proof of termination (unsurprisingly, since the problem is
undecidable), but we still maintain soundness. Thus, even for such GTA when
our algorithm does terminate it will give the correct answer.

276 S. Akshay et al.

5 Symbolic Enumeration

We adapt the G-simulation framework presented in [26] for timed automata with
diagonal constraints to GTA. Diagonal constraints offer succinct modeling [15],
but are quite challenging to handle efficiently in zone-based algorithms, and
have led to pitfalls in the past: [14] showed that the erstwhile algorithm based
on zone-extrapolations that was implemented in tools is incorrect for models
with diagonal constraints; moreover no extrapolation based method can work
for automata with diagonal constraints. The simulation framework by-passes this
impossibility result and is the state-of-the-art for timed automata with diagonal
constraints. The framework was extended to event-clock automata without diag-
onal constraints in [3]. We show that the ideas from [26] and [3] can be suitably
combined to give an effective procedure for safe GTAs. This extension to GTAs
enables us to understand the mechanics of diagonal constraints in future clocks.

The algorithm based on the G-simulation framework involves:

1. computation of a set of constraints at every state of the automaton by a static
analysis of the model,

2. a symbolic enumeration using zones to compute the zone graph,
3. a simulation relation between zones to ensure termination of the enumeration.

We will next adapt the static analysis to the GTA setting. The algorithm for
the zone graph computation and the implementation of the simulation relation
over zones is taken off-the-shelf from [26] and [3], except for a minor adaptation
to include diagonal constraints involving future clocks. What is absent, and
requires a non-trivial analysis, is the proof of termination. Therefore, we will
mainly focus on this aspect and devote Sect. 7 for the termination argument.

G-Simulation and the Static Analysis for GTA. We fix a GTA A =
(Q, Σ, X, T, (q0, g0), (Qf , gf)) for this section. Our goal is to define a simulation
relation on the semantics of A, i.e., on TS(A). In the subsequent sections we will
lift this to zones and show its finiteness. A simulation relation on TS(A) is a
reflexive, transitive relation (q, v) � (q, v′) relating configurations with the same
control state and (1) for every (q, v) δ−→ (q, v + δ), we have (q, v′) δ−→ (q, v′ + δ)
and (q, v + δ) � (q, v′ + δ), (2) for every transition t, if (q, v) t−→ (q1, v1) for some
valuation v1, then (q, v′) t−→ (q1, v′

1) for some valuation v′
1 with (q1, v1) � (q1, v′

1).
For any set G of atomic constraints, we define a preorder �G on valuations:

v �G v′ if ∀ϕ ∈ G, ∀δ ≥ 0, v + δ |= ϕ =⇒ v′ + δ |= ϕ .

Notice that in the definition above, we do not restrict δ to those such that v+δ is
a valuation: we may have v(x)+δ > 0 for some x ∈ XF . In usual timed automata,
this question does not arise, as elapsing any δ from any given valuation always
results in a valuation. But this is crucial for the proof of Theorem 5 below.

Intuitively, the preorder above is a simulation wrt the constraints in G even
after time elapse. But we need this to also be a simulation wrt discrete transi-
tions. To achieve this, the set of constraints G should depend on the available

A Unified Model for Real-Time Systems 277

discrete transitions. In fact, we define a map G from states to set of constraints,
in such a way that it captures the simulation wrt the discrete actions. In other
words, our focus will be to choose state-dependent sets of constraints (given by
the map G) depending on A such that the resulting preorder induces a simulation
on TS(A).

As a first step towards this, we define, for any set G of constraints and any
program prog, a set of constraints G′ = pre(prog, G) such that, if v �G′ v′

and v
prog−−−→ v1 then there exists v′ prog−−−→ v′

1 such that v1 �G v′
1. This set

is defined inductively as follows (G is a set of atomic constraints, R is a set
of clocks, g is an arbitrary constraint, y − x � c is an atomic constraint):

pre(prog1; prog2, G) = pre(prog1, pre(prog2, G))
pre(g, G) = split(g) ∪ G

pre([R], G) =
⋃

ϕ∈G

pre([R], {ϕ})
pre([R], {y − x � c}) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{y − x � c} if x, y /∈ R

{y � c} if x ∈ R, y /∈ R

{−x � c} if x /∈ R, y ∈ R

∅ if x, y ∈ R

where split(g) is the set of atomic constraints occurring in g.
Now, the choice of suitable G will be obtained by static analysis, on the lines

of what was done for timed automata with diagonals [24–26], but adapted to
our more powerful model. More precisely, we define the map G from Q to sets
of atomic constraints as the least fixpoint of the set of equations:

G(q) = {x ≤ 0 | x ∈ XF } ∪
⋃

q
a,prog−−−−→q′

pre(prog, G(q′)) (1)

Finally, based on �G and the G(q) computation, we can define a preorder
�A between configurations of TS(A) as (q, v) �A (q′, v′) if q = q′ and v �G(q) v′.
We then show that �A defined above is indeed a simulation relation.

Theorem 5. The relation �A is a simulation on the transition system TSA.

Zones for GTA and the Zone Graph Computation. Roughly, zones [12]
are sets of valuations that can be represented efficiently using constraints
between differences of clocks. In this section, we introduce an analogous notion
for generalized timed automata. We consider GTA zones, or simply zones, which
are special sets of valuations of GTA. A GTA zone is a set of valuations satisfy-
ing a conjunction of constraints of the form y−x � c, where x, y ∈ X ∪{0}, c ∈ Z

and � ∈ {≤, <}. Thus zones are an abstract representation of sets of valuations.
Then, an abstract configuration, also called a node, is a pair consisting of a state
and a zone. Firing a transition t := (q, a, prog, q′) in a GTA A from node (q, Z)
will result in another node following a sequence of operations that we now define.
GTA Zone Operations. Let g be a guard, R ⊆ X a set of clocks and Z a GTA
zone.

– Guard intersection: Z ∩ g := {v | v ∈ Z and v |= g}
– Release/Reset: [R]Z =

⋃
v∈Z [R]v (as defined in Sect. 2)

– Time elapse: −→
Z = {v + δ | v ∈ Z, δ ∈ R≥0 s.t. v + δ |= (XF ≤ 0)}

278 S. Akshay et al.

Successor Computation. We can show that starting from a zone Z, the successors
after the above operations are also zones (see Theorem 29 in [2]). A guard g can
be seen as yet another zone and hence guard intersection is just an intersection
operation between two zones. Similarly, the change operation preserves zones.
Finally, as is usual with timed automata, zones are closed under the time elapse
operation.

Thus, for a transition t := (q, a, prog, q′) and a node (q, Z), we can define
the successor node (q′, Z ′), and we write (q, Z) t−→ (q′, Z ′), where Z ′ is the zone
computed by the following sequence of operations: Let prog = prog1; . . . ; progn,
where each progi is an atomic program, i.e., a guard or a change. Then we
define zones Z1, . . . , Zn+1 where, Z1 = Z, Z ′ = −−−→

Zn+1, and for each 1 ≤ i ≤ n,
Zi+1 = Zi ∩gi if progi is a guard gi, and Zi+1 = [Ri]Zi if progi is a change [Ri].

Now, we can lift zone graphs, simulations from TA to GTA and obtain a
symbolic reachability algorithm for GTA.

Definition 6 (GTA zone graph). Given a GTA A, its GTA zone graph,
denoted GZG(A), is defined as follows: Nodes are of the form (q, Z) where q is
a state and Z is a GTA zone. The initial node is (q0,

−→
Z0) where q0 is the initial

state and Z0 is the set of all valuations which satisfy the initial constraint g0:
Z0 is given by g0 ∧ (

XF ≤ 0
) ∧ (

XH ≥ 0
)
. For every node (q, Z) and every

transition t := (q, a, prog, q′) of A, there is a transition (q, Z) t−→ (q′, Z ′) in the
GTA zone graph. A node (q, Z) is accepting if q ∈ Qf and Z ∩ gf is non-empty,
i.e., there exists a valuation in Z satisfying the final constraint.

Similar to the case of zone graphs for timed automata and event zone graphs
for ECA, the GTA zone graph can be used to decide reachability for generalized
timed automata. A node (q, Z) is said to be reachable (in A) if there is a path
from the initial node (q0,

−→
Z0) to (q, Z) in GZG(A). Thus, reachability of a final

state in A reduces to checking reachability of an accepting node in GZG(A).
However, as in the case of zone graphs for timed automata, GZG(A) is also not
guaranteed to be finite. Hence, we need to compute a finite truncation of the
GTA zone graph, which is still sound and complete for reachability.

Definition 7 (Simulation on GTA zones and finiteness). Let � be a sim-
ulation relation on TS(A). For two GTA zones Z, Z ′, we say (q, Z) � (q, Z ′) if
for every v ∈ Z there exists v′ ∈ Z ′ such that (q, v) � (q, v′). The simulation �
is said to be finite if for every sequence (q, Z1), (q, Z2), . . . of reachable nodes,
there exists j > i such that (q, Zj) � (q, Zi).

Now, the reachability algorithm, as in TA, enumerates the nodes of the GTA
zone graph and uses the simulation �A from Theorem 5 to truncate nodes that
are smaller with respect to the simulation. In Sect. 7, we will show that �A is
finite when A is safe, which implies that the reachability algorithm terminates.
But before that we discuss the issue of implementability.

A Unified Model for Real-Time Systems 279

6 Computing with GTA Zones Using Distance Graphs

To implement the reachability algorithm described above, we will view zones as
distance graphs, as is usually done in the literature [12].

Recall the notion of weights C = {(�, c) | c ∈ R and � ∈ {≤, <}. An order
relation < between weights is defined as (�, c) < (�′, c′) when either (1) c < c′,
or (2) c = c′ and � is < while �′ is ≤. Note that since (<, −∞) < (≤, −∞) < (�
, c) < (<, ∞) < (≤, ∞) for all c ∈ R, this relation is a total order and therefore
min of a finite set of weights is well defined. We also use the commutative and
associative sum operation on weights defined in [4]. If c, c′ ∈ R are finite, the
definition is as usual: (�, c) + (�′, c′) = (�′′, c + c′) where �′′ = ≤ if � = �′ = ≤
and �′′ = < otherwise. Infinite weights α, β from the list (<, +∞), (≤, −∞), (≤
, +∞), (<, −∞) are all ‘absorbants’ wrt. weaker weights: α + β = β + α = α if α
is stronger than β (i.e., α is listed after β). Also, α + (�, c) = α if c ∈ R is finite.

A distance graph G is a weighted directed graph without self-loops, with
vertex set X ∪{0} = XF ∪XH ∪{0}, and edges labeled with weights from C \{(<
, −∞)}. We define its semantics [[G]] := {v ∈ V | v |= y−x � c for all edges x

� c−→
y in G}. The weight of edge x → y is denoted Gxy and we set Gxy = (≤, ∞) if
there is no edge x → y. The weight of a path is the sum of the weights of its
edges. A cycle in G is said to be negative if its weight is strictly less than (≤, 0).

In classical timed automata, the significance of distance graphs stems from
the observation that a distance graph has no negative cycles iff its semantics is
non-empty. This property does not immediately hold for distance graphs over
the extended algebra [4, Section 4.2] However, we can convert a distance graph
G (in time polynomial in number of clocks) into a standard form where this
characterization continues to hold. First, we set G

′
0x = min(G0x, (≤, 0)) for x ∈

XF and G
′
x0 = min(Gx0, (≤, 0)) for x ∈ XH . Moreover, if x ∈ XF then we

set G
′
x0 = min(Gx0, (<, ∞)) if Gxy 	= (≤, ∞) for some y 	= x, otherwise we

keep G
′
x0 = Gx0. Similarly, if y ∈ XH then we set G

′
0y = min(G0y, (<, ∞))

if Gxy 	= (≤, ∞) for some x 	= y, otherwise we keep G
′
0y = G0y. Finally, for

x, y ∈ X with x 	= y we set G
′
xy = Gxy. The graph G

′ constructed above is
called the standardization of G, it is equivalent to G (i.e., [[G′]] = [[G]]) and it
has a negative cycle iff its semantics [[G′]] is empty [4].

Now, suppose G′ (in standard form) has no negative cycles, then we construct
G

′′ by replacing the weight of an edge x → y by the minimum of the weights of
the paths from x to y in G

′. Such a G
′′ is called the normalization of G′ and has

several useful properties.
Let Z be a nonempty zone. Writing the constraints in Z as a distance graph,

followed by standardizing and normalizing it, results in its canonical distance
graph G(Z): [[G(Z)]] = Z and G(Z) is minimal among the standard graphs G
with [[G]] = Z. We denote by Zxy the weight of the edge x → y in G(Z).

[3] contains the algorithms for the zone operations when there are no diagonal
constraints. Successor computation can be done in O(|X|2 · |g|) and the simula-
tion in O(|X|2). Incorporating intersection with diagonal constraints requires an
additional standardization step since diagonal constraints may break this prop-
erty. A detailed explanation of the successor computation of zones is provided in

280 S. Akshay et al.

[2]. For the simulation, the algorithm from [26] is used. However, in the presence
of diagonal constraints, the simulation check becomes NP-complete in general,
and makes use of heuristics that allows for a faster check in practice. What
remains is to show that �A is a finite simulation for XD-safe GTA.

7 Finiteness of the Simulation Relation

In this section, we show that the simulation relation �A proposed in Sect. 5 is
finite for safe GTA, which proves termination of the symbolic enumeration-based
reachability algorithm. We do this in two parts: first, we show that the zones that
are reached during the enumeration satisfy some invariants, in particular, only
finitely many values occur in constraints among future clocks. This is however
not necessarily true for history clocks. There the simulation comes into play.
In the second part of the proof, we combine the invariants with an equivalence
relation to show finiteness of the simulation. Below, we sketch these arguments
and provide intuition leaving formal details to [2] due to lack of space.

Throughout this section, we fix an XD-safe GTA A. Let M = max{|c| | c ∈
Z is used in some constraint of A}, called the maximal constant of A. We say
that a zone Z is reachable if there is some reachable node (q, Z) in GZG(A).

Part 1: Invariants on zones. We start by showing an important property
of reachable zones: closure under valuations that agree on the value of history
clocks, and satisfy the same set of safe constraints involving non-history clocks.

We say that a constraint x − y � c is M -bounded if either c ∈ R is such that
|c| ≤ M or c ∈ {−∞; +∞}. It is XD-safe if x, y ∈ XF implies x, y ∈ XD. We say
that it is (XD, M)-safe if it is both M -bounded and XD-safe.

Lemma 8. Let v, v′ ∈ V be such that v′↓XH
= v↓XH

and, for all (XD, M)-safe
constraints y − x � c with x, y ∈ XF ∪ {0}, we have v′ |= y − x � c if and only if
v |= y − x � c. Let Z be a reachable zone. Then, v ∈ Z if and only if v′ ∈ Z.

The proof (given in [2]) works by establishing that the property is true in the
initial zone, and showing that it is invariant under the zone operations used to
compute GZG(A). This proof crucially uses the fact that A is XD-safe. For the
case of releasing a clock x ∈ XF \ XD, we use the fact that a diagonal constraint
involving x may not use another future clock. For the case of releasing a clock
x ∈ XD, we use the fact that the value of the clock must be 0 or −∞ just before
the release. As a non-example, consider Fig. 3. Here, XD = {y, z} and M = 1.
After two iterations of a, the zone Z2 reached is x = 0 ∧ y = z = −2. Pick
v : x = 0, y = z = −2 and v′ : x = 0, y = z = −3. Notice that both of them
satisfy the same set of (XD, M)-safe constraints, but v ∈ Z2, v′ /∈ Z2. Indeed,
the automaton is not XD-safe since y and z are released arbitrarily.

From Lemma 8, we get the following corollary (with a more precise statement
and proof in [2]). Namely, if a reachable zone Z contains a valuation v in which
the difference between two future clocks x, y (including the zero clock) is finite
and large enough, then Z contains valuations where the difference between x
and y is any finite and large enough value.

A Unified Model for Real-Time Systems 281

Corollary 9. Let Z be a reachable zone and let v ∈ Z. Let n = max(1, |XD|).
For all x, y ∈ XF ∪ {0}, if −∞ < v(x) − v(y) < −nM then, for every α with
−∞ < α < −nM , we have a valuation v′ ∈ Z with v′(x) − v′(y) = α.

Notice that the property above does not hold if we simply take n = 1. For
instance, if we have two clocks x, z ∈ XD then, applying the (XD, M)-safe
program 〈[x, z]; z = −M ∧ x − z = −M〉 from V results in a zone Z where all
valuations v satisfy v(x) = −2M . So the property fails with n = 1, x and y = 0.
This is a noteworthy difference between models with and without diagonals.

Using Corollary 9, we can prove the main invariants satisfied by the zones
obtained during the enumeration. Essentially, the weights of edges involving
non-history clocks come from a finite set which depends on the number of future
clocks in XD and the maximum constant M of the automaton. This also induces
an invariant on the constraint between a history clock and a future clock.

Before stating the result, we first give two technical lemmas from [4] that we
use extensively in the proof.

Lemma 10 ([4]).

1. Let (�, c) be a weight and α ∈ R. Then,
– α � c iff (≤, α) ≤ (�, c) iff (≤, 0) ≤ (≤, −α) + (�, c),
– α 	� c iff (�, c) < (≤, α) iff (≤, −α) + (�, c) < (≤, 0) iff (≤, −α) + (�, c) ≤

(<, 0).
2. Let (�, c), (�′, c′), (�′′, c′′) be weights with (≤, 0) ≤ (�, c) + (�′, c′). Then, there

exists α ∈ R such that α � c and −α �′ c′. If in addition we have (�′′, c′′) <
(�, c) then there exists such an α with α 	�′′ c′′.

Lemma 11 ([4]). Let G = G(Z) for a non-empty GTA zone Z, and let x, y ∈
X ∪ {0} be a pair of distinct nodes and α ∈ R. There is a valuation v ∈ [[G]] with
v(y) − v(x) = α if and only if

1. (≤, α) ≤ Gxy and (≤, −α) ≤ Gyx, and
2. if x, y ∈ X and α ∈ R is finite then the weights Gx0,G0x,Gy0,G0y are all

different from (≤, −∞), and
3. if x, y ∈ X and α = −∞ then G0x 	= (≤, −∞) 	= Gy0.

Lemma 12. Let Z be a nonempty reachable zone. Let n = max(1, |XD|). Then,
the normalized distance graph G(Z) satisfies the following (†) conditions:

†1 For all x ∈ XF , y ∈ XH ∪ {0}, if Zxy is finite, then (≤, 0) ≤ Zx0 ≤ (≤, nM).
†2 For all x ∈ XF , if Z0x is finite, then (<, −nM) ≤ Z0x ≤ (≤, 0).
†3 For all x ∈ XH , y ∈ XF , if Z0y is finite, then Zx0 + (<, −nM) ≤ Zxy.
†4 For x, y ∈ XF , if Zxy is finite, then (<, −nM) ≤ Zxy ≤ (≤, nM).

Proof. We focus on †1, †2, leaving the more complicated cases to [2].

†1 First, we consider the case where y = 0. So we assume that (≤, 0) ≤ Zx0 <
(<, ∞) is finite. Towards a contradiction, suppose that (≤, nM) < Zx0 < (<
, ∞). Since Z is non-empty, we know that (≤, 0) ≤ Zx0 + Z0x. Then, using

282 S. Akshay et al.

Lemma 10, we can find α ∈ R such that (≤, α) ≤ Zx0, (≤, −α) ≤ Z0x, and
nM < α. Notice that α < ∞ since Zx0 < (<, ∞). Further, using Lemma 11,
we can get a valuation v ∈ Z such that 0−v(x) = α. Since nM < α < ∞, this
implies −∞ < v(x) < −nM . Let Zx0 = (�, c). We have nM < c < ∞. Using
Corollary 9, we can get a valuation v′ ∈ Z, such that −∞ < v′(x) < −c,
a contradiction as it violates the constraint 0 − x � c of Z. Next, assume
that Zxy < (<, ∞) for some y ∈ XH . Since Z is normal, we have Zx0 ≤
Zxy + Zy0 < (<, ∞) as Zxy < (<, ∞) and Zy0 ≤ (≤, 0). We now conclude
from the first case that (≤, 0) ≤ Zx0 ≤ (≤, nM).

†2 We have to show that either Z0x = (≤, −∞) or (<, −nM) ≤ Z0x ≤ (≤, 0).
Let Z0x = (�, c). Suppose (≤, −∞) < Z0x < (<, −nM). We have −∞ < c <
−nM . As before, we can find α such that (≤, α) ≤ Z0x, (≤, −α) ≤ Zx0 and
α 	= −∞. Then, by Lemma 11, we can find v ∈ Z with v(x) = α. We have
−∞ < v(x) � c < −nM . Now, using Corollary 9, we can get a valuation
v′ ∈ Z such that c < v′(x) < −nM , which leads to a contradiction as it
violates the constraint x − 0 � c in the zone.

��
Part 2. Equivalence and Finiteness. We introduce below an equivalence
relation ∼n

M of finite index on valuations, depending on n = max(1, |XD|) and
the maximal constant M , and show that, if G is a set of atomic M -bounded
integral constraints and if Z is a zone such that its canonical distance graph
G(Z) satisfies (†) conditions, then the downward closure ↓GZ = {v ∈ V | ∃v′ ∈
Z with v �G v′} is a union of ∼n

M equivalence classes.
First, we define ∼M on α, β ∈ R = R ∪ {−∞, ∞} by α ∼M β if (α � c ⇐⇒

β � c) for all (�, c) with � ∈ {<, ≤} and c ∈ {−∞, ∞} ∪ {d ∈ Z | |d| ≤ M}. In
particular, if α ∼M β then (α = −∞ ⇐⇒ β = −∞) and (α = ∞ ⇐⇒ β = ∞).

Next, for valuations v1, v2 ∈ V, we define v1 ∼n
M v2 by two conditions:

v1(x) ∼nM v2(x) and v1(x) − v1(y) ∼(n+1)M v2(x) − v2(y) for all clocks x, y ∈
X. Notice that we use (n + 1)M for differences of values. Clearly, ∼n

M is an
equivalence relation of finite index on valuations. Using this, we can show that
the zones that are reachable in a safe GTA are unions of ∼n

M -equivalence classes.

Lemma 13. Let G be a set of XD-safe M -bounded integral constraints which
contains both x ≤ 0 and 0 ≤ x for each future clock x ∈ XF . Let Z be a zone
with a canonical distance graph G(Z) satisfying the (†) conditions of Lemma 12.
Let v1, v2 ∈ V be valuations with v1 ∼n

M v2. Then, v1 ∈ ↓GZ iff v2 ∈ ↓GZ.

Finally, from Lemmas 12 and 13, we obtain our main theorem of the section.

Theorem 14. The simulation relation �A is finite if A is safe.

Proof. Let (q, Z0), (q, Z1), (q, Z2), . . . be an infinite sequence of reachable nodes
in the zone graph of A. By Lemma 12, for all i, the distance graph G(Zi) in
canonical form satisfies conditions (†).

The set G(q) contains only XD-safe and M -bounded integral constraints. Let
G be G(q) together with the constraints x ≤ 0 and 0 ≤ x for each future clock

A Unified Model for Real-Time Systems 283

Table 1. Experimental results obtained by running our prototype implementation and,
when possible, the standard reachability algorithm using G-simulation implemented in
Tchecker. Both implementations use a breadth-first search with simulation. For each
model, we give the parameters in parenthesis - for ToyECA, we explain the parame-
terization in [2], while for others, we report the number of concurrent processes. All
experiments were run on an Ubuntu machine with an Intel-i5 7th Generation processor
and 8 GB RAM, and timeout set to 60 s.

Sl.
No.

Models G-Sim GTA Reach

Visited
nodes

Stored
nodes

Time
in sec

Visited
nodes

Stored
nodes

Time
in sec

1 Dining Phi. (6) 5480 5480 4.911 5480 5480 6.410
2 FDDI (10) 10219 459 10.139 10219 459 16.797
3 Fischer (10) 447598 260998 29.1574 447598 260998 34.6517
4 ToyECA(10000, 4) 150049 49 4.22 3 3 0.0003
5 ToyECA(5000, 6) 315193 193 15.572 3 3 0.0006
6 ToyECA(1000, 100) TIMEOUT 3 3 0.877
7 ToyECA(50000, 120) TIMEOUT 3 3 1.52
8 Fire-alarm-pattern(5) _ 46 46 0.027
9 CSMACD-bounded(1) _ 34 26 0.0054
10 CSMACD-bounded(4) _ 4529 2068 2.597
11 ABP-prop1(1) _ 114 114 0.038
12 ABP-prop2(1) _ 168 168 0.026

x ∈ XF . From Lemma 13 we deduce that for all i, ↓GZi is a union of ∼n
M -classes.

Since ∼n
M is of finite index, there are only finitely many unions of ∼n

M -classes.
Therefore, we find i < j with ↓GZi = ↓GZj , which implies Zj �G Zi. Since
G(q) ⊆ G, this also implies Zj �G(q) Zi. ��

8 Experimental Evaluation

We have implemented a prototype that takes as input a GTA, as given in
Definition 1, and applies our reachability algorithm, in the open source tool
Tchecker [29]. To do so, we extend Tchecker to allow clocks to be declared
as one of normal, history, prophecy, or timer, and extend the syntax of edges
to allow arbitrary interleaving of guards and clock changes (reset/release). Our
tool, along with the benchmarks used in this paper, is available and can be
downloaded from https://github.com/EQuaVe/GTAReach. We present selected
results in Table 1, with further details in [2].

First, we consider timed automata models from standard benchmarks
[21,34,39]. Despite the overhead induced by our framework (e.g., maintaining
general programs on transitions), we are only slightly worse off wrt. running

https://github.com/EQuaVe/GTAReach

284 S. Akshay et al.

time than the standard algorithm, while visiting and storing the same number
of nodes. We illustrate this in rows 1–3 of Table 1 by providing a comparison of
our tool with the implementation of the state-of-the-art zone-based reachability
algorithm using G-simulation introduced in [24–26].

Next, we consider models belonging to the class of ECA without diagonal
constraints. We remark that ours is the first implementation of a reachability
algorithm that can operate on the whole class of ECA directly. We compare
against an implementation that first translates the ECA into a timed automa-
ton using the translation proposed in [10], and then runs the state-of-the-art
reachability algorithm of [24–26] on this timed automaton. From rows 4–7 of
Table 1, we observe significant improvements, both in terms of running time as
well as number of visited nodes and stored nodes w.r.t. the standard approach.

Finally, in Rows 8–12, we consider the unified model GTA. As already pointed
out, model-checking an event-clock specification ϕ over a timed automaton model
A can be reduced to the reachability on the product of the TA A and the ECA
representing ¬ϕ. In this spirit, our implementation allows the model to use any
combination of normal clocks, history clocks, prophecy clocks or timers and
moreover, permits diagonal guards between any of these clocks. To the best of
our knowledge, no existing tool allows all these features. We emphasize this by
the − in the G-Sim column of Table 1.

We model simple but useful properties using event-clocks, and check these
properties on some standard models from literature such as CSMACD [39],
Fire-alarm [35] and Alternating-bit-protocol(ABP) [33]. Note that for the bench-
mark Fire-alarm-pattern, the specification is modelled using an ECA with diag-
onals. As a consequence, the product automaton that we check reachability on
contains normal clocks and event-clocks. Here, we consider the following ECA
specification: no three a’s occur within k time units. The negation of this prop-
erty can be easily modeled by an ECA with two states and a transition on a with
the diagonal constraint ←−a −−→a ≤ k, where ←−a is the history clock recording time
since the previous occurrence of a, and −→a is a future clock predicting the time to
the next a occurrence. When reading an a, the quantity ←−a −−→a gives the distance
between the next and the previous occurrence. This language is used in [19] to
observe that ECA with diagonals are more expressive than ECA. Finally, we
remark that the model of ABP contains timers. A more detailed discussion of
the model and specifications in these benchmarks is provided in [2].

In conclusion, as can be seen from the experimental results in Table 1, we are
able to demonstrate the full power of our reachability algorithm for the unified
model of generalized timed automata.

9 Conclusion

The success of timed automata verification can safely be attributed to the
advances in the zone-based technology over the last three decades. In fact, [22],
the precursor to the seminal works [8,9], already laid the foundations for zones
by describing the Difference-Bounds-Matrices (DBM) data structure. Our goal

A Unified Model for Real-Time Systems 285

in this work has been to unify timing features defined in different timed models,
while at the same time retain the ability to use efficient state-of-the-art algo-
rithms for reachability. To do so, we have equipped the model with two kinds
of clocks, history and future, and modified the transitions to contain a program
that alternates between a guard and a change to the variables. For the algorith-
mic part, we have adapted the G-simulation framework to this powerful model.
The main challenge was to show finiteness of the simulation in this extended
setting. To aid the practical use of this generic model, we have developed a pro-
totype implementation that can answer reachability for GTA. We remark that
decidability for GTA comes via zones, and not through regions. In fact, since we
generalize event-clock automata, we do not have a finite region equivalence for
GTA [28].

We conclude with some interesting avenues for future work. An immediate
future work is to use generalized timed automata for model-checking timed spec-
ifications over real-time systems. Further, the complexity and expressivity of safe
GTA are natural intersting theoretical open questions, but we believe they are
not obvious. Both these questions are answered in the timed automata literature
using regions. However, we cannot have a region equivalence for our model, since
even for the subclass of ECA, it was shown that no finite bisimulation is possible.
In particular, it would be interesting to investigate if is possible to have a trans-
lation from safe GTA to timed automata. Note that even if such a translation
exists, it is likely to incur an exponential blowup since even the translation from
ECA to TA costs an exponential. Coming to the complexity of the reachability
problem for safe GTA, it is easy to see that our procedure runs in EXPSPACE,
as we have shown that each reachable zone is a union of equivalence classes of
a finite index (see Lemma 13). On the other hand, PSPACE-hardness is inher-
ited from timed automata [6,8]. Closing the complexity gap is open. We note
that even in timed automata, the precise complexity of the simulation based
reachability algorithm is difficult to analyze, but its selling point is that it works
well in practice. Finally, we would also like to investigate liveness verification for
GTA, in particular what future clocks bring us when we consider the setting of
ω-words.

References

1. Akshay, S., Bollig, B., Gastin, P.: Event clock message passing automata: a logical
characterization and an emptiness checking algorithm. Formal Methods Syst. Des.
42(3), 262–300 (2013)

2. Akshay, S., Gastin, P., Govind, R., Joshi, A.R., Srivathsan, B.: A unified
model for real-time systems: Symbolic techniques and implementation. CoRR
abs/2305.17824 (2023)

3. Akshay, S., Gastin, P., Govind, R., Srivathsan, B.: Simulations for event-clock
automata. In: CONCUR. LIPIcs, vol. 243, pp. 13:1–13:18 (2022)

4. Akshay, S., Gastin, P., Govind, R., Srivathsan, B.: Simulations for event-clock
automata. CoRR abs/2207.02633 (2022)

286 S. Akshay et al.

5. Akshay, S., Gastin, P., Prakash, K.R.: Fast zone-based algorithms for reachability
in pushdown timed automata. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS,
vol. 12759, pp. 619–642. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-81685-8_30

6. Alur, R.: Techniques for automatic verification of real-time systems. Ph.D. thesis,
Stanford University (1991)

7. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In: Hybrid
Systems, pp. 209–229 (1992)

8. Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M.S.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990).
https://doi.org/10.1007/BFb0032042

9. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

10. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class
of timed automata. Theor. Comput. Sci. 211(1–2), 253–273 (1999)

11. de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G.: Real-Time: Theory
in Practice: REX Workshop, Mook, The Netherlands. Proceedings, vol. 600 (1992)

12. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3

13. Bernstein, A.J., Jr., P.K.H.: Proving real-time properties of programs with tempo-
ral logic. In: SOSP, pp. 1–11. ACM (1981)

14. Bouyer, P.: Forward analysis of updatable timed automata. Formal Methods Syst.
Des. 24(3), 281–320 (2004)

15. Bouyer, P., Chevalier, F.: On conciseness of extensions of timed automata. J.
Autom. Lang. Comb. 10(4), 393–405 (2005)

16. Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted
timed automata. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779,
pp. 513–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-
4_28

17. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor.
Comput. Sci. 321(2–3), 291–345 (2004)

18. Bouyer, P., Gastin, P., Herbreteau, F., Sankur, O., Srivathsan, B.: Zone-based
verification of timed automata: Extrapolations, simulations and what next? In:
FORMATS. LNCS, vol. 13465, pp. 16–42. Springer (2022). https://doi.org/10.
1007/978-3-031-15839-1_2

19. Bozzelli, L., Montanari, A., Peron, A.: Taming the complexity of timeline-based
planning over dense temporal domains. In: FSTTCS. LIPIcs, vol. 150, pp. 34:1–
34:14 (2019)

20. Bozzelli, L., Montanari, A., Peron, A.: Complexity issues for timeline-based plan-
ning over dense time under future and minimal semantics. Theor. Comput. Sci.
901, 87–113 (2022)

21. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool Kronos. In: Alur, R., Hen-
zinger, T.A., Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0020947

22. Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems.
In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52148-8_17

https://doi.org/10.1007/978-3-030-81685-8_30
https://doi.org/10.1007/978-3-030-81685-8_30
https://doi.org/10.1007/BFb0032042
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1007/978-3-031-15839-1_2
https://doi.org/10.1007/978-3-031-15839-1_2
https://doi.org/10.1007/BFb0020947
https://doi.org/10.1007/3-540-52148-8_17

A Unified Model for Real-Time Systems 287

23. D’Souza, D., Tabareau, N.: On timed automata with input-determined guards. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
68–83. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_7

24. Gastin, P., Mukherjee, S., Srivathsan, B.: Reachability in timed automata with
diagonal constraints. In: CONCUR. LIPIcs, vol. 118, pp. 28:1–28:17 (2018)

25. Gastin, P., Mukherjee, S., Srivathsan, B.: Fast algorithms for handling diagonal
constraints in timed automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS,
vol. 11561, pp. 41–59. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4_3

26. Gastin, P., Mukherjee, S., Srivathsan, B.: Reachability for updatable timed
automata made faster and more effective. In: FSTTCS. LIPIcs, vol. 182, pp. 47:1–
47:17 (2020)

27. Geeraerts, G., Raskin, J.-F., Sznajder, N.: Event clock automata: from theory
to practice. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol.
6919, pp. 209–224. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24310-3_15

28. Geeraerts, G., Raskin, J.-F., Sznajder, N.: On regions and zones for event-clock
automata. Formal Methods Syst Design 45(3), 330–380 (2014). https://doi.org/
10.1007/s10703-014-0212-1

29. Herbreteau, F., Point, G.: TChecker. https://github.com/fredher/tchecker (v02 -
April 2019)

30. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC ’99) (1999)
31. Jonsson, B., Vaandrager, F.: Learning mealy machines with timers. Tech. rep.

(2018). https://sws.cs.ru.nl/publications/papers/fvaan/MMT/
32. Koymans, R., Vytopil, J., de Roever, W.P.: Real-time programming and asyn-

chronous message passing. In: PODC, pp. 187–197. ACM (1983)
33. Kurose, J.F., Ross, K.W.: Computer networking - a top-down approach featuring

the internet. Addison-Wesley-Longman (2001)
34. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock

explosion problem of timed automata. Theor. Comput. Sci. 345(1), 27–59 (2005)
35. Muñiz, M., Westphal, B., Podelski, A.: Timed automata with disjoint activity. In:

Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 188–203.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33365-1_14

36. Raskin, J., Schobbens, P.: The logic of event clocks - decidability, complexity and
expressiveness. J. Autom. Lang. Comb. 4(3), 247–282 (1999)

37. Sorea, M.: Tempo: A model checker for event-recording automata. Tech. rep., In:
Proceedings of RT-Tools’01 (2001)

38. Srivathsan, B.: Reachability in timed automata. ACM SIGLOG News 9(3), 6–28
(2022)

39. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-
lations. Formal Methods Syst. Des. 18(1), 25–68 (2001)

https://doi.org/10.1007/978-3-540-30206-3_7
https://doi.org/10.1007/978-3-030-25540-4_3
https://doi.org/10.1007/978-3-030-25540-4_3
https://doi.org/10.1007/978-3-642-24310-3_15
https://doi.org/10.1007/978-3-642-24310-3_15
https://doi.org/10.1007/s10703-014-0212-1
https://doi.org/10.1007/s10703-014-0212-1
https://github.com/fredher/tchecker
https://sws.cs.ru.nl/publications/papers/fvaan/MMT/
https://doi.org/10.1007/978-3-642-33365-1_14

288 S. Akshay et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	A Unified Model for Real-Time Systems: Symbolic Techniques and Implementation
	1 Introduction
	2 Generalized timed automata
	3 Expressivity of GTA and Examples
	4 The Reachability Problem for GTA
	5 Symbolic Enumeration
	6 Computing with GTA Zones Using Distance Graphs
	7 Finiteness of the Simulation Relation
	8 Experimental Evaluation
	9 Conclusion
	References

