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Preface

It was our privilege to serve as the program chairs for CAV 2023, the 35th International
Conference on Computer-Aided Verification. CAV 2023 was held during July 19–22,
2023 and the pre-conference workshops were held during July 17–18, 2023. CAV 2023
was an in-person event, in Paris, France.

CAV is an annual conference dedicated to the advancement of the theory and practice
of computer-aided formal analysis methods for hardware and software systems. The
primary focus of CAV is to extend the frontiers of verification techniques by expanding
to new domains such as security, quantum computing, and machine learning. This puts
CAVat the cutting edgeof formalmethods research, and this year’s program is a reflection
of this commitment.

CAV 2023 received a large number of submissions (261). We accepted 15 tool
papers, 3 case-study papers, and 49 regular papers, which amounts to an acceptance
rate of roughly 26%. The accepted papers cover a wide spectrum of topics, from theo-
retical results to applications of formal methods. These papers apply or extend formal
methods to a wide range of domains such as concurrency, machine learning and neu-
ral networks, quantum systems, as well as hybrid and stochastic systems. The program
featured keynote talks by Ruzica Piskac (Yale University), Sumit Gulwani (Microsoft),
and Caroline Trippel (Stanford University). In addition to the contributed talks, CAV
also hosted the CAV Award ceremony, and a report from the Synthesis Competition
(SYNTCOMP) chairs.

In addition to themain conference,CAV2023hosted the followingworkshops:Meet-
ing on String Constraints and Applications (MOSCA), Verification Witnesses and Their
Validation (VeWit), Verification of Probabilistic Programs (VeriProP), Open Problems
in Learning and Verification of Neural Networks (WOLVERINE), Deep Learning-aided
Verification (DAV), Hyperproperties: Advances in Theory and Practice (HYPER), Syn-
thesis (SYNT), FormalMethods forML-Enabled Autonomous Systems (FoMLAS), and
VerificationMentoringWorkshop (VMW). CAV 2023 also hosted a workshop dedicated
to Thomas A. Henzinger for this 60th birthday.

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2023 consisted of 76 members—a com-
mittee of this size ensures that each member has to review only a reasonable number of
papers in the allotted time. In all, the committee members wrote over 730 reviews while
investing significant effort to maintain and ensure the high quality of the conference pro-
gram.We are grateful to the CAV 2023 Program Committee for their outstanding efforts
in evaluating the submissions and making sure that each paper got a fair chance. Like
recent years in CAV, we made artifact evaluation mandatory for tool paper submissions,
but optional for the rest of the accepted papers. This year we received 48 artifact submis-
sions, out of which 47 submissions received at least one badge. The Artifact Evaluation
Committee consisted of 119 members who put in significant effort to evaluate each arti-
fact. The goal of this process was to provide constructive feedback to tool developers and
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help make the research published in CAV more reproducible. We are also very grateful
to the Artifact Evaluation Committee for their hard work and dedication in evaluating
the submitted artifacts.

CAV 2023 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2023 a success. We would like to thank Alessandro Cimatti, Isil Dillig, Javier Esparza,
Azadeh Farzan, Joost-Pieter Katoen and Corina Pasareanu for serving as area chairs.
We also thank Bernhard Kragl and Daniel Dietsch for chairing the Artifact Evaluation
Committee.We also thankMohamedFaouziAtig for chairing theworkshop organization
as well as leading publicity efforts, Eric Koskinen as the fellowship chair, Sebastian
Bardin and Ruzica Piskac as sponsorship chairs, and Srinidhi Nagendra as the website
chair. Srinidhi, along with Enrique Román Calvo, helped prepare the proceedings. We
also thankAnkushDesai, EricKoskinen, BurcuKulahciogluOzkan,Marijana Lazic, and
Matteo Sammartino for chairing the mentoring workshop. Last but not least, we would
like to thank the members of the CAV Steering Committee (Kenneth McMillan, Aarti
Gupta, Orna Grumberg, and Daniel Kroening) for helping us with several important
aspects of organizing CAV 2023.

We hope that you will find the proceedings of CAV 2023 scientifically interesting
and thought-provoking!

June 2023 Constantin Enea
Akash Lal



Organization

Conference Co-chairs

Constantin Enea LIX, École Polytechnique, France
Akash Lal Microsoft Research, India

Artifact Co-chairs

Bernhard Kragl Amazon Web Services, USA
Daniel Dietsch Qt Group/University of Freiburg, Germany

Workshop Chair

Mohamed Faouzi Atig Uppsala University, Sweden

Verification Mentoring Workshop Organizing Committee

Ankush Densai AWS CA, USA
Eric Koskinen Stevens Institute of Technology, USA
Burcu Kulahcioglu Ozkan TU Delft, The Netherlands
Marijana Lazic TU Munich, Germany
Matteo Sammartino Royal Holloway, University of London, UK

Fellowship Chair

Eric Koskinen Stevens Institute of Technology, USA

Website Chair

Srinidhi Nagendra Université Paris Cité, CNRS, IRIF, France and
Chennai Mathematical Institute, India



viii Organization

Sponsorship Co-chairs

Sebastian Bardin CEA LIST, France
Ruzica Piskac Yale University, USA

Proceedings Chairs

Srinidhi Nagendra Université Paris Cité, CNRS, IRIF, France and
Chennai Mathematical Institute, India

Enrique Román Calvo Université Paris Cité, CNRS, IRIF, France

Program Committee

Aarti Gupta Princeton University, USA
Abhishek Bichhawat IIT Gandhinagar, India
Aditya V. Thakur University of California, USA
Ahmed Bouajjani University of Paris, France
Aina Niemetz Stanford University, USA
Akash Lal Microsoft Research, India
Alan J. Hu University of British Columbia, Canada
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Alexander Nadel Intel, Israel
Anastasia Mavridou KBR, NASA Ames Research Center, USA
Andreas Podelski University of Freiburg, Germany
Ankush Desai Amazon Web Services
Anna Slobodova Intel, USA
Anthony Widjaja Lin TU Kaiserslautern and Max-Planck Institute for

Software Systems, Germany
Arie Gurfinkel University of Waterloo, Canada
Arjun Radhakrishna Microsoft, India
Aws Albarghouthi University of Wisconsin-Madison, USA
Azadeh Farzan University of Toronto, Canada
Bernd Finkbeiner CISPA Helmholtz Center for Information

Security, Germany
Bettina Koenighofer Graz University of Technology, Austria
Bor-Yuh Evan Chang University of Colorado Boulder and Amazon,

USA
Burcu Kulahcioglu Ozkan Delft University of Technology, The Netherlands
Caterina Urban Inria and École Normale Supérieure, France
Cezara Dragoi Amazon Web Services, USA



Organization ix

Christoph Matheja Technical University of Denmark, Denmark
Claudia Cauli Amazon Web Services, UK
Constantin Enea LIX, CNRS, Ecole Polytechnique, France
Corina Pasareanu CMU, USA
Cristina David University of Bristol, UK
Dirk Beyer LMU Munich, Germany
Elizabeth Polgreen University of Edinburgh, UK
Elvira Albert Complutense University, Spain
Eunsuk Kang Carnegie Mellon University, USA
Gennaro Parlato University of Molise, Italy
Hossein Hojjat Tehran University and Tehran Institute of

Advanced Studies, Iran
Ichiro Hasuo National Institute of Informatics, Japan
Isil Dillig University of Texas, Austin, USA
Javier Esparza Technische Universität München, Germany
Joost-Pieter Katoen RWTH-Aachen University, Germany
Juneyoung Lee AWS, USA
Jyotirmoy Deshmukh University of Southern California, USA
Kenneth L. McMillan University of Texas at Austin, USA
Kristin Yvonne Rozier Iowa State University, USA
Kshitij Bansal Google, USA
Kuldeep Meel National University of Singapore, Singapore
Kyungmin Bae POSTECH, South Korea
Marcell Vazquez-Chanlatte Alliance Innovation Lab

(Nissan-Renault-Mitsubishi), USA
Marieke Huisman University of Twente, The Netherlands
Markus Rabe Google, USA
Marta Kwiatkowska University of Oxford, UK
Matthias Heizmann University of Freiburg, Germany
Michael Emmi AWS, USA
Mihaela Sighireanu University Paris Saclay, ENS Paris-Saclay and

CNRS, France
Mohamed Faouzi Atig Uppsala University, Sweden
Naijun Zhan Institute of Software, Chinese Academy of

Sciences, China
Nikolaj Bjorner Microsoft Research, USA
Nina Narodytska VMware Research, USA
Pavithra Prabhakar Kansas State University, USA
Pierre Ganty IMDEA Software Institute, Spain
Rupak Majumdar Max Planck Institute for Software Systems,

Germany
Ruzica Piskac Yale University, USA



x Organization

Sebastian Junges Radboud University, The Netherlands
Sébastien Bardin CEA, LIST, Université Paris Saclay, France
Serdar Tasiran Amazon, USA
Sharon Shoham Tel Aviv University, Israel
Shaz Qadeer Meta, USA
Shuvendu Lahiri Microsoft Research, USA
Subhajit Roy Indian Institute of Technology, Kanpur, India
Suguman Bansal Georgia Institute of Technology, USA
Swarat Chaudhuri UT Austin, USA
Sylvie Putot École Polytechnique, France
Thomas Wahl GrammaTech, USA
Tomáš Vojnar Brno University of Technology, FIT, Czech

Republic
Yakir Vizel Technion - Israel Institute of Technology, Israel
Yu-Fang Chen Academia Sinica, Taiwan
Zhilin Wu State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of
Sciences, China

Artifact Evaluation Committee

Alejandro Hernández-Cerezo Complutense University of Madrid, Spain
Alvin George IISc Bangalore, India
Aman Goel Amazon Web Services, USA
Amit Samanta University of Utah, USA
Anan Kabaha Technion, Israel
Andres Noetzli Cubist, Inc., USA
Anna Becchi Fondazione Bruno Kessler, Italy
Arnab Sharma University of Oldenburg, Germany
Avraham Raviv Bar Ilan University, Israel
Ayrat Khalimov TU Clausthal, Germany
Baoluo Meng General Electric Research, USA
Benjamin Jones Amazon Web Services, USA
Bohua Zhan Institute of Software, Chinese Academy of

Sciences, China
Cayden Codel Carnegie Mellon University, USA
Charles Babu M. CEA LIST, France
Chungha Sung Amazon Web Services, USA
Clara Rodriguez-Núñez Universidad Complutense de Madrid, Spain
Cyrus Liu Stevens Institute of Technology, USA
Daniel Hausmann University of Gothenburg, Sweden



Organization xi

Daniela Kaufmann TU Wien, Austria
Debasmita Lohar MPI SWS, Germany
Deivid Vale Radboud University Nijmegen, Netherlands
Denis Mazzucato Inria, France
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Privacy-Preserving Automated Reasoning

Ruzica Piskac

Yale University, USA

Formalmethods offer a vast collectionof techniques to analyze and ensure the correctness
of software and hardware systems against a given specification. In fact, modern formal
methods tools scale to industrial applications. Despite this significant success, privacy
requirements are not considered in the design of these tools. For example, when using
automated reasoning tools, the implicit requirement is that the formula to be proved is
public. This raises an issue if the formula itself reveals information that is supposed to
remain private to one party. To overcome this issue, we propose the concept of privacy-
preserving automated reasoning.

We first consider the problem of privacy-preserving Boolean satisfiability [1]. In this
problem, two mutually distrustful parties each provides a Boolean formula. The goal
is to decide whether their conjunction is satisfiable without revealing either formula
to the other party. We present an algorithm to solve this problem. Our algorithm is an
oblivious variant of the classic DPLL algorithm and can be integrated with existing
secure two-party computation techniques.

We next turn to the problem where one party wants to prove to another party that
their program satisfies a given specification without revealing the program. We split this
problem into two subproblems: (1) proving that the program can be translated into a
propositional formula without revealing either the program or the formula; (2) prov-
ing that the obtained formula entails the specification. To solve the latter subproblem,
we developed a zero-knowledge protocol for proving the unsatisfiability of formulas
in propositional logic [2] (ZKUNSAT). Our protocol is based on a resolution proof of
unsatisfiability. We encode verification of the resolution proof using polynomial equiv-
alence checking, which enables us to use fast zero-knowledge protocols for polynomial
satisfiability.

Finally, we will outline future directions towards extending ZKUNSAT to first-order
logic modulto theories (SMT) and translating programs to formulas in zero-knowledge
to realize fully automated privacy-preserving program verification.

References

1. Luo, N., Judson, S., Antonopoulos, T., Piskac, R., Wang, X.: ppSAT: towards two-party pri-
vate SAT solving. In: Butler, K.R.B., Thomas, K., (eds.) 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, 10–12 August 2022, pp. 2983–3000. USENIX
Association (2022)

2. Luo, N., Antonopoulos, T., Harris, W.R., Piskac, R., Tromer, E., Wang, X.: Proving UNSAT
in zero knowledge. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) Proceedings of the
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2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los
Angeles, CA, USA, 7–11 November 2022, pp. 2203–2217. ACM (2022)



Enhancing Programming Experiences Using AI:
Leveraging LLMs as Analogical Reasoning Engines

and Beyond

Sumit Gulwani

Microsoft, USA

AI can significantly improve programming experiences for a diverse range of users: from pro-
fessional developers and data scientists (proficient programmers) who need help in software
engineering and data wrangling, to spreadsheet users (low-code programmers) needing help in
authoring formulas, and students (novice programmers) seeking hints when tackling program-
ming homework. To effectively communicate their needs to AI, users can express their intent
explicitly through input-output examples or natural language specifications, or implicitly by
presenting bugs or recent code edits for AI to analyze and suggest improvements.

Analogical reasoning is at the heart of problem solving as it allows to make sense of new
information and transfer knowledge fromone domain to another. In this talk, Iwill demonstrate
that analogical reasoning is a fundamental emergent capability of Large Language Models
(LLMs) and can be utilized to enhance various types of programming experiences.

However, there is significant room for innovation in building robust experiences tailored
to specific task domains. I will discuss how various methods from symbolic AI (particularly
programming-by-examples-or-analogies) such as search-and-rank, failure-guided refinement,
and neuro-symbolic cooperation, can help fill this gap. This comes in three forms: (a) Prompt
engineering that involves synthesizing specification-rich, context-aware prompts from vari-
ous sources, sometimes using the LLM itself, to elicit optimal output. (b) Post-processing
techniques that guide, rank, and validate the LLM’s output, occasionally employing the LLM
for these purposes. (c) Multi-turn workflows that involve multiple LLM invocations, allowing
the model more time and iterations to optimize results. I will illustrate these concepts using
various capabilities in Excel, PowerQuery, and Visual Studio.



Verified Software Security Down to Gates

Caroline Trippel

Stanford University, USA

Hardware-software (HW-SW) contracts are critical for high-assurance computer systems
design and an enabler for software design/analysis tools that find and repair hardware-related
bugs in programs. E.g., memory consistency models define what values shared memory loads
can return in a parallel program. Emerging security contracts define what program data is sus-
ceptible to leakage via hardware side-channels and what speculative control- and data-flow
is possible at runtime. However, these contracts and the analyses they support are useless if
we cannot guarantee microarchitectural compliance, which is a “grand challenge.” Notably,
some contracts are still evolving (e.g., security contracts), making hardware compliance a
moving target. Even for mature contracts, comprehensively verifying that a complex microar-
chitecture implements some abstract contract is a time-consuming endeavor involving teams
of engineers, which typically requires resorting to incomplete proofs.

Our work takes a radically different approach to the challenge above by synthesizing HW-
SW contracts from advanced (i.e., industry-scale/complexity) processor implementations. In
this talk, I will present our work on: synthesizing security contracts from processor specifi-
cations written in Verilog; designing compiler approaches parameterized by these contracts
that can find and repair hardware-related vulnerabilities in programs; and updating hardware
microarchitectures to support scalable verification and efficient security-hardened programs.
I will conclude by outlining remaining challenges in attaining the vision of verified software
security down to gates.
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Abstract. We present an algorithm to learn a deterministic timed
automaton (DTA) via membership and equivalence queries. Our algo-
rithm is an extension of the L* algorithm with a Myhill-Nerode style
characterization of recognizable timed languages, which is the class of
timed languages recognizable by DTAs. We first characterize the recog-
nizable timed languages with a Nerode-style congruence. Using it, we
give an algorithm with a smart teacher answering symbolic membership
queries in addition to membership and equivalence queries. With a sym-
bolic membership query, one can ask the membership of a certain set of
timed words at one time. We prove that for any recognizable timed lan-
guage, our learning algorithm returns a DTA recognizing it. We show how
to answer a symbolic membership query with finitely many membership
queries. We also show that our learning algorithm requires a polyno-
mial number of queries with a smart teacher and an exponential number
of queries with a normal teacher. We applied our algorithm to various
benchmarks and confirmed its effectiveness with a normal teacher.

Keywords: timed automata · active automata learning · recognizable
timed languages · L* algorithm · observation table

1 Introduction

Active automata learning is a class of methods to infer an automaton recogniz-
ing an unknown target language Ltgt ⊆ Σ∗ through finitely many queries to a
teacher. The L* algorithm [8], the best-known active DFA learning algorithm,
infers the minimum DFA recognizing Ltgt using membership and equivalence
queries. In a membership query, the learner asks if a word w ∈ Σ∗ is in the
target language Ltgt, which is used to obtain enough information to construct
a hypothesis DFA Ahyp. Using an equivalence query, the learner checks if the
hypothesis Ahyp recognizes the target language Ltgt. If L(Ahyp) �= Ltgt, the
teacher returns a counterexample cex ∈ Ltgt�L(Ahyp) differentiating the target
language and the current hypothesis. The learner uses cex to update Ahyp to
classify cex correctly. Such a learning algorithm has been combined with formal
verification, e. g., for testing [22,24,26,28] and controller synthesis [31].
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13964, pp. 3–26, 2023.
https://doi.org/10.1007/978-3-031-37706-8_1

https://doi.org/10.5281/zenodo.7875383
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37706-8_1&domain=pdf
http://orcid.org/0000-0001-9360-7490
https://doi.org/10.1007/978-3-031-37706-8_1


4 M. Waga

l0 l1

l2 l3

a

b a
b

a

b

a

b

(a) A DFA A

ε a
ε � ⊥
a ⊥ ⊥
...

aa ⊥ ⊥

add b to S−−−−−−−→

ε a b
ε � ⊥ ⊥
a ⊥ ⊥ �
...

aa ⊥ ⊥ ⊥

(b) Intermediate observation tables for
learning A. a and aa are deemed equiv-
alent with extensions S = {ε, a} but
distinguished with S = {ε, a, b}.

l0 l1

a, c ≥ 1/c := 0

a, c < 1

a, c ≤ 1

a, c > 1

(c) A DTA A′ with one
clock variable c

{τ ′
0 | τ ′

0 = 0} {τ ′
0a | τ ′

0 ∈ (0, 1)}
{τ0 | τ0 = 0} � �

{τ0 | τ0 ∈ (0, 1)} � τ0 + τ ′
0 ∈ (0, 1)

...

{τ0aτ1 | τ0 ∈ (0, 1), τ1 ∈ (0, 1), τ0 + τ1 ∈ (0, 1)}(= p1) � τ0 + τ1 + τ ′
0 ∈ (0, 1)

...

{τ0aτ1aτ2 | τ0 ∈ (1, 2), τ1 ∈ (0, 1), τ2 ∈ (0, 1), τ1 + τ2 ∈ (0, 1)}(= p2) � τ1 + τ2 + τ ′
0 ∈ (0, 1)

...

(d) Timed observation table for learning A′. Each cell is indexed by a pair (p, s) ∈ P ×S
of elementary languages. The cell indexed by (p, s) shows a constraint Λ such that
w ∈ p · s satisfies w ∈ Ltgt if and only if Λ holds. Elementary languages p1 and p2 are
deemed equivalent with the equation τ1

0 + τ1
1 = τ2

1 + τ2
2 , where τ j

i represents τi in pj .

Fig. 1. Illustration of observation tables in the L* algorithm for DFA learning (Fig. 1b)
and our algorithm for DTA learning (Fig. 1d)

Most of the DFA learning algorithms rely on the characterization of regular
languages by Nerode’s congruence. For a language L, words p and p′ are equiva-
lent if for any extension s, p ·s ∈ L if and only if p′ ·s ∈ L. It is well known that if
L is regular, such an equivalence relation has finite classes, corresponding to the
locations of the minimum DFA recognizing L (known as Myhill-Nerode theorem;
see, e. g., [18]). Moreover, for any regular language L, there are finite extensions
S such that p and p′ are equivalent if and only if for any s ∈ S, p · s ∈ L if and
only if p′ · s ∈ L. Therefore, one can learn the minimum DFA by learning such
finite extensions S and the finite classes induced by Nerode’s congruence.

The L* algorithm learns the minimum DFA recognizing the target language
Ltgt using a 2-dimensional array called an observation table. Figure 1b illustrates
observation tables. The rows and columns of an observation table are indexed
with finite sets of words P and S, respectively. Each cell indexed by (p, s) ∈
P × S shows if p · s ∈ Ltgt. The column indices S are the current extensions
approximating Nerode’s congruence. The L* algorithm increases P and S until:
1) the equivalence relation defined by S converges to Nerode’s congruence and
2) P covers all the classes induced by the congruence. The equivalence between
p, p′ ∈ P under S can be checked by comparing the rows in the observation
table indexed with p and p′. For example, Fig. 1b shows that a and aa are
deemed equivalent with extensions S = {ε, a} but distinguished by adding b to
S. The refinement of P and S is driven by certain conditions to validate the DFA
construction and by addressing the counterexample obtained by an equivalence
query.
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Timed words are extensions of conventional words with real-valued dwell time
between events. Timed languages, sets of timed words, are widely used to formal-
ize real-time systems and their properties, e. g., for formal verification. Among
various formalisms representing timed languages, timed automata (TAs) [4] is
one of the widely used formalisms. A TA is an extension of an NFA with finitely
many clock variables to represent timing constraints. Figure 1c shows an exam-
ple.

Despite its practical relevance, learning algorithms for TAs are only available
for limited subclasses of TAs, e. g., real-time automata [6,7], event-recording
automata [15,16], event-recording automata with unobservable reset [17], and
one-clock deterministic TAs [5,30]. Timing constraints representable by these
classes are limited, e. g., by restricting the number of clock variables or by
restricting the edges where a clock variable can be reset. Such restriction sim-
plifies the inference of timing constraints in learning algorithms.

Contributions. In this paper, we propose an active learning algorithm for deter-
ministic TAs (DTAs). The languages recognizable by DTAs are called recogniz-
able timed languages [21]. Our strategy is as follows: first, we develop a Myhill-
Nerode style characterization of recognizable timed languages; then, we extend
the L* algorithm for recognizable timed languages using the similarity of the
Myhill-Nerode style characterization.

Due to the continuity of dwell time in timed words, it is hard to character-
ize recognizable timed languages by a Nerode-style congruence between timed
words. For example, for the DTA in Fig. 1c, for any τ, τ ′ ∈ [0, 1) satisfying τ < τ ′,
(1 − τ ′)a distinguishes τ and τ ′ because τ(1 − τ ′)a leads to l0 while τ(1 − τ)a
leads to l1. Therefore, such a congruence can make infinitely many classes.

Instead, we define a Nerode-style congruence between sets of timed words
called elementary languages [21]. An elementary language is a timed language
defined by a word with a conjunction of inequalities constraining the time dif-
ference between events. We also use an equality constraint, which we call, a
renaming equation to define the congruence. Intuitively, a renaming equation
bridges the time differences in an elementary language and the clock variables
in a TA. We note that there can be multiple renaming equations showing the
equivalence of two elementary languages.

Example 1. Let p1 and p2 be elementary languages p1 = {τ1
0 aτ1

1 | τ1
0 ∈

(0, 1), τ1
1 ∈ (0, 1), τ1

0 + τ1
1 ∈ (0, 1)} and p2 = {τ2

0 aτ2
1 aτ2

2 | τ2
0 ∈ (1, 2), τ2

1 ∈
(0, 1), τ2

2 ∈ (0, 1), τ2
1 + τ2

2 ∈ (0, 1)}. For the DTA in Fig. 1c, p1 and p2 are
equivalent with the renaming equation τ1

0 + τ1
1 = τ2

1 + τ2
2 because for any

w1 = τ1
0 aτ1

1 ∈ p1 and w2 = τ2
0 aτ2

1 aτ2
2 ∈ p2: 1) we reach l0 after reading either

of w1 and w2 and 2) the values of c after reading w1 and w2 are τ1
0 + τ1

1 and
τ2
1 + τ2

2 , respectively.

We characterize recognizable timed languages by the finiteness of the equiv-
alence classes defined by the above congruence. We also show that for any rec-
ognizable timed language, there is a finite set S of elementary languages such
that the equivalence of any prefixes can be checked by the extensions S.
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By using the above congruence, we extend the L* algorithm for DTAs. The
high-level idea is the same as the original L* algorithm: 1) the learner makes
membership queries to obtain enough information to construct a hypothesis DTA
Ahyp and 2) the learner makes an equivalence query to check if Ahyp recognizes
the target language. The largest difference is in the cells of an observation table.
Since the concatenation p·s of an index pair (p, s) ∈ P×S is not a timed word but
a set of timed words, its membership is not defined as a Boolean value. Instead,
we introduce the notion of symbolic membership and use it as the value of each
cell of the timed observation table. Intuitively, the symbolic membership is the
constraint representing the subset of p ·s included by Ltgt. Such a constraint can
be constructed by finitely many (non-symbolic) membership queries.

Example 2. Figure 1d illustrates a timed observation table. The equivalence
between p1, p2 ∈ P under S can be checked by comparing the cells in the rows
indexed with p1 and p2 with renaming equations. For the cells in rows indexed
by p1 and p2, their constraints are the same by replacing τ0 + τ1 with τ1 + τ2
and vice versa. Thus, p1 and p2 are equivalent with the current extensions S.

Once the learner obtains enough information, it constructs a DTA via the
monoid-based representation of recognizable timed languages [21]. We show that
for any recognizable timed language, our algorithm terminates and returns a
DTA recognizing it. We also show that the number of the necessary queries is
polynomial to the size of the equivalence class defined by the Nerode-style con-
gruence if symbolic membership queries are allowed and, otherwise, exponential
to it. Moreover, if symbolic membership queries are not allowed, the number of
the necessary queries is at most doubly exponential to the number of the clock
variable of a DTA recognizing the target language and singly exponential to the
number of locations of a DTA recognizing the target language. This worst-case
complexity is the same as the one-clock DTA learning algorithm in [30].

We implemented our DTA learning algorithm in a prototype library
LearnTA. Our experiment results show that it is efficient enough for some
benchmarks taken from practical applications, e. g., the FDDI protocol. This
suggests the practical relevance of our algorithm.

The following summarizes our contribution.

– We characterize recognizable timed languages by a Nerode-style congruence.
– Using the above characterization, we give an active DTA learning algorithm.
– Our experiment results suggest its practical relevance.

Related Work. Among various characterization of timed languages [4,10–13,21],
the characterization by recognizability [21] is closest to our Myhill-Nerode-style
characterization. Both of them use finite sets of elementary languages for char-
acterization. Their main difference is that [21] proposes a formalism to define a
timed language by relating prefixes by a morphism, whereas we propose a tech-
nical gadget to define an equivalence relation over timed words with respect to
suffixes using symbolic membership. This difference makes our definition suitable
for an L*-style algorithm, where the original L* algorithm is based on Nerode’s
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congruence, which defines an equivalence relation over words with respect to
suffixes using conventional membership.

As we have discussed so far, active TA learning [5,15–17,30] has been studied
mostly for limited subclasses of TAs, where the number of the clock variables or
the clock variables reset at each edge is fixed. In contrast, our algorithm infers
both of the above information. Another difference is in the technical strategy.
Most of the existing algorithms are related to the active learning of symbolic
automata [9,14], enhancing the languages with clock valuations. In contrast, we
take a more semantic approach via the Nerode-style congruence.

Another recent direction is to use a genetic algorithm to infer TAs in pas-
sive [27] or active [3] learning. This differs from our learning algorithm based on
a formal characterization of timed languages. Moreover, these algorithms may
not converge to the correct automaton due to a genetic algorithm.

2 Preliminaries

For a set X, its powerset is denoted by P(X). We denote the empty sequence
by ε. For sets X,Y , we denote their symmetric difference by X�Y = {x | x ∈
X ∧ x /∈ Y } ∪ {y | y ∈ Y ∧ y /∈ X}.

2.1 Timed Words and Timed Automata

Definition 3 (timed word). For a finite alphabet Σ, a timed word w is an
alternating sequence τ0a1τ1a2 . . . anτn of Σ and R≥0. The set of timed words over
Σ is denoted by T (Σ). A timed language L ⊆ T (Σ) is a set of timed words.

For timed words w = τ0a1τ1a2 . . . anτn and w′ = τ ′
0a

′
1τ

′
1a

′
2 . . . a′

n′τ ′
n′ , their

concatenation w · w′ is w · w′ = τ0a1τ1a2 . . . an(τn + τ ′
0)a

′
1τ

′
1a

′
2 . . . a′

n′τ ′
n′ . The

concatenation is naturally extended to timed languages: for a timed word w and
timed languages L,L′, we let w·L = {w·wL | wL ∈ L}, L·w = {wL ·w | wL ∈ L},
and L · L′ = {wL · wL′ | wL ∈ L, wL′ ∈ L′}. For timed words w and w′, w is a
prefix of w′ if there is a timed word w′′ satisfying w ·w′′ = w′. A timed language
L is prefix-closed if for any w ∈ L, L contains all the prefixes of w.

For a finite set C of clock variables, a clock valuation is a function ν ∈
(R≥0)C . We let 0C be the clock valuation satisfying 0C(c) = 0 for any c ∈ C.
For ν ∈ (R≥0)C and τ ∈ R≥0, we let ν + τ be the clock valuation satisfying
(ν + τ)(c) = ν(c) + τ for any c ∈ C. For ν ∈ (R≥0)C and ρ ⊆ C, we let ν[ρ := 0]
be the clock valuation satisfying (ν[ρ := 0])(x) = 0 for c ∈ ρ and (ν[ρ := 0])(c) =
ν(c) for c /∈ ρ. We let GC be the set of constraints defined by a finite conjunction
of inequalities c �� d, where c ∈ C, d ∈ N, and �� ∈ {>,≥,≤, <}. We let CC

be the set of constraints defined by a finite conjunction of inequalities c �� d or
c − c′ �� d, where c, c′ ∈ C, d ∈ N, and �� ∈ {>,≥,≤, <}. We denote

∧
∅ by �.

For ν ∈ (R≥0)C and ϕ ∈ CC ∪ GC , we denote ν |= ϕ if ν satisfies ϕ.
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Definition 4 (timed automaton). A timed automaton (TA) is a 7-tuple
(Σ,L, l0, C, I,Δ, F ), where: Σ is the finite alphabet, L is the finite set of loca-
tions, l0 ∈ L is the initial location, C is the finite set of clock variables,
I : L → CC is the invariant of each location, Δ ⊆ L×GC × (Σ ∪{ε})×P(C)×L
is the set of edges, and F ⊆ L is the accepting locations.

A TA is deterministic if 1) for any a ∈ Σ and (l, g, a, ρ, l′), (l, g′, a, ρ′, l′′) ∈ Δ,
g∧g′ is unsatisfiable, or 2) for any (l, g, ε, ρ, l′) ∈ Δ, g∧I(l) is at most a singleton.
Figure 1c shows a deterministic TA (DTA).

The semantics of a TA is defined by a timed transition system (TTS).

Definition 5 (semantics of TAs). For a TA A = (Σ,L, l0, C, I,Δ, F ), the
timed transition system (TTS) is a 4-tuple S = (Q, q0, QF ,→), where: Q =
L × (R≥0)C is the set of (concrete) states, q0 = (l0,0C) is the initial state,
QF = {(l, ν) ∈ Q | l ∈ F} is the set of accepting states, and → ⊆ Q × Q is the
transition relation consisting of the following1.

– For each (l, ν) ∈ Q and τ ∈ R>0, we have (l, ν) τ→ (l, ν + τ) if ν + τ ′ |= I(l)
holds for each τ ′ ∈ [0, τ).

– For each (l, ν), (l′, ν′) ∈ Q, a ∈ Σ, and (l, g, a, ρ, l′) ∈ Δ, we have (l, ν) a→
(l′, ν′) if we have ν |= g and ν′ = ν[ρ := 0].

– For each (l, ν), (l′, ν′) ∈ Q, τ ∈ R>0, and (l, g, ε, ρ, l′) ∈ Δ, we have (l, ν)
ε,τ→

(l′, ν′ + τ) if we have ν |= g, ν′ = ν[ρ := 0], and ∀τ ′ ∈ [0, τ). ν′ + τ ′ |= I(l′).

A run of a TA A is an alternating sequence q0,→1, q1, . . . ,→n, qn of
qi ∈ Q and →i ∈ → satisfying qi−1 →i qi for any i ∈ {1, 2, . . . , n}. A run
q0,→1, q1, . . . ,→n, qn is accepting if qn ∈ QF . Given such a run, the associated
timed word is the concatenation of the labels of the transitions. The timed lan-
guage L(A) of a TA A is the set of timed words associated with some accepting
run of A.

2.2 Recognizable Timed Languages

Here, we review the recognizability [21] of timed languages.

Definition 6 (timed condition). For a set T = {τ0, τ1, . . . , τn} of ordered
variables, a timed condition Λ is a finite conjunction of inequalities Ti,j �� d,
where Ti,j =

∑j
k=i τk, �� ∈ {>,≥,≤, <}, and d ∈ N.

A timed condition Λ is simple2 if for each Ti,j , Λ contains d < Ti,j < d+1 or
d ≤ Ti,j ∧Ti,j ≤ d for some d ∈ N. A timed condition Λ is canonical if we cannot
strengthen or add any inequality Ti,j �� d to Λ without changing its semantics.

1 We use
ε,τ→ to avoid the discussion with an arbitrary small dwell time in [21].

2 The notion of simplicity is taken from [15].
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Definition 7 (elementary language). A timed language L is elementary if
there are u = a1, a2, . . . , an ∈ Σ∗ and a timed condition Λ over {τ0, τ1, . . . , τn}
satisfying L = {τ0a1τ1a2 . . . anτn | τ0, τ1, . . . , τn |= Λ}, and the set of valuations
of {τ0, τ1, . . . , τn} defined by Λ is bounded. We denote such L by (u,Λ). We let
E(Σ) be the set of elementary languages over Σ.

For p, p′ ∈ E(Σ), p is a prefix of p′ if for any w′ ∈ p′, there is a prefix w ∈ p
of w′, and for any w ∈ p, there is w′ ∈ p′ such that w is a prefix of w′. For any
elementary language, the number of its prefixes is finite. For a set of elementary
languages, prefix-closedness is defined based on the above definition of prefixes.

An elementary language (u,Λ) is simple if there is a simple and canonical
timed condition Λ′ satisfying (u,Λ) = (u,Λ′). We let SE(Σ) be the set of simple
elementary languages over Σ. Without loss of generality, we assume that for any
(u,Λ) ∈ SE(Σ), Λ is simple and canonical. We remark that any DTA cannot
distinguish timed words in a simple elementary language, i. e., for any p ∈ SE(Σ)
and a DTA A, we have either p ⊆ L(A) or p ∩ L(A) = ∅. We can decide if
p ⊆ L(A) or p ∩ L(A) = ∅ by taking some w ∈ p and checking if w ∈ L(A).

Definition 8 (immediate exterior). Let L = (u,Λ) be an elementary lan-
guage. For a ∈ Σ, the discrete immediate exterior exta(L) of L is exta(L) =
(u · a, Λ ∪ {τ|u|+1 = 0}). The continuous immediate exterior extt(L) of L is
extt(L) = (u,Λt), where Λt is the timed condition such that each inequality
Ti,|u| = d in Λ is replaced with Ti,|u| > d if such an inequality exists, and oth-
erwise, the inequality Ti,|u| < d in Λ with the smallest index i is replaced with
Ti,|u| = d. The immediate exterior of L is ext(L) =

⋃
a∈Σ exta(L) ∪ extt(L).

Example 9. For a word u = a·a and a timed condition Λ = {T0,0 ∈ (1, 2)∧T0,1 ∈
(1, 2) ∧ T0,2 ∈ (1, 2) ∧ T1,2 ∈ (0, 1) ∧ T2,2 = 0}, we have 1.3 · a · 0.5 · a · 0 ∈ (u,Λ)
and 1.7 · a · 0.5 · a · 0 /∈ (u,Λ). The discrete and continuous immediate exteriors
of (u,Λ) are exta((u,Λ)) = (u · a, Λa) and extt((u,Λ)) = (u,Λt), where Λa =
{T0,0 ∈ (1, 2) ∧ T0,1 ∈ (1, 2) ∧ T0,2 ∈ (1, 2) ∧ T1,2 ∈ (0, 1) ∧ T2,2 = T3,3 = 0} and
Λt = {T0,0 ∈ (1, 2) ∧ T0,1 ∈ (1, 2) ∧ T0,2 ∈ (1, 2) ∧ T1,2 ∈ (0, 1) ∧ T2,2 > 0}.

Definition 10 (chronometric timed language). A timed language L is
chronometric if there is a finite set {(u1, Λ1), (u2, Λ2), . . . , (um, Λm)} of disjoint
elementary languages satisfying L =

⋃
i∈{1,2,...,m}(ui, Λi).

For any elementary language L, its immediate exterior ext(L) is chrono-
metric. We naturally extend the notion of exterior to chronometric timed lan-
guages, i. e., for a chronometric timed language L =

⋃
i∈{1,2,...,m}(ui, Λi), we

let ext(L) =
⋃

i∈{1,2,...,m} ext((ui, Λi)), which is also chronometric. For a timed
word w = τ0a1τ1a2 . . . anτn, we denote the valuation of τ0, τ1, . . . , τn by κ(w).

Chronometric relational morphism [21] relates any timed word to a timed
word in a certain set P , which is later used to define a timed language. Intuitively,
the tuples in Φ specify a mapping from timed words immediately out of P to
timed words in P . By inductively applying it, any timed word is mapped to P .
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Definition 11 (chronometric relational morphism). Let P be a chrono-
metric and prefix-closed timed language. Let (u,Λ, u′, Λ′, R) be a 5-tuple such
that (u,Λ) ⊆ ext(P ), (u′, Λ′) ⊆ P , and R is a finite conjunction of equations
of the form Ti,|u| = T

′
j,|u′|, where i ≤ |u| and j ≤ |u′|. For such a tuple,

we let �(u,Λ, u′, Λ′, R)� ⊆ (u,Λ) × (u′, Λ′) be the relation such that (w,w′) ∈
�(u,Λ, u′, Λ′, R)� if and only if κ(w), κ(w′) |= R. For a finite set Φ of such tuples,
the chronometric relational morphism �Φ� ⊆ T (Σ)×P is the relation inductively
defined as follows: 1) for w ∈ P , we have (w,w) ∈ �Φ�; 2) for w ∈ ext(P ) and
w′ ∈ P , we have (w,w′) ∈ �Φ� if we have (w,w′) ∈ �(u,Λ, u′, Λ′, R)� for one
of the tuples (u,Λ, u′, Λ′, R) ∈ Φ; 3) for w ∈ ext(P ), w′ ∈ T (Σ), and w′′ ∈ P ,
we have (w · w′, w′′) ∈ �Φ� if there is w′′′ ∈ T (Σ) satisfying (w,w′′′) ∈ �Φ� and
(w′′′ · w′, w′′) ∈ �Φ�. We also require that all (u,Λ) in the tuples in Φ must be
disjoint and the union of each such (u,Λ) is ext(P ) \ P .

A chronometric relational morphism �Φ� is compatible with F ⊆ P if for each
tuple (u,Λ, u′, Λ′, R) defining �Φ�, we have either (u′, Λ′) ⊆ F or (u′, Λ′)∩F = ∅.

Definition 12 (recognizable timed language). A timed language L is rec-
ognizable if there is a chronometric prefix-closed set P , a chronometric subset F
of P , and a chronometric relational morphism �Φ� ⊆ T (Σ) × P compatible with
F satisfying L = {w | ∃w′ ∈ F, (w,w′) ∈ �Φ�}.

It is known that for any recognizable timed language L, we can construct a
DTA A recognizing L, and vice versa [21].

2.3 Distinguishing Extensions and Active DFA Learning

Most DFA learning algorithms are based on Nerode’s congruence [18]. For a (not
necessarily regular) language L ⊆ Σ∗, Nerode’s congruence ≡L ⊆ Σ∗ × Σ∗ is
the equivalence relation satisfying w ≡L w′ if and only if for any w′′ ∈ Σ∗, we
have w · w′′ ∈ L ⇐⇒ w′ · w′′ ∈ L.

Generally, we cannot decide if w ≡L w′ by testing because it requires
infinitely many membership checking. However, if L is regular, there is a finite
set of suffixes S ⊆ Σ∗ called distinguishing extensions satisfying ≡L = ∼S

L,
where ∼S

L is the equivalence relation satisfying w ∼S
L w′ if and only if for any

w′′ ∈ S, we have w ·w′′ ∈ L ⇐⇒ w′ ·w′′ ∈ L. Thus, the minimum DFA recogniz-
ing Ltgt can be learned by3: i) identifying distinguishing extensions S satisfying
≡Ltgt = ∼S

Ltgt
and ii) constructing the minimum DFA A corresponding to ∼S

Ltgt
.

The L* algorithm [8] is an algorithm to learn the minimum DFA Ahyp rec-
ognizing the target regular language Ltgt with finitely many membership and
equivalence queries to the teacher. In a membership query, the learner asks if
w ∈ Σ∗ belongs to the target language Ltgt i. e., w ∈ Ltgt. In an equivalence
query, the learner asks if the hypothesis DFA Ahyp recognizes the target language

3 The distinguishing extensions S can be defined locally. For example, the TTT algo-
rithm [19] is optimized with local distinguishing extensions for some prefixes w ∈ Σ∗.
Nevertheless, we use the global distinguishing extensions for simplicity.
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Algorithm 1: Outline of an L*-style active DFA learning algorithm
1 P ← {ε}; S ← {ε}
2 while � do
3 while the observation table is not closed or consistent do
4 update P and S so that the observation table is closed and consistent

5 Ahyp ← ConstructDFA(P, S, T)

6 switch eqLtgt
(Ahyp) do

7 case � do
8 return Ahyp

9 case cex do
10 Update P and/or S using cex

Ltgt i. e., L(Ahyp) = Ltgt, where L(Ahyp) is the language of the hypothesis DFA
Ahyp. When we have L(Ahyp) �= Ltgt, the teacher returns a counterexample
cex ∈ L(Ahyp)�Ltgt. The information obtained via queries is stored in a 2-
dimensional array called an observation table. See Fig. 1b for an illustration. For
finite index sets P, S ⊆ Σ∗, for each pair (p, s) ∈ (P ∪P ·Σ)×S, the observation
table stores whether p · s ∈ Ltgt. S is the current candidate of the distinguishing
extensions, and P represents Σ∗/∼S

Ltgt
. Since P and S are finite, one can fill the

observation table using finite membership queries.
Algorithm 1 outlines an L*-style algorithm. We start from P = S = {ε} and

incrementally increase them. To construct a hypothesis DFA Ahyp, the observa-
tion table must be closed and consistent. An observation table is closed if, for
each p ∈ P · Σ, there is p′ ∈ P satisfying p ∼S

Ltgt
p′. An observation table is

consistent if, for any p, p′ ∈ P ∪P ·Σ and a ∈ Σ, p ∼S
Ltgt

p′ implies p·a ∼S
Ltgt

p′ ·a.
Once the observation table becomes closed and consistent, the learner con-

structs a hypothesis DFA Ahyp and checks if L(Ahyp) = Ltgt by an equivalence
query. If L(Ahyp) = Ltgt holds, Ahyp is the resulting DFA. Otherwise, the teacher
returns cex ∈ L(Ahyp)�Ltgt, which is used to refine the observation table. There
are several variants of the refinement. In the L* algorithm, all the prefixes of cex
are added to P . In the Rivest-Schapire algorithm [20,25], an extension s strictly
refining S is obtained by an analysis of cex , and such s is added to S.

3 A Myhill-Nerode Style Characterization
of Recognizable Timed Languages with Elementary
Languages

Unlike the case of regular languages, any finite set of timed words cannot cor-
rectly distinguish recognizable timed languages due to the infiniteness of dwell
time in timed words. Instead, we use a finite set of elementary languages to define
a Nerode-style congruence. To define the Nerode-style congruence, we extend the
notion of membership to elementary languages.
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Definition 13 (symbolic membership). For a timed language L ⊆
T (Σ) and an elementary language (u,Λ) ∈ E(Σ), the symbolic membership
memsymL ((u,Λ)) of (u,Λ) to L is the strongest constraint such that for any
w ∈ (u,Λ), we have w ∈ L if and only if κ(w) |= memsymL (L).

We discuss how to obtain symbolic membership in Sect. 4.5. We define a
Nerode-style congruence using symbolic membership. A naive idea is to distin-
guish two elementary languages by the equivalence of their symbolic member-
ship. However, this does not capture the semantics of TAs. For example, for the
DTA A in Fig. 1c, for any timed word w, we have 1.3 · a · 0.4 · w ∈ L(A) ⇐⇒
0.3 · a · 1.0 · a · 0.4 · w ∈ L(A), while they have different symbolic membership.
This is because symbolic membership distinguishes the position in timed words
where each clock variable is reset, which must be ignored. We use renaming
equations to abstract such positional information in symbolic membership. Note
that Ti,n =

∑n
k=i τk corresponds to the value of the clock variable reset at τi.

Definition 14 (renaming equation). Let T = {τ0, τ1, . . . , τn} and T
′ =

{τ
′
0, τ

′
1, . . . , τ

′

n′ } be sets of ordered variables. A renaming equation R over T

and T
′ is a finite conjunction of equations of the form Ti,n = T

′
i′,n′ , where

i ∈ {0, 1, . . . , n}, i′ ∈ {0, 1, . . . , n′}, Ti,n =
∑n

k=i τk and T
′
i′,n′ =

∑n′

k=i′ τ ′
k.

Definition 15 (∼S
L). Let L ⊆ T (Σ) be a timed language, let

(u,Λ), (u′, Λ′), (u′′, Λ′′) ∈ E(Σ) be elementary languages, and let R be a renam-
ing equation over T and T

′, where T and T
′ are the variables of Λ and

Λ′, respectively. We let (u,Λ) �(u′′,Λ′′),R
L (u′, Λ′) if we have the following:

for any w ∈ (u,Λ), there is w′ ∈ (u′, Λ′) satisfying κ(w), κ(w′) |= R;
memsymL ((u,Λ) ·(u′′, Λ′′))∧R∧Λ′ is equivalent to memsymL ((u′, Λ′) ·(u′′, Λ′′))∧R∧Λ.
We let (u,Λ) ∼(u′′,Λ′′),R

L (u′, Λ′) if we have (u,Λ) �(u′′,Λ′′),R
L (u′, Λ′) and

(u′, Λ′ �(u′′,Λ′′),R
L (u,Λ). Let S ⊆ E(Σ). We let (u,Λ) ∼S,R

L (u′, Λ′) if for any
(u′′, Λ′′) ∈ S, we have (u,Λ) ∼(u′′,Λ′′),R

L (u′, Λ′). We let (u,Λ) ∼S
L (u′, Λ′) if

(u,Λ) ∼S,R
L (u′, Λ′) for some renaming equation R.

Example 16. Let A be the DTA in Fig. 1c and let (u,Λ), (u′, Λ′), and (u′′, Λ′′) be
elementary languages, where u = a, Λ = {τ0 ∈ (1, 2)∧τ0+τ1 ∈ (1, 2)∧τ1 ∈ (0, 1)},
u′ = a ·a, Λ′ = {τ ′

0 ∈ (0, 1)∧τ ′
0+τ ′

1 ∈ (1, 2)∧τ ′
1+τ ′

2 ∈ (1, 2)∧τ ′
2 ∈ (0, 1)}, u′′ = a,

and Λ′′ = {τ0 ∈ (0, 1) ∧ τ1 = 0}. We have memsymL(A)((u,Λ) · (u′′, Λ′′)) = Λ ∧ Λ′′ ∧
τ1 + τ ′′

0 ≤ 1 and memsymL(A)((u
′, Λ′) · (u′′, Λ′′)) = Λ′ ∧ Λ′′ ∧ τ ′

2 + τ ′′
0 ≤ 1. Therefore,

for the renaming equation T1,1 = T
′
2,2, we have (u,Λ) ∼(u′′,Λ′′),T1,1=T

′
2,2

L (u′, Λ′).

An algorithm to check if (u,Λ) ∼S
L (u′, Λ′) is shown in Appendix B.2 of [29].

Intuitively, (u,Λ) �s,R
L (u′, Λ′) shows that any w ∈ (u,Λ) can be “simulated”

by some w′ ∈ (u′, Λ′) with respect to s and R. Such intuition is formalized as
follows.
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Theorem 17. For any L ⊆ T (Σ) and (u,Λ), (u′, Λ′), (u′′, Λ′′) ∈ E(Σ) satisfying
(u,Λ) �(u′′,Λ′′)

L (u′, Λ′), for any w ∈ (u,Λ), there is w′ ∈ (u′, Λ′) such that for
any w′′ ∈ (u′′, Λ′′), w · w′′ ∈ L ⇐⇒ w′ · w′′ ∈ L holds. ��

By
⋃

(u,Λ)∈E(Σ)(u,Λ) = T (Σ), we have the following as a corollary.

Corollary 18. For any timed language L ⊆ T (Σ) and for any elementary lan-
guages (u,Λ), (u′, Λ′) ∈ E(Σ), (u,Λ) ∼E(Σ)

L (u′, Λ′) implies the following.

– For any w ∈ (u,Λ), there is w′ ∈ (u′, Λ′) such that for any w′′ ∈ T (Σ), we
have w · w′′ ∈ L ⇐⇒ w′ · w′′ ∈ L.

– For any w′ ∈ (u′, Λ′), there is w ∈ (u,Λ) such that for any w′′ ∈ T (Σ), we
have w · w′′ ∈ L ⇐⇒ w′ · w′′ ∈ L. ��

The following characterizes recognizable timed languages with ∼E(Σ)
L .

Theorem 19. (Myhill-Nerode style characterization). A timed language
L is recognizable if and only if the quotient set SE(Σ)/∼E(Σ)

L is finite. ��

By Theorem 19, we always have a finite set S of distinguishing extensions.

Theorem 20. For any recognizable timed language L, there is a finite set S of
elementary languages satisfying ∼E(Σ)

L = ∼S
L. ��

4 Active Learning of Deterministic Timed Automata

We show our L*-style active learning algorithm for DTAs with the Nerode-style
congruence in Sect. 3. We let Ltgt be the target timed language in learning.

For simplicity, we first present our learning algorithm with a smart teacher
answering the following three kinds of queries: membership query memLtgt(w)
asking whether w ∈ Ltgt, symbolic membership query asking memsymLtgt

((u,Λ)), and
equivalence query eqLtgt

(Ahyp) asking whether L(Ahyp) = Ltgt. If L(Ahyp) =
Ltgt, eqLtgt

(Ahyp) = �, and otherwise, eqLtgt
(Ahyp) is a timed word cex ∈

L(Ahyp)�Ltgt. Later in Sect. 4.5, we show how to answer a symbolic membership
query with finitely many membership queries. Our task is to construct a DTA
A satisfying L(A) = Ltgt with finitely many queries.

4.1 Successors of Simple Elementary Languages

Similarly to the L* algorithm in Sect. 2.3, we learn a DTA with an observation
table. Reflecting the extension of the underlying congruence, we use sets of simple
elementary languages for the indices. To define the extensions, P ∪ (P · Σ) in
the L* algorithm, we introduce continuous and discrete successors for simple
elementary languages, which are inspired by regions [4]. We note that immediate
exteriors do not work for this purpose. For example, for (u,Λ) = (a, {T0,1 <
2 ∧ T1,1 < 1}) and w = 0.7 · a · 0.9, we have w ∈ (u,Λ) and extt((u,Λ)) =
(a, {T0,1 = 2 ∧ T1,1 < 1}), but there is no t > 0 satisfying w · t ∈ extt((u,Λ)).
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Algorithm 2: DTA construction from a timed observation table
Input : A cohesive timed observation table (P, S, T )
Output : A DTA Ahyp row-faithful to the given timed observation table

1 Function MakeDTA(P, S, T):
2 Φ ← ∅; F ← {(u, Λ) ∈ P | T ((u, Λ), (ε, τ ′

0 = 0)) = {Λ ∧ τ ′
0 = 0}}

3 for p ∈ P such that succt(p) /∈ P (resp. succa(p) /∈ P ) do
// Construct (u, Λ, u′, Λ′, R) for some p′ ∈ P and R
// Such R is chosen using an exhaustive search

4 pick p′ ∈ P and R such that succt(p) ∼S,R
Ltgt

p′ (resp. succa(p) ∼S,R
Ltgt

p′)

5 add (u, Λ, u′, Λ′, R) to Φ, where (u, Λ) = extt(p) (resp. exta(p)) and (u′, Λ′) = p′

6 return the DTA Ahyp obtained from (P, F, Φ) by the construction in [21]

For any (u,Λ) ∈ SE(Σ), we let Θ(u,Λ) be the total order over 0 and the
fractional parts frac(T0,n), frac(T1,n), . . . , frac(Tn,n) of T0,n, T1,n, . . . , Tn,n. Such
an order is uniquely defined because Λ is simple and canonical (Proposition 36
of [29]).

Definition 21 (successor). Let p = (u,Λ) ∈ SE(Σ) be a simple elementary
language. The discrete successor succa(p) of p is succa(p) = (u ·a, Λ∧τn+1 = 0).
The continuous successor succt(p) of p is succt(p) = (u,Λt), where Λt is defined
as follows: if there is an equation Ti,n = d in Λ, all such equations are replaced
with Ti,n ∈ (d, d + 1); otherwise, for each greatest Ti,n in terms of Θ(u,Λ), we
replace Ti,n ∈ (d, d + 1) with Ti,n = d + 1. We let succ(p) =

⋃
a∈Σ succa(p) ∪

succt(p). For P ⊆ SE(Σ), we let succ(P ) =
⋃

p∈P succ(p).

Example 22. Let u = aa, Λ = {T0,0 ∈ (1, 2) ∧ T0,1 ∈ (1, 2) ∧ T0,2 ∈
(1, 2) ∧ T1,1 ∈ (0, 1) ∧ T1,2 ∈ (0, 1) ∧ T2,2 = 0}. The order Θ(u,Λ) is such that
0 = frac(T2,2) < frac(T1,2) < frac(T0,2). The continuous successor of (u,Λ)
is succt((u,Λ)) = (u,Λt), where Λt = {T0,0 ∈ (1, 2) ∧ T0,1 ∈ (1, 2) ∧ T0,2 ∈
(1, 2) ∧ T1,1 ∈ (0, 1) ∧ T1,2 ∈ (0, 1) ∧ T2,2 ∈ (0, 1)}. The continuous succes-
sor of (u,Λt) is succt((u,Λt)) = (u,Λtt), where Λtt = {T0,0 ∈ (1, 2) ∧ T0,1 ∈
(1, 2) ∧ T0,2 = 2 ∧ T1,1 ∈ (0, 1) ∧ T1,2 ∈ (0, 1) ∧ T2,2 ∈ (0, 1)}.

4.2 Timed Observation Table for Active DTA Learning

We extend the observation table with (simple) elementary languages and sym-
bolic membership to learn a recognizable timed language.

Definition 23 (timed observation table). A timed observation table is a
3-tuple (P, S, T ) such that: P is a prefix-closed finite set of simple elementary
languages, S is a finite set of elementary languages, and T is a function mapping
(p, s) ∈ (P ∪ succ(P )) × S to the symbolic membership memsymLtgt

(p · s).

Figure 2 illustrates timed observation tables: each cell indexed by (p, s) show
the symbolic membership memsymLtgt

(p · s). For timed observation tables, we extend
the notion of closedness and consistency with ∼S

Ltgt
we introduced in Sect. 3.
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Algorithm 3: Counterexample analysis in our DTA learning algorithm
1 Function AnalyzeCEX(cex):
2 i ← 1; w0 ← cex
3 while �p ∈ P.wi ∈ p do
4 i ← i + 1

5 split wi−1 into w′
i · w′′

i such that w′
i ∈ p′

i for some p′
i ∈ succ(P ) \ P

6 let pi ∈ P and Ri be such that p′
i ∼S,Ri

Ltgt
pi

7 let wi ∈ pi be such that κ(w′
i), κ(wi) |= Ri

8 wi ← wi · w′′
i

9 find j ∈ {1, 2, . . . , i} such that wj−1 ∈ Ltgt�L(Ahyp) and wj �∈ Ltgt�L(Ahyp)
// We use a binary search with membership queries for log(i)� times.

10 return the simple elementary language including w′′
j

We note that consistency is defined only for discrete successors. This is because
a timed observation table does not always become “consistent” for continuous
successors. See Appendix C of [29] for a detailed discussion. We also require
exterior-consistency since we construct an exterior from a successor.

Definition 24 (closedness, consistency, exterior-consistency, cohe-
sion). Let O = (P, S, T ) be a timed observation table. O is closed if, for each
p ∈ succ(P )\P , there is p′ ∈ P satisfying p ∼S

Ltgt
p′. O is consistent if, for each

p, p′ ∈ P and for each a ∈ Σ, p ∼S
Ltgt

p′ implies succa(p) ∼S
Ltgt

succa(p′). O is
exterior-consistent if for any p ∈ P , succt(p) /∈ P implies succt(p) ⊆ extt(p). O
is cohesive if it is closed, consistent, and exterior-consistent.

From a cohesive timed observation table (P, S, T ), we can construct a DTA as
outlined in Algorithm 2. We construct a DTA via a recognizable timed language.
The main ideas are as follows: 1) we approximate ∼E(Σ),R

Ltgt
by ∼S,R

Ltgt
; 2) we decide

the equivalence class of ext(p) ∈ ext(P )\P in E(Σ) from successors. Notice that
there can be multiple renaming equations R showing ∼S,R

Ltgt
. We use one of them

found by an exhaustive search in Appendix B.2 of [29].
The DTA obtained by MakeDTA is faithful to the timed observation table in

rows, i. e., for any p ∈ P ∪succ(P ), Ltgt∩p = L(Ahyp)∩p. However, unlike the L*
algorithm, this does not hold for each cell, i. e., there may be p ∈ P ∪succ(P ) and
s ∈ S satisfying Ltgt ∩ (p · s) �= L(Ahyp) ∩ (p · s). This is because we do not (and
actually cannot) enforce consistency for continuous successors. See Appendix C
of [29] for a discussion. Nevertheless, this does not affect the correctness of our
algorithm partly by Theorem 26.

Theorem 25 (row faithfulness). For any cohesive timed observation table
(P, S, T ), for any p ∈ P ∪ succ(P ), Ltgt ∩ p = L(MakeDTA(P, S, T )) ∩ p holds. ��

Theorem 26. For any cohesive timed observation table (P, S, T ), ∼S
Ltgt

=∼E(Σ)
Ltgt

implies Ltgt = L(MakeDTA(P, S, T )). ��
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Algorithm 4: Outline of our L*-style algorithm for DTA learning
1 P ← {(ε, τ0 = 0)}; S ← {(ε, τ ′

0 = 0)}
2 while � do
3 while (P, S, T ) is not cohesive do

4 if ∃p ∈ succ(P ) \ P. �p′ ∈ P. p ∼S
Ltgt

p′ then // (P, S, T ) is not closed

5 P ← P ∪ {p} // Add such p to P

6 else if ∃p, p′ ∈ P, a ∈ Σ. p ∼S
Ltgt

p′ ∧ succa(p) �∼S
Ltgt

succa(p′) then

// (P, S, T ) is inconsistent due to a

7 let S′ ⊆ S be a minimal set such that p�∼S∪{{a·w|w∈s}|s∈S′}
Ltgt

p′

8 S ← S ∪ {{a · w | w ∈ s} | s ∈ S′}
9 else // (P, S, T ) is not exterior-consistent

10 P ← P ∪ {p′ ∈ succt(P ) \ P | ∃p ∈ P. p′ = succt(p) ∧ p′
� extt(p)}

11 fill T using symbolic membership queries

12 Ahyp ← MakeDTA(P, S, T)
13 if cex = eqLtgt

(Ahyp) then

14 add AnalyzeCEX(cex) to S
15 else return Ahyp // It returns Ahyp if eqLtgt

(Ahyp) = �.

4.3 Counterexample Analysis

We analyze the counterexample cex obtained by an equivalence query to refine
the set S of suffixes in a timed observation table. Our analysis, outlined in
Algorithm 3, is inspired by the Rivest-Schapire algorithm [20,25]. The idea is
to reduce the counterexample cex using the mapping defined by the congruence
∼S

Ltgt
(lines 5–7 ), much like Φ in recognizable timed languages, and to find a

suffix s strictly refining S (line 9), i. e., satisfying p ∼S
Ltgt

p′ and p �∼S∪{s}
Ltgt

p′ for
some p ∈ succ(P ) and p′ ∈ P .

By definition of cex , we have cex = w0 ∈ Ltgt�L(Ahyp). By Theorem 25,
wn �∈ Ltgt�L(Ahyp) holds, where n is the final value of i. By construction of Ahyp

and wi, for any i ∈ {1, 2, . . . , n}, we have w0 ∈ L(Ahyp) ⇐⇒ wi ∈ L(Ahyp).
Therefore, there is i ∈ {1, 2, . . . , n} satisfying wi−1 ∈ Ltgt�L(Ahyp) and wi �∈
Ltgt�L(Ahyp). For such i, since we have wi−1 = w′

i · w′′
i ∈ Ltgt�L(Ahyp),

wi = wi · w′′
i �∈ Ltgt�L(Ahyp), and κ(w′

i), κ(wi) |= Ri, such w′′
i is a witness

of p′
i �∼

E(Σ),Ri

Ltgt
pi. Therefore, S can be refined by the simple elementary language

s ∈ SE(Σ) including w′′
i .

4.4 L*-Style Learning Algorithm for DTAs

Algorithm 4 outlines our active DTA learning algorithm. At line 1, we initialize
the timed observation table with P = {(ε, τ0 = 0)} and S = {(ε, τ ′

0 = 0)}. In
the loop in lines 2–15, we refine the timed observation table until the hypothesis
DTA Ahyp recognizes the target language Ltgt, which is checked by equivalence
queries. The refinement finishes when the equivalence relation ∼S

Ltgt
defined by

the suffixes S converges to ∼E(Σ)
Ltgt

, and the prefixes P covers SE(Σ)/∼E(Σ)
Ltgt

.
In the loop in lines 3–11, we make the timed observation table cohesive. If the

timed observation table is not closed, we move the incompatible row in succ(P )\
P to P (line 5). If the timed observation table is inconsistent, we concatenate an
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(ε, τ ′
0 = 0)

(ε, τ0 = 0) τ0 = τ ′
0 = 0

(ε, τ0 ∈ (0, 1)) 0 = τ ′
0 < τ0 < 1

(a, τ0 = τ1 = 0) τ0 = τ1 = τ ′
0 = 0

(a) The initial timed observa-
tion table O1 = (P1, S1, T1)

l0 a

(b) DTA A1
hyp con-

structed from O1

l0 l1

a, c0 ≥ 1/c1 := 0

a, c0 < 1

a, c1 ≤ 1/c0 := c1

a, c1 > 1

(c) DTA A3
hyp constructed from O3

s0 = (ε, τ ′
0 = 0) s1 = (a, τ ′

1 = 0 < τ ′
0 < 1)

p0 = (ε, τ0 = 0) � �
p1 = (ε, τ0 ∈ (0, 1)) � τ0 + τ ′

0 ∈ (0, 1)
p2 = (a, τ0 = τ0 + τ1 = τ1 = 0) � �

(d) Timed observation table O2 = (P2, S2, T2) after processing cex
(ε, τ ′

0 = 0) (a, τ ′
1 = 0 < τ ′

0 < 1)
(ε, τ0 = 0) � �

(ε, τ0 ∈ (0, 1)) � τ0 + τ ′
0 ∈ (0, 1)

(ε, τ0 = 1) � ⊥
(a, τ0 = τ0 + τ1 = 1 ∧ τ1 = 0) ⊥ �

(a, τ0 = 1 ∧ τ1 ∈ (0, 1)) ⊥ τ1 + τ ′
0 ∈ (0, 1]

(a, τ0 = τ1 = 1 ∧ τ0 + τ1 = 2) ⊥ ⊥
(a, τ0 = τ0 + τ1 = τ1 = 0) � �

(a, τ0 = τ0 + τ1 ∈ (0, 1) ∧ τ1 = 0) � τ0 + τ1 + τ ′
0 ∈ (0, 1)

(ε, τ0 ∈ (1, 2)) � ⊥
(aa, τ0 = τ0 + τ1 = τ0 + τ1 + τ2 = 1 ∧ τ1 = τ2 = τ1 + τ2 = 0) � �

(aa, τ0 = 1 ∧ τ1 = τ1 + τ2 ∈ (0, 1) ∧ τ0 + τ1 = τ0 + τ1 + τ2 ∈ (1, 2) ∧ τ2 = 0) � τ1 + τ2 + τ ′
0 ∈ (0, 1)

(a, τ0 = 1 < τ1 < 2 < τ0 + τ1 < 3) ⊥ ⊥
(aa, τ0 = τ1 = τ1 + τ2 = 1 ∧ τ0 + τ1 = τ0 + τ1 + τ2 = 2 ∧ τ2 = 0) � ⊥

(e) The final observation table O3 = (P3, S3, T3)

Fig. 2. Timed observation tables O1, O2, O3, and the DTAs A1
hyp and A3

hyp made from
O1 and O3, respectively. In O2 and O3, we only show the constraints non-trivial from
p and s. The DTAs are simplified without changing the language. The use of clock
assignments, which does not change the expressiveness, is from [21].

event a ∈ Σ in front of some of the suffixes in S (line 8). If the timed observation
table is not exterior-consistent, we move the boundary succt(p) ∈ succt(P ) \ P
satisfying succt(p) � extt(p) to P (line 10). Once we obtain a cohesive timed
observation table, we construct a DTA Ahyp = MakeDTA(P, S, T) and make
an equivalence query (line 12). If we have L(Ahyp) = Ltgt, we return Ahyp.
Otherwise, we have a timed word cex witnessing the difference between the
language of the hypothesis DTA Ahyp and the target language Ltgt. We refine
the timed observation table using Algorithm 3.

Example 27. Let Ltgt be the timed language recognized by the DTA in Fig. 1c.
We start from P = {(ε, τ0 = 0)} and S = {(ε, τ ′

0 = 0}. Figure 2a shows the initial
timed observation table O1. Since the timed observation table O1 in Fig. 2a is
cohesive, we construct a hypothesis DTA A1

hyp. The hypothesis recognizable
timed language is (P1, F1, Φ1) is such that P1 = F1 = {(ε, τ0 = 0)} and Φ1 =
{(ε, τ0 > 0, ε, τ0,�), (a, τ0 = τ0 +τ1 = τ1 = 0, ε, τ0,�)}. Figure 2b shows the first
hypothesis DTA A1

hyp.
We have L(A1

hyp) �= Ltgt, and the learner obtains a counterexample, e. g.,
cex = 1.0 · a · 0, with an equivalence query. In Algorithm 3, we have w0 = cex ,
w1 = 0.5 · a · 0, w2 = 0 · a · 0, and w3 = 0. We have w0 �∈ L(A1

hyp)�Ltgt and
w1 ∈ L(A1

hyp)�Ltgt, and the suffix to distinguish w0 and w1 is 0.5 · a · 0. Thus,
we add s1 = (a, τ ′

1 = 0 < τ ′
0 = τ ′

0 + τ ′
1 < 1) to S1 (Fig. 2d).
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In Fig. 2d, we observe that T2(p1, s1) is more strict than T2(p0, s1), and we
have p1 �∼S2

Ltgt
p0. To make (P2, S2, T2) closed, we add p1 to P2. By repeating

similar operations, we obtain the timed observation table O3 = (P3, S3, T3) in
Fig. 2e, which is cohesive. Figure 2c shows the DTA A3

hyp constructed from O3.
Since L(A3

hyp) = Ltgt holds, Algorithm 4 finishes returning A3
hyp.

By the use of equivalence queries, Algorithm 4 returns a DTA recognizing
the target language if it terminates, which is formally as follows.

Theorem 28 (correctness). For any target timed language Ltgt, if Algorithm
4 terminates, for the resulting DTA Ahyp, L(Ahyp) = Ltgt holds. ��

Moreover, Algorithm 4 terminates for any recognizable timed language Ltgt

essentially because of the finiteness of SE(Σ)/∼E(Σ)
Ltgt

.

Theorem 29 (termination). For any recognizable timed language Ltgt, Algo-
rithm 4 terminates and returns a DTA A satisfying L(A) = Ltgt.

Proof (Theorem 29). By the recognizability of Ltgt and Theorem 19,
SE(Σ)/∼E(Σ)

Ltgt
is finite. Let N = |SE(Σ)/∼E(Σ)

Ltgt
|. Since each execution of line

5 adds p to P , where p is such that for any p′ ∈ P , p �∼E(Σ)
Ltgt

p′ holds, it is exe-
cuted at most N times. Since each execution of line 8 refines S, i. e., it increases
|SE(Σ)/∼S

Ltgt
|, line 8 is executed at most N times. For any (u,Λ) ∈ SE(Σ),

if Λ contains Ti,|u| = d for some i ∈ {0, 1, . . . , |u|} and d ∈ N, we have
succt((u,Λ)) ⊆ extt((u,Λ)). Therefore, line 10 is executed at most N times.
Since S is strictly refined in line 14, i. e., it increases |SE(Σ)/∼S

Ltgt
|, line 14

is executed at most N times. By Theorem 26, once ∼S
Ltgt

saturates to ∼E(Σ)
Ltgt

,
MakeDTA returns the correct DTA. Overall, Algorithm 4 terminates. ��

4.5 Learning with a Normal Teacher

We briefly show how to learn a DTA only with membership and equivalence
queries. We reduce a symbolic membership query to finitely many membership
queries, answerable by a normal teacher. See Appendix B.1 of [29] for detail.

Let (u,Λ) be the elementary language given in a symbolic membership query.
Since Λ is bounded, we can construct a finite and disjoint set of simple and
canonical timed conditions Λ′

1, Λ
′
2, . . . , Λ

′
n satisfying

∨
1≤i≤n Λ′

i = Λ by a simple
enumeration. For any simple elementary language (u′, Λ′) ∈ SE(Σ) and timed
words w,w′ ∈ (u′, Λ′), we have w ∈ L ⇐⇒ w′ ∈ L. Thus, we can construct
memsymL ((u,Λ)) by making a membership query memL(w) for each such (u′, Λ′) ⊆
(u,Λ) and for some w ∈ (u′, Λ′). We need such an exhaustive search, instead of
a binary search, because memsymL ((u,Λ)) may be non-convex.

Assume Λ is a canonical timed condition. Let M be the size of the variables
in Λ and I be the largest difference between the upper bound and the lower
bound for some Ti,j in Λ. The size n of the above decomposition is bounded by
(2 × I + 1)1/2×M×(M+1), which exponentially blows up with respect to M .
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In our algorithm, we only make symbolic membership queries with elemen-
tary languages of the form p · s, where p and s are simple elementary languages.
Therefore, I is at most 2. However, even with such an assumption, the number
of the necessary membership queries blows up exponentially to the size of the
variables in Λ.

4.6 Complexity Analysis

After each equivalence query, our DTA learning algorithm strictly refines S or
terminates. Thus, the number of equivalence queries is at most N . In the proof
of Theorem 29, we observe that the size of P is at most 2N . Therefore, the
number (|P | + |succ(P )|) × |S| of the cells in the timed observation table is at
most (2N + 2N × (|Σ| + 1)) × N = 2N2|Σ| + 2. Let J be the upper bound of
i in the analysis of cex returned by equivalence queries (Algorithm 3). For each
equivalence query, the number of membership queries in Algorithm 3 is bounded
by �log J�, and thus, it is, in total, bounded by N × �log J�. Therefore, if the
learner can use symbolic membership queries, the total number of queries is
bounded by a polynomial of N and J . In Sect. 4.5, we observe that the number
of membership queries to implement a symbolic membership query is at most
exponential to M . Since P is prefix-closed, M is at most N . Overall, if the learner
cannot use symbolic membership queries, the total number of queries is at most
exponential to N .

Table 1. Summary of the results for Random. Each row index |L| |Σ| KC shows the
number of locations, the alphabet size, and the upper bound of the maximum constant
in the guards, respectively. The row “count” shows the number of instances finished in
3 h. Cells with the best results are highlighted.

# of Mem. queries # of Eq. queries Exec. time [sec.] count

max mean min max mean min max mean min

3 2 10
LearnTA 35,268 14,241 2,830 11 6 4 2.32e+00 6.68e-01 4.50e-02 10/10

OneSMT 468 205 32 13 8 5 9.58e-01 2.89e-01 6.58e-02 10/10

4 2 10
LearnTA 194,442 55,996 10,619 14 7 4 2.65e+01 7.98e+00 4.88e-01 10/10

OneSMT 985 451 255 16 12 7 3.53e-01 2.09e-01 1.27e-01 10/10

4 4 20
LearnTA 1,681,769 858,759 248,399 21 15 10 8.34e+03 1.41e+03 3.23e+01 8/10

OneSMT 5,329 3,497 1,740 42 32 26 2.19e+00 1.42e+00 8.27e-01 10/10

5 2 10
LearnTA 627,980 119,906 8,121 19 8 5 1.67e+02 2.28e+01 1.96e-01 10/10

OneSMT 1,332 876 359 22 16 12 5.20e-01 3.66e-01 2.58e-01 10/10

6 2 10
LearnTA 555,939 106,478 2,912 14 9 6 2.44e+02 2.81e+01 4.40e-02 10/10

OneSMT 3,929 1,894 104 35 20 11 1.72e+00 8.01e-01 1.73e-01 10/10

Let Atgt = (Σ,L, l0, C, I,Δ, F ) be a DTA recognizing Ltgt. As we observe in
the proof of Lemma 33 of [29], N is bounded by the size of the state space of the
region automaton [4] of Atgt, N is at most |C|!×2|C|×

∏
c∈C(2Kc+2)×|L|, where

Kc is the largest constant compared with c ∈ C in Atgt. Thus, without symbolic
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membership queries, the total number of queries is at most doubly-exponential
to |C| and singly exponential to |L|. We remark that when |C| = 1, the total
number of queries is at most singly exponential to |L| and Kc, which coincides
with the worst-case complexity of the one-clock DTA learning algorithm in [30].

5 Experiments

We experimentally evaluated our DTA learning algorithm using our prototype
library LearnTA4 implemented in C++. In LearnTA, the equivalence queries
are answered by a zone-based reachability analysis using the fact that DTAs are
closed under complement [4]. We pose the following research questions.

RQ1 How is the scalability of LearnTA to the language complexity?
RQ2 How is the efficiency of LearnTA for practical benchmarks?

For the benchmarks with one clock variable, we compared LearnTA with
one of the latest one-clock DTA learning algorithms [1,30], which we call
OneSMT. OneSMT is implemented in Python with Z3 [23] for constraint solv-
ing.

For each execution, we measured the number of queries and the total execu-
tion time, including the time to answer the queries. For the number of queries, we
report the number with memoization, i. e., we count the number of the queried
timed words (for membership queries) and the counterexamples (for equivalence
queries). We conducted all the experiments on a computing server with Intel
Core i9-10980XE 125 GiB RAM that runs Ubuntu 20.04.5 LTS. We used 3 h as
the timeout.
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Fig. 3. The number of locations and the number of queries for |L| 2 10 in Random,
where |L| ∈ {3, 4, 5, 6}

4 LearnTA is publicly available at https://github.com/masWag/LearnTA. The arti-
fact of the experiments is available at https://doi.org/10.5281/zenodo.7875383.

https://github.com/masWag/LearnTA
https://doi.org/10.5281/zenodo.7875383
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Table 2. Summary of the target DTAs and the results for Unbalanced. |L| is the number
of locations, |Σ| is the alphabet size, |C| is the number of clock variables, and KC is
the maximum constant in the guards in the DTA.

|L| |Σ| |C| KC # of Mem. queries # of Eq. queries Exec. time [sec.]

Unbalanced:1 LearnTA 5 1 1 2 51 2 2.00e-03

Unbalanced:2 LearnTA 5 1 2 4 576,142 3 3.64e+01

Unbalanced:3 LearnTA 5 1 3 4 403,336 4 2.24e+01

Unbalanced:4 LearnTA 5 1 4 6 4,142,835 5 2.40e+02

Unbalanced:5 LearnTA 5 1 5 6 10,691,400 5 8.68e+02

5.1 RQ1: Scalability with Respect to the Language Complexity

To evaluate the scalability of LearnTA, we used randomly generated DTAs
from [5] (denoted as Random) and our original DTAs (denoted as Unbalanced).
Random consists of five classes: 3 2 10, 4 2 10, 4 4 20, 5 2 10, and 6 2 10, where
each value of |L| |Σ| KC is the number of locations, the alphabet size, and the
upper bound of the maximum constant in the guards in the DTAs, respectively.
Each class consists of 10 randomly generated DTAs. Unbalanced is our original
benchmark inspired by the “unbalanced parentheses” timed language from [10].
Unbalanced consists of five DTAs with different complexity of timing constraints.
Table 2 summarizes their complexity.

Table 1 and 3 summarize the results for Random, and Table 2 summarizes the
results for Unbalanced. Table 1 shows that LearnTA requires more membership
queries than OneSMT. This is likely because of the difference in the definition
of prefixes and successors: OneSMT’s definitions are discrete (e. g., prefixes are
only with respect to events with time elapse), whereas ours are both continuous
and discrete (e. g., we also consider prefixes by trimming the dwell time in the
end); Since our definition makes significantly more prefixes, LearnTA tends to
require much more membership queries. Another, more high-level reason is that
LearnTA learns a DTA without knowing the number of the clock variables,
and many more timed words are potentially helpful for learning. Table 1 shows
that LearnTA requires significantly many membership queries for 4 4 20. This
is likely because of the exponential blowup with respect to KC , as discussed
in Sect. 4.6. In Fig. 3, we observe that for both LearnTA and OneSMT, the
number of membership queries increases nearly exponentially to the number of
locations. This coincides with the discussion in Sect. 4.6.

In contrast, Table 1 shows that LearnTA requires fewer equivalence queries
than OneSMT. This suggests that the cohesion in Definition 24 successfully
detected contradictions in observation before generating a hypothesis, whereas
OneSMT mines timing constraints mainly by equivalence queries and tends to
require more equivalence queries. In Fig. 3c, we observe that for both LearnTA
and OneSMT, the number of equivalence queries increases nearly linearly to the
number of locations. This also coincides with the complexity analysis in Sect. 4.6.
Figure 3c also shows that the number of equivalence queries increases faster in
OneSMT than in LearnTA.
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Table 3. Summary of the target DTA and the results for practical benchmarks. The
columns are the same as Table 2. Cells with the best results are highlighted.

|L| |Σ| |C| KC # of Mem. queries # of Eq. queries Exec. time [sec.]

AKM
LearnTA 17 12 1 5 12,263 11 5.85e-01

OneSMT 17 12 1 5 3,453 49 7.97e+00

CAS
LearnTA 14 10 1 27 66,067 17 4.65e+00

OneSMT 14 10 1 27 4,769 18 9.58e+01

Light
LearnTA 5 5 1 10 3,057 7 3.30e-02

OneSMT 5 5 1 10 210 7 9.32e-01

PC
LearnTA 26 17 1 10 245,134 23 6.49e+01

OneSMT 26 17 1 10 10,390 29 1.24e+02

TCP
LearnTA 22 13 1 2 11,300 15 3.82e-01

OneSMT 22 13 1 2 4,713 32 2.20e+01

Train
LearnTA 6 6 1 10 13,487 8 1.72e-01

OneSMT 6 6 1 10 838 13 1.13e+00

FDDI LearnTA 16 5 7 6 9,986,271 43 3.00e+03

Table 2 also suggests a similar tendency: the number of membership queries
rapidly increases to the complexity of the timing constraints; In contrast, the
number of equivalence queries increases rather slowly. Moreover, LearnTA is
scalable enough to learn a DTA with five clock variables within 15 min.

Table 1 also suggests that LearnTA does not scale well to the maximum
constant in the guards, as observed in Sect. 4.6. However, we still observe that
LearnTA requires fewer equivalence queries than OneSMT. Overall, compared
with OneSMT, LearnTA has better scalability in the number of equivalence
queries and worse scalability in the number of membership queries.

5.2 RQ2: Performance on Practical Benchmarks

To evaluate the practicality of LearnTA, we used seven benchmarks: AKM,
CAS, Light, PC, TCP, Train, and FDDI. Table 3 summarizes their complexity. All
the benchmarks other than FDDI are taken from [30] (or its implementation [1]).
FDDI is taken from TChecker [2]. We use the instance of FDDI with two processes.

Table 3 summarizes the results for the benchmarks from practical applica-
tions. We observe, again, that LearnTA requires more membership queries and
fewer equivalence queries than OneSMT. However, for these benchmarks, the
difference in the number of membership queries tends to be much smaller than
in Random. This is because these benchmarks have simpler timing constraints
than Random for the exploration by LearnTA. In AKM, Light, PC, TCP, and
Train, the clock variable can be reset at every edge without changing the lan-
guage. For such a DTA, all simple elementary languages are equivalent in terms
of the Nerode-style congruence if we have the same edge at their last event and
the same dwell time after it. If two simple elementary languages are equivalent,
LearnTA explores the successors of only one of them, and the exploration is
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relatively efficient. We have a similar situation in CAS. Moreover, in many of
these DTAs, only a few edges have guards. Overall, despite the large number of
locations and alphabets, these languages’ complexities are mild for LearnTA.

We also observe that, surprisingly, for all of these benchmarks, LearnTA
took a shorter time for DTA learning than OneSMT. This is partly because
of the difference in the implementation language (i. e., C++ vs. Python) but
also because of the small number of equivalence queries and the mild number of
membership queries. Moreover, although it requires significantly more queries,
LearnTA successfully learned FDDI with seven clock variables. Overall, such
efficiency on benchmarks from practical applications suggests the potential use-
fulness of LearnTA in some realistic scenarios.

6 Conclusions and Future Work

Extending the L* algorithm, we proposed an active learning algorithm for DTAs.
Our extension is by our Nerode-style congruence for recognizable timed lan-
guages. We proved the termination and the correctness of our algorithm. We also
proved that our learning algorithm requires a polynomial number of queries with
a smart teacher and an exponential number of queries with a normal teacher.
Our experiment results also suggest the practical relevance of our algorithm.

One of the future directions is to extend more recent automata learning
algorithms (e. g., TTT algorithm [19] to improve the efficiency) to DTA learning.
Another direction is constructing a passive DTA learning algorithm based on our
congruence and an existing passive DFA learning algorithm. It is also a future
direction to apply our learning algorithm for practical usage, e. g., identification
of black-box systems and testing black-box systems with black-box checking [22,
24,28]. Optimization of the algorithm, e. g., by incorporating clock information
is also a future direction.
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Abstract. AWS IoT Events is an AWS service that makes it easy to
respond to events from IoT sensors and applications. Detector models in
AWS IoT Events enable customers to monitor their equipment or device
fleets for failures or changes in operation and trigger actions when such
events occur. If these models are incorrect, they may become out-of-sync
with the actual state of the equipment causing customers to be unable
to respond to events occurring on it.

Working backwards from common mistakes made when creating
detector models, we have created a set of automated analyzers that
allow customers to prove their models are free from six common mis-
takes. Our analyzers have been running in the AWS IoT Events pro-
duction service since December 2021. Our analyzers check six correct-
ness properties in the production service in real time. 93% of customers
of AWS IoT Events have run our analyzers without needing to have any
knowledge of them. Our analyzers have reported property violations in
22% of submitted detector models in the production service.

1 Introduction

AWS IoT Events is a managed service for managing fleets of IoT devices.
Customers use AWS IoT Events in diverse use cases such as monitoring
self-driving wheelchairs, monitoring a device’s network connectivity, humidity,
temperature, pressure, oil level, and oil temperature sensing. Customers use
AWS IoT Events by creating a detector model that detects events occurring on
IoT devices and notifies an external service so that a corrective action can be
taken. An example is an industrial boiler which constantly reports its tempera-
ture to a detector. The detector tracks the boiler’s average temperature over the
past 90min and notifies a human operator when it is running too hot.
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Each detector model is defined as a finite state machine with dynamically
typed variables and timers, where timers allow detectors to keep track of state
over time. A model processes inputs from IoT devices to update internal state
and to notify other AWS services when events are detected. Customers can use
a single detector model to instantaneously detect events in thousands of devices.
Ensuring well-formedness of a detector model is crucial as ill-formed detector
models can miss events in every monitored device.

Starting from a survey that identified sources of well-formedness problems in
customer models, we identified most common mistakes made by customers and
detect them using type- and model-checking. To use a model-checker for checking
well-formedness of a detector model, we formalize the execution semantics of a
detector model and translate this semantics into the source-language notation of
the JKind model checker [1]. Model checking [2–9] verifies desirable properties
over the behavior of a system by performing the equivalent of an exhaustive
enumeration of all the states reachable from its initial state. Most model checking
tools use symbolic encodings and some form of induction [6] to prove properties
of very large finite or even infinite state spaces.

We have implemented type-checking and model-checking as an analysis fea-
ture in the production AWS IoT Events service. Our analyzers have reported
well-formedness property violations in 22% of submitted detector models. 93%
of customers of AWS IoT Events have checked their detector models using our
analyzers. Our analyzers report property violations to customers with an average
latency of 5.6 s (see Sect. 4).

Our contributions are as follows:

1. We formalize the semantics of AWS IoT Events detector models.
2. We identify six well-formedness properties whose violations detect common

customer mistakes.
3. We create fast, push-button analyzers that report property violations to cus-

tomers.

2 Overview

Consider a user of AWS IoT Events who wants to monitor the temperature of an
industrial boiler. If the industrial boiler overheats, it can cause fires and endanger
human lives. To detect an early warning of an overheating event, they want to
automatically identify two different alarming events on the boiler’s temperature.
They want their first alarm to be triggered if the boiler’s reported temperature
is outside the normal range for more than 1min. They want their second alarm
to be triggered if the temperature is outside the normal range for another 5min
after the first alarm.

A user might try to implement these requirements by creating the (flawed)
detector model shown in Fig. 1. This detector receives temperature data from
the boiler and responds by sending a text message to the user. The detector
model contains four states:
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Fig. 1. AWS IoT Events detector model
with two alarms (buggy version)

Fig. 2. An action in the detector
model from Fig. 1

– TempOK: starting state of the detector model. The detector stays in this
state as long as the boiler’s temperature lies in a normal range. The detec-
tor transitions from TempOK to GettingTooHot on detecting a temperature
outside normal range, indicated by TempAbnormal.

– GettingTooHot: detector starts a 1min timer and transitions back to TempOK
if the boiler cools down. When the timer expires, it transitions to TooHot.

– TooHot: detector first notifies the user of the 1st alarm. It then starts a 5min
timer and transitions back to TempOK if the boiler cools down. When the
5min timer expires, it transitions to StillTooHot.

– StillTooHot: detector notifies user of the 2nd alarm.

Understanding the Bug: Every state in the detector model consists of actions.
An action changes the internal state of a detector or triggers an external service.
For example, the GettingTooHot state consists of an action that starts a timer.
The user can edit these actions with an interface shown in Fig. 2. This action
starts a one minute timer named Wait1Min. Note that timers are accessible from
every state in the detector model. Even though the Wait1Min timer is created
in the GettingTooHot state of Fig. 1, it can be checked for expiration in all the
four states of Fig. 1.

The detector model in Fig. 1 has a fatal flaw based on a typo. The user has
written timeout(“Wait1Min”) instead of timeout(“Wait5Min”) when transitioning
out of TooHot. This is allowed as timers are globally referenceable. However, it is
a bug because each global timer has a unique name and the Wait1Min timer has
already been used and expired. This makes StillTooHot unreachable, meaning
the 2nd alarm won’t ever fire, since a timer can expire at most once.

Related Work. Languages such as IOTA [10], SIFT [11], and the system from
Garcia et al. [12] use trigger-condition-action rules [13] to control the behavior of
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internet of things applications. These languages have the benefit of being largely
declarative, allowing users to specify desired actions under different environmen-
tal stimuli. Similar to our approach, SIFT [11] automatically removes common
user mistakes as well as compiles specifications into controller implementations
without user interaction, and IOTA [10] is a reasoning calculus that allows cus-
tom specifications to be written both about why something should or should not
occur. AWS IoT Events is designed explicitly for monitoring, rather than con-
trol, and our approach is imperative, rather than declarative: detector models
do not have the same inconsistencies as rule sets, as they are disambiguated
using explicit priorities on transitions. On the other hand, customers may still
construct machines that do not match their intentions, motivating the analyses
described in this paper.

3 Technique

In this section, we present a formal execution semantics of an AWS IoT Events
detector model and describe specifications for the correctness properties.

Formalization of Detector Models. Defining the alphabet and the transition
relation for the state machine is perhaps the most interesting aspect of our for-
malization. Since detector models may contain global timers, timed automata [14]
might seem like an apt candidate abstraction. However, AWS IoT Events users
are not allowed to change the clock frequency of timers, nor specify arbitrary
clock constraints. These observations allow us to formalize the detector models
as a regular state machine, with timeout durations as additional state variables.

Formally, we represent the state machine for a detector model M as a tuple
〈S,S0, I,G,T, EE , EX , EI〉, where:

– S: finite set of states in the FSM,
– S0 ⊆ S: set of initial state(s),
– I: set of input variables assigned by the environment
– G: set of global variables assigned by the state machine
– T: set of timer variables that are reset by the model and updated as time

evolves in the environment
– EE : S → κ list: mapping from states to a (possibly empty) list of entry

events to be performed when entering a state. κ describes an event, further
explained in the description of the grammar.

– EX : S → κ list is a mapping from states to a list of exit events to be
performed when exiting a state.

– EI : S → (κ list × μ list): mapping from states to a list of input events,
including transitions to other states.

It is assumed that the sets I, G, and T are pairwise disjoint, and we define
the set V � I ∪ G to represent input and global variables in the model.

We denote by V the set of values for global (G) and input (I) variables; V
ranges over the values of primitive types: integers, decimals (rationals), booleans,
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τ ::= int | dec | str | bool
::= e0 bop e1 | uop e0 | l | v | timeout(t) | isundefined(v) | . . .

α ::= setTimer(t, e) | resetTimer(t)
| clearTimer(t) | setGlobal(g, e)

κ ::= event(e, a∗)
μ ::= transition(e, a∗, s)

ι ::= message(i, v) timeout(t)

Fig. 3. Types, expressions, actions, and events in IoT Events Detector Models

and strings. Integers and rationals are assumed to be unbounded, and rationals
are arbitrarily precise. We use N as the domain for time and timeout values. Sets
V

⊥ and N
⊥ are extended with the value ⊥ to represent an uninitialized variable.

The grammar for types (τ), expressions (ε), actions (α), events (κ), transi-
tions (μ) and input triggers (ι) is shown in Fig. 3. In the grammar, metavariable
e stands for an expression, l stands for a literal value in V, v stands for any vari-
able in V, t is a timer variable in T, a is an action, and i is an input in I. The
unary and binary operators include standard arithmetic, Boolean, and relational
operators. The timeout expression is true at the instant timer t expires, and the
isundefined expression returns true if the variable or timer in question has
not been assigned. Actions (α) describe changes to the system state: setTimer
starts a timer and sets the periodicity of the timer, while the resetTimer and
clearTimer reset and clear a timer (without changing the periodicity of the
timer). The setGlobal action assigns a global variable. Events (κ) describe con-
ditions under which a sequence of actions occur.

We define configurations C for the state machine as:

C � S × (I → V
⊥) × (T → (N⊥ × N

⊥)) × (G → V
⊥)

Each configuration C = 〈s, i, t, g〉 tracks the following:

– a state s ∈ S in the detector model,
– the input valuation i ∈ (I → V

⊥) containing the values of inputs,
– the timer valuation t ∈ (T → (N⊥ ×N

⊥)) for user-defined timers. Each timer
has both a periodicity and (if active) a time remaining, and

– the global valuation g ∈ (G → V
⊥) for global variables in the detector model.

Example 1. Consider a corrected version of our example detector model from
Fig. 1 which has two timers, Wait1Min and Wait5Min, and no global variables.
Some examples of configurations for this model are:

– 〈TempOK, {temp : ⊥}, {Wait1Min : (⊥, ⊥), Wait5Min : (⊥, ⊥)}, {}〉 is the initial configuration.
The model contains input temp, timers Wait1Min and Wait5Min, and no global
variables. As no variables or timers have been assigned, all variables have value
undefined (⊥).
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C e v
C α a C C α∗ al C
C κ k C C κ∗ kl C
C μ∗ ml C C EI

EI C

ι C
i

C

s, i, t, g e v

s, i, t, g α setTimer(tr, e)
s, i, t[tr (v, v)], g

t(tr) = (p, v)
s, i, t, g α resetTimer(tr)
s, i, t[tr (p, p)], g

t(tr) = (p, v)
s, i, t, g α clearTimer(tr)
s, i, t[tr (p,⊥)], g

s, i, t, g e v

s, i, t, g α setGlobal(gv, e)
s, i, t, g[gv v]

C e false

C κ event(e, al) C

C e true
C α∗ al C

C κ event(e, al) C

C μ∗ nil C

C e false
C μ∗ tl C

C μ∗ transition(e, al, s ) :: tl C

C e true C α∗ al C
C κ∗ EX(C.s) C

C [s s ], ti κ∗ EE(s ) C

C μ∗ transition(e, al, s ) :: tl C

C κ∗ kl C
C μ∗ ml C

C EI
(kl,ml) C

matchesEarliest(C.t, ti) ∧ subtractTimers(C, ti) C

C EI
EI(C .s) C ∧ clearTimers(C ) C

ι C
timeout(ti)

C

s, i[iv v], t, g EI
EI(C.s) C

ι s, i, t, g
message(iv,v)

C

Fig. 4. Rules describing behavior of the system

– 〈TooHot, {temp : 300}, {Wait1Min : (60, ⊥), Wait5Min : (300, 260)}, {}〉 is the configuration
at global time t if the temperature is still beyond the normal range and we
transition to the TooHot detector model state. Note the Wait1Min timer is no
longer set whereas the Wait5Min timer has a periodicity of 300 and is set to
expire at t + 260.

To define the execution semantics, we create a structural operational seman-
tics for each of the grammar rules and for the interaction with the external
environment, as shown in Fig. 4. We distinguish semantic rules by decorating
the turnstiles with the grammar type that they operate over (ε, α, κ, μ, EI , and
ι). The variables e, a, k,m, i stand in for elements of the appropriate syntactic
class defined by the turnstile. For lists of elements, we decorate the syntactic
class with * (e.g. 	α∗), and the variables with ‘l’ (e.g. al). We use the following
notation conventions: Given C = 〈s, i, t, g〉, we say C.s = s, and similarly with
the other components of C. We also say C[s ← s′] is equivalent to 〈s′, i, t, g〉,
and similarly with the other components of C.

Expressions (	ε) evaluate to values, given a configuration. We do not present
expression rules (they are simple), but illustrate the other rule types in Fig. 4.
For actions (	α), the setTimer rule establishes the periodicity of a timer and
also starts it. The resetTimer and clearTimer rules restart an existing timer
given a periodicity p or clear it, respectively, and the setGlobal rule updates
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the value of a global variable. Events (κ) are used by entry and exit events for
states. The list rules for actions (α∗) and events (κ∗) are not presented but are
straightforward: they apply the relevant rule to the head of the list and pass the
updated configuration to the remainder of the list, or return the configuration
unchanged for nil. Transition event lists (μ∗) cause the system to change state,
executing (only) the first transition from the list whose guard e evaluates to
true. Finally, the top-level rule 	ι describes how the system evolves according to
external stimuli.

A run of the machine is any valid sequence of configurations produced by
repeated applications of the 	ι rule. Timeout inputs increment the time to the
earliest active timeout as described by the matchesEarliest predicate:

matchesEarliest(t, x) ≡ ∃ti, pi.(pi, x) = t(ti)∧
∀tj , pj , y.((pj , y) = t(tj) =⇒ y = ⊥ ∨ y ≥ x)

The subtractTimers function subtracts ti from each timer in C, and the
clearTimers function, for any timers whose time remaining is equal to zero,
calls the clearTimer action1.

3.1 Well-formedness Properties

To find common issues with detector models, we surveyed (i) detector models
across customer tickets submitted to AWS IoT Events, (ii) questions posted on
internal forums like the AWS re:Post forum [15], and (iii) feedback submitted via
the web-based console for AWS IoT Events. Based on this survey, we determined
that the following correctness properties should hold over all detector models.
For more details about this survey, please refer to Appendix A.

The Model does not Contain Type Errors: The AWS IoT Events expression
language is untyped, and thus, may contain ill-typed expressions, e.g., performing
arithmetic operations on Booleans. A large class of such bugs can be readily
detected and prevented using a type inference algorithm. The algorithm follows
the standard Hindley-Milner type unification approach [16–18] and generates
(and solves) a set of type constraints or reports an error if no valid typing
is possible. We use this type inference algorithm to detect type errors in the
detector model. Every type error is reported as a warning to the customer.
When our type inference successfully infers types for expressions, we use them
to construct a well-typed abstract state machine using the formalization reported
in Sect. 3.

For the remaining well-formedness properties we use model checking. We
introduce one or more indicator variables in our global abstract state to track
certain kinds of updates in the state machine, and then we assert temporal
properties on these indicator variables. Because we use a model checker that
1 In the interests of space, we do not cover the batch execution mode, where all variables

used in expressions maintain their “pre-state” value until the step is completed; it is
a straightforward extension.
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checks only safety properties, in many cases we invert the property of interest
and check that its negation is falsifiable, using the same mechanism often used
for test-case generation [19].

Every Detector Model State is Reachable and Every Detector Model
Transition and Event can be Executed: For each state s ∈ S, we add a
new Boolean reachability indicator variable v s

reached to our abstract state that
is initially false and assigned true when the state is entered (similarly for
transitions and events). To encode the property in a safety property checker, we
encode the following unreachability property expressed in LTL and check it is
falsifiable. If it is provable, the tool warns the user.

Unreachable(s) � � (¬ v s
reached)

Every Variable is Set Before Use: In order to test that variables are properly
initialized, first we identify the places where variables are assigned and used. In
detector models, there are three places where variables are used: in the evaluation
of conditions for events and transitions, and in the setGlobal action (which
occurs because of an event or transition). We want to demonstrate that the
variables used within these contexts are never equal to ⊥ during evaluation. In
this case, we can reuse the reachability variables that we have created for events
and transitions to encode that variables should always have defined values when
they are used.

We first define some functions to extract the set of variables used in expres-
sions and action lists. The function V ars(e) : ε → v set simply extracts the
variables in the expression. For action lists, it is slightly more complex, because
variables are both defined and used:

V ars(nil) = {}
V ars(setTimer(t, e) :: tl) = V ars(e) ∪ V ars(tl)

V ars(resetTimer(t) :: tl) = V ars(tl)

V ars(clearTimer(t) :: tl) = V ars(tl)

V ars(setGlobal(g, e) :: tl) = V ars(e) ∪ (V ars(tl) − {g})
V ars(event(e, al)) = V ars(e) ∪ V ars(al)

V ars(transition(e, al, s′)) = V ars(e) ∪ V ars(al)

Every event or transition can be executed at most once during a computation
step, so we can use the execution indicator variables to determine when a variable
might be used.

∀ai, vj ∈ V ars(ai) .

SetBeforeUse(ai, vj) � � (v ai
exec =⇒ vj �= ⊥)

Input Read Only on Message Trigger: This property is covered in the
previous property, with one small change. To enforce it, we modify the translation
of the semantics slightly so that at the beginning of each step, prior to processing
the input message, all input variables are assigned ⊥.
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Message Triggered Between Consecutive Timeouts: We conservatively
approximate a liveness property (no infinite path consisting of only timeout
events) with a safety property: the same timer should not timeout twice without
an input message occurring in between the timeouts. This formulation may flag
models that do not have infinite paths with no input events, but our customers
consider it a reasonable indicator.

We begin by defining an indicator variable for each timer ti (of type integer
rather than Boolean): vi

timeout and initialize it to zero. We modify the translation
of updateTimers to increment this variable when its timer variable equals zero,
and modify the translation of the message rule to reset all vi

timeout variables to
zero. The property of interest is then:

NoConsecutiveTimeouts(ti) � �
(
vi
timeout < 2

)

4 Experiments

In this section, we evaluate the performance of model-checking safety properties
on detector models, with a focus on model checking latency. Low analysis latency
is crucial because our tool warns customers of property violations while they are
editing their detector model. Our type inference implementation runs with an
average latency of 10 milliseconds on all the detector models in our experiments.
Since type inference is much faster than model checking and can be successfully
run on all detector models, we do not evaluate it in this section.

AWS IoT Events has a commercial feature [20] which uses the type check-
ing and model checking described in Sect. 3. The feature’s implementation first
infers types using the type inference algorithm. Next, it translates the detector
model into the Lustre language [21]. The translation of IoT Events into Lustre
is straightforward and directly follows from the semantics presented in Sect. 3.
The safety properties described in Sect. 3.1 are attached to the model, along with
location information. Then the feature analyzes the model using the JKind [1]
tool suite, an open-source industrial model-checker. If JKind invalidates a safety
property, the feature decodes the location from the safety property and includes
it in the warning.

To evaluate this implementation, we randomly selected 210 detector models
previously analyzed by the commercial feature. We checked the five properties
described in Sect. 3.1 in parallel on a c4.8xlarge EC2 instance running Amazon
Linux 2 x86_64 using JKind version 4.4.1, with a timeout of 60 s.

Of the safety properties that we were able to translate to Lustre, JKind
resolved 96% within our timeout of 60 s, with 80% completing in less than 10 s.

Table 1 shows that checking the no-unreachable-action safety property
requires the most time to complete. The detector models analyzed in the evalu-
ation include models for monitoring self-driving wheel chairs, monitoring device
connectivity, humidity, temperature, pressure, oil level, oil temperature, doors,
motion, refrigerator temperature, dough fermentation, and vehicle speed-sensing.
They consisted of between 1–7 states and from 0–14 state changes. The no-
unreachable-action safety property is checked on every action, generating an
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Table 1. Performance of our model-checking tool against 210 detector models

safety property avg. latency (milliseconds) # completed # translation failed # timeout

no-unreachable-state 3544 176 28 6
no-unreachable-action 5586 171 28 11
var-always-set-before-use 2968 179 28 3
no-infinite-timer-expiration 2875 174 28 8
no-input-read-with-timer-expiration 5477 177 30 3

average of 17 safety properties per detector model, the most of any kind of
safety property. This large number of properties to be checked on every detector
model caused checking the no-unreachable-action safety property to have the
highest average latency (5.6 s per analysis).

Table 1 shows that about 13% of the properties could not be translated to
Lustre. In 2% of the detector models, translation failures arose due to type
errors or incorrect use of the AWS IoT Events expression language in the detec-
tor model. The remaining translation failures occurred due to either: (1) use
of operations not supported by Lustre, (2) no types being inferred for inputs
or variables in the detector model, or (3) use of non-linear arithmetic, which
is unsupported in JKind. Bitwise functions, strings, and array data types are
supported in the AWS IoT Events expression language but not in Lustre. This
language gap prevented us from translating 19 of the 210 detector models. Fail-
ing to infer a type for a variable in the detector model prevented translation of
6 of the 210 detector models. JKind’s lack of support for non-linear arithmetic
prevented model-checking 2 of the 210 detector models. We are actively working
to support more functions, string and array data types, type annotations, and
non-linear arithmetic in our model-checking of detector models.

5 Conclusion

Our analyzers have been running in the AWS IoT Events production service
since December 2021. Since then, 93% of AWS IoT Events customers have used
our implementation to check their detector models for well-formedness, without
needing to have any knowledge of the underlying type checking and model check-
ing. Our analyzers successfully complete for 85% of real-world detector models
and we are actively working on improving this support as explained in Sect. 4.
Overall, our implementation has reported well-formedness property violations in
22% of submitted detector models in the production service, with an average
latency of 5.6 s. We find giving customers push-button access to fast verification
without requiring any knowledge of the underlying techniques enables adoption
of automated reasoning-based tools.
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A Common Issues with Detector Models

Table 2. Issues seen in detector models from customer questions

# Issue # of instances
1 incorrectly scaling detector model 1
2 unreachable action 2
3 infinite loop 3
4 variable-used-before-set 3
5 input read on timer expiration 3
6 insufficient logging permissions 3
7 incorrectly typed expression 5
8 incorrect cross-service setup 8
9 missing simplifications 8

36

As mentioned in Sect. 3.1, we surveyed customer detector models for generic
correctness problems. We present the root causes of the problems from this study
in Table 2. Incorrect scaling (#1) occurs when the customer does not set up their
detector model to be instantiated correctly for every IoT device in their fleet.
Infinite loop (#3) occurs when the detector model has an infinite execution path
involving only timeout events and no external input messages. IoT models should
be eventually quiescent if no external inputs occur.

Variable-used-before-set (#4) occurs when a variable in the detector’s state
is read from before being set to an initial value. AWS IoT Events does not require
variables in detector models to be initialized.

A step through a detector can be triggered due to both a timer expiration
or a new value being sent to the detector by the outside world. Input read on
timer expiration (#5) occurs when a step, triggered by timer expiration, causes
the detector to read from its input(s). This is a problem because customers often
do not realize that such a read will return the last value sent to the detector by
the outside world. Insufficient logging permissions (#6) occurs when a detector
is not given sufficient permissions to produce logging output. Incorrect cross-
service setup (#8) occurs when customers do not correctly set up data flow
across services in AWS IoT. While unnecessarily complex detector models (#9)
is not a correctness problem, it poses a significant difficulty to customers in
maintaining their detector models, and so, we include it in Table 2.

Of these 9 root causes, we identified that type checking and model checking
detected 5 root causes highlighted in green in Table 2. These 5 root causes were
responsible for 44% of issues in our survey. Based on Table 2, we determined that
the following correctness properties should hold over all detector models:

1. Detector models must be well-typed
2. Every detector model state must be reachable
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3. Every detector model action must be executable
4. Every variable must be set before being used
5. Input reads shall not happen on timer expiration
6. Detector model must not have infinite timer expirations

We explain these properties further s in Sect. 3.1.
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Abstract. Compositional verification, such as the technique of assume-
guarantee reasoning (AGR), is to verify a property of a system from the
properties of its components. It is essential to address the state explosion
problem associated with model checking. However, obtaining the appro-
priate assumption for AGR is always a highly mental challenge, especially
in the case of timed systems. In this paper, we propose a learning-based
compositional verification framework for deterministic timed automata.
In this framework, a modified learning algorithm is used to automatically
construct the assumption in the form of a deterministic one-clock timed
automaton, and an effective scheme is implemented to obtain the clock
reset information for the assumption learning. We prove the correctness
and termination of the framework and present two kinds of improvements
to speed up the verification. We discuss the results of our experiments to
evaluate the scalability and effectiveness of the framework. The results
show that the framework we propose can reduce state space effectively,
and it outperforms traditional monolithic model checking for most cases.

1 Introduction

Model checking [9,19,33,36] is an important technique to automatically deter-
mine whether a system satisfies a specified property. However, it suffers from
the state explosion problem since it needs to store the explored system states in
memory, which is impossible for most realistic systems [21]. In timed systems,
although symbolic representations and partial order reductions have greatly
increased the size of the systems that can be verified, many realistic timed sys-
tems are still too large to be handled. In particular, if a system has several
components, the number of global system states will grow exponentially with
the number of components. Assume-guarantee reasoning (AGR) [20,25,29,35] is
a promising method helpful to address the state explosion problem.

Consider a system M composed of two components M1 and M2 that synchro-
nize on a given set of shared actions. Supposing we are to verify that M satisfies
a property φ, the verification rule in AG states that if there exists an assumption
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A on the environment of M2 such that 1) M1 and A satisfy the property φ, and
2) M2 is a refinement of A, then M satisfies φ.

A major challenge in verifying component-based systems using the AG rule is
the need to obtain the appropriate assumption that requires non-trivial human
effort [26]. Based on abstraction-refinement paradigm in [22], the assumption is
computed as a conservative abstraction of some of the components, and it is
then refined using counterexamples obtained from model checking it [15]. The
algorithm presented in [24] is capable of generating the weakest possible assump-
tion automatically, though it does not compute partial results. In the later work
[23], a framework is proposed for the automatic generation of assumptions in
an incremental fashion using the L* learning algorithm [8]. Several improve-
ments, e.g. [14,17,18,38], are proposed to further reduce the learning complex-
ity. The work [6] by Alur et al. presents a symbolic implementation of the L*
algorithm where the required data structures are maintained compactly using
ordered BDDs [16].

All the aforementioned work focuses on untimed systems. For timed systems,
using assume-guarantee style proof rules, the work in [39] proves a refined rep-
resentation is a correct implementation of an abstract one. To check Zeroconf,
a protocol for dynamic configuration of IPv4 link-local addresses, Berendsen et
al. [12] model the protocol as a network of timed automata (TAs) [3,4], and
provide a proof that combines model checking with the application of a new
abstraction relation that is compositional with respect to committed locations.
However, the abstract models there are all provided manually. Compared to the
manual methods, the compositional verification framework presented in [31,32]
utilizes a learning algorithm for automatic construction of timed assumptions
for AGR. The work considers event-recording automata [5], which are a subclass
of timed automata. Sankur [37] gives compositional verification for the system
composed by a deterministic finite automaton (DFA) and a timed automaton,
where a DFA assumption is learned [27] to approximate the timed component.
The framework can only check the untimed property of the system and it has
the limitation that the TA size is relatively small.

The timed automaton is the most appreciated model for its simplicity and
adequacy in expressiveness, and it is widely used for practical real-time systems
[28,30]. However, to the best of our knowledge, though compositional verifica-
tion for timed systems helps mitigate the state space explosion problem, there is
still no work to tackle the problem of automatically inferring the timed assump-
tions based on AGR for timed automata. Therefore, we propose, in this paper, a
learning-based framework for AG-based automatic verification of deterministic
timed automata. The framework applies the compositional rule in an iterative
fashion. Each iteration consists of three steps. In the first step, based on the
work in [7], a modified L* algorithm is presented to learn a timed assumption in
the form of a deterministic one-clock timed automata (DOTAs) using member-
ship queries. Then two further steps are conducted to check whether the learned
assumption satisfies the two premises of the proof rule via candidate queries. We
design an algorithm for model conversion with polynomial complexity, which
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is executed as a step preceding the above iterative steps. It converts the input
models M1, M2 and φ to the output ones, which contain the clock reset infor-
mation for the assumption learning. Thus, the complexity of the learning step
in the framework in total is polynomial. We show this conversion preserves the
verification results.

We further prove the correctness and termination of the compositional ver-
ification. We would like to note that the framework we propose applies to ver-
ification of systems with a number of components. In other words, though the
assumption learned is a DOTA, M1 and M2 can be compositions of several
DOTAs. For this, we design a heuristic to transform multi-clock reset infor-
mation to one-clock reset information, which enables the framework to handle
learning-based compositional verification for multi-clock systems. We also pro-
pose two improvements to speed up the verification, which are shown to have
different advantages in cases of experiments. Finally, we implement the frame-
work and conduct comparative experiments with UPPAAL [10,11] on cases of
the benchmark of AUTOSAR (Automotive Open System Architecture) [1]. The
experiments show that the framework proposed in this paper performs better
than that of UPPAAL provided the properties to be checked are satisfied.

The rest of the paper is organized as follows. In Sect. 2, we introduce back-
ground knowledge. We present in Sect. 3 our learning-based compositional verifi-
cation framework, as well as the proofs of termination and correctness. In Sect. 4,
we present the two improvements. We report the experimental results in Sect. 5.
Finally, we discuss the conclusions of the paper in Sect. 6.

2 Preliminaries

We use N to denote the set of natural numbers, R≥0 the set of non-negative
reals, and let B = {�,⊥}, where � and ⊥ stand for true and false, respectively.

2.1 Timed Automata

Let X be a finite set of real-valued variables ranged over by x, y, etc. standing
for clocks. A clock valuation for X is a function ν : X �→ R≥0 which associates
every clock x with a value ν(x) ∈ R≥0. For t ∈ R≥0, let ν + t denote the clock
valuation which maps every clock x ∈ X to the value ν(x) + t. For a set γ ⊆ X
and a valuation ν, we use [γ → 0]ν to denote the valuation which resets all clock
variables in γ to 0 and agrees with ν for other clocks in X\γ.

We use Φ(X) to denote the set of clock constraints over X of the form
ϕ :: = � | x1 �� m | x1 − x2 �� m | ϕ ∧ ϕ, where x1, x2 ∈ X, m ∈ N and
�� ∈ {=, <,>,≤,≥}. We use ϕ(ν) = � to mean that the clock valuation ν for X
satisfies the clock constraint ϕ over X, i.e. ϕ evaluates to true using the values
given by ν.

Definition 1 (Timed Automata). A timed automaton (TA) is a 6-tuple M =
(Q, q0, Σ, F,X,Δ), where Q is a finite set called the locations, q0 ∈ Q is the
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initial location, Σ is a finite set called the alphabet, F ⊆ Q is the set of accepting
locations, X is the finite set of clocks, and Δ ⊆ Q × Σ × Φ(X) × 2X × Q is a
finite set called the transitions.

A transition δ ∈ Δ is a 5-tuple (q, σ, ϕ, γ, q′), where q, q′ ∈ Q are respectively
the source and target locations, σ ∈ Σ is an action, ϕ is a clock constraint over
X which is called the guard of the transition and specifies that the transition
is enabled when it is true in the source state, and the set γ ⊆ X gives the
reset clocks by this transition. Thus, δ allows a jump from q to q′ by perform-
ing an action σ if it is enabled, i.e. ϕ(ν) = �. We use δ[i] to denote the i’th
element of the tuple δ = (q, σ, ϕ, γ, q′) for i = 1, . . . , 5. A run ρ of M is a finite
sequence of transitions ρ = (q0, ν0)

σ1,t1−→ (q1, ν1)
σ2,t2−→ · · · σn,tn−→ (qn, νn) where

ν0 = {ν(x)|ν(x) = 0, x ∈ X}, and for all 1 ≤ i ≤ n there exists a transition
(qi−1, σi, ϕi, γi, qi) ∈ Δ such that ϕi(νi−1 + ti) = �, and νi = [γi → 0](νi−1 + ti).
If qn is an accepting location, we say ρ is an accepting run of M . Each pair
(σi, ti) ∈ Σ ×R≥0 in the run ρ is called a timed action that indicates the action
σi is applied after ti time units since the occurrence of the previous action.

The timed trace of ρ is a timed word trace(ρ) = (σ1, t1) (σ2, t2) . . . (σn, tn).
Since time value ti represents delay time, we also call such a timed trace a
delay-timed word, denoted by ω. Adding the reset information along ω, we
get the corresponding reset-delay-timed word, denoted by ωr = tracer(ρ) =
(σ1, t1, γ1)(σ2, t2, γ2) · · · (σn, tn, γn). Notice that here γi is a clock set γi ⊆ X
which records the reset clocks in the corresponding transition when taking timed
action (σi, ti).

If ρ is an accepting run of M , trace(ρ) is called an accepting timed word. The
recognized timed language of M is the set of its accepting delay-timed words,
i.e. L(M) = {trace(ρ) | ρ is an accepting run of M}. The recognized reset-delay-
timed language Lr(M) is defined as {tracer(ρ) | ρ is an accepting run of M}. A
TA M is deterministic iff for any given delay-timed word ω, there is at most one
run ρ in M having trace(ρ) = ω.

For a run ρ, we define the corresponding logical-timed word ωl = (σ1,v1)
(σ2,v2) · · · (σn,vn), where vi ∈ R

|X|
≥0 is the vector which records the values for

all clocks in X. Therefore, delay-timed words and logical-timed words describe
the operations of the timed model M from different perspectives. The former
describe M from the external perspective, recording the actions and time inter-
vals between two consecutive actions. While the latter describe it from the inter-
nal perspective, recording the actions and the specific values of internal clocks
when the actions occur. Both are necessary for the active learning algorithm
described in Sect. 2.2.

Given the clock reset information γi along the run ρ over the delay-timed
word ω = (σ1, t1) (σ2, t2) . . . (σn, tn), we can obtain ω’s corresponding logical-
timed word ωl = (σ1,v1)(σ2,v2) · · · (σn,vn) by taking

vi[j] =

{
ti, if i = 1 or xj ∈ γi−1 for all 2 ≤ i ≤ n;
vi−1[j] + ti, otherwise.

(1)
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where 1 ≤ j ≤ |X| and vi[j] is the j’th element in vi. We use Γ to denote
the mapping from the delay-timed words to the logical-timed words, that is,
Γ (ω) = ωl. With the reset information along the run ρ, we have the reset-
logical-timed word ωrl = (σ1,v1, γ1)(σ2,v2, γ2) . . . (σn,vn, γn). We can extend
the mapping Γ to a mapping from the reset-delay-timed words to the reset-
logical-timed words.

The recognized logical-timed language of M is given as L(M) =
{Γ (trace(ρ)) | ρ is an accepting run of M}, and the recognized reset-logical-timed
language of M is Lr(M) = {Γ (tracer(ρ)) | ρ is an accepting run of M}.

Definition 2 (Projection of Delay-Timed Words). Given a delay-timed
word ω = (σ1, t1) (σ2, t2) ... (σn, tn) ∈ (Σ1 × R≥0)

∗ and an alphabet Σ2, the pro-
jection of ω to Σ2 is a delay-timed word, denoted by ω�Σ2 , and defined as follows:

ω�Σ2 =
(
σi1 ,

∑i1
j=1 tj

)(
σi2 ,

∑i2
j=i1+1 tj

)
...

(
σim ,

∑im
j=im−1+1 tj

)
(2)

where σik ∈ Σ2 is the ik’th action in ω, 1 ≤ k ≤ m.

Therefore, ω�Σ2 restricts each action σik to be in Σ2 and modifies the cor-
responding delay time of σik to be the time interval between σik−1 and σik in
ω. For instance, let ω = (a, 1)(b, 3)(a, 1)(c, 4)(a, 2) and Σ2 = {b, c}, then the
corresponding ω�Σ2 = (b, 4)(c, 5).

Definition 3 (Parallel Composition of Timed Automata). Given two
timed automata M1 = (Q1, q

1
0 , Σ1, F1,X1,Δ1) and M2 = (Q2, q

2
0 , Σ2, F2,X2,Δ2),

assume that the clock sets X1 and X2 are disjoint. Their parallel composition is a
TAM1‖M2 = (Q1×Q2, (q10 , q

2
0), Σ1∪Σ2, F1×F2,X1∪X2,Δ)where the transitions

Δ are as follows:

– for σ ∈ Σ1 ∩ Σ2, for every δ1 : (q1, σ, ϕ1, γ1, q
′
1) ∈ Δ1 and δ2 :

(q2, σ, ϕ2, γ2, q
′
2) ∈ Δ2, ((q1, q2), σ, ϕ1 ∧ ϕ2, γ1 ∪ γ2, (q′

1, q
′
2)) ∈ Δ.

– for σ ∈ Σ1 \ Σ2, for every δ1 : (q1, σ, ϕ1, γ1, q
′
1) ∈ Δ1 and every q ∈ Q2,

((q1, q), σ, ϕ1, γ1, (q′
1, q)) ∈ Δ.

– for σ ∈ Σ2 \ Σ1, for every δ2 : (q2, σ, ϕ2, γ2, q
′
2) ∈ Δ2 and every q ∈ Q1,

((q, q2), σ, ϕ2, γ2, (q, q′
2)) ∈ Δ.

The language of the composition is the set of accepting delay-timed words
and L(M1‖M2) = {ω|ω ∈ ((Σ1 ∪ Σ2) × R≥0)

∗ and ω�Σi
∈ L(Mi), i ∈ {1, 2}}.

Definition 4 (Language Inclusion). Given two timed automata M1 and M2,
if L(M1)�Σ2 = {ω�Σ2 |ω ∈ L(M1)} is a subset of L(M2), we say M1 satisfies M2,
denoted by M1 |= M2.

Definition 5 (Deterministic One-Clock Timed Automata). A one-clock
timed automaton (OTA) is the timed automaton with only one clock. A deter-
ministic OTA is denoted by DOTA.
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2.2 Learning Deterministic One-Clock Timed Automata

In this section, we briefly describe the active learning algorithm for a DOTA
M . We refer to [7] for more details. Active learning of a DOTA assumes the
existence of a teacher who can answer two kinds of queries: membership and
candidate queries posed by a learner. A membership query asks the question
if ωl ∈ L(M) for a logical-timed word ωl; and a candidate query asks if the
learned DOTA A represents the assumption satisfies the equation L(A) = L(M).
The main challenge for learning the timed assumption is to obtain the reset
information of the logical clocks for each transition. We consider two different
settings, depending on whether the teacher also provides clock reset information
along with answers to queries.

A smart teacher is one which provides clock reset information along with
answers to queries. It accepts a logical-timed word ωl as an input for the mem-
bership query from the learner. It then returns an answer about if the timed
word is accepted or not together with reset information of each transition along
the trace, that is, the reset-logical-timed word ωrl.

When the smart teacher takes a candidate query from the learner, a coun-
terexample is yielded and provided as a reset-delay-timed word. The algorithm
maintains a timed observation table T to store answers from all previous queries.
Once the learner has gained sufficient information, i.e. T is closed and consis-
tent, an assumption A is constructed from the table. Then the learner poses
a candidate query to the teacher to judge if L(A) = L(M). If yes, the algo-
rithm terminates with the learned model A. Otherwise, the teacher responds
with a reset-delay-timed word ωr as a counterexample. After processing ωr, the
algorithm starts a new round of learning. The whole procedure repeats until
the teacher gives a positive answer to a candidate query. It is known that the
complexity of the algorithm is polynomial in the size of the learned model. In
practical applications, this corresponds to the case where some parts of the model
(information of clock reset) are known by testing or watchdogs.

In the case when normal teacher is used, the learner needs to guess the
reset information on each transition discovered in the observation table. At each
iteration, the learner guesses all needed reset information and forms a number of
table candidates. Due to the required guesses, the complexity of the algorithm
is exponential in the size of the learned model. The following theorem which is
presented in [7] shows that for both types of teachers, the algorithm converts
the learning problem to that of learning the reset-logical-timed language.

Theorem 1. Given two DOTAs M and A, if Lr(M) = Lr(A), then L(M)=
L(A).

3 Framework for Learning-Based Compositional
Verification of Timed Automata

Consider a system M = M1‖M2 consisting of two deterministic timed automata
and a safety property φ represented as a deterministic timed automaton. We
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devote this section to presenting our learning-based verification framework for
automatically finding an appropriate assumption A in the AG rule to verify that
M satisfies φ. Section 3.1 first describes the framework. Then, in Sects. 3.2, 3.3
and 3.4, the main algorithms of the framework are presented in detail. Finally,
Sect. 3.5 shows the correctness and termination of the framework.

3.1 Verification Framework via Assumption Learning

Let Σ1, Σ2 and Σφ be the alphabets of the TAs M1, M2 and φ, respectively.
We then have that the alphabet of the assumption A0 is ΣA0 = (Σ1 ∪ Σφ) ∩ Σ2.
The AG rule is stated as follow:

M1‖A0 |= φ, M2 |= A0

M1‖M2 |= φ
(3)

The rule converts the problem of verifying M1‖M2 |= φ to that of finding an
assumption A0 which is a DOTA satisfying both M1‖A0 |= φ and M2 |= A0.
Here, we consider M1 and M2 as general TAs, which are either a DOTA or
compositions of a number of DOTAs. Therefore, the framework we propose
is not only applicable to verifying the composition of just two components.
For a system composed of n components, where n > 2, we can partition the
components into two parts. For instance, if a system consists of 4 components
M = {H1,H2,H3,H4}, we can let M1 = H1‖H3 and M2 = H2‖H4. In order to
automatically obtain the assumption, we use model learning algorithms. How-
ever, the current learning algorithm for DOTA [7] is not directly applicable. We
thus design a “smart teacher” with heuristic to answer clock reset information
for the learning. For this, we also need to design a model conversion algorithm.
We illustrate the learning-based verification framework in Fig. 1. The inputs of
the framework are M1, M2 and property φ and the verification process consists
of four steps, which we describe below.

The First Step. This step converts the input models into TAs M ′
1, M ′

2 and φ′

(ref to Sec. 3.2) without changing the verification results, i.e. checking M ′
1‖M ′

2

against φ′ is equivalent to checking M1‖M2 against φ. The output of this step is
utilized to determine the clock reset information for the assumption learning in
the second step. Then, the AG rule 3 is applied to M ′

1, M ′
2 and φ′. Thus, if there

exists an assumption A such that M ′
1‖A |= φ′ and M ′

2 |= A, then M ′
1‖M ′

2 |= φ′.
The weakest assumption Aw is the one with which the rule is guaranteed to
return conclusive results and M ′

1‖Aw |= φ′.

Definition 6 (Weakest Assumption). Let M ′
1, M ′

2 and φ′ be the models
mentioned above and ΣA = (Σ′

1 ∪ Σ′
φ) ∩ Σ′

2. The weakest assumption Aw of
M ′

2 is a timed automaton such that the two conditions hold: 1) ΣAw
= ΣA, and

2) for any timed automaton E with ΣE = ΣA and M ′
2 |= E, M ′

1‖E |= φ′ iff
E |= Aw.
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Fig. 1. Learning-based compositional verification framework for timed automata

The Second Step. A DOTA assumption A is learned through a number of
membership queries in this step. The answer to each query involves gaining the
definite clock reset information for each timed word, i.e. whether the clock of A
is reset when an action is taken at a specific time. We design a heuristic to obtain
such information from the clock reset information of the converted models M ′

1,
M ′

2 and φ′. This allows the framework to handle learning-based compositional
verification for multi-clock systems. We refer to Sect. 3.3 for more details.

The Third and the Fourth Steps. Once the assumption A is constructed,
two candidate queries start for checking the compositional rule. The first is a
subset query to check whether M ′

1‖A |= φ′. The second is a superset query to
check whether M ′

2 |= A. If both candidate queries return true, the compositional
rule guarantees that M ′

1‖M ′
2 |= φ′. Otherwise, a counterexample ctx (either ctx1

or ctx2 in Fig. 1) is generated and further analyzed to identify whether ctx is a
witness of the violation of M ′

1‖M ′
2 |= φ′. If it does not show the violation, ctx

is used to update A in the next learning iteration. The details about candidate
queries are discussed in Sect. 3.4.

Therefore, L(A) is a subset of L(Aw) and a superset of L(M ′
2)�ΣA

. It is not
guaranteed that a DOTA A can be learned to satisfy L(A) = L(Aw). However,
as shown later in Theorem 3, under the condition that L(Aw) is accepted by a
DOTA, the learning process terminates when compositional verification returns
a conclusive result often before L(Aw) is computed. This means that verification
in the framework usually terminates earlier by finding either a counterexample
that verifies that M ′

1‖M ′
2 �|= φ′ or an assumption A that satisfies the two premises

in the reasoning rule, indicating M ′
1‖M ′

2 |= φ′.
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Algorithm 1: ConvertW(M1,M2, φ)
input : Two models M1 and M2 and the property φ to be verified
output: Converted timed automaton M ′

1, M ′
2 and property φ′

1 M ′′
1 , M ′′

2 , φ′′ ← ConvertS(M1, φ, M2);
2 φ′, M ′

1, M
′
2 ← ConvertS(φ′′, M ′′

1 , M ′′
2 );

3 return M ′
1, M

′
2, φ

′;

3.2 Model Conversion

We use membership queries to learn the DOTA assumption. For a membership
query with the input of a logical-timed word ωl, an answer from the teacher is the
clock reset information of the word, which is necessary for obtaining the reset-
logical-timed word ωrl. As shown in [7], the learning algorithm with a normal
teacher can only generate the answer by guessing reset information and this is
the cause of high complexity. We thus design a smart teacher in our framework
scheme. The smart teacher generates the answer to a query with the input ωl

by directly making use of the available clock reset knowledge of L(Aw) (related
with ΣA, M1 and φ). To this end, we implement the model conversion from the
models M1, M2 and φ to the models M ′

1, M ′
2 and φ′, respectively.

The model conversion algorithm is mainly to ensure that each action in ΣA

corresponds to unique clock reset information. Given an action σ having σ ∈ ΣA

and σ ∈ Σ1 (resp. Σφ), if there is only one transition by σ or all its different
transitions have the same reset clocks, i.e. for any transitions δ1 and δ2, δ1[4] =
δ2[4] if δ1[2] = δ2[2] = σ, the reset information for the action σ is simply δ[4]
of any particular transition by σ. If there are different transitions by σ, say δ1
and δ2, which have different reset clocks, i.e. δ1[4] �= δ2[4], we say that the reset
clocks of action σ are inconsistent.

Reset clock inconsistency causes difficulty for the teacher to obtain the clock
reset information of an action in a whole run. To deal with this difficulty, we
design model conversion in Algorithm 1 to convert M1, M2 and φ into M ′

1, M ′
2

and φ′. In the algorithm, the conversion is implemented by calling Algorithm 2
twice to introduce auxiliary actions and transitions into M1 and φ to resolve
reset clock inconsistency in the two automata, respectively.

The converted models M ′
1, M ′

2 and φ′ returned by the invocations to Algo-
rithm 2 have the property that all transitions with the same action σ ∈ ΣA will
have the same reset clocks, and thus M ′

1 and φ′ do not have reset clock incon-
sistency. As shown later in Theorem 2, the verification of M ′

1‖M ′
2 against φ′ is

equivalent to that of M1‖M2 against φ.
Algorithm 2, denoted by ConvertS(M1,M2,M3), takes three determinis-

tic TAs, namely M1, M2 and M3, as its input and convert them into three
new TAs, namely M′

1, M′
2 and M′

3, as the output. We explain the three main
functionalities of the algorithm in the following three paragraphs.

Check Reset Information in M1 (Lines 1-6). Let Σ = (ΣM1 ∪ΣM2)∩ΣM3 ,
f be a binary relation between Σ and 2X , where X is the set of clocks of M1, and
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Algorithm 2: ConvertS(M1,M2,M3)
input : Three timed automata M1, M2, M3

output: Converted timed automata M′
1, M′

2 and M′
3

1 M′
1 ← M1, M′

2 ← M2, M′
3 ← M3;

2 Σ ← (ΣM1 ∪ ΣM2) ∩ ΣM3 ;
3 f ← ∅;
4 for δ ∈ Δ′

1 do
5 if δ[2] ∈ Σ and δ[2] �∈ dom(f) then
6 put 〈δ[2], δ[4]〉 into f ;

7 else if δ[2] ∈ dom(f) and 〈δ[2], δ[4]〉 �∈ f then
8 σ ← δ[2];
9 σnew ← introduce new action;

10 put σnew into ΣM′
1
, ΣM′

2
, ΣM′

3
;

11 for δ′ ∈ {ω|ω ∈ Δ′
1 and ω[2] = σ and ω[4] = δ[4]} do

12 δ′[2] ← σnew;

13 for δ ∈ {ω|ω ∈ Δ′
2 and ω[2] = σ} do

14 δ′ ←clone(δ);

15 δ′[2] ← σnew;

16 put δ′ into Δ′
2;

17 for δ ∈ {ω|ω ∈ Δ′
3 and ω[2] = σ} do

18 δ′ ←clone(δ);

19 δ′[2] ← σnew;

20 put δ′ into Δ′
3;

21 return M′
1, M′

2, M′
3;

f = ∅ initially. The transitions of M1 are checked one by one. For a transition
δ, if its action δ[2] is in Σ but not in the domain of f (Line 5). Transition δ is
the first transition by δ[2] found, and thus the pair 〈δ[2], δ[4]〉 is added to the
relation f . If the action of δ is already in dom(f) but the reset clocks δ[4] is
inconsistent with the records in f , the algorithm proceeds to the next steps to
handle the inconsistency of the reset clocks (Lines 7-20).

Introduce Auxiliary Actions in M1 (Lines 7-12). If δ[2] ∈ dom(f) ∧
〈δ[2], δ[4]〉 �∈ f (Line 7), we need to introduce a new action (through the variable
σnew) and add it to the alphabets of the output models. Then the transition δ
with action σ is modified to a new transition, say δ′ by replacing action σ with
the value of σnew (Lines 11-12).

Add Auxiliary Transitions in M2 and M3 (Lines 13-20). Since new actions
are introduced in M1, we need to add auxiliary transitions with each new action
in M2 and M3 accordingly. Specifically, consider the case when M1 and M2

synchronize on action σ via transitions δ and δ in the models, respectively. If δ in
M1 is modified to δ′ in M′

1 by renaming its action σ to σ′, a fresh co-transition
δ′ should be added to M′

2 which is a copy of δ by changing σ to σ′ so as for
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the synchronisation in the composition of M′
1 and M′

2 (Lines 13-16). The same
changes are made for M3 (Lines 17-20).

Example 1. Fig. 2 shows an example of the conversion. In M1, there are two
transitions that contain action a but only one has clock reset. To solve clock
reset inconsistency of M1, the new action a′ is introduced, and M1 is converted
into M ′′

1 by changing action name a of one transition to a′ marked as an orange
dashed line. In M2 and φ, by adding the corresponding new transitions, M ′′

2 and
φ′′ are achieved. In φ′′, the transitions with a and a′ still have different reset
information, so it is further changed to φ′ by adding a transition marked as a
blue dotted line. Correspondingly, M ′′

1 and M ′′
2 are changed. Obviously, we can

determine the reset information of the transition with a (a′, a′′, a′′′) in automata
M ′

1 and φ′.

Fig. 2. M1, M2 and φ are converted into M ′
1, M ′

2 and φ′

We now show that the verification of M ′
1‖M ′

2 against φ′ is equivalent to the
original verification of M1‖M2 against φ.

Theorem 2. Checking M ′
1‖M ′

2 |= φ′ is equivalent to checking M1‖M2 |= φ.

Proof. We prove M1‖M2 �|= φ ⇔ M ′
1‖M ′

2 �|= φ′. This is equivalent to prove
L(M1‖M2‖φ) �= ∅ ⇔ L(M ′

1‖M ′
2‖φ′) �= ∅, where φ and φ′ are the complements

of φ and φ′, respectively.
We first prove L(M1‖M2‖φ) �= ∅ ⇒ L(M ′

1‖M ′
2‖φ′) �= ∅. The left hand side

implies that M1‖M2‖φ has at least one accepting run ρ. According to the con-
struction of M ′

1, M ′
2 and φ′, for the composed model M ′

1‖M ′
2‖φ′, compared
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with M1‖M2‖φ, the locations and the guards of transitions remain the same,
although some auxiliary transitions have been added to the model where actions
are renamed. So we can construct a run ρ′ in M ′

1‖M ′
2‖φ′, which visits the loca-

tions in the same order as ρ. Since ρ is an accepting run, its final location must
be an accepting one, which implies ρ′ is an accepting run of M ′

1‖M ′
2‖φ′, and

trace(ρ′) ∈ L(M ′
1‖M ′

2‖φ′).
For L(M ′

1‖M ′
2‖φ′) �= ∅ ⇒ L(M1‖M2‖φ) �= ∅, since L(M ′

1‖M ′
2‖φ′) �= ∅, there

exists at least one accepting run ρ′ in M ′
1‖M ′

2‖φ′. Still, by the construction of
M ′

1, M ′
2 and φ′, we can construct an accepting run ρ in M1‖M2‖φ, by replacing

the newly introduced actions along ρ′ with their original names, and trace(ρ) is
an evidence of L(M1‖M2‖φ) �= ∅. ��

Complexity. For the model conversion, Algorithm 1 mainly consists of two
invocations of Algorithm 2 which has a nested loop. In the worst case execution
of Algorithm 2, the transitions of M1 in the outer loop and the transitions of
M1,M2 and M3 in the inner loops are traversed, so the time complexity is
polynomial and quadratic in the number of transitions.

3.3 Membership Queries

After model conversion, a number of membership queries are used to learn
the DOTA assumption A. For each membership query, the learner pro-
vides the teacher a logical-timed word ωl = (σ1,v1)(σ2,v2) · · · (σn,vn) to
obtain clock reset information, where σi ∈ ΣA and |vi| = 1. Based on
the converted model, the teacher supplements corresponding reset informa-
tion γi for each σi in ωl to construct the reset-logical-timed word ωrl =
(σ1,v1, γ1)(σ2,v2, γ2) . . . (σn,vn, γn). Though the learning algorithm we use is
associated with one clock and the hypothesis we obtain is always a DOTA, the
number of clocks in M ′

1 and φ′ might be multiple since they are not necessar-
ily DOTAs. This raises the question of how to transform the multi-clock reset
information to the single-clock reset information. To solve this problem, we use
a heuristic to generate the one-clock reset information γi for each action σi. Let
X be the finite set of clocks of M ′

1 and φ′, and x be the single clock of the
learned assumption, where |X| > 1. For each action σi, we try four heuristics to
determine whether x is reset: 1) random assignment, 2) γi is always {x}, 3) γi

is always ∅, and 4) dynamic reset rule (if there exits a reset clock y ∈ X, then
γi = {x}, otherwise γi = ∅). We use the fourth since the verification has the least
checking time. After obtaining the logcial timed word ωrl, the teacher further
checks whether it satisfies φ′ under the environment of M ′

1 by model checking if
M ′

1‖Awrl
|= φ′, where Aωrl

is the automaton constructed from ωrl.
As shown in Fig. 1, the step of model conversion is executed only once. It

is then followed by the execution of the smart teacher we design, which only
requires a polynomial number of membership queries for the assumption learn-
ing. Without the first step, the framework needs to turn to a normal teacher,
in which case the reset information is obtained by guessing, and an exponential
number of membership queries are required.
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3.4 Candidate Queries

The candidate queries are to get answers about whether the learned hypothesis
A satisfies the AG reasoning rule.

The First Candidate Query. This step checks whether M ′
1‖A |= φ′. If the

answer is positive, we proceed to the second candidate query. Otherwise, a
counterexample ctx1, ctx1�ΣA

∈ L(A) is generated and further analyzed by
constructing a TA Actx1 such that M ′

1‖Actx1 �|= φ′. We then check whether
ctx1�ΣA

∈ L(M ′
2)�ΣA

. If the result is positive, we have M ′
1‖M ′

2 �|= φ′. Otherwise,
ctx1�ΣA

∈ L(A) \ L(Aw) and ctx1 serves as a negative counterexample to refine
assumption A via the next round of membership queries.

The Second Candidate Query. This step checks whether M ′
2 |= A, i.e.

L(M ′
2)�ΣA

⊆ L(A). If yes, as M ′
1‖A |= φ′ and M ′

2 |= A, the verification algo-
rithm terminates and we conclude M ′

1‖M ′
2 |= φ′. Otherwise, a counterexample

ctx2 is generated and a TA Actx2 is constructed from the timed word ctx2. We
check whether M ′

1‖Actx2 �|= φ′. If yes, as ctx2�ΣA
∈ L(M ′

2)�ΣA
, we conclude

M ′
1‖M ′

2 �|= φ′. Otherwise, ctx2�ΣA
∈ L(Aw) \ L(A) is a counterexample, indicat-

ing a new round learning is needed to refine and check A using membership and
candidate queries until a conclusive result is obtained.

3.5 Correctness and Termination

We now show the correctness and termination of the framework.

Theorem 3. Given two deterministic timed automata M1 and M2, and property
φ, if there exists a DOTA that accepts the target language L(Aw), where Aw is
the weakest assumption of the converted model M ′

2, the proposed learning-based
compositional verification returns true if φ holds on M1‖M2 and false otherwise.

Proof. From Theorem 2, we only need to consider the converted models M ′
1, M ′

2

and φ′.

Termination. The proposed framework consists of the steps of model conver-
sion, membership and candidate queries. We argue about the termination of the
overall framework by showing the termination of each step.

By Algorithm 1 and Theorem 2, the step of model conversion terminates.
Because the learning algorithm of DOTA terminates [7], assumption A will be
obtained at last by membership queries. As to the candidate queries, they either
conclude M ′

1‖M ′
2 |= φ′ and then terminate, or provide a positive or negative

counterexample ctx, that is, ctx�ΣA
∈ L(Aw) \ L(A) or ctx�ΣA

∈ L(A) \ L(Aw),
for the refinement of A.

For the weakest assumption Aw, since there exists a DOTA which accepts
L(Aw), the framework eventually constructs Aw in some round to produce
the positive answer M ′

1‖Aw |= φ′ to the first candidate query. As shown in
Sect. 3.4, we can check whether L(M ′

2)�ΣA
⊆ L(A). If the result is positive, we
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have M ′
1‖M ′

2 |= φ′ and the framework terminates. Otherwise, a counterexam-
ple ctx2�ΣA

∈ L(M ′
2)�ΣA

\ L(Aw) is generated. So M ′
1‖M ′

2 �|= φ′, and ctx2 is a
witness to the fact that M ′

1‖M ′
2 violates φ′.

Correctness. Since there exists a DOTA that accepts the target language
L(Aw), the framework always eventually terminates with a result which is either
true or false. It is true only if both candidate queries return true and this means
that φ′ is held on M ′

1‖M ′
2. Otherwise, a counterexample ctx�ΣA

�∈ L(Aw) is gen-
erated. Since M ′

1‖Actx �|= φ′ and ctx�ΣA
∈ L(M ′

2)�ΣA
, hence M ′

1‖M ′
2 �|= φ′.

��
It is possible, in some cases, there is no DOTA that can accept L(Aw),

and the proposed verification framework cannot be guaranteed in these cases.
However, the framework is still sound, meaning that for the cases when a DOTA
assumption is learned and the verification terminates with a result, the result
holds. Therefore, the framework is able to handle more flexible models such as
multi-clock models. We will explore this with experiments in Sect. 5.

Theorem 4. Given two deterministic timed automata M ′
1 and M ′

2 which might
have multiple clocks, and property φ′, even if there is no DOTA that accepts the
target language L(Aw), the proposed verification framework is still sound.

Proof. Given M ′
1 and M ′

2 which are multi-clock timed automata, suppose in
some round if the learned DOTA assumption A satisfies L(A) ⊆ L(Aw) and
L(M ′

2)�ΣA
⊆ L(A), we have that both results of the first and second candidate

queries are positive. Hence, verification terminates and M ′
1‖M ′

2 |= φ′ holds. For
the same reasoning, in the case of a counterexample ctx is generated, that is
M ′

1‖Actx �|= φ′ and ctx�ΣA
∈ L(M ′

2)�ΣA
, this implies that M ′

1‖M ′
2 �|= φ′ and the

verification terminates with the valid result. ��
The framework is not complete though. For a M1 with multiple clocks, it is not
guaranteed to have a DOTA assumption A such that L(A) = L(Aw). Thus, the
framework is not guaranteed to terminate. Furthermore, for a M2 with multiple
clocks, the framework may not be able to learn a DOTA assumption A, such
that L(M ′

2)�ΣA
⊆ L(A) even though M ′

1‖M ′
2 |= φ′.

4 Optimization Methods

In this section, we give two improvements to the verification framework proposed
in Sect. 3. The first one reduces state space and membership queries in terms
of the given information of M ′

1 and φ′. The second one uses a smaller alphabet
than ΣA = (Σ′

1 ∪ Σ′
φ) ∩ Σ′

2 to improve the verification speed.

4.1 Using Additional Information

In the process of learning assumption A with respect to M ′
1 and φ′, we make

better use of the available information of M ′
1 and φ′. It is clear that if there
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are more actions taking place from a learned location, it is likely there are more
successor locations from that location and more symbolic states are needed. It
is, in general, that not all the actions are enabled in a location. Since the logical-
timed words of the models M ′

1 or φ′ are known beforehand, the sequence of
actions that can be taken can be obtained. Therefore, we can use this information
to remove those actions which do not take place from a certain location to reduce
the number of successor states. Furthermore, the number of membership queries
can be reduced by directly giving answers to these queries whose timed words
violate the action sequences. This results in accelerating the learning process as
well as speeding up the verification to some extent. The experiments in the next
section also show these improvements.

For example, M ′
1 has two actions read and write. In addition, it is known

that the write action can only be performed after the read has been executed.
So, we add such information to the learning step of the verification framework.
That is, read should take place before write in any timed word. Thus, for the
membership queries with such word ωl = . . . (write,vk) . . . (read,vm) . . ., where
write takes place before read, a negative answer is directly returned without the
model checking steps for membership queries as shown in Sect. 3.3.

The additional information is usually derived from the design rules and other
characteristics of the system under study. In the implementation, we provide
some basic keywords to describe the rules, e.g. “beforeAfter” specifies the order
of actions, and “startWith” specifies a certain action should be executed first.
Therefore, the above example is encoded as “[beforeAfter]:(read,write)”.

4.2 Minimizing the Alphabet of the Assumption

In our framework, the automated AG procedure uses a fixed assumption alphabet
ΣA = (Σ′

1∪Σ′
φ)∩Σ′

2. However, there may exist an assumption As over a smaller
alphabet Σs ⊂ ΣA that satisfies the two premises of the AG rule. We thus
propose and implement another improvement to build the timed assumption
over a minimal alphabet. Smaller alphabet size can directly reduce the number
of membership queries and thus speeds up the verification process.

Theorem 5. Given ΣA = (Σ′
1∪Σ′

φ)∩Σ′
2, if there exists an assumption As over

non-empty alphabet Σs ⊂ ΣA satisfying M ′
1‖As |= φ′ and M ′

2 |= As, then there
must exist an assumption A over ΣA satisfying M ′

1‖A |= φ′ and M ′
2 |= A.

Proof. Based on As, we can construct a timed assumption A over ΣA as follows.
For As = (Qs, q

s
0, Σs, Fs,Xs,Δs), we first build A = (Q, q0, ΣA, F,X,Δ) where

Q = Qs, q0 = qs
0, F = Fs,Δ = Δs and X = Xs. Then for ∀q ∈ Q and ∀σ ∈

ΣA \ Σs, we add (q, σ, true, ∅, q) into Δ.
We now prove with such A, M ′

1‖A |= φ′ and M ′
2 |= A still hold, that is,

M ′
1‖M ′

2 |= φ′. Since the locations of A and As are the same, the locations of
M ′

1‖A and M ′
1‖As are the same. For the composed model M ′

1‖A, and the newly
added transition δnew = (q, σ, true, ∅, q) from state q in A, since σ ∈ ΣA \ Σs, it
will be synchronized with such transition taking the form δ1 = (qc, σ, ϕc, γc, q

′
c)



Learning Assumptions for Compositional Verification of Timed Automata 55

in M ′
1. So in M ′

1‖A, the composed transition with respect to (qc, q) and σ, is
((qc, q), σ, ϕc, γc, (q′

c, q)). While in M ′
1‖As, for such transition δ1 in M ′

1, though
there is no synchronized transition from state q in As, the composed transition
is still ((qc, q), σ, ϕc, γc, (q′

c, q)) in M ′
1‖As. So M ′

1‖A |= φ′. According to the
construction process of A from As, as M ′

2 |= As, i.e. L(M ′
2)�Σs

⊆ L(As), it
follows that M ′

2 |= A. ��
The main problem with smaller alphabet is that AG rule is no longer com-

plete for deterministic finite automata [18]. The problem still exists for timed
automata. If Σs ⊂ ΣA, then there might not exist an assumption As over Σs

that satisfies the two premises of AG even though M ′
1‖M ′

2 |= φ′. In this situation,
we say Σs is incomplete and needs to be refined. So each time when we find Σs is
incomplete, we select another Σ′

s ⊂ ΣA and restart the learning algorithm again.
If a large number of round of refinement is needed, the speed of the verification
is reduced significantly. To compensate for this speed reduction, we reuse the
counterexamples that indicate the incompleteness of Σs in the previous loops
and use a variable Listc to store them. Before starting a new round of learning,
we use Listc to judge whether the current Σ′

s is appropriate in advance. We
say Σ′

s is appropriately selected only if all the counterexamples of Listc can not
indicate Σ′

s is incomplete.
With a small alphabet Σs ⊂ ΣA, we can not directly conclude the veri-

fication result if M ′
1‖M ′

2 �|= φ′. The reason is that any given counterexample
ctx maintaining M ′

1‖Actx �|= φ′ ∧ ctx�Σs
∈ L(M ′

2)�Σs
will be used to illustrate

the incompleteness of the Σs, though in some cases ctx indeed indicates that
M ′

1‖M ′
2 �|= φ′ over ΣA. As a result, the treatment of ctxs will decrease the whole

verification speed if M ′
1‖M ′

2 �|= φ′. To solve this, we need to detect real counterex-
amples earlier. We will first check whether M ′

1‖Actx �|= φ′ ∧ ctx�ΣA
∈ L(M ′

2)�ΣA

holds. If the result is yes, the verification concludes M ′
1‖M ′

2 �|= φ′. Otherwise ctx
is used to refine assumption over new Σ′

s.

5 Experimental Results

We implemented the proposed framework in Java. The membership queries and
candidate queries are executed by calling the model checking tool UPPAAL. We
evaluated the implementation on the benchmark of AUTOSAR (Automotive
Open System Architecture) case studies. All the experiments were carried out
on a 3.7GHz AMD Ryzen 5 5600X processor with 16GB RAM running 64-bit
Windows 10. The source code of our tool and experiments is available in [2].

AUTOSAR is an open and standardized software architecture for automotive
ECUs (Electronic Control Units). It consists of three layers, from top to bot-
tom: AUTOSAR Software, AUTOSAR Runtime Environment (RTE), and Basic
Software [1]. Its safety guarantee is very important [13,34,40]. A formal timed
model of AUTOSAR architecture consists of several tasks and their correspond-
ing runnables, different communication mechanisms of any two runnables, RTE
communication controllers and task schedulers. In terms of different number of
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tasks and runnables, we designed three kinds of composed models: the small-
scale model AUTOSAR-1 (8 automata), the complex-scale composed models
AUTOSAR-2 (14 automata) and AUTOSAR-3 (14 automata). The properties
of the architecture to be checked are: 1) buffers between two runnables will never
overflow or underflow, and 2) for a pair of sender runnable and receiver runnable,
they should not execute the write action simultaneously. The checking methods
we performed in the experiments are: 1) traditional monolithic model check-
ing via UPPAAL, 2) compositional verification framework we propose (CV), 3)
CV with the first improvement that uses additional information of M ′

2 and φ′

(CV+A), 4) CV with the second improvement that minimizes assumption alpha-
bet (CV+M), and 5) CV with both improvements (CV+A+M). Each experiment
was conducted five times to calculate the average verification time. Tables 1-4
show the detailed verification results for each property using these methods,
where Case IDs are given in the format n-m-k-l, denoting respectively the iden-
tifiers of the verified properties, the number of locations and clocks of M2, and
the alphabet size of M2. The Boolean variable Valid denotes whether the prop-
erty is satisfied. The symbols |Q|, |Σ|, R, and Tmean stand for the number of the
locations and the alphabet size of the learned assumption, the number of alpha-
bet refinements during learning and the average verification time in seconds,
respectively.

1) AUTOSAR-1 Experiment. AUTOSAR-1 consists of 8 timed automata:
4 runnables, 2 buffers, and 2 schedulers used for scheduling the runnables. We
partition the system into two parts, where M1 is a DOTA and M2 is composed of
7 DOTAs. The experimental results for this case are recorded in Table 1, where
the proposed compositional verification (CV) outperforms the monolithic check-
ing via UPPAAL except for cases 1-71424-7-8 and 3-71424-7-8 . This is because,
for these two cases, the learning algorithm needs more than 30 rounds to refine
assumptions using generated counterexamples. However, in terms of the first
improvement (CV+A), i.e. CV with additional information of M ′

1, the verifica-
tion time reduces drastically for these two cases. Similarly, by the use of the
second improvement (CV+M), i.e. CV with a minimized alphabet, the verifica-
tion time decreases due to fewer membership queries. With both improvements
(CV+A+M), compared with single ones, the checking time varies depending on
the actual case. As shown in Table 1, in the case of checking property 1 with
CV+A, since the alphabet size of the learned assumption A is the largest one,
i.e. 3, the second improvement can take effect. So the verification time using
CV+A+M is less than that using CV+A. However, it is worse than CV+M.

We have discussed in Sect. 3.5 that the framework can handle models for
M1 which might be a multi-clock timed automaton, though termination is not
guaranteed. So, we also repartition the AUTOSAR-1 system into two parts for
verification, where M1 is composed of 7 DOTAs. The results in Table 2 reveal
that the proposed compositional method outperforms UPPAAL in most of the
cases except the case 5-4-1-2. The reason is that UPPAAL might find a coun-
terexample faster than the compositional approach because of the on-the-fly
technique, which terminates the verification once a counterexample is found.
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Table 1. Verification Results for AUTOSAR-1 where M1 is a DOTA.

Case ID Valid UPPAAL CV CV+A CV+M CV+A+M

Tmean |Q| |Σ| Tmean |Q| |Σ| Tmean |Q| |Σ| R Tmean |Q| |Σ| R Tmean

1-71424-7-8 Yes 37.862 62 3 1091.419 5 3 13.864 3 2 3 4.676 3 2 3 5.896

2-71424-7-8 Yes 46.215 1 3 0.237 4 3 11.030 1 1 0 0.163 1 1 0 0.273

3-71424-7-8 Yes 38.947 62 3 995.143 3 3 6.353 2 2 1 2.723 2 2 1 3.280

4-71424-7-8 Yes 38.783 1 3 0.234 2 3 3.859 1 1 0 0.164 1 1 0 0.341

In contrast, our framework needs to spend some time learning the assumption
ahead of searching the counterexample, resulting in more time for the termina-
tion of the verification framework. In the experiments, we also observe that the
time varies with the selection of M1. Therefore, a proper selection of the com-
ponents composed as M1 or M2 can lead to a faster verification, while ensuring
termination of the framework.

Table 2. Verification Results for AUTOSAR-1 where M1 is a composition of DOTAs

Case ID Valid UPPAAL CV CV+A CV+M CV+A+M

Tmean |Q| |Σ| Tmean |Q| |Σ| Tmean |Q| |Σ| R Tmean |Q| |Σ| R Tmean

1-4-1-2 Yes 37.862 2 2 10.117 2 2 9.722 2 2 2 12.989 2 2 2 12.681

2-4-1-2 Yes 46.215 1 2 12.298 1 2 9.316 1 1 0 11.900 1 1 0 12.022

3-4-1-2 Yes 38.947 1 2 12.208 1 2 9.391 1 1 0 11.897 1 1 0 11.941

4-4-1-2 Yes 38.783 1 2 12.195 1 2 9.237 1 1 0 11.932 1 1 0 12.013

5-4-1-2 No 0.394 3 2 6.252 2 2 2.975 3 2 2 12.626 2 2 2 9.529

6-4-1-2 Yes 38.319 3 2 23.973 1 2 13.430 3 2 1 33.569 1 2 1 22.563

2) AUTOSAR-2 Experiment. AUTOSAR-2 is a more complex system with
totally 14 automata, including 6 runnables and a task to which the runnables
are mapped, 5 buffers, a RTE and a scheduler. In this experiment, we select M1

as a composition of several DOTAs. The results in Table 3 show that in the cases
of properties 1-4, UPPAAL fails to obtain checking results due to the large state
space, whereas our compositional approach can finish the verification for all the
properties in 300 seconds using the same memory size. This indicates that the
framework can reduce the state space significantly in some cases.

Table 3. Verification Results for AUTOSAR-2

Case ID Valid UPPAAL CV CV+A CV+M CV+A+M

Tmean |Q| |Σ| Tmean |Q| |Σ| Tmean |Q| |Σ| R Tmean |Q| |Σ| R Tmean

1-4-1-2 Yes ROM 1 2 295.342 1 2 263.082 1 1 0 291.945 1 1 0 292.945

2-4-1-2 Yes ROM 1 2 298.551 1 2 265.381 1 1 0 293.617 1 1 0 290.617

3-4-1-2 Yes ROM 1 2 295.443 1 2 264.900 1 1 0 292.244 1 1 0 291.244

4-4-1-2 Yes ROM 1 2 295.688 1 2 271.144 1 1 0 294.194 1 1 0 295.194

ROM: run out of memory.
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3) AUTOSAR-3 Experiment. The system consists of 14 components, where
both M1 and M2 are the compositions of several DOTAs. The checking results
shown in Table 4 illustrate that the minimal alphabet improvement can obtain
the smallest alphabet with size 1, thus reducing the verification time. However,
the additional information improvement performs badly in most cases.

Table 4. Verification Results for AUTOSAR-3

Case ID Valid UPPAAL CV CV+A CV+M CV+A+M

Tmean |Q| |Σ| Tmean |Q| |Σ| Tmean |Q| |Σ| R Tmean |Q| |Σ| R Tmean

1-30-1-7 Yes 1.354 1 3 0.910 1 3 0.298 1 1 0 0.808 1 1 0 0.801

2-30-1-7 Yes 1.313 1 6 0.351 3 6 2.839 1 1 0 0.152 1 1 0 0.150

3-30-1-7 Yes 1.363 1 6 0.348 3 6 2.838 1 1 0 0.161 1 1 0 0.156

6 Conclusion

Though in model checking, assume-guarantee reasoning can help alleviate state
space explosion problem of a composite model, its practical impact has been lim-
ited due to the non-trivial human interaction to obtain the assumption. In this
paper, we propose a learning-based compositional verification for deterministic
timed automata, where the assumption is learned as a deterministic one-clock
timed automaton. We design a model conversion algorithm to acquire the clock
reset information of the learned assumption to reduce the learning complexity
and prove this conversion preserves the verification results. To make the frame-
work applicable to multi-clock systems, we design a smart teacher with heuristic
to answer clock reset information. We also prove the correctness and termina-
tion of the framework. To speed up the verification, we further give two kinds
of improvements to the learning process. We implemented the framework and
performed experiments to evaluate our method. The results show that it outper-
forms monolithic model checking, and the state space can be effectively reduced.
Moreover, the improvements also have positive effects on most studied systems.
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Abstract. Online monitoring is an effective validation approach for
hybrid systems, that, at runtime, checks whether the (partial) signals of a
system satisfy a specification in, e.g., Signal Temporal Logic (STL). The
classic STL monitoring is performed by computing a robustness interval
that specifies, at each instant, how far the monitored signals are from
violating and satisfying the specification. However, since a robustness
interval monotonically shrinks during monitoring, classic online moni-
tors may fail in reporting new violations or in precisely describing the
system evolution at the current instant. In this paper, we tackle these
issues by considering the causation of violation or satisfaction, instead
of directly using the robustness. We first introduce a Boolean causation
monitor that decides whether each instant is relevant to the violation or
satisfaction of the specification. We then extend this monitor to a quan-
titative causation monitor that tells how far an instant is from being
relevant to the violation or satisfaction. We further show that classic
monitors can be derived from our proposed ones. Experimental results
show that the two proposed monitors are able to provide more detailed
information about system evolution, without requiring a significantly
higher monitoring cost.

Keywords: online monitoring · Signal Temporal Logic · monotonicity

1 Introduction

Safety-critical systems require strong correctness guarantees. Due to the com-
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complementary technique that analyzes the system execution at runtime. Online
monitoring is such an approach that checks whether the system execution (e.g.,
given in terms of signals) satisfies or violates a system specification specified in
a temporal logic [28,34], e.g., Signal Temporal Logic (STL) [30].

Quantitative online monitoring is based on the STL robust semantics [17,21]
that not only tells whether a signal satisfies or violates a specification ϕ (i.e., the
classic Boolean satisfaction relation), but also assigns a value in R ∪ {∞,−∞}
(i.e., robustness) that indicates how robustly ϕ is satisfied or violated. However,
differently from offline assessment of STL formulas, an online monitor needs to
reason on partial signals and, so, the assessment of the robustness should be
adapted. We consider an established approach [12] employed by classic online
monitors (ClaM in the following). It consists in computing, instead of a single
robustness value, a robustness interval ; at each monitoring step, ClaM identifies
an upper bound [R]U telling the maximal reachable robustness of any possible
suffix signal (i.e., any continuation of the system evolution), and a lower bound
[R]L telling the minimal reachable robustness. If, at some instant, [R]U becomes
negative, the specification is violated; if [R]L becomes positive, the specification
is satisfied. In the other cases, the specification validity is unknown.

ClaM

Fig. 1. ClaM – Robustness upper and
lower bounds of �[0,100](v < 10)

Consider a simple example in Fig. 1.
It shows the monitoring of the speed of
a vehicle (in the upper plot); the speci-
fication requires the speed to be always
below 10. The lower plot reports how the
upper bound [R]U and the lower bound
[R]L of the reachable robustness change
over time. We observe that the initial
value of [R]U is around 8 and gradually
decreases.1 The monitor allows to detect
that the specification is violated at time
b = 20 when the speed becomes higher
than 10, and therefore [R]U goes below 0.
After that, the violation severity progres-
sively gets worse till time b = 30, when [R]U becomes −5. After that point, the
monitor does not provide any additional useful information about the system
evolution, as [R]U remains stuck at −5. However, if we observe the signal of the
speed after b = 30, we notice that (i) the severity of the violation is mitigated,
and the “1st violation episode” ends at time b = 35; however, the monitor
ClaM does not report this type of information; (ii) a “2nd violation episode”
occurs in the time interval [40, 45]; the monitor ClaM does not distinguish the
new violation.

The reason for the issues reported in the example is that the upper and lower
bounds are monotonically decreasing and increasing; this has the consequence

1 The value of lower bound [R]L is not shown in the figure, as not relevant. In the
example, it remains constant before b = 100, and the value is usually set either
according to domain knowledge about system signals, or to −∞ otherwise.
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that the robustness interval at a given step is “masked” by the history of previous
robustness intervals, and, e.g., it is not possible to detect mitigation of the viola-
tion severity. Moreover, as an extreme consequence, as soon as the monitor ClaM
assesses the violation of the specification (i.e., the upper bound [R]U becomes
negative), or its satisfaction (i.e., the lower bound [R]L becomes positive), the
Boolean status of the monitor does not change anymore. Such characteristic
directly derives from the STL semantics and it is known as the monotonicity [9–
11] of classic online monitors. Monotonicity has been recognized as a problem
of these monitors in the literature [10,37,40], since it does not allow to detect
specific types of information that are “masked”. We informally define two types
of information masking that can occur because of monotonicity:

evolution masking : the monitor may not properly report the evolution of the
system execution, e.g., mitigation of violation severity may not be detected;

violation masking : as a special case of evolution masking, the first violation
episode during the system execution “masks” the following ones.

The information not reported by ClaM because of information masking, is
very useful in several contexts. First of all, in some systems, the first violation of
the specification does not mean that the system is not operating anymore, and
one may want to continue monitoring and detect all the succeeding violations;
this is the case, e.g., of the monitoring approach reported by Selyunin et al. [37] in
which all the violations of the SENT protocol must be detected. Moreover, having
a precise description of the system evolution is important for the usefulness of
the monitoring; for example, the monitoring of the speed in Fig. 1 could be used
in a vehicle for checking the speed and notifying the driver whenever the speed
is approaching the critical limit; if the monitor is not able to precisely capture
the severity of violation, it cannot be used for this type of application.

Some works [10,37,40] try to mitigate the monotonicity issues, by “resetting”
the monitor at specific points. A recent approach has been proposed by Zhang
et al. [40] (called ResM in the following) that is able to identify each “violation
episode” (i.e., it solves the problem of violation masking), but does not solve
the evolution masking problem. For the example in Fig. 1, ResM is able to detect
the two violation episodes in intervals [20, 35] and [40, 45], but it is not able to
report that the speed decreases after b = 10 (in a non-violating situation), and
that the severity of the violation is mitigated after b = 30.
Contribution. In this paper, in order to provide more information about the
evolution of the monitored system, we propose to monitor the causation of viola-
tion or satisfaction, instead of considering the robustness directly. To do this, we
rely on the notion of epoch [5]. At each instant, the violation (satisfaction) epoch
identifies the time instants at which the evaluation of the atomic propositions of
the specification ϕ causes the violation (satisfaction) of ϕ.

Based on the notion of epoch, we define a Boolean causation monitor (called
BCauM) that, at runtime, not only assesses the specification violation/satisfaction,
but also tells whether each instant is relevant to it. Namely, BCauM marks each
current instant b as (i) a violation causation instant, if b is added to the violation
epoch; (ii) a satisfaction causation instant, if b is added to the satisfaction epoch;
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(iii) an irrelevant instant, if b is not added to any epoch. We show that BCauM is
able to detect all the violation episodes (so solving the violation masking issue),
as violation causation instants can be followed by irrelevant instants. Moreover,
we show that the information provided by the classic Boolean online monitor
can be derived from that of the Boolean causation monitor BCauM.

However, BCauM just tells us whether the current instant is a (violation or
satisfaction) causation instant or not, but does not report how far the instant is
from being a causation instant. To this aim, we introduce the notion of causation
distance, as a quantitative measure characterizing the spatial distance of the
signal value at b from turning b into a causation instant. Then, we propose
the quantitative causation monitor (QCauM) that, at each instant, returns its
causation distance. We show that using QCauM, besides solving the violation
masking problem, we also solve the evolution masking problem. Moreover, we
show that we can derive from QCauM both the classic quantitative monitor ClaM,
and the Boolean causation monitor BCauM.

Experimental results show that the proposed monitors, not only provide more
information, but they do it in an efficient way, not requiring a significant addi-
tional monitoring time w.r.t. the existing monitors.

Outline. Section 2 reports necessary background. We introduce BCauM in Sect.
3, and QCauM in Sect. 4. Experimental assessment of the two proposed monitors
is reported in Sect. 5. Finally, Sect. 6 discusses some related work, and Sect. 7
concludes the paper.

2 Preliminaries

In this section, we review the fundamentals of signal temporal logic (STL) in
Sect. 2.1, and then introduce the existing classic online monitoring approach in
Sect. 2.2.

2.1 Signal Temporal Logic

Let T ∈ R+ be a positive real, and d ∈ N+ be a positive integer. A d-dimensional
signal is a function v : [0, T ] → R

d , where T is called the time horizon of v.
Given an arbitrary time instant t ∈ [0, T ], v(t) is a d -dimensional real vector;
each dimension concerns a signal variable that has a certain physical meaning,
e.g., speed, RPM, acceleration, etc. In this paper, we fix a set Var of variables
and assume that a signal v is spatially bounded, i.e., for all t ∈ [0, T ], v(t) ∈ Ω,
where Ω is a d -dimensional hyper-rectangle.

Signal temporal logic (STL) is a widely-adopted specification language, used
to describe the expected behavior of systems. In Definition 1 and Definition 2,
we respectively review the syntax and the robust semantics of STL [17,21,30].

Definition 1 (STL syntax). In STL, the atomic propositions α and the for-
mulas ϕ are defined as follows:

α :: ≡ f(w1, . . . , wK) > 0 ϕ :: ≡ α | ⊥ | ¬ϕ | ϕ ∧ ϕ | �Iϕ | �Iϕ | ϕ UI ϕ
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Here f is a K-ary function f : RK → R, w1, . . . , wK ∈ Var, and I is a closed
interval over R≥0, i.e., I = [l, u], where l, u ∈ R and l ≤ u. In the case that
l = u, we can use l to stand for I. �,� and U are temporal operators, which
are known as always, eventually and until, respectively. The always operator �

and eventually operator � are two special cases of the until operator U , where
�Iϕ ≡ 
 UI ϕ and �Iϕ ≡ ¬�I¬ϕ. Other common connectives such as ∨,→ are
introduced as syntactic sugar: ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2.

Definition 2 (STL robust semantics). Let v be a signal, ϕ be an STL for-
mula and τ ∈ R+ be an instant. The robustness R(v, ϕ, τ) ∈ R ∪ {∞,−∞} of v
w.r.t. ϕ at τ is defined by induction on the construction of formulas, as follows.

R(v, α, τ) := f(v(τ)) R(v,⊥, τ) := −∞ R(v,¬ϕ, τ) := −R(v, ϕ, τ)
R(v, ϕ1 ∧ ϕ2, τ) := min (R(v, ϕ1, τ),R(v, ϕ2, τ))
R(v,�Iϕ, τ) := inf

t∈τ+I
R(v, ϕ, t) R(v,�Iϕ, τ) := sup

t∈τ+I
R(v, ϕ, t)

R(v, ϕ1 UI ϕ2, τ) := sup
t∈τ+I

min
(

R(v, ϕ2, t), inf
t′∈[τ,t)

R(v, ϕ1, t
′)

)

Here, τ + I denotes the interval [l + τ, u + τ ].

The original STL semantics is Boolean, which represents whether a signal
v satisfies ϕ at an instant τ , i.e., whether (v, τ) |= ϕ. The robust semantics
in Definition 2 is a quantitative extension that refines the original Boolean STL
semantics, in the sense that, R(v, ϕ, τ) > 0 implies (v, τ) |= ϕ, and R(v, ϕ, τ) < 0
implies (v, τ) �|= ϕ. More details can be found in [21, Proposition 16].

2.2 Classic Online Monitoring of STL

STL robust semantics in Definition 2 provides an offline monitoring approach
for complete signals. Online monitoring, instead, targets a growing partial signal
at runtime. Besides the verdicts 
 and ⊥, an online monitor can also report the
verdict unknown (denoted as ?), which represents a status when the satisfaction
of the signal to ϕ is not decided yet. In the following, we formally define partial
signals and introduce online monitors for STL.

Let T be the time horizon of a signal v, and let [a, b] ⊆ [0, T ] be a sub-
interval in the time domain [0, T ]. A partial signal va:b is a function which is
only defined in the interval [a, b]; in the remaining domain [0, T ]\[a, b], we denote
that va:b = ε, where ε stands for a value that is not defined.

Specifically, if a = 0 and b ∈ (a, T ], a partial signal va:b is called a prefix
(partial) signal; dually, if b = T and a ∈ [0, b), a partial signal va:b is called a
suffix (partial) signal. Given a prefix signal v0:b, a completion v0:b · vb:T of v0:b

is defined as the concatenation of v0:b with a suffix signal vb:T .

Definition 3 (Classic Boolean STL online monitor). Let v0:b be a prefix
signal, and ϕ be an STL formula. An online monitor M(v0:b, ϕ, τ) returns a
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verdict in {
,⊥, ?} (namely, true, false, and unknown), as follows:

M(v0:b, ϕ, τ) :=

⎧⎪⎨
⎪⎩


 if ∀vb:T .R(v0:b · vb:T , ϕ, τ) > 0
⊥ if ∀vb:T .R(v0:b · vb:T , ϕ, τ) < 0
? otherwise

Namely, the verdicts of M(v0:b, ϕ, τ) are interpreted as follows:

– if any possible completion v0:b · vb:T of v0:b satisfies ϕ, then v0:b satisfies ϕ;
– if any possible completion v0:b · vb:T of v0:b violates ϕ, then v0:b violates ϕ;
– otherwise (i.e., there is a completion v0:b · vb:T that satisfies ϕ, and there is

a completion v0:b · vb:T that violates ϕ), then M(v0:b, ϕ, τ) reports unknown.

Note that, by Definition 3 only, we cannot synthesize a feasible online moni-
tor, because the possible completions for v0:b are infinitely many. A constructive
online monitor is introduced in [12], which implements the functionality of Def-
inition 3 by computing the reachable robustness of v0:b. We review this monitor
in Definition 4.

Definition 4 (Classic Quantitative STL online monitor (ClaM)). Let v0:b

be a prefix signal, and let ϕ be an STL formula. We denote by Rα
max and Rα

min the
possible maximum and minimum bounds of the robustness R(v, α, τ)2. Then, an
online monitor [R](v0:b, ϕ, τ), which returns a sub-interval of [Rα

min, R
α
max] at the

instant b, is defined as follows, by induction on the construction of formulas.

[R](v0:b, α, τ) :=

{[
f (v0:b(τ)) , f (v0:b(τ))

]
if τ ∈ [0, b][

Rα
min, R

α
max

]
otherwise

[R](v0:b,¬ϕ, τ) := −[R](v0:b, ϕ, τ)

[R](v0:b, ϕ1 ∧ ϕ2, τ) := min
(
[R](v0:b, ϕ1, τ), [R](v0:b, ϕ2, τ)

)

[R](v0:b,�Iϕ, τ) := inf
t∈τ+I

(
[R](v0:b, ϕ, t)

)

[R](v0:b, ϕ1 UI ϕ2, τ) := sup
t∈τ+I

min
(
[R](v0:b, ϕ2, t), inf

t′∈[τ,t)
[R](v0:b, ϕ1, t

′)
)

Here, f is defined as in Definition 1, and the arithmetic rules over inter-
vals I = [l, u] are defined as follows: −I := [−u,−l] and min(I1, I2) :=
[min(l1, l2),min(u1, u2)].

We denote by [R]U(v0:b, ϕ, τ) and [R]L(v0:b, ϕ, τ) the upper bound and the
lower bound of [R](v0:b, ϕ, τ) respectively. Intuitively, the two bounds together
form the reachable robustness interval of the completion v0:b · vb:T , under any
possible suffix signal vb:T . For instance, in Fig. 2, the upper bound [R]U at b = 20
is 0, which indicates that the robustness of the completion of the signal speed,
under any suffix, can never be larger than 0.

The quantitative online monitor ClaM in Definition 4 refines the Boolean one
in Definition 3, and the Boolean monitor can be derived from ClaM as follows:
2 R(v, α, τ) is bounded because v is bounded by Ω. In practice, if Ω is not know, we

set Rα
max and Rα

min to, respectively, ∞ and −∞.
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– if [R]L(v0:b, ϕ, τ) > 0, it implies that M(v0:b, ϕ, τ) = 
;
– if [R]U(v0:b, ϕ, τ) < 0, it implies that M(v0:b, ϕ, τ) = ⊥;
– otherwise, if [R]L(v0:b, ϕ, τ) < 0 and [R]U(v0:b, ϕ, τ) > 0, M(v0:b, ϕ, τ) = ?.

The classic online monitors are monotonic by definition. In the Boolean mon-
itor (Definition 3), with the growth of v0:b, M(v0:b, ϕ, τ) can only turn from ? to
{⊥,
}, but never the other way around. In the quantitative one (Definition 4), as
shown in Lemma 1, [R]U(v0:b, ϕ, τ) and [R]L(v0:b, ϕ, τ) are both monotonic, the
former one decreasingly, the latter one increasingly. An example can be observed
in Fig. 2.

Lemma 1 (Monotonicity of STL online monitor). Let [R](v0:b, ϕ, τ) be
the quantitative online monitor for a partial signal v0:b and an STL formula
ϕ. With the growth of the partial signal v0:b, the upper bound [R]U(v0:b, ϕ, τ)
monotonically decreases, and the lower bound [R]L(v0:b, ϕ, τ) monotonically
increases, i.e., for two time instants b1, b2 ∈ [0, T ], if b1 < b2, we have (i)
[R]U(v0:b1 , ϕ, τ) ≥ [R]U(v0:b2 , ϕ, τ), and (ii) [R]L(v0:b1 , ϕ, τ) ≤ [R]L(v0:b2 , ϕ, τ).

Proof. This can be proved by induction on the structures of STL formulas. The
detailed proof can be found in the full version [38]. ��

3 Boolean Causation Online Monitor

As explained in Sect. 1, monotonicity of classic online monitors causes differ-
ent types of information masking, which prevents some information from being
delivered. In this section, we introduce a novel Boolean causation (online) mon-
itor BCauM, that solves the violation masking issue (see Sect. 1). BCauM is defined
based on online signal diagnostics [5,40], which reports the cause of violation or
satisfaction of the specification at the atomic proposition level.

Definition 5 (Online signal diagnostics). Let v0:b be a partial signal and ϕ
be an STL specification. At an instant b, online signal diagnostics returns a vio-
lation epoch E�(v0:b, ϕ, τ), under the condition [R]U(v0:b, ϕ, τ) < 0, as follows:

E�(v0:b, α, τ) :=

{
{〈α, τ〉} if [R]U(v0:b, α, τ) < 0
∅ otherwise

E�(v0:b,¬ϕ, τ) := E⊕(v0:b, ϕ, τ)

E�(v0:b, ϕ1 ∧ ϕ2, τ) :=
⋃

i∈{1,2} s.t.
[R]U(v0:b,ϕi,τ)<0

E�(v0:b, ϕi, τ)

E�(v0:b,�Iϕ, τ) :=
⋃

t∈τ+I s.t.
[R]U(v0:b,ϕ,t)<0

E�(v0:b, ϕ, t)

E�(v0:b, ϕ1 UI ϕ2, τ) :=
⋃

t∈τ+I s.t.
[R]U(v0:b,ϕ1Utϕ2,τ)<0

⎛
⎝E�(v0:b, ϕ2, t) ∪

⋃
t′∈[τ,t)

E�(v0:b, ϕ1, t
′)

⎞
⎠
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and a satisfaction epoch E⊕(v0:b, ϕ, τ), under the condition [R]L(v0:b, ϕ, τ) > 0,
as follows:

E⊕(v0:b, α, τ) :=

{
{〈α, τ〉} if [R]L(v0:b, α, τ) > 0
∅ otherwise

E⊕(v0:b,¬ϕ, τ) := E�(v0:b, ϕ, τ)

E⊕(v0:b, ϕ1 ∧ ϕ2, τ) :=
⋃

i∈{1,2} s.t.
[R]L(v0:b,ϕi,τ)>0

E⊕(v0:b, ϕi, τ)

E⊕(v0:b,�Iϕ, τ) :=
⋃

t∈τ+I s.t.
[R]L(v0:b,ϕ,t)>0

E⊕(v0:b, ϕ, t)

E⊕(v0:b, ϕ1 UI ϕ2, τ) :=
⋃

t∈τ+I s.t.
[R]L(v0:b,ϕ1Utϕ2,τ)>0

⎛
⎝E⊕(v0:b, ϕ2, t) ∪

⋃
t′∈[τ,t)

E⊕(v0:b, ϕ1, t
′)

⎞
⎠

If the conditions are not satisfied, E�(v0:b, ϕ, τ) and E⊕(v0:b, ϕ, τ) are both ∅.
Note that the definition is recursive, thus the conditions should also be checked
for computing the violation and satisfaction epochs of the sub-formulas of ϕ.

Computation for other operators can be inferred by the presented ones and
the STL syntax (Definition 1).

Intuitively, when a partial signal v0:b violates a specification ϕ, a violation
epoch starts collecting the evaluations (identified by pairs of atomic propositions
and instants) of the signal at the atomic proposition level, that cause the viola-
tion of the whole formula ϕ (which also applies to the satisfaction cases in a dual
manner). This is done inductively, based on the semantics of different operators:

– in the case of an atomic proposition α, if α is violated at τ , it collects 〈α, τ〉;
– in the case of a negation ¬ϕ, it collects the satisfaction epoch of ϕ;
– in the case of a conjunction ϕ1 ∧ ϕ2, it collects the union of the violation

epochs of the sub-formulas violated by the partial signal;
– in the case of an always operator �Iϕ, it collects the epochs of the sub-formula

ϕ at all the instants t where ϕ is evaluated as being violated.
– in the case of an until operator ϕ1 UI ϕ2, it collects the epochs of the sub-

formula ϕ2 at all the instants t and the epochs of ϕ1 at the instants t′ ∈ [τ, t),
in the case where the clause “ϕ1 until ϕ2” is violated at t.

Example 1. The example in Fig. 2 illustrates how an epoch is collected. The
specification requires that whenever the speed is higher than 10, the car should
decelerate within 5 time units. As shown by the classic monitor, the specification
is violated at b = 25, since v becomes higher than 10 at 20 but a remains positive
during [20, 25]. Note that the specification can be rewritten as ϕ ≡ �[0,100](¬(v >
10) ∨ �[0,5](a < 0)). For convenience, we name the sub-formulas of ϕ as follows:

ϕ′ ≡ ¬(v > 10) ∨ �[0,5](a < 0) ϕ1 ≡ ¬(v > 10) ϕ2 ≡ �[0,5](a < 0)
α1 ≡ v > 10 α2 ≡ a < 0
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Fig. 2. Classic monitor (ClaM)
result for the STL specification:
�[0,100](v > 10 → �[0,5](a < 0))

Fig. 3. The violation epochs (the red parts)
respectively when b = 30 and b = 35

Fig. 4. Boolean causation monitor (BCauM) result

Figure 3 shows the violation epochs at two instants 30 and 35. First, at b = 30,

E�(v0:30, ϕ, 0) =
( ⋃

t∈[20,25] E
⊕(v0:30, α1, t)

) ∪ ( ⋃
t∈[20,30] E

�(v0:30, α2, t)
)

= 〈α1, [20, 25]〉 ∪ 〈α2, [20, 30]〉
Similarly, the violation epoch E�(v0:35, ϕ, 0) at b = 35 is the same as that at
b = 30. Intuitively, the epoch at b = 30 shows the cause of the violation of v0:30;
then since signal a < 0 in [30, 35], this segment is not considered as the cause of
the violation, so the epoch remains the same at b = 35. �

Definition 6 (Boolean causation monitor (BCauM)). Let v0:b be a partial
signal and ϕ be an STL specification. We denote by A the set of atomic propo-
sitions of ϕ. At each instant b, a Boolean causation (online) monitor BCauM
returns a verdict in {�,⊕,�} (called violation causation, satisfaction causation
and irrelevant), which is defined as follows,

M (v0:b, ϕ, τ) :=

⎧⎪⎨
⎪⎩

� if ∃α ∈ A. 〈α, b〉 ∈ E�(v0:b, ϕ, τ)
⊕ if ∃α ∈ A. 〈α, b〉 ∈ E⊕(v0:b, ϕ, τ)
� otherwise

An instant b is called a violation/satisfaction causation instant if M (v0:b, ϕ, τ)
returns �/⊕, or an irrelevant instant if M (v0:b, ϕ, τ) returns �.

Intuitively, if the current instant b (with the related α) is included in the epoch
(thus the signal value at b is relevant to the violation/satisfaction of ϕ), BCauM will
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report a violation/satisfaction causation (�/⊕); otherwise, it will report irrelevant
(�). Notably BCauM is non-monotonic, in that even if it reports � or ⊕ at some
instant b, it may still report � after b. This feature allows BCauM to bring more
information, e.g., it can detect the end of a violation episode and the start of a new
one (i.e., it solves the violation masking issue in Sect. 1); see Example 2.

Example 2. Based on the signal diagnostics in Fig. 3, the Boolean causation
monitor BCauM reports the result shown as in Fig. 4.

Compared to the classic Boolean monitor in Fig. 2, BCauM brings more infor-
mation, in the sense that it detects the end of the violation episode at b = 30,
by going from � to �, when the signal a becomes negative. �

Theorem 1 states the relation of BCauMwith the classic Boolean online monitor.

Theorem 1. The Boolean causation monitor BCauM in Definition 6 refines the
classic Boolean online monitor in Definition 3, in the following sense:
– M(v0:b, ϕ, τ) = ⊥ iff.

∨
t∈[0,b] (M (v0:t, ϕ, τ) = �)

– M(v0:b, ϕ, τ) = 
 iff.
∨

t∈[0,b] (M (v0:t, ϕ, τ) = ⊕)
– M(v0:b, ϕ, τ) = ? iff.

∧
t∈[0,b] (M (v0:t, ϕ, τ) = �)

Proof. The proof is based on Definitions 5 and 6, Lemma 1 about the monotonic-
ity of classic STL online monitors, and two extra lemmas in the full version [38].

��
4 Quantitative Causation Online Monitor

Although BCauM in Sect. 3 is able to solve the violation masking issue, it still
does not provide enough information about the evolution of the system signals,
i.e., it does not solve the evolution masking issue introduced in Sect. 1. To tackle
this issue, we propose a quantitative (online) causation monitor QCauM in Defi-
nition 7, which is a quantitative extension of BCauM. Given a partial signal v0:b,
QCauM reports a violation causation distance [R]� (v0:b, ϕ, τ) and a satisfaction
causation distance [R]⊕ (v0:b, ϕ, τ), which, respectively, indicate how far the sig-
nal value at the current instant b is from turning b into a violation causation
instant and from turning b into a satisfaction causation instant.

Definition 7 (Quantitative causation monitor (QCauM)). Let v0:b be a
partial signal, and ϕ be an STL specification. At instant b, the quantitative
causation monitor QCauM returns a violation causation distance [R]� (v0:b, ϕ, τ),
as follows:

[R]� (v0:b, α, τ) :=

{
f(v0:b(τ)) if b = τ

Rα
max otherwise

[R]� (v0:b,¬ϕ, τ) := −[R]⊕ (v0:b, ϕ, τ)

[R]� (v0:b, ϕ1 ∧ ϕ2, τ) := min
(
[R]� (v0:b, ϕ1, τ) , [R]� (v0:b, ϕ2, τ)

)

[R]� (v0:b, ϕ1 ∨ ϕ2, τ) := min

⎛
⎝max

(
[R]� (v0:b, ϕ1, τ) , [R]U(v0:b, ϕ2, τ)

)
,

max
(
[R]U(v0:b, ϕ1, τ), [R]� (v0:b, ϕ2, τ)

)
⎞
⎠
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[R]� (v0:b,�Iϕ, τ) := inf
t∈τ+I

(
[R]� (v0:b, ϕ, t)

)

[R]� (v0:b,�Iϕ, τ) := inf
t∈τ+I

(
max

(
[R]� (v0:b, ϕ, t) , [R]U(v0:b,�Iϕ, τ)

))

[R]� (v0:b, ϕ1 UI ϕ2, τ) := inf
t∈τ+I

⎛
⎜⎝max

⎛
⎜⎝min

(
inf

t′∈[τ,t)
[R]� (v0:b, ϕ1, t

′)

[R]� (v0:b, ϕ2, t)

)

[R]U(v0:b, ϕ1 UI ϕ2, τ)

⎞
⎟⎠

⎞
⎟⎠

and a satisfaction causation distance [R]⊕ (v0:b, ϕ, τ), as follows:

[R]⊕ (v0:b, α, τ) :=

{
f(v0:b(τ)) if b = τ

Rα
min otherwise

[R]⊕ (v0:b,¬ϕ, τ) := −[R]� (v0:b, ϕ, τ)

[R]⊕ (v0:b, ϕ1 ∧ ϕ2, τ) := max

⎛
⎝min

(
[R]⊕ (v0:b, ϕ1, τ) , [R]L(v0:b, ϕ2, τ)

)
,

min
(
[R]L(v0:b, ϕ1, τ), [R]⊕ (v0:b, ϕ2, τ)

)
⎞
⎠

[R]⊕ (v0:b, ϕ1 ∨ ϕ2, τ) := max
(
[R]⊕ (v0:b, ϕ1, τ) , [R]⊕ (v0:b, ϕ2, τ)

)

[R]⊕ (v0:b,�Iϕ, τ) := sup
t∈τ+I

(
min

(
[R]⊕ (v0:b, ϕ, t) , [R]L(v0:b,�Iϕ, τ)

))

[R]⊕ (v0:b,�Iϕ, τ) := sup
t∈τ+I

(
[R]⊕ (v0:b, ϕ, t)

)

[R]⊕ (v0:b, ϕ1 UI ϕ2, τ) := sup
t∈τ+I

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

min

⎛
⎜⎜⎜⎝

sup
t′∈[τ,t)

[R]⊕ (v0:b, ϕ1, t
′)

inf
t′∈[τ,t)

[R]L(v0:b, ϕ1, t
′)

[R]L(v0:b, ϕ2, t)

⎞
⎟⎟⎟⎠

min

(
inf

t′∈[τ,t)
[R]L(v0:b, ϕ1, t

′)

[R]⊕ (v0:b, ϕ2, t)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Intuitively, a violation causation distance [R]� (v0:b, ϕ, τ) is the spatial distance
of the signal value v0:b(b), at the current instant b, from turning b into a violation
causation instant such that b is relevant to the violation of ϕ (also applied to
the satisfaction case dually). It is computed inductively on the structure of ϕ:

– Case atomic propositions α: if b = τ (i.e., at which instant α should be
evaluated), then the distance of b from being a violation causation instant is
f(v0:b(b)); otherwise, if b �= τ , despite the value of f(v0:b(b)), b can never be a
violation causation instant, according to Definition 5, because only f(v0:b(τ))
is relevant to the violation of α. Hence, the distance will be Rα

max;
– Case ¬ϕ: b is a violation causation instant for ¬ϕ if b is a satisfaction causation

instant for ϕ, so [R]� (v0:b,¬ϕ, τ) depends on [R]⊕ (v0:b, ϕ, τ);
– Case ϕ1 ∧ ϕ2: b is a violation causation instant for ϕ1 ∧ ϕ2 if b is a violation

causation instant for either ϕ1 or ϕ2, so [R]� (v0:b, ϕ1 ∧ ϕ2, τ) depends on
the minimum between [R]� (v0:b, ϕ1, τ) and [R]� (v0:b, ϕ2, τ);
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QCauM

[R]

[R]⊕

Fig. 5. Quantitative causation monitor (QCauM) result for Example 1

– Case ϕ1 ∨ ϕ2: b is a violation causation instant for ϕ1 ∨ ϕ2 if, first, ϕ1 ∨ ϕ2

has been violated at b, and second, b is the violation causation instant for
either ϕ1 or ϕ2. Hence, [R]� (v0:b, ϕ1 ∨ ϕ2, τ) depend on both the violation
status (measured by [R]U(v0:b, ϕi, τ)) of one sub-formula and the violation
causation distance of the other sub-formula;

– Case �Iϕ: b is a violation causation instant for �Iϕ if b is the violation
causation instant for the sub-formula ϕ evaluated at any instant in τ + I.
So, [R]� (v0:b,�Iϕ, τ) depends on the infimum of the violation causation
distances regarding ϕ evaluated at the instants in τ + I;

– Case �Iϕ: b is a violation causation instant for �Iϕ if, first, �Iϕ has been
violated at b, and second, b is a violation causation instant for the sub-formula
ϕ evaluated at any instant in τ + I. So, [R]� (v0:b,�Iϕ, τ) depends on both
the violation status of �Iϕ (measured by [R]U(v0:b,�Iϕ, τ)) and the infimum
of the violation causation distances of ϕ evaluated in τ + I.

– Case ϕ1UI ϕ2: [R]� (v0:b, ϕ1 UI ϕ2, τ) depends on, first, the violation status of
the whole formula (measured by [R]U(v0:b, ϕ1UI ϕ2, τ)), and also, the infimum
of the violation causation distances regarding the evaluation of “ϕ1 holds until
ϕ2” at each instant in τ + I.

Similarly, we can also compute the satisfaction causation distance. We use Exam-
ple 3 to illustrate the quantitative causation monitor for the signals in Example 1.

Example 3. Consider the quantitative causation monitor for the signals in
Example 1. At b = 30, the violation causation distance is computed as:

[R]�(v0:30,ϕ,0)= inf
t∈[0,100]

[R]�
(
v0:30,ϕ

′,t
)

= inf
t∈[0,100]

⎛

⎝min

⎛

⎝
max

(
[R]�(v0:30,ϕ1,t),[R]U(v0:30,ϕ2,t)

)
,

max
(
[R]U(v0:30,ϕ1,t),[R]�(v0:30,ϕ2,t)

)

⎞

⎠

⎞

⎠

= inf
t∈[0,100]

⎛

⎜⎜
⎜
⎜
⎝

min

⎛

⎜⎜
⎜
⎜
⎝

max

(

−[R]⊕(v0:30,α1,t), sup
t′∈t+[0,5]

[R]U(v0:30,α2,t
′)

)

max

(

−[R]L(v0:30,α1,t),max

(
[R]U(v0:30,ϕ2,t),

inf
t′∈t+[0,5]

[R]�
(
v0:30,α2,t

′)
))

⎞

⎟⎟
⎟
⎟
⎠

⎞

⎟⎟
⎟
⎟
⎠

=max

(
−[R]L(v0:30,α1,25),[R]U(v0:30,ϕ2,25), inf

t′∈[25,30]
[R]�

(
v0:30,α2,t

′)
)

=max(−3,−3,−5)=−3.
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Similarly, at b = 35, the violation causation distance [R]� (v0:35, ϕ, 0) = 5.
See the result of QCauM shown in Fig. 5. Compared to ClaM in Fig. 2, it is evident
that QCauM provides much more information about the system evolution, e.g.,
it can report that, in the interval [15, 20], the system satisfies the specification
“more”, as the speed decreases. �

By using the violation and satisfaction causation distances reported by QCauM
jointly, we can infer the verdict of BCauM, as indicated by Theorem 2.

Theorem 2. The quantitative causation monitor QCauM in Definition 7 refines
the Boolean causation monitor BCauM in Definition 6, in the sense that:

– if [R]� (v0:b, ϕ, τ) < 0, it implies M (v0:b, ϕ, τ) = �;
– if [R]⊕ (v0:b, ϕ, τ) > 0, it implies M (v0:b, ϕ, τ) = ⊕;
– if [R]� (v0:b, ϕ, τ) > 0 and [R]⊕ (v0:b, ϕ, τ) < 0, it implies M (v0:b, ϕ, τ) = �.

Proof. The proof is generally based on mathematical induction. First, by Def-
inition 7 and Definition 5, it is straightforward that Theorem 2 holds for the
atomic propositions.

Then, assuming that Theorem 2 holds for an arbitrary formula ϕ, we prove
that Theorem 2 also holds for the composite formula ϕ′ constructed by applying
STL operators to ϕ. The complete proof for all three cases is shown in the full
version [38].

As an instance, we show the proof for the first case with ϕ′ = ϕ1 ∨ ϕ2, i.e.,
we prove that [R]� (v0:b, ϕ1 ∨ ϕ2, τ) < 0 implies M (v0:b, ϕ1 ∨ ϕ2, τ) = �.

[R]� (v0:b, ϕ1 ∨ ϕ2, τ) < 0

⇒ max
(
[R]� (v0:b, ϕ1, τ) , [R]U(v0:b, ϕ2, τ)

)
< 0 (by Def. 7 and w.l.o.g.)

⇒[R]� (v0:b, ϕ1, τ) < 0 (by def. of max)

⇒M (v0:b, ϕ1, τ) = � (by assumption)

⇒E�(v0:b, ϕ1 ∨ ϕ2, τ) ⊇ E�(v0:b, ϕ1, τ) (by Def. 5 and Thm. 1)

⇒∃α. 〈α, b〉 ∈ E�(v0:b, ϕ1 ∨ ϕ2, τ) (by def. of ⊇)

⇒M (v0:b, ϕ1 ∨ ϕ2, τ) = � (by Def. 6)

��
The relation between the quantitative causation monitor QCauM and the

Boolean causation monitor BCauM, disclosed by Theorem 2, can be visualized
by the comparison between Fig. 5 and Fig. 4. Indeed, when the violation causa-
tion distance reported by QCauM is negative in Fig. 5, BCauM reports � in Fig. 4.

Next, we present Theorem 3, which states the relation between the quanti-
tative causation monitor QCauM and the classic quantitative monitor ClaM.

Theorem 3. The quantitative causation monitor QCauM in Definition 7 refines
the classic quantitative online monitor ClaM in Definition 4, in the sense that,
the monitoring results of ClaM can be reconstructed from the results of QCauM,
as follows:
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[R]U(v0:b, ϕ, τ) = inf
t∈[0,b]

[R]� (v0:t, ϕ, τ) (1)

[R]L(v0:b, ϕ, τ) = sup
t∈[0,b]

[R]⊕ (v0:t, ϕ, τ) (2)

Proof. The proof is generally based on mathematical induction. First, by Def-
inition 7 and Definition 4, it is straightforward that Theorem 3 holds for the
atomic propositions.

Then, we make the global assumption that Theorem 3 holds for an arbitrary
formula ϕ, i.e., both the two cases inft∈[0,b] [R]� (v0:t, ϕ, τ) = [R]U(v0:b, ϕ, τ)
and supt∈[0,b] [R]⊕ (v0:t, ϕ, τ) = [R]L(v0:b, ϕ, τ) hold. Based on this assumption,
we prove that Theorem 3 also holds for the composite formula ϕ′ constructed
by applying STL operators to ϕ.

As an instance, we prove inft∈[0,b] [R]� (v0:t, ϕ
′, τ) = [R]U(v0:b, ϕ

′, τ) with
ϕ′ = ϕ1 ∨ ϕ2 as follows. The complete proof is presented in the full version [38].

First, if b = τ , it holds that:

inf
t∈[0,b]

[R]�(v0:t,ϕ1∨ϕ2,τ)=[R]�(v0:τ ,ϕ1∨ϕ2,τ)

=max
(
[R]U(v0:τ ,ϕ1,τ),[R]U(v0:τ ,ϕ2,τ)

)
(by Def. 7 and global assump.)

=[R]U(v0:b,ϕ1∨ϕ2,τ) (by Def. 4)

Then, we make a local assumption that, given an arbitrary b, it holds that
inft∈[0,b] [R]� (v0:t, ϕ1 ∨ ϕ2, τ) = [R]U(v0:b, ϕ1 ∨ ϕ2, τ). We prove that, for b′
which is the next sampling point to b, it holds that,

inf
t∈[0,b′]

[R]�(v0:t,ϕ1∨ϕ2,τ)

=min
(
[R]U(v0:b,ϕ1∨ϕ2,τ),[R]�(v0:b′ ,ϕ1∨ϕ2,τ)

)
(by local assump.)

=min

⎛

⎜
⎜
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⎝
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(
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)
,

max
(
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(by Defs. 4 & 7)
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(
[R]U(v0:b,ϕ1,τ),[R]�(v0:b′ ,ϕ2,τ)

)
,
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(
[R]�(v0:b′ ,ϕ1,τ),[R]�(v0:b′ ,ϕ2,τ)

)
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(by global assump.)

=max

⎛

⎝
min

(
[R]U(v0:b,ϕ1,τ),[R]�(v0:b′ ,ϕ1,τ)

)
,

min
(
[R]U(v0:b,ϕ2,τ),[R]�(v0:b′ ,ϕ2,τ)

)

⎞

⎠ (by def. of min, max)

=max
(
[R]U(v0:b′ ,ϕ1,τ),[R]U(v0:b′ ,ϕ2,τ)

)
(by global assump.)

=[R]U(v0:b′ ,ϕ1∨ϕ2,τ) (by Def. 4)
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Fig. 6. Refinement among STL monitors

Theorem 3 shows that the result [R]U(v0:b, ϕ, τ) of ClaM can be derived from
the result of QCauM by applying inft∈[0,b] [R]� (v0:b, ϕ, t). For instance, comparing
the results of QCauM in Fig. 5 and the results of ClaM in Fig. 2, we can find that
the results in Fig. 2 can be reconstructed by using the results in Fig. 5.

Remark 1. Figure 6 shows the refinement relations between the six STL mon-
itoring approaches. The left column lists the offline monitoring approaches
derived directly from the Boolean and quantitative semantics of STL respec-
tively. The middle column shows the classic online monitoring approaches. Our
two causation monitors, namely BCauM and QCauM, are given in the column on
the right. Given a pair (A,B) of the approaches, A ← B indicates that the app-
roach B refines the approach A, in the sense that B can deliver more information
than A, and the information delivered by A can be derived from the informa-
tion delivered by B. It is clear that the refinement relation in the figure ensures
transitivity. Note that blue arrows are contributed by this paper. As shown by
Fig. 6, the relation between BCauM and QCauM is analogous to that between the
Boolean and quantitative semantics of STL.

5 Experimental Evaluation

We implemented a tool3 for our two causation monitors. It is built on the top of
Breach [15], a widely used tool for monitoring and testing of hybrid systems [18].
Being consistent with Breach, the monitors target the output signals given by
Simulink models, as an additional block. Experiments were executed on a MacOS
machine, 1.4 GHz Quad-Core Intel Core-i5, 8 GB RAM, using Breach v1.10.0.

5.1 Experiment Setting

Benchmarks. We perform the experiments on the following two benchmarks.
Abstract Fuel Control (AFC) is a powertrain control system from Toyota [27],
which has been widely used as a benchmark in the hybrid system community [18–
20]. The system outputs the air-to-fuel ratio AF, and requires that the deviation
of AF from its reference value AFref should not be too large. Specifically, we
consider the following properties from different perspectives:

– ϕAFC
1 := �[10,50](|AF − AFref| < 0.1): the deviation should always be small;

3 Available at https://github.com/choshina/STL-causation-monitor, and Zenodo [39].

https://github.com/choshina/STL-causation-monitor
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– ϕAFC
2 := �[10,48.5]�[0,1.5] (|AF − AFref| < 0.08): a large deviation should not

last for too long time;
– ϕAFC

3 := �[10,48](|AF−AFref| > 0.08 → �[0,2](|AF−AFref| < 0.08)): whenever
the deviation is too large, it should recover to the normal status soon.

Automatic transmission (AT) is a widely-used benchmark [18–20], implementing
the transmission controller of an automotive system. It outputs the gear, speed
and RPM of the vehicle, which are required to satisfy this safety requirement:

– ϕAT
1 := �[0,27](speed > 50 → �[1,3](RPM < 3000)): whenever the speed is

higher than 50, the RPM should be below 3000 in three time units.

Baseline and Experimental Design. In order to assess our two proposed
monitors (the Boolean causation monitor BCauM in Definition 6, and the quan-
titative causation monitor QCauM in Definition 7), we compare them with two
baseline monitors: the classic quantitative robustness monitor ClaM (see Defi-
nition 4); and the state-of-the-art approach monitor with reset ResM [40], that,
once the signal violates the specification, resets at that point and forgets the
previous partial signal.

Given a model and a specification, we generate input signals by randomly
sampling in the input space and feed them to the model. The online output
signals are given as inputs to the monitors and the monitoring results are col-
lected. We generate 10 input signals for each model and specification. To account
for fluctuation of monitoring times in different repetitions4, for each signal, the
experiment has been executed 10 times, and we report average results.

5.2 Evaluation

Qualitative Evaluation. We here show the type of information provided by
the different monitors. As an example, Fig. 7 reports, for two specifications of
the two models, the system output signal (in the top of the two sub-figures), and
the monitoring results of the compared monitors. We notice that signals of both
models (top plots) violate the corresponding specifications in multiple points.
Let us consider monitoring results of ϕAFC

1 ; similar observations apply to ϕAT
1 .

When using the ClaM, only the first violation right after time 15 is detected
(the upper bound of robustness becomes negative); after that, the upper bound
remains constant, without reporting that the system recovers from violation at
around time 17, and that the specification is violated again four more times.

Instead, we notice that the monitor with reset ResM is able to detect all
the violations (as the upper bound becomes greater than 0 when the violation
episode ends), but it does not properly report the margin of robustness; indeed,
during the violation episodes, it reports a constant value of around −0.4 for the
upper bound, but the system violates the specification with different degrees of
severity in these intervals; in a similar way, when the specification is satisfied
around after time 17, the upper bound is just above 0, but actually the system
4 Note that only the monitoring time changes across different repetitions; monitoring

results are instead always the same, as monitoring is deterministic for a given signal.
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(a) ϕAFC
1 and signal #4 (b) ϕAT

1 and signal #8

Fig. 7. Examples of the information provided by the different monitors

Table 1. Experimental results – Average (avg.) and standard deviation (stdv.) of
monitoring and simulation times (ms)

ClaM ResM BCauM QCauM

monitor total monitor total monitor total monitor total

avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv. avg. stdv.

ϕAFC
1 14.6 0.1 982.8 3.5 8.8 2.4 981.3 6.7 36.9 5.4 1009.7 16.5 15.1 0.1 981.9 4.4

ϕAFC
2 26.8 0.2 998.5 9.0 20.2 5.2 988.0 9.9 50.4 22.4 1023.9 25.1 27.4 0.2 999.5 8.2

ϕAFC
3 42.0 0.3 1016.5 8.9 45.5 4.8 1016.9 7.5 48.4 6.2 1021.2 7.9 81.0 1.2 1060.1 5.3

ϕAT
1 16.7 0.2 966.0 2.6 24.0 17.0 980.4 24.2 96.1 82.6 1065.2 93.4 31.2 0.6 985.0 7.5

satisfies the specification with different margins. As a consequence, ResM provides
sharp changes of the robustness upper bound that do not faithfully reflect the
system evolution.

We notice that the Boolean causation monitor BCauM only reports informa-
tion about the violation episodes, but not on the degree of violation/satisfaction.
Instead, the quantitative causation monitor QCauM is able to provide a very
detailed information, not only reporting all the violation episodes, but also prop-
erly characterizing the degree with which the specification is violated or satisfied.
Indeed, in QCauM, the violation causation distance smoothly increases from vio-
lation to satisfaction, so faithfully reflecting the system evolution.

Quantitative Assessment of Monitoring Time. We discuss the computa-
tion cost of doing the monitoring.
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Table 2. Experimental results of the four monitoring approaches – Monitoring time
(ms) – ΔA = (QCauM−A)/A

ϕAFC
1 ClaM ResM BCauM QCauM

QCauM stat. (%)

ΔClaM ΔResM ΔBCauM

#1 14.5 8.2 37.4 15.2 4.8 85.4 −59.4

#2 14.5 8.1 39.9 15.0 3.4 85.2 −62.4

#3 14.8 8.0 38.2 15.0 1.4 87.5 −60.7

#4 14.7 8.5 38.8 15.3 4.1 80.0 −60.6

#5 14.6 8.0 37.3 14.9 2.1 86.3 −60.1

#6 14.6 8.2 37.6 15.1 3.4 84.1 −59.8

#7 14.6 15.5 21.6 15.0 2.7 -3.2 −30.6

#8 14.7 7.9 39.5 15.0 2.0 89.9 −62.0

#9 14.6 7.8 39.9 15.1 3.4 93.6 −62.2

#10 14.5 8.0 38.4 15.1 4.1 88.8 −60.7

ϕAFC
2 ClaM ResM BCauM QCauM

QCauM stat. (%)

ΔClaM ΔResM ΔBCauM

#1 26.8 19.8 45.9 27.4 2.2 38.4 −40.3

#2 27.1 27.3 27.6 27.8 2.6 1.8 0.7

#3 26.6 26.2 30.0 27.5 3.4 5.0 −8.3

#4 26.6 14.2 107.2 27.0 1.5 90.1 −74.8

#5 26.7 15.8 50.9 27.3 2.2 72.8 −46.4

#6 26.6 15.8 56.4 27.2 2.3 72.2 −51.8

#7 26.8 25.4 33.5 27.5 2.6 8.3 −17.9

#8 26.9 17.0 51.9 27.4 1.9 61.2 −47.2

#9 27.1 25.1 50.9 27.6 1.8 10.0 −45.8

#10 26.7 15.8 50.1 27.3 2.2 72.8 −45.5

ϕAFC
3 ClaM ResM BCauM QCauM

QCauM stat. (%)

ΔClaM ΔResM ΔBCauM

#1 42.1 49.2 49.1 81.2 92.9 65.0 65.4

#2 42.5 42.2 42.2 82.1 93.2 94.5 94.5

#3 41.8 48.8 48.8 81.5 95.0 67.0 67.0

#4 42.0 34.9 63.4 78.8 87.6 125.8 24.3

#5 41.7 48.9 48.7 79.6 90.9 62.8 63.4

#6 41.7 48.5 48.7 79.7 91.1 64.3 63.7

#7 42.3 42.7 42.5 81.9 93.6 91.8 92.7

#8 42.1 42.2 42.0 81.6 93.8 93.4 94.3

#9 42.3 49.1 49.3 82.6 95.3 68.2 67.5

#10 41.6 48.6 49.1 80.8 94.2 66.3 64.6

ϕAT
1 ClaM ResM BCauM QCauM

QCauM stat. (%)

ΔClaM ΔResM ΔBCauM

#1 16.9 30.7 29.6 32.1 89.9 4.6 8.4

#2 16.7 17.4 17.4 31.9 91.0 83.3 83.3

#3 16.7 16.8 253.4 31.0 85.6 84.5 −87.8

#4 16.9 69.7 70.2 31.8 88.2 −54.4 −54.7

#5 16.8 19.6 135.9 31.0 84.5 58.2 −77.2

#6 16.5 26.5 200.5 30.2 83.0 14.0 −84.9

#7 16.6 14.6 37.9 31.0 86.7 112.3 −18.2

#8 16.8 16.4 143.8 31.4 86.9 91.5 −78.2

#9 16.3 13.9 38.6 31.0 90.2 123.0 −19.7

#10 16.5 14.2 33.2 30.9 87.3 117.6 −6.9

In Table 1, we observe that, for all the monitors, the monitor ing time is much
lower than the total time (system execution + monitoring). It shows that, for
this type of systems, the monitoring overhead is negligible. Still, we compare the
execution costs for the different monitors. Table 2 reports the monitoring times
of all the monitors for each specification and each signal. Moreover, it reports
the percentage difference between the quantitative causation monitor QCauM (the
most informative one) and the other monitors.

We first observe that ResM and BCauM have, for the same specification,
high variance of the monitoring times across different signals. ClaM and QCauM,
instead, provide very consistent monitoring times. This is confirmed by the stan-
dard deviation results in Table 1. The consistent monitoring cost of QCauM is a
good property, as the designers of the monitor can precisely forecast how long
the monitoring will take, and design the overall system accordingly.

We observe that QCauM is negligibly slower than ClaM for ϕAFC
1 and ϕAFC

2 , and
at most twice slower for the other two specifications. This additional monitoring
cost is acceptable, given the additional information provided by QCauM. Com-
pared to ResM, QCauM is usually slower (at most around the double); also in this
case, as QCauM provides more information than ResM, the cost is acceptable.

Compared to the Boolean causation monitor BCauM, QCauM is usually faster,
as it does not have to collect epochs, which is a costly operation. However, we
observe that it is slower in ϕAFC

3 , because, in this specification, most of the signals
do not violate it (and so also BCauM does not collect epochs in this case).
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To conclude, QCauM is a monitor able to provide much more information that
exiting monitors, with an acceptable overhead in terms of monitoring time.

6 Related Work

Monitoring of STL. Monitoring can be performed either offline or online.
Offline monitoring [16,30,33] targets complete traces and returns either true or
false. In contrast, online monitoring deals with the partial traces, and thus a
three-valued semantics was introduced for LTL monitoring [7,8], and in further
for MTL and STL qualitative online monitoring [24,31], to handle the situation
where neither of the conclusiveness can be made. In usual, the quantitative online
monitoring provides a quantitative value or a robust satisfaction interval [12–
14,25,26]. Based on them, several tools have been developed, e.g., AMT [32,33],
Breach [15], S-Taliro [1], etc. We refer to the survey [3] for comprehensive intro-
duction. Recently, in [35], Qin and Deshmukh propose clairvoyant monitoring to
forecast future signal values and give probabilistic bounds on the specification
validity. In [2], an online monitoring is proposed for perception systems with
Spatio-temporal Perception Logic [23].

Monotonicity Issue. However, most of these works do not handle the mono-
tonicity issue stated in this paper. In [10], Cimatti et al. propose an assumption-
based monitoring framework for LTL. It takes the user expertise into account and
allows the monitor resettable, in the sense that it can restart from any discrete
time point. In [37], a recovery feature is introduced in their online monitor [25].
However, the technique is an application-specific approach, rather than a general
framework. In [40], a reset mechanism is proposed for STL online monitor. How-
ever, as experimentally evaluated in Sect. 5, it essentially provides a solution
for the Boolean semantics and still holds monotonicity between two resetting
points.

Signal Diagnostics. Signal diagnostics [5,22,32] is originally used in an offline
manner, for the purpose of fault localization and system debugging. In [22], the
authors propose an approach to automatically address the single evaluations
(namely, epochs) that account for the satisfaction/violation of an STL specifi-
cation, for a complete trace. This information can be further used as a reference
for detecting the root cause of the bugs in the CPS systems [5,6,32]. The online
version of signal diagnostics, which is the basis of our Boolean causation moni-
tor, is introduced in [40]. However, we show in Sect. 5 that the monitor based on
this technique is often costly, and not able to deliver the quantitative runtime
information compared to the quantitative causation monitor.

7 Conclusion and Future Work

In this paper, we propose a new way of doing STL monitoring based on causa-
tion that is able to provide more information than classic monitoring based on
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STL robustness. Concretely, we propose two causation monitors, namely BCauM
and QCauM. In particular, BCauM intuitively explains the concept of “causation”
monitoring, and thus paves the path to QCauM that is more practically valuable.
We further prove the relation between the proposed causation monitors and the
classic ones.

As future work, we plan to improve the efficiency the monitoring, by avoiding
some unnecessary computations for some instants. Moreover, we plan to apply
it to the monitoring of real-world systems.
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Abstract. We characterize all common notions of behavioral equiva-
lence by one 6-dimensional energy game, where energies bound capabil-
ities of an attacker trying to tell processes apart. The defender-winning
initial credits exhaustively determine which preorders and equivalences
from the (strong) linear-time–branching-time spectrum relate processes.

The time complexity is exponential, which is optimal due to trace
equivalence being covered. This complexity improves drastically on our
previous approach for deciding groups of equivalences where exponential
sets of distinguishing HML formulas are constructed on top of a super-
exponential reachability game. In experiments using the VLTS bench-
marks, the algorithm performs on par with the best similarity algorithm.

Keywords: Bisimulation · Energy games · Process equivalence
spectrum

1 Introduction

Many verification tasks can be understood along the lines of “how equivalent” two
models are. Figure 1 replicates a standard example, known for instance from the
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Fig. 1. A specification of mutual exclusion Mx, and Peterson’s protocol Pe.
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textbook Reactive Systems [3]: A specification of mutual exclusion Mx as two
alternating users A and B entering their critical section ecA/ecB and leaving
lcA/lcB before the other may enter; and the transition system of Peterson’s [28]
mutual exclusion algorithm Pe, minimized by weak bisimilarity, with internal
steps −→ due to the coordination that needs to happen. For Pe to faithfully
implement mutual exclusion, it should behave somewhat similarly to Mx.

Semantics in concurrent models must take nondeterminism into account. Set-
ting the degree to which nondeterminism counts induces equivalence notions with
subtle differences: Pe and Mx weakly simulate each other, meaning that a tree
of options from one process can be matched by a similar tree of the other. This
implies that they have the same weak traces, that is, matching paths. However,
they are not weakly bi-similar, which would require a higher degree of symmetry
than mutual simulation, namely, matching absence of options. There are many
more such notions. Van Glabbeek’s linear-time–branching-time spectrum [21]
(cf. Fig. 3) brings order to the hierarchy of equivalences. But it is notoriously
difficult to navigate. In our example, one might wonder: Are there notions relat-
ing the two besides mutual simulation?

Our recent algorithm for linear-time–branching-time spectroscopy by Bisp-
ing, Nestmann, and Jansen [7,9] is capable of answering equivalence questions
for finite-state systems by deciding the spectrum of behavioral equivalences in one
go. In theory, that is. In practice, the algorithm of [7] runs out of memory when
applied to the weak transition relation of even small examples like Pe. The rea-
son for this is that saturating transition systems with the closure of weak steps
adds a lot of nondeterminism. For instance, Pe may reach 10 different states
by internal steps (−→∗). The spectroscopy algorithm of [7] builds a bisimulation
game where the defender wins if the game starts at a pair of equivalent processes.
To allow all attacks relevant for the spectrum, the [7]-game must consider parti-
tionings of state sets reached through nondeterminism. There are 115,975 ways
of partitioning 10 objects. As a consequence, the game graph of [7] comparing
Pe and Mx has 266,973 game positions. On top of each postion, [7] builds sets
of distinguishing formulas of Hennessy–Milner modal logic (HML) [21,24] with
minimal expressiveness. These sets may grow exponentially. Game over!

Contributions. In this paper, we adapt the spectroscopy approach of [7,9] to
render small verification instances like Pe/Mx feasible. The key ingredients that
will make the difference are: understanding the spectrum purely through depth-
properties of HML formulas; using multidimensional energy games [15] instead of
reachability games; and exploiting the considered spectrum to drastically reduce
the branching-degree of the game as well as the height of the energy lattice.
Figure 2 lays out the algorithm with pointers to key parts of this paper.

– Subsection 2.2 explains how the linear-time–branching-time spectrum can
be understood in terms of six dimensions of HML expressiveness, and Sub-
sect. 3.1 introduces a class of declining energy games fit for our task.

– In Subsect. 3.2, we describe the novel spectroscopy energy game, and, in Sub-
sect. 3.3, prove it to characterize all notions of equivalence definable by the
six dimensions.
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ning budgets
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3.3
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4.3

Fig. 2. Overview of the computations → and correspondences ∼ we will discuss.

– Subsection 3.4 shows that a more clever game with only linear branching-
factor still covers the spectrum.

– Subsection 4.1 provides an algorithm to compute winning initial energy levels
for declining energy games with min{...}, which enables decision of the whole
considered spectrum in 2O(|P|) for systems with |P| processes (Subsect. 4.2).

– In Subsect. 4.3, we add fine print on how to obtain equivalences and distin-
guishing formulas in the algorithm.

– Section 5 compares to [7] and [29] through experiments with the widely used
VLTS benchmark suite [18]. The experiments also reveal insights about the
suite itself.

2 Distinctions and Equivalences in Transition Systems

Two classic concepts of system analysis form the background of this paper:
Hennessy–Milner logic (HML) interpreted over transition systems goes back to
Hennessy and Milner [24] investigating observational equivalence in operational
semantics. Van Glabbeek’s linear-time–branching-time spectrum [21] arranges all
common notions of equivalence as a hierarchy of HML sublanguages.

2.1 Transition Systems and Hennessy–Milner Logic

Definition 1 (Labeled transition system). A labeled transition system is
a tuple S = (P, Σ,−→) where P is the set of processes, Σ is the set of actions,
and −→ ⊆ P × Σ × P is the transition relation.

By I(p) we denote the actions enabled initially for a process p ∈ P, that
is, I(p) := {a ∈ Σ | ∃p′. p a−→ p′}. We lift the steps to sets with P

a−→ P ′ iff
P ′ = {p′ | ∃p ∈ P. p

a−→ p′}.
Hennessy–Milner logic expresses observations that one may make on such a
system. The set of formulas true of a process offers a denotation for its semantics.

Definition 2 (Hennessy–Milner logic). The syntax of Hennessy–Milner
logic over a set Σ of actions, HML[Σ], is defined by the grammar:

ϕ ::= 〈a〉ϕ with a ∈ Σ

|
∧

{ψ,ψ, ...}
ψ ::= ¬ϕ | ϕ.
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bisimulation B
(∞, ∞, ∞, ∞, ∞, ∞)

2-nested simulation 2S
(∞, ∞, ∞, ∞, ∞, 1)

ready simulation RS
(∞, ∞, ∞, ∞, 1, 1)

readiness traces RT
(∞, ∞, ∞, 1, 1, 1)

failure traces FT
(∞, ∞, ∞, 0, 1, 1)

readiness R
(∞, 2, 1, 1, 1, 1)

possible futures PF
(∞, 2, ∞, ∞, ∞, 1)

impossible futures IF
(∞, 2, 0, 0, ∞, 1)

simulation 1S
(∞, ∞, ∞, ∞, 0, 0)

revivals RV
(∞, 2, 1, 0, 1, 1)

failures F
(∞, 2, 0, 0, 1, 1)

traces T
(∞, 1, 0, 0, 0, 0)

enabledness E
(1, 1, 0, 0, 0, 0)

Fig. 3. Hierarchy of equivalences/preorders becoming finer towards the top.

Its semantics � · �
S over a transition system S = (P, Σ,−→) is given as the set

of processes where a formula “is true” by:

�〈a〉ϕ�
S := {p ∈ P | ∃p′ ∈ �ϕ�

S
. p

a−→ p′}

�
∧

i∈I

ψi�
S
:=

⋂
{�ψi�

S | i ∈ I ∧ �ϕ.ψi = ¬ϕ}
\

⋃
{�ϕ�

S | ∃i ∈ I. ψi = ¬ϕ}.

HML basically extends propositional logic with a modal observation operation.
Conjunctions then bound trees of future behavior. Positive conjuncts mean lower
bounds, negative ones impose upper bounds. For the scope of this paper, finite
bounds suffice, i.e. , conjunctions are finite-width. The empty conjunction T :=∧

∅ is usually omitted in writing.



Process Equivalence Problems as Energy Games 89

Fig. 4. Example system of internal decision τ−→ against an action
ecA−−→.

We use Hennessy–Milner logic to capture differences between program behav-
iors. Depending on how much of its expressiveness we use, different notions of
equivalence are characterized.

Definition 3 (Distinguishing formulas and preordering languages). A
formula ϕ ∈ HML[Σ] is said to distinguish two processes p, q ∈ P iff p ∈ �ϕ�

S

and q /∈ �ϕ�
S. A sublanguage of Hennessy–Milner logic, OX ⊆ HML[Σ], either

distinguishes two processes, p 	
X q, if it contains a distinguishing formula, or
preorders them otherwise. If processes are preordered in both directions, p 
X q
and q 
X p, then they are considered X-equivalent, p ∼X q.

Fig. 3 charts the linear-time–branching-time spectrum. If processes are pre-
ordered/equated by one notion of equivalence, they also are preordered/equated
by every notion below. We will later formally characterize the notions through
Proposition 1. For a thorough presentation, we point to [23]. For those familiar
with the spectrum, the following example serves to refresh memories.

Example 1. Fig. 4 shows a tiny slice of the weak-step-saturated version of our
initial example from Fig. 1 that is at the heart of why Pe and Mx are not bisimula-
tion-equivalent. The difference between S and S′ is that S can internally transi-
tion to Div (labeled τ−→) without ever performing an ecA action. We can express
this difference by the formula ϕS := 〈τ〉∧{¬〈ecA〉}, meaning “after τ , ecA may
be impossible.” It is true for S, but not for S′. Knowing a distinguishing formula
means that S and S′ cannot be bisimilar by the Hennessy–Milner theorem. The
formula ϕS is called a failure (or refusal) as it specifies a set of actions that
are disabled after a trace. In the other direction of comparison, the negation
ϕS′ :=

∧{¬〈τ〉∧{¬〈ecA〉}} distinguishes S′ from S. The differences between the
two processes cannot be expressed in HML without negation. Therefore the pro-
cesses are simulation-equivalent, or similar, as similarity is characterized by the
positive fragment of HML.

2.2 Price Spectra of Behavioral Equivalences

For algorithms exploring the linear-time–branching-time spectrum, it is conve-
nient to have a representation of the spectrum in terms of numbers or “prices”
of formulas as in [7]. We, here, use six dimensions to characterize the notions
of equivalence depicted in Fig. 3. The numbers define the HML observation lan-
guages that characterize the very preorders/equivalences. Intuitively, the colorful
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〈τ〉 ∧

〈ecA〉 〈lcA〉 ∧

〈τ〉 ∧

¬ 〈ecB〉 ∧

e1 = 3
e2 = 2

e3 = 2 e4 = 1

e5 = 1e6 = 1

Fig. 5. Pricing e of formula 〈τ〉∧{〈ecA〉〈lcA〉T, 〈τ〉T, ¬〈ecB〉T}.

numbers mean: (1) Formula modal depth of observations. (2) Formula nesting
depth of conjunctions. (3) Maximal modal depth of deepest positive clauses in
conjunctions. (4) Maximal modal depth of the other positive clauses in conjunc-
tions. (5) Maximal modal depth of negative clauses in conjunctions. (6) Formula
nesting depth of negations. More formally:

Definition 4 (Energies). We denote as energies, En, the set of N -dimensional
vectors (N)N, and as extended energies, En∞, the set (N ∪ {∞})N .

We compare energies component-wise, i.e. , (e1, . . . , eN ) ≤ (f1, . . . , fN ) iff
ei ≤ fi for each i. Least upper bounds sup are defined as usual as component-
wise supremum, as are greatest lower bounds inf.

Definition 5 (Formula prices). The expressiveness price expr : HML[Σ] →
(N)6 of a formula interpreted as 6-dimensional energies is defined recursively
by:

expr(〈a〉ϕ) :=

⎛

⎜⎜⎜⎜⎜⎜⎝

1+ expr1(ϕ)
expr2(ϕ)
expr3(ϕ)
expr4(ϕ)
expr5(ϕ)
expr6(ϕ)

⎞

⎟⎟⎟⎟⎟⎟⎠
expr(¬ϕ) :=

⎛

⎜⎜⎜⎜⎜⎜⎝

expr1(ϕ)
expr2(ϕ)
expr3(ϕ)
expr4(ϕ)
expr5(ϕ)

1+ expr6(ϕ)

⎞

⎟⎟⎟⎟⎟⎟⎠

expr(
∧
i∈I

ψi) := sup

(
{

⎛

⎜⎜⎜⎜⎜⎜⎝

0
1+ supi∈I expr2(ψi)
supi∈Pos expr1(ψi)

supi∈Pos\R expr1(ψi)
supi∈Neg expr1(ψi)

0

⎞

⎟⎟⎟⎟⎟⎟⎠

} ∪ {expr(ψi) | i ∈ I}
)

Neg := {i ∈ I | ∃ϕ′
i. ψi = ¬ϕ′

i}
Pos := I \ Neg

R :=

{
∅ if Pos = ∅

{r} for some r ∈ Pos where expr1(ψr) maximal for Pos.
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Fig. 6. Cut through the price lattice with dimensions 2 (conjunction nesting) and
5 (negated observation depth).

Figure 5 gives an example how the prices compound. The colors of the lines
match those used for the dimensions and their updates in the other figures.
Circles mark the points that are counted. The formula itself expresses a so-
called ready-trace observation: We observe a trace τ · ecA · lcA and, along the
way, may check what other options would have been enabled or disabled. Here,
we check that τ is enabled and ecB is disabled after the first τ -step. With the
pricing, we can characterize all standard notions of equivalence:

Proposition 1. On finite systems, the languages of formulas with prices below
the coordinates given in Fig. 3 characterize the named notions of equivalence,
that is, p 
X q with respect to equivalence X, iff no ϕ with expr(ϕ) ≤ eX

distinguishes p from q.

Example 2. The formulas of Example 1 have prices: expr(〈τ〉∧{¬〈ecA〉}) =
(2, 2, 0, 0, 1, 1) for ϕS and expr(

∧{¬〈τ〉∧{¬〈ecA〉}}) = (2, 3, 0, 0, 2, 2) for ϕS′ . The
prices of the two are depicted as red marks in Fig. 6. This also visualizes how ϕS′ is
a counterexample for bisimilarity and how ϕS is a counterexample for failure and
finer preorders. Indeed the two preorders are coarsest ways of telling the processes
apart. So, S and S′ are equated by all preorders below the marks, i.e. similarity,
S ∼1S S′, and coarser preorders (S ∼T S′, S ∼E S′). This carries over to the
initial example of Peterson’s mutex protocol from Fig. 1, where weak simulation,
Pe ∼1WS Mx, is the most precise equivalence. Practically, this means that the
specification Mx has liveness properties not upheld by the implementation Px.

Remark 1. Definition 5 deviates from our previous formula pricing of [7] in a
crucial way: We only collect the maximal depths of positive clauses, whereas [7]
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tracks numbers of deep and flat positive clauses (where a flat clause is charac-
terized by an observation depth of 1). Our change to a purely “depth-guided”
spectrum will allow us to characterize the spectrum by an energy game and to
eliminate the Bell-numbered blow up from the game’s branching-degree. The
special treatment of the deepest positive branch is necessary to address revival,
failure trace, and ready trace semantics, which are popular in the CSP commu-
nity [17,31].

3 An Energy Game of Distinguishing Capabilities

Conventional equivalence problems ask whether a pair of processes is related by
a specific equivalence. These problems can be abstracted into a more general
“spectroscopy problem” to determine the set of equivalences from a spectrum
that relate two processes as in [7]. This section captures the spectrum of Fig. 3
by one rather simple energy game.

3.1 Energy Games

Multidimensional energy games are played on graphs labeled by vectors to be
added to (or subtracted from) a vector of “energies” where one player must pay
attention to the energies not being exhausted. We plan to encode the distinction
capabilities of the semantic spectrum as energy levels in an energy game enriched
by min{...}-operations that takes minima of components. This way, energy levels
where the defender has a winning strategy will correspond to equivalences that
hold. We will just need updates decrementing or maintaining energy levels.

Definition 6 (Energy updates). The set of energy updates, Up, contains
vectors (u1, . . . , uN ) ∈ Up where each component is of the form

– uk ∈ {−1, 0}, or
– uk = minD where D ⊆ {1, . . . , N} and k ∈ D.

Applying an update to an energy, upd(e, u), where e = (e1, . . . , eN ) ∈ En (or
En∞) and u = (u1, . . . , uN ) ∈ Up, yields a new energy vector e′ where kth
components e′

k := ek + uk for uk ∈ Z and e′
k := mind∈D ed for uk = minD.

Updates that would cause any component to become negative are illegal.

Definition 7 (Games). An N -dimensional declining energy game G[g0, e0] =
(G,Gd, , w, g0, e0) is played on a directed graph uniquely labeled by energy
updates consisting of

– a set of game positions G, partitioned into
• a set of defender positions Gd ⊆ G
• a set of attacker positions Ga := G \ Gd,

– a relation of game moves ⊆ G × G,
– a weight function for the moves w : ( ) → Up,
– an initial position g0 ∈ G, and
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– an initial energy budget vector e0 ∈ En∞.

The notation g u g′ stands for g g′ and w(g, g′) = u.

Definition 8 (Plays, energies, and wins). We call the (finite or infinite)
paths ρ = g0g1 . . . ∈ G∞ with gi

ui gi+1 plays of G[g0, e0].
The energy level of a play ρ at round i, ELρ(i), is recursively defined as

ELρ(0) := e0 and otherwise as ELρ(i+1) := upd(ELρ(i), ui). If we omit the index,
ELρ, this refers to the final energy level of a finite run ρ, i.e. , ELρ(|ρ| − 1).

Plays where energy levels become undefined (negative) are won by the
defender. So are infinite plays. If a finite play is stuck (i.e. , g0 . . . gn 	 ),
the stuck player loses: The defender wins if gn ∈ Ga, and the attacker wins
if gn ∈ Gd.

Proposition 2. In this model, energy levels can only decline.

1. Updates may only decrease energies, upd(e, u) ≤ e.
2. Energy level changes are monotonic: If ELρg ≤ ELσg and g g′ then

ELρgg′ ≤ ELσgg′ .
3. If e0 ≤ e′

0 and G[g0, e0] has non-negative play ρ, then G[g0, e′
0] also has non-

negative play ρ.

Definition 9 (Strategies and winning budgets). An attacker strategy is a
map from play prefixes ending in attacker positions to next game moves s : (G∗ ×
Ga) → G with s(g0 . . . ga) ∈ (ga ·). Similarly, a defender strategy names
moves starting in defender states. If all plays consistent with a strategy s ensure
a player to win, s is called a winning strategy for this player. The player with
a winning strategy for G[g0, e0] is said to win G from position g0 with initial
energy budget e0. We call Wina(g) = {e | G[g, e] is won by the attacker} the
attacker winning budgets.

Proposition 3. The attacker winning budgets at positions are upward-closed
with respect to energy, that is, e ∈ Wina(g) and e ≤ e′ implies e′ ∈ Wina(g).

This means we can characterize the set of winning attacker budgets in terms
of minimal winning budgets Winmin

a (g) = Min(Wina(g)), where Min(S) selects
minimal elements {e ∈ S | �e′ ∈ S. e′ ≤ e ∧ e′ 	= e}. Clearly, Winmin

a must be an
antichain and thus finite due to the energies being well-partially-ordered [26].
Dually, we may consider the maximal energy levels winning for the defender,
Winmax

d : G → 2En∞ where we need extended energies to bound won half-spaces.

3.2 The Spectroscopy Energy Game

Let us now look at the “spectroscopy energy game” at the center of our contribu-
tion. Figure 7 gives a graphical representation. The intuition is that the attacker
shows how to construct formulas that distinguish a process p from every q in a
set of processes Q. The energies limit the expressiveness of the formulas. The first
dimension bounds for how many turns the attacker may challenge observations
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Fig. 7. Schematic spectroscopy game G� of Definition 10.

of actions. The second dimension limits how often they may use conjunctions
to resolve nondeterminism. The third, fourth, and fifth dimensions limit how
deeply observations may nest underneath a conjunction, where the fifth stands
for negated clauses, the third for one of the deepest positive clauses and the
fourth for the other positive clauses. The last dimension limits how often the
attacker may use negations to enforce symmetry by swapping sides. The moves
closely match productions in the grammar of Definition 2 and prices in Defini-
tion 5.

Definition 10. (Spectroscopy energy game). For a system S = (P, Σ,−→),
the 6-dimensional spectroscopy energy game GS

�[g0, e0] = (G,Gd, , w, g0, e0)
consists of

– attacker positions (p,Q)a ∈ Ga,
– attacker clause positions (p, q)∧

a ∈ Ga,
– defender conjunction positions (p,Q,Q∗)d ∈ Gd,

where p, q ∈ P and Q,Q∗ ∈ 2P, and six kinds of moves:

− observation moves (p,Q)a
(−1,0,0,0,0,0) (p′, Q′)a if p

a−→ p′, Q
a−→ Q′,

− conj. challenges (p,Q)a
(0,−1,0,0,0,0) (p,Q \ Q∗, Q∗)d if Q∗ ⊆ Q,

− conj. revivals (p,Q,Q∗)d
(min{1,3},0,0,0,0,0)

(p,Q∗)a if Q∗ 	= ∅,
− conj. answers (p,Q,Q∗)d

(0,0,0,min{3,4},0,0)
(p, q)∧

a if q ∈ Q,
− positive decisions (p, q)∧

a

(min{1,4},0,0,0,0,0)
(p, {q})a, and

− negative decisions (p, q)∧
a

(min{1,5},0,0,0,0,−1)
(q, {p})a if p 	= q.

The spectroscopy energy game is a bisimulation game in the tradition of Stir-
ling [33].
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Fig. 8. Example 3 spectroscopy energy game, minimal attacker winning budgets, and
distinguishing formulas/clauses. (In order to reduce visual load, only the first compo-
nents of the updates are written next to the edges. The other components are 0.)

Lemma 1. (Bisimulation game, proof see [5]). p0 and q0 are bisimilar
iff the defender wins G�[(p0, {q0})a, e0] for every initial energy budget e0, i.e. if
(∞,∞,∞,∞,∞,∞) ∈ Winmax

d ((p0, {q0})a).
In other words, if there are initial budgets winning for the attacker, then the
compared processes can be told apart. For G�, the attacker “unknown initial
credit problem” in energy games [34] coincides with the “apartness problem” [20]
for processes.

Example 3. Figure 8 shows the spectroscopy energy game starting at (S, {S′})a
from Example 1. The lower part of each node displays the node’s Winmin

a . The
magenta HML formulas illustrate distinctions relevant for the correctness argu-
ment of the following Subsect. 3.3. Section 4 will describe how to obtain attacker
winning budgets and equivalences. The blue “symmetric” positions are definitely
won by the defender—we omit the game graph below them. We also omit the
move (S′, {S,Div})a (0,−1,0,0,0,0) (S′, {S}, {Div})d—it can be ignored as will be
discussed in Subsect. 3.4.
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3.3 Correctness: Tight Distinctions

We will check that winning budgets indeed characterize what equivalences hold
by constructing price-minimal distinguishing formulas from attacker budgets.

Definition 11 (Strategy formulas). Given the set of winning budgets Wina,
the set of attacker strategy formulas Strat for a position with given energy level
e is defined inductively as follows:

〈b〉ϕ ∈ Strat((p,Q)a, e) if (p,Q)a
u (p′, Q′)a, e′ = upd(e, u) ∈ Wina((p′, Q′)a),

p
b−→ p′, Q

b−→ Q′, and ϕ ∈ Strat((p′, Q′)a, e
′),

ϕ ∈ Strat((p,Q)a, e) if (p,Q)a
u (p,Q,Q∗)d, e′ = upd(e, u) ∈ Wina((p,Q,Q∗)d),

and ϕ ∈ Strat((p,Q,Q∗)d, e
′),∧

q∈Qψq ∈ Strat((p,Q, ∅)d, e) if (p,Q, ∅)d
uq (p, q)∧

a , eq = upd(e, uq) ∈
Wina((p, q)∧

a ) and ψq ∈ Strat((p, q)∧
a , eq) for each q ∈ Q,∧

q∈Q∪{∗}ψq ∈ Strat((p,Q,Q∗)d, e) if (p,Q,Q∗)d
uq (p, q)∧

a , eq = upd(e, uq) ∈
Wina((p, q)∧

a ) and ψq ∈ Strat((p, q)∧
a , eq) for each q ∈ Q, and if (p,Q,Q∗)d

u∗

(p,Q∗)a, e∗ = upd(e, u∗) ∈Wina((p,Q∗)a), and ψ∗ ∈ Strat((p,Q∗)a, e∗) is an
observation,

ϕ ∈ Strat((p, q)∧
a , e) if (p, q)∧

a
u (p, {q})a, e′ = upd(e, u) ∈ Wina((p, {q})a)

and ϕ ∈ Strat((p, {q})a, e′) is an observation, and
¬ϕ ∈ Strat((p, q)∧

a , e) if (p, q)∧
a

u (q, {p})a, e′ = upd(e, u) ∈ Wina((q, {p})a)
and ϕ ∈ Strat((q, {p})a, e′) is an observation.

Because of the game structure, we actually know the u needed in each line
of the definition. It is u = (−1, 0, 0, 0, 0, 0) in the first case; (0,−1, 0, 0, 0, 0)
in the second; (0, 0, 0, min{3,4}, 0, 0) in the third; (0, 0, 0, min{3,4}, 0, 0) and
(min{1,3}, 0, 0, 0, 0, 0) in the fourth; (min{1,4}, 0, 0, 0, 0, 0) in the fifth; and
(min{1,5}, 0, 0, 0, 0,−1) in last case. Strat((p, q)∧

a , ·) can contain negative clauses,
which form no proper formulas on their own.

Lemma 2 (Price soundness). ϕ ∈ Strat((p,Q)a, e) implies that expr(ϕ) ≤ e
and that expr(ϕ) ∈ Wina((p,Q)a).

Proof. By induction on the structure of ϕ with arbitrary p,Q, e, exploiting the
alignment of the definitions of winning budgets and formula prices. Full proof
in [5].

Lemma 3 (Price completeness). e0 ∈ Wina((p0, Q0)a) implies there are ele-
ments in Strat((p0, Q0)a, e0).

Proof. By induction on the tree of winning plays consistent with some attacker
winning strategy implied by e0 ∈ Wina((p0, Q0)a). Full proof in [5].

Lemma 4 (Distinction soundness). Every ϕ ∈ Strat((p,Q)a, e) distin-
guishes p from every q ∈ Q.

Proof. By induction on the structure of ϕ with arbitrary p,Q, e, exploiting that
Strat can only construct formulas with the invariant that they are true for p and
false for each q ∈ Q. Full proof in [5].
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Lemma 5 (Distinction completeness). If ϕ distinguishes p from every q ∈
Q, then expr(ϕ) ∈ Wina((p,Q)a).

Proof. By induction on the structure of ϕ with arbitrary p,Q, exploiting the
alignment of game structure and HML semantics and the fact that expr cannot
“overtake” inverse updates. Full proof in [5].

Theorem 1 (Correctness). For any equivalence X with coordinate eX , p 
X
q, precisely if all epq ∈ Winmin

a ((p, {q})a) are above or incomparable, epq 	≤ eX .

Proof. By contraposition, in both directions.

– Assume p 	
X q. This means some ϕ with expr(ϕ) ≤ eX distinguishes p from q.
By Lemma 5, expr(ϕ) ∈ Wina((p, {q})a). Then either expr(ϕ) or a lower price
epq ≤ expr(ϕ) are minimal winning budgets, i.e. , epq ∈ Winmin

a ((p, {q})a) and
epq ≤ eX .

– Assume there is epq ∈ Winmin
a ((p, {q})a) with epq ≤ eX . By Lemma 3, there

is ϕ ∈ Strat((p, {q})a, epq). Due to Lemma 4, ϕ must be distinguishing for p
and q, and due to Lemma 2, expr(ϕ) ≤ epq ≤ eX .

The theorem basically means that by fixing an initial budget in G�, we can
obtain a characteristic game for any notion from the spectrum.

3.4 Becoming More Clever by Looking One Step Ahead

The spectroscopy energy game G� of Definition 10 may branch exponentially
with respect to |Q| at conjunction challenges after (p,Q)a. For the spectrum we
are interested in, we can drastically limit the sensible attacker moves to four
options by a little lookahead into the enabled actions I(q) of q ∈ Q and I(p).
Definition 12 (Clever spectroscopy game). The clever spectroscopy game,
G�, is defined exactly like the previous spectroscopy energy game of Definition 10
with the restriction of the conjunction challenges

(p,Q)a
(0,−1,0,0,0,0)

� (p,Q \ Q∗, Q∗)d with Q∗ ⊆ Q,

to situations where Q∗ ∈ {∅, {q ∈ Q | I(q) ⊆ I(p)}, {q ∈ Q | I(p) ⊆ I(q)},
{q ∈ Q | I(p) = I(q)}}.
Theorem 2 (Correctness of cleverness). Assume modal depth of positive
clauses e4 ∈ {0, 1,∞}, e4 ≤ e3, and that modal depth of negative clauses e5 > 1
implies e3 = e4. Then, the attacker wins G�[(p0, Q0)a, e] precisely if they win
G�[(p0, Q0)a, e].

Proof. The implication from the clever spectroscopy game G� to the full spec-
troscopy game G� is trivial as the attacker moves in � are a subset of those in

� and the defender has the same moves in both games. For the other direc-
tion, we have to show that any move (p,Q)a

(0,−1,0,0,0,0)
� (p,Q \ Q∗, Q∗)d win-

ning at energy level e can be simulated by a winning move (p,Q)a
(0,−1,0,0,0,0)

�
(p,Q \ Q′, Q′)d. Full proof in [5].
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4 Computing Equivalences

The previous section has shown that attacker winning budgets in the spec-
troscopy energy game characterize distinguishable processes and, dually, that
the defender’s wins characterize equivalences. We now examine how to actually
compute the winning budgets of both players.

4.1 Computation of Attacker Winning Budgets

The winning budgets of the attacker (Definition 9) are characterized inductively:

– Where the defender is stuck, g ∈ Gd and g 	 , the attacker wins with any
budget, (0, 0, 0, 0, 0, 0) ∈ Winmin

a (g).
– Where the defender has moves, g ∈ Gd and g

ui g′
i (for some indexing i ∈ I

over all possible moves), the attacker wins if they have a budget equal or
above to all budgets that might be necessary after the defender’s move: If
upd(e, ui) ∈ Wina(g′

i) for all i ∈ I, then e ∈ Wina(g).
– Where the attacker moves, g ∈ Ga and g u g′, upd(e, u) ∈ Wina(g′) implies

e ∈ Wina(g).

By Proposition 3, it suffices to find the finite set of minimal winning budgets,
Winmin

a . Turning this into a computation is not as straightforward as in other
energy game models. Due to the minD-updates, the energy update function
upd(·, u) is neither injective nor surjective.

We must choose an inversion function upd−1 that picks minimal solutions
and that minimally “casts up” inputs that are outside the image of upd(·, u), i.e.,
such that upd−1(e′, u) = inf{e | e′ ≤ upd(e, u)}. We compute it as follows:

Definition 13 (Inverse update). The inverse update function is defined as
upd−1(e′, u) := sup({e} ∪ {m(i) | ∃D.ui = minD}) with ei = e′

i − ui for all i
where ui ∈ {0,−1} and ei = e′

i otherwise, and with (m(i))j = e′
i for ui = minD

and j ∈ D, and (m(i))j = 0 otherwise, for all i, j.

Example 4. Let u := (min{1,3}, min{1,2},−1,−1). (3, 4, 0, 1) /∈ img(upd(·, u)), but:

upd−1((3, 4, 0, 1), u) = sup{(3, 4, 1, 2), (3, 0, 3, 0), (4, 4, 0, 0)} = (4, 4, 3, 2)
upd((4, 4, 3, 2), u) = (3, 4, 2, 1) ≥ (3, 4, 0, 1)

upd−1((3, 4, 2, 1), u) = sup{(3, 4, 3, 2), (3, 0, 3, 0), (4, 4, 0, 0)} = (4, 4, 3, 2)

With upd−1, we only need to find the Winmin
a relation as a least fixed point of

the inductive description. This is done by Algorithm 1. Every time a new way
of winning a position for the attacker is discovered, this position is added to the
todo. Initially, these are the positions where the defender is stuck. The update
at an attacker position in Line 8 takes the inversely updated budgets (upd−1)
of successor positions to be tentative attacker winning budgets. At a defender
position, the attacker only wins if they have winning budgets for all follow-up
positions (Line 12). Any supremum of such budgets covering all follow-ups will
be winning for the attacker (Line 13). At both updates, we only select the minima
as a finite representation of the infinitely many attacker budgets.
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1 def compute_winning_budgets(G = (G, Gd, , w)):
2 attacker_win := [g �→ {} | g ∈ G]
3 todo := {g ∈ Gd | g � · }
4 while todo �= ∅:
5 g := some todo
6 todo := todo \ {g}
7 if g ∈ Ga :
8 new_attacker_win := Min(attacker_win[g] ∪ {upd−1(e ′, u) |

g u g′ ∧ e ′ ∈ attacker_win[g′]})
9 else:

10 defender_post := {g′ | g u g′}
11 options := {(g′, upd−1(e ′, u)) | g u g′ ∧ e ′ ∈ attacker_win[g′]}}
12 if defender_post ⊆ dom(options) :
13 new_attacker_win := Min({supg′∈defender_post strat(g

′) |
strat ∈ (G → En) ∧ ∀g′. strat(g′) ∈ options(g′)})

14 else:
15 new_attacker_win := ∅

16 if new_attacker_win �= attacker_win[g] :
17 attacker_win[g] := new_attacker_win
18 todo := todo ∪ {gp | ∃u. gp

u g}
19 Winmin

a := attacker_win
20 return Winmin

a

Algorithm 1: Algorithm for computing attacker winning budgets of declin-
ing energy game G.

4.2 Complexity and How to Flatten It

For finite games, Algorithm 1 is sure to terminate in exponential time of game
graph branching degree and dimensionality.

Lemma 6 (Winning budget complexity, proof see [5]). For an N -dim-
ensional declining energy game with of branching degree o, Algorithm 1 ter-
minates in O(| | · |G|N · (o + |G|(N−1)·o)) time, using O(|G|N ) space for the
output.

Lemma 7 (Full spectroscopy complexity). Time complexity of computing
winning budgets for the full spectroscopy energy game G� is in 2O(|P|·2|P|).

Proof. Out-degrees o in G� can be bounded in O(2|P|), the whole game graph
| �| ∈ O(| ·−→|·2|P|+ |P|2 ·3|P|), and game positions |G�| ∈ O(|P| ·3|P|). Insert
with N = 6 in Lemma 6. Full proof in [5].

We thus have established the approach to be double-exponential. The complexity
of the previous spectroscopy algorithm [7] has not been calculated. One must
presume it to be equal or higher as the game graph has Bell-numbered branching
degree and as the algorithm computes formulas, which entails more options than
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the direct computation of energies. This is what lies behind the introduction’s
observation that moderate nondeterminism already renders [7] unusable.

Our present energy game reformulation allows us to use two ingredients to
do way better than double-exponentially when focussing on the common linear-
time–branching-time spectrum:

First, Subsect. 3.4 has established that most of the partitionings in attacker
conjunction moves can be disregarded by looking at the initial actions of pro-
cesses.

Second, Fahrenberg et al. [15] have shown that considering just “capped”
energies in a grid EnK = {0, . . . , K}N can reduce complexity. Such a flattening
of the lattice turns the space of possible energies into constant factor (K + 1)N

(with (K + 1)N−1-sized antichains) independent of input size. For Algorithm 1,
space complexity needed for attacker_win drops to O(|G|) and time complexity
to | | ·2O(o). If we are only interested in finitely many notions of equivalence as
in the case of Fig. 3, we can always bound the energies to range to the maximal
appearing number plus one. The last number represents all numbers outside the
bound up to infinity.

Lemma 8 (Clever spectroscopy complexity). Time complexity of com-
puting winning budgets for the clever spectroscopy energy game G� with capped
energies is in 2O(|P|).

Proof. Out-degrees o in G� can be bounded in O(|P|), the whole game graph
| �| ∈ O(| ·−→| · 2|P| + |P|2 · 2|P|), and game positions |G�| ∈ O(|P| · 2|P|).
Inserting in the flattened version of Lemma 6 yields:

O(| �| · 2C0·o) = O((| ·−→| · 2|P| + |P|2 · 2|P|) · 2C1·|P|)

= O((| ·−→| + |P|2) · 2C2·|P|)

= O(| ·−→| · 2C2·|P|).

Deciding trace equivalence in nondeterministic systems is PSPACE-hard and
will thus take at least exponential time. Therefore, the exponential time of the
“clever” spectroscopy algorithm restricted to a finite spectrum is about as good
as it may get, asymptotically speaking.

4.3 Equivalences and Distinguishing Formulas from Budgets

For completeness, let us briefly flesh out how to actually obtain equivalence
information from the minimal attacker winning budgets Winmin

a ((p, {q})a) we
compute.

Definition 14. For an antichain Mn ⊆ En characterizing an upper part of
the energy space, the complement antichain Mn := Min (En∞ ∩ ({(supE′) −
(1, . . . , 1) | E′ ⊆ Mn} ∪ {e(i) ∈ En∞ | (e(i))i = (infMn)i − 1 ∧ ∀j 	= i. (e(i))j =
∞})) has the complement energy space as its downset.
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Winmax
d ((p, {q})a) = Winmin

a ((p, {q})a) characterizes all preordering formula lan-
guages and thus equivalences defined in terms of expressiveness prices for p and
q. This might contain multiple, incomparable, notions from the spectrum. Tak-
ing both directions, Winmin

a ((p, {q})a) ∪ Winmin
a ((q, {p})a), will thus characterize

the finest intersection of equivalences to equate p and q.
If we just wonder which of the equivalences from the spectrum hold, we may

establish this more directly by checking which of them are not dominated by
attacker wins.

From the information, we can also easily build witness relations to certify
that we return sound equivalence results. In particular, the pairs won with arbi-
trary attacker budgets, {(p, q) | (∞,∞,∞,∞,∞,∞) ∈ Winmax

d ((p, {q})a)} are
a bisimulation. Similarly, the strategy formulas of Definition 9 can directly be
computed to explain inequivalence.

If we use symbolic winning budgets capped as proposed at the end of Sub-
sect. 4.2, the formula reconstruction will be harder and the Winmin

a ((p, {q})a)
might be below the maximal defender winning budgets if these exceed the bound.
But this will not matter as long as we choose a cap beyond the natural numbers
that characterize our spectrum.

5 Exploring Minimizations

Our algorithm can be used to analyze the equivalence structure of moderately-
sized real-world transition systems. In this section, we take a brief look at its
performance on the VLTS (“very large transition systems”) benchmark suite [18]
and return to our initial Peterson example.

The energy spectroscopy algorithm has been added to the Linear-Time–
Branching-Time Spectroscope of [7] and can be tried on transition systems at
https://equiv.io/.

Table 1 reports the results of running the implementation of [7] and this
paper’s implementation in variants using the spectroscopy energy game G� and
the clever spectroscopy energy game G�. We tested on the VLTS examples of
up to 25,000 states and the Peterson example (Fig. 1). The table lists the P-
sizes of the input transition systems and of their bisimilarity quotient system
P/∼B . The spectroscopies have been performed on the bisimilarity quotient sys-
tems by constructing the game graph underneath positions comparing all pairs
of enabledness-equivalent states. The middle three groups of columns list the
resource usage for the three implementations using: the [7]-spectroscopy, the
energy game G�, and the clever game G�. For each group, the first column
reports traversed game size, and the second gives the time the spectroscopy
took in seconds. Where the tests ran out of memory or took longer than five
minutes (in the Java Virtual Machine with 8 GB heap space, at 4GHz, single-
threaded), the cells are left blank. The last three columns list the output sizes of
state spaces reduced with respect to enabledness ∼E, traces ∼T, and simulation
∼1S—as one would hope, all three algorithms returned the same results.

https://equiv.io/
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From the output, we learn that the VLTS examples, in a way, lack diversity:
Bisimilarity ∼B and trace equivalence ∼T mostly coincide on the systems (third
and penultimate column).

Concerning the algorithm itself, the experiments reveal that the computation
time grows mostly linearly with the size of the game move graph. Our algorithm
can deal with bigger examples than [7] (which fails at peterson, vasy_10_56
and cwi_1_2, and takes more than 500 s for vasy_8_24). Even where [7] has
a smaller game graph (e.g. cwi_3_14), the exponential formula construction
renders it slower. Also, the clever game graph � indeed is much smaller than

� for examples with a lot of nondeterminism such as peterson.

Table 1. Sample systems, sizes, and benchmark results.

system P P/∼B [7]- t/s � t/s � t/s P/∼E P/∼T P/∼1S

peterson 19 19 348,474 23.31 2,363 0.15 3 11 11
vasy_0_1 289 9 1,118 0.17 1,334 0.02 566 0.02 1 9 9
vasy_1_4 1,183 28 1,125 0.05 1,320 0.02 1,000 0.02 8 28 28
vasy_5_9 5,486 145 3,789 0.14 4,315 0.05 2,988 0.06 109 145 145
vasy_8_24 8,879 416 513,690 540.96 725,113 10.48 145,965 2.15 171 415 415
vasy_8_38 8,921 219 19,595 0.78 19,690 0.21 14,958 0.19 112 218 218
vasy_10_56 10,849 2,112 6,012,676 174.59 13 2,112 2,112
vasy_18_73 18,746 4,087
vasy_25_25 25,217 25,217 100,866 1.15 0 0.32 0 0.33 25,217 25,217 25,217
cwi_1_2 1,952 1,132 22,723,369 384.13 9 1,132 1,132
cwi_3_14 3,996 62 14,761 2.48 25,666 0.28 18,350 0.3 2 62 62

Of those terminating, the heavily nondeterministic cwi_1_2 is the most
expensive example. As many coarse notions must record the nondeterministic
options, this blowup is to be expected. If we compare to the best similarity algo-
rithm by Ranzato and Tapparo [29], they report their algorithm SA to tackle
cwi_1_2 single-handedly. Like our implementation, the prototype of SA [29] ran
out of memory while determining similarity for vasy_18_73. This is in spite
of SA theoretically having optimal complexity and similarity being less com-
plex (cubic) than trace equivalence, which we need to cover. The benchmarks
in [29] failed at vasy_10_56, and vasy_25_25, which might be due to 2010’s
tighter memory requirements (they used 2 GB of RAM) or the degree to which
bisimilarity and enabledness in the models is exploited.

6 Conclusion and Related Work

This paper has connected two strands of research in the field of system analysis:
The strand of equivalence games on transition systems starting with Stirling’s
bisimulation game [7,12,32,33] and the strand of energy games for systems of
bounded resources [2,10,11,14–16,27,30,34].
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The connection rests on the insight that levels of equivalence correspond
to resources available to an attacker who tries to tell two systems apart. This
parallel is present in recent work within the security domain [25] just as much as
in the first thoughts on observable nondeterminism by Hennessy and Milner [24].

The paper has not examined the precise relationship of the games of Sect. 3
to the whole zoo of VASS, energy, mean-payoff, monotonic [1], and counter
games. The spectroscopy energy game deviates slightly from common multi-
energy games due to minD-updates and due to the attacker being energy-bound
(instead of the defender). As the energies cannot be exhausted by defender
moves, the game can also be interpreted as a VASS game [2,10] where the
attacker is stuck if they run out of energy. Our algorithm complexity matches
that of general lower-bounded N -dimensional energy games [15]. Links between
our declining energy games and other games from the literature might enable
slight improvements of the algorithm. For instance, reachability in VASS games
can turn polynomial [11].

In the strand of generalized game characterizations for equivalences [7,12,32],
this paper extends applicability for real-world systems. The implementation per-
forms on par with the most efficient similarity algorithm [29]. Given that among
the hundreds of equivalence algorithms and tools most primarily address bisimi-
larity [19], a tool for coarser equivalences is a worthwhile addition. Although our
previous algorithm [7] is able to solve the spectroscopy problem, its reliance on
super-exponential partitions of the state space makes it ill-fit for transition sys-
tems with significant nondeterminism. In comparison, our new algorithm also
needs one less layer of complexity because it determines equivalences without
constructing distinguishing formulas.

These advances enable a spectroscopy of systems saturated by weak transi-
tions. We can thus analyze weak equivalences such as in the example of Peter-
son’s mutex. For special weak equivalences without a strong counterpart such as
branching bisimilarity [22], deeper changes to the modal logic are necessary [6].

The increased applicability has allowed us to exhaustively consider equiva-
lences on the smaller systems of the widely-used VLTS suite [18]. The exper-
iments reveal that the spectrum between trace equivalence and bisimilarity
mostly collapses for the examined systems. It may often be reasonable to spec-
ify systems in such a way that the spectrum collapses. In a benchmark suite,
however, a lack of semantic diversity can be problematic: For instance, other-
wise sensible techniques like polynomial-time reductions [13] will not speed up
language inclusion testing, and nuances of the weak equivalence spectrum [8]
will falsely seem insignificant. One may also overlook errors and performance
degradations that appear only for transition systems where equal traces do not
imply equivalent branching behavior. We hope this blind spot does not affect
the validity of any of the numerous studies relying on VLTS benchmarks.

Acknowledgments. This work benefited from discussion with Sebastian Wolf, with
David N. Jansen, with members of the LFCS Edinburgh, and with the MTV research
group at TU Berlin, as well as from reviewer comments.
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Data Availibility. Proofs and updates are to be found in the report version of this
paper [5]. The Scala source is on GitHub: https://github.com/benkeks/equivalence-
fiddle/. A webtool implementing the algorithm runs on https://equiv.io/. An artifact
including the benchmarks is archived on Zenodo [4].
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Abstract. This paper explores how using commutativity can improve
the efficiency and efficacy of algorithmic termination checking for concur-
rent programs. If a program run is terminating, one can conclude that
all other runs equivalent to it up-to-commutativity are also terminat-
ing. Since reasoning about termination involves reasoning about infinite
behaviours of the program, the equivalence class for a program run may
include infinite words with lengths strictly larger than ω that capture
the intuitive notion that some actions may soundly be postponed indefi-
nitely. We propose a sound proof rule which exploits these as well as clas-
sic bounded commutativity in reasoning about termination, and devise
a way of algorithmically implementing this sound proof rule. We present
experimental results that demonstrate the effectiveness of this method
in improving automated termination checking for concurrent programs.

1 Introduction

Checking termination of concurrent programs is an important practical problem
and has received a lot of attention [3,29,35,37]. A variety of interesting tech-
niques, including thread-modular reasoning [10,34,35,37], causality-based rea-
soning [29], and well-founded proof spaces [15], among others, have been used
to advance the state of the art in reasoning about concurrent program termi-
nation. Independently, it has been established that leveraging commutativity in
proving safety properties can be a powerful tool in improving automated check-
ers [16–19]. There are many instances of applications of Lipton’s reductions [32]
in program reasoning [14,28]. Commutativity has been used to simultaneously
search for a program with a simple proof and its safety proof [18,19] and to
improve the efficiency and efficacy of assertion checking for concurrent programs
[16]. Recently [17], abstract commutativity relations are formalized and combined
to increase the power of commutativity in algorithmic verification.

This paper investigates how using commutativity can improve the efficiency
and efficacy of proving the termination of concurrent programs as an enhance-
ment to existing techniques. The core idea is simple: if we know that a program
run ρabρ′ is terminating, and we know that a and b commute, then we can con-
clude that ρbaρ′ is also terminating. Let us use an example to make this idea
concrete for termination proofs of concurrent programs. Consider the two thread
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assume(barrier >= producer_num);
while (j < consumer_limit){

j--;
C--; // consume content

}

while (i < producer_limit){
C++; // produce content
i++

}
barrier++;

Producer Thread: Consumer Thread:

Fig. 1. Producer/Consumer Template

templates in Fig. 1: one for a producer thread and one for a consumer thread,
where i and j are local variables. The assumption is that barrier and the local
counters i and j are initialized to 0. The producer generates content (modelled
by incrementing of a global counter C++) up to a limit and then, using barrier,
signals the consumer to start consuming. Independent of the number of produc-
ers and consumers, this synchronization mechanism ensures that the consumers
wait for all producers to finish before they start consuming. Note that the pro-
ducer threads fully commute—each statement in a producer commutes with each
statement in another. A producer and consumer only partially commute.

In a program with only two producers, a human would argue at the high level
that the independence of producer loops implies that their parallel composition
is equivalent, up to commutativity, to their sequential composition. Therefore, it
suffices to prove that the sequential program terminates. In other words, it should
suffice to prove that each producer terminates. Let us see how this high level
argument can be formalized using commutativity reasoning. Let λ1 and λ2 stand
for the loop bodies of the two producers. Among others, consider the (syntactic)
concurrent program run (λ1λ2)ω; this run may or may not be feasible. Since λ1

and λ2 commute, we can transform this run, by making infinitely many swaps,
to the run λω

1 λω
2 . The model checking expert would consider this transformation

rather misguided: it appears that we are indefinitely postponing λ2 in favour of
λ1. Moreover, a word with a length strictly larger than ω, called a transfinite
word, does not have an appropriate representation in language theory because
it does not belong to Σω. Yet, the observation that (λ1λ2)ω ≡ λω

1 λω
2 is the

key to a powerful proof rule for termination of concurrent programs: If λω
1 is

terminating and λ1 commutes against λ2, then we can conclude that (λ1λ2)ω is
terminating. In other words, the termination proof for the first producer loop
implies that all interleaved executions of two producers terminate, without the
need for a new proof. Note that the converse is not true; termination of λω

1 λω
2

does not necessarily imply the termination of λω
2 . So, even if we were to replace

the second producer with a forever loop, our observation would stand as is.
Hence, for the termination of the entire program (and not just the run (λ1λ2)ω),
one needs to argue about the termination of both λω

1 and λω
2 , matching the

high level argument. In Sect. 3, we formally state and prove this proof rule,
called the omega-prefix proof rule, and show how it can be incorporated into an
algorithmic verification framework. Using this proof rule, the program consisting
of N producers can be proved terminating by proving precisely N single-thread
loops terminating.

Now, consider adding a consumer thread to our two producer threads. The
consumer loop is independent of the producer threads but the consumer thread,
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as a whole, is not. In fact, part of the work of a termination prover is to prove that
any interleaved execution of a consumer loop with either producer is infeasible
due to the barrier synchronization and therefore terminating. Again, a human
would argue that two such cases need to be considered: the consumer crosses
the barrier with 0 or 1 producers having terminated. Each case involves several
interleavings, but one should not have to prove them correct individually. Ideally,
we want a mechanism that can take advantage of commutativity for both cases.

Before we explore this further, let us recall an algorithmic verification tem-
plate which has proven useful in incorporating commutativity into safety rea-
soning [16–19] and in proving termination of sequential [25] and parameterized
concurrent programs [15]. The work flow is illustrated in Fig. 2. The program and
the proof are represented using (Büchi) automata, and module (d) (and conse-
quently module (a)) are implemented as inclusion checks between the languages
of these automata. The iteratively refined proof—a language of infeasible syn-
tactic program runs—can be annotated Floyd-Hoare style and generalized using
interpolation as in [25]. For module (b), any known technique for reasoning about
the termination of simple sequential programs can be used on lassos.

The straightforward way to account for commutativity in this refinement
loop would involve module (c): add to Π all program runs equivalent to the
existing ones up to commutativity without having a proof for them. In the safety
context, it is well-known that checking whether a program is subsumed by the
commutativity closure of a proof is undecidable. We show (in Sect. 3) that the
same hurdle exists when doing inclusion checks for program termination.

In the context of safety [16–19], program reductions were proposed as an
antidote to this undecidability problem: rather than enlarging the proof, one
reduces the program and verifies a new program with a subset of the original
program runs while maintaining (at least) one representative for each commu-
tativity equivalence class. These representatives are the lexicographically least
members of their equivalence classes, and are algorithmically computed based
on the idea of the sleep set algorithm [22] to construct the automaton for the
reduced program. However, using this technique is not possible in termination
reasoning where lassos, and not finite program runs, are the basic objects.

To overcome this problem, we propose a different class of reductions, called
finite-word reduction. Inspired by the classical result that an ω-regular language
can be faithfully captured as a finite-word language for the purposes of certain

Add l to proof ΠGeneralize Π

Is l terminating?Pick a program lasso l

Does Π subsume
all program lassos?

yes

no

no

yes

Program is terminating. Program may
not terminate.

(a) (b)

(c)(d)

Fig. 2. Refinement Loop For Proving Termination.
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checks such as inclusion checks [4], we propose a novel way of translating both the
program and the proof into finite-word languages. The classical result is based on
an exponentially sized construction and does not scale. We propose a polynomial
construction that has the same properties for the purpose of our refinement loop.
This contribution can be viewed as an efficient translation of termination analysis
to safety analysis and is useful independent of the commutativity context. For the
resulting finite-word languages, we propose a novel variation of the persistent set
algorithm to reduce the finite-word program language. This reduction technique
is aware of the lasso structure in finite words.

Used together, finite-word reductions and omega-prefix generalization pro-
vide an approximation of the undecidable commutativity-closure idea discussed
above. They combine the idea of closures, from proof generalization schemes
like [15] and reductions from safety [16], into one uniform proof rule that both
reduces the program and generalizes the proof up to commutativity to take as
much advantage as possible. Neither the reductions nor the generalizations are
ideal, which is a necessity to maintain algorithmic computability. Yet, together,
they can perform in a near optimal way in practice: for example, with 2 produc-
ers and one consumer, the program is proved terminating by sampling precisely
3 terminating lassos (1 for each thread) and 2 infeasible lassos (one for each
barrier failure scenario).

Finally, mostly out of theoretical interest, we explore a class of infinite word
reductions that have the same theoretical properties as safety reductions, that is,
they are optimal and their regularity (in this case, ω-regularity) is guaranteed.
We demonstrate that if one opts for the Foata Normal Form (FNF) instead
of lexicographical normal form, one can construct optimal program reductions
in the style of [16,18,19] for termination checking. To achieve this, we use the
notion of the FNF of infinite words from (infinite) trace theory [13], and prove
the ω-regular analogue of the classical result for regular languages: a reduction
consisting of only program runs in FNF is ω-regular, optimal, and can be soundly
proved terminating in place of the original program (Sect. 3).

To summarize, this paper proposes a way of improving termination checking
for concurrent programs by exploiting commutativity to boost existing algorith-
mic verification techniques. We have implemented our proposed solution in a
prototype termination checker for concurrent programs called TerMute, and
present experimental results supporting the efficacy of the method in Sect. 6

2 Preliminaries

2.1 Concurrent Programs

In this paper, programs are languages over an alphabet of program statements
Σ. The control flow graph for a sequential program with a set of locations
Loc, and distinct entry and exit locations, naturally defines a finite automaton
(Loc, Σ, δ, entry, {exit}). Without loss of generality, we assume that this automa-
ton is deterministic and has a single exit location. This automaton recognizes
a language of finite-length words. This is the set of all syntactic program runs
that may or may not correspond to an actual program execution.
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For the purpose of termination analysis, we are also interested in
infinite-length program runs. Given a deterministic finite automaton AL =
(Q,Σ, δ, q0, F ) with no dead states, where L(AL) = L ⊆ Σ∗ is a regular language
of finite-length syntactic program runs, we define Büchi(AL) = (Q,Σ, δ, q0, Q),
a Büchi automaton recognizing the language Lω = {u ∈ Σω : ∀v ∈ pref(u).v ∈
pref(L)}, where pref(u) denotes {w ∈ Σ∗ : ∃w′ ∈ Σ∗ ∪ Σω.w · w′ = u} and
pref(L) =

⋃
v∈L pref(v). These are all syntactic infinite program runs that may

or may not correspond to an actual program execution.
We represent concurrency via interleaving semantics. A concurrent program

is a parallel composition of a fixed number of threads, where each thread is
a sequential program. Each thread Pi is recognized by an automaton Ai

P =
(Loci, Σi, δi, entryi, {exiti}). We assume the Σi’s are disjoint. The DFA recogniz-
ing P = P1|| . . . ||Pn is constructed using the standard product construction for a
DFA AP recognizing the shuffle of the languages of the individual thread DFA’s.

The language of infinite runs of this concurrent program, denoted Pω, is the
language recognized by Büchi(AP). Note that a word in the language Pω may
not necessarily be the shuffle of infinite runs of its individual threads.

Pω = {u ∈ Σω| ∃i : u|Σi
∈ Pω

i ∧ ∀j : u|Σj
∈ pref(Pj) ∪ Pω

j }
In the rest of the paper, we will simply write P when we mean Pω for brevity.
Note that Pω includes unfair program runs, for example those in which individual
threads can be indefinitely starved. As argued in [15], this can be easily fixed by
intersecting Pω with the set of all fair runs.

2.2 Termination

Let X the domain of the program state, Σ a set of statements, and denote
�.� : Σ∗ → P(X × X) a function which maps a sequence of statements to a
relation over the program state, satisfying �s1��s2� = �s1 · s2� for all s1, s2 ∈ Σ∗.
Define sequential composition of relations in the usual fashion: r1r2 = {(x, y) :
∃z.(x, z) ∈ r1 ∧ (z, y) ∈ r2}. We write s(x) to denote {y : (x, y) ∈ �s�} ⊆ X.

We say that an infinite sequence of statements τ ∈ Σω is infeasible if and
only if ∀x ∈ X ∃k ∈ N s1 . . . sk(x) = ∅, where si is the ith statement in the
run τ . A program—an ω-regular language P ⊆ Σω—is terminating if all of its
infinite runs are infeasible.

∀τ ∈ P, τ is infeasible
P is terminating

(Term)

Lassos. It is not possible to effectively represent all infinite program runs, but
we can opt for a slightly more strict rule by restricting our attention to ultimately
periodic runs UP ⊆ Σω. That is, runs that are of the form uvω for some finite
words u, v ∈ Σ∗. These are also typically called lassos.

It is unsound to replace all runs with all ultimately periodic runs in rule
Term. P may be non-terminating while all its ultimately periodic runs are
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terminating. Assume that our program P is an ω-regular language and there is a
universe T of known terminating programs that are all omega-regular languages.
Then, we get the following sound rule instead:

∃Π ∈ T .P ⊆ Π

P is terminating
(TermUP)

If the inclusion P ⊆ Π does not hold, then it is witnessed by an ultimately
periodic run [4]. In a refinement loop in the style of Fig. 2, one can iteratively
expand Π based on this ultimately periodic witness (a.k.a. a lasso), and hence
have a termination proof construction scheme in which ultimately periodic runs
(lassos) are the only objects of interest. Note that if P includes unfair runs of a
concurrent program, rather than fixing it, one can instead initialize Π with all
the unfair runs of the concurrent program, which is an ω-regular language. This
way, the rule becomes a fair termination rule.

2.3 Commutativity and Traces

An independence (or commutativity) relation I ⊆ Σ × Σ is a symmetric, anti-
reflexive relation that captures the commutativity of a program’s statements:
(s1, s2) ∈ I =⇒ �s1s2� = �s2s1�. In what follows, assume such an I is fixed.

Finite Traces. Two finite words w1 and w2 are equivalent whenever we can
apply a finite sequences of swaps of adjacent independent program statements to
transform w1 into w2. Formally, an independence relation I on statements gives
rise to an equivalence relation ≡I on words by defining ≡I to be the reflexive
and transitive closure of the the relation ∼I , defined as us1s2v ∼I us2s1v ⇐⇒
(s1, s2) ∈ I. A Mazurkiewicz trace [u]I = {v ∈ Σ∗ : v ≡I u} is the corresponding
equivalence class; we use “trace” exclusively to denote Mazurkiewicz traces.

Infinite Traces. Traces may also be defined in terms of dependence graphs (or
partial orders). Given a word τ = s1s2..., the dependence graph corresponding
to τ is a labelled, directed, acyclic graph G = (V,E) with labelling function

a

b

c

a

b

(i)
a

b

c

a

b

a

b

a

b

(ii)

Fig. 3. Hasse diagrams.

L : V → Σ and vertices V = {1, 2, . . . },
where L(i) = si, and (i, i′) ∈ E whenever
i < i′ and (L(i), L(i′)) �∈ I. Then, [τ ]∞I , the
equivalence class of the infinite word τ , is pre-
cisely the set of linear extensions of G. There-
fore, τ ′ ≡I τ iff τ ′ is a linear extension of G.

For example, Fig. 3(i) illustrates the Hasse
diagram of the finite trace [abcba]I , and
Fig. 3(ii), the Hasse diagram of the infinite
trace [abc(ab)ω]∞I , where I = {(a, b), (b, a)}.

For an infinite word τ , the infinite trace
[τ ]∞I may contain linear extensions that do not
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correspond to any word in Σω. For example, if I = {(a, b), (b, a)}, then the trace
[(ab)ω]∞I includes a member (infinite word) in which all as appear before all bs.
We use aωbω to denote this word and call such words transfinite. This means
that [τ ]∞I �⊆ Σω, even for an ultimately periodic τ .

Normal Forms. A trace, as an equivalence class, may be represented unam-
biguously by one of its member words. Lexicographical normal forms [13] are the
most commonly used normal forms, and the basis for the commonly known sleep
set algorithm in partial order reduction [22]. Foata Normal Forms (FNF) are
less well-known and are used in the technical development of this paper:

Definition 1 (Foata Normal Form of a finite trace [13]). For a finite trace
t, define FNF(t) as a sequence of sets S1S2...Sk (for some k ∈ N) where t = Πk

i Si

and for all i:

∀a, b ∈ Si a �= b =⇒ (a, b) ∈ I (no dependencies in Si )
∀b ∈ Si+1 ∃a ∈ Si (a, b) �∈ I ( Si dependent on Si+1 )

Given a trace’s dependence graphs, the FNF can be constructed by repeat-
edly removing sets of minimal elements, that is, sets with no incoming edges.
Although we have defined a trace’s FNF as a sequence of sets, we will generally
refer to a trace’s FNF as a word in which the elements in each set are assumed
to be ordered lexicographically. For example, FNF([abcba]I) = ab · c · ab, where
I = {(a, b), (b, a)}. We overload this notation by writing FNF([u]I) as FNF(u),
and, for a language L, FNF(L) = {FNF(u) : u ∈ L}.

Theorem 1 ([13]). L is a regular language iff the set of its Foata (respectively
Lexicographical) normal forms is a regular language.

3 Closures and Reductions

Commutativity defines an equivalence relation ≡I which preserves the termina-
tion of a program run.

Proposition 1. For τ, τ ′ ∈ Σω and τ ′ ≡I τ , τ is terminating iff τ ′ is terminat-
ing.

In the context of a refinement loop in the style of Fig. 2, Proposition 1 suggests
one can take advantage of commutativity by including all runs that are equivalent
to the ones in Π (which are already proved terminating) in module (c). We
formally discuss this strategy next.

Given a language L and an independence relation I, define [L]∞I = ∪τ∈L[τ ]∞I .
Recall from Sect. 2 that, in general, [τ ]∞I �⊆ Σω. Since programs are represented
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by ω-regular languages in our formalism, it is safe for us to exclude transfinite
words from [τ ]∞I from commutativity closures computation. Define:

[L]ωI = ∪τ∈L[τ ]∞I ∩ Σω (ω-closure)

The following sound proof rule is a straightforward adaptation of Rule
TermUP that takes advantage of commutativity-based proof generalization:

∃Π ⊆ T .P ⊆ [Π]ωI
P is terminating

(TermClosure)

Recall the example from Sect. 1 with two producers. The transfinite program
run λω

1 λω
2 that is the sequential compositions of the two producers looping forever

back to back does not belong to the ω-closure of any ω-regular language. We
generalize the notion of ω-closure to incorporate the idea of such runs in a new
proof rule.

Let τ a transfinite word (like aωbω). Let τ ′ a prefix of τ . If |τ ′| = ω, we
say that τ ′ is an ω-prefix of τ , or τ ′ ∈ pref ω(τ). A direct definition for when a
transfinite word τ is terminating would be rather contrived, since a word such as
aωbω does not correspond to a program execution in the usual sense. However,
a very useful property arises when considering the ω-words of pref ω(τ): If an
ω-prefix τ ′ of a transfinite word τ is terminating, then all words in [τ ]ωI are
terminating.

Theorem 2 (Omega Prefix Proof Rule). Let τ ′′, τ ′ ∈ Σω, τ a transfinite
word, if τ ≡I τ ′′ and τ ′ ∈ pref ω(τ), τ ′ terminates ⇒ τ ′′ terminates.

Remark that [τ ]ωI ⊆ Σω, so the former theorem uses the usual definition of
termination, i.e. termination of ω-words; however; this theorem implicitly defines
a notion of termination for some transfinite words.

Define [τ ]pω
I , the omega-prefix closure of τ as

[τ ]pω
I = [τ ]ωI ∪

⋃

τ ′.τ∈pref ω(τ ′)

[τ ′]ωI .

Theorem 2 guarantees that, if τ terminates, then all of [τ ]pω
I terminates. The

converse, however, does not necessarily hold: [τ ]pω
I is not an equivalence class.

Example 1. Continuing the example in Fig. 1, recall that λ1 and λ2 are inde-
pendent. Let us assume we have a proof that λω

1 is terminating. The class
[λω

1 ]ωI = {λω
1 } does not include any other members and therefore we cannot con-

clude the termination status of any other program runs based on it. On the other
hand, since λω

1 ∈ pref ω(λω
1 λω

2 ) and [(λ1λ2)ω]ωI = [λω
1 λω

2 ]ωI , (λ1λ2)ω ∈ [λω
1 ]pω

I .
Therefore, we can conclude that (λ1λ2)ω is also terminating. Note that λ2 can
be non-terminating and the argument still stands.

One can replace the closure in Rule TermClosure with omega-prefix closure
and produce a new, more powerful, sound proof rule. There is, however, a major
obstacle in the way of an algorithmic implementation of Rule TermClosure
with either closure scheme: the inclusion check in the premise is not decidable.
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Proposition 2. [L]ωI and [L]pω
I for an ω-regular language L may not be ω-

regular. Moreover, it is undecidable to check the inclusions L1 ⊂ [L2]ωI and
L1 ⊂ [L2]

pω
I for ω-regular languages L1 and L2.

3.1 The Compromise: A New Proof Rule

In the context of safety verification, with an analogous problem, a dual approach
was proposed as a way forward [18] based on program reductions.

Definition 2 (ω-Reduction and ωp-Reduction). A language R ⊆ P is an
ω-reduction (resp. ωp-reduction of P ) of program P under independence relation
I iff for all τ ∈ P there is some τ ′ ∈ R such that τ ∈ [τ ′]ωI (resp. τ ∈ [τ ′]pω

I ).

The idea is that a program reduction can be soundly proven in place of the
original program but, with strictly fewer behaviours to prove correct, less work
has to be done by the prover.

Proposition 3. Let P be a concurrent program and Π be ω-regular. We have:

– P ⊆ [Π]ωI iff there exists an ω-reduction R of P under I such that R ⊆ Π.
– P ⊆ [Π]pω

I iff there exists an ωp-reduction R of P under I such that R ⊆ Π.

An ω/ωp-reduction R may not always be ω-regular. However, Proposition 3
puts forward a way for us to make a compromise to rule TermClosure for the
sake of algorithmic implementability. Consider a universe of program reductions
Red(P ), which does not include all reductions. This gives us a new proof rule:

∃Π ∈ T .∃R ∈ Red(P ).R ⊆ Π

P is terminating
(TermReduc)

If Red(P ) is the set of all ω-reductions (resp. ωp-reductions), then Rule
TermReduc becomes logically equivalent to Rule TermClosure (resp. with
[Π]pω

I ). By choosing a strict subset of all reductions for Red(P ), we trade the
undecidable premise check of the proof rule TermClosure with a new decidable
premise check for Rule TermReduc. The specific algorithmic problem that this
paper solves is then the following: What are good candidates for Red(P ) such
that an effective and efficient algorithmic implementation of Rule TermReduc
exists? Moreover, we want this implementation to show significant advantages
over the existing algorithms that implement the Rule TermUP.

In Sect. 5, we propose Foata Reduction as a theoretically clean option for
Red(P ) in the universe of all ω-reductions. In particular, they have the algo-
rithmically essential property that the reductions do not include any transfinite
words. In the universe of ωp-reductions, which does account for transfinite words,
such a theoretically clean notion does not exist. This paper instead proposes the
idea of mixing both closures and reductions as a best algorithmic solution for the
undecidable Rule TermClosure in the form of the following new proof rule:
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∃Π ⊆ T .∃R ∈ Red(P ).R ⊆ [Π]opg
I

P is terminating
(TermOP)

In Sect. 3.2, we introduce [Π]opg
I as an underapproximation of [Π]pω

I that is
guaranteed to be ω-regular and computable. Then, in Sect. 4, we discuss how,
through a representation shift from infinite words to finite words, an appropriate
class of reductions for Red(P ) can be defined and computed.

3.2 Omega Prefix Generalization

We can implement the underapproximation of [Π]pω
I by generalizing the proof

of termination of each individual lasso in the refinement loop of Fig. 2. Let
u1, ...um, v1, ...vm′ ∈ Σ and consider the lasso uvω, where u = u1...um,v =
v1...vm′ , and m′ > 0. Let Auvω = (Q,Σ, δ, q0, {qm}) a Büchi automaton consist-
ing of a stem and a loop, with a single accepting state qm at the head of the
loop, recognizing the ultimately periodic word uvω—in [25], this automaton is
called a lasso module of uvω. Let ΣIloop

⊆ Σ = {a : {v1, ..., vm′} × {a} ⊆ I}
the statements that are independent with the statements v1, . . . , vm′ of the loop,
and ΣIstem

⊆ ΣIloop
= {a : {u1, . . . , um, v1, . . . , vm′} × {a} ⊆ I} the statements

that are independent of all statements appearing in uvω.
Define OPG(Aτ ) = (Q ∪ {q′}, Σ, δOPG , q0, {qm}) for a lasso τ = uvω where

δOPG(q, a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q if q ∈ {q0, ..., qm−1} ∧ a ∈ ΣIstem

or if q ∈ {qm+1, ..., qm+m′} ∪ {q′} ∧ a ∈ ΣIloop

q′ if q = qm ∧ a ∈ ΣIloop
or m′ = 1 and a = v1

δ(qm, v1) if q = q′ ∧ a = v1

δ(q, a) o.w.

We refer to the language L(OPG(Aτ )) recognized by this automaton as [τ ]opg
I

for short. Note that this construction is given for individual lassos; we may
generalize this to a (finite) set of lassos by simply taking their union. For a lasso
τ = uvω, OPG(Aτ ) is a linearly-sized Büchi automaton whose language satisfies
the following:

Proposition 4. [τ ]opg
I ⊆ [τ ]pω

I .

Intuitively, this holds because this automaton simply allows us to inter-
sperse the statements of uvω with independent statements; when considering the
Mazurkiewicz trace arising from a word interspersed as described, these added
independent statements may all be ordered after uvω, resulting in a transfinite
word with ω-prefix uvω.

Theorem 3. If τ is terminating, then every run in [τ ]opg
I is terminating.

This follows directly from Theorem 2 and Proposition4, and concludes the
soundness and algorithmic implementability of Rule TermOP if Red(P ) = {P}.
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4 Finite-Word Reductions

In this section, inspired by the program reductions used in safety verification, we
propose a way of using those families of reductions to implement Red(P ) in Rule
TermReduc. This method can be viewed as a way of translating the liveness
problem into an equivalent safety problem.

In [4], a finite-word encoding of ω-regular languages was proposed that can
be soundly used for checking inclusion in the premise of rules such as Rule
TermReduc:

Definition 3 ($-language [4]). Let L ∈ Σω. Define the $-language of L as

$(L) = {u$v| u, v ∈ Σ∗ ∧ uvω ∈ L}.

If L is ω-regular, then $(L) is regular [4]. This is proved by construction, but
the one given in [4] is exponential. Since the Büchi automaton for a concurrent
program P is already large, an exponential blowup to construct $(P ) can hardly
be tolerated. We propose an alternative polynomial construction.

4.1 Efficient Reduction to Safety

Our polynomial construction, denoted by fast$, consists of linearly many copies
of the Büchi automaton recognizing the program language.

Definition 4 (fast$). Given a Büchi automaton A = (Q,Σ, δ, q0, F ), define
fast$(A) = (Q$, Σ ∪ {$}, δ$, q0, F$) with Q$ = Q ∪ (Q × Q × {0, 1}), F$ =
{(q, q, 1) : q ∈ Q}, and for q, r ∈ Q, i ∈ {0, 1}:

δ$(q, a) =

{
{(q, q, 0)} if a = $
δ(q, a) o.w.

δ$((q, r, i), a) =

{
{(q, r′, 1) : r′ ∈ δ(r, a)} if i = 0 and r ∈ F

{(q, r′, i) : r′ ∈ δ(r, a)} o.w.

Let L be an ω-regular language and A be a Büchi automaton recognizing L.
We overload the notation and use fast$(L) to denote the language recognized by
fast$(A). Note that fast$(L), unlike $(L), is a construction parametric on the
Büchi automaton recognizing the language, rather than the language itself. In
general, fast$(L) under-approximates $(L). But, under the assumption that all
alphabet symbols of Σ label at most one transition in the Büchi automaton A
(recognizing L), then fast$(L) = $(L). This condition is satisfied for any Büchi
automaton that is constructed from the control flow graph of a (concurrent)
program since we may treat each statement appearing on the graph as unique,
and these graph edges correspond to the transitions of the automaton.

Theorem 4. For any ω-regular language L, we have fast$(L) ⊆ $(L). If P is a
concurrent program then fast$(P ) = $(P ).
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First, let us observe that in Rule TermUP, we can replace P with fast$(P )
and Π with fast$(Π) (and hence the universe T with a correspondingly appro-
priate universe) and derive a new sound rule.

Theorem 5. The finite word version of Rule TermUP using fast$ is sound.

The proof of Theorem 5 follows from Theorem 4. Using fast$, the program is
precisely represented and the proof is under-approxiamted, therefore the inclu-
sion check implies the termination of the program.

4.2 Sound Finite Word Reductions

With a finite word version of the Rule TermUP, the natural question arises
if one can adopt the analogue of the sound proof rule used for safety [18] by
introducing an appropriate class of reductions for program termination in the
following proof rule:

∃Π ∈ T .∃R ∈ Red($(P )).R ⊆ fast$(Π)
P is terminating

(FiniteTermReduc)

A language R is a sound reduction of $(P ) if the termination of all ultimately
periodic words uvω, where u$v ∈ R, implies the termination of all ultimately
periodic words of P . Since, in u$v, the word u represents the stem of a lasso and
the word v represents its loop, it is natural to define equivalence, considering
the two parts separately, that is: u$v ≡I u′$v′ iff u′ ≡I u ∧ v′ ≡I v. One can use
any technique for producing reductions for safety, for example sleep sets for lexi-
cographical reductions [18], in order to produce a sound reduction that includes
representatives from this equivalence relation. Assume that $ does not commute
with any other letter in an extension I$ of I over Σ ∪ {$} and observe that the
standard finite-length word Mazurkiewicz equivalence relation of u$v ≡I$ u′$v′

coincides with u$v ≡I u′$v′ as defined above. Let FRed($(P )) be the set of all
such reductions. An algorithmic implementation of Rule FiniteTermReduc
with Red($(P )) = FRed($(P )) may then be taken straightforwardly from the
safety literature.

Note, however, that reductions in FRed($(P )) are more restrictive than their
infinite analogues; for example, uv$v �∈ [u$v]I , whereas uvvω = uvω and there-
fore uvvω ≡I uvω for any I. By treating $(P )’s $-word as a a finite word without
recognizing its underlying lasso structure, every word uvω in the program neces-
sarily engenders an infinite family of representatives in R—one for each $-word
{u$v, uv$v, u$vv, ...} ⊆ $(P ) corresponding to uvω ∈ P .

We define dollar closure as variant of classic closure that is sensitive to the
termination equivalence of the corresponding infinite words:

[u$v]$I = {x$y : uvω ∈ [xyω]pω
I }

The termination of uvω is implied by the termination of any xyω such that x$y is
a member of [u$v]$I (see Theorem 2). However, the converse does not necessarily



Commutativity for Concurrent Program Termination Proofs 121

hold. Therefore, like omega-prefix closure, [u$v]$I is not an equivalence class. It
suggests a more relaxed condition (than the one used for FRed($(P ))) for the
soundness of a reduction:

Definition 5 (Sound $-Program Reduction). A language R ⊆ P is called
a sound $-program reduction of $(P ) under independence relation I iff for all
uvω ∈ P we have [u$v]$I ∩ R �= ∅.

A $-reduction R satisfying the above condition is obviously sound: It must
contain a $-representative x$y ∈ [u$v]$I for each word uvω in the program. If R
is terminating, then xyω is terminating, and therefore so is uvω. Moreover, these
sound $-program reductions can be quite parsimonious, since one word can be
an omega-prefix corresponding to many classes of program behaviours.

Under this soundness condition, we may now include one representative of
[u$v]$I for each uvω ∈ P in a sound reduction of P . For example, R = {$a, $b}
is a sound $-program reduction of P = aω||bω when (a, b) ∈ I. To illustrate,
note that the only traces of P are the three depicted as Hasse diagrams in Fig. 4;
the distinct program words (ab)ω, (aba)ω, (abaa)ω, ... all correspond to the same
infinite trace shown in Fig. 4(iii). A salient feature of Fig. 4(iii) is that aω and bω

correspond to disconnected components of this dependence graph. The omega-
prefix rule of Theorem 2 can be interpreted in this graphical context as follows:
if any connected component of the trace is terminating, then the entire class is
terminating.

a a a

(i)

b b b

(ii)

a a a

b b b

(iii)

Fig. 4. The only three traces in P = aω||bω when (a, b) ∈ I.

Recall that module (d) of the refinement loop of Fig. 2 may naturally be
implemented as the inclusion check P ⊆ Π, or one of its variations that appear
in the proof rules proposed throughout this paper. In a typical inclusion check, a
product of the program and the complement of the proof automata are explored
for the reachability of an accept state. Therefore, classic reduction techniques
that operate on the program by pruning transitions/states during this explo-
ration are highly desirable in this context. We propose a repurposing of such
techniques that shares the simplicity and efficiency of constructing reductions
from FRed($(P ))) (in the style of safety) and yet takes advantage of the weaker
soundness condition in Definition 5 and performs a more aggressive reduction.
In short, a reduced program may be produced by pruning transitions while per-
forming an on-the-fly exploration of the program automaton. In pruning, our
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goal is to discard transitions that would necessarily form words whose suffixes
lead us into the disconnected components of the program traces underlying the
program words that have been explored so far. This selective pruning technique
is provided by a straightforward adaptation of the well-known safety reduction
technique of persistent sets [22]. Consider the program illustrated in Fig. 5(a). In
the graph in Fig. 5(b), the green states are explored and the dashed transitions
are pruned. This amounts to proving two lassos terminating in the refinement
loop of Fig. 2, where each lasso corresponds to one connected component of a
program trace.

1 while x < z:
2 x++
3 end

1 while y < z:
2 y++
3 end

1,1

1,3 2,1 1,2 3,1

2,3 2,2 3,2

[y >= z] [x >= z]

[x < z] x++ [y < z]

[y < z]
[y < z]

y++[y >= z]
(a)

(b)

Fig. 5. Example of persistent set selective search.

We compute persistent sets using a variation of Algorithm 1 in Chap. 4 of
[22]. In brief, a ∈ Persistent≺(q) if a is the lexicographically least enabled
state at q according to thread order ≺, if a is an enabled statement from

Algorithm 1: PersistentSS
Input: fast$(AP ) = (Q, Σ, δ, q0, F )
Output: x$y

1 H ← ∅, S ← {(q0, “”)}
2 while (q, w) = S.pop() do
3 if q �∈ H then
4 if q ∈ F then
5 return w
6 for a ∈ Σ ∩ Persistent(q) do
7 S.push(δ(q, a), w · a)
8 H ← H ∪ {q}
9 return “EMPTY”

the same thread as another state-
ment a′ ∈ Persistent≺(q), or if
a is dependent on some statement
a′ ∈ Persistent≺(q) from a dif-
ferent thread than a. In addition,
$ is also persistent whenever it is
enabled. This set may be computed
via a fixed-point algorithm; when-
ever a statement that is not enabled
is added to Persistent≺(q), then
Persistent≺(q) is simply the set of
all enabled states. Intuitively, this
procedure works because transitions
are ignored only when they are nec-
essarily independent from all the statements that will be explored imminently;
these may soundly be ignored indefinitely or deferred. Transitions that are
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deferred indefinitely are precisely those that would lead into a disconnected
component of a program traces.

The reduced program that arises from the persistent set selective search
of fast$(AP ) based on thread order ≺ is denoted by PersistentSS≺($(P )).
Figure 5(b) illustrates a reduced program; note that $-transitions are omitted
for simplicity. The reduced program corresponds to the states shown in green.
The other program states are unreachable because the only persistent transitions
correspond to statements from the least enabled thread; the transitions shown
with dashed lines are not persistent.

Theorem 6 (soundness of finite word reductions). Rule
FiniteTermReduc is a sound proof rule when Red($(P )) = {∀ ≺:
PersistentSS≺($(P ))}.

The theorem holds under the condition that the set T from Rule
FiniteTermReduc is the set of all terminating ω-regular languages, and the
under the assumption that the program is fair (or, equivalently, that the proof
includes the unfair runs of P , as discussed in Sect. 2.2), where a fair run is one
where no enabled thread action is indefinitely deferred. The proof of soundness
appears in the extended version of this paper [31]. Intuitively, it relies on the
fact that PersistentSS≺($(P )) is a $-program reduction for all the fair runs in
P .

Example 2. Recall the producer-consumer in Fig. 1, and consider the program
with two producers P1 and P2 and one consumer C. Let λ1 denote the loop body
of P1, and λ2 that of P2. Concretely, λ1 = [i < producer limit] ; C++ ; i++
where [...] is an assume statement, and similarly for λ2. In addition, each
loop has an exit statement, which we denote by ι1 and ι2. For instance, ι1 =
[i >= producer limit]. Let ≺ such that P1 ≺ P2 ≺ C.

In A = PersistentSS≺($(P )), P1 is the first thread and therefore persistent;
that is, the word $λ1—the $-word corresponding to λω

1 – is in the reduction. Since
λ1 is independent of all statements in P2 and C, any run in which P1 enters the
loop (and does not exit via ι1) will not be included in the reduction. In effect,
this means that λω

1 is the only representative of [λω
1 ]pω

I = [λω
1 ]ωI ∪ [λω

1 ·(P2+C)ω]ωI
in the program reduction.

Even though P2 seems identical to P1, the same is not true for P2 because
it appears later in the thread order. In this case, [λ2]

pω
I is represented by the

family of words (λ1)∗ι1λω
2 .

5 Omega Regular Reductions

In the classic implementation of Rule TermUP [25], ω-regular languages are
used to represent the program P and the proof Π. It is therefore natural to ask
if Red(P ) in Rule TermReduc can be a family of ω-regular program reductions.
For finite program reductions [16–19], and also for classic POR, lexicographical
normal forms are almost always the choice. Infinite traces have lexicographic
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normal forms that are analogous to their finite counterparts [13]. However, these
normal forms are not suitable for defining Red(P ). For example, if (a, b) ∈ I,
then the lexicographic normal form of the trace [(ab)ω]∞I is aωbω if a < b or
bωaω otherwise; both transfinite words. Fortunately, Foata normal forms do not
share the same problem.

Definition 6 (Foata Normal Form of an infinite trace[13]). Foata Normal
Form FNF(t) of an infinite trace t is a sequence of non-empty sets S1S2... such
that t = Πi≤ωSi and for all i:

∀a, b ∈ Si a �= b =⇒ (a, b) ∈ I (no dependencies in Si )
∀b ∈ Si+1 ∃a ∈ Si (a, b) �∈ I ( Si dependent on Si+1 )

For example, FNF([(ab)ω]∞I ) = (ab)ω if (a, b) ∈ I. To define a reduction
based on FNF, we need a mild assumption about the program language.

Definition 7 (Closedness). A language L ⊆ Σ∞ is closed under the indepen-
dence relation I iff [L]∞I ⊆ L and is ω-closed under I iff [L]ωI ⊆ L.

It is straightforward to see that any concurrent program P (as defined in
Sect. 2.1), and any valid dependence relation I, we have that P is ω-closed.
This means that for any (infinite) program run τ , any other ω-word τ that is
equivalent to τ is also in the language of the program.

The key result that makes Foata normal forms amenable to automation in
the automaton-theoretic framework is the following theorem.

Theorem 7. If L ⊆ Σω is ω-regular and closed, FNF(L) is ω-regular.

The proof of this theorem provides a construction for the Büchi automa-
ton that recognizes the language FNF(L); see [31] for more detail. However,
this construction is not efficient since, for a program P , of size Θ(n), the Büchi
automaton recognizing FNF(P ) can be as large as O(n2n). Finally, Foata reduc-
tions are minimal in the same exact sense that lexicographical reductions of
finite-word languages are minimal:

Theorem 8 [Theorem 11.2.15 [13]]. If L ⊆ Σω is ω-regular and closed, then
for all τ ∈ L, τ ′ ∈ FNF(L) ∩ [τ ]ωI =⇒ τ ′ = τ .

Our experimental results in Sect. 6 suggest that this complexity is a big bot-
tleneck in practical benchmarks. Therefore, despite the fact that Foata nor-
mal forms put forward an algorithmic solution for the implementation of Rule
TermReducTermReduc, the inefficiency of the solution makes it unsuitable
for practical termination checkers.
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6 Experimental Results

The techniques presented in this paper have been implemented in a prototype
tool called TerMute written in Python and C++. The inputs are concurrent
integer programs written in a C-like language. TerMute may output “Termi-
nating”, or “Unknown”, in the latter case also returning a lasso whose termina-
tion could not be proved. Ranking functions and invariants are produced using
the method described in [24], which is restricted to linear ranking functions of
linear lassos. Interpolants are generated using SMTInterpol [6] and MathSAT
[7]; the validity of Hoare triples are checked using CVC4 [2].

TerMute may be run in several different modes. FOATA is an imple-
mentation of the algorithm described in Sect. 5. The baseline is the core
counterexample-guided refinement algorithm of [25], which has been adapted
to the finite-word context in order to operate on the automata fast$(P ) and
fast$(Π) of Sect. 4.1. All other modes are modifications of this baseline, main-
taining the same refinement scheme, so that we can isolate the impact of adding
commutativity reasoning. Hoare triple generalization (“HGen”) augments the
baseline by making solver calls after each refinement round in order to deter-
mine if edges may soundly be added to the proof for any valid Hoare triples
not produced as part of the original proof. “POR” implements the persistent set
technique of Sect. 4.2 and “OPG” is the finite-word analogue of the ω-prefix gen-
eralization in Sect. 3.2. TerMute can also be run on any combinations of these
techniques. In what follows, we use TerMute to refer to the portfolio winner
among all algorithms that employ commutativity reasoning, namely POR, OPG,
POR + HGen, POR + OPG, and POR + OPG + HGen.

See [31] for more detail regarding our experimental setup and results.

Benchmarks. Our benchmarks include 114 terminating concurrent linear inte-
ger programs that range from 2 to 12 threads and cover a variety of patterns
commonly used for synchronization, including the use of locks, barriers, and
monitors. Some are drawn from the literature on termination verification of
concurrent programs, specifically [29,34,37], and the rest were created by us,
some of which are based on sequential benchmarks from The Termination Prob-
lem Database [38], modified to be multi-threaded. We include programs whose
threads display a wide range of independence—from complete independence (e.g.
the producer threads in Fig. 1), all the way to complete dependence—and demon-
strate a range of complexity with respect to control flow.

Results. Our experiments have a timeout of 300 s and a memory cap of 32
GB, and were run on a 12th Gen Intel Core i7-12700K with 64 GB of RAM
running Ubuntu 22.04. We experimented with both interpolating solvers and
the reported times correspond to the winner of the two. The results are depicted
in Fig. 6(a) as a quantile plot that compares the algorithms. The total number
of benchmarks solved is noted on each curve. FOATA times out on all but the
simplest benchmarks, and therefore is omitted from the plot.
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The portfolio winner, TerMute, solves 101 benchmarks in total. It solves
any benchmark otherwise solved by algorithms without commutativity reasoning
(namely, the baseline or HGen). It is also faster on 95 out of 101 benchmarks
it solves. The figure below illustrates how often each of the portfolio algorithms
emerges as the fastest among these 95 benchmarks.

HGen aggressively generalizes the proof and consequently, it forces convergence
in many fewer refinement rounds. This, however, comes at the cost of a time
overhead per round. Therefore, HGen helps in solving more benchmarks, but
whenever a benchmarks is solvable without it, it is solved much faster. The
scatter plot in Fig. 6(b) illustrates this phenomenon when HGen is added to
POR+OPG. The plot compares the times of benchmarks solved by both algo-
rithms on a logarithmic scale, and the overhead caused by HGen is significant
in the majority of the cases.

Fig. 6. Experimental results for TerMute: (a) quantile plot for the throughput of
each algorithm, and (b) scatter plot for the impact of thread order on efficiency.

Recall, from Sect. 4, that the persistent set algorithm is parametrized on an
order over the participating threads. The choice of order centrally affects the
way the persistent set algorithm works, by influencing which transitions may
be explored and, by extension, which words appear in the reduced program.
Experimentally, we have observed that the chosen order plays a significant role
in how well the algorithms work, but to varying degrees. For instance, for POR,
the worst thread order times out on 16% of the benchmarks that the best order
solves. For POR+OPG+HGen, the difference is more modest at 7%. In practice,
it is sensible then to instantiate a few instances of the TerMute with a few
different random orders to increase the chances of getting better performance.
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7 Related Work

The contribution of this paper builds upon sequential program termination
provers to produce termination proofs for concurrent programs. As such, any
progress in the state of the art in sequential program termination can be used
to produce proofs for more lassos, and is, therefore, complementary to our app-
roach. So, we only position this paper in the context of algorithmic concurrent
program termination, and the use of commutativity for verification in general,
and skip the rich literature on sequential program termination [11,36] or model
checking liveness [8,9,26,33].

Concurrent Program Termination. The thread-modular approach to prov-
ing termination of concurrent programs [10,34,35,37] aims to prove a thread’s
termination without reasoning directly about its interactions with other threads,
but rather by inferring facts about the thread’s environment. In [37], this app-
roach is combined with compositional reasoning about termination arguments.
Our technique can also be viewed as modular in the sense that lassos – which,
like isolated threads, are effectively sequential programs – are dealt with inde-
pendently of the broader program in which they appear; however, this is distinct
from thread-modularity insofar as we reason directly about behaviours arising
from the interaction of threads. Whenever a thread-modular termination proof
can be automatically generated for the program, that proof is the most efficient
in terms of scalability with the number of threads. However, for a thread-modular
proof to always exist, local thread states have to be exposed as auxiliary infor-
mation. The modularity in our technique does not rely on this information at
all. Commutativity can be viewed as a way of observing and taking advantage
of some degree of non-interference, different from that of thread modularity.

Causal dependence [29] presents an abstraction refinement scheme for prov-
ing concurrent programs terminating that takes advantage of the equivalence
between certain classes of program runs. These classes of runs are determined
by partial orders that capture the causal dependencies between transitions, in a
manner reminiscent of the commutativity-based partial orders of Mazurkiewicz
traces. The key to scalability of this method is that they forgo a containment
check in the style of module (d) of Fig. 2. Instead, they cover the space of program
behaviour by splitting it into cases. Therefore, for the producer-only instance of
the example in Sect. 1, this method can scale to many many thread easily, while
our commutativity-based technique cannot. Similar to thread-modular approach,
this technique cannot be beaten in scalability for the programs that can be split
into linearly many cases. However, there is no guarantee (none given in [29]), that
a bounded complete causal trace tableau for a terminating program must exist;
for example, when there is a dependency between loops in different threads that
would cause the program to produce unboundedly many (Mazurkiewicz) traces
that have to be analyzed for termination. The advantage of our method is that,
once consumers are added to the example in Sect. 1, we can still take advantage
of all the existing commutativity to gain more efficiency.
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Similar to safety verification, context bounding [3] has been used as a way of
under-approximating concurrent programs for termination analysis as well.

Commutativity in Verification. Program reductions have been used as a
means of simplifying proofs of concurrent and distributed programs before. Lip-
ton’s movers [32] have been used to simplify programs for verification. CIVL
[27,28] uses a combination of abstraction and reduction to produce layered
programs; in an interactive setup, the programmer can prove that an imple-
mentation satisfies a specification by moving through these layered programs
to increasingly more abstract programs. In the context of message-passing dis-
tributed systems [12,21], commutativity is used to produce a synchronous (rather
than sequential) program with a simpler proof of correctness.

In [16–19] program reductions are used in a refinement loop in the same style
as this paper to prove safety properties of concurrent programs. In [18,19], an
unbounded class of lexicographical reductions are enumerated with the purpose
of finding a simple proof for at least one of the reductions; the thesis being that
there can be a significant variation in the simplicity of the proof for two different
reductions. In [19], the idea of contextual commutativity—i.e. considering two
statements commutative in some context yet not all contexts—is introduced and
algorithmically implemented. In [16,17], only one reduction at a time is explored,
in the same style as this paper. In [16], a persistent-set-based algorithm is used
to produce space-efficient reductions. In [17] the idea of abstract commutativity
is explored. It is shown that no best abstraction exists that provides a maximal
amount of commutativity and, therefore, the paper proposes a way to combine
the benefits of different commutativity relations in one verification algorithm.
The algorithm in this paper can theoretically take advantage of all of these
(orthogonal) findings to further increase the impact of commutativity in proving
termination.

Non-termination. The problem of detecting non-termination has also been
directly studied [1,5,20,23,30]. Presently, our technique does not accommodate
proving the non-termination of a program. However, it is relatively straightfor-
ward to adapt any such technique (or directly use one of these tools) to accommo-
date this; in particular, when we fail to find a termination proof for a particular
lasso, sequential methods for proving non-termination may be employed to deter-
mine if the lasso is truly a non-termination witness. However, it is important to
note that a program may be non-terminating while all its lassos are terminat-
ing, and the refinement loop in Fig. 2 may just diverge without producing a
counterexample in this style; this is a fundamental weakness of using lassos as
modules to prove termination of programs.

8 Conclusion

In the literature on the usage of commutativity in safety verification, sound pro-
gram reductions are constructed by selecting lexicographical normal forms of
equivalence classes of concurrent program runs. These are not directly applica-
ble in the construction of sound program reductions for termination checking,
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since the lexicographical normal forms of infinite traces may not be ω-words.
In this paper, we take this apparent shortcoming and turn it into an effective
solution. First, these transfinite words are used in the design of the omega prefix
proof rule (Theorem 2). They also inform the design of the termination aware
persistent set algorithm described in Sect. 4.2. Overall, this paper contributes
mechanisms for using commutativity-based reasoning in termination checking,
and demonstrates that, using these mechanisms, one can efficiently check the
termination of concurrent programs.
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Abstract. Petri nets are an established model of concurrency. A Petri
net is terminating if for every initial marking there is a uniform bound
on the length of all possible runs. Recent work on the termination of
Petri nets suggests that, in general, practical models should terminate
fast, i.e. in polynomial time. In this paper we focus on the termination
of workflow nets, an established variant of Petri nets used for modelling
business processes. We partially confirm the intuition on fast termina-
tion by showing a dichotomy: workflow nets are either non-terminating
or they terminate in linear time.

The central problem for workflow nets is to verify a correctness notion
called soundness. In this paper we are interested in generalised soundness
which, unlike other variants of soundness, preserves desirable properties
like composition. We prove that verifying generalised soundness is coNP-
complete for terminating workflow nets.

In general the problem is PSPACE-complete, thus intractable. We
utilize insights from the coNP upper bound to implement a procedure
for generalised soundness using MILP solvers. Our novel approach is
a semi-procedure in general, but is complete on the rich class of ter-
minating workflow nets, which contains around 90% of benchmarks in
a widely-used benchmark suite. The previous state-of-the-art approach
for the problem is a different semi-procedure which is complete on the
incomparable class of so-called free-choice workflow nets, thus our imple-
mentation improves on and complements the state-of-the-art.

Lastly, we analyse a variant of termination time that allows paral-
lelism. This is a natural extension, as workflow nets are a concurrent
model by design, but the prior termination time analysis assumes sequen-
tial behavior of the workflow net. The sequential and parallel termination
times can be seen as upper and lower bounds on the time a process rep-
resented as a workflow net needs to be executed. In our experimental
section we show that on some benchmarks the two bounds differ signif-
icantly, which agrees with the intuition that parallelism is inherent to
workflow nets.
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1 Introduction

Petri nets are a popular formalism to model problem in software verification [22],
business processes [1] and many more (see [42] for a survey). One of the funda-
mental problems for such models is the termination problem, i.e. whether the
lengths of all runs are universally bounded. There are two natural variants of this
problem. First, if the initial configuration is fixed then the problem is effectively
equivalent to the boundedness problem, known to be EXPSPACE-complete for
Petri nets [36,41]. Second, if termination must hold for all initial configurations
the problem known to be in polynomial time [30], and such nets are known as
structurally terminating. In this paper we are interested in the latter variant.

Termination time is usually studied for vector addition system with states
(VASS), an extension of Petri nets that allows the use of control states. In
particular, the aforementioned EXPSPACE and polynomial time bounds work
for VASS. In 2018, a deeper study of the termination problem for VASS was
initiated [12]. This study concerns the asymptotics of the function f(n) bounding
the length of runs, where n bounds the size of the initial configuration. The focus
is particularly on classes where f(n) is a polynomial function, suggesting that
such classes are more relevant for practical applications. This line of work was
later continued for variants of VASS involving probabilities [11] and games [31].

For VASS the function f(n) can asymptotically be as big as Fi(n) in the
Grzegorczyk hierarchy for any finite i (recall that F3(n) is nonelementary and
Fω(n) is Ackermann) [35,43]. It was known that for terminating Petri nets many
problems are considerably simpler [40]. However, to the best of our knowledge,
the asymptotic behaviour of f(n) was not studied for Petri nets.

Our Contributions. In this paper we focus on workflow nets, a class of Petri
nets widely used to model business processes [1]. Our first result is the following
dichotomy: any workflow net is either non-terminating or f(n) is linear. This
confirms the intuition about fast termination of practical models [12]. In our
proof, we follow the intuition of applying linear algebra from [40] and rely on
recent results on workflow nets [9]. We further show that the optimal constant
aN such that f(n) = aN · n can be computed in polynomial time. The core of
this computation relies on a reduction to continuous Petri nets [19], a well known
relaxation of Petri nets. Then we can apply standard tools from the theory of
continuous Petri nets, where many problems are in polynomial time [7,19].

For workflow nets, the central decision problems are related to soundness.
There are many variants of this problem (see [2] for a survey). For example
k-soundness intuitively verifies that k started processes eventually properly ter-
minate. We are interested in generalised soundness, which verifies whether k-
soundness holds for all k [25–27]. The exact complexity of most popular sound-
ness problems was established only recently in 2022 [9]. Generalised sound-
ness is surprisingly PSPACE-complete. Other variants, like k-soundness, are
EXPSPACE-complete, thus computationally harder, despite having a seem-
ingly less complex definition. Moreover, unlike k-soundness and other vari-
ants, generalised soundness preserves desirable properties like composition [26].
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Building on our first result, i.e. the dichotomy between non-terminating and lin-
early terminating workflow nets, our second result is that generalised soundness
is coNP-complete for terminating workflow nets.

Finally, we observe that the asymptotics of f(n) are defined with the implicit
assumption that transitions are fired sequentially. Since workflow nets are models
for parallel executions it is natural to expect that runs would also be performed
in parallel. Our definition of parallel executions is inspired by similar concepts
for time Petri nets, and can be seen as a particular case [5]. We propose a
definition of the optimal running time of runs exploiting parallelism and denote
this time g(n), where n bounds the size of the initial marking. We show that the
asymptotic behaviour of g(n), similar to f(n), can be computed in polynomial
time, for workflow nets with mild assumptions. Together, the two functions f(n)
and g(n) can be seen as (pessimistic) upper bound and (optimistic) lower bound
on the time needed for the workflow net to terminate.

Experiments. Based on our insights, we implement several procedures for prob-
lems related to termination in workflow nets. Namely, we implement our algo-
rithms for checking termination, for deciding generalised soundness of work-
flow nets and for computing the asymptotic behaviour of f(n). We addition-
ally implement procedures to compute f(k), g(k) and decide k-soundness for
terminating workflow nets. To demonstrate the efficacy of our procedures, we
test our implementation on a popular and well-studied benchmark suite of 1382
workflow nets, originally introduced in [18]. It turns out that the vast majority
of instances (roughly 90%) is terminating, thus the class of terminating work-
flow nets seems highly relevant in practice. Further, we positively evaluate our
algorithm for generalised soundness against a recently proposed state-of-art app-
roach [10] which semi-decides the property in general, and is further exact on the
class of free-choice workflow nets [3]. Interestingly, our novel approach for gener-
alised soundness is also a semi-procedure in general, but precise on terminating
workflow nets. The approach from [10] is implemented as an ∃∀-formula from
FO(Q, <,+), while our approach manages to avoid any quantifier alternations.
It turns out that our approach is faster on over 95% of benchmark instances,
and thus significantly improves upon the state-of-art. The mean analysis time
for our approach is just 12.8 ms, while it is about 2 s for the previous state-of-
the-art. In addition, the classes of free-choice and terminating workflow nets are
incomparable, thus our approach complements the state-of-the-art.

Related Work. For general Petri nets and VASS the most well-known problem
is reachability, recently shown to be Ackermann-complete [14,33,34]. Despite its
high complexity, there are tools for the problem [16,45], including some based on
integer and continuous relaxations [6,8,21]. Reachability was also studied in the
context of terminating models. In particular, it is PSPACE-complete for struc-
turally terminating Petri nets [40] and EXPSPACE-complete for polynomially
terminating VASS [32].
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Most algorithms for soundness are based on reductions to reachability [1], this
is the case for the first algorithms for generalised soundness [25,27]. However,
such reductions only imply Ackermannian upper bounds on the problem, while
a direct study yielded elementary complexities [9].

A different class of approaches for soundness relies on reduction rules, which
can be applied iteratively to reduce the size of a net while exactly preserving
soundness [4,39]. These approaches are not precise in general, but can be for
subclasses, e.g. for live and bounded free-choice workflow nets [15]. We use a
certain set of reduction rules [13] for generalised soundness in our experimental
evaluation.

There exist many established tools and frameworks for the analysis of work-
flow nets, for example Woflan [44], WoPeD [20], and ProM [17]. However, when
it comes to soundness problems, these tools typically focus on k-soundness, with
a particular focus on k = 1 (except for the discussed tool in [10]).

Organisation. In Sect. 2 we define the models, problems and basic notation. In
Sect. 3 we prove the dichotomy between non-terminating and linear workflow
nets. Then, we show how to compute the linear constants for terminating work-
flow nets in Sect. 4. Building on the dichotomy we show that generalised soudness
is coNP-complete in Sect. 5. In Sect. 6 we define and compute a variant of ter-
mination time that takes into account parallelism. We present our experimental
results in Sect. 7. Most proofs can be found in the appendix.

2 Preliminaries

We write N,N>0,Z,Q and Q≥0 for the naturals (including 0), the naturals with-
out 0, the integers, the rationals, and the nonnegative rationals, respectively.

Let N be a set of numbers, e.g. N = N. For d, d1, d2 ∈ N>0 we write Nd

for the set of vectors with elements from N in dimension d. Similarly, Nd1×d2

is the set of matrices with d1 rows and d2 columns and elements from N . We
use bold font for vectors and matrices. For a ∈ Q and d ∈ N>0, we write
ad := (a, a, . . . , a) ∈ Q

d (or a if d is clear from context). In particular 0d = 0 is
the zero vector.

Sometimes it is more convenient to have vectors with coordinates in a finite
set. Thus, for a finite set S, we write N

S , ZS , and Q
S for the set of vectors over

naturals, integers and rationals. Given a vector v and an element s ∈ S, we write
v(s) for the value v assigns to s.

Given v,w ∈ Q
S , we write v ≤ w if v(s) ≤ w(s) for all s ∈ S, and v < w

if v ≤ w and v(s) < w(s) for some s ∈ S. The size of S, denoted |S|, is the
number of elements in S. We define the norm of a vector ‖v‖ := maxs∈S |v(s)|,
and the norm of a matrix A ∈ Q

m×n as ‖A‖ := max1≤j≤m,1≤i≤n|A(i, j)|. For a
set S ∈ Q

d, we denote by S ∈ R
d the closure of S in the euclidean space.
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2.1 (Integer) Linear Programs

Let n,m ∈ N>0, A ∈ Z
m×n, and b ∈ Z

m. We say that G := Ax ≤ b is a system
of linear inequalities with m inequalities and n variables. The norm of a system
G is defined as ‖G‖ := ‖A‖+‖b‖+m+n. An (m×n)-ILP, short for integer linear
program, is a system of linear inequalities with m inequalities and n variables,
where we are interested in the integer solutions. An (m×n)-LP is such a system
where we are interested in the rational solutions. We use the term MILP, short
for mixed integer linear program, for a system where some variables are allowed
to take on rational values, while others are restricted to integer values.

We allow syntactic sugar in ILPs and LPs, such as allowing constraints x ≥ y,
x = y, x < y (in the case of ILPs). Sometimes we are interested in finding optimal
solutions. This means we have a objective function, formally a linear function
on the variables of the system, and look for a solution that either maximizes or
minimizes the value of that function. For LPs, finding an optimal solution can
be done in polynomial time, while this is NP-complete for ILPs and MILPs.

2.2 Petri Nets

A Petri net N is a triple (P, T, F ), where P is a finite set of places; T is a finite set
of transitions such that T ∩P = ∅; and F : ((P ×T )∪(T ×P )) → N is a function
describing its arcs. A marking is a vector m ∈ N

P . We say that m(p) is the
number of tokens in place p ∈ P and p is marked if m(p) > 0. To write markings,
we list only non-zero token amounts. For example, m = {p1 : 2, p2 : 1} is the
marking m with m(p1) = 2,m(p2) = 1 and m(p) = 0 for all p ∈ P \ {p1, p2}.

Let t ∈ T . We define the vector •t ∈ N
P by •t(p) := F (p, t) for p ∈ P .

Similarly, the vector t• ∈ N
P is defined by t•(p) := F (t, p) for p ∈ P . We write

the effect of t as Δ(t) := t• − •t. A transition t is enabled in a marking m if
m ≥ •t. If t is enabled in the marking m, we can fire it, which leads to the
marking m′ := m + Δ(t), which we denote m −→t m′. We write m −→ m′ if
there exists some t ∈ T such that m −→t m′.

A sequence of transitions π = t1t2 . . . tn is called a run. We denote the length
of π as |π| := n. A run π is enabled in a marking m iff m −→t1 m1 −→t2

m2 −→t3 . . .mn−1 −→tn m′ for some markings m1,m2, . . . ,m
′ ∈ N

P . The set of
all runs is denoted RunsmN , i.e. π ∈ RunsmN if π is enabled in m. The effect of
π is Δ(π) :=

∑
i∈[1..n] Δ(ti). Firing π from m leads to a marking m′, denoted

m −→π m′, iff m ∈ RunsmN and m′ = m+Δ(π). We denote by −→∗ the reflexive,
transitive closure of −→. Given two runs π = t1t2 . . . tn and π′ = t′1t

′
2 . . . t′n′ we

denote ππ′ := t1t2 . . . tnt′1t
′
2 . . . t′n′ .

The size of a Petri net is defined as |N | = |P |+ |T |+ |F |. We define the norm
of N as ‖N‖ := ‖F‖ + 1, where we view F as a vector in N

(P×T )∪(T×P ).
We also consider several variants of the firing semantics of Petri nets which we

will need throughout the paper. In the integer semantics, we consider markings
over ZP , and transitions can be fired without being enabled. To denote the firing
and reachability relations, we use the notations −→

Z
and −→∗

Z
. In the continuous

semantics [19], we consider markings over QP
≥0. Given t ∈ T and a scaling factor
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p1
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t2

p3p4
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Fig. 1. A Petri net with places p1, p2, p3, p4 and transitions t1, t2. Marking
{p1 : 2, p4 : 1} is drawn. No transition is enabled.

β ∈ Q≥0
1, the effect of firing βt is Δ(βt) := β · Δ(t). Further, βt is enabled in

a marking m iff β · •t ≤ m. We use −→
Q≥0

for the continuous semantics, that

is, m −→βt
Q≥0

m′ means βt is enabled in m and m′ = m + Δ(βt). A continuous
run π is a sequence of factors and transitions β1t1β2t2 . . . βntn. Enabledness
and firing are extended to continuous runs: m −→π

Q≥0
m′ holds iff there exist

m1, . . . ,mn−1 such that m −→β1t1
Q≥0

m1 −→β2t2
Q≥0

· · ·mn−1 −→βntn
Q≥0

m′. The length of
π is |π|c :=

∑n
i=1 βi. Given α ∈ Q≥0 and a run π = β1t1β2t2 . . . βntn we write

απ to denote the run (αβ1)t1(αβ2)t2 . . . (αβn)tn. We introduce a lemma stating
that continuous runs can be rescaled.

Lemma 1 (Lemma 12(1) in [19]). Let α ∈ Q≥0. Then m −→π
Q≥0

m′ if and
only if αm −→απ

Q≥0
αm′.

Each run under normal semantics or integer semantics is equivalent to a
continuous run i.e. t1t2 . . . tn ≈ 1t11t2 . . . 1t2. Given π ∈ RunsmN (i.e. a standard
run) we define απ = απc where πc ≈ π is a continuous run. If πc = β1t1 . . . βntn
with βi ∈ N for all i ∈ {1, . . . , n} then we also call π a (standard) run, i.e. the
run where every transition ti is repeated βi times.

We define the set of continuous runs enabled from m ∈ N
P in N as CRunsmN .

The Parikh image of a continuous run π = β1t1β2t2 . . . βntn is the vector Rπ ∈
Q

T such that Rπ(t) =
∑

i|ti=t βi. For a (standard) run π we define its Parikh
image Rπ := Rπc

where πc ≈ π. Given a vector R ∈ Q
T
≥0, we define Δ(R) :=∑

t∈T R(t) · Δ(t), •R :=
∑

t∈T
•t · R(t), R• :=

∑
t∈T t• · R(t). Note that R

is essentially a run without imposing an order on the transitions. For ease of
notation, we define Δ(T ) as a matrix with columns indexed by T and rows
indexed by P , where Δ(T )(t)(p) := Δ(t)(p). Then Δ(R) = Δ(T )R.

Example 1. Consider the Petri net drawn in Fig. 1. Marking m := {p1 : 2, p4 : 1}
enables no transitions. However, we have m −→t1t2

Z
{p3 : 2}. We also have m −→t2t1

Z

{p3 : 2}, since the transition order does not matter under the integer semantics.
Thus, when we take R = {t1 : 1, t2 : 1}, we have m −→R

Z
{p3 : 2}.

Under the continuous semantics we can fire 1/2t1, which is impossible under
the normal semantics. For example, we have m −→1/2t1

Q≥0
{p1 : 1, p2 : 1/2} −→1/2t2

Q≥0

{p1 : 1, p3 : 1, p4 : 1} −→1/3t1
Q≥0

{p1 : 1/3, p2 : 1/3, p3 : 1, p4 : 2/3}.

1 Sometimes scaling factors are defined to be at most 1. The definitions are equivalent:
Scaling larger than 1 can be done by firing the same transition multiple times.
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2.3 Workflow Nets

A workflow net is a Petri net N such that:

– There exists an initial place i with F (t, i) = 0 for all t ∈ T (i.e. no tokens can
be added to i);

– there exists a final place f with F (f, t) = 0 for all t ∈ T (i.e. no tokens can
be removed from f); and

– in the graph (V,E) with V = P ∪T and (u, v) ∈ E iff F (u, v) = 0, each v ∈ V
lies on at least one path from i to f.

We say that N is k-sound iff for all m, {i : k} −→∗ m implies m −→∗ {f : k}.
Further, we say N is generalised sound iff it is k-sound for all k.

A place p ∈ P is nonredundant if {i : k} −→∗ m for some k ∈ N and mark-
ing m with m(p) > 0, and redundant otherwise. We accordingly say that N is
nonredundant if all p ∈ P are nonredundant, otherwise N is redundant. A redun-
dant workflow net can be made nonredundant by removing each redundant place
p ∈ P and all transitions such that •t(p) > 0 or t•(p) > 0. Note that this does
not impact behaviour of the workflow, as the discarded transitions could not be
fired in the original net. A polynomial-time saturation procedure can identify
redundant places, see [27, Thm. 8, Def. 10, Sect. 3.2] and [9, Prop. 5.2].

If N is a workflow net, we write Runsk
N for the set of runs that are enabled

from the marking {i : k}, and CRunsk
N for the same for continuous runs. Lemma

1 implies that if π ∈ Runsk
N then 1

kπ ∈ CRuns1N . The converse does not need to
hold as the rescaled continuous run need not have natural coefficients.

Example 2. The Petri net in Fig. 1 can be seen as a workflow net with initial
place p1 and final place p3. The workflow is not k-sound for any k. Further, the
net is redundant: {i : k} is a deadlock for every k, so places p2, p3 and p4 are
redundant. �

2.4 Termination Complexity

Let N be a workflow net. Let us define as MaxTimeN (k) the supremum of
lengths among runs enabled in {i : k}, that is, MaxTimeN (k) = sup{|π| | π ∈
Runsk

N }. We say that N is terminating if MaxTimeN (k) = ∞ for all k ∈ N>0,
otherwise it is non-terminating.

We say that N has polynomial termination time if there exist d ∈ N, � ∈ R

such that for all k,
MaxTimeN (k) ≤ � · kd. (1)

Further N has linear termination time if Eq. (1) holds with d = 1. Even more
fine-grained, N has a-linear termination time if Eq. (1) holds for � = a and
d = 1. Note that any net with a-linear termination time also has (a + b)-linear
termination time for all b ≥ 0. For ease of notation, we call workflow nets that
have linear termination time linear workflow nets, and similarly for a-linear.

We define aN := inf{a ∈ R | N is a -linear}. Note that in particular N is
aN -linear (because the inequality in Eq. (1) is not strict) and that aN is the
smallest constant with this property.
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Fig. 2. Two workflow nets with the initial marking {i : 1}. The workflow net on the
left-hand side is terminating in linear time. The workflow net on the right-hand side is
the same as the one on the left, but with one extra transition t4. It is non-terminating.

Example 3. The net on the left-hand side of Fig. 2 is terminating. For example,
from {i : 2} all runs have length at most 3. It is easy to see that from {i : k} all
runs have length at most 3

2k (e.g. the run (t1t2t3)	 k
2 
). The net has aN = 3/2.

The net on the right-hand side is non-terminating. From {i : 2}, all runs of
the form t1t2t

∗
4 are enabled. Note that while the net is non-terminating, all runs

from {i : 1} have length at most 1 (because t3 and t4 are never enabled). �

Our definition of termination time is particular to workflow nets, as there it
is natural to have only i marked initially. It differs from the original definition of
termination complexity in [12]. In [12] VASS are considered instead of Petri nets,
and the initial marking is arbitrary. The termination complexity is measured in
the size of the encoding of m. The core difference is that in [12] it is possible
to have a fixed number of tokens in some places, but arbitrarily many tokens
in other places. In Sect. 3 we show an example that highlights the difference
between the two notions. Our definition is a more natural fit for workflow nets,
and will allow us to reason about soundness. Indeed, our particular definition of
termination time allows us to obtain the coNP-completeness result of generalised
soundness for linear workflow nets in Sect. 5.

3 A Dichotomy of Termination Time in Workflow Nets

Let us exhibit behaviour in Petri nets that cannot occur in workflow nets.
Consider the net drawn in black in Fig. 3 and a family of initial markings
{{p1 : 1, s1 : 1, b : n} | n ∈ N}. From the marking {p1 : 1, s1 : 1, b : n}, all
runs have finite length, yet a run has length exponential in n. From the mark-
ing {p1 : k, s1 : 1, b : n}, the sequence (t1t2)kt4(t3)2kt5 results in the marking
{p1 : 2k, s1 : 1, b : n − 1}. Thus, following this pattern n times leads from
{p1 : 1, s1 : 1, b : n} to {p1 : 2n, s1 : 1}. This behaviour crucially requires us to
keep a single token in s1, while having n tokens in b.

We can transform the net into a workflow net, as demonstrated by the colored
part of Fig. 3. However, observe that then

{i : 2} −→titit4 {p1 : 2, s1 : 1, s2 : 1, b : 1} −→t1t2t3 {p1 : 2, s1 : 1, s2 : 1, b : 1, p3 : 1}.
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Note that the sequence t1t2t3 strictly increased the marking. It can thus be fired
arbitrarily many times, and the workflow net is non-terminating.

It turns out that, contrary to standard Petri nets, there exist no workflow
nets with exponential termination time.2 Instead, there is a dichotomy between
non-termination and linear termination time.

Theorem 1. Every workflow net N is either non-terminating or linear. More-
over, MaxTimeN (k) ≤ ak for some a ≤ ‖N‖poly(|N |).

p1 t1 p2 t2 p3 t3

s1 s2

n b

t4

t5

ti

i

tf

f

Fig. 3. In black: A Petri net N adapted from [28, Lemma 2.8]. It enables a run with
length exponential in n from marking {p1 : 1, s1 : 1, b : n}. In color: Additional places
and transitions, which make N a workflow net.

As explained in Sect. 2.3 we can assume that N is nonredundant, i.e. for all
p ∈ P there exists k ∈ N such that {i : k} −→∗ m with m(p) > 0. The first
important ingredient is the following lemma.

Lemma 2. Let N = (P, T, F ) be a nonredundant workflow net. Then N is non-
terminating iff there exists a nonzero R ∈ N

T such that Δ(R) ≥ 0.

Proof (sketch). The first implication follows from the fact that if we start from
a big initial marking, then it is possible to fill every place with arbitrarily many
tokens. In such a configuration any short run is enabled, so if there is a run with
non-negative effect then it is further possible to repeat it infinitely many times.
For the other implication we reason as follows. If there is an infinite run then
by Dickson’s lemma there are m,m′ ∈ N

P such that for some k, it holds that
{i : k} −→π m −→ρ m′ and m′ ≥ m. But then Δ(Rρ) = m′ − m ≥ 0. ��

We define ILPN with a |T | dimensional vector of variables x as the following
system of inequalities: x ≥ 0 and Δ(T )x ≥ 0−{i : ∞}.3 The next lemma follows
immediately from the definition of −→

Z
.

2 This is caused by the choice of the family of initial configurations. Fixing the number
of initial tokens in some places can be simulated by control states in the VASS model.

3 This ∞ is syntactic sugar to omit the inequality for the place i. Formally Δ(T ) and
x should be projected to ignore i.
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Lemma 3. [Adapted from Claim 5.7 in [9]] For every k ∈ N, m ∈ N
P , and a

run π, it holds that {i : k} −→π
Z
m iff Rπ is a solution to ILPN with the additional

constraint
∑|T |

i=1 Δ(ti)(i) · Rπ(ti) ≥ −k.

Proof (Sketch for Theorem 1). Because of Lemma 3 the Parikh image of every
run (in

⋃
k∈N

Runsk
N ) is a solution R ∈ N

T of Δ(T )R ≥ −{i : ∞}. So, we
consider a set of solutions of the system of inequalities Δ(T )R ≥ −{i : ∞}. It
is a linear set, so the sum of two solutions is again a solution and any solution
can be written as a sum of small solutions with norm smaller than some c ∈ N.
For such small solutions, the length of any corresponding run is at most |T | · c.
Now observe that if the workflow is terminating then there is no R ∈ N

T such
that Δ(T )R ≥ 0, because of Lemma 2. But it holds that Δ(R)(i) ≤ −1 for any
solution R, so in particular for all small solutions. Let us take a run π ∈ Runsk

N .
We decompose Rπ as a finite sum

∑�
i Ri where Ri are from the set of small

solutions. We have −k ≤ Δ(Ri)(i) =
∑�

i Δ(Ri)(i) ≤ ∑�
i −1 = −�. Recall that

the norm of small solutions is bounded by c. It follows that the length of the run
π is bounded by � · |T | · c ≤ k · |T | · c. So the workflow is |T | · c-linear.

4 Refining Termination Time

Recall that aN is the smallest constant such that N is aN -linear. In this section,
we are interested in computing aN . This number is interesting, as it can give
insights into the shape and complexity of the net, i.e. a large aN implies compli-
cated runs firing transitions several times, while a small aN implies some degree
of choice, where not all transitions can be fired for each initial token.

The main goal of this section is to show an algorithm for computing aN . Our
algorithm handles the more general class of aggregates on workflow nets, and
we can compute aN as such an aggregate. More formally, let N = (P, T, F ) be
a workflow net. An aggregate is a linear map f : QT → Q. The aggregate of a
(continuous) run is the aggregate of its Parikh image, that is f(π) := f(Rπ).

Example 4. Consider the aggregate fall(π) :=
∑

t∈T Rπ(t) = |π|, which com-
putes the number of occurrences of all transitions. Let us consider two other
natural aggregates. The aggregate ft(π) := Rπ(t) computes the number of occur-
rences of transition t, and fp(π) :=

∑
t∈T Δ(t)(p) · Rπ(t) computes the number

of tokens added to place p. Another use for aggregates is counting transition, but
with different weights for each transition, thus simulating e.g. different costs. �

Given a workflow net N and an aggregate f we define

supf,N = sup
{

f(π)
k

| k ∈ N>0, π ∈ Runsk
N

}

. (2)

Let us justify the importance of this notion by relating it to aN .

Proposition 1. Let N be a linear workflow net. Then aN = supfall,N .
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Proof. Recall that aN is the smallest number a such that |π| ≤ a · k for all k ∈
N>0 and π ∈ Runsk

N . Equivalently, |fall(π)|
k ≤ a. Thus by definition supfall,N ≤

aN , and the inequality cannot be strict since aN is the smallest number with
this property. ��
Theorem 2. Consider a workflow net N and an aggregate f . The value supf,N
can be computed in polynomial time.

Corollary 1. Let N = (P, T, F ) be a linear workflow net. The constant aN can
be computed in polynomial time.

In practice, we can use an LP solver to compute the constant aN . The algo-
rithm is based on the fact that continuous reachability for Petri nets is in poly-
nomial time [7,19]. We formulate a lemma that relates the values of aggregates
under the continuous and standard semantics.

Lemma 4. Let N be a Petri net and f be an aggregate.

1. Let π ∈ Runsk
N . Then 1/k · π ∈ CRuns1N and f(1/k · π) = f(π)/k.

2. Let πc ∈ CRuns1N . There are k ∈ N and π ∈ Runsk
N with f(πc) = f(π)/k.

Proof. Both items are simple consequences of Lemma 1 and the linearity of
aggregates. Note that for (2), if πc = β1t1 . . . βntn then it suffices to define k
such that βi · k ∈ N for all i ∈ {1, . . . , n}. ��

From the above lemma we immediately conclude the following.

Corollary 2. It holds that supf,N = sup{f(πc) | πc ∈ CRuns1N }.
Proof (The proof of Theorem 2). We use Corollary 2 and conclude that we have
to compute sup{f(πc) | πc ∈ CRuns1N }. Let S = {Rπc

| πc ∈ CRuns1N }. As f(π)
is defined as f(Rπ) , we reformulate our problem to compute sup{f(v) | v ∈ S}.
Since f is a continuous function, it holds that sup{f(v) | v ∈ S} = sup{f(v) |
v ∈ S}. Let us define LPf,N as an LP with variables x := x1, . . . , x|T | and
constraints Δ(T )x ≥ −{i : 1} and x ≥ 0.

Claim 1. It holds that v ∈ S if and only if v is a solution to LPf,N .

We postpone the proof of Claim 1. Claim 1 allows us to rephrase the computation
of sup{f(v) | v ∈ S} as an LPf,N where we want to maximise f(v), which can
be done in polynomial time. ��

What remains is the proof of Claim 1. It constitutes the remaining part of this
Section. The claim is a special case of the forthcoming Lemma 8. Its formulation
and proof require some preparation.

Definition 1. A workflow net is good for a set of markings M ⊆ Q
P
≥0 if for

every place p there are markings m,m′ and continuous runs π and π′ such that
m(p) > 0, m′ ∈ M , and {i : 1} −→π

Q≥0
m −→π′

Q≥0
m′.
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The notion of being good for a set of markings is a refined concept of nonre-
dundancy. The nonredundancy allow us to mark every place. But if, after mark-
ing the place, we want to continue the run and reach a marking in a specific set
of markings M ⊆ Q

P
≥0, then we don’t know if the given place can be marked.

This motivates Definition 1.

Example 5. Let us consider a workflow net depicted on Fig. 4. It is nonredun-
dant, as every place can be marked. But it is not good for {f : 1} as there is no
continuous run to the marking {f : 1}. In the initial marking the only enabled
transition is t1 but firing βt1 for any β ∈ Q≥0 reduce the total amount of tokens
in the net. The lost tokens can not be recrated so it is not possible to reach
{f : 1}.

i

t1
p2 t2

f

t3

2

Fig. 4. A Petri net with places p1, p2, p3 and transitions t1, t2, t3. Marking {i : 1} is
drawn.

The important fact is as follows:

Lemma 5. Let M ⊆ Q
P
≥0 be a set of solutions of some LP. Then testing if a

net is good for M can be done in polynomial time.

Lemma 6. Suppose a workflow net N is good for M ⊆ Q
P
≥0 and M is a convex

set. Then there is a marking m+ such that m+(p) > 0 for every p ∈ P and
there are continuous runs π, π′, and a marking mf ∈ M such that {i : 1} −→π

Q≥0

m+ −→π′
Q≥0

mf .

Informally, we prove it by taking a convex combination of a |P | runs one for each
p ∈ P . The last bit needed for the proof of Lemma 8 is the following lemma,
shown in [19].

Lemma 7 ([19], Lemma 13). Let N be a Petri net. Consider m0, m ∈ N
P

and v ∈ Q
T
≥0 such that:

– m = m0 + Δ(v);
– ∀p ∈ •v : m0(p) > 0;
– ∀p ∈ v• : m(p) > 0.

Then there exists a finite continuous run π such that m0 −→π
Q≥0

m and Rπ = v.
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Lemma 8. Suppose M is a convex set of markings over Q
P
≥0 and that the work-

flow net is good for M . Let S be the set of Parikh images of continuous runs
that start in {i : 1} and end in some marking m′ ∈ M i.e.

S := {Rπ | ∃π∈CRuns1N
∃m ′∈M such that {i : 1} −→π

Q≥0
m′}.

Then v ∈ S if and only if there is a marking m ∈ M such that Δ(T )v =
m − {i : 1}.
In one direction the proof of the lemma is trivial, in the opposite direction,
intuitively, we construct a sequence of runs with Parikh images converging to
v. The Lemma 6 is used to put ε in every place (for ε −→ 0) and Lemma 7 to
show that there are runs with the Parihk image equal εx + (1 − ε)v for some x
witnessing Lemma 6. We are ready to prove Claim 1.

Claim 1. It holds that v ∈ S if and only if v is a solution to LPf,N .

Proof. Let M be the set of all markings over Q
P
≥0, which clearly is convex. As

N is nonredundant we know that every place can be marked via a continuous
run, and because M is the set of all markings we conclude that N is good for
M according to Definition 1. Thus M satisfies the prerequisites of Lemma 8. It
follows that S is the set of solutions of a system of linear inequalities. Precisely,
v ∈ S if and only if there is m ∈ Q

P
≥0 such that Δ(T )v ≥ m−{i : 1} and v ≥ 0,

which is equivalent to Δ(T )v ≥ −{i : 1} and v ≥ 0, as required. ��

5 Soundness in Terminating Workflow Nets

The dichotomy between linear termination time and non-termination shown in
Sect. 3 yields an interesting avenue for framing questions in workflow nets. We
know that testing generalised soundness is PSPACE-complete, but the lower
bound in [9] relies on a reset gadget which makes the net non-terminating.
Indeed, it turns out that the problem is simpler for linear workflow nets.

Theorem 3. Generalised soundness is coNP-complete for linear workflow nets.

A marking m is called a deadlock if RunsmN = ∅. To help prove the coNP
upper bound, let us introduce a lemma.

Lemma 9. Let N be a terminating nonredundant workflow net. Then N is
not generalised sound iff there exist k ∈ N and a marking m ∈ N

P such that
{i : k} −→∗

Z
m, m is a deadlock and m = {f : k}. Moreover, if ‖N‖ ≤ 1 then

{i : k} −→∗
Z
m can be replaced with {i : k} −→∗

Q
m.

The last part of the lemma is not needed for the theoretical results, but it will
speed up the implementation in Sect. 7. We can now show Theorem 3.
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Proof (of the coNP upper bound in Theorem 3). Let N = (P, T, F ) and denote
T = {t1, . . . , tn}. By Lemma 9 N is not generalised sound iff there are k ∈ N and
m ∈ N

P such that {i : k} −→∗
Z
m, m is a deadlock and m = {f : k}. We can reduce

the property to an ILP. First, the procedure guesses |T | places p1, . . . , pn ∈ P
(one for each transition). For each transition ti, place pi will prohibit firing ti
by not being marked with enough tokens. We create ILPN ,p1,...,pn

, which is very
similar to ILPN (see Sect. 3), but adds additional constraints. They state that
(Δ(T )x)(pj) − •tj(pj) < 0 for every 1 ≤ j ≤ n.

Let us show that there are p1, . . . , pn such that ILPN ,p1,...,pn
has a solution iff

there exist k and a deadlock m such that {i : k} −→∗
Z
m. Indeed, let x1, . . . , xn

be a solution of ILPN ,p1,...,pn
. We denote k = −∑n

i=1 Δ(ti)(i) · xi and m =
{i : k} +

∑n
i=1 Δ(ti) · xi. It is clear that {i : k} −→∗

Z
m. The new constraints

ensure that for each ti ∈ T there exists pi ∈ P such that •ti(pi) > m(pi), thus
m is a deadlock.

To encode the requirement that m = {f : k}, note that there are three cases,
either m(k) ≤ k − 1, m(k) ≥ k + 1, or m(k) = k but m− {f : k} ≥ 0. We guess
which case occurs, and add the constraint for that case to ILPN ,p1,...,pn

. ��
The lower bound can be proven using a construction presented in [10, Theo-

rem 2] to show a problem called continuous soundness on acyclic workflow nets is
coNP-hard. We say that a workflow net is continuously sound iff for all m such
that {i : 1} −→∗

Q≥0
m, it holds that m −→∗

Q≥0
{f : 1}. The reduction can be used

as is to show that generalised soundness of nets with linear termination time is
coNP-hard, but the proof differs slightly. See the appendix for more details.

6 Termination Time and Concurrent Semantics

Note that in Petri nets, transitions may be fired concurrently. Thus, in a sense,
our definition of termination time may overestimate the termination time.

In this section we investigate parallel executions for workflow nets. Whereas
the termination time is focused on the worst case sequential execution, now we
are interested in finding the best case parallel executions. Thus, we provide an
optimistic lower bound on the execution time to contrast the pessimistic upper
bound investigated in Sect. 3 and Sect. 4.

Definition 2. Given a Petri net N let π = t1t2 . . . tn ∈ Runsk
N for some k ∈ N.

A block in π is a subsequence of π, i.e. ta, . . . , tb for some 1 ≤ a ≤ b ≤ n. We
define the parallel execution of π with respect to k as a decomposition of π into
blocks π = π1π2 . . . π� such that

1. all transitions are pairwise different in a single block; and
2. •Rπi

≤ {i : k} +
∑

j<i Δ(πj) for every 1 ≤ i ≤ �.

The execution time of a parallel execution is denoted as exec(π1π2 . . . π�) := �.
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Example 6.
We consider parallel executions of the
run t1t2t1t2t3t3 with respect to 4 ini-
tial tokens. The run can be decom-
posed into (t1t2)(t1t2)(t3)(t3) but also
into (t1)(t2t1)(t2t3)(t3). Both execu-
tions have execution time 4. The paral-
lel execution (t1t2)(t1t2t3)(t3) has exe-
cution time 3. �

We are interested in finding the parallel executions of a run that minimise
the execution time. It turns out that the so-called greedy parallel execution is
such a minimal parallel execution. Given π and k it is defined inductively on the
prefix of π. Suppose we already have some blocks π1 . . . πi−1. To construct block
πi, we simply choose the maximal sequence of transitions immediately following
the last block πi−1 that satisfies the two conditions of Definition 2. In particular
the last partition in Example 6 is the greedy parallel execution.

Lemma 10. Consider a run π and k ∈ N. The greedy parallel execution of π
has the smallest execution time among all parallel executions of π with respect
to k.

Consider a workflow net N with the initial marking {i : k}. Let Sk := {π |
{i : k} −→π {f : k}}. We define MinTimeN (k) as the minimal execution time
among parallel executions of runs in Sk. If Sk = ∅ then MinTimeN (k) = +∞.

Lemma 11. Let N be a workflow net and let k, x ∈ N. Deciding whether
MinTimeN (k) ≤ x is PSPACE-hard even if we fix k = 1.

As computing MinTimeN (k) is computationally hard, we modify the ques-
tion and ask about the asymptotic behaviour (similarly to Sect. 4). Thus, we are
interested in computing limk→∞

MinTimeN (k)
k . The problem is well defined as

the limit exists. This is interesting as limk→∞
MinTimeN (k)

k corresponds to the
average processing time of a single token when the workflow runs (informally
speaking) on its maximal efficiency.

Theorem 4. For a given nonredundant, generalised sound workflow net4 N we
can compute limk→∞

MinTimeN (k)
k in polynomial time.

Proof (A sketch of the proof). The main idea relies on the continuous semantics,
similarly to the proof of Theorem 2. We show that the limit is equal to the
infimum over execution times5 of continuous runs {i : 1} −→

Q≥0
{f : 1}. Then we

prove the following claim.

4 These assumptions can be relaxed to a net good for {f : 1}, see Definition 1.
5 For a suitably defined parallel execution and execution time of continuous runs.
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Claim 2. Let v ∈ Q
T
≥0. Let Sv = {π | {i : 1} −→π

Q≥0
{f : 1} and Rπ = v}. If S = ∅

then the infimum over optimal execution time of runs in Sv equals ‖v‖.

Let S be the set of Parikh images of continuous runs from {i : 1} to {f : 1}.
We define f : S → Q≥0 such that f(v) = ‖v‖. Thus we can reformulate the
problem as computing inf{f(v) | v ∈ S}. The function f is continuous, thus
we can reformulate further as compute inf{f(v) | v ∈ S}. The function f is
not linear on S, but it is piecewise linear. We define St ⊆ S for t ∈ T as follows
St = {v | v ∈ S and v(t) ≥ v(t′) for all t′ ∈ T}. Observe that f is linear over
St for every t ∈ T and that S =

⋃
t∈T St. Thus we can rephrase our problem as

computing the minimum over the set {inf{v(t) | v ∈ St} | t ∈ T}.
Thus it is sufficient to show that inf{v(t) | v ∈ St} can be computed in poly-

nomial time for any t ∈ T . Lemma 8 allows us to characterize S as follows: v ∈ S
iff Δ(T )v = {f : 1} − {i : 1} and v ≥ 0. In consequence, St can be characterized
as the set of solutions of the following system of inequalities

Δ(T )v = {f : 1} − {i : 1} and v ≥ 0 and v(t) ≥ v(t′) for all t′ ∈ T.

This allows us to capture {inf{v(t) | v ∈ St} | t ∈ T} as an LP problem which
can be solved in polynomial time. ��

7 Experimental Evaluation

We have implemented prototypes of several procedures outlined in the paper,
namely procedures to 1) decide termination; 2) decide soundness for terminat-
ing nets; 3) compute aN for terminating nets; and 4) compute MinTimeN (1),
MaxTimeN (1), and decide 1-soundness for nets with known aN . The idea
behind all procedures is to use our results to encode the properties in LPs/ILPs.
To solve these programs, we utilize the MILP solver Gurobi [24].

For 1), recall Lemma 2, which states that non-termination of a workflow net
N is equivalent to the existence of a Parikh image R ∈ N

T with Δ(R) ≥ 0. We
can instead search for R ∈ Q

T , as any solution could be scaled up to an integral
one. Thus, we can encode this condition as an LP in a straightforward manner,
and decide termination in polynomial time.6

For 2), we essentially use ILPN ,p1,...,pn
, as defined in the proof of Theorem

3. A solution to ILPN ,p1,...,pn
yields a run π such that there exists k ∈ N with

{i : k} −→π
Z
m, where m is a deadlock.

We also consider continuous instead of integral variables. Then solutions
relate to runs over −→∗

Q
instead. As hinted at in the last sentence of Lemma 9,

both variants yield equivalent results on nets without arc weights, i.e. ‖N‖ ≤ 1.
However, continuous variables are generally easier to handle for MILP solvers.
For brevity, by integer deadlocks we refer to the approach using integer variables,
and by continuous deadlocks to the approach with continuous variables.

6 This observation and the general approach comes from [30].
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For 3), recall the LP given in Claim 1. We can use it to compute supf,N
for any aggregate N , so in particular we can use it to compute supfall,N , which
is equal to aN by Equation (2). Here, it only remains to mention that Gurobi
allows not only checking feasibility of systems of linear inequalities, but further
allows optimizing an objective value, as required by the LP.

For 4), note that if we have the bound aN on the length of runs from {i : 1}, we
can check properties by unrolling runs. The intuition is as follows. We have aN ·
|T | integer variables. For step j of the run, we have variables x1,j , x2,j , . . . , x|T |,j .
The variables for a step encode which transition(s) are fired in that step. We
ensure that we encode a run by requiring

∑|T |
i=1 xi,j ≤ 1 for all j ∈ [1..aN ]. We

use integer variables, so either one or no transition is fired in each step.
Alternatively, we encode a parallel execution by imposing the requirements

of Definition 2 on steps. By further specifying that for all j ∈ [1..aN ], it holds
that {i : 1} +

∑j
j′=0

∑|T |
i=1 Δ(ti)xi,j′ ≥ 0, thus the marking reached so far after

each step is nonnegative. To compute MinTimeN (1)/MaxTimeN (1), we min-
imise/maximise the number of blocks/steps with non-zero transition variables.
For 1-soundness, we require reaching a deadlock different from {f : 1}.

Our prototype is implemented in C#. All experiments were run on an 8-
Core Intel R© CoreTM i7-7700 CPU @ 3.60 GHz with Ubuntu 18.04. We limited
memory to ∼8 GB. The time was limited to 60 s for checking termination and
generalised soundness as well as for computing aN . It was limited to 15 s for
computing MinTimeN (1),MaxT imeN (1) and for checking 1-soundness.

7.1 Benchmark Suite

We use a popular benchmark suite of 1386 free-choice nets originating from mod-
els created in the IBM WebSphere Business Modeler. The instances were origi-
nally introduced in [18] and have frequently been studied since, see [13,37,38].
The nets use a slightly different formalisation of workflow nets that allow mul-
tiple final places, which can be transformed to standard workflow nets using
a technique from [29]. This technique adds transitions, thus can increase aN ,
MinTimeN and MaxTimeN . Unfortunately, 4 instances cannot be transformed
to workflow nets with this technique, so we remove them. We also apply a set
of well-known reduction rules from [13] that reduce the size of instances while
keeping all types of soundness intact, and remove instances that are trivially
sound after reduction. These rules never increase aN . While they in theory
could increase MinTimeN , this does not happen on our benchmarks. Due to
the nature of the reduction rules, it may not be appropriate to run them before
analyzing MinTimeN ,MaxT imeN (1) and aN , since these numbers then give
no information about the original workflow. Thus we only run experiments on
the reduced instances when we check soundness and termination.

In total, we are left with 1382 unreduced and 740 non-trivial reduced
instances. Statistics about the sizes of the workflow nets can be seen in the
columns under Net Size in Fig. 5. The reduced nets are much smaller than the
unreduced ones, even when the nets are not reduced to the trivial net.
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Net Size Analysis Time (in ms)

|P | |T | Termination
Continuous
Deadlock

Integer
Deadlock

Continuous
Soundness [10]

Unreduced
instances

Mean 48.78 33.07 4.09 7.17 12.8 2022.54
Median 37 26 3 5 11 88
Max 274 285 23 85 88 55707

Reduced
instances

Mean 7.43 5.49 2.99 2.3 8.88 44.51
Median 6 5 3 2 8 33
Max 33 22 5 18 39 99

Total
Deadlocking

(Not generalised sound)

Unreduced
instances

Terminating 1262 523
Nonterm. 120 53

Reduced
instances

Terminating 694 536
Nonterm. 46 23

Fig. 5. Top: Statistics on the net size, and analysis times for deciding termination,
and checking generalised soundness via deadlocks and continuous soundness. Bot-
tom: Statistics on the number of terminating/non-terminating and deadlocking/non-
deadlocking (thus generalised unsound/generalised sound) nets.

7.2 Termination and Deadlocks

The time taken to decide termination is shown in the column labelled “Termi-
nation” in the top table of Fig. 5. The numbers of nets that are terminating and
non-terminating are shown in the bottom table of Fig. 5. Among both the unre-
duced and reduced instances, the vast majority are terminating (about 90%).
Note that the reduction rules can remove nontermination, even when they do
not make the net nontrivial, thus the prevalence of terminating instances is even
stronger among the reduced instances. In terms of analysis time, termination
can be decided in under 25 ms for all instances, with a median of 3 ms.

The top of Fig. 5 shows the analysis times for generalised soundness. We use
three algorithms. Columns “Continuous Deadlock” and “Integer Deadlock” show
results for our two proposed approaches, and column “Continuous Soundness”
shows the performance of a state-of-art approach [10] for deciding generalised
soundness. Note that both approaches may claim an unsound workflow net to
be sound, but they are precise on different classes of nets. The absence of integer
deadlocks is equivalent to generalised soundness on terminating nets, see Lemma
9. Similarly, continuous soundness is equivalent to generalised soundness on free-
choice nets [10].

In practice, it turns out that our approach for checking the absence of inte-
ger deadlocks is faster than the existing approach using continuous soundness on
every single instance. Continuous soundness times out on 215 of the unreduced
instances (not listed in the table), but neither of the approaches utilizing dead-
locks times out on any instance. The performance of continuous soundness is
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not surprising: continuous soundness is checked by passing an ∃∀-formula from
FO(Q, <,+) to an SMT solver. Quantifier alternation increases the complexity
of validating such formulas [23]. In comparison, our check for integer deadlocks
is implemented using standard ILP techniques, and thus an existential formula.

The bottom shows how many nets are non-terminating, as well as how many
are deadlocking (thus not generalised sound). Recall that integer deadlocks and
continuous deadlocks are equivalent for nets without arc weights, which all of
our nets are. Both types of deadlocks are fast to compute, taking less than 90ms
on each instance. In practice, checking for continuous deadlocks may be useful
even for nets with arc weights, since their absence also proves the absence of
integer deadlocks. About 50% of the unreduced instances and roughly 75% of
the reduced instances are deadlocking. Note that the reduction rules can only
make sound instances trivial, which are by definition not able to reach a deadlock.

7.3 aN , MinTimeN (1) and MaxTimeN (1)

The top of Fig. 6 the distribution of aN . This number depends on the number
of transitions, so is hard to put into context. We instead display L := aN/|T |.
Intuitively, that number is an upper bound on the average of how many times
each transition can be fired per initial tokens. For example, a net with L = 1
likely is linear, i.e. each transition can be fired only once per initial token, while
nets with L >> 1 may exhibit more complex behaviour, and nets with L << 1
may exhibit high degrees of choice, where runs only visit a part of the net. We
group nets with similar L to give an idea of the distribution of the values of L
across instances. Our computation of aN ran out of memory on 8 nets, so the
figure displays only 1254 nets. Most nets have L ≤ 1, with a significant number
having in particular L = 1. The maximal L is 5.83 among unreduced and 4.33
among reduced instances, while the minimal L is 0.17 and 0.11 respectively.

To display MinTimeN (1) and MaxTimeN (1), we also divide them by the
number of transitions, as we did for aN . We write TMin := MinTimeN (1)/|T |
and TMax := MaxTimeN (1)/|T |. We are mostly interested in their difference D :=
TMax − TMin. For nets with large D, the difference between the pessimistic
sequential and optimistic parallel execution time is large, thus they might allow
a high degree of parallelism. On the contrary, if nets have very small D, they
have a sequential structure. We again group nets with similar D, as we did for
L above. The results of the analysis are shown in the middle table of Fig. 6.

As we divide by |T | in the definition of D, it would be unusual for it to
take on huge values, and indeed all nets have D < 1. Note that even D = 0.5 is
significant, as it means that MinTimeN (1) and MaxTimeN (1) differ by half the
number of transitions. The table totals only 700 nets. On 111 nets, computing
MinTimeN (1) times out, while on 32 nets computing MaxTimeN (1) times out,
and both time out on 51 nets. On the remaining 360 nets, there is no execution
from {i : 1} to {f : 1}, thus MinTimeN (1) = ∞.

The analysis times for computing aN , MinTimeN (1) and MaxTimeN (1) are
shown in the bottom table of Fig. 6. We group nets by their size |N | = |P |+|T | to
show how the analysis times depend on the instance size. We only list 1060 nets,
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Buckets B
[0, 0.75) [0.75, 1) [1, 1] (1, 1.75) [1.75,∞)

Count with L ∈ B 303 274 422 173 82

Buckets B
[0, 0.05) [0.05, 0.15) [0.15, 0.3) [0.3, 0.5) [0.5, 1)

Count with D ∈ B 29 222 295 120 34

Buckets B
[0, 20) [20, 60) [60, 150) [150, 405)

Count with |N | ∈ B 241 391 388 40

Analysis time
for computing
aN (in ms)

Mean 11.9 9.56 9.65 9.8
Median 7 7 8 8
Max 714 246 289 33

Analysis time
for computing

MinTimeN (1) (in ms)

Mean 8.29 120.52 1610.44 2128.83
Median 8 36 307 1454
Max 14 6599 14905 12160

Analysis time
for computing

MaxTime (1) (in ms)

Mean 3.99 44.23 669.66 5305.5
Median 4 29 173 4934
Max 8 2561 12370 14954

Fig. 6. Top: Statistics on the distribution of L. Middle: Statistics on the distribution
of D. Bottom: Statistics on the analysis times for aN , IMin and IMax.

as we omit those where the computation of MinTimeN (1) or MaxTimeN (1)
timed out. One interesting observation is that for most instances, particularly
small ones, MinTimeN (1) is harder to compute than MaxTimeN (1). However,
both are very slow to compute compared to aN , which indeed never times out
on our instances. In fact, aN takes at most 714ms to compute for any instance.
It is interesting that the time for computing aN does not seem to depend highly
on the net size. We suspect this might be partly due to the fact that aN tends
to be proportionally smaller for larger instances: Bucket [0, 20) has a mean L of
1.04, while the mean is 0.86 for bucket [150, 405).

7.4 1-Soundness

Lastly, we briefly comment on the time for deciding 1-soundness via unrolling
for nets with known aN . The procedure times out for 71 instances, among which
aN has a mean of 133.88 and a maximum of 256. It takes a mean of 612.66ms
and a maximum of 14431ms to decide 1-soundness in this way. Unlike in the
case for generalised soundness, our procedure for 1-soundness does not seem to
be able to compete with the state-of-the-art. In [18], 1-soundness is decided for
many of our instances in a few milliseconds per instance, which our approach
does so only for instances with small aN (up to about 25).
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Abstract. This paper presents Lincheck, a new practical and user-
friendly framework for testing concurrent algorithms on the Java Vir-
tual Machine (JVM). Lincheck provides a simple and declarative way
to write concurrent tests: instead of describing how to perform the test,
users specify what to test by declaring all the operations to examine;
the framework automatically handles the rest. As a result, tests written
with Lincheck are concise and easy to understand. The framework auto-
matically generates a set of concurrent scenarios, examines them using
stress-testing or bounded model checking, and verifies that the results
of each invocation are correct. Notably, if an error is detected via model
checking, Lincheck provides an easy-to-follow trace to reproduce it, sig-
nificantly simplifying the bug investigation.

To the best of our knowledge, Lincheck is the first production-ready
tool on the JVM that offers such a simple way of writing concurrent
tests, without requiring special skills or expertise. We successfully inte-
grated Lincheck in the development process of several large projects,
such as Kotlin Coroutines, and identified new bugs in popular concur-
rency libraries, such as a race in Java’s standard ConcurrentLinkedDeque
and a liveliness bug in Java’s AbstractQueuedSynchronizer framework,
which is used in most of the synchronization primitives. We believe that
Lincheck can significantly improve the quality and productivity of con-
current algorithms research and development and become the state-of-
the-art tool for checking their correctness.

1 Introduction

Concurrent programming is known to be notoriously hard and error-prone. Writ-
ing a good and robust test for a concurrent data structure may be even more
challenging than implementing it. Programmers produce many such stress tests
every day, but they often are nondeterministic, cover only specific cases, and do
not catch all the bugs. Both the industry and academia need a tool that would
simplify writing reliable tests for concurrent data structures.
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In this paper, we present Lincheck [1], a new practical framework for JVM-
based languages (such as Java, Kotlin, and Scala), which simplifies writing reli-
able concurrent tests. While most existing tools require writing the algorithm in
a special language [2], specifying all possible concurrent scenarios and their out-
comes [3–6], or learning a large amount of theory [7,8], Lincheck provides a more
pragmatic declarative approach. It requires users only to list the data structure
operations, thus, specifying what to test instead of how. Taking these operations,
Lincheck generates a set of concurrent scenarios and examines them via stress
testing or model checking, verifying that the outcome results are correct. The
default correctness property is linearizability [9], but various relaxations [10–12]
are also supported. One may think of Lincheck as a mix of a fuzzer (that gener-
ates concurrent scenarios) and a model checker or stress runner (which examines
these scenarios) equipped with an automatic outcome verifier.

Lincheck by Example. The “classic” way to write a concurrent test is to man-
ually run parallel threads, invoking the data structure operations in them and
checking that some sequential history can explain the produced results. Such
tests typically contain hundreds of lines of boilerplate code and cover only easy-
to-verify scenarios. Lincheck automates the machinery, making tests short and
declarative. To illustrate that, we present a test for the ConcurrentLinkedDeque
collection (double-ended queue, which supports insertions and removals at both
ends) of the standard Java library in Listing 1.

The initial state of the testing data structure is specified in the constructor;
here, we simply create a new empty deque at line 2. The following lines 4–
9 declare the deque operations; they should be annotated with @Operation.
Finally, we run the analysis by invoking ModelCheckingOptions.check(..)
on the testing class at line 11. Replacing ModelCheckingOptions with
StressOptions switches to stress testing, which essentially runs parallel threads.

1 class DequeTest {
2 val deque = ConcurrentLinkedDeque <Int >()
3
4 @Operation fun addFirst(e: Int) = deque.addFirst(e)
5 @Operation fun addLast(e: Int) = deque.addLast(e)
6 @Operation fun pollFirst () = deque.pollFirst ()
7 @Operation fun pollLast () = deque.pollLast ()
8 @Operation fun peekFirst () = deque.peekFirst ()
9 @Operation fun peekLast () = deque.peekLast ()

10
11 @Test fun runTest () = ModelCheckingOptions ()
12 .check(this::class)
13 }

Listing 1. Concurrent test via Lincheck for Java’s ConcurrentLinkedDeque. The code
is written in Kotlin; import statements are omitted.

After executing the test, we get an error presented in Fig. 1. Surprisingly,
this class from the standard Java library has a bug; the error was originally
detected via Lincheck by the authors [13] (notably, there were several unsuc-



158 N. Koval et al.

= Invalid execution results = Comment: this text is a Lincheck output,
| addLast (-6) | addFirst (-8) | while the scheme is drawn by the authors
| peekFirst (): -8 | pollLast (): -8 |

= The following interleaving leads to the error =
| | addFirst (-8) |
| | pollLast () |
| | pollLast (): -8 at DequeTest.pollLast(DequeTest.kt:35) |
| | last (): Node@1 at CLD.pollLast(CLD.java :936) |
| | item.READ: null at CLD.pollLast(CLD.java :938) |
| | prev.READ: Node@2 at CLD.pollLast(CLD.java :946) |
| | item.READ: -8 at CLD.pollLast(CLD.java :938) |
| | next.READ: null at CLD.pollLast(CLD.java :940) |
| | switch |
| addLast (-6) | |
| peekFirst (): -8 | |
| | item.CAS(-8,null): true at CLD.pollLast(CLD.java :941) |
| | unlink(Node@2) at CLD.pollLast(CLD.java :942) |
| | result: -8 |

Fig. 1. The incorrect execution of the Java’s ConcurrentLinkedDeque identified by the
Lincheck test from Listing 1 and illustrated by a pictured diagram. To narrow the test
output, ConcurrentLinkedDeque is replaced with CLD.

cessful attempts to fix the incorrectness before that [14,15]). Obviously, the
produced results are non-linearizable: for pollLast() in the second thread to
return -8, it should be called before addLast(-6) in the first thread; however,
that would require the following peekFirst() to return -6 instead of -8. While
Lincheck always prints a failing scenario with incorrect results (if found), the
model checker also provides a detailed interleaving trace that reproduces the
error.

Providing a detailed and informative trace is a game-changer. With it, we
can easily understand why ConcurrentLinkedDeque is incorrect. The under-
lying data structure forms a doubly-linked list, with head and tail pointers
approximating its first and last nodes. Initially, head and tail point to a log-
ically removed (Node.item == null) node. After addFirst(-8) in the sec-
ond thread is applied, a new node is added to the beginning; head and tail
remain unchanged. Then, pollLast() starts; it finds the last non-empty node
(the previously added one) and gets preempted before extracting the element.
(The procedure linearizes on changing the Node.item value to null via atomic
Compare-and-Set (CAS) instruction.) After invoking addLast(-6) in the first
thread, a new node is added to the end of the list. The following peekFirst()
does not change the data structure logically but advances the head pointer.
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Finally, the execution switches back to the second thread. The pollLast() oper-
ation successfully removes the node containing -8 (which is no longer the last
element), extracting the item via CAS followed by unlinking the node physically.
These twelve lines of straightforward code easily find a bug in the standard
library of Java and provide a detailed trace that leads to the error, reducing
the investigation time from hours to minutes. We also believe that with such an
instrument as Lincheck, the bug would not have been released in the first place.

Practical-Oriented Design. Lincheck was designed as a tool for testing real-
world concurrent code. The following its properties are crucial in practice:

– Declarative testing. Lincheck takes only a list of operations and optional
configuration parameters (we discuss them further), which results in short
and intuitive tests — no need to learn a new language or technology.

– No implementation restrictions. Lincheck can test any real-world imple-
mentations, including those that utilize low-level JVM constructs like Unsafe
or VarHandle, without imposing any restrictions.

– No false positives. Lincheck reports only reproducible errors, which is vital
for using the framework in continuous integration (CI/CD) and unit tests.

– User-friendliness. Lincheck streamlines bug investigation by providing a
thorough trace of the discovered error, saving programmers countless hours.

– Flexibility. Lincheck supports popular constraints, such as the single-
producer/consumer workload, as well as a range of linearizability relaxations,
enabling custom scenario generation and verification when necessary.

Real-World Applications. We have successfully integrated Lincheck in the
development processes of Kotlin Coroutines [16] and JCTools [17] libraries,
enabling reliable testing of their core data structures, which are often complex
and several thousand lines of code long. Lincheck’s support of popular work-
load constraints and linearizability relaxations and its ability to handle blocking
operations, such as those of Mutex and Channel, were crucial for these tests.
Furthermore, for over five years, we have successfully used Lincheck in our
“Parallel Programming” course to automate the verification of more than 4K
student solutions annually.

We have also detected several new bugs [18] in popular libraries, includ-
ing the previously discussed race in Java’s ConcurrentLinkedDeque [13], non-
linearizabi-lity of NonBlockingHashMapLong from JCTools [19], and liveness
bugs in Java’s AbstractQueuedSynchronizer [18] and Mutex in Kotlin Corou-
tines [20].

In conclusion, Lincheck is a powerful and versatile tool for testing complex
concurrent programs. It provides non-trivial features in terms of generality, ease
of use, and performance. We provide a comprehensive overview of Lincheck in
the rest of the paper and believe that it will greatly save time and (mental)
energy tracking down concurrency bugs.
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2 Lincheck Overview

We now dive into Lincheck internals, presenting its key features as we go along.
The testing process can be broken down into three stages, as depicted in the
diagram below. Lincheck generates a set of concurrent scenarios and examines
them via either model checking or stress testing, verifying that each scenario
invocation results satisfy the desirable correctness property (linearizability [9]
by default). If the outcome is incorrect, the invocation hangs, or the code throws
an unexpected exception, the test fails with an error similar to the one in Fig. 1.

Minimizing Failing Scenarios. When an error is detected, it is often possible
to reproduce it with fewer threads and operations [21]. Lincheck automatically
“minimizes” the failing scenario in a greedy way: it repeatedly removes an opera-
tion from the scenario until the test stops failing, thus finding a minimal failing
scenario. While this approach is not theoretically-optimal, we found it working
well in practice1.

User Guide. This section focuses mainly on the technical aspects behind the
Lincheck features. For those readers who are interested in using the framework
in their project, we suggest taking a look at the official Lincheck guide [22].

2.1 Phase 1: Scenario Generation

Lincheck allows to tune the number of parallel threads, operations in them, and
the number of scenarios to be generated when creating ModelCheckingOptions
or StressOptions. The framework then generates a set of concurrent scenarios
by filling threads with randomly picked operations (annotated with @Operation)
and generating (by default random) arguments for these operations.

Operation Arguments. Consider testing a concurrent hash table. If it has a
bug, it is more likely to be detected when accessing the same element concur-
rently. To increase the probability of such scenarios, users can narrow the range
of possible elements passed to the operations; Listing 2 illustrates how to con-
figure the test in a way so the generated elements are always between 1 and 3.

1 @Param(name = "elem", gen = IntGen ::class , conf = "1:3")
2 @OpGroupConfig(name="writer", nonParallel=true)
3 class SingleWriterHashSetTest {
4 val s = SingleWriterHashSet <Int >()
5
6 @Operation(group = "writer"
) // never executes concurrently

7 fun add(@Param(name = "elem") e: Int) = s.add(e)
8 @Operation
9 fun contains(@Param(name = "elem")

e: Int) = s.contains(e)

1 Finding the minimum failing scenario is a highly complex problem, as it could be
not based on any of the generated scenarios.
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10 @Operation(group = "writer"
) // never executes concurrently

11 fun remove(@Param(name = "elem") e: Int) = s.remove(e)
12
13 @Test fun runTest () = ModelCheckingOptions ()
14 .check(this::class)
15 }

Listing 2. Testing single-writer set with custom argument generation (highlighted
with yellow) and single-writer workload constraint (highlighted with red).

Workload Constraints. Some data structures may require a part of opera-
tions not to be executed concurrently, such as single-producer/consumer queues.
Lincheck provides out-of-the-box support for such constraints, generating sce-
narios accordingly. The framework API requires grouping such operations and
restricting their parallelism; Listing 2 illustrates how to test a single-writer set.

2.2 Phase 2: Scenario Running

Lincheck uses stress testing and model checking to examine generated scenarios.
The stress testing mode was influenced by JCStress [3], but Lincheck automat-
ically generates scenarios and verifies outcomes, while JCStress requires listing
both scenarios and correct results manually. The main issue with stress testing is
the complexity of analysing a bug after detecting it. To mitigate this, Lincheck
supports bounded model checking, providing detailed traces that reproduce bugs,
similar to the one in Fig. 1. The rest of the subsection focuses on the model-
checking approach, discussing the most significant details.

Bounded Model Checker. The model-checking mode has drawn inspiration
from the CHESS (also known as Line-Up) framework for C# [5]. It assumes
the sequentially consistent memory model and evaluates all possible schedules
with a limited number of context switches. Unlike CHESS, Lincheck bounds
the number of schedules rather than context switches, which makes testing time
independent of scenario size and algorithm complexity.

In some cases, the specified number of schedules may not be enough to explore
all interleavings, so Lincheck studies them evenly, probing logically different sce-
narios first. For instance, imagine a case where Lincheck is analyzing interleavings
with a single context switch and has previously explored only one interleaving,
which originated from the first thread containing four atomic operations. Under
these circumstances, Lincheck presumes that 25% of the interleavings have been
explored when starting from the first thread, while the second thread remains
unexplored. As a result, Lincheck becomes more inclined to select the second
thread as the starting point for the next exploration.

Switch Points. To control the execution, Lincheck inserts internal method
calls at shared memory accesses by on-the-fly byte-code transformation via ASM
framework [23]. These internal methods serve as switch points, enabling manual
context switching. Notably, Lincheck supports shared memory access through
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AtomicFieldUpdater, VarHandle, and Unsafe and handles built-in synchroniza-
tion via MONITORENTER/MONITOREXIT, park/unpark, and wait/notify. Inter-
nally, it replaces there synchronization primitives with custom implementations,
thus, enabling full control of the execution.

Progress Guarantees. While exploring potential switch points, Lincheck can
detect active synchronization, handling it similarly to locks. This capability
to detect blocking code enables Lincheck to verify the testing algorithm for
obstruction-freedom2, the weakest non-blocking guarantee [10]. Although more
popular lock- and wait-freedom are part of Lincheck’s future plans, the majority
of practical liveness bugs are caused by unexpected blocking code, making the
obstruction-freedom check fairly useful for lock-free and wait-free algorithms.

Optimizations. Lincheck uses various heuristics to speed up the analysis and
increase the coverage. The most impactful one excludes final field accesses from
the analysis, as their values are unchanging. Our internal experiments indicate a
reduction in the number of inserted switch points by over ×2 in real-world code.
Another important optimization tracks objects that are not shared with other
threads, excluding accesses to them from the analysis. This heuristic eliminates
an additional 10–15% of switch points in practice.

Happens-Before. When an operation starts, Lincheck collects which opera-
tions from other threads are already completed to establish the “happens-before”
relation; this information is further passed to the results verifier.

Modular Testing. When constructing new algorithms, it is common to use
existing non-trivial data structures as building blocks. Considering such under-
lying data structures to be correct and treating their operations as atomic may
significantly reduce the number of possible interleavings and check only mean-
ingful ones, thus increasing the testing quality. Lincheck makes it possible with
the modular testing feature; please read the official guide for details [22].

Limitations. For the model checking mode, the testing data structure must be
deterministic to ensure reproducible executions, which is a common requirement
for bug reproducing tools [24]. For the algorithms that utilize randomization,
Lincheck offers out-of-the-box support by fixing seeds for Random; thus, making
the latter deterministic. To our experience, Random is the only source of non-
determinism in practical concurrent algorithms.

Model Checking vs Stress Testing. The primary benefit of using model
checking is obtaining a comprehensive trace reproducing the detected error,
as demonstrated in Fig. 1. However, the current implementation assumes the
sequentially consistent memory model, which can result in missed bugs caused
by low-level effects, such as an omitted volatile modifier in Java. We are in
the process of incorporating the GenMC algorithm [6,25] to support weak mem-
ory models and increase analysis coverage through the partial order reduction

2 The obstruction-freedom property ensures that any operation completes within a
limited number of steps if all other threads are stopped.
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technique. In the meantime, we suggest using stress testing in addition to model
checking.

2.3 Phase 3: Verification of Outcome Results

Once the scenario is executed, the operation results should be verified against
the specified correctness property, which is linearizability [9] by default. In brief,
Lincheck tries to match the operation results to a sequential history that pre-
serves the order of operations in threads and does not violate the “happens-
before” relation established during the execution.

LTS. Instead of generating all possible sequential executions, Lincheck lazily
builds a labeled transition system (LTS) [26] and tries to explain the obtained
results using it. Roughly, LTS is a directed graph, which nodes represent the
data structure states, while edges specify the transitions and are labeled with
operations and their results. Execution results are considered valid if there exists
a finite path in the LTS (i.e., sequential history) that leads to the same results.
Lincheck lazily builds LTS by invoking operations on the testing data struc-
ture in one thread. Thus, the sequential behavior is specified implicitly. Figure 2
illustrates an LTS lazily constructed by Lincheck for verifying incorrect results
of ConcurrentLinkedDeque from Fig. 1.

Fig. 2. An LTS constructed for verify-
ing ConcurrentLinkedDeque results from
Fig. 1.

Sequential Specification. By default,
Lincheck sequentially manipulates
the testing data structure to build
an LTS. It is possible to specify the
sequential behavior explicitly, provid-
ing a separate class with the same
methods as those annotated with
@Operation. It allows for a sin-
gle Lincheck test instead of sepa-
rate sequential and concurrent ones.
For API details, please refer to the
guide [22].

Validation Functions. It is possible
to validate the data structure invari-
ants at the end of the test, adding the
corresponding function and annotating it with @Validate. For example, we have
uncovered a memory leak in the algorithm for removing nodes from a concurrent
linked list in [27] by validating that logically removed nodes are unreachable at
the end.

Linearizability Relaxations. Additionally to linearizability, Lincheck sup-
ports various relaxations, such as quiescent consistency [10], quantitative relax-
ation [11], and quasi-linearizability [12].

Blocking Operations. Some structures are blocking by design, such as the case
of Mutex or Channel. Consider a rendezvous channel, also known as “synchronous
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queue”, as an example: senders and receivers perform a rendezvous handshake
as a part of their protocol (senders wait for receivers and vice versa). If we run
send(e) and receive() in parallel, they both succeed. However, executing the
operations sequentially will result in suspending the first one. To reason about
correctness, the dual data structures formalism [28] is usually used. Essentially, it
splits each operation into two parts at the point of suspension, linearizing these
parts separately. We extend this formalism by allowing suspended requests to
cancel and by making it more efficient for verification.

3 Evaluation

Lincheck has already gained adoption in Kotlin and Java communities, as well
as by companies and universities. It has been integrated into the development
processes of Kotlin Coroutines [16] and JCTools [17], enabling reliable testing of
their core data structures, and was used to find several new bugs in popular con-
currency libraries and algorithms published at top-tier conferences. Furthermore,
for over five years, we have successfully used Lincheck in our “Parallel Program-
ming” course to automate the verification of more than 4K student solutions per
year. Notably, many users appear to especially appreciate Lincheck’s low entry
threshold and its ability to “explain” errors with detailed traces.

Novel Bugs Discovered with Lincheck. We have uncovered multiple
new concurrency bugs in popular libraries and authors’ implementations of
algorithms published at top conferences. These bugs are listed in Table 1
and include some found in the standard Java library. Lincheck not only
detects non-linearizability and unexpected exception bugs, but also liveliness
issues. For example, it identified an obstruction-freedom violation in Java’s
AbstractQueuedSynchronizer framework, which is a foundation for building
most synchronization primitives in the standard Java library.

Notably, the tests that uncover the bugs listed in Table tab1 are publicly
available [18], allowing readers to easily reproduce these bugs.

Running Time Analysis. We have designed Lincheck for daily use and expect
it to be fast enough in interactive mode. Various factors, including the complexity
of the testing algorithm and the number of threads, operations, and invocations,
can impact its performance. We suggest using two configurations for the best user
experience and robustness: a fast configuration for local builds to catch simple
bugs quickly and a long configuration to perform a more thorough analysis on
CI/CD (Continuous Integration) servers:

– Fast: 30 scenarios of 2 threads × 3 operations, 1000 invocations per each;
– Long: 100 scenarios of 3 threads × 4 operations, 10000 invocations per each.

We assess the performance and reliability of Lincheck with these fast and long
configurations by measuring the testing times and showing whether the expected
bugs were detected. We run the experiment on the buggy algorithms listed in
Table 1, along with ConcurrentHashMap and ConcurrentLinkedQueue from
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Table 1. Novel bugs discovered with Lincheck; tests are publicly available [18].

Source Data structure Description

Java ConcurrentLinkedDeque Non-linearizable [13]; see Fig. 1
Java AbstractQueuedSynchronizer Liveliness error
Kotlin Coroutines [16] Mutex Liveliness error [20]
JCTools [17] NonBlockingHashMapLong Non-linearizable [19]
Concurrent-Trees [29] ConcurrentRadixTree Non-linearizable [30]
PPoPP’10 [31] SnapTree Unexpected internal exception
PPoPP’14 [32] LogicalOrderingAVLa Deadlock
ISPDC’15 [33] CATree Deadlock
Euro-Par’17 [34] ConcurrencyOptimalTree Unexpected internal exception
a The deadlock in the LogicalOrderingAVL algorithm was originally found by Trevor
Brown and later confirmed with Lincheck.

Table 2. Running times of Lincheck tests with fast and long configurations using
both stress testing and model checking (MC) for the listed data structures. Failed
tests, which detect bugs, are highlighted with red. Notably, finding a bug may take
longer than testing a correct implementation due to scenario minimization.

Data Structure Fast Configuration Long Configuration
Stress MC Stress MC

ConcurrentHashMap (Java) 0.3 s 2.7 s 38.1 s 1 m 44 s
ConcurrentLinkedQueue (Java) 0.4 s 1.7 s 1m 26 s 1 m 41 s
LockFreeTaskQueue (Kotlin Coroutines) 1.1 s 1.4 s 39.6 s 54.8 s
Semaphore (Kotlin Coroutines) 2.1 s 3.6 s 22.3 s 1 m 44 s
ConcurrentLinkedDeque (Java) 0.4 s 1.2 s 19.7 s 10.7 s
AbstractQueueSynchronizer (Java) 1.6 s 0.5 s 18.2 s 8.6s
Mutex(Kotlin Coroutines) 0.9 s 2.6 s 23.6 s 8.7 s
NonBlockingHashMapLong (JCTools) 0.6 s 1.3 s 4.4 s 7 s
ConcurrentRadixTree ([29]) 2.9 s 10.6 s 40.9 s 2m30 s
SnapTree [31] 1.7 s 5.8 s 38.4 s 5m6 s
LogicalOrderingAVL [32] 1.5 s 4.2 s 17.1 s 36.9 s
CATree [33] 20.1 s 0.8 s 41.3 s 6.5 s
ConcurrencyOptimalTree [34] 0.4 s 1.5 s 3 s 7.3 s

the Java standard library and a quasi-linearizable LockFreeTaskQueue with
Semaphore from Kotlin Coroutines. The results are available in Table 2. The
experiment was conducted on a Xiaomi Mi Notebook Pro 2019 with Intel(R)
Core(TM) i7-8550U CPU @ 1.80GHz and 32Gb RAM. The results show that
the fast configuration ensures short running times, being suitable for use as unit
tests without slowing down the build and able to uncover some bugs. However,
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some bugs are detected only with the long configuration, emphasizing the need
for more operations and invocations to guarantee correctness. Despite this, the
running time remains practical and acceptable.

4 Related Work

Several excellent tools for linearizability testing and model checking have been
proposed, e.g. [4,5,35–41], and some even support relaxed memory models [6,25,
42,43] and linearizability relaxations [36,44]. Due to space limitations, we focus
our discussion on the works that shaped Lincheck.

Inspiration. Lincheck was originally inspired by the JCStress [3] tool for JVM,
which is designed to test the memory model implementation. However, JCStress
does not offer a declarative approach to writing tests. The bounded model
checker in Lincheck was influenced by CHESS (Line-Up) [5] for C#, which is
also non-declarative and does not support linearizability extensions. Lincheck
offers several novel features and usability advantages compared to these inspira-
tions, making it a versatile platform for research in testing and model checking.
Although other tools such as GenMC [6,25,43] have superior features, Lincheck
is designed to be extensible and can integrate new tools. In particular, we are
working on incorporating the GenMC algorithm into Lincheck at the moment
of writing this paper.

Lincheck Compared to Other Solutions. To the best of our knowledge,
no other tool offers similar functionality. In particular, Lincheck allows certain
operations to never execute in parallel (supporting single-producer/consumer
constraints), detects obstruction-freedom violations (which is crucial for checking
non-blocking algorithms), provides a way to specify sequential behavior explic-
itly (enabling oracle-based testing), and supports blocking operations for Kotlin
Coroutines. Furthermore, Lincheck is a highly user-friendly framework, featur-
ing a simple API and easy-to-understand output, which we have found users to
highly appreciate.

5 Discussion

We introduced Lincheck, a versatile and expandable framework for testing con-
current data structures. As Lincheck is not just a tool but a platform for incor-
porating advancements in concurrency testing and model checking, we plan to
integrate cutting-edge model checkers that support weak memory models. Writ-
ten in Kotlin, Lincheck is also interoperable with native languages such as Swift
or C/C++. Our goal is to extend Lincheck testing to these languages, making
it the leading tool for checking correctness of concurrent algorithms. We believe
that Lincheck has the potential to significantly improve the quality and effi-
ciency of concurrent algorithms development, reducing time and effort to write
reliable tests and investigate bugs.
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Abstract. nekton is a new tool for checking linearizability proofs of highly
complex concurrent search structures. The tool’s unique features are its paramet-
ric heap abstraction based on separation logic and the flow framework, and its
support for hindsight arguments about future-dependent linearization points. We
describe the tool, present a case study, and discuss implementation details.

Keywords: separation logic · proof checker · linearizability · flow framework

1 Introduction

We present nekton, a mostly automated deductive program verifier based on separa-
tion logic (SL) [23,27]. The tool is designed to aid the construction of linearizabil-
ity proofs for complex concurrent search structures. Similar to many other SL-based
tools [2,8,14,22,33,33], nekton uses an SMT solver to automate basic SL reasoning.
Similar to the original implementation of CIVL [7], it uses non-interference reason-
ing à la Owicki-Gries [25] to automate thread modularity. What makes nekton stand
out among these relatives is its inbuilt support for expressing complex inductive heap
invariants using the flow framework [12,13,20] and the ability to (partially) automate
complex linearizability arguments that require hindsight reasoning [4,5,15,18,19,24].
Together, these features enable nekton to verify challenging concurrent data structures
such as the FEMRS tree [4] with little user guidance.

nekton [17] is derived from the tool plankton [18,19], which shares the same
overall goals and features as nekton but strives for full proof automation at the expense
of generality. In terms of the trade-off between automation and expressivity, nekton
aims to occupy a sweet spot between plankton and general purpose program verifiers.
In the following, we discuss nekton’s unique features in more detail and explain how
it deviates from plankton’s design.

The flow framework can be used to express global properties of graph structures
in a node-local manner, aiding compositional verification of recursive data structures.
The framework is parametric in a flow domain which determines what global infor-
mation about the graph is provided at each node. Various flow domains have been
proposed that have shown to be useful in concurrency proofs [11,26]. To simplify
proof automation, plankton uses a fixed flow domain that is geared towards verify-
ing functional correctness of search structures. In contrast, nekton is parametric in the
flow domain. For instance, it supports custom domains for reasoning about overlayed
c© The Author(s) 2023
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structures and other data-structure-specific invariants. This design choice significantly
increases the expressivity of the tool at the cost of a mild increase in the annotation bur-
den for the user. For instance, the FEMRS tree case study that we present in this paper
relies on a flow domain that is beyond the scope of plankton. In fact, the flow domain
is also beyond state-of-the-art abstract interpretation-based verification tools checking
linearizability [1]. However, computing relative to a given flow domain is considerably
more difficult than computing with a hard-coded one: it requires parametric versions for
(1) computing post images, (2) checking entailment, and (3) checking non-interference.
Yet, it allows for sufficient automation compared to general user-defined (recursive)
predicates as accepted by, e.g., Viper [22] and VeriFast [9].

The second key feature of nekton is its support for hindsight reasoning. Intuitively,
hindsight arguments rely on statements of the form “if q holds in the current state and
p held in some past state, then r must have held in some intermediate state”. Such
arguments can greatly simplify the reasoning about complex concurrent algorithms that
involve future-dependent linearization points. At a technical level, hindsight reasoning
is realized by lifting a state-based separation logic to one defined over computation
histories [18,19]. nekton’s support for this style of reasoning goes beyond the simple
hindsight rule in [18] but does not yet implement the general temporal interpolation
rule introduced more recently in [19], which is already supported by plankton.

These features set nekton apart from its competitors. First, it offers more expres-
sivity compared to tools with a higher degree of automation like plankton [18,19],
Cave [29–31], and Poling [34]. Second, it’s proofs require less annotation effort than
more flexible refinement-proofs for fine-grained concurrency, like those of CIVL [7,10]
and Armada [16]. Last, it integrates techniques for proving linearizability, which are
missing in industrial grade tools like Anchor [6].

In the remainder of this paper, we provide a high-level overview of the tool (Sect. 2),
present a case study (Sect. 3), and discuss implementation details some of which also
concern plankton and have not yet been reported on before (Sect. 4).

2 Input

nekton checks the correctness of proof outlines for the linearizability of concurrent
data structures. Its distinguishing feature compared to its ancestor plankton is that
the heap abstraction is not hard-coded inside the tool, but taken as an input parameter.
That is, nekton’s input is a heap abstraction and a set of proof outlines, one for each
function manipulating the data structure state. The heap abstraction defines how the
data structure’s heap representation is mapped onto a labeled graph that captures the
properties of interest and that can then be reasoned about in separation logic. It also
embeds the mechanism for checking linearizability.

nekton works with the recent flow graphs proposed by Krishna et al. [12,13], in
their latest formulation due to [18]. Flow graphs augment heap graphs with ghost state.
The ghost state can be understood as a certificate formulating global properties of heap
graphs in a node-local manner. It takes the form of a so-called flow value that has been
propagated through the heap graph and, therefore, brings global information with it. The
propagation is like in static analysis, except that we work over heap graphs rather than
control-flow graphs. To give an example, assume we want to express the global property
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that the heap graph is a tree. A helpful certificate would be the path count, the number
of paths from a distinguished root node to the node of interest. It allows us to formulate
the tree property node-locally, by saying that the path count is always at most one.

Our first input is a flow domain (M, gen). The parameter (M,+, 0) is a commuta-
tive monoid from which we draw the flow values. The propagation needs standard fixed
point theory: the natural ordering a ≤ a + b for a, b ∈ M on the monoid should form
an ω-complete partial order. We expect the user to specify both + and ≤ to avoid the
quantifier over the offset in the definition of ≤. The parameter gen generates the trans-
fer functions labeling the edges in the heap graph. Transfer functions transform flow
values to record information about the global shape. The generator has the type

gen : PointerFld → (DataFld → Data) → Mon(M → M) .

We assume flow graphs distinguish between pointer fields (PointerFld) and fields that
hold data values (DataFld). Flow values are propagated along every pointer field, in a
way that depends on the current data values but that does not depend on the target of
the field. To see that the data values are important, imagine a node has already been
deleted logically but not yet physically from a data structure, as is often the case in
lock-free processing. Then the logical deletion would be indicated by a raised flag (a
distinguished data field), and we would not forward the current path count. To reason
about flow values with SMT solvers, we restrict the allowed types of flow values to

M :: = B | N | P(B) | P(N) | M × M .

Flow values are (sets of) Booleans or integers, or products over these base types. When
defining a product type, the user has to label each component with a selector allowing
to project a tuple onto this component. Importantly, the user can define the addition
operation + for the flow monoid freely over the chosen type as long as the definition
is expressible within the underlying SMT theory (e.g., for N one may choose as + the
usual addition or the maximum). The tool likewise inherits the assertion language for
integers and Booleans that is supported by the SMT solver. There are two more user-
defined inputs that are tightly linked to the heap representation.

Linearizability. We establish the linearizability of functions manipulting a data struc-
ture with the help of the keyset framework [11,28], which we encode using flows. A
crucial problem when proving linearizability are membership queries: we have to deter-
mine whether a given key has been in the data structure at some point in time while the
function was running. The keyset framework localizes these membership queries from
the overall data structure to single nodes. It assigns to each node n a set of keys for
which n is responsible, in the sense that n has to answer the membership queries for
these keys. This set of keys is n’s keyset. Imagine we have a singly linked list

Head−−−−−→(−∞,∞) (n1, 5)−−−→[6,∞) (n2, 7)† −−−→[6,∞) (n3, 10)−−−−→[11,∞) ⊥ .

The shared pointer Head propagates the keys in the interval (−∞,∞) as a flow value
to node n1 holding key 5. This set is called n1’s inset. The inset of a node n contains all
keys k for which a search will reach n. If k > 5, the search will proceed to n2, otherwise
it will stay at n1. Thus, the keyset of n1 is (−∞, 5]. That is, if k ∈ (−∞, 5], the answer
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to the membership query is determined by the test k = 5. Node n1 forwards [6,∞)
to the successor node n2 with key 7. Since n2 has been logically deleted, indicated by
the tombstone †, it cannot answer membership queries: the keyset is empty. Instead,
the node forwards its entire inset [6,∞) to node n3, which is now responsible for the
keyset [6, 10]. We speak of a framework because whether a given key k belongs to a
node’s keyset or whether it is propagated to one of the node’s successors is specific to
each data structure, but the way in which the linearizability argument for membership
queries is localized to individual flow graph nodes is always the same.

In nekton, the user can define P(N) for sets of keys as (a component in) the flow
domain of interest. With parameter gen , they can implement the propagation. We also
provide flexibility in the definition of the keyset and membership queries in the form of
two predicates rsp (responsible) resp. cnts (contains). To give an example, we would
define

rsp(x, k) � k ∈ x flow.is ∗ k ≤ x key ∗ ¬x marked .

With x flow, we denote x’s flow value. The flow domain is a product, and we refer to
the component called is. With x key and x marked we denote the x’s key and marked
fields. Formally, the dereference notation is a naming convention for logical variables
that refer to values of resources defined in the node-local invariant explained below.
Reconsider the example and let k = 6. The key belongs to the inset [6,∞) that n2
receives from n1. We discussed that the node’s keyset is empty, and indeed rsp(n2, 6)
is false. For n3, we have rsp(n3, 6) true. With the predicate rsp in place, we can also
refer to n.keyset in assertions.

For verifying functions with non-fixed linearization points, nekton implements the
hindsight principle [24]. Reasoning with that principle goes as follows. We record infor-
mation about bygone states of the data structure in past predicates ⟐ a. For example,
⟐(k ∈ x flow.is) says that the key of interest was in the node’s inset at some point
while the function was running. Moreover, the assertion about the current state may tell
us that the key is smaller than the key held by the node and that the node is not marked
now, k ≤ x key ∗ ¬n marked. Then the hindsight principle will guarantee that there
has been a state in between the two moments where the node still had the key in its inset,
the inequality held true, and the node was unmarked. This is ⟐ rsp(n, k) as defined
above. To draw this conclusion, the hindsight principle inspects the interferences the
data structure state may experience from concurrently executed functions. In the exam-
ple, no interferene can unmark a node or change a key. So the predicates encountered in
the current state must have held already in the past state when k ∈ x flow.is was true.
This form of hindsight reasoning is stronger than the one in [18] but not yet as elaborate
as the one in [19]. From a program logic point of view, hindsight reasoning relies on a
lifting of state-based to computation-based separation algebras [18].

Implications. Reasoning about automatically generated transfer functions is difficult,
in particular when they relate different components in a product flow domain. Consider
N × P(N) with the first component the path count at a node and the second component
the keyset. The transfer functions will never forget to count a path, and so the following
implication will be valid over all heap graphs:

(x flow.pcount) = 0 =⇒ (x flow.keyset) = ∅ . (1)
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Despite the help of an SMT solver, nekton will fail to establish the validity of such an
implication. Therefore, the user may input a set of such formulas that the tool will then
take for being valid without further checks. Correctness of a proof is always relative to
this set of implications.

2.1 Proof Outlines

A concurrent data structure consists of a set of structs defining the heap elements and
a set of functions for manipulating the data structure state. nekton expects as input a
proof outline for each such function. The program logic implemented by nekton is an
Owicki-Gries system that, besides partial correctness, requires interference freedom of
the given proof outlines. The user is expected to give the interferences as input.

The proof outlines accepted by nekton take the form { pre } po { post } with

po ::= com | { a } | po ; po | (po + po) { a } | { a } po* { a } | atomic po .

The proof outlines are partial in that intermediary assertions, say in com1 ; com2, may
be omitted. nekton will automatically generate the missing information using strongest
postconditions. What has to be given are loop invariants and unifying assertions for
the different branches of if-then-else statements. Consecutive assertions { a } ; { b } are
interpreted as a weaking of a to b.

Programs are given in a dialect of C. Commands are assignments to/from variables
and memory locations, allocations, assumptions, and acquires/releases of locks

com ::= p := q | p fld := q | p := q fld | p := malloc

| assume(cond) | acquire(p fld) | release(p fld) .

Here, p, q are program variables, fld is a field name, and dereferences are denoted by
an arrow. The language is strictly typed with base types void, bool, and int. The latter
represents the mathematical integers, i.e., has an infinite domain. We admit the usual
conditions over the base types. Using the struct keyword users can specify their own
types. In addition, nekton supports syntactic sugar like if-then-else, (do-)while loops,
non-recursive macros, break and return statements, assertions, simultaneous assign-
ments, and compare-and-swaps. These can be expressed in terms of the core language
in the expected way.

The assertion language is a standard separation logic defined over the base types,
heap graphs, and the given flow domain. It has the separating conjunction and classical
implication (no magic wand). Our heap model is divided into a local and a shared heap,
and we use the box operator a to indicate assertions over the shared state. The shared
state is represented by an iterated separating conjunction. Since this conjunction refers
to a set of nodes and we want to reason first-order, we handle it implicitly. We let each
assertion a in a proof outline stand for ∃x. a ∗ ∗n∈N\Nodes(a) NInv(n). The iterated
separating conjunction is over all nodes that do not occur in a, and asserts a node-local
invariant for each of them. The existential quantifier is over all logical variables in the
assertion. Keeping it implicit makes the assertions more concise and aids automation.

Node Invariants. nekton expects the node-local invariant NInv(n) as another input.
The role of this invariant is to make use of the flow framework and state global prop-
erties of the data structure in a local way. The invariant would say, for instance, that
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sentinel nodes are never marked. Compared to the implication list, the node-local invari-
ant has the advantage that its claims are actually checked. Technically, the node-local
invariant is a separation logic formula that is only allowed to refer to the given node n
and its fields. It will often define logical variables like n flow that refer to the entry
of the flow field and can be used outside the node-local invariant. These variables are
quantified away by ∃x above.

Interferences. Interferences are RGSep actions [32] restricted to the format

NInv(x). { a } � [fld1, . . . , fldn]{ b } . (2)

To give an example, we formulate that a concurrently executed function may mark a
node using the action NInv(x). {¬(x marked) } � [marked]{x marked }. An action
refers to a single node in the heap graph as described by the above node-local invariant.
The action applies if the assertion a evaluates to true, and modifies the node in a way
that satisfies b. Like the invariant, the assertions a and b have to be node-local and only
refer to the values of x’s fields. The assertions may introduce logical variables that are
implicitly existentially quantified and whose scope extends over a and b. Such variables
allow us to relate the pre- and post-state of the interference. The fields given in the
brackets are the ones that may change under the action. If assertion b does not refer to
the value of a field that is given in the list, the field may receive arbitrary values. If a
field is not named, it is guaranteed to stay unchanged.

3 Case Study

We present a linearizability proof of the FEMRS tree [4] conducted with nekton. We
omit the data structure’s maintenance operation because it leads to flow updates that
neither nekton nor another state-of-the-art technique aimed at automation can handle.
Each node in the tree stores one key and points to up to two child nodes left and
right, storing keys with lower and higher values, respectively. In addition, each node
contains two Boolean fields del and rem for the removal of nodes. This is because
the tree distinguishes the logical removal, indicated by the del flag, from the physical
unlinking of a node, indicated by the rem flag. As long as a logically removed node has
not been unlinked, it can become part of the tree again. The idea is to save the creation
of new nodes for keys that are physically but no longer logically part of the tree. Lastly,
every node can be locked.

Fig. 1. A state of the FEMRS tree.

Figure 1 depicts a possible state of the
FEMRS tree. Each node is labeled with its key.
Dashed nodes have been logically removed. To
prove linearizability, we rely on the keyset frame-
work. The inset flow is used to define the keysets,
as explained earlier. The edges in the figure are
labeled with the flow they propagate. The transfer
functions leading to this propagation stem from
the following generator gen:

gen(fld) � λf. x del ? f : f \(
fld = left ? [x key,∞) : (−∞, x key]

)
.
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The predicates defining the keyset and membership are

rsp(x, k) � k ∈ x flow.is ∗ k = x key

∨ k ∈ x flow.is ∗ k < x key ∗ x left = nil

∨ k ∈ x flow.is ∗ k > x key ∗ x right = nil

cnts(x, k) � k ∈ x flow.is ∗ k = x key ∗ ¬x del .

In the example, rsp(5, 7), rsp(15, 15), rsp(20, 17), cnts(12, 12) and more hold.
The set of interferences expresses this: (I1) As long as the lock of the node is not

held by the thread under consideration and as long as the node has not been marked
unlinked, the child pointers and the (logical and physical) removal flags may change
arbitrarily. The proof does not rely, e.g., on the fact that the rem flag is raised only once
and only when the del flag is true. (I2) A lock that is not held by the thread may change
arbitrarily. (I3) A node that is being physically unlinked ceases to receive flow. The
following nekton actions formalize this:

NInv(x).{x lock �=owned ∗ ¬x rem } � [left, right, del, rem]{ true } (I1)

NInv(x).{x lock �=owned } � [lock]{ true } (I2)

NInv(x).{x lock �=owned ∗ x flow.is �=∅ ∗ x rem}� [is]{x flow.is=∅}. (I3)

We prove the linearizability of the functions contains(k), insert(k), and
remove(k). All of them call the auxiliary function locate(k), which returns the last
edge it traversed during a search for key k . Figure 2 gives the proof outline of locate.
The proof for the full implementation can be found in [17].

We use a product flow domain P(N)× N. The first component is the inset flow with
the generator function discussed above. The second component is the pathcount, whose
gen() simply yields the identity for all edges. The benefit of the product flow is that we
can prove memory safety on the side, while conducting the linearizability proof.

In the node-local invariant, we introduce logical variables like x left to make the
proof more readable. We refer to these variables in the generator function. The invariant
for the node pointed to by the shared Root differs from that of the remaining nodes:

NInv(x) � x �→ 〈 flow = (x flow.is, x flow.pcount),
left = x left, right = x right, key = x key,

lock = x lock, del = x del, rem = x rem 〉
∗ NInv all(x) ∗ (x = Root ⇒ NInv Root(x))

NInv Root(x) � x key = −∞ ∗ ¬x del ∗ ¬x rem

∗ x flow.is = (−∞,∞) ∗ x flow.pcount = 1

NInv all(x) � (¬x rem ⇒ x key ∈ x flow.is) ∗ x flow.pcount < 3
∗ (x rem ⇒ x del) ∗ (x left = x right ⇒ x left = nil) .

The node-local invariant makes the expected claims. The root has key −∞, is neither
logically deleted nor unlinked, has as incoming keys (−∞,∞) and the pathcount is 1.
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Fig. 2. Proof outline for locate as verified by nekton.

These flow values are established by the data structure’s initialization function using an
auxiliary edge with an appropriate generator. For all nodes, we have that their key is
in the inflow, provided the node has not yet been unlinked, the path count is at most 3,
a node has to be first logically deleted before it can be unlinked, and the only case in
which the left and the right child can coincide is when they are both the null pointer. We
treat nil as a node outside the set of nodes N. This in particular means the node-local
invariant does not apply to it. It will follow from the definition of the generator function
that the keysets are disjoint. We do not need to state this in the invariant as it is only
important when interpreting the verification results.

The assertion on line 9 helps our implication engine, which is designed for conjunc-
tive assertions, deal with the disjunctions.

We explain the implication between Lines 11 and 12. It starts with the assertion{
NInv(p) ∗ NInv(c) ∗ ⟐[NInv(p) ∗ k ∈ p flow.is] ∗ p right = c ∗ p key < k

}
.

To apply the hindsight principle, we derive the following guarantees from the set of inter-
ferences. A node’s key is never changed. The only way a node’s inset can shrink is by
unlinking, after which its left and right pointers are no longer changed. The right
child of p is not nil in the current state. From this information, the hindsight principle
concludes

{
⟐[NInv(p) ∗ NInv(c) ∗ k ∈ p flow.is ∗ p key < k ∗ p right = c]

}
.

Together with the definition of the transfer functions labeling the edges, this asser-
tion yields

{
⟐[NInv(c) ∗ k ∈c flow.is]

}
. Another hindsight application starts with{

NInv(p) ∗ c = nil ∗ ⟐[NInv(p) ∗ k ∈ p flow.is ] ∗ p right = c ∗ p key < k
}
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and moves the facts known in the current state into the past predicate. The definition of
rsp(x, k) then yields

{
⟐[NInv(p) ∗ rsp(p, k)]

}
.

The full proof consists of 99 lines of code, 48 lines of assertions to prove them lin-
earizable, and 56 lines of definitions for the flow domain, interferences, and invariants.
nekton takes 45s to verify the proof’s correctness on an Apple M1 Pro.

4 Correctness and Implementation

nekton checks that the verification conditions generated from the given proof outlines
hold and that the assertions are interference-free. The program logic from [18,19] then
gives the following semantic guarantee: no matter how many client threads execute the
data structure functions, partial correctness holds. That is, if a function is executed from
a state satisfying the precondition and terminates, it must have reached a state in which
the postcondition held true. Termination itself is not guaranteed. The postcondition will
relate the function’s return value to a statement about membership of the given key in
the data structure, and the keyset framework will allow us to conclude linearizability
from this relation. The verification conditions will in particular make sure the node
invariant is maintained. We discuss the actual checks.

The first step is to derive and check verification conditions for all commands com. If
the command is surrounded by assertions, { p }; com; { q }, the verification condition is
sp(p, com) |= q , the strongest postcondition sp of p under com entails q . If the assertion
{ q } is not given, nekton completes the given proof by using q = sp(p, com). The
verification conditions for loops are similar. For two consecutive assertions { p } ; { q },
as they occur for example at the end of a branch, the verification condition is p |= q .

The second step is to check that the assertions { p } and { q } in the proof are
interference-free, i.e., cannot be invalidated by the actions of other threads.

Finally, nekton checks that the interferences given by the user cover the actual
interferences of the program. We review the above steps in more detail.

Strongest Postconditions. The computation of the strongest postcondition follows the
standard axioms for separation logic [23]. However, they do not deal with the flow
which may not only be directly modified by com but also indirectly by an update else-
where. To deal with such indirect updates, nekton computes a footprint fp: a subset
of the heap locations that the standard axioms require plus those locations whose flow
changes due to com. The footprint yields a decomposition p = fp ∗ f of predicate p,
where f is a frame that is not affected by the update. From this decomposition, we com-
pute the strongest postcondition as sp(p, com) = sp(fp, com) ∗ f , using the frame rule.
Actually, nekton also shows that the update maintains the node invariant, which only
requires a check for sp(fp, com).

For fp to be a footprint wrt. com, all nodes outside fp should receive the same flow
from sp(fp, com) as from fp. This holds if fp and sp(fp, com) induce the same flow
transformer function [20]. To determine a footprint, nekton takes a strategy that is
justified by lock-free programming [18]. Starting from the updated nodes, it gathers a
small (fixed) set of locations that forms an acyclic subgraph. Acyclicity guarantees that
fp and sp(fp, com) have the same transformer iff they agree on the transformation along
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all paths: if n belongs to fp and n fld does not, then n fld must point to the same
location and transform inflows to outflows in the same way in fp and in sp(fp, com).

The strongest postcondition above is for state-based reasoning. For predicates over
computations, which have state and past predicates, we use the following observation:
past predicates are never invalidated by commands. This allows us to just copy them
to the postcondition: sp(p ∗ ⟐ q , com) = sp(p, com) ∗ ⟐ p ∗ ⟐ q . Note that we add
the precondition as a new past predicate. Moreover, we may add new past predicates
derived by hindsight arguments. As these derived past predicates are implied by the
postcondition, they formally do not strengthen the assertion, but of course help the tool.

Hindsight Reasoning. Recall from Sect. 2 that hindsight reasoning draws conclusions
of the form⟐ p ∗ q ⇒ ⟐ r : every computation from a p-state must inevitably transition
through r in order to reach q . In nekton, p and q are restricted to node-local predicates
in the sense defined above, and r is fixed to p ∧ q .

To prove the implication, assume it did not hold. Then there is a computation where
p is invalidated before q is established. This is covered by the interference: there is
an action actp invalidating p and an action actq establishing q . Let actp and actq be
NInv(n). { op } � [. . . ]{ . . . } resp. NInv(n). { oq } � [. . . ]{ . . . }. There is (always)
a decomposition op = oi

p ∗ om
p such that oi

p is immutable. Immutability holds if oi
p

is shared and interference-free. Consequently, oi
p must still hold when q is established.

Now, we check if oi
p and oq are contradictory, oi

p ∧ oq |= false. If so, actq is not
enabled after actp . This, in turn, means q cannot be established after p is invalidated—
the computation cannot exist. nekton draws the hindsight conclusion if it can prove the
contradiction for all pairs actp , actq of interferences that invalidate p and establish q .

Entailment. Our assertions p ∗ ∗i∈I ⟐ pi consist of a predicate p for the current
state and a set of past predicates ⟐ pi tracking information about the computation. We
have p ∗ ∗i∈I ⟐ pi |= q ∗ ∗j∈J ⟐ qj , if p |= q and ∀j ∃i. ⟐ pi |= ⟐ qj . To show
⟐ pi |= ⟐ qj , we rely on the algorithm for state predicates and prove pi |= qj .

Entailment checks p |= q between state predicates decompose into reasoning about
resources and reasoning about logically pure facts. The latter degenerates to an implica-
tion in classical logic: nekton uses a straightforward encoding into SMT and discharges
it with Z3 [21]. For reasoning about resources, nekton implements a custom matching
procedure to correlate the resources in p and q . The procedure is guided by the program
variables x: if the value of x is a in p and b in q , then a and b are matched, meaning b
is renamed to a. The procedure then continues to match the fields of already matched
addresses. Finally, nekton checks syntactically if all the resources in q occur in p.

If nekton fails to prove an implication, it consults the implication list. It takes the
implications as they are, and does not try to embed them into a context as would be
justified by congruence. nekton does not track the precise implications it has used.

Interference Freedom. A state predicate p is interference-free wrt. act of the form
NInv(n). { r } � [fld1, . . . , fldn]{ o }, if the strongest postcondition of p under act
entails p itself, sp(p, act) |= p. Towards sp(p, act), let p = NInv(x) ∗ q , meaning
x is an accessible location. Applying act to x in p acts like an assignment to the fields
such that their new values satisfy o. The strongest postcondition for this is standard [3]:

spx(p, act) � o[n\x] ∗ ∃y1 · · · yn. (p ∗ r [n\x])[x fld1\y1, . . . , x fldn\yn] .
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We strengthen p with the precondition r of act to make sure the action is enabled.
We use r [n\x] for r with n replaced by x, meaning we instantiate r to location x.
We replace the old values of the updated fields with fresh quantified variables and add
the fields’ new valuation o[n\x]. Then, the strongest postcondition sp(p, act) applies
spx(p, act) to all locations x in p.

Interference Coverage. Consider act1 = NInv(x). { p } � [fld1, . . . , fldn]{ q }
and act2 = NInv(x). { r } � [fld′

1, . . . , fld
′
m]{ o }. We say that act1 covers act2 if

act1 can produce all updates induced by act2. This is the case if r |= p, o |= q , and
{ fld′

1, . . . , fld
′
m } ⊆ { fld1, . . . , fldn }. It remains to extract the actual interferences

of the program and check if they are covered by the user-specified ones. The extraction
is done while computing the strongest postcondition sp: the computed footprints fp and
sp(fp, com) from above reveal the updated fields as well as the pre- and post-states.

Flow Encoding. The flow monoid is not yet parsed from the user input but defined
programmatically in nekton. The transfer function generator is parsed. nekton has five
flow domains predefined, including path counting and keysets, which are easy to extend.
nekton does not check whether the flow monoid is indeed a monoid and satisfies the
requirements of an ω-cpo, nor whether ≤ coincides with the natural partial order.

The main task in dealing with a parametric rather than fixed flow domain is
to encode predicates involving the flow into SMT formulas. This encoding is then
used to implement the aforementioned components for strongest postconditions, hind-
sight, entailment, and interferences. Devising the encoding is challenging because it
requires a representation of flow values that is sufficiently expressive to define relevant
flow domains, yet sufficiently restricted to have efficient SMT solver support (we use
Z3 [21]). With the input format described in Sect. 2, we encode flows using the theory
of integers and uninterpreted functions.

Limitations. For the future, we see several directions for extensions of our current
implementation: (i) a parser for flow monoids rather than a programmatic interface,
(ii) support for partial annotations that are automatically completed by nekton, (iii)
the ability to prove atomic triples instead of just linearizability for sets, and (iv) more
helpful error messages or counterexamples to guide the proof-writing user.
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Abstract. We consider the verification of liveness properties for con-
current programs running on weak memory models. To that end, we
identify notions of fairness that preclude demonic non-determinism, are
motivated by practical observations, and are amenable to algorithmic
techniques. We provide both logical and stochastic definitions of our
fairness notions, and prove that they are equivalent in the context of
liveness verification. In particular, we show that our fairness allows us
to reduce the liveness problem (repeated control state reachability) to
the problem of simple control state reachability. We show that this is
a general phenomenon by developing a uniform framework which serves
as the formal foundation of our fairness definition, and can be instanti-
ated to a wide landscape of memory models. These models include SC,
TSO, PSO, (Strong/Weak) Release-Acquire, Strong Coherence, FIFO-
consistency, and RMO.

1 Introduction

Safety and liveness properties are the cornerstones of concurrent program verifi-
cation. While safety and liveness are complementary, verification methodologies
for the latter tend to be more complicated for two reasons. First, checking safety
properties, in many cases, can be reduced to the (simple) reachability prob-
lem, while checking liveness properties usually amounts to checking repeated
reachability of states [47]. Second, concurrency comes with an inherent schedul-
ing non-determinism, i.e., at each step, the scheduler may non-deterministically
select the next process to run. Therefore, liveness properties need to be accom-
panied by appropriate fairness conditions on the scheduling policies to prohibit
trivial blocking behaviors [42]. In the example of two processes trying to acquire
a lock, demonic non-determinism [20] may always favour one process over the
other, leading to starvation.
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Despite the gap in complexity, the verification of liveness properties has
attracted much research in the context of programs running under the classi-
cal Sequential Consistency (SC) [40]. An execution of a program under SC is a
non-deterministically chosen interleaving of its processes’ atomic operations. A
write by any given process is immediately visible to all other processes, and reads
are made from the most recent write to the memory location in question. SC is
(relatively) simple since the only non-determinism comes from interleaving.

Weak memory models forego the fundamental SC guarantee of immediate
visibility of writes to optimize for performance. More precisely, a write oper-
ation by a process may asynchronously be propagated to the other processes.
The delay could be owed to physical buffers or caches, or could simply be a vir-
tual one thanks to instruction reorderings allowed by the semantics of the pro-
gramming language. Hence we have to contend with a (potentially unbounded)
number of write operations that are “in transit”, i.e., they have been issued by
a process but they have yet to reach the other processes. In this manner, weak
memory introduces a second source of non-determinism, namely memory non-
determinism, reflecting the fact that write operations are non-deterministically
(asynchronously) propagated to the different processes. Formal models for weak
memory, ranging from declarative models [8,21,35,39,41] to operational ones
[15,30,43,46] make copious use of non-determinism (non-determinism over entire
executions in the case of declarative models and non-deterministic transitions in
the case of operational models). While we have seen extensive work on verifying
safety properties for program running under weak memory models, the litera-
ture on liveness for programs running under weak memory models is relatively
sparse, and it is only recently we have seen efforts in that direction [5,36].

As mentioned earlier, we need fairness conditions to exclude demonic behav-
iors when verifying liveness properties. A critical issue here is to come up with
an appropriate fairness condition, i.e., a condition that (i) is sufficiently strong
to eliminate demonic non-determinism and (ii) is sufficiently weak to allow all
“good” program behaviors. To illustrate the idea, let us go back to the case of
SC. Here, traditional fairness conditions on processes, such as strong fairness
[31], are too weak if interpreted naively, e.g. “along any program run, each pro-
cess is scheduled infinitely often”. The problem is that even though a strongly
fair scheduler may pick a process infinitely often, it may choose to do so only
in configurations where the process cannot progress since its guards are not sat-
isfied. Such guards may, for instance, be conditions on the values of the shared
variables. For example, executions of the program in Fig. 1 may not terminate
under SC, since the second process may only get scheduled when the value of x
is 2, thereby looping infinitely around the do-while loop.

Stronger fairness conditions such as transition fairness, and probabilistic fair-
ness [11,27] can help avoid this problem. They imply that any transition enabled
infinitely often is also taken infinitely often (with probability one in the case
of probabilistic fairness). Transition fairness eliminates demonic scheduler non-
determinism, and hence it is an appropriate notion of fairness in the case o SC.
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r = 0;

while (r != 1) {

x = 1; x = 2; r = y;

}

do { s = x; } until (s == 1)

y = 1;

Fig. 1. Does this program always terminate? Only if we can guarantee that the process
to the right will eventually be scheduled to read when x = 1.

However, it is unable to eliminate demonic memory non-determinism. The rea-
son is that transition fairness allows runs of the programs where write events
occur at a higher frequency than the frequency in which they are propagated to
the processes. This means that, in the long run, a process may only see its own
writes, potentially preventing its progress and, therefore, the system’s progress
as a whole. This scenario is illustrated in Fig. 2.

do { x = 1; }

until (x = 2 or y = 1);

y = 1;

do { x = 2; }

until (x = 1 or y = 1);

y = 1;

Fig. 2. This program is guaranteed to terminate under any model only if pending
propagation is guaranteed to not accumulate unboundedly: e.g. in TSO, each process
may never see the other’s writes due to an overflowing buffer.

To deal with memory non-determinism, we exploit the fact that the sizes of
physical buffers or caches are bounded, and instruction reorderings are bounded
in scope. Therefore, in any practical setting, the number of writes in transit at
a given moment cannot be unbounded indefinitely. This is what we seek to cap-
ture in our formalism. Based on this observation, we propose three new notions
of fairness that (surprisingly) all turn out to be equivalent in the context of
liveness. First, we introduce boundedness fairness which only considers runs of
the system for which there is a bound b on the number of events in transit, in
each configuration of the run. Note that the value of b is arbitrary (but fixed for
a given run). Bounded fairness is apposite: (i) it is sufficiently strong to elimi-
nate demonic memory non-determinism, and (ii) it is sufficiently weak to allow
all reasonable behaviors (as mentioned above, practical systems will bound the
number of transient messages). Since we do not fix the value of the bound, this
allows parameterized reasoning, e.g., about buffers of any size: our framework
does not depend on the actual value of the bound, only on its mere existence.
Furthermore, we define two additional related notions of fairness for memory
non-determinism. The two new notions rely on plain configurations: configura-
tions in which there are no transient operations (all the writes operations have
reached all the processes). First, we consider plain fairness: along each infinite
run, the set of plain configurations is visited infinitely often, and then define the
probabilistic version: each run almost surely visits the set of plain configurations.
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We show that the three notions of fairness are equivalent (in Sect. 4, we make
precise the notion of equivalence we use).

After we have defined our fairness conditions, we turn our attention to the
verification problem. We show that verifying the repeated reachability under
the three fairness conditions, for a given memory model m, is reducible to the
simple reachability under m. Since our framework does not perform program
transformations we can prove liveness properties for program P through proving
simple reachability on the same program P . As a result we obtain two important
sets of corollaries: if the simple reachability problem is decidable for m, then
the repeated reachability problem under the three fairness conditions are also
decidable. This is the case when the memory model m is TSO, PSO, SRA, etc.
Even when the simple reachability problem is not decidable for m, e.g., when
m is RA, RMO, we have still succeeded to reduce the verification of liveness
properties under fairness conditions to the verification of simple probability. This
allows leveraging proof methodologies developed for the verification of safety
properties under these weak memory models (e.g., [22,29]).

Having identified the fairness conditions and the verification problem, there
are two potential approaches, each with its advantages and disadvantages. We
either instantiate a framework for individual memory models one after one or
define a general framework in which we can specify multiple memory models
and apply the framework “once for all”. The first approach has the benefit of
making each instantiation more straightforward, however, we always need to
translate our notion of fairness into the specific formulation. In the second app-
roach, although we incur the cost of heavier machinery, we can subsequently
take for granted the fact that the notion of fairness is uniform across all models,
and coincides with our intuition. This allows us to be more systematic in our
quest to verify liveness. In this paper, we have thus chosen to adopt the second
approach. We define a general model of weak memory models in which we repre-
sent write events as sequences of messages ordered per variable and process. We
augment the message set with additional conditions describing which messages
have reached which processes. We use this data structure to specify our fairness
conditions and solve our verification problems. We instantiate our framework to
apply our results to a wide variety of memory models, such as RMO [12], FIFO
consistency, RA, SRA, WRA [34,35], TSO [13], PSO, StrongCOH (the relaxed
fragment of RC11) [30], and SC [40].

In summary, we make the following contributions

– Define new fairness conditions that eliminate demonic memory non-
determinism.

– Reduce checking the repeated reachability problem under these fairness con-
ditions to the simple reachability problem.

– Introduce a general formalism for weak memory models that allows applying
our results uniformly to a broad class of memory models.
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– Prove the decidability of liveness properties for models such as TSO, PSO,
SRA, WRA, StrongCOH, and opening the door for leveraging existing proof
frameworks for simple reachability for other models such as RA.

We give an overview of a wide landscape of memory models in Sect. 3.3, and
provide a high level explanation of the versatility of our framework.

Structure of the Paper. We begin by casting concurrent programs as transi-
tion systems in Sect. 2. In Sect. 3, we develop our framework for the memory such
that the desired fairness properties can be meaningfully defined across several
models. In Sect. 4, we define useful fairness notions and prove their equivalence.
Finally, in Sect. 5 we show how the liveness problems of repeated control state
reachability reduce to the safety problem of control state reachability, and obtain
decidability results. A full version of this paper is available at [6].

2 Modelling Concurrent Programs

We consider concurrent programs as systems where a set of processes run in
parallel, computing on a set of process-local variables termed as registers and
communicating through a set of shared variables. This inter-process communi-
cation, which consists of reads from, writes to, and atomic compare-and-swap
operations on shared variables, is mediated by the memory subsystem. The over-
all system can be visualized as a composition of the process and memory sub-
systems working in tandem. In this section we explain how concurrent programs
naturally induce labelled transition systems.

2.1 Labelled Transition Systems

A labelled transition system is a tuple T = 〈Γ,→,Λ〉 where Γ is a (possibly-
infinite) set of configurations, →⊆ Γ × Λ × Γ is a transition relation, and Λ is
the set of labels that annotate transitions. We also refer to them as annota-
tions to disambiguate from instruction labels. We write γ

l−→ γ′ to denote that
(γ, l, γ′) ∈→, in words that there is a transition from γ to γ′ with label l. We
denote the transitive closure of → by ∗−→, and the k-fold self-composition (for
k ∈ N) as k−→.

Runs and Paths. A (possibly infinite) sequence of valid transitions ρ = γ1 →
γ2 → γ3 · · · is called a run. We say that a run is a γ-run if the initial configuration
in the run is γ, and denote the set of γ-runs as Runs(γ). We call a (finite) prefix
of a run as a path. In some cases transition systems are initialized, i.e. an initial
set Γinit ⊆ Γ is specified. In such cases, we call runs starting from some initial
configuration (γ1 → γ2 → γ3 . . . with γ1 ∈ Γinit) as initialized runs.
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2.2 Concurrent Programs

The sequence of instructions executed by each process is dictated by a con-
current program, which induces a process subsystem. We begin by formulat-
ing the notion of a program. We assume a finite set P of processes that oper-
ate over a (finite) set X of shared variables. Figure 3 gives the grammar for
a small but general assembly-like language that we use for defining the syn-
tax of concurrent programs. A program instance, prog is described by a set of
shared variables, var∗, followed by the codes of the processes, (proc reg∗ instr
∗)∗. Each process p ∈ P has a finite set Regs(p) of (local) registers. We assume
w.l.o.g. that the sets of registers of the different processes are disjoint, and define
Regs(prog) := ∪p∈PRegs(p). We assume that the data domain of both the shared
variables and registers is a finite set D, with a special element 0 ∈ D. The code
of a process starts by declaring its set of registers, reg∗, followed by a sequence
of instructions.

prog ::= var∗ (proc reg∗ instr∗)∗

instr ::= lbl : stmt

stmt ::= var:=reg | reg:=var | reg:=CAS(var ,reg ,reg) |

reg:=expr | if reg then lbl | term

Fig. 3. A simple programming language.

An instruction i is of the form l : stmt where l is a unique (across all processes)
instruction label that identifies the instruction, and stmt is a statement. The
labels comprise the set of values the program counters of the processes may take.
The problems of (repeated) instruction label reachability, which ask whether a
section of code is accessed (infinitely often), are of importance to us.

Read (reg := var) and write (var : = reg) statements read the value of a
shared variable into a register, and write the value of a register to a shared
variable respectively. The CAS statement is the compare-and-swap operation
which atomically executes a read followed by a write. We consider a non-blocking
version of the CAS operation which returns a boolean indicating whether the
operation was successful (the expected value was read and atomically updated
to the new value). The write is performed only if the read matches the expected
value.

We assume a set expr of expressions containing a set of operators applied
to constants and registers without referring to the shared variables. The reg
:= expr statement updates the value of register reg by evaluating expression
expr. We exact set of expressions is orthogonal to our treatment, and hence
left uninterpreted. The if-statement has its usual interpretation, and control
flow commands such as while, for, and goto-statements, can be encoded with
branching and if-statements as usual.
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2.3 Concurrent Programs as Labelled Transition Systems

We briefly explain the abstraction of a concurrent program as a labelled transi-
tion system. The details for the process component, i.e. evolution of the program
counter and register contents, follow naturally. The key utility of this approach
lies in the modelling of the memory subsystem, which we devote §3 to.

Configurations. A configuration γ is expressed as a tuple 〈(L,R), γm〉, where L
maps processes to their current program counter values, R maps registers to
their current values, and γm captures the current state of the (weak) memory.

Transitions. In our model, a step in our system is either: (a) a silent memory
update, or (b) a process executing its current instruction. In case (a), only the
memory component γm of γ changes. The relation is governed by the definition
of the memory subsystem. In case (b), if the instruction is the terminal one,
or assigns an expression to a register, or a conditional, then only the process
component (L,R) of γ changes. Here, the relation is obvious. Otherwise, the two
components interact via a read, write or CAS, and both undergo changes. Here
again, the relation is governed by what the memory subsystem permits.

Annotations. Silent memory update steps are annotated with m : Upd. Transi-
tions involving process p executing an instruction that does not involve mem-
ory are annotated with p : ⊥. On the other hand, p : R(x, d), p : W(x, d),
p : CAS(x, d, d′, b) represent reads, writes and CAS operations by p respectively.
The annotations indicate the variable and the associated values.

To study this transition system, one must understand which transitions,
annotated thus, are enabled. For this, it is clear that we must delve into the
details of the memory subsystem.

3 A Unified Framework for Weak Memory Models

In this section, we present our unified framework for representing weak memory
models. We begin by describing the modelling aspects of our framework at a
high level.

We use a message-based framework, where each write event generates a mes-
sage. A process can use a write event to justify its read only if the correspond-
ing message has been propagated to it by the memory subsystem. The total
chronological order in which a process p writes to variable x is given by poloc
(per-location program order). We work with models where the order of propaga-
tion is consistent with poloc. This holds for several models of varying strengths.
This requirement allows us to organise messages into per-variable, per-process
channels. We discuss these aspects of the framework in Sect. 3.1. Weak mem-
ory models define additional causal dependencies over poloc. Reading a message
may cause other messages it is dependent on to become illegible. We discuss
our mechanism to capture these dependencies in Sect. 3.2. The strength of the
constraints levied by causal dependencies varies according to memory model.
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In Sect. 3.3, we briefly explain how our framework allows us to express causality
constraints of varying strength, by considering a wide landscape of weak memory
models. We refer the reader to [6] for the technical details of the instantiations.

3.1 Message Structures

Message. A write by a process to a variable leads to the formation of a message,
which, first and foremost records the value being written. In order to ensure
atomicity, a message also records a boolean denoting whether the message can
be used to justify the read of an atomic read-write operation, i.e. CAS. Finally,
to help with the tracking of causal dependencies generated by read events, a
message records a set of processes seen ⊆ P that have sourced a read from it.
Thus, a message is a triple and we define the set of messages as: Msgs = D×B×2P.

Channels. A channel e(x, p) is the sequence of messages corresponding to writes
to x by process p. The total poloc order of these writes naturally induces the
channel order. By design, we will ensure that the configuration holds finitely
many messages in each channels. We model each channel as a word over the
message set: e(x, p) ∈ Msgs∗. A message structure is a collection of these channels:
e : X × P → Msgs∗.

3.2 Ensuring Consistency of Executions

Memory models impose constraints restricting the set of message that can be
read by a process. The framework uses state elements frontier, source, constraint
that help enforce these constraints. These elements reference positions within
each channel which is something that we now discuss.

Channel Positions. The channel order provides the order of propagation of
write messages to any process (which in turn is aligned with poloc). Thus, for
any process p′, channel e(x, p) is partitioned into a prefix of messages that are
outdated, a null or singleton set of messages that can be used to justify a read,
and a suffix of messages that are yet to be propagated. In order to express these
partitions, we need to identify not only nodal positions, but also to internodes
(space between nodes). To this end, we index channels using the set W = N∪N

+.
Positions indexed by N denote nodal positions (with a message), while positions
indexed with N

+ denote internodes. For a channel of length n, the positions are
ordered as: 	 = 0+ < 1 < 1+ < 2 · · · < n < n+ = ⊥. A process can read from
the message located at e(·, ·)[i] for i ∈ N.

Frontier. With respect to a given process, a message can either have been
propagated but not readable, propagated and readable, or none. Since the prop-
agation order of messages follows channel order, the propagated set of messages
forms a prefix of the channel. This prefix-partitioning is achieved by a map
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frontier : P × X × P → W. If frontier(p, ·, ·) is an internode (of form i+) then
the message v = e[i] has been propagated to p, but cannot be read because it
is outdated. On the other hand, if frontier(p, ·, ·) = i ∈ N, then the message
e[i] can be read by the process. In Fig. 4, frontier(p1, x, p1/p2/p3) equal v+

1 /v2/v3
respectively (the colored nodes). Consequently, the message at index v (or the
ones before it) are unreadable (denoted by the pattern). On the other hand the
messages at v2, v3 are readable.

Fig. 4. Frontier and source. Fig. 5. Constraint.

Source. Given process p and variable x, the process potentially can source
the read from any of the |P| channels on x. The second state element, source :
P × X → P performs arbitration over this choice of read sources: p can read v
only if v = frontier(p, x, source(p, x)). In Fig. 4, while both nodes v2, v3 are not
outdated, source(p1, x) = p3, making v3 the (checkered) node which p1 reads
from.

Constraint. The constraint element tracks causal dependencies between mes-
sages. For each message m, and channel, it identifies the last message on the
channel that is a causal predecessor of m. It is defined as a map constraint :
N×X× P → W. Figure 5 illustrates possible constraint(v3, ·, ·) pointers for mes-
sage node v3 in the context of the channel configuration in Fig. 4.

Constraint. The frontier state marks the last messages in each channel that can
be read by a process. Messages that are earlier than the frontier of all processes
can be effectively eliminated from the system since they are illegible. We call
this garbage collection (denoted as GC).

The overall memory configuration,

γm = 〈e, (P × X × P → W)
︸ ︷︷ ︸

frontier

, (P × X → P)
︸ ︷︷ ︸

source

, (V × X × P → W)
︸ ︷︷ ︸

constraint

〉

consists of the message structure along with the consistency enforcing state.
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Read Transition. Our framework allows a unified read transition relation
which is independent of the memory model that we work with. We now dis-
cuss this transition rule which is given in Fig. 6. Suppose process p is reading
from variable x. First, we identify the arbitrated process ps which is read from
using the source state. Then we pick the message on the (x, ps) channel which the
frontier of p points to. Note that this must be a node of form N. The read value
is the value in this message. Finally, we update the frontier(p, ·, ·) to reflect the
fact that all messages in the causal prefix of the read message have propagated
to p.

ps = γ.source(p, x) v = γ.frontier(p, x, ps) v.value = d
γ1 = γ1[v.seen v.seen ∪ {p}]

γ2 = GC(γ1[λy.λp′. frontier(p, y, p′) max(frontier(p, y, p′), constraint(v, y, p′))])

γ
p:R(x,d)

m γ2

Fig. 6. The read transition, common to all models across the framework. For γ ∈ Γm,
γ.frontier, γ.source, γ.constraint represent the respective components of γ. For a node
v ∈ Msgs, v.value ∈ D represents the written value in the message node v.

Example 1 (Store Buffer (SB)). Fig. 7 shows the Store Buffer (SB) litmus test.
The annotated outcome of store buffering is possible in all WRA/RA/SRA/TSO
models. Right after p1 (resp. p2) has performed both its writes to x (resp. y), we
have e(y, p2) = 	v0

yv
1
y⊥, and e(x, p1) = 	v0

xv
1
x⊥.

p1

x = 0 v0x
x = 1 v1x
r = y

p2

y = 0 v0y
y = 1 v1y
s = x

Fig. 7. SB

This example illustrates how weak mem-
ory models allow non-deterministic delays the
propagation of messages. In this example,
frontier(p2, x, p1) = v0

x , and frontier(p1, y, p2) = v0
y ,

both processes see non-recent messages. On the
other hand, the annotated outcomes are observed
if source(p1, y) = p2 and source(p2, x) = p1.

We now turn to a toy example (Fig. 8) to illustrate the dependency enforcing
and book-keeping mechanisms we have introduced.

Example 2. Consider an program with two shared variables, x, y, and two pro-
cesses, p1, p2. We omit the channel e(p2, y) for space. Process p1’s frontiers are
shown in violet, p2’s frontiers are shown in orange. We begin with the first mem-
ory configuration. The arrow depicts constraint(v1, y, p1) = v2. This situation
can arise in a causally consistent model where the writer of v1 was aware of v2
before writing v1. The first transition shows p2 updating and moving its frontier
(to v1). This results in a redundant node (v3 in hashed texture) since the frontier
of both p1 and p2 has crossed it. This is cleaned up by GC. Now, p2 begins its
read from v1. Reading v1, albeit on x, makes all writes by p1 to y prior to v2
redundant. When p2 reads v1, its frontier on e(y, p1) advances as prescribed by
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constraint(v1, y, p1), as shown in the fourth memory configuration. Note that this
makes another message (v4) redundant: all frontiers are past it. Once again, GC
discards the message obtaining the last configuration.

Fig. 8. Update, constraint in action during a read, and garbage collection

3.3 Instantiating the Framework

Versatility of the Framework. The framework we introduce can be instanti-
ated to RMO [12], FIFO consistency, RA, SRA, WRA [34,35], TSO [13], PSO,
StrongCOH (the relaxed fragment of RC11) [30], and SC [40].

This claim is established by constructing semantics for each of these models
using the components that we have discussed. We provide a summary of the
insights, and defer the technical details to the full version [6].

Fig. 9. Memory models, arranged by their strength. An arrow from A to B denotes
that B is strictly more restrictive than A. A green check (resp. red cross) denotes the
control state reachability is decidable (resp. undecidable). (Color figure online)

We briefly explain how our framework accounts for the increasing restrictive
strength of these memory models. The weakest of these is RMO, which only
enforces poloc. There are no other causal dependencies, and thus for any message
the constraint on other channels is 	. RMO can be strengthened in two ways:
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StrongCOH does it by requiring a total order on writes to the same variable, i.e.
mox. Here the constraint is nontrivial only on channels of the same variable. On
the other hand, FIFO enforces consistency with respect to the program order.
Here, the constraint is nontrivial only on channels of the same process. WRA
strengthens FIFO by enabling reads to enforce causal dependencies between
write messages. This is captured by the non-trivial constraint, and we note that
seen (the set of processes to have sourced a read from a message) plays a crucial
role here. RA enforces the mox of StrongCOH as well as the causal dependencies
of WRA. PSO strengthens StrongCOH by requiring a stronger precondition on
the execution of an atomic read-write. More precisely, in any given configuration,
for every variable, there is at most one write message that can be used to source
a CAS operation, i.e. with the CAS flag set to true. SRA and TSO respectively
strengthen RA and PSO by doing away with write races. Here, the Boolean CAS
flag in messages is all-important as an enforcer of atomicity. TSO strengthens
SRA in the same way as PSO strengthens StrongCOH. Finally, when we get to
SC, the model is so strong that all messages are instantly propagated. Here, for
any message, the pointer on other channels is ⊥.

4 Fairness Properties

Towards the goal of verifying liveness, we use the framework we developed to
introduce fairness properties in the the classical and probabilistic settings in
Sect. 4.1 and Sect. 4.2 respectively. Our approach thus has the advantage of gen-
eralising over weak memory. In Sect. 4.3 we relate these fairness properties in
the context of repeated control state reachability: a key liveness problem.

4.1 Transition and Memory Fairness

In this section, we consider fairness in the classical (non-probabilistic) case. We
begin by defining transition fairness, which [11] is a standard notion of fairness
that disallows executions which neglect certain transitions while only taking
others. For utility in weak memory liveness, we then augment transition fairness
to meet practical assumptions on the memory subsystem. Transition fairness and
probabilistic fairness are intrinsically linked [27, Section 11]. Our augmentations
are designed to carry over to the probabilistic domain in the same spirit.

Definition 1 (Transition fairness, [11]). We say that a program execution
is transition fair if for every configuration that is reached infinitely often, each
transition enabled from it is also taken infinitely often.

We argued the necessity of transition fairness in the introduction; however, it
is vacuously satisfied by an execution that visits any configuration only finitely
often. This could certainly be the case in weak memory, where there are infinitely
many configurations. To make a case for the implausibility of this scenario, we
begin by characterising classes of weak memory configurations.
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Definition 2 (Configuration size). Let γ be a program configuration with
memory component (e, frontier, source, constraint). We denote the configuration
size by size(γ) and it is defined as

∑

x

∑

p len(e(x, p)), i.e. the total number of
messages in the message structure.

Intuitively, the size of the configuration is the number of messages “in transit”,
and hence a measure of the weakness of the behaviour of the execution. We note
that overly weak behaviour is rarely observed in practice [23,45]. For instance,
instruction reorderings that could be observed as weak behaviour are limited in
scope. Another source of weak behaviour is the actual reading of stale values
at runtime. However, the hardware (i.e. caches, buffers, etc.) that stores these
values is finite, and is typically flushed regularly. Informally, the finite footprint
of the system architecture (eg. micro-architecture) implies a bound, albeit hard
to compute, on the size of the memory subsystem. Thus, we use the notion of
configuration size to define:

Definition 3 (Size Bounded Executions). An execution γ0, γ1, . . . is said
to be size bounded, if there exists an N such that for all n ∈ N, size(γn) ≤ N . If
this N is specified, we refer to the execution as N -bounded.

Already, the requirement of size-boundedness enables our system to refine our
practical heuristics. However, if the bound N is unknown, it isn’t immediately
clear how this translates into a technique for liveness verification. We will now
use the same rationale to motivate and develop an alternate augmentation which
lends itself more naturally to algorithmic techniques. Recall that we intuitively
relate the size of the configuration to the extent of weak behaviour. Now, consider
Sequential Consistency, the strongest of the models. All messages are propagated
immediately, and hence, the configuration has minimal size throughout. We call
minimally sized configurations plain, and they are of particular interest to us:

Definition 4 (Plain message structure). A message structure
(V,msgmap, e) is called plain, if for each variable x,

∑

p len(e(x, p)) = 1.

Drawing a parallel with SC, one could reason that the recurrence of plain con-
figurations is a hallmark of a system that doesn’t exhibit overly weak behaviour.
This is captured with the following fairness condition.

Definition 5 (Repeatedly Plain Executions). An execution γ0, γ1, . . . is
said to be repeatedly plain, if γi is a plain configuration for infinitely many i.

Following the memory transition system introduced in Sect. 2 and Sect. 3,
we observe that every configuration has a (finite) path to some plain config-
uration (by performing a sequence of update steps). Hence, if a configuration
is visited infinitely often in a fair execution, a plain configuration will also be
visited infinitely often. Consequently, size bounded transition fair runs are also
repeatedly plain transition fair.
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4.2 Probabilistic Memory Fairness

Problems considered in a purely logical setting ask whether all executions satis-
fying a fairness condition fulfill a liveness requirement. However, if the answer is
negative, one might be interested in quantifying the fair executions which do not
repeatedly reach the control state. We perform this quantification by consider-
ing the probabilistic variant of the model proposed earlier, and defining fairness
analogously as a property of Markov Chains.

Markov chains A Markov chain is a pair C = 〈Γ, M〉 where Γ is a (possibly-infinite)
set of configurations and M is the transition matrix which assigns to each possible
transition, a transition probability: M : Γ × Γ → [0, 1]. Indeed, this matrix needs
to be stochastic, i.e.,

∑

γ′∈Γ M(γ, γ′) = 1 should hold for all configurations.
We can convert our concurrent program transition (Sect. 2) into a Markov

chain M by adding probabilities to the transitions. We assign M(γ, γ′) to a nonzero
value if and only if the transition γ → γ′ is allowed in the underlying transi-
tion system. Markov Chain executions are, by construction, transition fair with
probability 1. We now present the analog of the repeatedly plain condition.1

Definition 6 (Probabilistic Memory Fairness. A Markov chain is consid-
ered to satisfy probabilistic memory fairness if a plain configuration is reached
infinitely often with probability one.

This parallel has immense utility because verifying liveness properties for
a class of Markov Chains called Decisive Markov Chains is well studied. [7]
establishes that the existence of a finite attractor, i.e. a finite set of states F that
is repeatedly reached with probability 1, is sufficient for decisiveness. The above
definition asserts that the set of plain configurations is a finite attractor.

4.3 Relating Fairness Notions

Although repeatedly plain transition fairness is weaker than size bounded transi-
tion fairness and probabilistic memory fairness, these three notions are equivalent
with respect to canonical liveness problems, i.e. repeated control state reacha-
bility and termination. The proof we present for repeated reachability can be
adapted for termination.

Theorem 1. There exists N0 ∈ N such that for all N ≥ N0, the following are
equivalent for any control state (program counters and register values) c:

1. All repeatedly plain transition fair runs visit c infinitely often.
2. All N -bounded transition fair runs visit c infinitely often.
3. c is visited infinitely often under probabilistic memory fairness with probability

1.

1 A concrete Markov Chain satisfying the declarative definition may be adapted from
the one described in [5] in a similar setting.



198 P. A. Abdulla et al.

Proof. For each N ∈ N, we construct a connectivity graph GN . The vertices are
the finitely many plain configurations γ, along with the finitely many control
states c. We draw a directed edge from γi to γj , if γj is reachable from γi via
configurations of size at most N . We additionally draw an edge from a plain
configuration γ to control state c iff c is reachable from γ via configurations of
size at most N . We similarly construct a connectivity graph G without bounds
on intermediate configuration sizes. We note:

1. There are only finitely many possibilities for GN

2. As N increases, edges can only be added to GN . This guarantees saturation.
3. Any witness of reachability is necessarily finite, hence the saturated graph is

the same as G, i.e. for all sufficiently large N , GN = G

Since plain configurations are attractors, the graph G is instrumental in deciding
repeated control state reachability. Consider the restriction of G to plain con-
figurations, i.e. GΓ. Transition fairness (resp. Markov fairness) implies that γ is
visited infinitely often (resp. with probability 1) only if it is in a bottom strongly
connected component (scc). In turn any control state c will be guaranteed to be
reached infinitely often if and only if it is reachable from every bottom scc of
GΓ. The if direction follows using the transition fairness and attractor property,
while the converse follows by simply identifying a finite path to a bottom scc
from which c isn’t reachable. The equivalence follows because the underlying
graph is canonical for all three notions of fairness.

5 Applying Fairness Properties to Decision Problems

In this section, we show how to decide liveness as a corollary of the proof of
Theorem 1. We begin by noting that techniques for termination are subsumed
by those for repeated control state reachability. This is because termination is
not guaranteed iff one can reach a plain configuration from which a terminal
control state is inaccessible. Hence, in the sequel, we focus on repeated control
state reachability.

5.1 Deciding Repeated Control State Reachability

We observe that under the fairness conditions we defined, liveness, i.e. repeated
control state reachability reduces to a safety query.

Problem 1 (Repeated control state reachability). Given a control state (program
counters and register values) c, do all infinite executions (in the probabilistic
case, a set of measure 1) satisfying fairness condition A reach c infinitely often?

Problem 2 (Control state reachability). Given a control state c and a configu-
ration γ, is (c, γm) reachable from γ for some γm?
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Theorem 2. Problem 1 for repeatedly fair transition fairness and probabilistic
memory fairness reduces to Problem 2. Moreover, the reduction can compute
the N0 from Theorem 1 such that it further applies to size bounded transition
fairness.

Proof. This follows by using Problem 2 to compute the underlying connectivity
graph G from the proof of Theorem 1. A small technical hurdle is that plain
configuration reachability is not the same as control state reachability. However,
the key to encode this problem as a control state query is to use the following
property: for a configuration γ and a message m (∈ e(x, p)), if for every process
p′, m is not redundant (formally, frontier(p′, x, p) ≤ m), then there exists a plain
configuration γ′ containing m such that γ′ is reachable from γ via a sequence
of update steps. The plan, therefore, is to read and verify whether the messages
desired in the plain configuration are, and remain accessible to all processes.
Finally, the computation of N0 follows by enumerating GN .

5.2 Quantitative Control State Repeated Reachability

We set the context of a Markov chain C = 〈Γ, M〉 that refines the underlying
the transition system induced by the program. We consider is the quantitative
variant of repeated reachability, where instead of just knowing whether the prob-
ability is one or not, we are interested in computing it.

Problem 3 (Quantitative control state repeated reachability). Given a control
state c and an error margin ε ∈ R, find a δ such that for Markov chain C,
|Prob(γinit |= �♦c) − δ| ≤ ε

We refer the reader to [6] for details on the standard reduction, from which
the following result follows:

Theorem 3. If Problem 2 is decidable for a memory model, then Problem 3 is
computable for Markov chains that satsify probabilistic memory fairness.

5.3 Adapting Subroutines to Our Memory Framework

We now briefly sketch how to adapt known solutions to Problem 2 for PSO,
TSO, StrongCOH, WRA and SRA to our framework.

PSO and TSO. Reachability between plain configurations (a special case of
Problem 2) under these models has already been proven decidable [12]. The
store buffer framework is similar to the one we describe, and hence the results
go through. Moreover, [5, Lemmas 3, 4] shows the decidability of our Problem 2
for TSO. The same construction, which uses an augmented program to reduce
to ex-plain configuration reachability, works for PSO as well.
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StrongCOH. Decidability of reachability under StrongCOH is shown in [1].
The framework used, although quite different in notation, is roughly isomorphic
to the one we propose. The relaxed semantics of StrongCOH allow the framework
to be set up as a WSTS [2,26], which supports backward reachability analysis,
yielding decidability. Backward reachability gives an upward closed set of states
that can reach a target label. Checking whether an arbitrary state is in this
upward closed set requires a comparison with only the finitely many elements in
the basis. This solves Problems 2.

WRA and SRA. Decidability of reachability under WRA and SRA has
recently been shown in [34]. The proof follows the WSTS approach, however,
the model used in the proof has different syntax and semantics from the one we
present here. However, a reconciliation is possible, and we briefly sketch it here.
A state in the proof model is a map from processes to potentials. A potential
is a finite set of finite traces that a process may execute. These proof-model
states are well-quasi-ordered and operating on them sets up a WSTS. Backward
reachability gives us a set of maps from processes to potentials that allow us to
reach the target label. The key is to view a process-potential map as a require-
ment on our message based configuration. Higher a map in the wqo, stronger the
requirement it enforces. In this sense, the basis of states returned by backward
reachability constitute the minimal requirements our configuration may meet in
order for the target label to be reachable. Formally, let γ be a configuration of
our framework. The target label is reachable from γ if and only if: there exists a
process-potential map B is in the backward reachable set, such that every trace
in every process’ potential in B is enabled in γ. It suffices to check the existence
of B over the finite basis of the backward reachable set. Note that γ is completely
arbitrary: this solves our Problem 2.

6 Related Work

Fairness. Only recently has fairness for weak memory started receiving increas-
ing attention. The work closest to ours is by [4], who formulate a probabilistic
extension for the Total Store Order (TSO) memory model and show decidability
results for associated verification problems. Our treatment of fairness is richer,
as we relate same probabilistic fairness with two alternate logical fairness defini-
tions. Similar proof techniques notwithstanding, our verification results are also
more general, thanks to the development of a uniform framework that applies to
a landscape of models. [37] develop a novel formulation of fairness as a declar-
ative property of event structures. This notion informally translates to “Each
message is eventually propagated.” We forego axiomatic elegance to motivate
and develop stronger practical notions of fairness in our quest to verify liveness.

Probabilistic Verification. There are several works on verification of finite-
state Markov chains (e.g. [14,33]). However, since the messages in our memory
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systems are unbounded, these techniques do not apply. There is also substan-
tive literature on the verification of infinite state probabilistic system, which
have often been modelled as infinite Markov chains [17–19,24,25]. However their
results cannot be directly leveraged to imply ours. The machinery we use for
showing decidability is relies on decisive Markov chains, a concept formulated in
[7] and used in [4].

Framework. On the modelling front, the ability to specify memory model
semantics as first-order constraints over the program-order (po), reads-from (rf),
and modification-order (mo) have led to elegant declarative frameworks based on
event structures [9,10,21,28]. There are also approaches that, instead of natively
characterizing semantics, prescribe constraints on their ISA-level behaviours in
terms of program transformations [38]. On the operational front, there have been
works that model individual memory models [43,46] and clusters of similar model
[30,35], however we are not aware of any operational modelling framework that
encompasses as wide a range of models as we do. The operationalization in [16]
uses write buffers which resemble our channels, however, their operationalization
too focuses on a specific semantics.

7 Conclusion, Future Work, and Perspective

Conclusion. The ideas developed in Sect. 4 lie at the heart of our contribu-
tion: we motivate and define transition fairness augmented with memory size
boundedness or the recurrence of plain configurations, as well as the analogous
probabilistic memory fairness. These are equivalent for the purpose of verify-
ing repeated control state reachability, i.e. liveness, and lie at the core of the
techniques we discuss in Sect. 5. These techniques owe their generality to the
versatile framework we describe in Sect. 3.

Future Work. There are several interesting directions for future work. We believe
that our framework can be extended to handle weak memory models that allow
speculation, such as ARM and POWER. In such a case, we would need to extend
our fairness conditions to limit the amount of allowed speculation. It is also
interesting to mix transition fairness with probabilistic fairness, i.e., use the for-
mer to solve scheduler non-determinism and the latter to resolve memory non-
determinism, leading to (infinite-state) Markov Decision Process model. Along
these lines, we can also consider synthesis problems based on 21

2 -games. To solve
such game problems, we could extend the framework of Decisive Markov chains
that have been developed for probabilistic and game theoretic problems over
infinite-state systems [7] A natural next step is developing efficient algorithms
for proving liveness properties for programs running on weak memory models. In
particular, since we reduce the verification of liveness properties to simple reach-
ability, there is high hope one can develop CEGAR frameworks relying both on
over-approximations, such as predicate abstraction, and under-approximations
such as bounded context-switching [44] and stateless model checking [3,32].
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Perspective. Leveraging techniques developed over the years by the program
verification community, and using them to solve research problems in program-
ming languages, architectures, databases, etc., has substantial potential added
value. Although it requires a deep understanding of program behaviors running
on such platforms, we believe it is about finding the right concepts, combining
them correctly, and then applying the existing rich set of program verification
techniques, albeit in a non-trivial manner. The current paper is a case in point.
Here, we have used a combination of techniques developed for reactive systems
[31], methods for the analysis of infinite-state systems [7], and semantical models
developed for weak memory models [12,30,34,35] to obtain, for the first time, a
framework for the systematic analysis of liveness properties under weak memory
models.
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Abstract. Rely-guarantee (RG) is a highly influential compositional
proof technique for concurrent programs, which was originally devel-
oped assuming a sequentially consistent shared memory. In this paper,
we first generalize RG to make it parametric with respect to the under-
lying memory model by introducing an RG framework that is applica-
ble to any model axiomatically characterized by Hoare triples. Second,
we instantiate this framework for reasoning about concurrent programs
under causally consistent memory, which is formulated using a recently
proposed potential-based operational semantics, thereby providing the
first reasoning technique for such semantics. The proposed program logic,
which we call Piccolo, employs a novel assertion language allowing one
to specify ordered sequences of states that each thread may reach. We
employ Piccolo for multiple litmus tests, as well as for an adaptation of
Peterson’s algorithm for mutual exclusion to causally consistent memory.

1 Introduction

Rely-guarantee (RG) is a fundamental compositional proof technique for con-
current programs [21,48]. Each program component P is specified using rely and
guarantee conditions, which means that P can tolerate any environment inter-
ference that follows its rely condition, and generate only interference included in
its guarantee condition. Two components can be composed in parallel provided
that the rely of each component agrees with the guarantee of the other.

The original RG framework and its soundness proof have assumed a sequen-
tially consistent (SC) memory [33], which is unrealistic in modern processor
architectures and programming languages. Nevertheless, the main principles
behind RG are not at all specific for SC. Accordingly, our first main contribution,
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is to formally decouple the underlying memory model from the RG proof prin-
ciples, by proposing a generic RG framework parametric in the input memory
model. To do so, we assume that the underlying memory model is axiomatized
by Hoare triples specifying pre- and postconditions on memory states for each
primitive operation (e.g., loads and stores). This enables the formal develop-
ment of RG-based logics for different shared memory models as instances of
one framework, where all build on a uniform soundness infrastructure of the RG
rules (e.g., for sequential and parallel composition), but employ different special-
ized assertions to describe the possible memory states, where specific soundness
arguments are only needed for primitive memory operations.

The second contribution of this paper is an instance of the general RG frame-
work for causally consistent shared memory. The latter stands for a family of
wide-spread and well-studied memory models weaker than SC, which are suffi-
ciently strong for implementing a variety of synchronization idioms [6,12,26].
Intuitively, unlike SC, causal consistency allows different threads to observe
writes to memory in different orders, as long as they agree on the order of writes
that are causally related. This concept can be formalized in multiple ways, and
here we target a strong form of causal consistency, called strong release-acquire
(SRA) [28,31] (and equivalent to “causal convergence” from [12]), which is a
slight strengthening of the well-known release-acquire (RA) model (used by
C/C++11). (The variants of causal consistency only differ for programs with
write/write races [10,28], which are rather rare in practice.)

Our starting point for axiomatizing SRA as Hoare triples is the potential-
based operational semantics of SRA, which was recently introduced with the
goal of establishing the decidability of control state reachability under this
model [27,28] (in contrast to undecidability under RA [1]). Unlike more standard
presentations of weak memory models whose states record information about the
past (e.g., in the form of store buffers containing executed writes before they are
globally visible [36], partially ordered execution graphs [8,20,31], or collections of
timestamped messages and thread views [11,16,17,23,25,47]), the states of the
potential-based model track possible futures ascribing what sequences of obser-
vations each thread can perform. We find this approach to be a particularly
appealing candidate for Hoare-style reasoning which would naturally generalize
SC-based reasoning. Intuitively, while an assertion in SC specifies possible obser-
vations at a given program point, an assertion in a potential-based model should
specify possible sequences of observations.

To pursue this direction, we introduce a novel assertion language, resembling
temporal logics, which allows one to express properties of sequences of states.
For instance, our assertions can express that a certain thread may currently read
x = 0, but it will have to read x = 1 once it reads y = 1. Then, we provide Hoare
triples for SRA in this assertion language, and incorporate them in the general
RG framework. The resulting program logic, which we call Piccolo, provides
a novel approach to reason on concurrent programs under causal consistency,
which allows for simple and direct proofs, and, we believe, may constitute a
basis for automation in the future.
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y �= 1
Thread T1{
True

}
1 : STORE(x, 1);{
x = 1

}
2 : STORE(y, 1)
True

Thread T2{
y = 1 ⇒ x = 1

}
3 : a := LOAD(y);{
a = 1 ⇒ x = 1

}
4 : b := LOAD(x)
a = 1 ⇒ b = 1

a = 1 b = 1

Fig. 1. Message passing in SC

T0�[y �= 1]
Thread T1{
True

}
1 : STORE(x, 1);{
T1�[x = 1]

}
2 : STORE(y, 1)
True

Thread T2{
T2�[y �= 1] ; [x = 1]

}
3 : a := LOAD(y);{
a = 1 ⇒ T2�[x = 1]

}
4 : b := LOAD(x)
a = 1 ⇒ b = 1

a = 1 b = 1

Fig. 2. Message passing in SRA

2 Motivating Example

To make our discussion concrete, consider the message passing program (MP) in
Figs. 1 and 2, comprising shared variables x and y and local registers a and b. The
proof outline in Fig. 1 assumes SC, whereas Fig. 2 assumes SRA. In both cases,
at the end of the execution, we show that if a is 1, then b must also be 1. We
use these examples to explain the two main concepts introduced in this paper:
(i) a generic RG framework and (ii) its instantiation with a potential-focused
assertion system that enables reasoning under SRA.

Rely-Guarantee. The proof outline in Fig. 1 can be read as an RG derivation:

1. Thread T1 locally establishes its postcondition when starting from any state
that satisfies its precondition. This is trivial since its postcondition is True.

2. Thread T1 relies on the fact that its used assertions are stable w.r.t. interfer-
ence from its environment. We formally capture this condition by a rely set
R1 � {True, x = 1}.

3. Thread T1 guarantees to its concurrent environment that its only interfer-
ences are STORE(x, 1) and STORE(y, 1), and furthermore that STORE(y, 1) is
only performed when x = 1 holds. We formally capture this condition by
a guarantee set G1 � {{True} T1 �→ STORE(x, 1), {x = 1} T1 �→ STORE(y, 1)},
where each element is a command guarded by a precondition.

4. Thread T2 locally establishes its postcondition when starting from any state
that satisfies its precondition. This is straightforward using standard Hoare
rules for assignment and sequential composition.

5. Thread T2’s rely set is again obtained by collecting all the assertions used
in its proof: R2 � {y = 1 ⇒ x = 1, a = 1 ⇒ x = 1, a = 1 ⇒ b = 1}. Indeed,
the local reasoning for T2 needs all these assertions to be stable under the
environment interference.

6. Thread T2’s guarantee set is given by:

G2 �
{{y = 1 ⇒ x = 1} T2 �→ a := LOAD(y), {a = 1 ⇒ x = 1} T2 �→ b := LOAD(x)

}

7. To perform the parallel composition, 〈R1,G1〉 and 〈R2,G2〉 should be non-
interfering. This involves showing that each R ∈ Ri is stable under each
G ∈ Gj for i �= j. That is, if G = {P} τ �→ c, we require the Hoare triple {P ∩
R} τ �→ c {R} to hold. In this case, these proof obligations are straightforward
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to discharge using Hoare’s assignment axiom (and is trivial for i = 1 and j = 2
since load instructions leave the memory intact).

Remark 1. Classical treatments of RG involve two related ideas [21]: (1) spec-
ifying a component by rely and guarantee conditions (together with standard
pre- and postconditions); and (2) taking the relies and guarantees to be binary
relations over states. Our approach adopts (1) but not (2). Thus, it can be seen
as an RG presentation of the Owicki-Gries method [37], as was previously done
in [32]. We have not observed an advantage for using binary relations in our
examples, but the framework can be straightforwardly modified to do so.

Now, observe that substantial aspects of the above reasoning are not directly
tied with SC. This includes the Hoare rules for compound commands (such as
sequential composition above), the idea of specifying a thread using collections of
stable rely assertions and guaranteed guarded primitive commands, and the non-
interference condition for parallel composition. To carry out this generalization,
we assume that we are provided an assertion language whose assertions are
interpreted as sets of memory states (which can be much more involved than
simple mappings of variables to values), and a set of valid Hoare triples for the
primitive instructions. The latter is used for checking validity of primitive triples,
(e.g., {P} T1 �→ STORE(x, 1) {Q}), as well as non-interference conditions (e.g.,
{P ∩ R} T1 �→ STORE(x, 1) {R}). In Sect. 4, we present this generalization, and
establish the soundness of RG principles independently of the memory model.

Potential-Based Reasoning. The second contribution of our work is an appli-
cation of the above to develop a logic for a potential-based operational semantics
that captures SRA. In this semantics every memory state records sequences of
store mappings (from shared variables to values) that each thread may observe.
For example, assuming all variables are initialized to 0, if T1 executed its code
until completion before T2 even started (so under SC the memory state is the
store {x �→ 1, y �→ 1}), we may reach the SRA state in which T1’s potential con-
sists of one store {x �→ 1, y �→ 1}, and T2’s potential is the sequence of stores:

〈{x �→ 0, y �→ 0}, {x �→ 1, y �→ 0}, {x �→ 1, y �→ 1}〉,
which captures the stores that T2 may observe in the order it may observe
them. Naturally, potentials are lossy allowing threads to non-deterministically
lose a subsequence of the current store sequence, so they can progress in their
sequences. Thus, T2 can read 1 from y only after it loses the first two stores in
its potential, and from this point on it can only read 1 from x. Now, one can see
that all potentials of T2 at its initial program point are, in fact, subsequences of
the above sequence (regardless of where T1 is), and conclude that a = 1 ⇒ b = 1
holds when T2 terminates.

To capture the above informal reasoning in a Hoare logic, we designed a
new form of assertions capturing possible locally observable sequences of stores,
rather than one global store, which can be seen as a restricted fragment of linear
temporal logic. The proof outline using these assertions is given in Fig. 2. In
particular, [x = 1] is satisfied by all store sequences in which every store maps x
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to 1, whereas [y �= 1] ; [x = 1] is satisfied by all store sequences that can be split
into a (possibly empty) prefix whose value for y is not 1 followed by a (possibly
empty) suffix whose value for x is 1. Assertions of the form τ �I state that the
potential of thread τ includes only store sequences that satisfy I.

The first assertion of T2 is implied by the initial condition, T0�[y �= 1], since
the potential of the parent thread T0 is inherited by the forked child threads and
T2� [y �= 1] implies T2� [y �= 1] ; I for any I. Moreover, T2� [y �= 1] ; [x = 1]
is preserved by (i) line 1 because writing 1 to x leaves [y �= 1] unchanged and
re-establishes [x = 1]; and (ii) line 2 because the semantics for SRA ensures
that after reading 1 from y by T2, the thread T2 is confined by T1’s potential
just before it wrote 1 to y, which has to satisfy the precondition T1� [x = 1].
(SRA allows to update the other threads’ potential only when the suffix of the
potential after the update is observable by the writer thread.)

In Sect. 6 we formalize these arguments as Hoare rules for the primitive
instructions, whose soundness is checked using the potential-based operational
semantics and the interpretation of the assertion language. Finally, Piccolo is
obtained by incorporating these Hoare rules in the general RG framework.

Remark 2. Our presentation of the potential-based semantics for SRA (fully pre-
sented in Sect. 5) deviates from the original one in [28], where it was called loSRA.
The most crucial difference is that while loSRA’s potentials consist of lists of per-
location read options, our potentials consist of lists of stores assigning a value
to every variable. (This is similar in spirit to the adaptation of load buffers for
TSO [4,5] to snapshot buffers in [2]). Additionally, unlike loSRA, we disallow empty
potential lists, require that the potentials of the different threads agree on the very
last value to each location, and handle read-modify-write (RMW) instructions dif-
ferently. We employed these modifications to loSRA as we observed that direct rea-
soning on loSRA states is rather unnatural and counterintuitive, as loSRA allows
traces that block a thread from reading any value from certain locations (which can-
not happen in the version we formulate). For example, a direct interpretation of our
assertions over loSRA states would allow states in which τ�[x = v] and τ�[x �= v]
both hold (when τ does not have any option to read from x), while these assertions
are naturally contradictory when interpreted on top of our modified SRA seman-
tics. To establish confidence in the new potential-based semantics we have proved
in Coq its equivalence to the standard execution-graph based semantics of SRA
(over 5K lines of Coq proofs) [29].

3 Preliminaries: Syntax and Semantics

In this section we describe the underlying program language, leaving the shared-
memory semantics parametric.

Syntax. The syntax of programs, given in Fig. 3, is mostly standard, comprising
primitive (atomic) commands c and compound commands C. The non-standard
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values v ∈ Val = {0, 1, ...} shared variables x, y ∈ Loc = {x, y, ...}
local registers r ∈ Reg = {a, b, ...} thread identifiers τ, π ∈ Tid = {T0, T1, ...}

e ::= r | v | e + e | e = e | ¬e | e ∧ e | e ∨ e | ...

c ::= r := e | STORE(x, e) | r := LOAD(x) | SWAP(x, e) c̃ ::= 〈c, �r := �e〉
C ::= c c̃ skip C ; C if e then C else C while e do C C τ τ C

Fig. 3. Program syntax

γ′ = γ[r γ(e)]
r := e 	 γ ε γ′

l = W(x, γ(e))

STORE(x, e) 	 γ l γ

l = R(x, v) γ′ = γ[r v]

r := LOAD(x) 	 γ l γ′

l = RMW(x, v, γ(e))

SWAP(x, e) γ l γ

c 	 γ
lε γ0

r1 := e1 	 γ0
ε γ1 ... rn := en 	 γn−1

ε γn

c, r1, ... ,rn := e1, ... ,en γ
lε γn

Fig. 4. Small-step semantics of (instrumented) primitive commands (c̃ � γ
lε−→ γ′)

components are instrumented commands c̃, which are meant to atomically exe-
cute a primitive command c and a (multiple) assignment r := e. Such instruc-
tions are needed to support auxiliary (a.k.a. ghost) variables in RG proofs. In
addition, SWAP (a.k.a. atomic exchange) is an example of an RMW instruction.
For brevity, other standard RMW instructions, such as FADD and CAS, are omit-
ted.

Unlike many weak memory models that only support top-level parallelism,
we include dynamic thread creation via commands of the form C1

τ1||τ2 C2 that
forks two threads named τ1 and τ2 that execute the commands C1 and C2,
respectively. Each Ci may itself comprise further parallel compositions. Since
thread identifiers are explicit, we require commands to be well formed. Let Tid(C)
be the set of all thread identifiers that appear in C. A command C is well
formed, denoted wf(C), if parallel compositions inside employ disjoint sets of
thread identifiers. This notion is formally defined by induction on the structure
of commands, with the only interesting case being wf(C1

τ1||τ2 C2) if wf(C1) ∧
wf(C2) ∧ τ1 �= τ2 ∧ Tid(C1) ∩ Tid(C2) = ∅.

Program Semantics. We provide small-step operational semantics to com-
mands independently of the memory system. To connect this semantics to a
given memory system, its steps are instrumented with labels, as defined next.

Definition 1. A label l takes one of the following forms: a read R(x, vR), a
write W(x, vW), a read-modify-write RMW(x, vR, vW), a fork FORK(τ1, τ2), or a join
JOIN(τ1, τ2), where x ∈ Loc, vR, vW ∈ Val, and τ1, τ2 ∈ Tid. We denote by Lab the
set of all labels.
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c̃ 	 γ
lε γ′

〈c̃, γ〉 lε 〈skip, γ′〉
〈C1, γ〉 lε 〈C′

1, γ
′〉

〈C1 ; C2, γ〉 lε 〈C′
1 ; C2, γ

′〉 〈skip ; C2, γ〉 ε 〈C2, γ〉

γ(e) = true ⇒ i = 1
γ(e) �= true ⇒ i = 2

if e then C1 else C2, γ
ε Ci, γ

C′ = if e then (C ; while e do C) else skip

while e do C, γ ε C′, γ

Fig. 5. Small-step semantics of commands (〈C, γ〉 lε−→ 〈C′, γ′〉)

〈C, γ〉 lε 〈C′, γ′〉
〈C0 
 {τ C}, γ〉

τ,lε
0 τ C′ , γ

C(τ) = C1
τ1||τ2 C2

τ1 �∈ dom(C) τ2 �∈ dom(C)
l = FORK(τ1, τ2)

C′ = {τ1 C1, τ2 C2}
, γ

τ,l ′, γ

C =
τ C1

τ1||τ2 C2,
τ1 skip, τ2 skip

l = JOIN(τ1, τ2)
C′ = {τ skip}

0 , γ
τ,l

0
′, γ

Fig. 6. Small-step semantics of command pools (〈C, γ〉 τ,lε−−→ 〈C′, γ′〉)

Definition 2. A register store is a mapping γ : Reg → Val. Register stores are
extended to expressions as expected. We denote by Γ the set of all register stores.

The semantics of (instrumented) primitive commands is given in Fig. 4. Using
this definition, the semantics of commands is given in Fig. 5. Its steps are of the
form 〈C, γ〉 lε−→ 〈C ′, γ′〉 where C and C ′ are commands, γ and γ′ are register
stores, and lε ∈ Lab∪{ε} (ε denotes a thread internal step). We lift this semantics
to command pools as follows.

Definition 3. A command pool is a non-empty partial function C from thread
identifiers to commands, such that the following hold:

1. Tid(C(τ1)) ∩ Tid(C(τ2)) = ∅ for every τ1 �= τ2 in dom(C).
2. τ �∈ Tid(C(τ)) for every τ ∈ dom(C).
We write command pools as sets of the form {τ1 �→ C1, ... ,τn �→ Cn}.

Steps for command pools are given in Fig. 6. They take the form 〈C, γ〉 τ,lε−−→
〈C′, γ′〉, where C and C′ are command pools, γ and γ′ are register stores, and
〈τ : lε〉 (with τ ∈ Tid and lε ∈ Lab ∪ {ε}) is a command transition label.

Memory Semantics. To give semantics to programs under a memory model,
we synchronize the transitions of a command C with a memory system. We
leave the memory system parametric, and assume that it is represented by a
labeled transition system (LTS) M with set of states denoted by M.Q, and
steps denoted by −→M . The transition labels of general memory system M
consist of non-silent program transition labels (elements of Tid × Lab) and a
(disjoint) set M.Θ of internal memory actions, which is again left parametric
(used, e.g., for memory-internal propagation of values).
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Example 1. The simple memory system that guarantees sequential consistency is
denoted here by SC. This memory system tracks the most recent value written to
each variable and has no internal transitions (SC.Θ = ∅). Formally, it is defined
by SC.Q � Loc → Val and −→SC is given by:

l = R(x, vR)
m(x) = vR

m
τ,l−−→SC m

l = W(x, vW)
m′ = m[x �→ vW]

m
τ,l−−→SC m′

l = RMW(x, vR, vW)
m(x) = vR

m′ = m[x �→ vW]

m
τ,l−−→SC m′

l ∈ {FORK(_, _), JOIN(_, _)}
m

τ,l−−→SC m

The composition of a program with a general memory system is defined next.

Definition 4. The concurrent system induced by a memory system M, denoted
by M, is the LTS whose transition labels are the elements of (Tid×(Lab∪{ε}))
M.Θ; states are triples of the form 〈C, γ,m〉 where C is a command pool, γ is a
register store, and m ∈ M.Q; and the transitions are “synchronized transitions” of
the program and the memory system, using labels to decide what to synchronize
on, formally given by:

〈C, γ〉 τ,l−−→ 〈C′, γ′〉
l ∈ Lab m

τ,l−−→M m′

〈C, γ, m〉 τ,l−−→M 〈C′, γ′, m′〉
〈C, γ〉 τ,ε−−→ 〈C′, γ′〉

〈C, γ, m〉 τ,ε−−→M 〈C′, γ′, m〉

θ ∈ M.Θ

m θ−→M m′

〈C, γ, m〉 θ−→M 〈C, γ, m′〉

4 Generic Rely-Guarantee Reasoning

In this section we present our generic RG framework. Rather than committing to
a specific assertion language, our reasoning principles apply on the semantic level,
using sets of states instead of syntactic assertions. The structure of proofs still
follows program structure, thereby retaining RG’s compositionality. By doing
so, we decouple the semantic insights of RG reasoning from a concrete syntax.
Next, we present proof rules serving as blueprints for memory model specific
proof systems. An instantiation of this blueprint requires lifting the semantic
principles to syntactic ones. More specifically, it requires

1. a language with (a) concrete assertions for specifying sets of states and (b)
operators that match operations on sets of states (like ∧ matches ∩); and

2. sound Hoare triples for primitive commands.

Thus, each instance of the framework (for a specific memory system) is left
with the task of identifying useful abstractions on states, as well as a suitable
formalism, for making the generic semantic framework into a proof system.

RG Judgments. We let M be an arbitrary memory system and ΣM � Γ×M.Q.
Properties of programs C are stated via RG judgments:

C satM (P,R,G, Q)
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where P,Q ⊆ ΣM, R ⊆ P(ΣM), and G is a set of guarded commands, each of
which takes the form {G} τ �→ α, where G ⊆ ΣM and α is either an (instru-
mented) primitive command c̃ or a fork/join label (of the form FORK(τ1, τ2) or
JOIN(τ1, τ2)). The latter is needed for considering the effect of forks and joins on
the memory state.

Interpretation of RG Judgments. RG judgments C satM (P,R,G, Q) state
that a terminating run of C starting from a state in P , under any concurrent
context whose transitions preserve each of the sets of states in R, will end in a
state in Q and perform only transitions contained in G. To formally define this
statement, following the standard model for RG, these judgments are interpreted
on computations of programs. Computations arise from runs of the concurrent
system (see Definition 4) by abstracting away from concrete transition labels and
including arbitrary “environment transitions” representing steps of the concur-
rent context. We have:

– Component transitions of the form 〈C, γ,m〉 −cmp−→ 〈C′, γ′,m′〉.
– Memory transitions, which correspond to internal memory steps (labeled with

θ ∈ M.Θ), of the form 〈C, γ,m〉 −mem−→ 〈C, γ,m′〉.
– Environment transitions of the form 〈C, γ,m〉 −env−→ 〈C, γ′,m′〉.
Note that memory transitions do not occur in the classical RG presentation
(since SC does not have internal memory actions).

A computation is a (potentially infinite) sequence

ξ = 〈C0, γ0,m0〉 −a1−→ 〈C1, γ1,m1〉 −a2−→ ...

with ai ∈ {cmp, env, mem}. We let 〈Clast(ξ), γlast(ξ),mlast(ξ)〉 denotes its last element,
when ξ is finite. We say that ξ is a computation of a command pool C when C0 = C
and for every i ≥ 0:

– If ai = cmp, then 〈Ci, γi,mi〉 τ,lε−−→M 〈Ci+1, γi+1,mi+1〉 for some τ ∈ Tid and
lε ∈ Lab ∪ {ε}.

– If ai = mem, then 〈Ci, γi,mi〉 θ−→M 〈Ci+1, γi+1,mi+1〉 for some θ ∈ M.Θ.

We denote by Comp(C) the set of all computations of a command pool C.
To define validity of RG judgments, we use the following definition.

Definition 5. Let ξ = 〈C0, γ0,m0〉 −a1−→ 〈C1, γ1,m1〉 −a2−→ ... be a computation,
and C satM (P,R,G, Q) an RG-judgment.

– ξ admits P if 〈γ0,m0〉 ∈ P .
– ξ admits R if 〈γi,mi〉 ∈ R ⇒ 〈γi+1,mi+1〉 ∈ R for every R ∈ R and i ≥ 0

with ai+1 = env.
– ξ admits G if for every i ≥ 0 with ai+1 = cmp and 〈γi,mi〉 �= 〈γi+1,mi+1〉

there exists {P} τ �→ α ∈ G such that 〈γi,mi〉 ∈ P and
• if α = c̃ is an instrumented primitive command, then for some lε ∈

Lab ∪ {ε}, we have 〈{τ �→ c̃}, γi,mi〉 τ,lε−−→M 〈{τ �→ skip}, γi+1,mi+1〉
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skip

{τ �→ skip} satM (P, {P}, ∅, P )

com
M � {P} τ �→ c̃ {Q}

{τ �→ c̃} satM (P, {P, Q}, {{P} τ �→ c̃}, Q)

seq
{τ �→ C1} satM (P, R1, G1, R) {τ �→ C2} satM (R, R2, G2, Q)

{τ �→ C1 ; C2} satM (P, R1 ∪ R2, G1 ∪ G2, Q)

if
{τ �→ C1} satM (P ∩ e , R1, G1, Q) {τ �→ C2} satM (P \ e , R2, G2, Q)

{τ �→ if e then C1 else C2} satM (P, R1 ∪ R2 ∪ {P}, G1 ∪ G2, Q)

while
P \ e ⊆ Q {τ �→ C} satM (P ∩ e , R, G, P )
{τ �→ while e do C} satM (P, R ∪ {P, Q}, G, Q)

par

{τ1 �→ C1} satM (P1, R1, G1, Q1) {τ2 �→ C2} satM (P2, R2, G2, Q2)
P ⊆ P1 ∩ P2 Q1 ∩ Q2 ⊆ Q 〈R1, G1〉 and 〈R2, G2〉 are non-interfering

{τ1 �→ C1} 
 {τ2 �→ C2} satM (P, R1 ∪ R2 ∪ {P, Q}, G1 ∪ G2, Q)

fork-join

M � {P} τ �→ FORK(τ1, τ2) {P ′} M � {Q′} τ �→ JOIN(τ1, τ2) {Q}
{τ1 �→ C1} 
 {τ2 �→ C2} satM (P ′, R, G, Q′)

G′ = G ∪ {{P} τ �→ FORK(τ1, τ2), {Q′} τ �→ JOIN(τ1, τ2)}
τ C1

τ1 τ2 C2 sat (P, P, Q , ′, Q)

Fig. 7. Generic sequential RG proof rules (letting �e� = {〈γ, m〉 | γ(e) = true})

• if α ∈ {FORK(τ1, τ2), JOIN(τ1, τ2)}, then mi
τ,α−−→M mi+1 and γi = γi+1.

– ξ admits Q if 〈γlast(ξ),mlast(ξ)〉 ∈ Q whenever ξ is finite and Clast(ξ)(τ) = skip
for every τ ∈ dom(Clast(ξ)).

We denote by Assume(P,R) the set of all computations that admit P and R,
and by Commit(G, Q) the set of all computations that admit G and Q.

Then, validity of a judgment if defined as

|= C satM (P,R,G, Q)
�⇔ Comp(C) ∩ Assume(P,R) ⊆ Commit(G, Q)

Memory Triples. Our proof rules build on memory triples, which specify pre-
and postconditions for primitive commands for a memory system M.

Definition 6. A memory triple for a memory system M is a tuple of the form
{P} τ �→ α {Q}, where P,Q ⊆ ΣM, τ ∈ Tid, and α is either an instrumented
primitive command, a fork label, or a join label. A memory triple for M is valid,
denoted by M � {P} τ �→ α {Q}, if the following hold for every 〈γ,m〉 ∈ P ,
γ′ ∈ Γ and m′ ∈ M.Q:

– if α is an instrumented primitive command and 〈{τ �→ α}, γ,m〉 τ,lε−−→M
〈{τ �→ skip}, γ′,m′〉 for some lε ∈ Lab ∪ {ε}, then 〈γ′,m′〉 ∈ Q.
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– If α ∈ {FORK(τ1, τ2), JOIN(τ1, τ2)} and m
τ,α−−→M m′, then 〈γ,m′〉 ∈ Q.

Example 2. For the memory system SC introduced in Example 1, we have, e.g.,
memory triples of the form SC � {e(r := x)} τ �→ r := LOAD(x) {e} (where
e(r := x) is the expression e with all occurrences of r replaced by x).

RG Proof Rules. We aim at proof rules deriving valid RG judgments. Figure 7
lists (semantic) proof rules based on externally provided memory triples. These
rules basically follows RG reasoning for sequential consistency. For example, rule
seq states that RG judgments of commands C1 and C2 can be combined when
the postcondition of C1 and the precondition of C2 agree, thereby uniting their
relies and guarantees. Rule com builds on memory triples. The rule par for
parallel composition combines judgments for two components when their relies
and guarantees are non-interfering. Intuitively speaking, this means that each
of the assertions that each thread relied on for establishing its proof is preserved
when applying any of the assignments collected in the guarantee set of the other
thread. An example of non-interfering rely-guarantee pairs is given in step 7 in
Sect. 2. Formally, non-interference is defined as follows:

Definition 7. Rely-guarantee pairs 〈R1,G1〉 and 〈R2,G2〉 are non-interfering if
M � {R ∩ P} τ �→ α {R} holds for every R ∈ R1 and {P} τ �→ α ∈ G2, and
similarly for every R ∈ R2 and {P} τ �→ α ∈ G1.

In turn, fork-join combines the proof of a parallel composition with proofs
of fork and join steps (which may also affect the memory state). Note that the
guarantees also involve guarded commands with FORK and JOIN labels.

Additional rules for consequence and introduction of auxiliary variables are
elided here (they are similar to their SC counterparts), and provided in the
extended version of this paper [30].

Soundness. To establish soundness of the above system we need an additional
requirement regarding the internal memory transitions (for SC this closure vac-
uously holds as there are no such transitions). We require all relies in R to be
stable under internal memory transitions, i.e. for R ∈ R we require

∀γ,m,m′, θ ∈ M.Θ.m θ−→M m′ ⇒ (〈γ,m〉 ∈ R ⇒ 〈γ,m′〉 ∈ R) (mem)

This condition is needed since the memory system can non-deterministically
take its internal steps, and the component’s proof has to be stable under such
steps.

Theorem 1 (Soundness). � C satM (P,R,G, Q)=⇒� C satM (P,R,G, Q).

With this requirement, we are able to establish soundness. The proof, which
generally follows [48] is given in the extended version of this paper [30]. We
write � C satM (P,R,G, Q) for provability of a judgment using the semantic
rules presented above.
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5 Potential-Based Memory System for SRA

In this section we present the potential-based semantics for Strong Release-
Acquire (SRA), for which we develop a novel RG logic. Our semantics is based
on the one in [27,28], with certain adaptations to make it better suited for
Hoare-style reasoning (see Remark 2).

In weak memory models, threads typically have different views of the shared
memory. In SRA, we refer to a memory snapshot that a thread may observe as
a potential store:

Definition 8. A potential store is a function δ : Loc → Val×{R, RMW}×Tid. We
write val(δ(x)), rmw(δ(x)), and tid(δ(x)) to retrieve the different components
of δ(x). We denote by Δ the set of all potential stores.

Having δ(x) = 〈v, R, τ〉 allows to read the value v from x (and further
ascribes that this read reads from a write performed by thread τ , which is
technically needed to properly characterize the SRA model). In turn, having
δ(x) = 〈v, RMW, τ〉 further allows to perform an RMW instruction that atomi-
cally reads and modifies x.

Potential stores are collected in potential store lists describing the values
which can (potentially) be read and in what order.

Notation 9. Lists over an alphabet A are written as L = a1 · ... · an where
a1, ... ,an ∈ A. We also use · to concatenate lists, and write L[i] for the i’th
element of L and |L| for the length of L.

A (potential) store list is a finite sequence of potential stores ascribing a
possible sequence of stores that a thread can observe, in the order it will observe
them. The RMW-flags in these lists have to satisfy certain conditions: once the
flag for a location is set, it remains set in the rest of the list; and the flag must
be set at the end of the list. Formally, store lists are defined as follows.

Definition 10. A store list L ∈ L is a non-empty finite sequence of potential
stores with monotone RMW-flags ending with an RMW, that is: for all x ∈ Loc,

1. if rmw(L[i](x)) = RMW, then rmw(L[j](x)) = RMW for every i < j ≤ |L|, and
2. rmw(L[|L|](x)) = RMW.

Now, SRA states (SRA.Q) consist of potential mappings that assign potentials
to threads as defined next.

Definition 11. A potential D is a non-empty set of potential store lists. A
potential mapping is a function D : Tid ⇀ P(L)\{∅} that maps thread identifiers
to potentials such that all lists agree on the very final potential store (that is:
L1[|L1|] = L2[|L2|] whenever L1 ∈ D(τ1) and L2 ∈ D(τ2)).

These potential mappings are “lossy” meaning that potential stores can be
arbitrarily dropped. In particular, dropping the first store in a list enables reading
from the second. This is formally done by transitioning from a state D to a
“smaller” state D′ as defined next.
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write
∀L′ ∈ D′(τ). ∃L ∈ D(τ). L′ = L[x 〈→� vW, RMW, τ〉]

∀π ∈ dom(D) \ {τ}, L′ ∈ D′(π). ∃L0, L1.
L0 · L1 ∈ D(π) ∧ L1 ∈ D(τ) ∧
L′ = L0[x �→ R] · L1[x 〈→� vW, RMW, τ〉]

D τ,W(x,vW)−−−−−→SRA D′

lose
D′ � D

D ε−→SRA D′

dup
D � D′

D ε−→SRA D′

read
∃π. ∀L ∈ D(τ). val(L[1](x)) = vR ∧

tid(L[1](x)) = π

D τ,R(x,vR)−−−−−→SRA D

rmw
∀L ∈ D(τ). rmw(L[1](x)) = RMW

D τ,R(x,vR)−−−−−→SRA D D τ,W(x,vW)−−−−−→SRA D′

D τ,RMW(x,vR,vW)−−−−−−−−−→SRA D′

fork
Dnew = {τ1 D→� (τ), τ2 D→� (τ)}

D′ = D|dom (D)\{τ} 
 Dnew

τ,FORK(τ1,τ2)
SRA

′

join
Dnew = {τ D→� (τ1) ∩ D(τ2)}
D′ = D|dom (D)\{τ1,τ2} 
 Dnew

τ,JOIN(τ1,τ2)
SRA

′

Fig. 8. Steps of SRA (defining δ[x �→ 〈v, u, τ〉](y) = 〈v, u, τ〉 if y = x and δ(y) else, and
δ[x �→ R] to set all RMW-flags for x to R; both pointwise lifted to lists)

Definition 12. The (overloaded) partial order � is defined as follows:

1. on potential store lists: L′ � L if L′ is a nonempty subsequence of L;
2. on potentials: D′ � D if ∀L′ ∈ D′. ∃L ∈ D. L′ � L;
3. on potential mappings: D′ � D if D′(τ) � D(τ) for every τ ∈ dom(D).

We also define L � L′ if L′ is obtained from L by duplication of some stores
(e.g., δ1 · δ2 · δ3 � δ1 · δ2 · δ2 · δ3). This is lifted to potential mappings as expected.

Figure 8 defines the transitions of SRA. The lose and dup steps account for
losing and duplication in potentials. Note that these are both internal memory
transitions (required to preserve relies as of (mem)). The fork and join steps
distribute potentials on forked threads and join them at the end. The read
step obtains its value from the first store in the lists of the potential of the
reader, provided that all these lists agree on that value and the writer thread
identifier. rmw steps atomically perform a read and a write step where the read
is restricted to an RMW-marked entry.

Most of the complexity is left for the write step. It updates to the new
written value for the writer thread τ . For every other thread, it updates a suffix
(L1) of the store list with the new value. For guaranteeing causal consistency
this updated suffix cannot be arbitrary: it has to be in the potential of the writer
thread (L1 ∈ D(τ)). This is the key to achieving the “shared-memory causality
principle” of [28], which ensures causal consistency.

Example 3. Consider again the MP program from Fig. 2. After the initial fork
step, threads T1 and T2 may have the following store list in their potentials:

L =
[
x �→ 〈0, RMW, T0〉
y �→ 〈0, RMW, T0〉

]
·
[
x �→ 〈0, RMW, T0〉
y �→ 〈0, RMW, T0〉

]
·
[
x �→ 〈0, RMW, T0〉
y �→ 〈0, RMW, T0〉

]
.
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Then, STORE(x, 1) by T1 can generate the following store list for T2:

L2 =
[

x �→ 〈0, R, T0〉
y �→ 〈0, RMW, T0〉

]
·
[
x �→ 〈1, RMW, T1〉
y �→ 〈0, RMW, T0〉

]
·
[
x �→ 〈1, RMW, T1〉
y �→ 〈0, RMW, T0〉

]
.

Thus T2 keeps the possibility of reading the “old” value of x. For T1 this is
different: the model allows the writing thread to only see its new value of x and
all entries for x in the store list are updated. Thus, for T1 we obtain store list

L1 =
[
x �→ 〈1, RMW, T1〉
y �→ 〈0, RMW, T0〉

]
·
[
x �→ 〈1, RMW, T1〉
y �→ 〈0, RMW, T0〉

]
·
[
x �→ 〈1, RMW, T1〉
y �→ 〈0, RMW, T0〉

]
.

Next, when T1 executes STORE(y, 1), again, the value for y has to be updated to
1 in T1 yielding

L′
1 =

[
x �→ 〈1, RMW, T0〉
y �→ 〈1, RMW, T1〉

]
·
[
x �→ 〈1, RMW, T1〉
y �→ 〈1, RMW, T1〉

]
·
[
x �→ 〈1, RMW, T1〉
y �→ 〈1, RMW, T1〉

]
.

For T2 the write step may change L2 to

L′
2 =

[
x �→ 〈0, R, T0〉
y �→ 〈0, R, T0〉

]
·
[
x �→ 〈1, RMW, T1〉
y �→ 〈0, R, T0〉

]
·
[
x �→ 〈1, RMW, T1〉
y �→ 〈1, RMW, T1〉

]
.

Thus, thread T2 can still see the old values, or lose the prefix of its list and see
the new values. Importantly, it cannot read 1 from y and then 0 from x. Note
that STORE(y, 1) by T1 cannot modify L2 to the list

L′′
2 =

[
x �→ 〈0, R, T0〉

y �→ 〈1, RMW, T1〉
]

·
[
x �→ 〈1, RMW, T1〉
y �→ 〈1, RMW, T1〉

]
·
[
x �→ 〈1, RMW, T1〉
y �→ 〈1, RMW, T1〉

]
,

as it requires T1 to have L2 in its own potential. This models the intended
semantics of message passing under causal consistency.

The next theorem establishes the equivalence of SRA as defined above and
opSRA from [28], which is an (operational version of) the standard strong release-
acquire declarative semantics [26,31]. (As a corollary, we obtain the equivalence
between the potential-based system from [28] and the variant we define in this
paper.)

Our notion of equivalence employed in the theorem is trace equivalence. We
let a trace of a memory system be a sequence of transition labels, ignoring
ε transitions, and consider traces of SRA starting from an initial state λτ ∈
{T1, ... ,TN}. {〈λx. 〈0, RMW, T0〉〉} and traces of opSRA starting from the initial
execution graph that consists of a write event to every location writing 0 by a
distinguished initialization thread T0.

Theorem 2. A trace is generated by SRA iff it is generated by opSRA.

The proof is of this theorem is by simulation arguments (forward simulation
in one direction and backward for the converse). It is mechanized in Coq [29].
The mechanized proof does not consider fork and join steps, but they can be
straightforwardly added.
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extended expressions E ::= e | x | R(x) | E + E | ¬E | E ∧ E | ...
interval assertions I ::= [E] | I ; I | I ∧ I | I ∨ I
assertions ϕ, ψ ::= τ I e ϕ ϕ ϕ ϕ

Fig. 9. Assertions of Piccolo

6 Program Logic

For the instantiation of our RG framework to SRA, we next (1) introduce the
assertions of the logic Piccolo and (2) specify memory triples for Piccolo. Our logic
is inspired by interval logics like Moszkowski’s ITL [35] or duration calculus [13].

Syntax and Semantics. Figure 9 gives the grammar of Piccolo. We base it on
extended expressions which—besides registers—can also involve locations as well
as expressions of the form R(x) (to indicate RMW-flag R). Extended expressions
E can hold on entire intervals of a store list (denoted [E]). Store lists can be split
into intervals satisfying different interval expressions (I1 ; ... ; In) using the “ ;”
operator (called “chop”). In turn, τ �I means that all store lists in τ ’s potential
satisfy I. For an assertion ϕ, we let fv(ϕ) ⊆ Reg∪Loc∪Tid be the set of registers,
locations and thread identifiers occurring in ϕ, and write R(x) ∈ ϕ to indicate
that the term R(x) occurs in ϕ.

As an example consider again MP (Fig. 2). We would like to express that T2
upon seeing y to be 1 cannot see the old value 0 of x anymore. In Piccolo this
is expressed as T2� [y �= 1] ; [x = 1]: the store lists of T2 can be split into two
intervals (one possibly empty), the first satisfying y �= 1 and the second x = 1.

Formally, an assertion ϕ describes register stores coupled with SRA states:

Definition 13. Let γ be a register store, δ a potential store, L a store list, and
D a potential mapping. We let �e�〈γ,δ〉 = γ(e), �x�〈γ,δ〉 = δ(x), and �R(x)�〈γ,δ〉 =
if rmw(δ(x)) = R then true else false. The extension of this notation to any
extended expression E is standard. The validity of assertions in 〈γ,D〉, denoted
by 〈γ,D〉 |= ϕ, is defined as follows:

1. 〈γ, L〉 |= [E] if �E�〈γ,δ〉 = true for every δ ∈ L.
2. 〈γ, L〉 |= I1 ; I2 if 〈γ, L1〉 |= I1 and 〈γ, L2〉 |= I2 for some (possibly empty) L1

and L2 such that L = L1 · L2.
3. 〈γ, L〉 |= I1 ∧ I2 if 〈γ, L〉 |= I1 and 〈γ, L〉 |= I2 (similarly for ∨).
4. 〈γ,D〉 |= τ �I if 〈γ, L〉 |= I for every L ∈ D(τ).
5. 〈γ,D〉 |= e if γ(e) = true.
6. 〈γ,D〉 |= ϕ1 ∧ ϕ2 if 〈γ,D〉 |= ϕ1 and 〈γ,D〉 |= ϕ2 (similarly for ∨).

Note that with ∧ and ∨ as well as negation on expressions,1 the logic provides
the operators on sets of states necessary for an instantiation of our RG frame-
work. Further, the requirements from SRA states guarantee certain properties:
1 Negation just occurs on the level of simple expressions e which is sufficient for cal-

culating P \ �e� required in rules if and while.
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Assumption Pre Command Post Reference{
ϕ(r := e)

}
τ �→ r := e

{
ϕ

}
Subst-asgn

x /∈ fv(ϕ)
{
ϕ

}
τ �→ WRITE(x, e)

{
ϕ

}
Stable-wr

r /∈ fv(ϕ)
{
ϕ

}
τ �→ r := LOAD(x)

{
ϕ

}
Stable-ld

τ /∈ fv(ϕ)
{
ϕ

}
τ �→ FORK(τ1, τ2)

{
ϕ

}
Stable-fork

τ /∈ fv(ϕ)
{
ϕ

}
τ �→ JOIN(τ1, τ2)

{
ϕ

}
Stable-join{

e ∧ τ �I
}

τ �→ FORK(τ1, τ2)
{
e ∧ τ1�I ∧ τ2�I

}
Fork{

e ∧ τ1�I ∧ τ2�I
}

τ �→ JOIN(τ1, τ2)
{
e ∧ τ �I

}
Join{

True
}

τ �→ WRITE(x, e)
{
τ �[x = e]

}
Wr-own

R(x) /∈ I
{
π�I

}
τ �→ WRITE(x, e)

{
π�(I ∧ [R(x)]) ; [x = e]

}
Wr-other-1

x /∈ fv(Iτ ),
R(x) /∈ I

{
τ �Iτ ∧ π�I ; Iτ

}
τ �→ WRITE(x, e)

{
π�I ; Iτ

}
Wr-other-2

x /∈ fv(Iτ ) τ �Iτ τ �→ WRITE(x, e) π�[R(x)] ; Iτ Wr-other-3
x / fv(I) τ �[R(x)] ; I τ SWAP(x, e) τ �I Swap-skip

Fig. 10. Memory triples for Piccolo using WRITE ∈ {SWAP, STORE} and assuming τ 	= π

– For ϕ1 = τ �[Eτ
1 ] ; ... ; [E

τ
n] and ϕ2 = π�[Eπ

1 ] ; ... ; [E
π
m]: if Eτ

i ∧ Eπ
j ⇒ False

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, then ϕ1 ∧ ϕ2 ⇒ False (follows from the fact
that all lists in potentials are non-empty and agree on the last store).

– If 〈γ,D〉 |= τ � [R(x)] ; [E], then every list L ∈ D(τ) contains a non-empty
suffix satisfying E (since all lists have to end with RMW-flags set on).

All assertions are preserved by steps lose and dup. This stability is required
by our RG framework (Condition (mem))2. Stability is achieved here because
negations occur on the level of (simple) expressions only (e.g., we cannot have
¬(τ�[x = v]), meaning that τ must have a store in its potential whose value for
x is not v, which would not be stable under lose).

Proposition 1. If 〈γ,D〉 |= ϕ and D ε−→SRA D′, then 〈γ,D′〉 |= ϕ.

Memory Triples. Assertions in Piccolo describe sets of states, thus can be used
to formulate memory triples. Figure 10 gives the base triples for the different
primitive instructions.

We see the standard SC rule of assignment (Subst-asgn) for registers fol-
lowed by a number of stability rules detailing when assertions are not affected
by instructions. Axioms Fork and Join describe the transfer of properties from
forking thread to forked threads and back.

The next four axioms in the table concern write instructions (either SWAP or
STORE). They reflect the semantics of writing in SRA: (1) In the writer thread τ
all stores in all lists get updated (axiom Wr-own). Other threads π will have
(2) their lists being split into “old” values for x with R flag and the new value
for x (Wr-other-1), (3) properties (expressed as Iτ ) of suffixes of lists being
preserved when the writing thread satisfies the same properties (Wr-other-2)
and (4) their lists consisting of R-accesses to x followed by properties of the
2 Such stability requirements are also common to other reasoning techniques for weak

memory models, e.g., [19].
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writer (Wr-other-3). The last axiom concerns SWAP only: as it can only read
from store entries marked as RMW it discards intervals satisfying [R(x)].

Example 4. We employ the axioms for showing one proof step for MP, namely
one pair in the non-interference check of the rely R2 of T2 with respect to the
guarantees G1 of T1:

{T2�[y �= 1] ; [x = 1] ∧ T1�[x = 1]} T1 �→ STORE(x, 1) {T2�[y �= 1] ; [x = 1]}

By taking Iτ to be [x = 1], this is an instance of Wr-other-2.

In addition to the axioms above, we use a shift rule for load instructions:

Ld-shift
{τ �I} τ �→ r := LOAD(x) {ψ}

{τ �[(e ∧ E)(r := x)] ; I} τ �→ r := LOAD(x) {(e ∧ τ �[E]; I) ∨ ψ}

A load instruction reads from the first store in the lists, however, if the list
satisfying [(e ∧ E)(r := x)] in [(e ∧ E)(r := x)] ; I is empty, it reads from a list
satisfying I. The shift rule for LOAD puts this shifting to next stores into a proof
rule. Like the standard Hoare rule Subst-asgn, Ld-shift employs backward
substitution.

Example 5. We exemplify rule Ld-shift on another proof step of example MP,
one for local correctness of T2:

{T2�[y �= 1] ; [x = 1]} T2 �→ a := LOAD(y) {a = 1 ⇒ T2�[x = 1]}
From axiom Stable-ld we get {T2�[x = 1]} T2 �→ a := LOAD(y) {T2�[x = 1]}.
We obtain {T2�[y �= 1] ; [x = 1]} T2 �→ a := LOAD(y) {a �= 1 ∨ T2�[x = 1]} using
the former as premise forLd-shift.

In addition, we include the standard conjunction, disjunction and conse-
quence rules of Hoare logic. For instrumented primitive commands we employ
the following rule:

Instr
{ψ0} τ �→ c {ψ1}{ψ1} τ �→ r1 := e1 {ψ2} ... {ψn−1} τ �→ rn := en {ψn}

{ψ0} τ �→ 〈c, 〈r1, ... ,rn〉 := 〈e1, ... ,en〉〉 {ψn}

Finally, it can be shown that all triples derivable from axioms and rules are
valid memory triples.

Lemma 1. If a Piccolo memory triple is derivable, �Piccolo {ϕ} τ �→ α {ψ}, then
SRA � {{〈γ,D〉 | 〈γ,D〉 |= ϕ}} τ �→ α {{〈γ,D〉 | 〈γ,D〉 |= ψ}}.
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T0�[x �= 2]
Thread T1{
T1�Ix

0
}

1 : STORE(x, 1);{
T1�Ix

1
}

2 : STORE(x, 2)
True

Thread T2{
T2�Ix

012
}

3 : a := LOAD(x);{
a = 2 ⇒ T2�Ix

2
}

4 : b := LOAD(x)
a = 2 ⇒ b = 2

a = 2 b = 1

Fig. 11. RRC for two threads (a.k.a. CoRR0)

T0�Ix
0

Thread T1{
T1�Ix

02
}

1 : STORE(x, 1){
True

}
Thread T2{
T1�Ix

01
}

2 : STORE(x, 2){
True

}
Thread T3{
T3�(Ix

012 ∨ Ix
021)

}
3 : a := LOAD(x);{
a = 2 ⇒ T3�Ix

21
}

4 : b := LOAD(x){〈a, b〉 = 〈2, 1〉 ⇒ T3�Ix
1
}

Thread T4{
T4�(Ix

012 ∨ Ix
021)

}
5 : c := LOAD(x);{
c = 1 ⇒ T4�Ix

12
}

6 : d := LOAD(x){〈c, d〉 = 〈1, 2〉 ⇒
T4�Ix

2

}

a, b = 2, 1 c, d = 1, 2

Fig. 12. RRC for four threads (a.k.a. CoRR2)

7 Examples

We discuss examples verified in Piccolo. Additional examples can be found in
the extended version of this paper [30].

Coherence. We provide two coherence examples in Figs. 11 and 12, using the
notation Ix

v1v2...vn
= [x = v1] ; [x = v2] ; ... ; [x = vn]. Figure 11 enforces an

ordering on writes to the shared location x on thread T1. The postcondition
guarantees that after reading the second write, thread T2 cannot read from the
first. Figure 12 is similar, but the writes to x occur on two different threads. The
postcondition of the program guarantees that the two different threads agree on
the order of the writes. In particular if one reading thread (here T3) sees the
value 2 then 1, it is impossible for the other reading thread (here T4) to see 1
then 2.

Potential assertions provide a compact and intuitive mechanism for reason-
ing, e.g., in Fig. 11, the precondition of line 3 precisely expresses the order of
values available to thread T2. This presents an improvement over view-based
assertions [16], which required a separate set of assertions to encode write order.

Peterson’s Algorithm. Figure 13 shows Peterson’s algorithm for implement-
ing mutual exclusion for two threads [38] together with Piccolo assertions. We
depict only the code of thread T1. Thread T2 is symmetric. A third thread T3
is assumed stopping the other two threads at an arbitrary point in time. We
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Thread T1{¬a1 ∧ ¬a2 ∧ mx1 = 0
}

while ¬stop do
{¬a1 ∧ (¬a2 ∨ T1�[R(turn)] ; [flag2])

}
1 : STORE(flag1, true);

{¬a1 ∧ T1�[flag1] ∧ (¬a2 ∨ T1�[R(turn)] ; [flag2])
}

2 : 〈SWAP(turn, 2); a1 := true〉;
3 : do

{
a1 ∧ (¬a2 ∨ T1�[flag2 ∧ turn �= 1] ∨ P )

}
4 : fl1 := LOAD(flag2);

{
a1 ∧ (¬a2 ∨ (fl1 ∧ T1�[flag2 ∧ turn �= 1]) ∨ P )

}
5 : tu1 := LOAD(turn);

{
a1 ∧ (¬a2 ∨ (fl1 ∧ tu1 �=1 ∧ T1�[flag2 ∧ turn �=1]) ∨ P )

}
6 : until ¬fl1 ∨ (tu1 = 1);

{
a1 ∧ (¬a2 ∨ P )

}
7 : STORE(cs, ⊥);

{
a1 ∧ (¬a2 ∨ P )

}
8 : STORE(cs, 0);

{
T1�[cs = 0] ∧ a1 ∧ (¬a2 ∨ P )

}
9 : mx1 := LOAD(cs);

{
mx1 = 0 ∧ a1 ∧ (¬a2 ∨ P )

}
10 : 〈STORE(flag1, 0); a1 := false〉
mx1 = 0

Fig. 13. Peterson’s algorithm, where P = T1�[R(turn)] ; [flag2 ∧ turn = 1]. Thread T2
is symmetric and we assume a stopper thread T3 that sets stop to true.

use do C until e as a shorthand for C ; while e do C. For correctness under
SRA, all accesses to the shared variable turn are via a SWAP, which ensures that
turn behaves like an SC variable.

Correctness is encoded via registers mx1 and mx2 into which the contents of
shared variable cs is loaded. Mutual exclusion should guarantee both registers
to be 0. Thus neither threads should ever be able to read cs to be ⊥ (as stored
in line 7). The proof (like the associated SC proof in [9]) introduces auxiliary
variables a1 and a2. Variable ai is initially false, set to true when a thread Ti

has performed its swap, and back to false when Ti completes.
Once again potentials provide convenient mechanisms for reasoning about the

interactions between the two threads. For example, the assertion T1�[R(turn)] ;
[flag2] in the precondition of line 2 encapsulates the idea that an RMW on
turn (via SWAP(turn, 2)) must read from a state in which flag2 holds, allowing
us to establish T1�[flag2] as a postcondition (using the axiom Swap-skip). We
obtain disjunct T1�[flag2 ∧ turn �= 1] after additionally applying Wr-own.

8 Discussion, Related and Future Work

Previous RG-like logics provided ad-hoc solutions for other concrete mem-
ory models such as x86-TSO and C/C++11 [11,16,17,32,39,40,47]. These
approaches established soundness of the proposed logic with an ad-hoc proof
that couples together memory and thread transitions. We believe that these log-
ics can be formulated in our proposed general RG framework (which will require
extensions to other memory operations such as fences).

Moreover, Owicki-Gries logics for different fragments of the C11 memory
model [16,17,47] used specialized assertions over the underlying view-based
semantics. These include conditional-view assertion (enabling reasoning about
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MP), and value-order (enabling reasoning about coherence). Both types of asser-
tions are special cases of the potential-based assertions of Piccolo.

Ridge [40] presents an RG reasoning technique tailored to x86-TSO, treating
the write buffers in TSO architectures as threads whose steps have to preserve
relies. This is similar to our notion of stability of relies under internal memory
transitions. Ridge moreover allows to have memory-model specific assertions
(e.g., on the contents of write buffers).

The OGRA logic [32] for Release-Acquire (which is slightly weaker form of
causal consistency compared to SRA studied in this paper) takes a different
approach, which cannot be directly handled in our framework. It employs sim-
ple SC-like assertions at the price of having a non-standard non-interference
condition which require a stronger form of stability.

Coughlin et al. [14,15] provide an RG reasoning technique for weak memory
models with a semantics defined in terms of reordering relations (on instructions).
They study both multicopy and non-multicopy atomic architectures, but in all
models, the rely-guarantee assertions are interpreted over SC.

Schellhorn et al. [41] develop a framework that extends ITL with a composi-
tional interleaving operator, enabling proof decomposition using RG rules. Each
interval represents a sequence of states, strictly alternating between program
and environment actions (which may be a skip action). This work is radically
different from ours since (1) their states are interpreted using a standard SC
semantics, and (2) their intervals represent an entire execution of a command as
well the interference from the environment while executing that command.

Under SC, rely-guarantee was combined with separation logic [44,46], which
allows the powerful synergy of reasoning using stable invariants (as in rely-
guarantee) and ownership transfer (as in concurrent separation logic). It is inter-
esting to study a combination of our RG framework with concurrent separation
logics for weak memory models, such as [43,45].

Other works have studied the decidability of verification for causal consis-
tency models. In work preceding the potential-based SRA model [28], Abdulla
et al. [1] show that verification under RA is undecidable. In other work, Abdulla
et al. [3] show that the reachability problem under TSO remains decidable for
systems with dynamic thread creation. Investigating this question under SRA is
an interesting topic for future work.

Finally, the spirit of our generic approach is similar to Iris [22], Views [18],
Ogre and Pythia [7], the work of Ponce de León et al. [34], and recent axiomatic
characterizations of weak memory reasoning [19], which all aim to provide a
generic framework that can be instantiated to underlying semantics.

In the future we are interested in automating the reasoning in Piccolo, starting
from automatically checking for validity of program derivations (using, e.g., SMT
solvers for specialised theories of sequences or strings [24,42]), and, including,
more ambitiously, synthesizing appropriate Piccolo invariants.
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Abstract. Existing dynamic partial order reduction (DPOR) algo-
rithms scale poorly on concurrent data structure benchmarks because
they visit a huge number of blocked executions due to spinloops.

In response, we develop Awamoche, a sound, complete, and strongly
optimal DPOR algorithm that avoids exploring any useless blocked exe-
cutions in programs with await and confirmation-CAS loops. Conse-
quently, it outperforms the state-of-the-art, often by an exponential fac-
tor.

1 Introduction

Dynamic partial order reduction (DPOR) [13] has been promoted as an effective
verification technique for concurrent programs: starting from a single execution
of the program under test, DPOR repeatedly reverses the order of conflicting
accesses in order to generate all (meaningfully) different program executions.

Applying DPOR in practice, however, reveals a major performance and scal-
ability bottleneck: it explores a huge number of blocked executions, often out-
numbering the complete program executions by an exponential factor. Blocked
executions most commonly occur in programs with spinloops, i.e., loops that do
not make progress unless some condition holds. Such loops are usually trans-
formed into assume statements [14,18], effectively requiring that the loop exits
at its first iteration (and blocking otherwise).

We distinguish three classes of such blocked executions.
The first class occurs in programs with non-terminating spinloops, such as

a program awaiting for x > 42 in a context where x = 0. For this program,
modeled as the statement assume(x > 42), DPOR obviously explores a blocked
execution as the only existing value for x violates the assume condition. Such
blocked executions should be explored because they indicate program errors.

The second class occurs in programs with await loops. To see how such loops
lead to blocked executions, consider the following program under sequential con-
sistency (SC) [23] (initially x= y =0),

x := 2
assume(y ≤ 1)

y := 2
assume(x ≤ 1)
y := 1
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where each assume models an await loop, e.g., do a := y while (a > 1) for the
assume of the first thread. Suppose that DPOR executes this program in a left-to-
right manner, thereby generating the interleaving x := 2, assume(y ≤ 1), y := 2.
At this point, assume(x ≤ 1) cannot be executed, since x would read 2. Yet,
DPOR cannot simply abort the exploration. To generate the interleaving where
the first thread reads y = 1, DPOR must consider the case where the read of x

is executed before the x := 2 assignment. In other words, DPOR has to explore
blocked executions in order to generate non-blocked ones.

The third class occurs in programs with confirmation-CAS loops such as:

do

a := x

b := f(a)
while (¬CAS(x, a, b))

which is modeled as:
a := x

b := f(a)
assume(CAS(x, a, b))

Consider a program comprising two threads running the code above, with a and
b being local variables. Suppose that DPOR first obtains the (blocked) trace
where both threads concurrently try to perform their CAS: a1 := x, a2 := x,
CAS(x, a1, b1), CAS(x, a2, b2). Trying to satisfy the blocked assume of thread 2 by
reversing the CAS instructions is fruitless because then thread 1 will be blocked.

In this paper, we show that exploring blocked executions of the second and
third classes is unnecessary.

We develop Awamoche, a sound, complete, and optimal DPOR algorithm
that avoids generating any blocked executions for programs with await and
confirmation-CAS loops. Our algorithm is strongly optimal in that no explo-
ration is wasted: it either yields a complete execution or a termination violation.
Awamoche extends TruSt [15], an optimal DPOR algorithm that supports weak
memory models and has polynomial space requirements, with three new ideas:

1. Awamoche identifies certain reads as stale, meaning that they will never be
affected by a race reversal due to TruSt’s maximality condition on reversals,
and avoids exploring any executions that block on stale-read values.

2. To deal with await loops, since it cannot completely avoid generating execu-
tions with blocking reads, Awamoche revisits such executions in place if a
same-location write is later encountered. If no such write is found, then the
blocked execution witnesses a program termination bug [21,25].

3. To effectively deal with confirmation-CAS loops, Awamoche only consid-
ers executions where the confirmation succeeds, by reversing not only races
between conflicting instructions, but also speculatively revisiting traces with
two reads reading from the same write event to enable a later in-place revisit.

As we shall see in Sect. 5, supporting these DPOR modifications is by no means
trivial when it comes to proving correctness and (strong) optimality. Indeed,
TruSt’s correctness proof proceeds in a backward manner, assuming a way to
determine the last event that was added to a given trace. The presence of in-place
and speculative revisits, however, makes this impossible.
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We therefore develop a completely different proof that works in a forward
manner: from each configuration that is a prefix of a complete trace, we construct
a sequence of steps that will lead to a larger configuration that is also a prefix
of the trace. Our proof assumes that same-location writes are causally ordered,
which invariably holds in correct data structure benchmarks, but is otherwise
more general than TruSt’s assuming less about the underlying memory model.

Our contributions can be summarized as follows:

Section 2 We describe how and why DPOR encounters blocked executions.
Section 3 We intuitively present Awamoche’s three novel key ideas: stale reads,

in-place revisits, and speculative revisits.
Section 4 We describe our algorithm in detail in a memory-model-agnostic frame-

work.
Section 5 We generalize TruSt’s proof and prove Awamoche sound, complete,

and strongly optimal.
Section 6 We evaluate Awamoche, and demonstrate that it outperforms the

state-of-the-art, often by an exponential factor.

2 DPOR and Blocked Executions

Before presenting Awamoche, we recall the fundamentals of DPOR (Sect. 2.1),
and explain why spinloops lead to blocked explorations (Sect. 2.2).

2.1 Dynamic Partial Order Reduction

DPOR algorithms verify a concurrent program by enumerating a representa-
tive subset of its interleavings. Specifically, they partition the interleavings into
equivalence classes (two interleavings are equivalent if one can be obtained from
the other by reordering independent instructions), and strive to explore one
interleaving per equivalence class. Optimal algorithms [2,15] achieve this goal.

DPOR algorithms explore interleavings dynamically. After running the pro-
gram and obtaining an initial interleaving, they detect racy instructions (i.e.,
instructions accessing the same variable with at least one of them being a write),
and proceed to explore an interleaving where the race is reversed.

Let us clarify the exploration procedure with the following example, where
both variables x and y are initialized to zero.

if (x = 0)
y := 1

x := 1
x := 2

(RW+WW)

The RW+WW program has 5 interleavings that can be partitioned into 3 equiv-
alence classes. Intuitively, the y := 1 is irrelevant because the program contains
no other access to y; all that matters is the ordering among the x accesses.

The exploration steps for RW+WW can be seen in Fig. 11. DPOR obtains a
full trace of the program, while also recording the transitions that it took at each

1 The exploration procedure has been simplified for presentational purposes. For a full
treatment, please refer to [2,15].
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0init

 · · · 

1init

(rx) if (...)

(wy) y := 1

{rx}

{wy}
 · · · 

2init

(rx) if (...)

(wy) y := 1

(w1) x := 1

(w2) x := 2

{rx, w1}

{wy}

{w1}

{w2}

bt

3init

(w1) x := 1
{w1, rx}

 · · · 

4init

(w1) x := 1

(rx) if (...)

(w2) x := 2

{w1, rx}

{rx, w2}

{w2}

bt

5init

(w1) x := 1

(w2) x := 2

{rx, w1}

{rx, w2}  

6init

(w1) x := 1

(w2) x := 2

(rx) if (...)

{rx, w1}

{rx, w2}

{rx}

Fig. 1. A DPOR exploration of RW+WW

step at the respective transition’s backtrack set (traces 0 to 2 ). After obtaining
a full trace, it initiates a race-detection phase. During this phase, DPOR detects
the races between rx and the two writes w1 and w2. (While w1 and w2 also write
the same variable, they do not constitute a race, as they are causally related.)
For the first race, DPOR adds w1 in the backtrack set of the first transition, so
that it can subsequently execute w1 instead of rx. For the second one, while w2

is not in the backtrack set of the first transition, w2 cannot be directly executed
as the first transition without its causal predecessors (i.e., w1) having already
executed. Since w1 is already in the backtrack set of the first transition, DPOR
cannot do anything else, and the race-detection phase is over.

After the race-detection phase is complete, the exploration proceeds in an
analogous manner: DPOR backtracks to the first transition, fires w1 instead of
rx (trace 3 ), re-runs the program to obtain a full trace (trace 4 ), and initiates
another race-detection phase. During the latter, a race between rx and w2 is
detected, and w2 is inserted in the backtrack set of the second transition.

Finally, DPOR backtracks to the second transition, executes w2 instead of
rx (trace 5 ), and eventually obtains the full trace 6 . During the last race-
detection phase of the exploration, DPOR detects the races between rx and the
two writes w1 and w2. As rx is already in the backtrack set of the first two
transitions, DPOR has nothing else to do, and thus concludes the exploration.

Observe that DPOR explored one representative trace from each equivalence
class (traces 2 , 4 , and 6 ). To avoid generating multiple equivalent interleav-
ings, optimal DPOR algorithms extend the description above by restricting when
a race reversal is considered. In particular, the TruSt algorithm [15] imposes a
maximality condition on the part of the trace that is affected by the reversal.
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2.2 Assume Statements and DPOR

while (x=0) {}
y := 1

x := 1
x := 2

(rw+ww-l)
assume(x6=0)
y := 1

x := 1
x := 2

(rw+ww-a)

Fig. 2. A variation of RW+WW with an await loop (left) and an assume (right)

To see how assume statements arise in concurrent programs, suppose that
we replace the if-statement of RW+WW with an await loop (Fig. 2). Although
the change does not really affect the possible outcomes for x, it makes DPOR
diverge: DPOR examines executions where the loop terminates in 1, 2, 3, . . .
steps. Since, however, the loop has no side-effects, we can actually transform it
into an assume(x) statement, effectively modeling a loop bound of one.

Doing so guarantees DPOR’s termination but not its good performance. The
reason is ascribed to the very nature of DPOR. Indeed, suppose that DPOR
executes the first instruction of the left thread and then blocks due to assume

statement. At this point, DPOR cannot simply stop the exploration due to the
assume statement not being satisfied; it has to explore the rest of the program,
so that the race reversals make the assume succeed. All in all, DPOR explores
2 complete and 1 blocked traces for RW+WW-A.

In general, DPOR cannot know whether some future reversal will ever make
an assume succeed. Worse yet, it might be the case that there is an exponential
number of traces to be explored (due to the other program threads), until DPOR
is certain that the assume statement cannot be unblocked.

To see this, consider the following program where RW+WW-A runs in par-
allel with some threads accessing z:

RW + WW − A z := 1 a1 := z ... aN := z (rw+ww-a-par)

For the trace of RW+WW-A where the assume fails, DPOR fruitlessly explores
2N traces in the hope that an access to x is found that will unblock the assume

statement.
Given that executing an assume statement that fails leads to blocked exe-

cutions, one might be tempted to consider a solution where assume statements
are only scheduled if they succeed. Even though such a solution would elimi-
nate blocking for RW+WW-A, it is not a panacea. To see why, consider a vari-
ation of RW+WW-A where the first thread executes assume(x = 0) instead of
assume(x 6= 0). In such a case, the assume can be scheduled first (as it succeeds),
but reversing the races among the x accesses will lead to blocked executions. It
becomes evident that a more sophisticated solution is required.

3 Key Ideas

Awamoche, our optimal DPOR algorithm, extends TruSt [15] with three novel
key ideas: stale-read annotations (Sect. 3.1), in-place revisits (Sect. 3.2) and spec-
ulative revisits (Sect. 3.3). As we will shortly see, these ideas guarantee that
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Awamoche is strongly optimal : it never initiates fruitless explorations, and all
explorations lead to executions that are either complete or denote termination
violations. In the rest of the paper, we call such executions useful.

3.1 Avoiding Blocking Due to Stale Reads

Race reversals are at the heart of any DPOR algorithm. TruSt distinguishes two
categories of race reversals: (1) write-read and write-write reversals, (2) read-
write reversals. While the former category can be performed by modifying the
trace directly in place (called a “forward revisit”), the latter may require remov-
ing events from the trace (called a “backward revisit”). To ensure optimality for
backward revisits, TruSt checks a certain maximality condition for the events
affected by them, namely the read, which will be reading from a different write,
and all events to be deleted.

An immediate consequence is that any read events not satisfying TruSt’s
maximality condition, which we call stale reads, will never be affected by a
subsequent revisit. As an example, consider the following program with a read
that blocks if it reads 0:

x := 1 assume(x = 1) (W+R)

After obtaining the trace x := 1; assume(x = 1), TruSt forward-revisits the read
in-place, and makes it read 0. At this point, we know that (1) the assume will fail,
and (2) that both the read and the events added before it cannot be backward-
revisited, due to the read reading non-maximally (which violates TruSt’s maxi-
mality condition). As such, no useful execution is ever going to be reached, and
there is no point in continuing the exploration.

Leveraging the above insight, we make Awamoche immediately drop traces
where some assume is not satisfied due to a stale read. To do this, Awamoche

automatically annotates reads followed by assume statements with the condition
required to satisfy the assume, and discards all forward revisits that do not satisfy
the annotation.

Even though stale-read annotations are greatly beneficial in reducing block-
ing, they are merely a remedy, not a cure. As already mentioned, they are only
leveraged in write-read reversals, and are thus sensitive to DPOR’s exploration
order. To completely eliminate blocking, Awamoche performs in-place and spec-
ulative revisits, described in the next sections.

3.2 Handling Await Loops with In-Place Revisits

Awamoche’s solution to eliminate blocking is to not blindly reverse all races
whenever a trace is blocked, but rather to only try and reverse those that might
unblock the exploration.

As an example, consider Rw+ww-A-PAR (Fig. 3). After Awamoche obtains
the first full trace, it detects the races among the z accesses, as well as the 〈rx, w1〉
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1init

(rx) asm(x)

(w1) x := 1

(w2) x := 2

(z1) z := 1

(a1) a1 := z

(aN ) aN := z

{rx, w1}

{w1}

{w2}

{z1, a1, ... , aN}
ir

2init

(w1) x := 1

(rx) asm(x)

(w2) x := 2

(z1) z := 1

(a1) a1 := z

(aN ) aN := z

{rx, w2}

{w1}

{w2}

{z1, a1, ... , aN}
bt

· · ·

3init

(w1) x := 1

(rx) asm(x)

(w2) x := 2

(aN ) aN := z

(z1) z := 1

(aN 1) aN 1 := z

{rx, w2}

{w1}

{w2}

{z1, a1, ... , aN}

Fig. 3. Key steps in Awamoche’s exploration of rw+ww-a-par

1init

(rx) asm(x)

(w1) x := 1

(w2) x := 2

(z1) z := 1

(zn) z := n

{rx, w1}

{w1}

{w2}

{z1, z2, ... , zn}

{zn}

ir

2init

(w1) x := 1

(rx) asm(x)

(w2) x := 2

(z1) z := 1

(zn) z := n

{rx, w1}

{rx, w2}

{w2}

{z1, z2, ... , zn}

{zn}

ir

3init

(w1) x := 1

(w2) x := 2

(rx) asm(x)

(z1) z := 1

(zn) z := n

{rx, w1}

{rx, w2}

{w2}

{z1, z2, ... , zn}

{zn}

bt
· · ·

Fig. 4. An Awamoche exploration of RW+WW

race. (Recall that Awamoche is based on TruSt and therefore does not consider
the 〈rx, w2〉 race in this trace.) At this point, a standard DPOR would start
reversing the races among the z accesses. Doing so, however, is wasteful, since
reversing races after the blockage will lead to the exploration of more blocked
executions.

Instead, Awamoche chooses to reverse the 〈rx, w1〉 race (as this might make
the assume succeed), and completely drops the races among the z accesses.

We call this procedure in-place revisiting (denoted by
ir

in Fig. 3). Intuitively,
ignoring the z races is safe to do as they will have the chance to manifest in the
trace where the 〈rx, w1〉 race has been reversed.

Indeed, reversing the 〈rx, w1〉 does make the assume succeed, at which point
the exploration proceeds in the standard DPOR way. Awamoche explores 2N

traces where the read of x reads 1, and another 2N where it reads 2. Note that,
even though in this example Awamoche explores 2/3 of the traces that standard
DPOR explores, as we show in Sect. 6 the difference can be exponential.
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1init

(r1) a1 := x

(c1) CAS(x, a1, b1)

{r1}

 · · · 

2init

(r1) a1 := x

(c1) CAS(x, a1, b1)

(r2) a2 := x

(c2) CAS(x, a2, b2)

{r1, r2}

{r2}

bt

3init

(r2) a2 := x

{r1, r2}

 · · · 

4init

(r2) a2 := x

(c2) CAS(x, a2, b2)

(r1) a1 := x

(c1) CAS(x, a1, b1)

{r1, r2}

{r1}

Fig. 5. An Awamoche exploration of the confirmation-CAS example.

Suppose now that we change the assume(x) in Rw+ww-A-PAR to assume(x
= 42) so that there is no trace where the assume is satisfied. The key steps of
Awamoche’s exploration can be seen in Fig. 4. Upon obtaining a full trace, all
races to z are ignored and Awamoche revisits rx in place. Subsequently, as the
assume is still not satisfied, Awamoche again revisits rx in place (trace 2 ). At
this point, since there are no other races on x it can reverse, Awamoche reverses
all the races on z, and finishes the exploration.

In total, Awamoche explores 2N blocked executions for the updated exam-
ple, which are all useful. As rx is reading from the latest write to x in all these exe-
cutions and the assume statement (corresponding to an await loop) still blocks,
each of these executions constitutes a distinct liveness violation.

3.3 Handling Confirmation CASes with Speculative Revisits

In-place revisiting alone suffices to eliminate useless blocking in programs whose
assume statements arise only due to await loops. It does not, however, eliminate
blocking in confirmation-CAS loops. Confirmation-CAS loops consist of a spec-
ulative read of some shared variable, followed by a (possibly empty) sequence of
local accesses and other reads, and a confirmation CAS that only succeeds if it
reads from the same write as the speculative read.

As an example, consider the confirmation-CAS example from Sect. 1 and
a trace where both reads read the initial value, the CAS of the first thread
succeeds, and the CAS of the second thread reads the result of the CAS of the
first. Although this trace is blocked and explored by DPOR (since the CAS read
of the second thread is reading from the latest, same-location write), it does not
constitute an actual liveness violation. In fact, even though the CAS read that
blocks does read from the latest, same-location write, the r := x read in the
same loop iteration does not. In order for a blocked trace (involving a loop) to
be an actual liveness violation, all reads corresponding to a given iteration need
to be reading the latest value, and not just one.

To avoid exploring blocked traces altogether for cases likes this, we equip
Awamoche with some builtin knowledge about confirmation-CAS loops and
treat them specially when reversing races. To see how this is done, we present a
run of Awamoche on the confirmation-CAS example of Sect. 1 (see Fig. 5).



238 M. Kokologiannakis et al.

While building the first full trace (trace 1 ), another big difference between
Awamoche and standard DPOR algorithms is visible: Awamoche does not
maintain backtrack sets for confirmation CASes. Indeed, there is no point in
reversing a race involving a confirmation CAS, as such a reversal will make the
CAS read from a different write than the speculative read, and hence lead to an
assume failure.

After obtaining the first full trace (trace 2 ), Awamoche initiates a race-
detection phase. At this point, the final big difference between Awamoche

and previous DPORs is revealed. Awamoche will not reverse races between
reads and CASes, but rather between speculative reads. (While speculative reads
are not technically conflicting events, they conflict with the later confirmation-
CASes.) As can be seen in trace 3 , Awamoche schedules the speculative read
of the second thread before that of the first thread so that it explores the sce-
nario where the confirmation of the second thread succeeds before the one of the
first.

Finally, simply by adding the remaining events of the second thread before
the ones of the first thread, Awamoche explores the second and final trace of
the example (trace 4 ), while avoiding having blocked traces altogether.

4 Await-Aware Model Checking Algorithm

Awamoche is based on TruSt [15], a state-of-the-art stateless model checking
algorithm that explores execution graphs [9], and thus seamlessly supports weak
memory models. In what follows, we formally define execution graphs (Sect. 4.1),
and then present Awamoche (Sect. 4.2).

4.1 Execution Graphs

An execution graph G consists of a set of events (nodes), representing instruc-
tions of the program, and a few relations of these events (edges), representing
interactions among the instructions.

Definition 1. An event, e ∈ Event, is either the initialization event init, or
a thread event 〈t , i , lab〉 where t ∈ Tid is a thread identifier, i ∈ Idx

△

= N is a
serial number inside each thread, and lab ∈ Lab is a label that takes one of the
following forms:

– Block label: B representing the blockage of a thread (e.g., due to the condition
of an “assume” statement failing).

– Error label: error representing the violation of some program assertion.
– Write label: Wkw(l , v) where kw ⊆ Wattr

△

= {excl} denotes special attributes the
write may have (i.e., exclusive), l ∈ Loc is the location accessed, and v ∈ Val

the value written.
– Read label: Rkr(l) where kr ⊆ Rattr

△

= {awt, spec, excl} denotes special
attributes the read may have (i.e., await, speculative, exclusive), and l ∈ Loc is
the location accessed. We note that if a read has the awt or the spec attribute,
then it cannot have any other attribute.
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We omit the ∅ for read/write labels with no attributes. The functions tid, idx,
loc, and val, respectively return the thread identifier, serial number, location,
and value of an event, when applicable. We use R, W, B, and error to denote
the set of all read, write, block, and error events, respectively, and assume that
init ∈ W. We use superscript and subscripts to further restrict those sets (e.g.,
Wl

△

= {init} ∪ {w ∈ W | loc(w) = l}).

In the definition above, read and write events come with various attributes.
Specifically, we encode successful CAS operations and other similar atomic oper-
ations, such as fetch-and-add, as two events: an exclusive read followed by an
exclusive write (both denoted by the excl attribute). Moreover, we have a spec

attribute for speculative reads, and write Rconf for the corresponding confirma-
tion reads (i.e., the first exclusive, same-location read that is po-after a given
r ∈ Rspec). Finally, we have the awt attribute for reads the outcome of which
is tied with an assume statement, and write Rblk for the subset of Rawt that are
reading a value that makes the assume fail (see below).

Definition 2. An execution graph G consists of:

1. a set G.E of events that includes init and does not contain multiple events
with the same thread identifier and serial number.

2. a total order ≤G on G.E, representing the order in which events were incre-
mentally added to the graph,

3. a function G.rf : G.R → G.W, called the reads-from function, that maps each
read event to a same-location write from where it gets its value, and

4. a strict partial order G.co ⊆
⋃

l∈Loc G.Wl × G.Wl , called the coherence order,
which is total on G.Wl for every location l ∈ Loc.

We write G.R for the set G.E ∩ R and similarly for other sets. Given two events
e1, e2 ∈ G.E, we write e1 <G e2 if e1 ≤G e2 and e1 6= e2. We write G|E for the
restriction of an execution graph G to a set of events E, and G\E for the graph
obtained by removing a set of events E.

Based on the above graph representation, we define G.po, which orders events
in the same thread according to their i component, and porf, which is the causal
order among the graph events, as follows:

G.po
△

={〈init, e〉 | e ∈ G.E \ {init}}

∪{〈e, e′〉 ∈ G.E × G.E | tid(e) = tid(e′) ∧ idx(e) < idx(e′)}

G.porf
△

=(G.po ∪ G.rf)+

The semantics of a program P under a memory model m is the set of execution
graphs corresponding to the program that satisfy the consistency predicate of
m. Consistency predicates generally constrain the possible choices of co and rf,
thereby indirectly constraining the possible final values of memory locations and
the values that reads can return.

TruSt (and by extension, Awamoche), assumes some properties on the mem-
ory model [15]: porf acyclicity, porf-prefix-closedness, co-maximal-extensibility.
Intuitively, extensibility captures the idea that executing a program should never
get stuck if a thread has more statements to execute.



240 M. Kokologiannakis et al.

Algorithm 1. Awamoche’s exploration algorithm

1: procedure Verify(P)
2: VisitP(G∅)

3: procedure VisitP(G)

4: if ¬consistentm(G) ∨ ∃b ∈ G.Rblk. ¬maximal(G, b) then return

5: switch a ← nextP(G) do

6: G ← G ++ a

7: case a = ⊥
8: return “Visited full execution graph G”

9: case a ∈ error

10: exit(“error”)

11: case a ∈ Rconf

12: e ← maxpo{r ∈ Rspec | tid(r) = tid(a)}
13: VisitP(SetRF(G, a, G.rf(e)))

14: case a ∈ R \Rconf

15: for w ∈ G.Wloc(a) do

16: if a ∈ G.Rspec ∧ ∃b ∈ G.Rspec. 〈w, b〉 ∈ G.rf then

17: MaybeBackwardRevisitP(SetRF(G, a, w), {b}, a)
18: else

19: VisitP(SetRF(G, a, w))

20: case a ∈ W

21: if WWRace(G) then exit(“Write-write race”)

22: VisitP( IPR (G, a))
23: Revs ← G.Rloc(a) \ dom(G.porf; [a])
24: MaybeBackwardRevisitP(G,Revs , a)

25: case

26: VisitP(G)

4.2 Awamoche

Similarly to TruSt, Awamoche verifies a concurrent program P by enumerat-
ing all of its consistent execution graphs (see Algorithm1). In contrast to TruSt,
however, Awamoche is strongly optimal : it never explores an execution G where
there exists some blocked read r ∈ G.Rblk that is reading from a non-co-maximal
write. In other words, Awamoche only visits graphs that lead to useful execu-
tions2. In order to be able to do so, Awamoche makes stronger assumptions on
the underlying memory model m, namely that there are no write-write races,
and that m does not allow porf to contradict co (i.e., that co ⊆ porf).

Next, we first describe how TruSt works, and then proceed with Awamoche’s
modifications .

Given a program P, Verify visits all consistent execution graphs of P by
calling Visit on the execution graph G∅ containing only the initialization event.

2 Recall that blocked reads that read from maximal writes are useful, as they denote
liveness violations.
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At each step (Line 4), as long as the current graph remains consistent under
the specified memory model m, Visit obtains a new event a via nextP(G)
(Line 5), and extends the current graph G with a (Line 6). We assume that G++a

adds a to G.E, and also to G.co, in case a is a write. (Recall that co ⊆ porf and
so a’s co-placing is unique.)

If there are no more events to add to the graph, then G is complete, and
Visit returns (Line 7). If a denotes an error, then it is reported to the user and
verification terminates (Line 9).

If a is a read, Visit needs to examine all possible places where a could
read from. To that end, for each same-location write w in G (Line 15), Visit

recursively explores the possibility that a reads from w (Line 19). Formally,
SetRF(G, r, w) returns a graph G′ that is identical to G except for its rf com-
ponent:

G′.rf = G.rf \ (G.E × {r}) ∪ {〈w, r〉}

If a is a write, Visit examines both the case when a is simply added to G

(Line 22) and the “backward-revisit” cases for each existing same-location read
in G that could read from a (Line 5). When a backward-revisits a read r, the
resulting graph G′ only contains the events that were added before r, or are porf-
before a, and updates r to read from a. Since, however, there might be many
backward revisits that lead to the exact same graph G′, to ensure optimality,
G′ is visited only when the current graph G forms a maximal extension of G′.
We do not provide TruSt’s definition of maximal extensions here, as Awamoche

modifies it to achieve strong optimality.
Let us now move to the parts of Algorithm1 that are Awamoche-specific.
First, Awamoche discards all graphs where some blocked read is reading

non-maximally (Line 4). As explained in Sect. 3.2, such reads cannot be revis-
ited and will thus only lead to blocked executions. In addition, to guarantee
correctness, Awamoche raises an error if it detects unordered writes (Line 21).

Second, whenever a write event a is added, Awamoche revisits all same-
location blocked reads in place making them read from a (Line 22) and
excluding them from the normal backward-revisit procedure (Line refvisitsp-
sipr:visitspsrevs). Formally, we define IPR(G, a) to return a graph G′ that is
identical to G apart from its rf component:

G′.rf = G.rf \ (G.E × G.Rblkloc(a)) ∪ ({a} × G.Rblkloc(a))

Third, whenever a confirmation read a is added (Line 11), i.e., an exclusive read
that succeeds an unmatched speculative read e, Awamoche only explores the
execution where a reads from the same write as e (Line 13): any other write
would make the confirmation CAS fail.

Fourth, whenever a speculative read a is added to read from a candidate
write w and there is another speculative read b reading from the same write w

(Line 16), Awamoche backward-revisits b to read from a. Note that, due to the
atomicity of the confirming CASes, there can be at most one other speculative
read b reading from w, and so Awamoche revisits it to read from a, making it
blocked, so that it get revisited in place when the confirming CAS of a is added
to the graph. (To ensure graph well-formedness, we assume that IPR(G, b) does
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Algorithm 2. Awamoche’s backward-revisit algorithm

1: procedure MaybeBackwardRevisitP(G,Revs , a)
2: for r ∈ Revs do

3: [d1, ... , dn] ← sortG<
({e ∈ G.E | r < e ∧ 〈e, a〉 6∈ G.porf})

4: if ∃G′, G′′ such that G′ r G′′ d1 · · ·
dn G|G.E\{a} and r 6∈ G′′.Rblk then

5: VisitP(IPR(SetRF(G′ ++ [r, a], r, a), a))

not modify G when called with a read argument b, and that SetRF(G, b, ) makes
b read from ⊥, which IPR also considers.)

Finally, similarly to TruSt, Awamoche only performs a backward revisit if
G forms a maximal extension, though Awamoche employs a slightly different
definition of maximal extensions. Awamoche’s backward-revisit algorithm can
be seen in Algorithm2.

Roughly, Awamoche performs a backward revisit from a to r that leads to
a graph IPR(Gr, a) if, starting from Gr without r and a, and adding r and all
the deleted events in a co-maximal way (and performing in-place revisits along

the way), leads to G. Formally, we write G1
e G2 if there exists G′

1 such that
G2 = IPR(G′

1, e), G′
1 = G1 ++ e and:

G′
1.rf = G1.rf ∪ {〈maxG.coe

, e〉} G′
1.co = G1.co if e ∈ R

G′
1.rf = G1.rf G′

1.co = G1.co ∪
{

〈w, e〉 w ∈ G.W
}

if e ∈ W

G′
1.rf = G1.rf G′

1.co = G1.co otherwise

We note that, for the special case where e ∈ Rspec and there is e′ ∈ G.R
spec
loc(e)

such that e′ is not followedby the matching confirmationCAS, we consider⊥ as the
maxG.coe

. As a final remark, note that, Awamoche modifies nextP(G) so that (a)
after scheduling a speculative read, it keeps scheduling events in the same threads
until the respective confirming CAS is added, and (b) it does not schedule events
from a thread whose last (speculative) read reads ⊥. These modifications ensure
that the confirmation patterns are added one at a time, and that in-place revisits
take place among confirming CASes and speculative reads.

5 Correctness and Optimality

Proving Awamoche correct is non-trivial, as we had to develop a novel proof
strategy. In what follows, we first review TruSt’s proof argument, show why it
is inapplicable for Awamoche. Then, we explain our proof strategy (Sect. 5.1)
and state our completeness and optimality results (Sect. 5.2).

5.1 Approaches to Correctness

TruSt. The proof of TruSt proceeds in a backward manner. Specifically, TruSt’s
proof is based on a procedure Prev that, given an execution G, recovers the
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assume(x 6= 0)
y := 1

a := y x := 1

init

R(x)

W(y, 1)

R(y) W(x, 1)

Fig. 6. TruSt: In-place revisits make it impossible to determine the last step taken

unique “previous” execution Gp that the algorithm must reach in order to visit
G. To do so, assuming a left-to-right addition order of events, Prev(G) finds
the rightmost porf-maximal event e of G, and decides whether e was added in
a non-revisit step, or e is a read that was just revisited by a write event located
to its right. If e was added in a non-revisit step, then Gp is simply G without e.
Otherwise, Prev obtains Gp from G in the following way: it removes e along with
the write w that e reads from, and then iteratively adds the leftmost available
event to G in a co-maximal way, until w is about to be added.

TruSt’s completeness and optimality are proved using Prev. For the former,
one can show that each consistent final execution can reach the initial empty
execution through a series of Prev steps, and each of these steps is matched by
a forward step of TruSt. For the latter, one can show that each step of TruSt is
matched by the (unique) Prev step.

To see why we cannot follow a similar approach for Awamoche, consider
the program of Fig. 6, along with one of its executions. We will show that in-
place revisits make it impossible to trace the algorithm’s last step merely by
inspecting the execution. Assuming a left-to-right addition order, Awamoche

will reach this execution as follows: it first adds R(x), R(y) and W(x, 1) (notice that
at this point the first read is blocked), then in-place revisit R(x), and finally add
W(y, 1) and backward-revisit R(y). This last revisit, however, creates a problem:
TruSt’s proof assumes that a backward revisit 〈r, w〉 implies that w is located
at the right of r, which is clearly not the case here. The fact that in Awamoche

backward revisits can happen in both directions, makes it impossible to trace
the algorithm’s last step simply by inspecting an execution.

Awamoche. In contrast to TruSt, Awamoche’s proof proceeds in a forward
fashion. For each consistent final execution Gf we show 1. which steps are taken
by the algorithm in order to reach Gf , and 2. that these are the only possible
ones that lead to Gf . To do so, we first define a notion of a prefix : we say that
an execution G is a prefix of G′ (written G ⊑ G′), if G′ can be reached from G

with a series of operational steps. In turn, we define an operational step to be a
step that the algorithm may take in the non-revisit case (without demanding it
is the one actually taken by the algorithm), that may perform in-place revisits
as well.

Using this notion of prefixes, our proof defines a procedure Succs that, given
a consistent execution Gf and an execution G produced by the algorithm such
that G ⊑ Gf , Succs returns the minimal sequence of algorithm steps that reach
some execution G′ for which it is G ⊑ G′ ⊑ Gf . Concretely, if nextP(G) can
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be added to G such that the resulting execution G′ is a prefix of Gf , Succs

returns this addition step. Otherwise, nextP(G) is a read event r that must be
first revisited by an event e in order to reach an execution that is a prefix of Gf .
Succs then returns the sequence of algorithm steps that reach the execution
resulting from extending G with the porf-prefix of e and setting r to read from
e (or from ⊥, if e is a speculative read). Both completeness and optimality follow
from Succs’s properties, as well as from the observation that every consistent
final execution can be reached by a series of operational steps.

5.2 Awamoche: Completeness, Optimality, and Strong Optimality

Before stating our results, we first formally define useful executions. Recall that
these are executions where all blocking reads corresponding to await loops are
reading maximally (such executions denote liveness violations), and no confir-
mation CAS fails.

Definition 3. A consistent execution G is useful if every read in G.Rblk reads
from a G.co-maximal write and no confirmation CAS fails.

Next, we define the class of input programs that satisfy our assumptions.

Definition 4. A program P is well-formed if every speculative read is followed
by a confirmation CAS with no write in-between, and all writes to locations
accessed by speculative reads write distinct values.

Completeness and Optimality. Completeness guarantees that every useful
final execution is explored. Awamoche is complete for well-formed programs
that do not exhibit write-write races.

Theorem 1 (Completeness). Given a well-formed program P, Verify(P)
either detects a write-write race and exits, or visits every useful final execution
of P.

Optimality states that (1) no equivalent final executions are explored, (2)
there are no fruitless explorations that never lead to a consistent final execution.

Definition 5. We call an execution G visited by Awamoche fruitless if it does
not recursively lead to any Visit(P, Gf ) call, for any consistent final execution
Gf .

Awamoche is optimal for well-formed programs.

Theorem 2 (Optimality). Given a well-formed program P (1) Verify(P)
never visits two equivalent final executions, and (2) if Visit(P, G) directly leads
to a call to Visit(P, G′) with G being fruitless, then Visit(P, G′) will not initiate
any other Visit calls.
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Observe that in the optimality theorem above, fruitless exploration can lead
to an extra Visit step. The reason for that is the treatment of CASes: the read
part of a CAS c can be added so that it reads from the same write as a different
(successful) CAS. In such a case, there is no way to consistently add the pending
write of c without revisiting, which in turn may not be able to happen due to
Awamoche’s maximality condition.

Strong Optimality. Strong optimality states that, apart from being opti-
mal, only useful executions are visited. Awamoche is strongly-optimal for well-
formed programs.

Theorem 3 (Strong Optimality). Given a well-formed program P,
Verify(P, G) only visits useful executions.

6 Evaluation

We implemented Awamoche as a tool that verifies C/C++ programs under
the RC11 memory model [22]. Similarly to other stateless model checkers,
Awamoche works at the level of the LLVM Intermediate Representation
(LLVM-IR).

In what follows, we evaluate the effectiveness of Awamoche’s key ideas
(namely, stale-read annotations, in-place revisiting and speculative revisiting)
both individually, and as a whole. To that end, we evaluate Awamoche on a set
of benchmarks that both amplify the weaknesses of standard DPOR, as well as
demonstrate the applicability of our approach in realistic workloads. In all our
tests, we compare Awamoche against a vanilla version of TruSt, a version of
TruSt that employs stale-read annotations (TruStstale), and a version of TruSt
that employs both stale-read annotation and in-place revisiting (TruStIPR).

Even though there are other stateless model checking tools that can be used
to verify C/C++ programs (namely, GenMC [19] and Nidhugg [1]), we do
not compare against them here, as we care about Awamoche’s performance
compared to TruSt. We only mention in passing that we expect GenMC’s per-
formance to be similar to that of TruStstale (as its implementation incorpo-
rates various optimizations for assume statements), and Nidhugg’s similar to
TruStIPR (as it employs an optimization with a similar effect to in-place revisit-
ing [14]). We also note that comparing with Nidhugg is difficult since it operates
under a different memory model, and does not transform the same types of loops
to assume statements as Awamoche (also see Sect. 7).

We draw two major conclusions from our evaluation. First, Awamoche’s
optimization yields exponential performance benefits compared to standard
DPOR approaches. Second, these benefits do not only apply to small synthetic
benchmarks, but also extend to realistic concurrent data structures.

Experimental Setup. We conducted all experiments on a Dell PowerEdge M620
blade system, running a custom Debian-based distribution, with two Intel Xeon
E5-2667 v2 CPU (8 cores @ 3.3GHz), and 256GB of RAM. We used LLVM
11.0.1 for Awamoche. Unless explicitly noted otherwise, all reported times are
in seconds. We set a timeout limit of 30min.
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Table 1. Synthetic benchmarks

Executions TruSt TruStstale TruStIPR Awamoche

Blocked Time Blocked Time Blocked Time Blocked Time

orch-run(4) 1 15 .01 0 .01 0 .01 0 .01

orch-run(5) 1 31 .01 0 .01 0 .01 0 .01

orch-run(6) 1 63 .01 0 .01 0 .01 0 .01

wait-workers(4) 24 96 .03 96 .02 0 .01 0 .01

wait-workers(5) 120 600 .09 600 .09 0 .03 0 .03

wait-workers(6) 720 4320 .56 4320 .56 0 .14 0 .14

nr+nw(3,2) 0 27 .01 10 .03 1 .01 1 .01

nr+nw(5,4) 0 3125 .1 126 .03 1 .01 1 .01

nr+nw(6,5) 0 46656 1.32 462 .06 1 .01 1 .01

conf-loop(4) 24 256 .04 176 .03 124 .03 0 0.01

conf-loop(5) 120 3905 .09 2010 .10 1185 .06 0 0.02

conf-loop(6) 720 75156 1.40 26916 .96 13086 .54 0 0.08

orch-run: N threads are spawned and wait to be signaled before they start performing
thread-local computations.
wait-workers: A worker thread waits for N workers to publish their results before it
starts running.
nr+nw: A synthetic benchmark where K reader threads wait until a variable written L

times by a writer thread satisfies some condition (which cannot be satisfied).
conf-loop: N threads perform a confirmation-CAS loop similar to the one of Sect. 1.

6.1 Results

Let us first focus on some benchmarks that help us better understand where each
of Awamoche’s components can be applied (Table 1). Starting with orch-run,
we see that even though blocked executions greatly outnumber complete exe-
cutions, stale-reads annotations alone suffice to bring the number of blocked
executions down to zero. This, however, is partly due to luck: in orch-run,
main() spawns a number of workers that do not execute until they are signaled
by main() using a special variable. In turn, because TruStstale follows a left-to-
right scheduling, when DPOR encounters the worker threads, the scenario where
they are not signaled is not considered, since it implies reading a stale value.

By contrast, in wait-workers and nr+nw, stale-reads annotations are insuf-
ficient to eliminate blocking. In these benchmarks, some designated threads wait
for the rest of the workers to perform some tasks before proceeding. However, it
is not guaranteed that these designated threads are going to be always processed
after the rest of the threads by DPOR, and thus stale-reads annotations have
little to no effect. Employing in-place revisiting, on the other hand, leads to a
dramatic performance improvement: the number of blocked executions is effec-
tively eliminated (the single blocked execution in nr+nw is a liveness violation).
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Table 2. Real-world benchmarks

Executions TruSt TruStstale TruStIPR Awamoche

Blocked Time Blocked Time Blocked Time Blocked Time

mpmc-enq(4) 576 1084 .25 710 .22 532 .17 0 .12

mpmc-enq(5) 7200 31325 4.12 16382 3.27 12205 2.72 0 1.48

mpmc-enq(6) 86400 730626 82.28 303362 51.29 227766 42.14 0 19.71

treiber-push(4) 24 256 .07 176 .04 124 .04 0 .04

treiber-push(5) 120 3905 .41 2010 .29 1185 .19 0 .05

treiber-push(6) 720 75156 7.49 26916 3.61 13086 1.85 0 .23

m-enq(4) 24 124 0.05 124 0.04 124 0.04 0 0.02

m-enq(5) 120 1185 0.11 1185 0.14 1185 0.13 0 0.04

m-enq(6) 720 13086 1.04 13086 1.05 13086 1.18 0 0.24

mpmc-enq: N threads enqueue an item in a multiple-producer multiple-consumer queue.
treiber-push: A lock-free stack implementation. N threads are pushing an item.
m-enq: A modification of the Michael-Scott queue without the tail pointer. N threads
are enqueueing an item.

Analogously to wait-workers and nr+nw, conf-loop demonstrates why in-
place revisiting is insufficient when the success of an assume does not depend
on a single load, but rather on a sequence of actions (as is the case in confirma-
tion loops). As it can be seen, TruStIPR still explores blocked executions, which
Awamoche manages to eliminate thanks to speculative revisits.

Moving to the final part of our evaluation, Table 2 demonstrates that the
benefits of Awamoche extend to realistic workloads as well. As can be seen from
Table 1, none of Awamoche’s optimizations is redundant, as they are often all
required to eliminate the exploration of blocked executions. Observe, however,
that our benchmarks only exercise push or enqueue operations. This is because
the respective pop or dequeue operations contain assume statements in their
confirmation-CAS loops, and therefore cannot be optimized by Awamoche.

7 Related Work

The seminal work of Flanagan and Godefroid [13] has spawned a number of
papers on DPOR. Among these, Optimal-DPOR [2] and TruSt [15] stand out,
as they provide the first optimal DPOR algorithm, and the first optimal DPOR
algorithm with polynomial memory consumption, respectively. TruSt is based
on [17] and thus has the extra advantage of being parametric in the choice of
the underlying weak memory model.

A lot of works improve on DPOR one way or another. Many techniques
introduce coarser equivalence partitionings to combat the state-space explosion
problem (e.g., [3,6–8,10–12]). Other works focus on extending it to weak memory
models [1,4,5,17,20,24], while others try to leverage particular programming
patterns [14,16,18]. Kokologiannakis, Ren, and Vafeiadis [18] in particular, deal
with transforming spinloops into assume statements, the handling of which we
optimize in this paper.
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Among those, the work that is closest to ours is Godot [14]. Godot is an
extension to DPOR that has a similar effect to in-place revisiting in the sense
that it only explores executions that are either complete, or denote program
termination errors. That said, Godot only works under SC, and cannot handle
stale-read annotations or confirmation loops (which are instrumental in scaling
the verification of concurrent data structures, as we saw in Sect. 6). In addition,
Godot’s loop transformation is static (in contrast to Awamoche’s, which is
dynamic), making it easy to construct examples where Godot’s transformation
does not work. Finally, even though Godot does not impose a “no write-write
race” restriction on the input programs, this restriction is trivially satisfied for
models like SC or TSO [26]: in such models, it is sound to transform writes to
atomic exchange statements that write the value they read, thereby ordering all
writes to each location.

8 Conclusion

We presented Awamoche, the first memory-model-agnostic DPOR algorithm
that is sound, complete, and strongly optimal for programs with await and
confirmation-CAS loops. Awamoche avoids blocked executions that arise due
to await loops by revisiting blocking reads in-place, and deals with confirmation-
CAS loops by also considering revisits whenever two speculative reads read from
the same write.

As our theoretical and experimental results demonstrate, Awamoche yields
exponential benefits over the current state-of-the-art. Yet, it does not support
certain more advanced patterns commonly appearing in concurrent programs,
the handling of which we leave as future work. Examples of such patterns include
confirmation-CAS loops with assume statements between the speculative and the
confirmation reads (such statements may arise due to break/continue instruc-
tions), elimination backoff data structures, and await loops that use CASes
instead of plain reads. We also believe that our key ideas for achieving strong
optimality in these cases should be applicable in other scenarios as well, such as
in programs with mutual exclusion locks or transactions.
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Abstract. We present a major new version of Scenic, a probabilistic
programming language for writing formal models of the environments of
cyber-physical systems. Scenic has been successfully used for the design
and analysis of CPS in a variety of domains, but earlier versions are lim-
ited to environments that are essentially two-dimensional. In this paper,
we extend Scenic with native support for 3D geometry, introducing new
syntax that provides expressive ways to describe 3D configurations while
preserving the simplicity and readability of the language. We replace
Scenic’s simplistic representation of objects as boxes with precise mod-
eling of complex shapes, including a ray tracing-based visibility system
that accounts for object occlusion. We also extend the language to sup-
port arbitrary temporal requirements expressed in LTL, and build an
extensible Scenic parser generated from a formal grammar of the lan-
guage. Finally, we illustrate the new application domains these features
enable with case studies that would have been impossible to accurately
model in Scenic 2.

Keywords: Scenario description language · Synthetic data ·
Probabilistic programming · Automatic test generation · Simulation

1 Introduction

A major challenge in the design of cyber-physical systems (CPS) like autonomous
vehicles is the heterogeneity and complexity of their environments. Increasingly,
problems of perception, planning, and control in such environments have been
tackled using machine learning (ML) algorithms whose behavior is not well-
understood. This trend calls for verification techniques for ML-based CPS; how-
ever, a significant barrier has been the difficulty of constructing formal models
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that capture the diversity of these systems’ environments [25]. Indeed, building
such models is a prerequisite not only for verification but any formal analysis.

Scenic [10,12] is a probabilistic programming language that addresses this
challenge by providing a precise yet readable formalism for modeling the environ-
ments of CPS. A Scenic program defines a scenario describing physical objects
in a world, placing a probability distribution on their positions and other prop-
erties; a single program can generate many different concrete scenes by sampling
from this distribution. Scenic also allows defining a stochastic policy describing
how agents behave over time, and implementing the resulting dynamic scenarios
in a variety of external simulators. Environment models defined in Scenic can be
used for many tasks: falsification, as in the VerifAI toolkit [5], but also debugging,
training data generation, and real-world experiment design [13]. These tasks have
been successfully demonstrated in a variety of domains including autonomous
driving [29], aviation [9], and reinforcement learning agents [1].

Despite Scenic’s successes, it has several limitations that prevent its use in a
number of applications of interest. First, the original language models the world
as being two-dimensional, since this enables a substantial simplification in the
language’s syntax (e.g., orientations being a single angle) as well as optimiza-
tions in its implementation. The 2D assumption is reasonable for domains such
as driving but leaves Scenic unable to properly model environments for aerial
and underwater vehicles, for example. There can be problems even for ground
vehicles: Scenic could not generate a scene where a robot vacuum is underneath
a table, as their 2D bounding boxes would overlap and Scenic would treat them
as colliding. The use of bounding boxes rather than precise shapes also leads
Scenic to use a simplistic visibility model that ignores occlusion, making it pos-
sible for Scenic to claim objects are visible when they are not and vice versa: a
serious problem when generating training data for a perception system.

Fundamentally, verification of AI-based autonomous systems requires rea-
soning about perception and physics in a 3D world. To support such reasoning,
a formal environment modeling language must provide faithful representations
of 3D geometry. Towards this end, we present Scenic 3.01, a largely backwards-
compatible major release featuring:

– Native 3D Syntax: We update Scenic’s existing syntax to support 3D geom-
etry, and add new syntax making it possible to define complex 3D scenarios
simply. For example, an object’s orientation can be specified as being tangent
to a surface and facing another object as much as possible.

– Precise 3D Shapes: The shapes of objects (as well as surfaces and volumes)
can be given by arbitrary 3D meshes, with Scenic performing precise reasoning
about collisions, containment, tangency, etc.

– Precise Visibility: We use ray tracing for precise visibility checks that take
occlusion into account.

– Temporal Requirements: We support arbitrary Linear Temporal Logic [21]
properties to constrain dynamic scenarios (vs. only Gp and Fp in Scenic 2).

1 Available at: https://github.com/BerkeleyLearnVerify/Scenic/.

https://github.com/BerkeleyLearnVerify/Scenic/
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– Rewritten Parser: We give a Parsing Expression Grammar [8] for Scenic,
using it to generate a parser with more precise error messages and better
support for new syntax and optimization passes.

We first define the new features in Scenic 3 in detail in Sect. 2, working
through several toy examples. Then, in Sect. 3, we describe two case studies
using Scenic with scenarios that could not be accurately modeled without the
new features: falsifying a specification for a robot vacuum and generating training
data constrained by an LTL formula for a self-driving car’s perception system.

Related Work. There are many tools for test and data generation [3]. Some
approaches learn from examples [7,26] and so do not provide specific control
over scenarios as Scenic does. Approaches based on rules or grammars [17,20,
26] provide some control but have difficulty enforcing requirements over the
generated data as a whole. Several probabilistic programming languages have
been used for generation of objects and scenes [15,22,23], but none of them
provide specialized syntax to lay out geometric scenarios, nor for describing
dynamic behaviors. Finally, there has been work on synthetic data generation
of 3D scenes and objects using ML techniques such as GANs (e.g., [7,14,30]),
but these lack the specificity and controllability provided by a programming
language like Scenic.

2 New Features

2.1 3D Geometry

The primary new feature in Scenic 3 is the generalization of the language to 3
dimensions. Some changes, like changing the type system so that vectors have
length 3, are obvious: here we focus on cases where the existing syntax of Scenic
does not easily generalize, using simple scenarios to motivate our design choices.

The first challenge when moving to 3D is the representation of an object’s
orientation in space: Scenic’s existing heading property, providing a single angle,
is no longer sufficient. Instead, we introduce yaw, pitch, and roll angles, using
the common convention for aircraft that these represent intrinsic rotations (i.e.,
yaw is applied first, then pitch is applied to the resulting orientation, etc.).
Using intrinsic angles makes it easy to compose rotations: for example if we
point an airplane towards a landing strip with yaw and pitch (either manually
or using Scenic’s facing toward specifier — more on this below), we can add
an additional roll by adding to that property. To further simplify composition,
we add a parentOrientation property which specifies the local coordinate sys-
tem in which the 3 angles above should be interpreted (by default, the global
coordinate system). This allows the user to specify an orientation with respect
to a previously-computed orientation, for instance that of a tilted surface.

Scenic provides a flexible system of natural language specifiers which can be
combined to define properties of objects. Consider the following Scenic 3 code:



256 E. Vin et al.

1 objectA = new Object at (1, 2, 3), facing (45 deg, 0, 90 deg)
2 objectB = new Object left of objectA by 1
3 objectC = new Object above objectB by 1,
4 facing (Range(0,30) deg, Range(0,30) deg, 0)

Here, we use the at specifier to define a specific position for object A;
the facing specifier defines the object’s orientation using explicit yaw, pitch,
and roll angles. We then place object B left of A by 1 unit with the left of
specifier: this specifier now not only sets the position property, but also sets
the parentOrientation property to the orientation of object A (unless explic-
itly overridden). Thus object B will be oriented the same way as A. Simi-
larly, object C is positioned relative to B and so inherits its orientation as its
parentOrientation. However, this time we use the facing specifier to define
random yaw and pitch angles, so object C will face up to 30◦ off of B.

Another way to specify an object’s orientation is the facing toward speci-
fier. This is a case where the 2D semantics become ambiguous in 3D. Consider a
scenario where the user wants an airplane to be “facing toward” a runway: the
plane’s body should be oriented toward the runway (giving its yaw), but it is not
clear whether in addition the plane should be pitched downward so that its nose
points directly toward the runway. To allow for both interpretations, Scenic 3
has facing toward only specify yaw, while the new facing directly toward
specifier also specifies pitch. This is illustrated in Fig. 1.

Another common practice in 3D space is to place one object on another.
For example, we may want to place a chair on a floor, or a painting on a wall.
Scenic’s existing on specifier, which sets the position of an object to be a
uniformly random point in a given region, does not suffice for such cases because
it would cause the chair to intersect the floor or the painting to penetrate the
wall (or both). To fix this issue, we allow each object to define a base point,
which on positions instead of the object’s center. The default base point is the
bottom center of the object’s bounding box, suitable for cars and chairs for
example; a Painting class could override this to be the back center. Finally, to
enable placing objects on each other, objects can provide a topSurface property
specifying the surface which is considered the “top” for the purposes of the on
specifier. As before, there is a reasonable default (the upward-pointing faces of
the object’s mesh) that can be overridden. This syntax is illustrated in Fig. 2.

A final 3D complication arises when positioning objects on irregular surfaces.
Consider a pair of cars driving up an uneven mountain road, with one 10 m
behind the other. We can use the ahead of specifier to place one car 10 m ahead
of the other, but then the car will penetrate the road due to its upward slope.
Alternatively, the on specifier can correctly place the car so it is tangent to the
road, but then we cannot directly specify the distance between the cars. The
natural semantics here would be to combine the constraints from both specifiers,
but this is illegal in Scenic 2 where a given property (such as position) can
only be specified by a single specifier at a time. We enable this usage in Scenic
3 by introducing the concept of a modifying specifier that modifies the value
of a property already defined by another specifier. Specifically, if an object’s
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1 ego = new Ball at (0,0, 1.25)
2 new Plane at (2,0,0), facing toward ego

3 new Plane at (-2,0,0), facing directly toward ego

Fig. 1. Line-of-sight-based orientations in Scenic. The ego ball (highlighted green) is
placed above the origin, as seen by the RGB global coordinate axes, with one plane
facing towards the ego and another facing directly toward the ego. (Color figure online)

1 floor = Object with width 5, with length 5, with height 0.1
2 ego = new Chair on floor

Fig. 2. A Scenic program placing a chair on a floor. The Z-axis of the global coordinate
axes protrudes from the floor, indicating which direction is up.

position is already specified, the on specifier will project that position down
onto the given surface. This is illustrated by the green chair in Fig. 3.

Note that the green chair is correctly upright on the floor even though it was
positioned relative to the cube, and so should inherit parentOrientation from
the cube as discussed above. In this situation, the user has provided no explicit
orientation for the chair, and both below and on can provide one. To resolve this
ambiguity, we introduce a specifier priority system, where specifiers have differ-
ent priorities for the properties they specify (generalizing Scenic’s existing sys-
tem where a specifier could specify a property optionally). In our example, below
specifies position with priority 1 and parentOrientation with priority 3, while
on specifies these with priorities 1 and 2 respectively. So both specifiers determine
position (with on modifying the value from below as explained above), but on
takes precedence over below when specifying parentOrientation. This yields
the expected behavior while still allowing below to determine the orientation
when used in combination with other specifiers than on.
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1 floor = new Object with width 5, with length 5, with height 0.1
2 air_cube = new Object at (Range(-5,5), Range(-5,5), 3),
3 facing (Range(0,360 deg), Range(0,30 deg), 0)
4 new Chair below air_cube, with color (0,0,200) # blue chair

5 ego = new Chair below air_cube, on floor # green chair

Fig. 3. A Scenic program placing a green chair on the floor under a rotated cube in
midair. A blue chair is placed directly under the cube for clarity. (Color figure online)

2.2 Mesh Shapes and Regions

Scenic 2’s approximation of objects by their bounding boxes was adequate for 2D
driving scenarios, for example, but is wholly inadequate in 3D, where objects are
commonly far from box-shaped. For example, consider placing a chair tucked in
under a table. Since the bounding boxes of these two objects intersect, Scenic 2
would always reject this situation as a collision and try to generate a new scene,
even if the chair and table are entirely separate. In Scenic 3, each object has a
precise shape given by its shape property, which is set to an instance of the class
Shape. The most general Shape class is MeshShape, which represents an arbitrary
3D mesh and can be loaded from standard formats; classes for primitive shapes
like spheres are provided for convenience. These shapes are used to perform
precise collision and containment checks between objects and regions.

Scenic also supports mesh regions, which can either represent surfaces or
volumes in 3D space. For example, given a mesh representing an ocean we might
want to sample on the surface for a boat or in the volume for a submarine.

All meshes in Scenic are handled using Trimesh [4], a Python library for
triangular meshes, which internally calls out to the tools Blender [27] and Open-
SCAD [28] for several operations. These operations tend to be expensive, so
Scenic uses several heuristics to cheaply determine simple cases; these can give
between a 10x–1000x speedup when sampling scenes.
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2.3 Precise Visibility Model

Scenic 2’s visibility system simply checks if the bounding box corners of objects
are contained in the view cone of the viewing object, which is no longer adequate
for 3D scenarios with complex shapes. Visibility checks are now done using ray
tracing, and account for objects being able to occlude visibility. In addition to
standard pyramidal view cones used for cameras, Scenic correctly handles wrap-
around view regions such as those of common LiDAR sensors. Visibility checks
use a configurable density of rays, and are optimized to only send rays in areas
where they could feasibly hit the object.

2.4 Temporal Requirements

A key feature of Scenic is the ability to declaratively impose constraints on
generated scenes using require statements. However, Scenic 2 only provides
limited support for temporal requirements constraining how a dynamic scenario
evolves over time, with the require always and require eventually state-
ments. Slightly more complex examples, like “cars A and B enter the intersec-
tion after car C”, require the user to explicitly encode them as monitors, which
is error-prone and yields verbose hard-to-read imperative code: this property
requires an 8-line monitor in [12].

Scenic 3 extends require to arbitrary properties in Linear Temporal
Logic [21], allowing natural properties like this to be concisely expressed:

1 require (carA not in intersection and carB not in intersection
2 until carC in intersection)

The semantics of the operators always, eventually, next, and until are
taken from RV-LTL [2] to properly model the finite length of Scenic simulations.

2.5 Rewritten Parser

For interoperability with Python libraries, Scenic is compiled to Python, and
the original Scenic parser was implemented on top of the Python parser. This
approach imposed serious restrictions on the language design (e.g., forcing non-
intuitive operator precedences), made extending the parser difficult, and led to
misleading error messages which pointed to the wrong part of the program.

Scenic 3 uses a parser automatically generated from a Parsing Expression
Grammar (PEG) [8] for the language. The parser is based on Pegen [24], the
parser generator developed for CPython, and the grammar itself was obtained
by extending the Python PEG. The new parser outputs an abstract syntax tree
representing the structure of the original Scenic code (unlike the old parser),
ensuring that syntax errors are correctly localized and simplifying the task of
writing analysis and optimization passes for Scenic.

This new parser gives us flexibility in designing and implementing the lan-
guage. For example, we carefully assigned precedence to the four new temporal
operators so that users can naturally express temporal requirements without
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unnecessary parentheses. There are additional benefits from having a precise
machine-readable grammar for Scenic: for instance, as we wrote the grammar,
we discovered ambiguities that had previously been unnoticed and made minor
changes to the language to eliminate them. The grammar could also be be used
to fuzz test the compiler and other tools operating on Scenic programs.

3 Case Studies

In this section, we discuss two case studies in the robotics simulator Webots [19].
The code for both case studies is available in the Scenic GitHub repository [11].
The first case study, performing falsification of a robot vacuum, illustrates a
domain that could not be modeled in Scenic 2 due to the lack of 3D support.
The second case study, generating data constrained by an LTL formula for testing
or training the perception system of an autonomous vehicle, is an example of
how the new features in Scenic 3 can significantly improve effectiveness even in
one of Scenic’s original target domains.

3.1 Falsification of a Robot Vacuum

In this example we evaluate the iRobot Create [16], a robot vacuum, on its
ability to effectively clean a room filled with objects. We use a specification
stating that the robot must clean at least a third of the room within 5 min: in
Signal Temporal Logic [18], the formula ϕ = F[0,300](coverage > 1/3). We use
Scenic to generate a complete room and export it to Webots for simulation. The
room is surrounded by four walls and contains two main sections: in the dining
room section, we place a table of varied width and length randomly on the floor,
with 3 chairs tucked in around it and another chair fallen over. In the living
room section, we place a couch with a coffee table in front of it, both leaving
randomly-sized spaces roughly the diameter of the robot vacuum. We then add
a variable number of toys, modeled as small boxes, cylinders, cones, and spheres,
placed randomly around the room; for a taller obstacle, we place a stack of 3
box toys somewhere in the room. Finally, we place the vacuum randomly on the
floor, and use Scenic’s mutate statement to add noise to the positions and yaw
of the furniture. Several scenes sampled from this scenario are shown in Fig. 4.

We tested the default controller for the vacuum against 0, 1, 2, 4, 8, and
16-toy variants of our Scenic scenario, running 25 simulations for each variant.
For each simulation, we computed the robustness value [6] of our spec ϕ. The
average values are plotted in Fig. 5, showing a clear decline as the number of
toys increases. Many of the runs actually falsified ϕ: up to 44% with 16 toys.

There are several aspects of this example that would not be possible in Scenic
2. First, the new syntax in Scenic 3 allows for convenient placement of objects,
specifically the use of on in combination with left of and right of, to place
the chairs on the appropriate side of the dining table but on the floor. Many
of the objects are also above others and have overlapping bounding boxes, but
because Scenic now models shapes precisely, it is able to properly register these
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Fig. 4. Several sampled scenes from the robot vacuum scenario.
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Fig. 5. Spec. robustness value vs. number of toys, averaged over 25 simulations.

objects as non-intersecting and place them in truly feasible locations (e.g., in
Fig. 4, the toy under the dining table in the top left scene and the robot under
the coffee table in the bottom right scene).

3.2 Constrained Data Generation for an Autonomous Vehicle

In this example we generate instances of a potentially-unsafe driving scenario
for use in training or testing the perception system of an AV. Consider a car
passing in front of the AV in an intersection where the AV must yield, and so
needs to detect the other car before it becomes too late to brake and avoid a
collision. We want to generate time series of images labeled with whether or
not the crossing car is visible, for a variety of different scenes with different city
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(a) 2 seconds: not visible (b) 2.5 seconds: visible

(c) 4 seconds: visible (d) 4.5 seconds: not visible

Fig. 6. Intersection simulation images, with visibility label for the crossing car.

layouts to provide various openings and backdrops. Our scenario places both the
ego car (the AV) and the crossing car randomly on the appropriate road ahead
of the intersection. We place several buildings along the crossing road that block
visibility, allowing some randomness in their position and yaw values. We also
place several buildings completely randomly behind the crossing road to provide
a diverse backdrop of buildings in the images. Finally, we want to constrain data
generation to instances of this scenario where the crossing car is not visible until
it is close to the AV, as these will be the most challenging for the perception
system. Using the new LTL syntax, we simply write:

1 require (not ego can see car) until distance to car < 75

Figure 6 shows a simulation sampled from this scenario. In Scenic 2, the
crossing car would be wrongly labeled as visible in image (a), since the occluding
buildings would not be taken into account. This would introduce significant
error into the generated training set, which in previous uses of Scenic had to
be addressed by manually filtering out spurious images; this is avoided with the
new system.

4 Conclusion

In this paper we presented Scenic 3, a major new version of the Scenic pro-
gramming language that provides full native support for 3D geometry, a precise
occlusion-aware visibility system, support for more expressive temporal opera-
tors, and a rewritten extensible parser. These new features extend Scenic’s use
cases for developing, testing, debugging, and verifying cyber-physical systems to
a broader range of application domains that could not be accurately modeled in
Scenic 2. Our case study in Sect. 3.1 demonstrated how Scenic 3 makes it easier
to perform falsification for CPS with complex 3D environments. Our case study
in Sect. 3.2 further showed that even in domains that could already be modeled in
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Scenic 2, like autonomous driving, Scenic 3 allows for significantly more precise
specifications due to its ability to reason accurately about 3D orientations, colli-
sions, visibility, etc.; these concepts are often relevant to the properties we seek
to prove about a system or an environment we want to specify. We expect the
improvements to Scenic we describe in this paper will impact the formal meth-
ods community both by extending Scenic’s proven use cases in simulation-based
verification and analysis to a much wider range of application domains, and by
providing a 3D environment specification language which is general enough to
allow a variety of new CPS verification tools to be built on top of it.

In future work, we plan to develop 3D scenario optimization techniques (com-
plementing the 2D methods Scenic already uses) and explore additional 3D appli-
cation domains such as drones. We also plan to leverage the new parser to allow
users to define their own custom specifiers and pruning techniques.
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q0 q1
a

x := 0

y := 0

x = 1?

x := 0

b

x

y

0
1
2

q0 q1
a

tx : [1, 1]

ty : [0, ]

timeout(tx)

tx : [1, 1]

b

1 < ty tx <

Fig. 1. An automaton with clocks on left, and timers on right for same constraints.

1 Introduction

The idea of adding real-time dynamics to formal verification models started as
a hot topic of research in the 1980 s [6,11]. Over the years, timed automata [8,9]
has emerged as a leading model for finite-state concurrent systems with real-time
constraints. Timed automata make use of clocks, real-valued variables which
increase along with time. Constraints over clock values can be used as guards
for transitions, and clocks can be reset to 0 along transitions. It is notable that
the early works in this area made use of timers to deal with real-time [13,22,32].
Timers are started by setting them to some initial value within a given interval.
Their values decrease with time, and an timeout event can be used in transitions
to detect the instant when the timers become 0. Quoting from [6], the shift from
timers to clocks in timed automata, as we know them today, is attributed to the
fact that: “apart from some technical conveniences in developing the emptiness
algorithm and proving its correctness, the reformulation allows a simple syntac-
tic characterization of determinism for timed automata”. Over the last thirty
years, the study of timed automata has led to the development of rich theory
and industry-strength verification tools. The use of clocks has also allowed for
the extension of the model to more complex constraints and assignments to
clocks in transitions [14,17]. Furthermore, considering more sophisticated rates
of evolution for clocks gives the yet another well-established model of hybrid
automata [7].

When it comes to the reachability problem, timers do have some nice proper-
ties. Let us explain with an example. Figure 1 shows a timed automaton on the
left, and an automaton with timers on the right, for the set of words ab∗ such
that the time between every consecutive letters is 1. The timed automaton sets
clock x to 0 and checks for the guard x = 1? to enforce the timing constraint.
The automaton with timers, on the right, sets a timer tx to 1, and asks for its
expiry in the immediate next action. Clock y and timer ty are not necessary for
the required timing property, but we add them to illustrate a different aspect
that we will describe now. To solve the reachability problem, a symbolic enumer-
ation of the state space is performed. In the timed automaton, at state q1, the
enumeration gives constraints y −x = n for every n ≥ 0. Starting from y −x = n
and executing b gives y − x = n + 1, due to the combination of guard x = 1?
and reset x := 0. This shows that a naïve symbolic enumeration is not bound
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to terminate. The question of developing finite abstractions for timed automata
has been a central problem of study which started in the late 90s and continues
till date (see recent surveys [18,38]). Such an issue does not occur with timers.
In the automaton with timers on the right, tx is set to 1 and ty is set to some
arbitrary value in the transition to q1. This gives −1 ≤ ty − tx ≤ ∞ for the set
of all possible timer values. When tx times out, the value of ty could still be any
value from 0 to ∞. When tx is set to 1 again, the set of possible timer values still
satisfies the same constraint −1 ≤ ty − tx ≤ ∞ leading to a fixed point with a
finite reachable state space. The fact that symbolic enumeration terminates on
an automaton with timers was already observed in [22]. To our knowledge, later
works on timed automata reachability never went back to timers, and there is
no tool support that we know of to deal with models with timers directly. We
find this surprising given that timers occur naturally while modeling real-time
systems and moreover they enjoy this finiteness property.

In addition to clocks and timers, event-clocks are another special type of clock
variables that are used to deal with timing constraints [10], which are attached
to events. An event-recording clock for event a maintains the time since the
previous occurrence of a, whereas an event-predicting clock for a gives the time
to the next occurrence of a. Event-clocks have been used in the model of event-
clock automata (ECA), and also in the logic of event-clocks [36]. These works
argue that event-clocks can express typical real-time requirements. Theoretically,
ECA can be determinized, and hence complemented. Therefore, model-checking
an event-clock (logic or automaton) specification ϕ over a timed automaton A
can be reduced to reachability on the product of A and the ECA for ¬ϕ. This
makes event-clocks a convenient feature in specifications.

Recently, a symbolic enumeration algorithm for ECA was proposed [3]. It was
noticed that when restricted to event-predicting clocks, the symbolic enumera-
tion terminates without any additional checks (similar to the case of timers),
whereas for the combination involving event-recording clocks, one needs simu-
lation techniques from the timed automata literature. The same work showed
how to adapt the best known simulation technique from timed automata into
the setting of ECA. However, as discussed above, for model-checking we need
a model containing both conventional clocks, timers and event-clocks. To our
knowledge, no tool can directly work on such models.

Our goal in this work is to provide a one stop solution to real-time verification,
be it reachability analysis or model-checking (over event-clock specifications), be
it using models with clocks, or models with timers. We consider a unified model
of a timed automaton over variables that can simulate normal clocks, timers and
event-clocks. Here are our key contributions:

1. We define a new model of generalized timed automata (GTA) which have
two types of variables, called history clocks and future clocks. History clocks
generalize normal clocks as well as event-recording clocks, while future clocks
generalize event-predicting clocks and timers. However, unlike event-clocks,
clocks in GTA are not necessarily associated with events. We also consider a
generic syntax that allows for diagonal constraints between variables.
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2. We show undecidability of reachability for GTA, and study a safe subclass
that makes the model decidable. Safe GTA already subsume timed automata,
event-clock automata (with diagonal constraints) and automata with timers.

3. We adapt state-of-the-art symbolic enumeration techniques from timed
automata literature to safe GTA. While we make use of ideas presented in [22]
and [3], these works do not contain diagonal constraints between variables.
Our main technical and theoretical innovation lies in a new termination anal-
ysis of the symbolic enumeration in the presence of diagonal constraints. Sur-
prisingly, we show that the enumeration terminates as long as the diagonal
constraints are restricted to usual clocks and event-clocks, but not timers.

4. We develop a prototype implementation of our model and algorithm in
Tchecker, an open-source platform for timed automata analysis, and show
promising results on several existing and new benchmarks. To the best of
our knowledge, our tool is the first that can handle event-clock automata, a
model that till date has been the subject of many theoretical results.

Related Works. In the work that first introduced ECA, a translation from ECA
to a timed automaton was also proposed. However, this translation is not effi-
cient: in the worst case, this translation incurs a blowup in the number of clocks
and states. In [27,28], an extrapolation approach using maximal constants has
been studied for ECA. However, it has been observed that simulation-based tech-
niques are both more effective [14,16] and efficient [5,24–26] than extrapolation
for checking reachability. Recently, [3] proposed a zone-based reachability algo-
rithm for diagonal-free ECA, using simulations for finiteness, but there was no
accompanying implementation. Diagonal constraints have long been known to
allow succinct modeling [15] for the class of timed-automata, but only recently a
zone-based algorithm that directly works on such automata, was proposed. ECA
with diagonals are more expressive than ECA [19]. In this work, we propose a
zone-based algorithm for a unified model that subsumes ECA with diagonals.

The use of history clocks and prophecy clocks in ECAs is in the same spirit
as past and future modalities in temporal logics - this makes ECAs an attractive
model for writing timed specifications. Indeed, this has also led to a develop-
ment of various temporal logics with event-clocks [1,23,36]. ECA with diagonal
constraints have been well-studied, such as in the context of timeline based
planning [19,20]. Finally, while there has been substantial advances in the the-
ory of ECA, to the best of our knowledge, the only tool that handles ECA is
Tempo [37], and even this tool is restricted to just history clocks.
Structure of the Paper. In Sect. 2 we start by defining the generalized model.
Section 3 examines its expressiveness, while Sect. 4 deals with the reachability
problem and the safe subclass. Section 5 develops the symbolic enumeration tech-
nique, while Sect. 6 explains how distance graphs can be extended to this setting.
Section 7 is dedicated to finiteness. Finally, we provide our experimental results
in Sect. 8 and conclude with Sect. 9. All the missing proofs can be found in the
full version of the paper [2].
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2 Generalized timed automata

In this section we introduce the unified model. While we build on classical ideas
from timed automata, almost every aspect is extended and below we highlight
these changes. We define X = XH �XF to be a finite set of real-valued variables
called clocks, where XH is the set of history clocks, and XF is the set of future
clocks. History clocks always have a non-negative value and can increase arbi-
trarily along with time. Future clocks always have a non-positive value and can
only increase until their values hit 0. History clocks simulate the usual clocks
in timed automata and recording clocks of event-clock automata (ECA), and
future clocks simulate timers and prophecy clocks of ECA. Both these clocks
can take a special “undefined value” which marks that they are inactive. To deal
with this naturally, we consider an extension of the reals with +∞ and −∞ as
in [3]. The difference here is that we also have the so-called diagonal constraints.

Extending Clock Constraints. Let R = R∪ {−∞, +∞} denote the set of all
real numbers along with −∞ and +∞. The usual < order on reals is extended to
deal with {−∞, +∞} as: −∞ < c < +∞ for all c ∈ R and −∞ < ∞. Similarly,
Z = Z ∪ {−∞, +∞} denotes the set of all integers along with −∞ and +∞.
Let R≥0 (resp. R≤0) be the set of non-negative (resp. non-positive) reals. Let
C = {(�, c) | c ∈ R and � ∈ {≤, <}}, called the set of weights.

Let X ∪ {0} be the set obtained by extending the clocks of GTA with the
special constant clock 0. Note that this clock will always have the value 0. Let
Φ(X) denote a set of clock constraints generated by the following grammar:
ϕ ::= x − y � c | ϕ ∧ ϕ where x, y ∈ X ∪ {0}, (�, c) ∈ C and c ∈ Z. The
introduction of the special constant clock 0 allows us to treat constraints with
just a single clock as special cases: the constraint x � c is equivalent to x − 0 � c
and the constraint c � x is equivalent to 0 − x � −c. We often write x = c
as a shorthand for x ≤ c ∧ c ≤ x. Constraints of the form x − y � c will be
called atomic constraints. A constraint of the form x − y � c is a diagonal (resp.
non-diagonal) constraint if x, y 	= 0 (resp. x = 0 or y = 0).

To evaluate the constraints allowed by Φ(X), we extend addition on real
numbers with the convention that (+∞) + α = α + (+∞) = +∞ for all α ∈ R

and (−∞) + β = β + (−∞) = −∞, as long as β 	= +∞. We also extend the
unary minus operation from real numbers to R by setting −(+∞) = −∞ and
−(−∞) = +∞. Abusing notation, we write β −α for β +(−α). Notice that with
this extended addition, the minus operation does not distribute over addition1.

Extending Valuations. A valuation of clocks is a function v : X ∪ {0} 
→ R

which maps the special clock 0 to 0, history clocks to R≥0 ∪ {+∞} and future
clocks to R≤0 ∪ {−∞}. We denote by V(X) or simply by V the set of valuations
over X. We say that clock x is defined (resp. undefined) in v when v(x) ∈ R

(resp. v(x) ∈ {−∞, +∞}). Let x, y ∈ X ∪ {0} be clocks (including 0) and let
(�, c) be a weight. For valuations v ∈ V, define v |= y − x � c as v(y) − v(x) � c.

1 Notice that −(a + b) = (−a) + (−b) when a or b is finite or when a = b. But, when
a = +∞ and b = −∞ then −(a + b) = −∞ whereas (−a) + (−b) = +∞.



A Unified Model for Real-Time Systems 271

We say that a valuation v satisfies a constraint ϕ in Φ(X), denoted as v |= ϕ,
when v satisfies all atomic constraints in ϕ.

By definition, we easily check that the constraint y − x � c is equivalent to
true (resp. false) when (�, c) = (≤, +∞) (resp. (�, c) = (<, −∞)). Constraints
that are equivalent to true or false will be called trivial, whereas all others are
non-trivial constraints. If (�, c) 	= (≤, +∞) then v |= y − x � c never holds when
v(x) = −∞. Also, if v(x) = v(y) ∈ {−∞, +∞} then v |= y − x � c only holds for
(�, c) = (≤, +∞). For a non-trivial constraint y − x � c, we have

– v |= y − x � c iff v(y) < +∞ = v(x) or (v(x) is finite and v(y) � v(x) + c).
– v |= y − x ≤ −∞ iff v(y) < +∞ = v(x) or v(y) = −∞ < v(x).
– v |= y − x < +∞ iff v(x) 	= −∞ and v(y) 	= +∞.

We abuse notation and for Y ⊆ X, we define Y � c as
∧

y∈Y y � c, and Y = c
as

∧
y∈Y y = c. We denote by v + δ the valuation obtained from valuation v

by increasing by δ ∈ R≥0 the value of all clocks in X. Note that, from a given
valuation, not all time elapse result in valuations since future clocks need to stay
at most 0. For example, from a valuation with v(x) = −3 and v(y) = −2, where
x, y are future clocks, one can elapse at most 2 time units.

Extending Resets. For history clocks, the reset operation sets the clock to 0.
For future clocks, the reset operation says that all constraints on the clock must
be discarded, i.e., the clock is released. Given that the set of clocks is partitioned
into history clocks and future clocks, we use the same notation [R]v to talk about
the change of clocks in R, whether it be reset/release. Formally, given a set of
clocks R ⊆ X, we define [R]v as {v′ ∈ V | v′(x) = 0 ∀ x ∈ R ∩ XH and v′(x) =
v(x) ∀ x 	∈ R}. Observe that the release operation is implicit: each future clock in
R could take any value (not necessarily the same) from [−∞, 0] in [R]v. Note that
[R]v is a singleton when R contains only history clocks - this corresponds exactly
to the reset operation in timed automata. Then, we simply write v′ = [R]v
instead of {v′} = [R]v. When R contains only future clocks, [R]v is the set
of valuations obtained by releasing each clock in R while keeping the value of
all other clocks unchanged. For W ⊆ V, we let [R]W =

⋃
v∈W [R]v. We have

[R′ ∪ R′′]W = [R′]([R′′]W ).

Extending Guards and Transitions. Before we define GTA, let us focus
on the language to specify transitions. In normal timed automata, as shown in
Fig. 2, a transition reads a letter, checks a guard g ∈ Φ(XH) and then resets a
subset R of (history) clocks. But in any one transition only a pair of guard, reset
is performed and one cannot interleave them.

p q

a, g,R

p q

a, prog

Fig. 2. A transition of TA (left) and of a GTA (right)
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We generalize this to our setting with history and future clocks but also to
allow arbitrary interleaving of guards and changes (to model this with a TA one
may use a sequence of multiple transitions without delays in-between.) Formally,
an instantaneous timed program is generated by the following grammar:

prog := guard | change | prog; prog

where guard = g ∈ Φ(X) and change = [R] for some R ⊆ X. While guard and
change are atomic programs, prog; prog refers to sequential composition. The
set of all programs generated by the above grammar will be denoted Programs.
Then on a transition, we simply have a pair of letter label and an instantaneous
timed program, e.g., (a, prog) in Fig. 2 (right).

The semantics for programs on a transition must generalize semantics for
guards (defined using satisfaction relation |= above) and resets/release (defined
using [R] above). But there is an obvious difference between these two: a guard
may be crossed only if the valuation before the guard satisfies it, whereas a
change (reset or release) defines a relation between the valuations before and
after the change. To capture both in a uniform way, we define the semantics
of programs as relations on pairs of valuations. Formally, for v, v′ ∈ V, prog ∈
Programs we define (v, v′) |= prog, more conveniently written as v

prog−−−→ v′,
inductively:

– v
g−→ v′ if v |= g and v′ = v,

– v
[R]−−→ v′ if v′ ∈ [R]v,

– v
prog1;prog2−−−−−−−→ v′ if ∃v′′ ∈ V such that v

prog1−−−→ v′′ and v′′ prog2−−−→ v′.

Now, we have all the pieces necessary to define our generalized model.

Definition 1 (Generalized timed automata). A generalized timed
automata A is given by a tuple (Q, Σ, X, Δ, (q0, g0), (Qf , gf )), where Q is a
finite set of states, Σ is a finite alphabet of actions, X = XF � XH is a set of
clocks partitioned into future and history clocks, the initialization condition is a
pair comprising of an initial state q0 ∈ Q and an initial guard g0 ∈ Φ(X) which
should be satisfied by initial valuations, similarly, the final condition is a pair
comprising of a set of final states Qf ⊆ Q along with a final guard gf that must
be satisfied by final valuations, and Δ ⊆ (Q × Σ × Programs × Q) is a finite set
of transitions. Δ contains transitions of the form (q, a, prog, q′), where q is the
source state, q′ is the target state, a is the action triggering the transition, and
prog is the instantaneous timed program that is executed in sequence (from left
to right) while firing the transition.

The semantics of a GTA A = (Q, Σ, X, Δ, (q0, g0), (Qf , gf )) is given by a tran-
sition system TSA whose states are configurations (q, v) of A, where q ∈ Q and
v ∈ V is a valuation. A configuration (q, v) is initial if q = q0 and v |= g0. A
configuration (q, v) is accepting if q ∈ Qf and v |= gf . Transitions of TSA are
of two forms: (1) delay transition: (q, v) δ−→ (q, v + δ) if (v + δ) |= XF ≤ 0, and
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(2) discrete transition: (q, v) t−→ (q′, v′) if t = (q, a, prog, q′) ∈ Δ and v
prog−−−→ v′.

Thus, a discrete transition t = (q, a, prog, q′), where prog = prog1; . . . ; progn can
be taken from (q, v) if there are valuations v1, . . . , vn such that v

prog1−−−→ v1
prog2−−−→

· · · progn−−−−→ vn = v′. A run of a GTA is a finite sequence of transitions from an
initial configuration of TSA. A run is said to be accepting if its last configuration
is accepting.

3 Expressivity of GTA and Examples

The GTA model defined above is rather expressive. Figure 3 illustrates an exam-
ple which accepts words of the form anbm with m ≤ n, where each a occurs
at time 0, after which b’s are seen one by one, with distance 1 between them.
The history clock x is used to ensure the timing constraint. For every a that is
read, the future clocks y, z decrease by 1. Hence the future clocks y, z maintain
the opposite of the number of a’s seen. When the automaton starts reading b,
the future clocks also start elapsing time and since they cannot go above 0, the
number of b’s is at most the number of a’s. Such a language cannot be accepted
by timed automata since the untimed language obtained by removing the time
stamps needs to be regular in the case of timed automata. The GTA model is
not only expressive, it is also convenient for use. To see this we now show that
three classical models of timed systems can be easily captured using GTA. We
also illustrate the modeling convenience provided by GTA in Sect. 8 based on
experiments.

q0 q1

a,prog1

b,prog2

b,prog2 History clocks: x , Future clocks: y, z
prog1 : x = 0; [y]; y = z 1; [z]; z = y prog2 : x = 1; [x]
Initial condition: y = z = 0 Final condition: true

Fig. 3. Example of a GTA

Timed automata. Timed automata (TA) of Alur-Dill [9] can be modeled as a
GTA as follows: (1) The set of states of the GTA is the same as the set of states
of the TA. (2) There are no future clocks in the GTA and its history clocks are
the clocks of the TA. (3) Each transition of the form q

a,g,R−−−→ q′ in a TA , where
g is a guard, a a letter and R a subset of clocks to be reset, is replaced by a
transition q

a,prog−−−−→ q′ where prog = 〈g; [R]〉. (4) Initially, all clocks must be 0,
captured by setting g0 = (XH = 0). (5) The final guard is empty: gf = True.

Event-clock Automata. Event-clock automata (ECA) of [10] can be modeled
as a GTA as follows: (1) The set of states of the GTA is the same as the set
of states of the ECA. (2) For each a ∈ Σ, the GTA has a history clock ←−a and
a future clock −→a . (3) Each transition of the form q

a,g−−→ q′ in a ECA, where
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g is a guard of the ECA, a a letter, is replaced by a transition q
a,prog−−−−→ q′

where prog := 〈(−→a = 0); [−→a ]; g; [←−a ]〉. (4) At initialization, history clocks must
be undefined (set to ∞), captured by g0 = (XH = ∞). (5) At acceptance, all
future clocks must be undefined, i.e., gf = (XF = −∞).

Automata with Timers. The third model we consider is that of automata
with timers. Timers are timing constructs that are started/initialized with a
certain time value at some point/event and count down to 0. They measure
the time from when they were started till the timer hits 0, where the event of
hitting 0 is called timeout. However, they can be stopped using a stop event at
any intermediate point instead and in which case the timer must be freed for
reuse later. Timers are a common construct in protocol specification, e.g., the
ITU standard which uses timers rather than clocks [30] and Mealy machines
with timers [31].

In our setting, a timer can be seen as a specific instance of a future clock.
More precisely Automata with timers (A 
�) can be modeled as GTA as follows:
(1) The set of states of the GTA is the same as the set of states of A 
�. (2)
The future clocks of GTA are the timers of A 
� and there are no history clocks.
Initially, the timers are undefined, captured by g0 = (XF = −∞) and gf = True.
(4) A transition of A 
� with action a from q to q′ is encoded as q

a,prog−−−−→ q′ with:

– if the transition starts timer x with value c ∈ R≥0, then prog = 〈x =
−∞; [x]; x = −c〉.

– if the transition is guarded by timeout(x), then prog = 〈x = 0; [x]; x = −∞〉.
– if the transition stops timer x, then prog = 〈[x]; x = −∞〉.

We note that the timer above differs from a prophecy-event-clock (of ECA)
though both are future clocks. Prophecy-clocks are released only when the event
is seen, so at that point the value of the prophecy-clock must be 0. On the other
hand timers can be stopped and released even when their value is not 0. This
subtle difference has a surprising impact when we allow diagonal guards.

4 The Reachability Problem for GTA

We are interested in the reachability problem for GTA: given a GTA A, does
it have an accepting run? For normal TA, the reachability problem is decid-
able and PSPACE complete as shown in [9]. This was shown using the so-called
region abstraction, by proving the existence of a finite time-abstract bisimu-
lation. However, this is not the case for GTA. As explained in the previous
subsection, GTA capture ECA, and as shown in [27,28], there exists ECA for
which there is no finite time-abstract bisimulation. However, reachability is still
decidable in the specific case of ECA, as again shown in [10]. We note that for
ECA model of [27,28] there are no diagonal constraints. In this case they show
decidability via zone-extrapolation. In [3], another approach for decidability via
zone simulations is shown. But again even in this model diagonal constraints
are disallowed. Even more critically in GTA, we can capture timers and a priori
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we can have diagonal constraints even among timers. So, the question we ask is
whether reachability is still decidable for GTA. Surprisingly, the answer is no.
The intuition is that with future clocks and diagonal constraints, we get the
ability to count (cf. Fig. 3).
Theorem 2. Reachability for GTA is undecidable.
Proof. We reduce from counter machines. Given a counter machine, we will build
a GTA with one future clock yC for each counter C and one extra future clock
z. The reduction uses diagonal constraints between z and the future clocks yC .

Initially and after each transition, the value of the future clock z will be 0.
Since a future clock has to be non-positive, time elapse is impossible. As an
invariant, the value of the future clock yC is the opposite of the value of counter
C. The operations on counter C are encoded with the following programs: (1)
zeroC = 〈yC = 0〉 (2) incC = 〈[z]; z = yC − 1; [yC ]; yC = z; [z]; z = 0〉 (3)
decC = 〈yC ≤ −1; [z]; z = yC +1; [yC ]; yC = z; [z]; z = 0〉. In programs incC and
decC , each release of a future clock is followed by a constraint which restricts the
value non-deterministically chosen during the release. For instance, [z]; z = yC−1
is equivalent to z := yC − 1. Hence, the overall effect of incC is yC := yC − 1,
maintaining all other clocks unchanged, including the invariant z = 0. ��

Given this negative result, what can we do? A careful observation of the
proof tells us that it is the interplay between diagonal constraints and arbitrary
releases of future clocks that leads to undecidability. More precisely, the encoding
depends on the fact that clocks z and yC which are used in diagonal constraints
(z = yC − 1, z = yC + 1 and yC = z) may have arbitrary values when they are
released. This suggests a restricted subclass that we formalize next.
Definition 3 (Safe GTA). Let XD ⊆ XF be a subset of future clocks.

A program prog = 〈g1; [R1]; g2; [R2]; . . . ; gk; [Rk]; gk+1〉 is XD-safe if
– diagonal constraints between future clocks are restricted to clocks in XD: if

x − y � c with x, y ∈ XF occurs in some gi then x, y ∈ XD;
– clocks in XD should be 0 or −∞ before being released: if x ∈ XD ∩ Ri then

x = 0 or x = −∞ occurs in gi.
A GTA A is XD-safe if it only uses XD-safe programs on its transitions and the
initial guard g0 sets each history clock to either 0 or ∞.

Observe that the three examples discussed in Sect. 3 are safe. Timed
automata do not have future clocks so the condition is vacuously true. In ECA,
event-predicting clocks are always checked for 0 before being released, hence
they are safe as well with XD = XF . Automata with timers without diagonal
constraints are also trivially safe with XD = ∅. The importance of safety is the
following theorem which is the center-piece of this article.
Theorem 4. Reachability for XD-safe GTA is decidable.

We will establish this theorem by showing a finite, sound and complete zone
based reachability algorithm for XD-safe GTA. If the given GTA is not XD-
safe, then we lose proof of termination (unsurprisingly, since the problem is
undecidable), but we still maintain soundness. Thus, even for such GTA when
our algorithm does terminate it will give the correct answer.
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5 Symbolic Enumeration

We adapt the G-simulation framework presented in [26] for timed automata with
diagonal constraints to GTA. Diagonal constraints offer succinct modeling [15],
but are quite challenging to handle efficiently in zone-based algorithms, and
have led to pitfalls in the past: [14] showed that the erstwhile algorithm based
on zone-extrapolations that was implemented in tools is incorrect for models
with diagonal constraints; moreover no extrapolation based method can work
for automata with diagonal constraints. The simulation framework by-passes this
impossibility result and is the state-of-the-art for timed automata with diagonal
constraints. The framework was extended to event-clock automata without diag-
onal constraints in [3]. We show that the ideas from [26] and [3] can be suitably
combined to give an effective procedure for safe GTAs. This extension to GTAs
enables us to understand the mechanics of diagonal constraints in future clocks.

The algorithm based on the G-simulation framework involves:

1. computation of a set of constraints at every state of the automaton by a static
analysis of the model,

2. a symbolic enumeration using zones to compute the zone graph,
3. a simulation relation between zones to ensure termination of the enumeration.

We will next adapt the static analysis to the GTA setting. The algorithm for
the zone graph computation and the implementation of the simulation relation
over zones is taken off-the-shelf from [26] and [3], except for a minor adaptation
to include diagonal constraints involving future clocks. What is absent, and
requires a non-trivial analysis, is the proof of termination. Therefore, we will
mainly focus on this aspect and devote Sect. 7 for the termination argument.

G-Simulation and the Static Analysis for GTA. We fix a GTA A =
(Q, Σ, X, T, (q0, g0), (Qf , gf )) for this section. Our goal is to define a simulation
relation on the semantics of A, i.e., on TS(A). In the subsequent sections we will
lift this to zones and show its finiteness. A simulation relation on TS(A) is a
reflexive, transitive relation (q, v) � (q, v′) relating configurations with the same
control state and (1) for every (q, v) δ−→ (q, v + δ), we have (q, v′) δ−→ (q, v′ + δ)
and (q, v + δ) � (q, v′ + δ), (2) for every transition t, if (q, v) t−→ (q1, v1) for some
valuation v1, then (q, v′) t−→ (q1, v′

1) for some valuation v′
1 with (q1, v1) � (q1, v′

1).
For any set G of atomic constraints, we define a preorder �G on valuations:

v �G v′ if ∀ϕ ∈ G, ∀δ ≥ 0, v + δ |= ϕ =⇒ v′ + δ |= ϕ .

Notice that in the definition above, we do not restrict δ to those such that v+δ is
a valuation: we may have v(x)+δ > 0 for some x ∈ XF . In usual timed automata,
this question does not arise, as elapsing any δ from any given valuation always
results in a valuation. But this is crucial for the proof of Theorem 5 below.

Intuitively, the preorder above is a simulation wrt the constraints in G even
after time elapse. But we need this to also be a simulation wrt discrete transi-
tions. To achieve this, the set of constraints G should depend on the available
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discrete transitions. In fact, we define a map G from states to set of constraints,
in such a way that it captures the simulation wrt the discrete actions. In other
words, our focus will be to choose state-dependent sets of constraints (given by
the map G) depending on A such that the resulting preorder induces a simulation
on TS(A).

As a first step towards this, we define, for any set G of constraints and any
program prog, a set of constraints G′ = pre(prog, G) such that, if v �G′ v′

and v
prog−−−→ v1 then there exists v′ prog−−−→ v′

1 such that v1 �G v′
1. This set

is defined inductively as follows (G is a set of atomic constraints, R is a set
of clocks, g is an arbitrary constraint, y − x � c is an atomic constraint):

pre(prog1; prog2, G) = pre(prog1, pre(prog2, G))
pre(g, G) = split(g) ∪ G

pre([R], G) =
⋃

ϕ∈G

pre([R], {ϕ})
pre([R], {y − x � c}) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{y − x � c} if x, y /∈ R

{y � c} if x ∈ R, y /∈ R

{−x � c} if x /∈ R, y ∈ R

∅ if x, y ∈ R

where split(g) is the set of atomic constraints occurring in g.
Now, the choice of suitable G will be obtained by static analysis, on the lines

of what was done for timed automata with diagonals [24–26], but adapted to
our more powerful model. More precisely, we define the map G from Q to sets
of atomic constraints as the least fixpoint of the set of equations:

G(q) = {x ≤ 0 | x ∈ XF } ∪
⋃

q
a,prog−−−−→q′

pre(prog, G(q′)) (1)

Finally, based on �G and the G(q) computation, we can define a preorder
�A between configurations of TS(A) as (q, v) �A (q′, v′) if q = q′ and v �G(q) v′.
We then show that �A defined above is indeed a simulation relation.

Theorem 5. The relation �A is a simulation on the transition system TSA.

Zones for GTA and the Zone Graph Computation. Roughly, zones [12]
are sets of valuations that can be represented efficiently using constraints
between differences of clocks. In this section, we introduce an analogous notion
for generalized timed automata. We consider GTA zones, or simply zones, which
are special sets of valuations of GTA. A GTA zone is a set of valuations satisfy-
ing a conjunction of constraints of the form y−x � c, where x, y ∈ X ∪{0}, c ∈ Z

and � ∈ {≤, <}. Thus zones are an abstract representation of sets of valuations.
Then, an abstract configuration, also called a node, is a pair consisting of a state
and a zone. Firing a transition t := (q, a, prog, q′) in a GTA A from node (q, Z)
will result in another node following a sequence of operations that we now define.
GTA Zone Operations. Let g be a guard, R ⊆ X a set of clocks and Z a GTA
zone.

– Guard intersection: Z ∩ g := {v | v ∈ Z and v |= g}
– Release/Reset: [R]Z =

⋃
v∈Z [R]v (as defined in Sect. 2)

– Time elapse: −→
Z = {v + δ | v ∈ Z, δ ∈ R≥0 s.t. v + δ |= (XF ≤ 0)}
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Successor Computation. We can show that starting from a zone Z, the successors
after the above operations are also zones (see Theorem 29 in [2]). A guard g can
be seen as yet another zone and hence guard intersection is just an intersection
operation between two zones. Similarly, the change operation preserves zones.
Finally, as is usual with timed automata, zones are closed under the time elapse
operation.

Thus, for a transition t := (q, a, prog, q′) and a node (q, Z), we can define
the successor node (q′, Z ′), and we write (q, Z) t−→ (q′, Z ′), where Z ′ is the zone
computed by the following sequence of operations: Let prog = prog1; . . . ; progn,
where each progi is an atomic program, i.e., a guard or a change. Then we
define zones Z1, . . . , Zn+1 where, Z1 = Z, Z ′ = −−−→

Zn+1, and for each 1 ≤ i ≤ n,
Zi+1 = Zi ∩gi if progi is a guard gi, and Zi+1 = [Ri]Zi if progi is a change [Ri].

Now, we can lift zone graphs, simulations from TA to GTA and obtain a
symbolic reachability algorithm for GTA.

Definition 6 (GTA zone graph). Given a GTA A, its GTA zone graph,
denoted GZG(A), is defined as follows: Nodes are of the form (q, Z) where q is
a state and Z is a GTA zone. The initial node is (q0,

−→
Z0) where q0 is the initial

state and Z0 is the set of all valuations which satisfy the initial constraint g0:
Z0 is given by g0 ∧ (

XF ≤ 0
) ∧ (

XH ≥ 0
)
. For every node (q, Z) and every

transition t := (q, a, prog, q′) of A, there is a transition (q, Z) t−→ (q′, Z ′) in the
GTA zone graph. A node (q, Z) is accepting if q ∈ Qf and Z ∩ gf is non-empty,
i.e., there exists a valuation in Z satisfying the final constraint.

Similar to the case of zone graphs for timed automata and event zone graphs
for ECA, the GTA zone graph can be used to decide reachability for generalized
timed automata. A node (q, Z) is said to be reachable (in A) if there is a path
from the initial node (q0,

−→
Z0) to (q, Z) in GZG(A). Thus, reachability of a final

state in A reduces to checking reachability of an accepting node in GZG(A).
However, as in the case of zone graphs for timed automata, GZG(A) is also not
guaranteed to be finite. Hence, we need to compute a finite truncation of the
GTA zone graph, which is still sound and complete for reachability.

Definition 7 (Simulation on GTA zones and finiteness). Let � be a sim-
ulation relation on TS(A). For two GTA zones Z, Z ′, we say (q, Z) � (q, Z ′) if
for every v ∈ Z there exists v′ ∈ Z ′ such that (q, v) � (q, v′). The simulation �
is said to be finite if for every sequence (q, Z1), (q, Z2), . . . of reachable nodes,
there exists j > i such that (q, Zj) � (q, Zi).

Now, the reachability algorithm, as in TA, enumerates the nodes of the GTA
zone graph and uses the simulation �A from Theorem 5 to truncate nodes that
are smaller with respect to the simulation. In Sect. 7, we will show that �A is
finite when A is safe, which implies that the reachability algorithm terminates.
But before that we discuss the issue of implementability.
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6 Computing with GTA Zones Using Distance Graphs

To implement the reachability algorithm described above, we will view zones as
distance graphs, as is usually done in the literature [12].

Recall the notion of weights C = {(�, c) | c ∈ R and � ∈ {≤, <}. An order
relation < between weights is defined as (�, c) < (�′, c′) when either (1) c < c′,
or (2) c = c′ and � is < while �′ is ≤. Note that since (<, −∞) < (≤, −∞) < (�
, c) < (<, ∞) < (≤, ∞) for all c ∈ R, this relation is a total order and therefore
min of a finite set of weights is well defined. We also use the commutative and
associative sum operation on weights defined in [4]. If c, c′ ∈ R are finite, the
definition is as usual: (�, c) + (�′, c′) = (�′′, c + c′) where �′′ = ≤ if � = �′ = ≤
and �′′ = < otherwise. Infinite weights α, β from the list (<, +∞), (≤, −∞), (≤
, +∞), (<, −∞) are all ‘absorbants’ wrt. weaker weights: α + β = β + α = α if α
is stronger than β (i.e., α is listed after β). Also, α + (�, c) = α if c ∈ R is finite.

A distance graph G is a weighted directed graph without self-loops, with
vertex set X ∪{0} = XF ∪XH ∪{0}, and edges labeled with weights from C \{(<
, −∞)}. We define its semantics [[G]] := {v ∈ V | v |= y−x � c for all edges x

� c−→
y in G}. The weight of edge x → y is denoted Gxy and we set Gxy = (≤, ∞) if
there is no edge x → y. The weight of a path is the sum of the weights of its
edges. A cycle in G is said to be negative if its weight is strictly less than (≤, 0).

In classical timed automata, the significance of distance graphs stems from
the observation that a distance graph has no negative cycles iff its semantics is
non-empty. This property does not immediately hold for distance graphs over
the extended algebra [4, Section 4.2] However, we can convert a distance graph
G (in time polynomial in number of clocks) into a standard form where this
characterization continues to hold. First, we set G

′
0x = min(G0x, (≤, 0)) for x ∈

XF and G
′
x0 = min(Gx0, (≤, 0)) for x ∈ XH . Moreover, if x ∈ XF then we

set G
′
x0 = min(Gx0, (<, ∞)) if Gxy 	= (≤, ∞) for some y 	= x, otherwise we

keep G
′
x0 = Gx0. Similarly, if y ∈ XH then we set G

′
0y = min(G0y, (<, ∞))

if Gxy 	= (≤, ∞) for some x 	= y, otherwise we keep G
′
0y = G0y. Finally, for

x, y ∈ X with x 	= y we set G
′
xy = Gxy. The graph G

′ constructed above is
called the standardization of G, it is equivalent to G (i.e., [[G′]] = [[G]]) and it
has a negative cycle iff its semantics [[G′]] is empty [4].

Now, suppose G′ (in standard form) has no negative cycles, then we construct
G

′′ by replacing the weight of an edge x → y by the minimum of the weights of
the paths from x to y in G

′. Such a G
′′ is called the normalization of G′ and has

several useful properties.
Let Z be a nonempty zone. Writing the constraints in Z as a distance graph,

followed by standardizing and normalizing it, results in its canonical distance
graph G(Z): [[G(Z)]] = Z and G(Z) is minimal among the standard graphs G
with [[G]] = Z. We denote by Zxy the weight of the edge x → y in G(Z).

[3] contains the algorithms for the zone operations when there are no diagonal
constraints. Successor computation can be done in O(|X|2 · |g|) and the simula-
tion in O(|X|2). Incorporating intersection with diagonal constraints requires an
additional standardization step since diagonal constraints may break this prop-
erty. A detailed explanation of the successor computation of zones is provided in
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[2]. For the simulation, the algorithm from [26] is used. However, in the presence
of diagonal constraints, the simulation check becomes NP-complete in general,
and makes use of heuristics that allows for a faster check in practice. What
remains is to show that �A is a finite simulation for XD-safe GTA.

7 Finiteness of the Simulation Relation

In this section, we show that the simulation relation �A proposed in Sect. 5 is
finite for safe GTA, which proves termination of the symbolic enumeration-based
reachability algorithm. We do this in two parts: first, we show that the zones that
are reached during the enumeration satisfy some invariants, in particular, only
finitely many values occur in constraints among future clocks. This is however
not necessarily true for history clocks. There the simulation comes into play.
In the second part of the proof, we combine the invariants with an equivalence
relation to show finiteness of the simulation. Below, we sketch these arguments
and provide intuition leaving formal details to [2] due to lack of space.

Throughout this section, we fix an XD-safe GTA A. Let M = max{|c| | c ∈
Z is used in some constraint of A}, called the maximal constant of A. We say
that a zone Z is reachable if there is some reachable node (q, Z) in GZG(A).

Part 1: Invariants on zones. We start by showing an important property
of reachable zones: closure under valuations that agree on the value of history
clocks, and satisfy the same set of safe constraints involving non-history clocks.

We say that a constraint x − y � c is M -bounded if either c ∈ R is such that
|c| ≤ M or c ∈ {−∞; +∞}. It is XD-safe if x, y ∈ XF implies x, y ∈ XD. We say
that it is (XD, M)-safe if it is both M -bounded and XD-safe.

Lemma 8. Let v, v′ ∈ V be such that v′↓XH
= v↓XH

and, for all (XD, M)-safe
constraints y − x � c with x, y ∈ XF ∪ {0}, we have v′ |= y − x � c if and only if
v |= y − x � c. Let Z be a reachable zone. Then, v ∈ Z if and only if v′ ∈ Z.

The proof (given in [2]) works by establishing that the property is true in the
initial zone, and showing that it is invariant under the zone operations used to
compute GZG(A). This proof crucially uses the fact that A is XD-safe. For the
case of releasing a clock x ∈ XF \ XD, we use the fact that a diagonal constraint
involving x may not use another future clock. For the case of releasing a clock
x ∈ XD, we use the fact that the value of the clock must be 0 or −∞ just before
the release. As a non-example, consider Fig. 3. Here, XD = {y, z} and M = 1.
After two iterations of a, the zone Z2 reached is x = 0 ∧ y = z = −2. Pick
v : x = 0, y = z = −2 and v′ : x = 0, y = z = −3. Notice that both of them
satisfy the same set of (XD, M)-safe constraints, but v ∈ Z2, v′ /∈ Z2. Indeed,
the automaton is not XD-safe since y and z are released arbitrarily.

From Lemma 8, we get the following corollary (with a more precise statement
and proof in [2]). Namely, if a reachable zone Z contains a valuation v in which
the difference between two future clocks x, y (including the zero clock) is finite
and large enough, then Z contains valuations where the difference between x
and y is any finite and large enough value.
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Corollary 9. Let Z be a reachable zone and let v ∈ Z. Let n = max(1, |XD|).
For all x, y ∈ XF ∪ {0}, if −∞ < v(x) − v(y) < −nM then, for every α with
−∞ < α < −nM , we have a valuation v′ ∈ Z with v′(x) − v′(y) = α.

Notice that the property above does not hold if we simply take n = 1. For
instance, if we have two clocks x, z ∈ XD then, applying the (XD, M)-safe
program 〈[x, z]; z = −M ∧ x − z = −M〉 from V results in a zone Z where all
valuations v satisfy v(x) = −2M . So the property fails with n = 1, x and y = 0.
This is a noteworthy difference between models with and without diagonals.

Using Corollary 9, we can prove the main invariants satisfied by the zones
obtained during the enumeration. Essentially, the weights of edges involving
non-history clocks come from a finite set which depends on the number of future
clocks in XD and the maximum constant M of the automaton. This also induces
an invariant on the constraint between a history clock and a future clock.

Before stating the result, we first give two technical lemmas from [4] that we
use extensively in the proof.

Lemma 10 ( [4]).

1. Let (�, c) be a weight and α ∈ R. Then,
– α � c iff (≤, α) ≤ (�, c) iff (≤, 0) ≤ (≤, −α) + (�, c),
– α 	� c iff (�, c) < (≤, α) iff (≤, −α) + (�, c) < (≤, 0) iff (≤, −α) + (�, c) ≤

(<, 0).
2. Let (�, c), (�′, c′), (�′′, c′′) be weights with (≤, 0) ≤ (�, c) + (�′, c′). Then, there

exists α ∈ R such that α � c and −α �′ c′. If in addition we have (�′′, c′′) <
(�, c) then there exists such an α with α 	�′′ c′′.

Lemma 11 ( [4]). Let G = G(Z) for a non-empty GTA zone Z, and let x, y ∈
X ∪ {0} be a pair of distinct nodes and α ∈ R. There is a valuation v ∈ [[G]] with
v(y) − v(x) = α if and only if

1. (≤, α) ≤ Gxy and (≤, −α) ≤ Gyx, and
2. if x, y ∈ X and α ∈ R is finite then the weights Gx0,G0x,Gy0,G0y are all

different from (≤, −∞), and
3. if x, y ∈ X and α = −∞ then G0x 	= (≤, −∞) 	= Gy0.

Lemma 12. Let Z be a nonempty reachable zone. Let n = max(1, |XD|). Then,
the normalized distance graph G(Z) satisfies the following (†) conditions:

†1 For all x ∈ XF , y ∈ XH ∪ {0}, if Zxy is finite, then (≤, 0) ≤ Zx0 ≤ (≤, nM).
†2 For all x ∈ XF , if Z0x is finite, then (<, −nM) ≤ Z0x ≤ (≤, 0).
†3 For all x ∈ XH , y ∈ XF , if Z0y is finite, then Zx0 + (<, −nM) ≤ Zxy.
†4 For x, y ∈ XF , if Zxy is finite, then (<, −nM) ≤ Zxy ≤ (≤, nM).

Proof. We focus on †1, †2, leaving the more complicated cases to [2].

†1 First, we consider the case where y = 0. So we assume that (≤, 0) ≤ Zx0 <
(<, ∞) is finite. Towards a contradiction, suppose that (≤, nM) < Zx0 < (<
, ∞). Since Z is non-empty, we know that (≤, 0) ≤ Zx0 + Z0x. Then, using
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Lemma 10, we can find α ∈ R such that (≤, α) ≤ Zx0, (≤, −α) ≤ Z0x, and
nM < α. Notice that α < ∞ since Zx0 < (<, ∞). Further, using Lemma 11,
we can get a valuation v ∈ Z such that 0−v(x) = α. Since nM < α < ∞, this
implies −∞ < v(x) < −nM . Let Zx0 = (�, c). We have nM < c < ∞. Using
Corollary 9, we can get a valuation v′ ∈ Z, such that −∞ < v′(x) < −c,
a contradiction as it violates the constraint 0 − x � c of Z. Next, assume
that Zxy < (<, ∞) for some y ∈ XH . Since Z is normal, we have Zx0 ≤
Zxy + Zy0 < (<, ∞) as Zxy < (<, ∞) and Zy0 ≤ (≤, 0). We now conclude
from the first case that (≤, 0) ≤ Zx0 ≤ (≤, nM).

†2 We have to show that either Z0x = (≤, −∞) or (<, −nM) ≤ Z0x ≤ (≤, 0).
Let Z0x = (�, c). Suppose (≤, −∞) < Z0x < (<, −nM). We have −∞ < c <
−nM . As before, we can find α such that (≤, α) ≤ Z0x, (≤, −α) ≤ Zx0 and
α 	= −∞. Then, by Lemma 11, we can find v ∈ Z with v(x) = α. We have
−∞ < v(x) � c < −nM . Now, using Corollary 9, we can get a valuation
v′ ∈ Z such that c < v′(x) < −nM , which leads to a contradiction as it
violates the constraint x − 0 � c in the zone.

��
Part 2. Equivalence and Finiteness. We introduce below an equivalence
relation ∼n

M of finite index on valuations, depending on n = max(1, |XD|) and
the maximal constant M , and show that, if G is a set of atomic M -bounded
integral constraints and if Z is a zone such that its canonical distance graph
G(Z) satisfies (†) conditions, then the downward closure ↓GZ = {v ∈ V | ∃v′ ∈
Z with v �G v′} is a union of ∼n

M equivalence classes.
First, we define ∼M on α, β ∈ R = R ∪ {−∞, ∞} by α ∼M β if (α � c ⇐⇒

β � c) for all (�, c) with � ∈ {<, ≤} and c ∈ {−∞, ∞} ∪ {d ∈ Z | |d| ≤ M}. In
particular, if α ∼M β then (α = −∞ ⇐⇒ β = −∞) and (α = ∞ ⇐⇒ β = ∞).

Next, for valuations v1, v2 ∈ V, we define v1 ∼n
M v2 by two conditions:

v1(x) ∼nM v2(x) and v1(x) − v1(y) ∼(n+1)M v2(x) − v2(y) for all clocks x, y ∈
X. Notice that we use (n + 1)M for differences of values. Clearly, ∼n

M is an
equivalence relation of finite index on valuations. Using this, we can show that
the zones that are reachable in a safe GTA are unions of ∼n

M -equivalence classes.

Lemma 13. Let G be a set of XD-safe M -bounded integral constraints which
contains both x ≤ 0 and 0 ≤ x for each future clock x ∈ XF . Let Z be a zone
with a canonical distance graph G(Z) satisfying the (†) conditions of Lemma 12.
Let v1, v2 ∈ V be valuations with v1 ∼n

M v2. Then, v1 ∈ ↓GZ iff v2 ∈ ↓GZ.

Finally, from Lemmas 12 and 13, we obtain our main theorem of the section.

Theorem 14. The simulation relation �A is finite if A is safe.

Proof. Let (q, Z0), (q, Z1), (q, Z2), . . . be an infinite sequence of reachable nodes
in the zone graph of A. By Lemma 12, for all i, the distance graph G(Zi) in
canonical form satisfies conditions (†).

The set G(q) contains only XD-safe and M -bounded integral constraints. Let
G be G(q) together with the constraints x ≤ 0 and 0 ≤ x for each future clock
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Table 1. Experimental results obtained by running our prototype implementation and,
when possible, the standard reachability algorithm using G-simulation implemented in
Tchecker. Both implementations use a breadth-first search with simulation. For each
model, we give the parameters in parenthesis - for ToyECA, we explain the parame-
terization in [2], while for others, we report the number of concurrent processes. All
experiments were run on an Ubuntu machine with an Intel-i5 7th Generation processor
and 8 GB RAM, and timeout set to 60 s.

Sl.
No.

Models G-Sim GTA Reach

Visited
nodes

Stored
nodes

Time
in sec

Visited
nodes

Stored
nodes

Time
in sec

1 Dining Phi. (6) 5480 5480 4.911 5480 5480 6.410
2 FDDI (10) 10219 459 10.139 10219 459 16.797
3 Fischer (10) 447598 260998 29.1574 447598 260998 34.6517
4 ToyECA(10000, 4) 150049 49 4.22 3 3 0.0003
5 ToyECA(5000, 6) 315193 193 15.572 3 3 0.0006
6 ToyECA(1000, 100) TIMEOUT 3 3 0.877
7 ToyECA(50000, 120) TIMEOUT 3 3 1.52
8 Fire-alarm-pattern(5) _ 46 46 0.027
9 CSMACD-bounded(1) _ 34 26 0.0054
10 CSMACD-bounded(4) _ 4529 2068 2.597
11 ABP-prop1(1) _ 114 114 0.038
12 ABP-prop2(1) _ 168 168 0.026

x ∈ XF . From Lemma 13 we deduce that for all i, ↓GZi is a union of ∼n
M -classes.

Since ∼n
M is of finite index, there are only finitely many unions of ∼n

M -classes.
Therefore, we find i < j with ↓GZi = ↓GZj , which implies Zj �G Zi. Since
G(q) ⊆ G, this also implies Zj �G(q) Zi. ��

8 Experimental Evaluation

We have implemented a prototype that takes as input a GTA, as given in
Definition 1, and applies our reachability algorithm, in the open source tool
Tchecker [29]. To do so, we extend Tchecker to allow clocks to be declared
as one of normal, history, prophecy, or timer, and extend the syntax of edges
to allow arbitrary interleaving of guards and clock changes (reset/release). Our
tool, along with the benchmarks used in this paper, is available and can be
downloaded from https://github.com/EQuaVe/GTAReach. We present selected
results in Table 1, with further details in [2].

First, we consider timed automata models from standard benchmarks
[21,34,39]. Despite the overhead induced by our framework (e.g., maintaining
general programs on transitions), we are only slightly worse off wrt. running

https://github.com/EQuaVe/GTAReach
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time than the standard algorithm, while visiting and storing the same number
of nodes. We illustrate this in rows 1–3 of Table 1 by providing a comparison of
our tool with the implementation of the state-of-the-art zone-based reachability
algorithm using G-simulation introduced in [24–26].

Next, we consider models belonging to the class of ECA without diagonal
constraints. We remark that ours is the first implementation of a reachability
algorithm that can operate on the whole class of ECA directly. We compare
against an implementation that first translates the ECA into a timed automa-
ton using the translation proposed in [10], and then runs the state-of-the-art
reachability algorithm of [24–26] on this timed automaton. From rows 4–7 of
Table 1, we observe significant improvements, both in terms of running time as
well as number of visited nodes and stored nodes w.r.t. the standard approach.

Finally, in Rows 8–12, we consider the unified model GTA. As already pointed
out, model-checking an event-clock specification ϕ over a timed automaton model
A can be reduced to the reachability on the product of the TA A and the ECA
representing ¬ϕ. In this spirit, our implementation allows the model to use any
combination of normal clocks, history clocks, prophecy clocks or timers and
moreover, permits diagonal guards between any of these clocks. To the best of
our knowledge, no existing tool allows all these features. We emphasize this by
the − in the G-Sim column of Table 1.

We model simple but useful properties using event-clocks, and check these
properties on some standard models from literature such as CSMACD [39],
Fire-alarm [35] and Alternating-bit-protocol(ABP) [33]. Note that for the bench-
mark Fire-alarm-pattern, the specification is modelled using an ECA with diag-
onals. As a consequence, the product automaton that we check reachability on
contains normal clocks and event-clocks. Here, we consider the following ECA
specification: no three a’s occur within k time units. The negation of this prop-
erty can be easily modeled by an ECA with two states and a transition on a with
the diagonal constraint ←−a −−→a ≤ k, where ←−a is the history clock recording time
since the previous occurrence of a, and −→a is a future clock predicting the time to
the next a occurrence. When reading an a, the quantity ←−a −−→a gives the distance
between the next and the previous occurrence. This language is used in [19] to
observe that ECA with diagonals are more expressive than ECA. Finally, we
remark that the model of ABP contains timers. A more detailed discussion of
the model and specifications in these benchmarks is provided in [2].

In conclusion, as can be seen from the experimental results in Table 1, we are
able to demonstrate the full power of our reachability algorithm for the unified
model of generalized timed automata.

9 Conclusion

The success of timed automata verification can safely be attributed to the
advances in the zone-based technology over the last three decades. In fact, [22],
the precursor to the seminal works [8,9], already laid the foundations for zones
by describing the Difference-Bounds-Matrices (DBM) data structure. Our goal
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in this work has been to unify timing features defined in different timed models,
while at the same time retain the ability to use efficient state-of-the-art algo-
rithms for reachability. To do so, we have equipped the model with two kinds
of clocks, history and future, and modified the transitions to contain a program
that alternates between a guard and a change to the variables. For the algorith-
mic part, we have adapted the G-simulation framework to this powerful model.
The main challenge was to show finiteness of the simulation in this extended
setting. To aid the practical use of this generic model, we have developed a pro-
totype implementation that can answer reachability for GTA. We remark that
decidability for GTA comes via zones, and not through regions. In fact, since we
generalize event-clock automata, we do not have a finite region equivalence for
GTA [28].

We conclude with some interesting avenues for future work. An immediate
future work is to use generalized timed automata for model-checking timed spec-
ifications over real-time systems. Further, the complexity and expressivity of safe
GTA are natural intersting theoretical open questions, but we believe they are
not obvious. Both these questions are answered in the timed automata literature
using regions. However, we cannot have a region equivalence for our model, since
even for the subclass of ECA, it was shown that no finite bisimulation is possible.
In particular, it would be interesting to investigate if is possible to have a trans-
lation from safe GTA to timed automata. Note that even if such a translation
exists, it is likely to incur an exponential blowup since even the translation from
ECA to TA costs an exponential. Coming to the complexity of the reachability
problem for safe GTA, it is easy to see that our procedure runs in EXPSPACE,
as we have shown that each reachable zone is a union of equivalence classes of
a finite index (see Lemma 13). On the other hand, PSPACE-hardness is inher-
ited from timed automata [6,8]. Closing the complexity gap is open. We note
that even in timed automata, the precise complexity of the simulation based
reachability algorithm is difficult to analyze, but its selling point is that it works
well in practice. Finally, we would also like to investigate liveness verification for
GTA, in particular what future clocks bring us when we consider the setting of
ω-words.
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Abstract. Deep neural networks (DNNs) are increasingly used in
safety-critical autonomous systems as perception components processing
high-dimensional image data. Formal analysis of these systems is par-
ticularly challenging due to the complexity of the perception DNNs, the
sensors (cameras), and the environment conditions. We present a case
study applying formal probabilistic analysis techniques to an experimen-
tal autonomous system that guides airplanes on taxiways using a percep-
tion DNN. We address the above challenges by replacing the camera and
the network with a compact abstraction whose transition probabilities
are computed from the confusion matrices measuring the performance
of the DNN on a representative image data set. As the probabilities
are estimated based on empirical data, and thus are subject to error,
we also compute confidence intervals in addition to point estimates for
these probabilities and thereby strengthen the soundness of the analysis.
We also show how to leverage local, DNN-specific analyses as run-time
guards to filter out mis-behaving inputs and increase the safety of the
overall system. Our findings are applicable to other autonomous systems
that use complex DNNs for perception.

1 Introduction

Complex autonomous systems, such as autonomous aircraft taxiing systems [31]
and autonomous cars [20,25,42], need to perceive and reason about their environ-
ments using high-dimensional data streams (such as images) generated by rich
sensors (such as cameras). Machine learnt components, specially deep neural
networks (DNNs), are particularly capable of the required high-dimensional rea-
soning and hence, are increasingly used for perception in these systems. While
formal analysis of the safety of these systems is highly desirable due to their
safety-critical operational settings and the error-prone nature of learned compo-
nents, in practice this is very challenging because of the complexity of the system
components, including the high complexity of the neural networks (which may
have thousands or millions of parameters), the complexity of the camera capture
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process, and the random and hard to characterize nature of the environment in
which the system operates (i.e., the world itself).

In this work, we describe a formal analysis of a closed-loop autonomous
system that addresses the above challenges. Our case study is motivated by a
real-world application, namely, an experimental autonomous system for guiding
airplanes on taxiways developed by Boeing [3,14]. The key idea is to abstract
away altogether the perception components, namely, the perception network and
the image generator, i.e., the camera taking images of the world, and replace
them with a probabilistic component α that maps (abstractions of) the state of
the system to state estimates that are used in downstream decision making in
the closed-loop system. The resulting system can then be analyzed with standard
(probabilistic) model checkers, such as PRISM [34] or Storm [22].

The approach is compositional, in the sense that the probabilistic component
is computed separately from the rest of the system. The transition probabilities in
α are derived based on confusion matrices computed for the DNN (measured on
representative data sets). Developers routinely use confusion matrices to evaluate
machine learning models, so our analysis is closely aligned with existing work-
flows, facilitating its adoption in practice.

The size of the probabilistic abstraction α is linear in the size of the output
of the DNN, and is independent of the number of the DNN parameters or the
complexity of the camera and the environment. We also describe how to leverage
additional results obtained from analyzing the DNN in isolation to further refine
the abstraction and also increase the safety of the closed-loop system through
run-time guards. In particular, we leverage rules mined from the DNN model [17]
to act as run-time guards for the closed-loop analysis, filtering out inputs that
likely lead to invalid DNN behavior. Other methods can also be used (e.g. [17,
18,21,26,32,35]) to catch adversarial or out-of-distribution inputs.

The probabilities in α are estimated based on empirical data, so they are
subject to error. We explore the use of confidence intervals in addition to point
estimates for these probabilities and thereby strengthen the soundness of the
analysis [5,7]. Our technique is applicable to other autonomous systems that use
DNN-based perception from high-dimensional data.

Related Work. Formal proofs of closed-loop safety have been obtained for
systems with low-dimensional sensor readings [11,12,27–30,40]; however, they
become intractable for systems that use rich sensors producing high-dimensional
inputs such as images.

Other works address the modeling and scalability challenges by constructing
abstractions of the perception components [24,33]. To model different environ-
ment conditions, these abstract models use non-deterministic transitions. The
resulting closed-loop systems are analyzed with traditional (non-probabilistic)
techniques. The abstractions either lack soundness proofs [33] or come with only
probabilistic soundness guarantees [24] which do not translate into probabilistic
guarantees over the safety of the overall system. VerifAI [16] can find counter-
examples to system safety, but can not provide guarantees.

The recent work in [36] aims to verify the safety of the trajectories of a
camera-based autonomous vehicle in a given 3D-scene. The work use invariant
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regions over the input space grouped based on the same controller action. How-
ever, their abstraction captures only one environment condition (i.e., one scene)
and one camera model, whereas our approach is not particular to a camera model
and implicitly considers all the possible environment conditions.

In contrast to previous work, we describe a formal analysis that is probabilis-
tic, which we believe is natural since the camera images capturing the state of
the world are subject to randomness due to the environment; further DNNs are
learnt from data and are not guaranteed to be 100% accurate. Recent work [2]
also discusses the use of classification metrics, such as confusion matrices, for
quantitative system-level analysis with temporal logic specifications. However,
the work does not discuss the computation of confidence intervals that is nec-
essary for quantifying the empirical results. Also, it does not incorporate DNN
specific analyses as we do here. We build on our previous work DeepDECS [6],
where the goal is to perform controller synthesis with safety guarantees, so the
formalism is more involved. Furthermore, DeepDECS does not consider con-
fidence interval analysis, which we explore here based on some of our other
previous works [5,7]. We analyzed center-line tracking using TaxiNet in [31].
That work focuses on the analysis of the network and not on the overall system.

2 Autonomous Center-Line Tracking with TaxiNet

Boeing is developing an experimental autonomous system for center-line tracking
on taxiways in an airport. The system uses a neural network called TaxiNet for
perception. TaxiNet is designed to take a picture of the taxiway as input and
return the plane’s position with respect to the center-line on the taxiway. It
returns two outputs; cross track error (cte), which is the distance in meters
of the plane from the center-line and heading error (he), which is the angle in
degrees of the plane with respect to the center-line. These outputs are fed to
a controller which in turn manoeuvres the plane such that it remains close to
the center of the taxiway. This forms a closed-loop system where the perception
network continuously receives images as the plane moves on the taxiway. We use
this system as a case study and also as a running example throughout the paper.

System Decomposition. The decomposition of this system is illustrated in
Fig. 1. The controller sends actions a to the airplane to guide it on the taxi-
way. The dynamics (which models the movement of the airplane on the airport
surface) maps previous state s and action a to the next state s′.1 Information
about the taxiway is provided by the perception network (p), i.e. TaxiNet. The
perception network takes high-dimensional images captured with a camera (c),
and returns its estimation sest of the real state s.

For our application, state s ∈ S captures the position of the airplane on
the surface; S is modeled as CTE × HE. The network estimates the state s :=
(cte, he) based on images taken with a camera placed on the airplane. If the
network is ‘perfect’, then s = sest.2 However, this does not hold in practice.

1 Velocity may be provided as feedback to the controller; we ignore here for simplicity.
2 Assuming the relevant state of the system is recoverable from the input image.
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The network is trained on a finite set of images and is not guaranteed to be
100% accurate whereas images observed in operation show a wide variety due to
different environment (e.g., light, weather) conditions and imperfections in the
camera.

Fig. 1. Closed-loop System Fig. 2. Abstracted System

Component Modeling. We built a simple discrete model of the airplane
dynamics and a discrete-time controller for the system, similar to previous
related work [4,23] which also considers discretized control. Since the controller
is discretized, we abstract the regression outputs of TaxiNet to view the model
as a classifier which predicts the plane’s position in discrete states. Treatment of
more complex systems with continuous semantics and regression models is left for
future work. The main challenge that we address in the paper is the modeling of
the perception components (the camera capture process and the network), which
we describe in detail in the next section. We model the (abstracted) autonomous
system as a Discrete Time Markov Chain (DTMC) [38]; the code for the models
is provided in the appendix of an extended version of this paper [37].

Safety Properties. In our study, the goal is to provide guarantees for safe
behavior with respect to two system-level properties indicated by our industrial
partner. The properties specify conditions for safe operation in terms of allowed
cte and he values for the airplane, by using taxiway dimensions. The first prop-
erty states that the airplane shall never leave the taxiway (i.e., |cte| ≤ 8 meters).
The second property states that the airplane shall never turn more than a pre-
scribed degree (i.e., |he| ≤ 35◦), as it would be difficult to maneuver the airplane
from that position. These two properties can be encoded in PCTL [8] as follows.

P =?[F (|cte| > 8m)] (Property 1 )

P =?[F (|he| > 35◦)] (Property 2 )

Here P =? indicates that we want to calculate the probability that eventually
(F ) the system reaches an error state.

TaxiNet DNN. This is a regression model with 24 layers including five con-
volution layers, and three dense layers (with 100/50/10 ELU neurons) before
the output layer. The inputs to the model are RGB color images of size 360 ×
200 pixels. We use a representative data set with 11108 images, shared by our
industry partner. The model has a Mean Absolute Error (MAE) of 1.185 for
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cte and 7.86 for he outputs respectively. The discrete nature of the controller in
our DTMCs induces a discretization on TaxiNet’s outputs and the treatment of
TaxiNet as a classifier for the purpose of our analysis. cte ∈ [−8.0 m, 8.0 m] and
he ∈ [−35.0◦, 35.0◦] are translated into cte ∈ {0, 1, 2, 3, 4} and he ∈ {0, 1, 2} as
shown below.

cte =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3 if − 8.0 m <= cte < −4.8 m
1 if − 4.8 m <= cte < −1.6 m
0 if − 1.6 m <= cte <= 1.6 m
2 if 1.6 m < cte <= 4.8 m
4 if 4.8 m < cte <= 8.0 m

he =

⎧
⎪⎨

⎪⎩

1 if − 35.0◦ <= he < −11.67◦

0 if − 11.67◦ <= he <= 11.66◦

2 if 11.66◦ < he <= 35.0◦

We use label “−1” to denote error states, i.e., cte = −1 iff |cte| > 8 m and
he = −1 iff |he| > 35◦. For simplicity, we use cte and he to denote both the
classifier and regression outputs in other parts of the paper (with meaning clear
from context). Note that none of the input images are labeled by the classifier as
“−1”, as the outputs of the network are normalized to be within the prescribed
bounds; however, this does not preclude the system from reaching an error.

3 Probabilistic Analysis

In this section, we describe the methodology for abstracting and analyzing an
autonomous system leveraging probabilistic model checking. The main idea,
which we initially explored in [6], is to replace the composition p ◦ c of the
camera (denoted as c) and the perception DNN (denoted as p) with a conserva-
tive abstraction mapping each system state to every possible estimated state; the
transition probabilities are derived empirically based on the confusion matrices
computed for the DNN, on a representative data set. We denote this abstrac-
tion as α : S → D(S), mapping system states to a discrete distribution over
(estimated) system states. Figure 2 depicts the abstracted autonomous system.

We observe that c can be viewed as a map between state s ∈ S to a dis-
tribution over images, denoted as D(Img), where img ∈ Img and Img is the set
of images. For instance, in the TaxiNet system, state s only captures the posi-
tion of the airplane with respect to the center-line, but there are many different
images that correspond to the same position. This is due to uncontrollable envi-
ronmental conditions, such as temporary sensor failures or different lighting and
weather conditions. Consequently, a single state s can map to a number of dif-
ferent images depending on the environment, and this is modeled by considering
c to be a probabilistic map of type S → D(Img). Given a system state s, α(s)
models the probability of p ◦ c leading to a particular estimated state sest; α
needs to be probabilistic because c itself is probabilistic and p is not perfectly
accurate.

We further describe how we can leverage DNN-specific analysis to improve
the accuracy of perception and the safety of the overall system, via the optional
addition of run-time guards. For the verification of the closed-loop system, we
use the PRISM model checking tool [34]. We also explore methods for analysis
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of DTMCs with uncertain transition probabilities [5,7], to obtain probabilistic
guarantees about the validity of our probabilistic safety proofs even though the
abstraction probabilities are empirical estimates.

Assumptions. Our analysis assumes that the distribution of inputs to the net-
work remains fixed over time (i.e., it is not subject to distribution shifts). More-
over, the data set of input images used to estimate the probabilities in α is
assumed to be representative, i.e., constituted of independently drawn samples
from this fixed underlying distribution of inputs. Relaxing these assumptions is
a challenging but important task for future research.

3.1 Probabilistic Abstractions for Perception

We describe in detail the construction of the probabilistic abstraction α : S →
D(S). We do not need access to the camera and only require black-box access to
the network for constructing our abstraction.3 We assume S is a finite set such
that #S = K where #S denotes the cardinality of set S. We use α(s, sest) to
represent the probability associated with estimated state sest. It is defined as,

α(s, sest) := Pr
img∼c(s)

[p(img) = sest] (1)

We estimate the probabilities in α by means of a confusion matrix. Let Imgs ⊆
Img denote a representative test dataset for images corresponding to state s, i.e.,
every sample in Imgs is assumed to be an independently drawn sample from c(s).
We assume access to representative test datasets corresponding to every state
s ∈ S. Let Img :=

⋃
s∈S Imgs. For any test input img ∈ Img, let p∗(img) ∈ S be

the label (i.e., the true underlying state) of img, which is known since Img is a
test dataset. For the sake of technical presentation, we assume a bijective map
rep : S → [K] that maps every state in S to a number in [K] := {1, 2, . . . ,K}.
We evaluate p on the test dataset Img to construct a K × K confusion matrix C
such that, for any k, k′ ∈ [K], the element in row k and column k′ of this matrix
is given by the number of inputs from Img with true state rep−1(k) that the
perception network p classifies as state rep−1(k′).

C[k, k′] := #
{
img ∈ Img | p∗(img) = rep−1(k) ∧ p(img) = rep−1(k′)

}
(2)

Given the confusion matrix C, empirical estimates for the probabilities in α
are calculated as follows,

α(rep−1(k), rep−1(k′)) :=
C[k, k′]

∑
k′′∈[K] C[k, k′′]

. (3)

3 Our run-time guard does require white-box access.
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Predicted
Total = 11108 0 1 2

Actual
0 4748 2139 148
1 91 2010 0
2 744 211 1017

Table 1. Confusion Matrix for he

TaxiNet Example. For the TaxiNet
application, we construct two prob-
abilistic maps, αcte and αhe, corre-
sponding to each of the state variables
cte and he, using a representative test
data set with 11108 samples.4 Thus,
αcte is of type CTE → D(CTE) and αhe
is of type HE → D(HE). Table 1 illustrates the confusion matrix for he. The map-
ping αhe is computed in a straightforward way: αhe(0, 0) = 4748/(4748+ 2139+
148) = 0.675, giving the probability of estimating correctly that the value of
he is zero. Similarly, αhe(1, 0) = 91/(91 + 2010) = 0.043, giving the probabil-
ity of estimating incorrectly that the value of he is zero instead of one. The
corresponding DTMC code is as follows:

[] he=0 → 0.675: (he_est ’=0) + 0.304: (he_est ’=1) + 0.021: (he_est ’=2);
[] he=1 → 0.043: (he_est ’=0) + 0.957: (he_est ’=1) + 0.0: (he_est ’=2);
[] he=2 → 0.377: (he_est ’=0) + 0.107: (he_est ’=1) + 0.516: (he_est ’=2);

A similar computation is performed for constructing αcte. The resulting code
for the closed-loop system is shown in [37], in the appendix.

3.2 DNN Checks as Run-Time Guards

We use DNN-specific checks as run-time guards to improve the performance
of the perception network and therefore the safety of the overall system. We
hypothesize that for inputs where the checks pass, the network is more likely to
be accurate, and therefore, the system is safer.

For our case study, we distill logical rules from the DNN that characterize
misbehavior in terms of intermediate neuron values and use them as run-time
guards (as described in Sect. 4). More generally, one can use any off-the-shelf
pointwise DNN check, such as local robustness [10,15,19,35,39,41] or confidence
checks for well-calibrated networks [21], as run-time guards (provided that they
are fast enough to be deployed in practice). For practical reasons (TaxiNet is a
regression model, it contains ELU [9] activations, we do not have access to the
training data) we can not use off-the-shelf checks here.

Modeling DNN Checks. Let us denote the application of (one or more) DNN-
specific checks as a function check : (Img → S) × Img → B, such that, for
perception network p ∈ Img → S and image img ∈ Img, check(p, img) = true if
p passes the checks at input img, and check(p, img) = false otherwise.

We further assume that a system that uses DNN checks as a run-time guard
attempts to read the camera sensor multiple (one or more) times, until the
check passes; and aborts (or goes to a fail-safe state) if the number of consecutive
failed checks reaches a certain threshold. This logic can be generalized to consider
more sophisticated safe-mode operations; for instance, the system can decelerate

4 To simplify the DTMCs, we model the updates to cte and he as independent. For
more precision, we can compute confusion matrices and α for the pair (cte, he).
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and/or notify an operator when the threshold is reached, as this could indicate
serious sensor failure or adverse weather conditions.

To model the effect of the run-time check in our analysis, we can define β as
the probability that an image img generated by the camera c, for any state s,
satisfies check(p, img) = true;

β := Pr
img∼D

[check(p, img) = true] (4)

Here D is the distribution obtained by combining c(s) for all states s ∈ S.5 To
be more precise we can define a separate βs for each state s. We estimate β using
the representative set of images Img,

β :=
#Imgtrue

#Img
(5)

where Imgtrue := {img ∈ Img | check(p, img) = true}.
For the overall analysis of the closed-loop system, irrespective of the state s,

we can assume that the DNN check will pass with a probability β. Moreover,
since the perception network only processes images that pass the DNN check, we
construct a refined probabilistic abstraction αtrue using conditional probability:

αtrue(s, sest) := Pr
img∼c(s)

[p(img) = sest|check(p, img) = true] (6)

We can estimate αtrue as before, but the confusion matrix is built using only
the images that pass the DNN check, i.e., for dataset Imgtrue ⊆ Img.

TaxiNet Example. For TaxiNet, out of 11108 inputs, 9125 inputs (i.e., 82.1%)
pass the DNN check resulting in the following code:

i:[0..M] init 0;
[] pc=0 & i<M → 0.821: (v’=1) & (pc ’=1) & (i’=0) + 0.179: (v’=0) & (i’=i+1);

We model the result of applying the DNN check with variable v; v = 1 if the
check returns true for an image and v = 0 otherwise. M is the number of allowed
repeated sensor readings and i is used to count the number of failed DNN checks.

The abstraction for state variables he (αhe) and cte (αcte) is only computed
for the inputs that pass the check (i.e., for v = 1) based on newly computed
confusion matrices. The DTMC code for the closed-loop system with run-time
guards is shown in [37], in the appendix.

3.3 Confidence Analysis

The construction of the probabilistic abstractions relies on calculating empirical
point estimates of the required probabilities. However, these empirical estimates
lack statistical guarantees and can be off by an arbitrary amount from the true
probabilities. To address this concern, we experiment with using FACT [5,7]
5 To simplify the presentation, we omit the precise mathematical formulation for D.
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to calculate confidence intervals for the probability that the safety properties of
the closed-loop system are satisfied. The inputs to FACT are: 1) a parametric
DTMC m where each empirically estimated transition probability is represented
by a parameter, 2) a PCTL formula φ, 3) an error level δ ∈ (0, 1) and 4) an
observation function O mapping state s to a tuple representing the number
of observations for each outgoing transition from s; in our case, the number of
observations can be obtained directly from the computed confusion matrices, i.e.,
O(s) = (C[rep(s), 1], . . . , C[rep(s),K]). FACT synthesizes a (1 − δ)-confidence
interval [a, b] ⊆ [0, 1] for the probability that φ is satisfied, given the observations.

TaxiNet Example. The following partial code illustrates the parametric ver-
sion of the code provided in Sect. 3.1 (with the complete code for the parametric
models provided in [37], in the appendix). The first three lines represent the
number of observations obtained from the confusion matrix in Table 1.
param double x = 4748 2139 148;
param double y = 91 2010;
param double z = 744 211 1017;
...
[] he=0 → x1:(he_est ’=0) + x2:(he_est ’=1) + (1-x1-x2):(he_est ’=2);
[] he=1 → y1:(he_est ’=0) + (1-y1):(he_est ’=1);
[] he=2 → z1:(he_est ’=0) + z2:(he_est ’=1) + (1-z1-z2):(he_est ’=2);

4 Experiments

In this section, we report on the experiments that we conducted as part of our
probabilistic safety analysis of the center-line tracking autonomous system.

We built two DTMC models, m1 and m2, denoting the closed-loop center-line
tracking system without and with a run-time guard, respectively. The airplane
dynamics and the controller are identically modeled in the two DTMCs as dis-
crete components. The code for the models (in PRISM syntax) and more details
about the analysis are presented in [37], in the appendix.

Mining Rules for Run-time Guards. We leverage our prior work [17], to
extract rules of the form Pre =⇒ Post from the DNN. Post is the condition
|cte∗ − cte| > 1.0 m ∨ |he∗ − he| > 5◦ on the regression model’s outputs and
Pre is a condition over the neuron values in the three dense layers of TaxiNet
(cte∗ and he∗ denote ground-truth values). The considered Post characterizes
invalid behavior (as explained in [31]). If an input satisfies Pre, the DNN check
is considered to have failed on that input. Pre can be evaluated efficiently during
the forward pass of the model, making it a good run-time guard candidate. Here
is an example of a rule for invalid behavior:

N1,85 <= −0.998 ∧ N2,50 <= 3.31 ∧ N1,84 <= −0.994 ∧ N1,15 > −0.999

∧ N1,21 <= 1.711 ∧ N1,70 <= 11.088 ∧ N1,51 > −0.999 ∧ N1,21 > −0.637 =⇒
|cte∗ − cte| > 1.0 m ∨ |he∗ − he| > 5◦

Ni,j indicates the jth neuron in the ith dense layer. The conditions over neuron
values can be checked during the forward pass of the DNN. If an input satisfies
the conditions, it is interpreted as failing the check. If the check consecutively
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fails M times, the system aborts, meaning that the system stops operating and
hands over control to a fail-safe mechanism (such as the pilot). More details on
the rules and their deployment as run-time guards are in [37], in the appendix.

Confusion Matrices. The confusion matrices for the classification version of
TaxiNet, computed for the two cases (without and with run-time guard) are
shown in [37], in the appendix. The tables can be used by developers to better
understand the DNN performance. For instance, the results summarized in the
confusion matrices indicate that the DNN performs best for inputs lying on the
center-line, which can be attributed to training being done mainly using scenarios
where the plane follows the center-line. The model appears to perform better
when the plane is heading left, as opposed to heading right, which may be due to
camera position. These observations can be used by developers to improve the
model, by training on more scenarios. Note also that the model does not make
‘blatant’ errors, mistaking inputs on the left as being on the right (of center-line)
or vice-versa (see e.g., entries with zero observations). Formal proofs can provide
guarantees of absence of such transitions.

(a) Property 1 (b) Property 2 (c) Property 3

Fig. 3. Probabilistic model checking results via PRISM

Analysis. We analyzed m1 and m2 with respect to the two PCTL properties,
P =?[F (cte = −1)] (Property 1), and P =?[F (he = −1)] (Property 2)6. The
airplane is assumed to start from a initial position on the center-line and heading
straight. For m2, i.e. the model with a run-time guard, we also evaluate the
probability of the TaxiNet system going to the abort state using the property,
P =?[F (v = 0 & i = M) (Property 3), where M is the threshold for the number
of consecutive run-time check failures.

The probabilities of these properties being satisfied, calculated by PRISM,
are shown in Fig. 3, where N is a constant in the DTMCs that dictates the length
of the finite-time horizon considered for the analysis. Note that the system has an
additional planning layer that calculates the waypoints for the airplane’s course
on the taxiway. The system is only used for controlling the airplane movement
between pairs of waypoints, hence a short horizon suffices.

The confidence intervals computed with FACT are shown in Fig. 4, at differ-
ent confidence levels (0.95 to 0.99), for N = 4. For computing the intervals, we
ignore the transitions in the DTMCs that were not observed in our data (see [37]
for more details).
6 We rewrote the properties in terms of the discrete values.
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The PRISM analysis scales well; e.g., evaluating Property 1 for model m2
(N = 30) requires less than 0.1 s on an M1 MacBook Pro, 16 GB RAM. The
numbers are similar for other queries. However, the confidence analysis does not
scale as well; we could not go beyond N = 4 for a timeout of two hours, with
Property 1 hardest to check. Newer work, fPMC [13], addresses these scalability
challenges but we found it not yet mature enough to be applied to our models.

Discussion and Lessons Learned. The experiments demonstrate the feasibil-
ity of our approach, which enables reasoning about a complex DNN interacting
with conventional (discrete-time) components via a simple probabilistic abstrac-
tion. Our analysis not only provides qualitative (i.e., an error is reachable or not)
but also quantitative (i.e., likelihood of error) results, helping developers assess
the risk associated with the analyzed scenario.

0.95 0.96 0.97 0.98 0.99
Confidence level

0

0.01

0.02

0.03

0.04

(a) Property 1

0.95 0.96 0.97 0.98 0.99
Confidence level

0

0.02

0.04

0.06

(b) Property 2

Fig. 4. Confidence interval results via FACT

The results highlight the benefit of the run-time guards in improving the
safety of the overall system; see Figs. 3(a,b) for lower error probabilities and
Figs. 4(a,b) for tighter intervals for m2. The probability of aborting is very
small, indicating the efficacy of the fail-safe mechanism (see Figs. 3(c)). More
importantly, since the DNN demonstrates higher accuracy on the inputs where
the run-time check passes, the results also indicate that improved accuracy of the
DNN translates into improved safety. The computed probabilities and confidence
intervals can be examined by developers and regulators to ensure that system
safety is met at required levels. If the confidence intervals are too large, they can
be made tighter by adding more data, as guided by the confusion matrices.

Based on our feedback (confusion matrices) our industrial partner is retrain-
ing the perception network. As the system is in its early stages, our industrial
partner was more interested in the trends suggested by our analysis rather than
the exact probability results. For instance, our results indicate that safety will
increase with a better-performing network. The partner was also interested in
how the DNN-specific analysis contributes to the system-level analysis. A prob-
abilistic analysis is best viewed as an “average-case” analysis rather than “worst-
case”. Nevertheless, such analysis is still useful since it conveys whether the
system at least behaves safely in the average-case.
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5 Conclusion

We demonstrated a method for the analysis of the safety of autonomous systems
that use complex DNNs for visual perception. Our abstraction helps separate
the concerns of DNN and conventional system development and evaluation. It
also enables the integration of heterogeneous artifacts from DNN-specific anal-
ysis and system-level probabilistic model checking. The approach produces not
only qualitative results but also provides insights that can be used in quanti-
tative safety assessment for AI/DNN-enabled systems. This is, potentially, an
important step to fill one of the gaps of quantitative evaluation for future AI
certification [1].

Future work involves experimentation with image data sets representing a
variety of environment conditions. We also plan to refine our models, inducing
finer partitions on the DNN, and validate them through simulations. Another
future research direction involves the study of the composition of safety proofs
for the system analyzed in different scenarios. Finally, we are working on compo-
sitional analysis techniques to achieve worst-case (non-probabilistic) guarantees.
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Abstract. There is a pressing need for learning controllers to endow
systems with properties of safety and goal-reaching, which are crucial
for many safety-critical systems. Reinforcement learning (RL) has been
deployed successfully to synthesize controllers from user-defined reward
functions encoding desired system requirements. However, it remains
a significant challenge in synthesizing provably correct controllers with
safety and goal-reaching requirements. To address this issue, we try to
design a special hybrid polynomial-DNN controller which is easy to ver-
ify without losing its expressiveness and flexibility. This paper proposes
a novel method to synthesize such a hybrid controller based on RL,
low-degree polynomial fitting and knowledge distillation. It also gives
a computational approach, by building and solving a constrained opti-
mization problem coming from verification conditions to produce barrier
certificates and Lyapunov-like functions, which can guarantee every tra-
jectory from the initial set of the system with the resulted controller
satisfies the given safety and goal-reaching requirements. We evaluate
the proposed hybrid controller synthesis method on a set of benchmark
examples, including several high-dimensional systems. The results vali-
date the effectiveness and applicability of our approach.

Keywords: Formal verification · Controller synthesis · Reinforcement
learning · Barrier certificate · Lyapunov-like function

1 Introduction

The design of control and decision-making software for autonomous systems is
a key part of many industrial applications, such as unmanned aerial vehicles,
ground vehicles and general robots, therefore it attracts continued attention in
the last decade [7,9,12,14]. Among many research works in this field, a highly
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challenging problem is the controller synthesis, i.e., to build control systems
that guarantee the safety and the reachability simultaneously. As an emergency
approach, the machine learning method has also been developed to tackle this
problem in recent years. Several existing techniques focus on learning a control
policy from user-defined reward/cost functions for encoding the required prop-
erties. A typical way is to use the framework of reinforcement learning (RL)
which evaluates and improves the controller’s performance by interacting with
environments and systems. Because of its strong ability to deal with nonlinear
and/or uncertain (or indeterministic) dynamical systems of high dimensions, as
well as the universal approximation power of the deep neural networks, the RL-
based controller synthesis has been extensively studied, and substantial progress
has been made by different research teams [22,23]. However, formal reasoning of
the required properties of such DNN-controlled dynamical systems is an ardu-
ous and challenging problem which makes the practical use of RL still limited.
For safety/reachability verification of the system under the learned controller,
one main approach is tracing the reachable sets of the system through comput-
ing [8,13,30], which needs to measure the solutions to the ODEs of the system,
thus the scalability of these approaches is largely restricted. Another major app-
roach is creating a certificate synthesis through solving the associated SMT prob-
lems [6,16,31], which also has limited scalability since the complexity of symbolic
computation in the general purpose SMT solvers. In this paper, we will utilize
the advantage of RL to train an elaborately designed hybrid controller, which
makes the system easier to be verified with safety and goal-reaching requirements
while maintaining controllability.

Our proposed hybrid controller is in the form of a lower degree polynomial
plus a relatively small size neural network, called a polynomial-DNN controller.
The learning-based process of the polynomial-DNN controller synthesis is divided
into the following four phases: (1) at first we train a well-performing DNN con-
troller by RL with safety and goal-reaching requirements; (2) then we manage
to fit the trained DNN roughly by a polynomial with a prescribed lower degree
bound as one part of the hybrid structure; (3) we construct a small and special
neural network (NN) with Square activation function on the hidden layer and
tanh on the output layer as the supplement for the polynomial part, and subse-
quently distill an initial polynomial-DNN controller from the original DNN con-
troller; (4) finally, using RL from the distilled one to fine-tune a well-performing
polynomial-DNN controller.

Thanks to the hybrid form consisting of a polynomial and a small NN with
the special structure, the obtained hybrid controller is easier to verify and main-
tains its expressiveness and flexibility for two main reasons: (1) considering the
verification efficiency, the original DNN is fitted by a lower degree polynomial
through coarse approximation which can be easily obtained and significantly
reduce the difficulty of formal verification; (2) the NN part compensates for
the controller performance loss caused by the coarse polynomial approximation.
Benefitting from its feature, the system with the polynomial-DNN controller can
be equivalently transformed into a polynomial form via system recasting, which
makes post-verification easily solvable.
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The necessity of proposing a polynomial-DNN type controller can be
explained as follows. Transforming DNN into polynomial form enables the appli-
cation of efficient polynomial solving techniques for formal verification, but there
is no guarantee that a polynomial of a specified degree bound can fit a DNN
with high accuracy; meanwhile, the approximation and corresponding verifica-
tion problem will become quite complicated as the degree of the polynomial
increases, which also may result in the failure of the verification. Therefore,
we resort to lower degree polynomial approximation simultaneously retrain a
small NN as the compensation for loss of accuracy, since a rough approximating
polynomial part cannot replace the whole DNN controller, and the verification
may fail for the system controlled by the polynomial part. The hybrid controller
balances the richness of expressiveness and the ease of formal verification very
well. To check the effectiveness of the proposed approach, we have evaluated the
hybrid controller synthesis on a set of commonly used benchmark examples. To
summarize, the main contributions of this paper are as follows:

– We propose a method to synthesize a hybrid polynomial-DNN controller sub-
ject to reach-avoid constraints, via RL incorporated with lower degree polyno-
mial fitting and distillation based retraining, which not only maintains good
control performance but also makes post-verification solvable.

– We delicately design a residual network as a compensation of the target con-
troller. The particularity of the differential form of the residual network allows
us to cast the differential equations of the control systems into an equivalent
polynomial form which is conducive to formal verification.

– We carry out a detailed experimental evaluation on a set of benchmarks
to demonstrate the effectiveness of our approach, and the necessity of the
controller in such a hybrid form through ablation studies.

1.1 Related Works

Several research works focus on the controller synthesis for the safety require-
ment, in which a typical way is to use reinforcement learning or supervised learn-
ing to build the overall learning framework for synthesizing security certificates
(such as control barrier function, CBF) [1,26–29].

For the goal-reaching requirement, most of existing works concentrate on
building controllers to drive the system to reach a specified set within a time
bound [8,11,13,30]. Some others focus on synthesizing the control policy to
make the system asymptotically converge to a specified goal state set, which
is called stability requirement. The certificate of Lyapunov functions generation
is a practical routine in this aspect [3–5,15,25].

In fact, learning a reach-avoid controller, namely, for both safety and goal-
reaching requirements, is a much more complicated problem. An example was
given in [10], where a correct-by-construction controller that consists of a refer-
ence controller and a tracking controller has been successfully built to derive the
actual trajectory according to the reference trajectory, and different reference
controllers have been pre-designed for different scenarios.
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Recently, a new learning-based approach is implemented in [17], where the
safe and goal-reaching policy is constructed by jointly learning two additional
certificate functions using supervised learning. Notice that there may exist the
risk of synthesizing false certificates, as the certificate constraints are only satis-
fied at the sampled points. Although one can perform posterior formal verifica-
tion to overcome this weak-point, it would be difficult to do the verification with
several DNNs in the system. By comparison, our synthesized hybrid polynomial-
DNN controller has clear advantages on formal verification.

2 Preliminaries

Notations. Let R[x] denote the ring of polynomials with coefficients in R over
variables x = [x1, x1, . . . , xn]T , and R[x]n denotes the n-dimensional polynomial
vector. Let Σ[x] ⊂ R[x] be the set of SOS polynomials. The distance from x to
a set S is defined by ‖x‖S = infs∈S ‖x − s‖2. A continuous function α : [0, a) →
[0,+∞) for some a > 0 is said to belong to class K if it is strictly increasing
and satisfies α(0) = 0. A continuous function β : (−b, c) → (−∞,+∞) for some
b, c > 0 is said to belong to extended-class K if it is strictly increasing and
satisfies β(0) = 0. A continuous function γ : [0, c) × [0,∞) → [0,+∞) for some
c > 0 belongs to class KL, if for each fixed s, the mapping γ(r, s) belongs to
class K with respect to r, and for each fixed r, the mapping γ(r, s) is decreasing
with respect to s, and γ(r, s) → 0 as s → ∞.

This section formulates the safety and goal-reaching controller synthesis prob-
lem. A controlled continuous dynamical system is modeled by first-order ordinary
differential equations

ẋ = f(x,u), with u = k(x), (1)

where x ∈ Ψ ⊆ R
n are the system states, u ∈ U ⊆ R

m are the control inputs,
and f ∈ R[x]n is the vector field defined on the state space D ⊆ R

n.
Assume f satisfies the local Lipschitz condition, which ensures (1) has a

unique solution x(t,x0) in D for every initial state x0 ∈ D at t = 0. A dynamical
system is equipped with a domain Ψ ⊂ D and an initial set Θ ⊂ Ψ , represented as
a triple C .= (f , Ψ,Θ). Given a prespecified unsafe region Xu ⊂ D, we say that the
system C is safe if all trajectories starting from Θ can not evolve into the unsafe
region Xu, which has been widely investigated in safety critical applications.

Definition 1 (Safety). For a controlled constrained continuous dynamical sys-
tem (CCDS) C = (f , Ψ,Θ) and a given unsafe region Xu, the system is safe if
for all x0 ∈ Θ, there does not exist t1 > 0 such that

∀t ∈ [0, t1).x(t,x0) ∈ Ψ and x(t1,x0) ∈ Xu.

At the same time, another important property has received much attention which
is a generalization of stability and called goal-reaching.
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Definition 2 (Goal-reaching). Given a controlled CCDS C = (f , Ψ,Θ) and a
set of goal states Xg ⊂ D, the system C is goal-reaching with respect to the goal
set Xg, if there exists a KL-function γ such that for any x0 ∈ Θ,

‖x(t)‖Xg
≤ γ(‖x(0)‖Xg

, t) for all t ≥ 0.

Definition 3 (Safe and Goal-reaching Controller Synthesis). Given a
controlled CCDS C = (f , Ψ, Θ) with f defined by (1) with an unsafe set Xu and
a goal set Xg, design a locally Lipschitz continuous feedback control law k such
that the closed-loop system C with f = f(x,k(x)) is both safe and goal-reaching
as per Definition 1 and 2.

The concept of barrier certificates plays an important role in safety verifi-
cation of continuous systems. The essential idea is to use the zero level set of
a barrier certificate B(x) as a barrier to separate all the reachable states from
the unsafe region. The following concept of barrier certificate, adapted from [24],
can be used to guarantee the safety of a given controlled CCDS.
Theorem 1. [24] Given a controlled CCDS C = (f , Ψ,Θ), with f defined by
(1), a feedback control law u = k(x), and the unsafe region Xu. Suppose there
exists a real-valued function B : Ψ → R satisfying the following conditions:
(i) B(x) ≥ 0 ∀x ∈ Θ,
(ii) B(x) < 0 ∀x ∈ Xu,
(iii) B(x) = 0 ⇒ LfB(x) > 0 ∀x ∈ Ψ ,

where LfB(x) denotes the Lie-derivative of B(x) along the vector field f(x), i.e.,
LfB(x) =

∑n
i=1

∂B
∂xi

· fi(x), then B(x) is a barrier certificate for the closed-loop
system C with the control law k(x), and the safety of system C is guaranteed.

For the goal-reaching controller design, we use a more general Lyapunov-like
function which is introduced by the following definition.
Definition 4 (Lyapunov-like function). Given a continuous system C =
(f , Ψ,Θ), and the set of goal states Xg ⊆ Ψ , a continuous differentiable real-
valued function V : Ψ → R is said to be a Lyapunov-like function if
(i) {x|V (x) ≤ 0} �= ∅ and {x|V (x) ≤ 0} ⊆ Xg,
(ii) LfV (x) ≤ −β(V (x)) ∀x ∈ Ψ,

where β is some extended class K function, and LfV (x) =
∑n

i=1
∂V
∂xi

· fi(x).
As mentioned in [17], the above Lyapunov-like function is more general than the
classic one used in [3,4,21,25]. The Lyapunov-like function does not necessarily
require that LfV (x) has to be always negative-definite, that is, LfV (x) > 0 can
happen on {x|V (x) < 0}, which will make the function less restrictive.
Theorem 2. For a controlled CCDS C = (f , Ψ,Θ) with f defined by (1) and a
set of goal states Xg ⊆ Ψ , if V (x) is a Lyapunov-like function as in Definition
4, then the system under u = k(x) is goal-reaching with respect to Xg.

Combining Theorem 1 and Theorem 2, we obtain the following assertion stat-
ing that the existence of barrier certificates and Lyapunov-like functions guaran-
tees the control law is both safe and goal-reachable. Hereafter, we refer to both
barrier and Lyapunov-like functions as certificate functions for simplification.
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3 Hybrid Polynomial-DNN Controllers Training

For the safe and goal-reaching controller synthesis problem, we design an easy-
to-verify control policy with the aid of reinforcement learning (RL) based on
barrier certificate and Lyapunov-like function generation. As we know, it is hard
for a controller with a simple structure to guarantee the safe and goal-reachable
behaviors for large-scale systems. Contrarily, controllers with complex structures
can make the system have more flexible behaviors. Unfortunately, it requires
much more computation efforts to tackle reach-avoid verification of the system
with such a complex controller. To make it amenable, we propose a method
to learn a controller with special structure, hybrid polynomial-DNN controller ,
which is easily verifiable, and can be customized to safety and goal-reaching
requirement. Specifically, this hybrid controller consists of a polynomial and a
small-size neural network with one single hidden layer. Notably, it is expected to
exhibit similar behaviors to the original complex DNN controller, but is much
easier to be verified thanks to its special structure, which will be elaborated in
Sect. 4.

To achieve this, we adopt a low-degree polynomial to roughly approximate
the DNN. Then we fix the structure of a small-size neural network and append
it to the low-degree polynomial to construct a hybrid form controller, which
is retrained using RL. To accelerate the retraining process, we use distillation
technology to distill an initialization of the NN part in the hybrid controller. In
summary, the learning-based process of the hybrid controller synthesis is divided
into the following three stages, as shown in Fig. 1.
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Fig. 1. The diagram of training framework.

– Train a deep neural network controller via RL. Based on reinforce-
ment learning, we train a deep neural network (DNN) controller for the given
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control system directly. Briefly, the RL procedure continuously uses the cur-
rent controller to drive the system by interacting with the environment, and
updates the relevant parameters of the controller by rewarding and penaliz-
ing. Through sufficient simulation and training, we expect to obtain a DNN
controller that enables the system behavior to avoid the unsafe set and reach
the specified target set with high probability.

– Fit the DNN controller by a polynomial and distill a residual net-
work by measuring the fitting error. From the learned DNN controller in
the previous process, we reconstruct a hybrid controller consisting of a poly-
nomial and a small neural network with a single hidden layer. Specifically,
we approximate the trained DNN controller with an appropriate polynomial
by sampling based method. The approximate polynomial is used as the main
component of the hybrid controller. We further evaluate the error between
the original DNN and the polynomial approximation by distillation learning,
which yields a small neural network as a refined module.

– Generate and retrain a hybrid controller by fine-tuning a small
neural network from the distilled network. We construct a special small
NN with square and tanh activation functions on the hidden and output layers
respectively, which helps to transform the hard verification problem into a
tractable polynomial one. At last, we retrain the hybrid controller consisting
of the polynomial part and the small NN template by fine-tuning the small
network initialized by the result from the distillation learning.

3.1 Training Well-Performing DNN Controllers Using RL

As illustrated in Fig. 1, the RL method is applied to train a well performed
controller, so that the system is able to avoid obstacles and reach the goal region
within the time bound.

We construct the reward function through encoding the desired behaviours
of the closed-loop system under the DNN controller, which assures unsafe region
avoidance and goal region reachability. We hope that the RL helps to synthesize
an ideal controller by the designed reward, and all the trajectories of the closed-
loop system starting from the initial set Θ cannot evolve into the unsafe region
Xu, and reach the desired region Xg under the trained DNN controller. So the
reward function design should concern two aspects, i.e., reward the behaviours
far away from the unsafe region, and reward the behaviours approaching the goal
region. In terms of the safety requirement, the reward function should penalize
the behaviours approaching Xu. Thus, the reward function can be defined as a
joint Gaussian distribution on the system state, whose expectation and variance
are the center and radius of Xu, respectively,

rewardu(xt) = −e
− 1

2

∑n
i=1(

xi(t)−xi
u

ρi
u

)2

where xu = (x1
u, . . . , xn

u) ∈ Xu ⊂ D is the center of Xu and ρu is the radius of
Xu. Similarly, the reward for the goal-reaching purpose could be defined as a
joint Gaussian distribution,
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rewardg(xt) = e
− 1

2

∑n
i=1(

xi(t)−xi
g

ρi
g

)2

where xg = (x1
g, . . . , x

n
g ) and ρg are the center and the radius of Xg, respectively.

The entire reward function consists of the above two components, i.e.

reward(xt) = λ · rewardg(xt) + (1 − λ) · rewardu(xt),

to achieve the task of safety and goal reachability, where 0 < λ < 1 is the
parameter to control the weights between rewardg(xt) and rewardu(xt).

The remaining problem is to train the controller via RL. Here we use Deep
Deterministic Policy Gradient (DDPG) [20] which is a popular RL approach
suited for continuous control applications. The DDPG algorithm combines the
value-based and policy-based methods, and is made up of two neural networks:
the critic network and actor network.

To train the desired controller, we first generate a set of initial states from
Θ. For each sampled initial state x0, with the help of uRL, one may yield the
associated trajectory as a discrete time state sequence {x0,x1, · · · ,xt, · · · ,xm}
which does not enter the unsafe area, and then collect the transition tuples
(xt,xt+1,ut, reward(xt)) to form a replay buffer. Every few time steps, a batch
size of data is sampled from the replay buffer to update the parameters of critic
network and actor network, and then the new controller is used to simulate the
trajectory to collect new data until the controller behaves well.

3.2 Polynomial Approximation

Following the RL training process in Sect. 3.1, one may probably adopt a complex
DNN structure to obtain a well-performing DNN controller. For safety critical
systems, the properties of such synthesized controllers, such as safety and goal-
reaching, need to be formally guaranteed. However, it is a challenging problem to
verify specified properties for the closed-loop system under the trained DNN-type
controller due to its complexity. Consequently, a high-degree polynomial can be
found by approximating the trained DNN with extremely high precision and may
be expected as the controller candidate to be verified with polynomial constraint
solving. However, it could be an unbearable high computation complexity for the
corresponding verification problem with such high-degree polynomial controller,
which will be explained in the experiment section.

Based on the trained DNN controller uRL through RL, we construct an easily
verifiable controller with a hybrid form, which could lead the system to be safe
and goal-reachable. We firstly roughly approximate the uRL by a low-degree
polynomial, denoted by p(x), as a part. Afterwards, we retrain a small NN,
denoted by k(x), with one hidden layer as the compensation for the approxi-
mation error between uRL and p(x). The hybrid polynomial-DNN controller is
built, i.e., p(x)+k(x). The main task of this subsection focuses on how to obtain
the approximate polynomial p(x) based on sampling points.
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Concretely, a real coefficient vector c is used to parameterize a polynomial
p(x, c) with a given degree d, i.e., p(x, c) =

∑
j cjbj(x), where bj(x) are monomi-

als with total degree ≤ d. Given the sampling points, we can obtain the coefficient
vector c∗ by solving a least squares problems. Thus, the approximate polynomial
p(x, c∗) is the approximation of uRL(x) on Ψ , denoted by p(x) for brevity. And
the residual function r(x) denotes the error between the approximate polynomial
p(x) and the DNN controller, i.e., r(x) = uRL(x) − p(x).

Having p(x), we cannot just regard it as the controller, because the error
r(x) between uRL(x) and p(x) can not be ignorable. To take this into account,
we compensate for the error by fitting the residual function r(x), by means of
retraining a hybrid controller p(x)+k(x|θ′) to rectify the system behavior, where
θ′ is the parameter to learn the NN part.

3.3 Training the Residual Controller

In this part, we retrain to compensate for the difference in system behavior
guided by the polynomial part p(x) versus the original DNN controller uRL.

The Structure of the Residual Network. We design a special neural net-
work as the compensation to make the resulting verification problem tractable.
As illustrated in Fig. 2, a typical DNN has a layered architecture and can be rep-
resented as a composition of its L layers: k(x|θ′) = lL ◦ lL−1 ◦ · · · ◦ l1(x), where
li(x) = σi(Wix + bi) which is parameterized by a weight matrix Wi and a bias
vector bi, and all the parameters are denoted by θ′ for brevity. This work consid-
ers σi to be square activation on the hidden layers and tanh activation function
on the output layer L, as shown in Fig. 2. This special setting has two advan-
tages: i) ability to converge in the training process with the help of normalized
output in the range of [−1, 1]; ii) ability to transform the control system with
NN controller of this type into a polynomial form by system recasting (c.f. 4.1
for more details). Regarding ii), we introduce a new variable xn+1 to represent
the NN output, i.e., xn+1 := tanh(h(x)), where h(x) := lL−1 ◦ · · · ◦ l1(x) denotes
the polynomial part in NN. The main observation that allows us to transform
the system with this NN controller into an equivalent polynomial system is the
fact that the special NN’s derivative can be expressed as

ẋn+1 = (1 − x2
n+1)ḣ. (2)

Actually, we construct such small NN with one single hidden layer because it
is enough to construct a simple structure neural network further added to the
controller as the compensation to control systems well.

The Residual Controller Training. Then we retrain the hybrid controller
p(x)+k(x|θ′) making use of RL technique as described in the previous subsection.
In order to improve training efficiency, the knowledge distillation technique is
used to obtain the initialization of the NN part, i.e., k(x|θ′). It is easy to achieve
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Fig. 2. Structure of the small neural network in the hybrid controller.

this by regarding the residual function r(x) as the ensemble network (also called
teacher network) and distilling the knowledge from it into a small model (i.e.,
student network). The learned student network realizes the knowledge transfer
from the teacher network and provides the initial values for the k(x|θ′) for further
training.

We reiterate that the purpose of constructing a hybrid controller by adding
k(x|θ′) to the polynomial part p(x) is to make the hybrid controller drive the
system to perform as expected by the compensation. Here we achieve this not
by training k(x|θ′) to satisfy uRL = p(x) + k(x|θ′), but instead we require the
controller p(x) + k(x|θ′) could drive the following closed system to be safe and
goal-reachable essentially: ẋ = f(x, p(x) + k(x|θ′)).

We need to train a hybrid controller p(x) + k(x|θ′) for the above system to
obtain the parameter θ′. Utilizing the learned parameters of the student network
from the knowledge distillation as the initialization for the k(x|θ′), we simulate
the system to collect a dataset of sampled trajectories, and use the DDPG algo-
rithm to achieve the control objective of safety and goal-reaching, by referring
to the reward design elaborated in Sect. 3.1. Once the training is completed, we
obtain the desired hybrid polynomial-DNN controller u(x) = p(x)+k(x), where
p(x) is the polynomial part and k(x) is the small neural network.

4 Reach-Avoid Verification with Lyapunov-Like Functions
and Barrier Certificates Generation

To ensure the safety and goal-reaching properties for the specified control system
under the synthesized controller, a relaxed surrogate is to generate a Lyapunov-
like function and a barrier certificate, stated in Theorem 1 and Theorem 2.
Note that, to make the computation tractable, the basic idea is to translate
the problem of producing barrier certificates and Lyapunov-like function into
a solvable polynomial optimization problem. Specifically, we first transform the
ODEs f of the CCDS through system recasting; and then we abstract the initial
set Θ, unsafe region Xu, goal set Xg and the system domain Ψ by polyno-
mial expressions. At last, we establish the polynomial optimization problems
yielded from the constraints of barrier certificate and Lyapunov-like function,
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proceeded by solving the resulted polynomial optimization problem to produce
a barrier certificate and Lyapunov-like function, which can guarantee the safety
and goal-reaching properties for the system with the hybrid controller, respec-
tively. Notably, Sum-of-Squares (SOS) relaxation technique is applied to encode
the polynomial optimization problem as an SOS problem involved with bilinear
matrices inequalities (BMI) constraints.

4.1 Constructing Polynomial Simulations of the Controller Network

In the following, we assume the control input u is one-dimensional for ease of
presentation without loss of generality. Given a controlled CCDS C = (f , Ψ,Θ)
with f defined by (1) with an unsafe set Xu and a goal set Xg. Suppose the
hybrid controller learned for the safety and goal-reaching requirements is u(x) =
p(x) + k(x). Here k(x) is a small neural network with the square function as its
activation function in the hidden layer, and the tanh in the output layer, i.e.,
k(x) = tanh(h(x)) where h is a polynomial which is in fact the composition of
an affine function and a square function. We replace the non-polynomial term
occurring in the controller part of the vector field f(x,u) by introducing xn+1 =
tanh(h(x)). Then ẋ = f(x,u) is transformed into a polynomial one:

{
ẋ = f(x, p(x) + xn+1),
ẋn+1 = (1 − x2

n+1)ḣ(x).
(3)

For simplicity, we denote (3) as f̂ ∈ R[x]n+1.
Besides the vector field, we need to transform the Θ, Ψ , Xu, Xg respec-

tively because of the introduced new variable. For instance, the initial set should
be specified by Θ̄ := {(x, xn+1) ∈ R

n+1 |x ∈ Θ, xn+1 = tanh(h(x))}. Actu-
ally, Θ̄ can be abstracted by a polynomial inclusion. For the initial set Θ̄, we
first compute a hyper-rectangle I := {x ∈ R

n| ∧ li ≤ xi ≤ ui} as an over-
approximation of the bounded compact set Θ through interval analysis, then
we could compute a Taylor model for the term tanh(h(x)) on I and obtain
p1(x)−δ1 ≤ xn+1 ≤ p1(x)+δ1. For Θ̄, we can get the corresponding polynomial
abstraction Θ̂. For brevity, let x̂ denote the variable vector with the introduced
variable xn+1, i.e., x̂ = (x, xn+1) = (x1, . . . , xn, xn+1)T . Likewise, the other sets
Ψ , Xu, Xg can be dealt with in the same manner, and yield the associated
polynomial abstractions, Ψ̂ , X̂u, X̂g. The above polynomial abstractions can be
written as following

⎧
⎪⎪⎨

⎪⎪⎩

Θ̂ := {x̂ ∈ R
n+1 |x ∈ Θ, |xn+1 − p1(x)| ≤ δ1},

Ψ̂ := {x̂ ∈ R
n+1 |x ∈ Ψ, |xn+1 − p2(x)| ≤ δ2},

X̂u := {x̂ ∈ R
n+1 |x ∈ Xu, |xn+1 − p3(x)| ≤ δ3},

X̂g := {x̂ ∈ R
n+1 |x ∈ Xg, |xn+1 − p4(x)| ≤ δ4}.

(4)

Finally, we obtain a polynomial CCDS Ĉ = (f̂ , Ψ̂ , Θ̂). Therefore, if x(t) is
a trajectory of system (1) within domain specified by Ψ starting from some
initial state x(t0) ∈ Θ, then x̂(t) is the trajectory of system (3) within the
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relaxed domain specified by Ψ̂ starting from the initial state x̂(t0) ∈ Θ̂ with
xn+1(t0) = tanh(h(x(t0))).

Theorem 3. If controlled CCDS Ĉ = (f̂ , Ψ̂ , Θ̂) with f̂ defined by (3) and with
Θ̂, Ψ̂ , and X̂u defined by (4) is safe, then the original CCDS C = (f , Ψ,Θ) with
the given unsafe set Xu is safe. Moreover, if B(x̂) is a barrier certificate of Ĉ
w.r.t. X̂u, then B(x, tanh(h(x))) is also the barrier function of C w.r.t. Xu.

Proof. Without loss of generality, let us assume that x(t), t > 0 is one trajectory
of the controlled CCDS C starting from the initial state x(t0) ∈ Θ, then x̂(t)
with xn+1(t) = tanh(h(x(t))) is a trajectory of Ĉ starting from the initial state
x̂(t0) ∈ Θ̂. Then, the safety of Ĉ indicates that each trajectory of Ĉ from the
initial state Θ̂ cannot reach any unsafe state specified by the assertions X̂u,
which implies that each trajectory of C from the initial state x(t0) cannot reach
any state specified by Xu. Furthermore, the vector field f̂ is yielded from f by
the equivalent transformation, and Θ̂, Ψ̂ and X̂u are the associated polynomial
abstractions. Therefore, B(x, tanh(h(x))) is the barrier certificate of CCDS C.

Theorem 4. If controlled CCDS Ĉ = (f̂ , Ψ̂ , Θ̂) with f̂ defined by (3) and with Θ̂,
Ψ̂ and X̂g defined by (4) is goal-reaching, then the original CCDS C = (f , Ψ,Θ)
with the given goal set Xg is goal-reaching. Moreover, if V (x̂) is a Lyapunov-like
function of Ĉ w.r.t. X̂g, then V (x, tanh(h(x))) is the Lyapunov-like function of
C w.r.t. Xg.

Proof. Suppose the CCDS C is not goal-reaching for the given goal set Xg. Then
∃ε and ∃x0 ∈ Θ such that ‖x(t)‖Xg

> ε,∀t > 0. The state x̂(t) ∈ Ψ̂ with
xn+1(t) = tanh(h(x(t))) from the initial state x̂(t0) satisfying

‖x̂(t)‖X̂g
> ε, (5)

because according to (4), X̂g is obtained just by involving a new variable and not
changing the projection on the first n-dimension , i.e., Xg. Then from the theo-
rem assumption, the CCDS Ĉ is goal-reaching, so ∃T > 0 such that ‖x̂(t)‖X̂g

< ε,
which contradicts with (5). Similar to Theorem 3, V (x, tanh(h(x))) is the
Lyapunov-like function of C w.r.t. Xg. This completes the proof.

4.2 Producing Barrier Certificate and Lyapunov-Like Function

For simplicity, hereafter we denote Θ̂, Ψ̂ , X̂u and X̂g as follows.
{

Θ̂ := {x̂ ∈ R
n+1 | ∧m1

i=1 gi(x̂) ≥ 0}, Ψ̂ := {x̂ ∈ R
n+1 | ∧m2

j=1 hj(x̂) ≥ 0},

X̂u := {x̂ ∈ R
n+1 | ∧m3

k=1 qk(x̂) ≥ 0}, X̂g := {x̂ ∈ R
n+1 | ∧m4

�=1 s�(x̂) ≥ 0}.

Barrier Certificate Generation. Assume that the barrier function B(x̂) is
a polynomial of degree at most d, whose coefficients form a vector space of
dimension s(d) =

(
n+1+d

d

)
with the canonical basis (x̂α) of monomials. Suppose
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the coefficients are unknown, and denoted by b = (bα) ∈ R
s(d) the coefficient

vector of B(x̂), and write

B(x̂,b) =
∑

α∈N
n
d

bαx̂α =
∑

α∈N
n
d

bα xα1
1 xα2

2 · · · xαn
n x

αn+1
n+1 ,

in the canonical basis. As stated in Theorem 1 and Theorem 3, the controlled
CCDS C is safe under the designed controller if there exists such a barrier cer-
tificate B(x̂,b) for CCDS Ĉ. Meanwhile, determining the existence of barrier
certificate B(x̂,b), can be represented as the following feasibility problem.

⎧
⎪⎪⎨

⎪⎪⎩

find b
s.t. B(x̂,b) ≥ 0, ∀x̂ ∈ Θ̂,

LfuB(x̂,b) > 0, ∀x ∈ Ψ̂ and B(x̂,b) = 0,
B(x̂,b) < 0, ∀x̂ ∈ X̂u.

(6)

Moreover, Sum-of-Squares (SOS) relaxation technique is applied to encode
the optimization problem (6) as an SOS program. Given a basic semi-algebraic
set K defined by: K = {x̂ ∈ R

n+1 | g1(x̂) ≥ 0, . . . , gs(x̂) ≥ 0}, where gi(x̂) ∈
R[x̂], 1 ≤ i ≤ s, a sufficient condition for the nonnegativity of the given polyno-
mial f(x̂) on the semi-algebraic set K is provided as

f(x̂) = σ0(x̂) +
s∑

i=1

σi(x̂)gi(x̂), (7)

where σi(x̂) ∈ Σ[x̂]d, 1 ≤ i ≤ s. Thus, the representation (7) ensures that the
polynomial f(x̂) is nonnegative on the given semi-algebraic set K.

Observing (6), the polynomial LfuB(x̂,b) is involved with the uncertain vari-
able ε in the range [−μ∗, μ∗], which can be written as ĥ(ε) ≥ 0 with

ĥ(ε) := (ε + μ∗)(μ∗ − ε).

Thus, the problem (6) can be transformed into the following optimization prob-
lem through SOS relaxation
⎧
⎪⎪⎨

⎪⎪⎩

find b
s.t. B(x̂,b) − ∑

i σi(x̂)gi(x̂) ∈ Σ[x̂],
LfuB(x̂,b) − λ(x̂)B(x̂,b) − ∑

j φj(x̂)hj(x̂) − ν(x̂, ε)ĥ(ε) − ε ∈ Σ[x̂],
−B(x̂,b) − ε′ − ∑

j κj(x̂)qj(x̂) ∈ Σ[x̂],

(8)

where ε, ε′ > 0, the entries of σi(x̂), φj(x̂) κj(x̂) ∈ Σ[x̂], and ν(x̂, ε) ∈ Σ[x̂, ε],
and λ(x̂) ∈ R[x̂]. Note that ε, ε′ are needed to ensure positivity of polynomials
as required in the second and third constraints in (6). The feasibility of the
constraints in (8) is sufficient to imply the feasibility of the constraints in (6).

Investigating (8), the product of undetermined coefficient parameters from
λ(x̂) and B(x̂,b) in the second constraint makes the problem into a bilinear
matrix inequalities (BMI) problem, which can be carried out by calling a Matlab
package PENBMI solver [18].
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Remark that the existence of the feasible solution b∗ to the problem (8)
implies that the system is guaranteed to be safe under the designated controller
u(x) = p(x) + k(x).

Lyapunov-like Function Computation. We wonder that the learned con-
troller is guaranteed to be not only safe but also goal-reaching in a sense of
driving the system to converge to the specified goal set. As stated in Theorem
2, the existence of Lyapunov-like function suffices to prove that the system’s
behaviors asymptotically converge to the specified goal set Xg. In the similar
manner, we first formalize the goal-reaching verification for system C through
Theorem 2 and Theorem 4. Assume that the Lyapunov-like function V (x̂) is a
polynomial of degree at most d′, whose coefficients form a vector space of dimen-
sion s(d′) =

(
n+1+d′

d′
)

with the canonical basis (x̂α) of monomials. We introduce
the coefficient parameters of the Lyapunov-like function V (x̂) denoted as the
vector v = (vα) ∈ R

s(d′), and write

V (x̂,v) =
∑

α∈N
n+1
d′

vαxα =
∑

α∈N
n+1
d′

vα xα1
1 xα2

2 · · · xαn+1
n+1 ,

in the canonical basis. By Theorem 4, the controlled CCDS C is goal-reaching
under the designed controller can be reduced to that the CCDS Ĉ is goal-reaching
if there exists such a Lyapunov-like function V (x̂,v). The existence of Lyapunov-
like function can be solved by tackling the following feasibility problem:

⎧
⎨

⎩

find v
s.t. ∅ �= {x̂ : V (x̂,v) ≤ 0} ⊆ X̂g,

LfuV (x̂,v) ≤ −β(V (x̂,v)), ∀x̂ ∈ Ψ̂ .

(9)

Similarly, we encode the uncertain variable ε in the range [−μ, μ] into ĥ(ε) ≥
0 with ĥ(ε) := (ε + μ)(μ − ε), and ε is involved by the controller u in the
polynomial LfuV (x̂,v). And for the given goal-reaching set X̂g, the constraint
{x̂ : V (x̂,v) ≤ 0} �= ∅ can be encoded by V (x̂0,v) ≤ 0 for a point x̂0 ∈ X̂g.

Depending on the above encoding operations, the problem (9) can be trans-
formed into the following constrained polynomial optimization problem

⎧
⎪⎪⎨

⎪⎪⎩

find v
s.t. si(x̂) + σ′

i(x̂)V (x̂,v) ∈ Σ[x̂],
−LfuV (x̂,v) − β(V (x̂,v)) − ∑

j φ′
j(x̂)hj(x̂) − ν′(x̂, ε)ĥ(ε) ∈ Σ[x̂],

−V (x̂0,v) ∈ Σ[x̂],

(10)

where 1 ≤ i ≤ m4, 1 ≤ j ≤ m2, the entries of σ′
i(x̂), φ′

j(x̂) ∈ Σ[x̂], and
ν′(x̂, ε) ∈ Σ[x̂, ε]. For the sake of simplicity, we consider the extended class K
function β(·) is the β(x) = x or β(x) = r · x (r > 0).

In summary, the safety and goal-reaching verification problem is transformed
into a BMI problem by combining (8,10) for the parameters b and v. The solution
b∗ to problem (8) yields a barrier certificate B(x̂,b∗). It means that the closed-
loop system under the designed controller u(x) = p(x) + k(x) is safe. And the
solution v∗ to (10) produces a Lyapunov-like function V (x̂,v∗), which means
that the system asymptotically converges to the specified goal set Xg.
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5 Experiments

In this section we first present a nonlinear system to illustrate our approach, and
then report an experimental evaluation of our method over a set of benchmark
examples and compare with other two different potential methods. All experi-
ments are conducted on 3.2GHz AMD Ryzen 7 3700X CPU under Windows 10
with 16GB RAM.

Example 1. [Academic 3D Model [6]] Consider the following continuous dynam-
ical system in the plant:

⎡

⎣
ẋ
ẏ
ż

⎤

⎦ =

⎡

⎣
z + 8y
−y + z

−z − x2 + u

⎤

⎦ .

The system domain is Ψ = {x = (x, y, z)T ∈ R
3 | − 5 ≤ x, y, z ≤ 5}. Our

goal is to design a control law u = p(x) + k(x) such that all trajectories of the
closed-loop system under u starting from the initial set

Θ = {x ∈ R
3 |(x + 0.75)2 + (y + 1)2 + (z + 0.4)2 ≤ 0.352}

will never enter the unsafe region

Xu = {x ∈ R
3 |(x + 0.3)2 + (y + 0.36)2 + (z − 0.2)2 ≤ 0.302},

and eventually enter the goal set Xg = {x ∈ R
3 |x2 + y2 + z2 ≤ 0.12}.

For the controller learning process, we attempt to train different NN struc-
tures with increasing depth and width as the controller templates, until a desired
controller is obtained. We eventually obtained one DNN controller with 5 hidden
layers each consisting of 128 neurons, but failed for smaller sizes. Based on this
learned DNN controller, we construct a hybrid controller for the system. The
polynomial part p(x) is carried out by the sampling-based method as follows:

p(x) = 0.125 −3.333x − 5.726y − 10.669z + 1.911x2 + 1.212xy
+2.138xz − 1.332y2 − 10.07yz − 12.952z2.

The hybrid controller is then constructed as p(x) + k(x|θ′) where k(x|θ′) is
a small NN with one hidden layer. After retraining by taking p(x)+ k(x|θ′) into
the system, we obtain the NN part with one hidden layer containing 30 neurons.

Under the hybrid controller p(x)+k(x), the controlled system can be verified
to satisfy the safety and goal-reaching properties by the following barrier certifi-
cate B(x, tanh(h(x))) and Lyapunov-like function V (x, tanh(h(x))) respectively,
{

B = 0.641x2 − 0.143xy + 0.554y2 + · · · + 0.004 tanh(h(x)) − 0.353z + 0.061,
V = −0.09x2 − 0.311xy + · · · + 0.0123 tanh(h(x)) − 0.033x − 0.024z − 0.01,

where h(x) = 2.248x2 + 0.962xy + · · · − 0.389z + 9.051.
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Fig. 3. Phase portrait of the system in Example 1. Subfigure (a) describes the zero level
set of the barrier certificate B(x) (the blue surface) separates unsafe region Xu (the
red ball) from the initial set Θ(the yellow ball). Subfigure (b) describes all trajectories
of different colors from Θ (the yellow ball) can reach Xg (the green ball). (Color figure
online)

Figure 3(a) shows the zero level set of the barrier certificate in blue color
which separates Xu (the red ball) from all trajectories starting from Θ (the
yellow ball), and Fig. 3(b) describes the simulation of different trajectories of the
system converges to the goal set Xg (the green ball) under the learned hybrid
controller. Therefore, we conclude that the system can be guaranteed to be safe
and goal-reachable from the initial set under our learned hybrid controller.

Although DNN policy by RL may appear to work well in many applications,
it is difficult to assert any strong and provable claims about its correctness since
the neurons, layers, weights and biases are far-removed from the intent of the
actual controller. As found in [32], the state-of-the-art neural network verifiers
are ineffective for verification of a neural controller over an infinite time horizon
with complex system dynamics. So the idea is to learn a controller with formal
reasonings of the specified property. The following part is to conduct the research
experiments stated below:

RE1: Explore directly learning a polynomial controller to control the system
and guarantee its safety and goal-reaching requirements.

On the verification point, one may think how about directly learning a poly-
nomial controller to control the system (without appealing to the neural policy
at all), using reinforcement learning to synthesize its unknown parameters. So
the experiment first tried training the controller network with the commonly
used Square activation function. Through training on the data set from 250 tra-
jectories with 3000 data points on each, the result was unsuccessful for different
network structures (of up to 5 layers and 250 neurons), which means it still fails
when simulating the behaviors of the system under the trained polynomial con-
troller. As mentioned in [32], Zhu et al. found that despite many experiments
on tuning learning rates and rewards, directly training a linear control program
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to conform to their specification with either reinforcement learning (e.g. policy
gradient) or random search was unsuccessful because of undesirable overfitting
even for an example as simple as the inverted pendulum.

RE2: Explore the effects of using just a polynomial or a small NN to imitate
the original DNN to avoid the hybrid form.

Our method is based on the RL to obtain a well-performing DNN controller in
general form, and then with the guidance of the learned DNN, a hybrid controller
is designed which is verifiable for the safety and the goal-reaching properties. The
experiment next shows the performance of the hybrid controller synthesis and
the comparison of the verification performance with other two RL-guided con-
troller synthesis methods:
(RE2-1) Obtain a polynomial controller by imitating and abstracting the
trained DNN controller, and under the guidance of the abstracted polyno-
mial controller the resulting verification of the control system can naturally be
encoded to a polynomial constraint solving problem;
(RE2-2) Abstract the DNN controller based on knowledge distillation to obtain
a small network that is in simple structure, which is expected to maintain the
safety and goal-reaching of the original network (on data set) [11]. Since the
posterior verification cannot avoid approximating the neural network with a
polynomial, and the upper bound of the error is positively related to the Lip-
schitz constant, the distilled small network is hopeful to make the verification
successful thanks to its smaller Lipschitz constant.

Table 1. Performance Evaluation

Ex nx df NN Struc. Hyb. design Poly.(RE2-1) Distil.(RE2-2)
u0(x) k(x) dB ,dV TH(s) dP dB ,dV TP (s) dB ,dV TD(s)

C1 [17] 2 3 2-128(4)-1 2-20-1 2,2 4.953 5 2,2 21.18 2,2 3.507
C2 [31] 2 3 2-64(4)-1 2-20-1 2,2 4.877 4 2,2 27.61 2,4 8.492
C3 [32] 2 3 2-64(5)-1 2-20-1 2,2 3.813 × 2,× × 2,4 10.56
C4 [3] 2 4 2-64(4)-1 2-20-1 2,2 8.763 5 4,4 82.92 4,2 10.16
C5 [6] 3 2 3-128(5)-1 3-30-1 2,2 11.70 × 4,× × 4,× ×
C6 [6] 3 4 3-128(5)-1 3-30-1 2,2 19.42 5 4,4 103.4 ×,× ×
C7 [2] 4 1 4-128(5)-2 4-50-2 4,4 49.26 × ×,× × 2,× ×
C8 [17] 4 4 4-128(5)-1 4-40-1 2,2 28.47 6 4,4 229.1 ×,× ×
C9 [17] 6 3 6-128(5)-2 1-50-2 2,4 64.05 × ×,× × ×,× ×
C10 [19] 7 2 7-128(6)-1 7-50-1 2,2 69.73 × ×,× × ×,× ×

We present a detailed experimental evaluation on a set of benchmarks in
Table 1. The origins of these 10 widely used examples are provided in the first
column; nx and df denote the number of state variables and the maximal degree
of the polynomials (or the polynomial abstraction by Taylor model for non-
polynomial systems) in the vector fields. The examples are with dimension up



Hybrid Controller Synthesis for Reach-Avoid Constraints 321

to 7. u0(x) denotes the network structure of the DNN controller synthesized by
RL directly. For example, the trained DNN controller for C1 has 4 hidden layers
with 128 neurons on each. Here, all DNNs are with ReLU activation functions
except for tanh on the output layer.

Table 1 has shown the performance of the mentioned three controller syn-
thesis methods with the guidance of the well-trained DNN u0(x), i.e., hybrid
controller design, polynomial controller by imitating (denoted as Poly.), NN con-
troller by distillation (denoted as Distil.). All the verification process on these
methods is carried out through the certificate function generating and the time
costs are recorded as TH , TP and TD respectively, when both barrier certificate
and Lyapunov-like function have been obtained, and the degrees of the obtained
certificate functions are recorded as dB ,dV ; otherwise, ‘×’ is marked when failing
to compute any barrier certificate or Lyapunov-like function within the degree
bound of 6 and the time bound of 3 hours.

In our hybrid controller design method (i.e., Hyb. design), we uniformly
choose p(x) of degree 2 and k(x) with one single hidden layer shown in col-
umn k(x). dB and dV denote the degrees of the computed certificates of barrier
function B(x̂) and Lyapunov-like function V (x̂) respectively. TH in the last col-
umn denotes the verification time cost.

The column Poly. exhibits the results of the method described in (RE2-1) on
the benchmarks, intending to further explain the necessity of proposing a hybrid
form controller. As an ablation study, we only use polynomial approximations of
the original DNNs as surrogate controllers and carry out certificate-based veri-
fication of them. Considering the control effect, we increase the degree bound of
polynomial templates to 8 to ensure a high precision approximation. dP denotes
the lowest degree of the polynomial surrogate controllers that pass verification
and TP denotes the corresponding time cost; ‘×’ means that no such controller
is found. The column Distil. provides the results of the method in (RE2-2) on
the benchmarks. In this ablation study, we have distilled simpler NNs with one
single hidden layer from the original DNNs and verify the specified properties
using the distilled NN controllers. This process is repeated with the number of
neurons of distilled NNs ranging from 20 up to 50 on its hidden layer, until
obtaining one satisfying the specified properties whose verification time cost is
denoted in TD, or failing to obtain one such simpler NN, denoted by ‘×’ in TD.

For all the 10 examples, we have successfully verified the safety and goal-
reaching properties of the synthesized hybrid controllers with the certificate
generation, while the methods based on polynomial surrogate controllers (i.e.,
Poly.) and distilled NN controllers (i.e., Distil.) succeed on 5 and 4 benchmarks,
respectively. Moreover, for some examples, Hyb. design method can find barrier
certificates and Lyapunov-like functions with lower degrees. Consequently, the
decision variables of the BMI problems are less than the other methods, which
does contribute to improving the effectiveness of the verification procedure.

We compare the efficiency of the methods in terms of the time spent in the
verification process for successful examples. On average, the time spent by TP

is 4.3 to 9.5 times as that of TH on the 5 successful cases of TP . Meanwhile, the
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time cost by TD is about 8.18 seconds on average, which is 1.46 times more than
that of TH on the four successful cases of TD. Comparing TH with TP and TD,
we conclude that verification of the hybrid controllers is much more efficient.

To summarize, Table 1 shows that all the synthesized hybrid controllers have
been efficiently verified to make the systems safe and goal-reachable on a set
of commonly used benchmark examples, which demonstrates that our hybrid
polynomial-DNN controller synthesis method is quite promising.

6 Conclusion

This paper has presented an approach to synthesize hybrid polynomial-DNN
controllers for nonlinear systems such that the closed-loop system can be both
well-performing and easily verified upon required properties. Our approach has
creatively integrated low degree polynomial fitting and knowledge distillation
into RL method during the constructing process. Thanks to the special fea-
ture of the hybrid controller, the controlled system can be transformed into the
polynomial form. The SOS relaxation based method is applied to generate bar-
rier certificates and Lyapunov-like functions, which can verify the safety and
goal-reaching properties of the nonlinear control systems equipped with our syn-
thesized hybrid controllers. Extensive experiments consistently demonstrate the
effectiveness and scalability of the proposed approach.
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Abstract. A safety verification task involves verifying a system against a
desired safety property under certain assumptions about the environment.
However, these environmental assumptions may occasionally be violated
due to modeling errors or faults. Ideally, the system guarantees its critical
properties even under some of these violations, i.e., the system is robust
against environmental deviations. This paper proposes a notion of robust-
ness as an explicit, first-class property of a transition system that captures
how robust it is against possible deviations in the environment. We mod-
eled deviations as a set of transitions that may be added to the original
environment. Our robustness notion then describes the safety envelope of
this system, i.e., it captures all sets of extra environment transitions for
which the system still guarantees a desired property. We show that being
able to explicitly reason about robustness enables new types of system
analysis and design tasks beyond the common verification problem stated
above. We demonstrate the application of our framework on case studies
involving a radiation therapy interface, an electronic voting machine, a
fare collection protocol, and a medical pump device.

Keywords: Robustness · Discrete Transition Systems · Model
Uncertainty

1 Introduction

A common type of verification task involves verifying a system (C) against a
desired property (P ) under certain assumptions about the environment (E); i.e.,
C||E |= P . Such assumptions may capture, for example, the expected behavior of
a human operator in a safety-critical system, the reliability of the communication
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channel in a distributed system, or the capabilities of an attacker. However, the
actual environment (E′) may occasionally deviate from the original model (E),
due to changes or faults in the environment entities (e.g., errors committed by
the operator or message loss in the channel). For certain types of deviations, a
system that is robust would ideally be able to guarantee the property even under
the deviated environment; i.e., C||E′ |= P .

This paper proposes the notion of robustness as an explicit, first-class prop-
erty of a transition system that captures how robust it is against possible devi-
ations in the environment. A deviation is modeled as a set of extra transitions
that may be added to the original environment, resulting in a new, deviated
environment E′ that has a larger set of behaviors than E does. Then, system
C is said to be robust to this deviated environment with respect to P if and
only if it can still guarantee P even in presence of the deviation. Finally, the
overall robustness of C with respect to E and P , denoted Δ, is the largest set
of deviations that the system is robust against.

Conceptually, Δ defines the safe operating envelopes of the system: As long
as the deployment environment remains within these envelopes, the system can
guarantee a desired property. Being able to explicitly reason about Δ enables
new types of system analysis and design tasks beyond the common verification
problem stated above. Given a pair of alternative system designs, C1 and C2, one
could rigorously compare them with respect to their robustness levels; they both
may satisfy property P under the normal operating environment E, but one may
be more robust to deviations than the other. Given two properties, P1 and P2
(the latter possibly more critical than the former), one could check whether the
system would continue to guarantee P2 under a deviated environment even if it
fails to do so for P1. Finally, given E, P , and a desired level of robustness, Δ,
one could synthesize machine C to be robust to Δ.

In this paper, we formalize (1) the proposed notion of robustness and (2) the
problem of computing Δ for given C, E, and P . One approach to automatically
compute Δ is a brute-force method that enumerates all possible sets of devi-
ations; however, as we will show, this approach is impractical, as the number
of deviations is exponential in the size of the environment. To mitigate this,
we present an approach for computing Δ by reduction to a controller synthesis
problem [35,37].

We have built a prototype of the proposed approach for computing robust-
ness and applied it to several case studies, including models of (1) a radiation
therapy interface, (2) an electronic voting machine, (3) a public transportation
fare collection protocol, and (4) a medical pump device. Our results show that
our approach is capable of computing Δ to provide information about deviations
under which these systems are able to guarantee their critical safety properties.

The contributions of this paper are as follows: (i) A novel, formal definition
of robustness against environmental deviations (Sect. 4); (ii) A simple, brute-
force method for computing robustness and a more efficient approach based on
controller synthesis (Sect. 5); and (iii) A prototype tool for computing Δ and an
experimental evaluation on several case studies (Sect. 6).
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2 Motivating Example

As a motivating example, we consider the Therac-25 radiation therapy machine.
This machine is infamous for a design flaw that caused radiation overdoses,
several of which led to the deaths of patients who received treatment [18]. In
this section, we introduce a model for the Therac-25 based on the descriptions in
[18] and discuss several methods for analyzing its safety. We show that robustness
provides a generally richer analysis than classic verification.
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(c) The normative environment, E

Fig. 1. The Therac-25 is modeled as CT25 = Cterm||Cbeam||Cturn. Cbeam is in Fig. 7b.

System. We model the Therac-25 as the composition of the following three
finite-state machines: (1) Cterm, a computer terminal that nurses use to oper-
ate the Therac-25, (2) Cbeam, a beam-emitter that fires a radiation treatment
beam in either X-ray or electron mode, and (3) Cturn, a turntable that rotates
between two hardware components called the flattener and the spreader. For-
mally, we define the Therac-25 as the composition all three machines: CT25 =
Cterm||Cbeam||Cturn. We show the terminal and turntable in Figs. 1a and 1b
respectively. We show the beam in Sect. 6.2 (Fig. 7b), where we present a case
study on the Therac-25.

Environment. Nurses operate the Therac-25 by typing at a keyboard con-
nected to a terminal. A nurse begins by choosing a beam mode by typing either
an “x” for X-ray or an “e” for electron mode. The nurse then hits the “enter” key
and waits for the terminal to display “beam ready” before finally pressing the
“b” key to fire the beam. This workflow defines the operating environment which
we call E, shown in Fig. 1c.

Safety property. Since the X-ray beams contain a high concentration of radi-
ation, it is imperative that the flattener is in place when the machine fires an
X-ray. We capture this key safety property in the following LTL [36] formula:

G
(
XFIRED → FLATMODE

)
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In this formula, XFIRED is a predicate that is true if an X-ray beam was just
fired, while FLATMODE is a predicate that is true when the turn table is in
flattener mode. We refer to this safety property as Pxflat in this example.

Safety Analyses. Robustness opens our safety analysis beyond classic verifi-
cation. We discuss several analysis options below.
(1) Standard Verification: We can check that the Therac-25 is safe within
the operating environment, that is, E||CT25 |= Pxflat. Standard model checking
techniques [2] show that the Therac-25 is indeed safe with respect to E.
(2) Robustness Calculation: Given that the Therac-25 is safe with respect
to E, we can calculate its robustness Δ. This calculation identifies the set of safe
environmental envelopes of the Therac-25. Importantly, these envelopes reveal
the environmental deviations that the Therac-25 can safely handle. For example,
in Sect. 6.2, we show that the Therac-25 is robust against the environmental
deviations in Fig. 8 in which a nurse repeatedly hits “enter” or the “up” arrow
key after choosing a beam mode.
(3) Controller Comparison: Holding the environment E and the property
Pxflat constant, we can compare the robustness of the Therac-25 against other
models. In Sect. 6.2, we introduce the Therac-20 (CT20) and compare the robust-
ness between CT25 and CT20. Although both machines are safe with respect to
the normative environment, we will find that CT25 is strictly less robust than
CT20. We will show how contrasting the robustness between the two machines
exposes a critical software bug in the Therac-25. Furthermore, we will show that
fixing the bug in the Therac-25 causes its robustness to be equivalent to the
Therac-20.
(4) Property Comparison: Holding the environment E and the machine CT25
constant, we can compare the machine’s robustness with respect to Pxflat and
a second safety property. For example, we could consider a new safety property
P ′ that strengthens Pxflat by additionally enforcing the spreader to be in place
when a beam is fired in electron mode. The property P ′ might be of interest
to avoid an underdose, a situation that might result from the flattener being
in place when an electron beam is fired. Because P ′ is stronger than Pxflat, a
designer may be interested to compare the robustness between the properties to
understand which environmental deviations maintain Pxflat, but violate P ′.

3 Modeling Formalism

This section describes the underlying formalism used to model the environment,
controlled systems, and the properties enforced by them.

Labeled Transition Systems. Given a finite set A, the usual notations |A|
and A∗ denote the cardinality of A and the set of all finite sequences over A
respectively. In this work, we use finite labeled transition systems to model the
behavior of the environment, the controller, and the property.
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Definition 1. A labeled transition system (LTS) E is a tuple 〈QE , ActE , RE ,
q0,E〉, where QE is a finite set of states, ActE is a finite set of actions, RE ⊆
QE × ActE × QE is the transition relation of E, and q0,E ∈ QE is the initial
state.

LTS E is said to be deterministic if for any (q, a, q′), (q, a, q′′) ∈ RE , then q′ = q′′;
otherwise it is nondeterministic. We extend the transition relation RE to finite
sequences of actions as RE

∗ ⊆ QE × ActE
∗ × QE in the usual manner. A trace

of E is a finite sequence of actions a0 . . . an of E complying with the transition
in RE

∗, i.e., (q0,E , a0 . . . an, q) ∈ RE
∗ for some q ∈ QE . The set of all traces in

E is denoted by beh(E).
Given LTSs E1 and E2, the parallel composition || defines standard synchro-

nization of E1 and E2 [2,7]. The composed LTS E1||E2 = 〈QE1 × QE2 , ActE1 ∪
ActE2 , RE1||E2 , (q0,E1 , q0,E2)〉 synchronizes over the common actions between E1
and E2 and interleaves the remaining actions. Lastly, given LTSs E1 and E2, we
say that E1 is a subset of E2, denoted E1 ⊆ E2, if QE1 ⊆ QE2 , ActE1 = ActE2 ,
RE1 ⊆ RE2 , and q0,E1 = q0,E2 .

Control Strategy. Let an LTS E represent the environmental model to be
controlled. A control strategy, or simply controller, for E is a function that
maps a finite sequence of actions to a set of actions, i.e., C : ActE

∗ → 2ActE .
A controlled trace of E is a trace of E, a0 . . . an ∈ beh(E), such that ai ∈
C(a0 . . . ai−1) for any i ≤ n. The set of all controlled runs, denoted by beh(E/C),
defines the closed-loop system of C controlling E. For convenience, this closed-
loop system is denoted by E/C. In this work, we assume that controller C
has finite memory and it can be represented by a deterministic LTS. With an
abuse of notation, the LTS controller representation is also denoted by C. For
convenience, we define controller C = 〈QC , ActC , RC , q0,C〉 to have the same
actions as in E, i.e., ActC = ActE . In this manner, the closed-loop system
E/C can be represented by the composition of environment E and controller C:
E/C = E||C.

Remark 1. We assume that all elements of the set of actions ActE are “control-
lable” actions, that can be acted upon by a controller. However, the nondeter-
ministic transition relation of E can be used to model uncontrollable actions of
the environment. After an action a is selected by the controller at state q, the
environment decides which state the system will be in, similarly to two-player
games [15].

Safety Property. In this work, we consider a class of regular linear-time prop-
erties called safety properties over an environment E [2]. A safety property P is
represented by a deterministic LTS P that defines the set of accepted behaviors.
Usually, the LTS P encodes both the traces that satisfy P and those that violate
it by including a sink error state. Formally, any trace that reaches the error state
err ∈ QP violates the safety property. An LTS E satisfies property P , denoted
by E |= P , whenever the traces in beh(E) do not reach the error state in P . In
this manner, we can test if E |= P by composing E||P and investigating if the
err is reached.
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(a) Environment E (b) Controller C (c) Property P

Fig. 2. LTSs for the running example

Example 1. We describe a simple example that we use as a running example
throughout the paper. Figure 2 depicts the environment E, controller C, and
property P considered in this example. The environment E defines that action a
is immediately followed by action b. Although controller C in Fig. 2b only shows
action a, we assume that ActC = {a, b}. In this manner, C only allows action
a to occur. Lastly, property P defines that action a should happen at most two
times while action b should never happen. It follows that E/C |= P since the
controller disables action b and the environment only executes one instance of
action a.

4 Robustness Against Environmental Deviations

4.1 Deviations

A deviation is a set of transitions d ⊆ (QE × ActE × QE) A deviated system is
defined by augmenting the transitions of environment E with a deviation set:

Definition 2. Given an LTS E = 〈QE , ActE , RE , q0,E〉 and a deviation d ⊆
QE × ActE × QE. We define the deviated system Ed as Ed := 〈QE , ActE , RE ∪
d, q0,E〉.

A controller C that guarantees property P for environment E, i.e., E/C |= P ,
might violate this property for the deviated environment Ed, i.e., Ed/C 	|= P .

Definition 3. Controller C is a robust controller with respect to environment E,
deviation d, and property P if Ed/C |= P . Deviation d is a robust deviation with
respect to E, C, and P if C is a robust controller with respect to E, d, and P .

Remark 2. In this paper, we are only interested in ensuring safety properties
over the controlled system. For this reason, it is sufficient to only consider adding
new transitions to the environment. If a controlled system is safe, then deleting
transitions from the environment does not violate the safety property.

4.2 Comparing Deviations

Each deviation set affects the environment in different ways. To reason about
the effects of each deviation set, we compare them using a partial order relation
over QE × ActE × QE . For deviations d1 and d2 such that d1 ⊆ d2, d2 deviates
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LTS E more than d1 since beh(Ed1) ⊆ beh(Ed2). For this reason, we select the
relation ⊆ over QE × ActE × QE to be the partial order to compare different
deviation sets.

Definition 4.Given E and deviations d1, d2, d1 is at least as powerful as d2 if
d2 ⊆ d1.

4.3 Robustness

Intuitively, robustness is defined as the set of all possible robust deviations d with
respect to the environment E, controller C, and safety property Psaf . Addition-
ally, we introduce an environmental constraint, Penv, to capture domain knowl-
edge about the system under analysis. Penv will filter environment deviations
that might not be physically feasible or of interest to analyze. This constraint is
captured as a safety property over E, i.e., E |= Penv states that the environment
satisfies the constraint. Formally, our robustness notions is defined as follows:

Definition 5. Let environment E, controller C, property Psaf such that E/C |=
Psaf , and environment constraint Penv such that E |= Penv be given. The
robustness of controller C with respect to E, Psaf , and Penv, denoted by
Δ(E,C, Psaf , Penv), is a set of robust deviations Δ ⊆ 2QE×ActE×QE . Δ is defined
to be the (unique) set of robust deviations satisfying the following conditions:

1. ∀d ∈ Δ. Ed/C |= Psaf [d is robust];
2. ∀d ⊆ QE × ActE × QE .Ed/C |= Psaf ∧ Ed |= Penv ⇒ ∃d′ ∈ Δ.d ⊆ d′ [d is

represented];
3. ∀d, d′ ∈ Δ. d 	= d′ ⇒ d 	⊆ d′ [unique representation].
4. ∀d ∈ Δ. Ed |= Penv [d is feasible].

When E,C, Psaf , and Penv are clear from context, we simply write Δ. The set
Δ is also denoted as the safety envelope of C with respect to E, Psaf , and Penv.

Intuitively, the set Δ defines an upper bound on the possible deviations from E
that controller C is robust against. In other words, Δ captures the envelopes for
which controller C remains safe.

If a designer does not have domain knowledge about the system, then Penv

can be set to not constrain the environment, i.e., Penv = Act∗E . After computing
Δ without environmental constraints, a designer can obtain important informa-
tion about the system and the environment. In the next analysis iteration, this
knowledge can be transformed into environmental constraints to enhance the
robustness analysis, i.e., Penv ⊆ Act∗E .

By definition, Δ is always non-empty since d = ∅ is always robust. Moreover,
due to conditions 2 and 3, only maximal robust deviations are included in Δ.
We show that there is a unique set of deviations that satisfies the conditions of
Def. 5. The proof of this lemma is available at [27], pg. 23.

Lemma 1. Given LTS E, controller C, safety property Psaf , and environment
property Penv, there is a unique Δ that satisfies the conditions in Def. 5.
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Example 2. Back to our running example, we investigate robust deviations
and Δ. For simplicity, we do not impose any environment constraint, i.e.,
Penv = Act∗E . Figure 3 shows four robust deviations for our running example,
where transitions in green are deviations added to the environment. All robust
deviations allow at most two transitions with action a, which is the maximum
number allowed by the property. In this example, Δ has three robust deviations
that are represented in Figs. 3b–3d. Since the robust deviation shown in Fig. 3a
is a subset of both deviations in Fig. 3b and Fig. 3c, it is not included in Δ.

(a) A robust deviated environment (b) Maximal robust deviated environment

(c) Maximal robust deviated environment (d) Maximal robust deviated environment

Fig. 3. Robust deviated environments. Robust transitions QE ×{b}×QE are omitted.

4.4 Problem Statement

Although Def. 5 has formally introduced our notion of robustness, it does not
show how to compute robustness. Therefore, we investigate the problem of com-
puting the set Δ.

Problem 1. Given E, C, Psaf , and Penv as in Def. 5, compute Δ.

4.5 Comparing Robustness

Our robustness definition also allows us to compare the robustness between
different controllers as well as different safety properties.

Comparing Controllers. Holding the environment and safety property con-
stant, we can compare the robustness of the controllers.

Definition 6. Given an environment E, controllers C1 and C2, safety prop-
erty Psaf , and environment constraint Penv, controller C1 is at least as robust
as C2 if and only if for all d2 ∈ Δ(E,C2, Psaf , Penv) there exists d1 ∈
Δ(E,C1, Psaf , Penv) such that d2 ⊆ d1. Equality and strictly less/more robust
are defined in the usual manner using ⊆.
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Comparing Safety Properties. Holding the environment and controller con-
stant, we can compare the robustness between safety properties.

Definition 7. Given an environment E, controllers C, safety properties Psaf,1
and Psaf,2, and environment constraint Penv, controller C is at least as robust
with respect to Psaf,1 than with respect to Psaf,2 if and only if for all d2 ∈
Δ(E,C, Psaf,2, Penv), there exists d1 ∈ Δ(E,C, Psaf,1, Penv) such that d2 ⊆ d1.

5 Computing Robustness

This section presents two manners of solving Problem 1. One is a brute-force
algorithm whereas the second uses control techniques to obtain the solution.
Usually when dealing with regular safety properties, one transforms the safety
property into an invariance property. This transformation is simply obtained
by composing the environment with the safety property; then, an invariance
property equivalent to the safety is defined over this composed system [2]. In
this composed system, an invariance property is simply defined by a set of
safe states. Unfortunately, computing robustness for safety properties does not
directly reduce to computing robustness for invariance properties.

When transforming a safety property Psaf to an invariance property, we
compose the environment and the safety property. Let us assume that there are
no environmental constraints. In our scenario, the invariance property Pinv is
defined based on the composed system E||C||Psaf , i.e., Pinv ⊆ QE||C||Psaf

. The
composed system Pinv introduces memory to the environment to differentiate
when the safety property is violated or not. This memory addition prevents a
simple reduction between invariance and safety properties since robustness is
defined with respect to the environment. Robustness defines new transitions in
E whereas computing robustness with respect to Pinv defines new transitions in
E||C||Psaf . For this reason, we cannot simply reduce the problem of computing
Δ with respect to safety properties to the problem of computing Δ with respect
to an invariance property.

5.1 Brute-Force Algorithm

One way of solving Problem 1 is via a brute-force algorithm. Intuitively, this
algorithm is broken into two parts: (i) finding the set of robust deviations that
satisfy the environmental constraint, and (ii) identifying the maximal ones within
this set. In part (i), we verify Ed||C |= Psaf and Ed |= Penv for all deviations
d ⊆ (QE ×ActE ×QE)\RE , which can be solved using standard model checking
techniques [2]. Since this algorithm checks if every deviation set is robust or not,
it is clear that it computes Δ.

5.2 Controlling the Deviations Without Environmental Constraints

Due to the lack of scalability of the brute-force algorithm, we search for more
efficient ways to compute Δ. For readability purposes, we start by describing our
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algorithm in detail assuming no environmental constraints, i.e., unconstrained
environment Penv = Act∗E . In the next section, we show how to use this algo-
rithm to completely solve Problem 1, i.e., for a possibly constrained environment
Penv ⊆ Act∗E .

Overview of the Control Algorithm. At a high level, we transform the
problem of computing Δ to a problem of controlling environmental transitions
to avoid safety violations. Intuitively, we control deviations to force them to be
robust, i.e., we take the viewpoint that we can control transitions in (QE×ActE×
QE) \ RE . Different ways of controlling transitions in (QE × ActE × QE) \ RE

provide different robust deviations.

Fig. 4. Overview of our approach to compute robustness for the unconstrained envi-
ronment. The inputs are the LTSs of environment E, controller C, and property Psaf .
The set A is the set of all environment transitions, A = QE × ActE × QE . The LTSs
T1, . . . , Tn ⊆ F represent controlled meta-systems.

Figure 4 provides an overview of our approach. First, we define LTS EA to be
the deviated system with all possible transitions, i.e., A = QE ×ActE ×QE . The
deviated system EA is the maximally deviated environment since it encompasses
every possible deviated system Ed for d ⊆ QE × ActE × QE .

Next, we compose the deviated environment EA with controller C and prop-
erty Psaf , to create a “meta-system” F . This meta-system provides information
about how the deviated environment EA under the control of C can violate Psaf .
Following this composition, we pose a control problem over the meta-system to
prevent any violation of Psaf . There are multiple ways of controlling this com-
posed system; in our approach, we obtain a finite number of controllers encoded
as Ti ⊆ F . These different ways of controlling the meta-system provide different
robust deviations from which we can extract Δ. To make our approach concrete,
we describe each step in detail using our running example, shown in Fig. 2.

Constructing the Meta-system. The deviated environment EA =
EQE×ActE×QE

contains the behavior of any other deviated environment. There-
fore, we define the meta-system to be the composition of deviated environment
EA, controller C, and property Psaf , i.e., F = EA||C||Psaf . Figure 5a shows
the meta-system F for our running example. Since C only has one state, we
omit its state from the state names in Fig. 5a, i.e., states in Fig. 5a are defined as
(qe, qp) ∈ QE ×QPsaf

instead of (qe, qc, qp) ∈ QE ×QC ×QPsaf
. All transitions in

F are labeled a, omitted in Fig. 5a, since controller C only enables action a. We
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also identify in F which transitions are derived from the environment (dashed
blue) and which are derived from deviations (green). For simplicity, we define a
single error state in F to capture every (qe, qc, err) ∈ QE × QC × QPsaf

.

(a) Meta-system F (b) Meta-controller T1

(c) Meta-controller T2

Fig. 5. Meta-systems. All transitions have action a since C only enables action a (see
Fig. 2b). Dashed blue transitions represent transitions that are feasible in RE while
solid green transitions represent the deviated transitions in (QE × ActE × QE) \ RE .
The shaded area in Fig. 5b contains all safe states in the meta-system.

Controlling the Meta-system. Once the meta-system is constructed, we pose
a meta-control problem over F to ensure that the meta-system avoids the error
states, i.e., states (qe, qc, err) ∈ QE × QC × QPsaf

. These error states represent
safety violations in the closed-loop system. For instance, in Fig. 5a, if transition
(2, C) → err occurs, then the closed-loop system violates Psaf since more than
two actions a were executed. In this meta-control problem, a meta-controller can
disable transitions in F that originated from deviations in E, i.e., transitions in
(QE × ActE × QE) \ RE .

Problem 2. Given meta-system F , synthesize a meta-controller T ⊆ F such
that (1) for any (qe, qc, qp) ∈ QT then state qp 	= err; and (2) for any(
(qe, qc, qp), a, (q′

e, q
′
c, q

′
p)

) ∈ RF \ RT such that (qe, qc, qp) ∈ QT , it follows that
(qe, a, q′

e) /∈ RE .

Problem 2 states that the meta-controller is a subset of the meta-system
F . We want to maintain the same structure as in F since we need to enforce
that the meta-controller does not disable any transition associated with RE .
Condition (1) in Problem 2 ensures that property Psaf is not violated. On the
other hand, condition (2) guarantees that only transitions assigned to deviations
are disabled.
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Back to our example, the LTS T described by the shaded area in Fig. 5b
demonstrates a possible meta-controller that satisfies Problem 2. Condition (1)
is satisfied since the error state is not included in the shaded area. With respect to
condition (2), only solid green transitions are disabled. Figure 5c shows another
meta-controller.

To solve Problem 2, one can solve a safety game over F using fixed-point
computation [15,25]. Due to space limitations, we point the reader to [27], pg. .23
for the solution to this safety game.

Extracting Robust Deviations. Each meta-controller that solves Problem 2
relates to a robust deviation. Intuitively, a meta-controller disables deviations
that would violate Psaf . For instance, the meta-controller T1 shown in Fig. 5b
disables transition (3, B) → (1, C), which relates to disabling transition 3 a−→ 1
in the environment. Figure 3a depicts the deviated environment related to meta-
controller T1. Similarly, Fig. 3b shows the deviated environment associated with
meta-controller T2.

To extract a robust deviation from a meta-controller, we have to (1) identify
the transitions that the meta-controller has disabled; and (2) project the disabled
transitions to transitions QE × ActE × QE . Since a meta-controller is a subset
of the meta-system, the disabled transitions are obtained by comparing F and
T . Intuitively, the disabled transitions are those that escape the shaded area in
Fig. 5.

Disabled := {(q, a, q′) ∈ RF | q ∈ QT ∧ (q, a, q′) /∈ RT } (1)

For instance, in the case of meta-controller T1, the transition ((1, B), a, (1, C))
belongs to the Disabled set. Next, based on the disabled transitions, we project
them to transitions in QE × ActE × QE , i.e., transitions in the environment.

del := {(qe, a, q′
e) ∈ QE × ActE × QE | ((qe, qc, qp), a, (q′

e, q
′
c, q

′
p)) ∈ Disabled}

(2)
Transitions in del are the transitions to be deleted from QE × ActE × QE such
that (QE × ActE × QE) \ del is a robust deviation set. If transitions in del are
included in a deviation set, they can cause a violation of property Psaf . In the
case of T1, the transition (1, a, 1) is included in del. If we maintain, for instance,
transition 1 a−→ 1 as part of a deviation set d, then the closed-loop Ed/C violates
the property Psaf since the path (1, A) → (1, B) → (1, C) → err would be
feasible in the meta-controller.

Computing Robustness Δ. Problem 2 searches for meta-controllers that guar-
antee the satisfaction of property Psaf . To compute Δ, we need to obtain a finite
number of meta-controllers. Algorithm 1 formalizes our description in Fig. 4. It
takes as input the environment E, the controller C, a deviation set d, and a
safety property P . From the algorithm overview description in Fig. 2, we have
that for the unconstrained environment d = A = QE×ActE×QE and P = Psaf .

In Algorithm 1, line 4 computes the largest possible set of invariant states
that avoid the error state, i.e., Inv(QF \ Err) solves the safety game as shown
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Algorithm 1. COMPUTE-ROBUSTNESS
Input: LTSs E, C, P and deviation d
Output: Set of deviations D
1: D ← ∅
2: F ← Ed||C||P
3: Err ← {(qe, qc, qp) ∈ QF | qp = err}
4: W ← Inv(QF \ Err)
5: for all S ∈ 2W \ {∅} do
6: T ← Meta-Controller(S, F )
7: del ← {(qe, a, q′

e) ∈ d | ∃((qe, qc, qp), a, (q′
e, q

′
c, q

′
p)) ∈ RF \RT s.t. (qe, qc, qp) ∈

QT }
8: D ← D ∪ {d \ del}
9: while ∃d1, d2 ∈ D s.t. d1 ⊆ d2 do

10: D ← D \ {d1}
return D

11: procedure Meta-Controller(S, F )
12: S ← Inv(S)
13: if q0,F /∈ S then
14: T ← ∅
15: else
16: QT ← S, ActT ← ActF , q0,T ← q0,F
17: RT ← {(q, a, q′) ∈ S × ActT × S | (q, a, q′) ∈ RF }

return T

in [27], pg. 23. Based on this invariant set, each iteration in the loop (lines 5–8)
computes a meta-controller (line 6) and stores its respective robust deviation
(line 8). The meta-controller T is also computed by using the function Inv. The
meta-controller solution ensures that QT ⊆ S. Line 7 computes environmental
transitions that must be deleted in order to obtain a robust deviation. The
computed robust deviations are stored in Δ. Lastly, the loop in lines 9–10 ensures
that only maximal robust deviations are included in Δ.

In more detail, to solve Problem 2, we must guarantee that the meta-system
F does not reach any states in Err := {(qe, qc, qp) ∈ QF | qp = err}. Formally,
we compute the set Inv(QF \ Err), which contains every state in F that does
not reach a state in Err via a transition associated with RE . Based on this
invariant set, we can extract any meta-controller that remains within this set.
Informally, the Meta-Controller(S, F ) in line 11 of Algorithm 1 computes a
meta-controller that remains within states in S. First, this procedure computes
the invariant set of S, i.e., Inv(S) with respect to meta-system F (line 12). In
this manner, a meta-controller is defined by projecting the meta-system F to
states and transitions in the set of state Inv(S) (lines 16–17).

The following theorem shows that Δ computed via Algorithm 1 is equal to Δ
as in Definition 5 when Penv = Act∗E , i.e., Algorithm 1 partially solves Problem 1.

Theorem 1. Given LTS E, controller C, and property Psaf , Algorithm 1 out-
puts Δ as in Definition 5 when Penv = Act∗E.
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Proof. Sketch. In order to show that Theorem 1 holds, we provide two interme-
diate lemmas whose proofs are available at [27], pg. 24 (Lemma 2 and Lemma 3).
The first lemma states that every meta-controller T produces a robust deviation.
In this manner, we show that for every d ∈ Δ, the deviation d is robust. The sec-
ond lemma shows that for every maximal robust deviation d ∈ Δ, there exists a
meta-controller T associated with deviation d. Consequently, Algorithm 1 com-
putes every possible maximal robust deviation.

Using Algorithm 1 to compute Δ for our running example, we obtain Δ that
contains the three maximal robust deviations shown in Fig. 3. Lastly, we provide
the computational complexity of Algorithm 1.

Theorem 2. Algorithm 1 outputs Δ in O(2|QE ||QC |(|QP |−1)).

Proof. It follows from the size of 2W .

Although Algorithm 1 has exponential complexity, we empirically show in Sect. 6
that it scales better than the brute-force algorithm.

Heuristics to Exploit the Structure of F . In Algorithm 1, we compute
robust deviations for every possible subset of the largest invariant state set,
c.f., line 5. To improve the efficiency of Algorithm 1, we provide a sound and
complete heuristic that identifies and skips redundant subsets of 2W \ ∅. The
heuristic is based on the observation that sets of states that are not directly
connected in F correspond to redundant deletion sets from QE × ActE × QE .
As such, the heuristic exploits the structure of F by performing a depth-first
search over its state space, hence skipping disconnected groups of states. For
instance, the heuristic will skip the subset {(1, A), (3, C)} because (1, A) and
(3, C) are not connected in F . This subset is redundant because its deletion set
del = {((1, A), (1, B)), ((1, A), (2, B)), ((1, A), (3, B))} is identical to the deletion
set for the subset {(1, A)} which is connected. In the worst-case scenario, our
heuristic computes the power set of W , i.e., exactly as in line 5.

5.3 Controlling the Deviations with Environmental Constraints

When introducing environmental constraints, we must eliminate the robust devi-
ations that violate these constraints as described in Definition 5. One might think
that Penv and Psaf could be combined as a single safety property for which we
then compute Δ. However, this approach does not work since Penv must be
enforced only by the environment whereas Psaf is a property of the closed-
loop system. Another approach is to verify if Penv is satisfied for each deviation
obtained in the for-loop (lines 5–8) in Algorithm 1. Although this approach is
feasible, in practice, we want to reduce the number of deviations, using Penv,
before we compute the robust deviations. For this reason, we describe a sequen-
tial algorithm shown in Fig. 6. In this algorithm, Algorithm 1 is used multiple
times in this constrained scenario instead of a single time as in the unconstrained
scenario (Sect. 5.2).
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Fig. 6. Overview of our approach to compute robustness for constrained environments.

The algorithm to compute robustness for constrained environments can be
broken into two parts: (a) computing all maximal environments d̃i that sat-
isfy Penv; and (b) computing robust deviations for each deviated environment
Ed̃i

found in part (a). Computing the maximal environments that satisfy Penv

reduces to computing maximal deviations of E with respect to a controller that
allows every environment action, Call. Formally, the behavior of Call does not
restrain E, beh(Call) = Act∗E ; and it can be described by a one-state LTS. There-
fore, the output of part (a) is the set of maximal deviations d̃i with respect to
E, Call, and Penv, denoted as maximal environment deviations. Each maximal
deviated environment Ed̃i

satisfy the Penv.
Once we have obtained all maximal environment deviations that satisfy Penv,

we focus on finding the maximal robust deviations with respect to C and Psaf .
In other words, we run Algorithm 1 for each maximal deviated environment Ed̃i

together with C and Psaf . Since d is a subset of d̃i, we have that the perturbed
system Ed satisfies Penv.

Each maximal deviated environment Ed̃i
generates a set of maximal robust

deviations Di with respect to C and Psaf . The final step is combining these
maximal robust deviations with respect to each d̃i. Since they are maximal with
respect to d̃i, there could be deviations that are not maximal as defined by
Definition 5. The post-processing step combines the deviations and eliminates
any non-maximal deviations; and it outputs Δ as in Definition 5. The correctness
of this algorithm follows from Theorem 1.

6 Case Studies

6.1 Implementation

We have implemented a prototype tool for computing robustness [28]. The tool
accepts a model of an environment, a controller, and a safety property–as well
as an optional list of environmental constraints–and outputs Δ. The tool has
support for comparing the robustness of two controllers as well as the robustness
of a controller with respect to two separate safety properties. Currently, the
environment, controller, safety property, and environmental constraints must be
encoded in Finite State Process (FSP) notation [23] but this is not a fundamental
limitation.
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Fig. 7. The beam components of the two Therac machines. The hardware interlocks
cause C′

beam to have a fifth state “switching mode” that will only switch to X-ray mode
after the flattener rotates into place.

We wrote the tool in the Kotlin programming language. Our tool includes
an implementation of the brute-force algorithm from Sect. 5.1, as well as an
implementation of Algorithm 1 and Algorithm 1 with heuristics. In the following
case studies, we leverage the tool to calculate and compare the robustness of
several systems. We summarize our performance results for each case study in
Sect. 6.6.

6.2 Therac-25

Background. In Sect. 2, we introduced the Therac-25 radiation therapy
machine. In this section, we present a case study in which we compare the
robustness of the Therac-25 to that of its predecessor, the Therac-20. We begin
by showing that the Therac-20 is strictly more robust than the Therac-25. We
then use this information to identify and fix a critical safety bug in the Therac-25
model.

Therac-20. The Therac-20 is a radiation therapy machine that was designed
before the Therac-25. Unlike the Therac-25, the Therac-20 was not known for
causing accidents that led to injuries and death. A key difference between the
two machines is that the Therac-20 includes hardware interlocks in its beam
component (Fig. 7a), while the Therac-25 does not (Fig. 7b). The purpose of
the hardware interlocks is to provide a layer of security at the hardware level for
upholding Pxflat. In our model, the interlocks work by ensuring that the flattener
is completely rotated into place before allowing an operator to fire an X-ray
beam. Unfortunately, hardware interlocks were considered expensive so they were
omitted from the design of the later Therac-25 model. In the following section,
we compare the robustness between the two Therac machines with respect to
the normative environment E and the key safety property Pxflat.

Comparing Controllers. Using standard model checking techniques [2], we
can confirm that both the Therac-20 and the Therac-25 are safe with respect
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Fig. 8. Visual robustness comparison
between the two Therac machines.
Both machines are robust against gray
transitions, but only the Therac-20 is
robust against green transitions. (Color
figure online)

Fig. 9. Software fix that eliminates the
race condition in the Therac-25.

to E and Pxflat. Historically, however, the Therac-20 is known to be safer than
the Therac-25. Therefore, we improve our safety analysis by also comparing
the robustness between the two machines with respect to E, Pxlfat, and an
environmental constraint Penv. Penv, shown in [27], pg. 26, Fig. 11, restricts the
environment to firing the beam at most once.

Our tool reports that the Therac-20 is strictly more robust than the Therac-
25. To understand this result, we can examine the difference between the robust-
ness for each machine. We show this difference visually by presenting one max-
imal robust deviation from each machine in Fig. 8. This figure shows that the
Therac-20 is robust against the scenario in which the operator 1) types “e” to
select electron beam mode, 2) optionally types “enter”, 3) presses the “up” arrow
key, and finally 4) types “x” to switch the beam into X-ray mode. The Therac-
25, however, is not robust against this scenario. We see this in Fig. 8 because
the series of actions must pass through at least one green arrow, where a green
arrow indicates a transition that the Therac-25 is not robust against. In fact, the
Therac-25 does not have any maximal robust deviations that allow this scenario.

The Therac-25’s lack of robustness to the scenario above represents a race
condition that occurs after the operator switches into X-ray mode from electron
mode. In this scenario, if the operator types “enter” and fires the X-ray beam
before the flattener rotates into place, the beam will fire an unflattened X-ray at
the patient. This critical bug was responsible for real-world radiation overdoses,
several of which resulted in death [18].

Fixing the Software Bug. In the previous section, we identified a critical
software bug in the Therac-25. Our goal in the current section is to fix this bug
entirely in the terminal software, thus avoiding an expensive hardware solution.

In Fig. 7a, we see that the hardware interlocks prevent a race condition by
blocking the operator from typing a “b” until the flattener is rotated into place.
Thus we can fix the race condition in software by altering the terminal to block
the operator from typing a “b” until the flattener is rotated into place. We
implement this fix by redesigning the terminal to block all key strokes from
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the instant it issues a “beam ready” message until the turntable rotates into
place, as shown in Fig. 9. Finally, we use our tool to evaluate the robustness of
the fix. The tool reports that the fixed Therac-25 design is strictly more robust
than the original, and equally robust to the Therac-20.

6.3 Voting

Background. In this section, we consider a case study of an electronic voting
machine, introduced in [46]. In this case study, we model the voting machine, a
voter, and a corrupt election official who attempts to “flip” the voter’s choice.
We define the voting machine as the composition of a voting booth and a user
interface, shown at [27], pg. 26 in Fig. 12a and Fig. 12b respectively.

In the normative environment–shown in Fig. 10a–the voter enters the booth,
enters their password, selects a candidate, clicks the vote button, and finally
confirms the choice. Unfortunately, some voters may inadvertently skip the con-
firmation step and leave the booth early. This deviation from the normative
behavior presents an opportunity for the election official to “flip” the intended
vote: after the voter leaves the booth, the corrupt official can enter the booth,
press “back” and change the vote to their liking. This scenario represents an
actual election fraud that took place in the US [38].

booth
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enter
pass-
word

select
candi-
date

candi-
date

v.enter pass
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votecfm

v.exit
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candi-
date
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(a) Normative environment for the voting
machine.
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(b) The voting machine’s robustness is identical
with respect to Pall and Pcfm.

Fig. 10. Models for the voting machine example. In the figures above, the prefix “v”
represents actions by the voter.

Comparing Properties. In this case study, we will consider two safety prop-
erties, Pall and Pcfm, both of which imply the absence of vote flipping. Pall

requires that the election official cannot at any point select, vote, or confirm a
candidate. Pcfm is weaker, only requiring that the election official cannot at any
point confirm a candidate selection.
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Using our tool for comparison, we see that the voting machine is equally
robust with respect to each property. However, this result is surprising because
Pcfm is weaker than Pall. To understand this result, we examine Fig. 10b where
we present the sole maximal robust deviation for each property. In this figure, it
is clear that the voting machine is not robust against any deviation in which the
voter enters their password and then exits the booth without confirming their
vote. The key insight is that, when an election official has the ability to confirm,
it implies that the official can also select and vote. Therefore, we desire a voting
machine without this implication because it will reduce the number of points of
failure. For example, we could redesign the voting machine to require a password
as part of the confirmation step. In lieu of this insight, a designer could choose
to specify a margin of safety into the machine’s specification by requiring that
it is strictly more robust against Pcfm than Pall.

6.4 Oyster

Background. The Oyster example was introduced in [41], in which the authors
modeled the Oyster card that is used the public transportation system in the
United Kingdom. In our model, the controller consists of an entry gate and an
exit gate, where the card holder taps the Oyster card at the start and end of
their journey respectively. The environment models the actions of a card holder;
in the normative environment, a card holder chooses to tap with either their
Oyster card or a credit card, and taps in and out with the chosen card. The key
safety property is avoiding an incomplete journey, in which a card holder taps
in with one card and taps out with a different card.

Calculating Robustness. An incomplete journey is avoided under the nor-
mative environment. We calculate the robustness of the system under the two
environmental constraints 1) Oyster cards and credit cards give the correct infor-
mation to the gates and 2) the gates operate correctly and calculate the correct
fare when a card is tapped in and out. Unfortunately, the system is not robust
to any deviations.

6.5 PCA Pump

Background. In this section, we model a patient-controlled analgesia (PCA)
pump, originally introduced in [5]. A PCA pump is a medical device that dis-
penses pain medicine to a patient, offering them partial control over the dose
rate. A nurse uses the device interface to program the volume per dosage, as well
as a minimum and maximum dose rate to protect the patient from an overdose.
The pump includes batteries to power the device in case it is unplugged (e.g., by
mistake by the nurse or patient), yet the power may fail if the device runs out of
battery. In this case, the device cannot monitor the dosage amount or frequency,
which may cause an overdose. Therefore, we define the key safety property Ppfail
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which requires the PCA pump to abstain from administering medicine after a
power failure.

In the normative environment, the nurse operates the pump using the fol-
lowing three step workflow: 1) plug in the pump and turn it on, 2) program the
desired dosage parameters into the pump and administer the treatment, and 3)
turn off the device and unplug it. The nurse begins with step (1) and ends with
step (3), but may omit or repeat step (2) as many times as needed. A diagram
of the normative environment is available at [27], pg. 26, Fig. 13. Crucially, the
pump is safe with respect to this environment and Ppfail because the workflow
assumes that the pump is never unplugged in step (2).

Calculating Robustness. We use our tool to calculate the robustness of the
pump with respect to the normative environment, Ppfail, and an environmental
constraint Penv. In this case study, Penv restricts the environment to actions
that are allowed by the pump’s interface. A diagram of the sole maximal robust
deviation is available at [27], pg. 27, Fig. 14. The tool reports that the pump is
robust against four actions, three of which allow the operator to change settings
before administering the treatment, and the fourth allows the operator to turn
off the device prematurely after programming the dosage parameters. Unfortu-
nately, the pump is not robust against any deviations in which it is unexpectedly
unplugged. This poses a key weakness in the pump that the designers may wish
to improve upon.

6.6 Results and Discussion

We have run our tool on the examples and case studies above, and we present
our results in Table 1. All tests were run on a Mac Book Pro with an M1 Pro
chip and 32GB of RAM. In the table, |Act| is the union of ActE , ActC , ActPsaf

and ActPenv
, |dmax| is the size of the largest deviation in Δ, and |WPenv

| is the
size of the winning set for each maximal deviation d̃i (separated by a comma);
NA indicates the absence of an environmental constraint. Furthermore, “Wall
Heur” denotes the wall time for running Algorithm 1 with the heuristic, while
“Wall Plain” denotes the wall time for running Algorithm 1, and “TO” indicates
a time-out after five minutes.

Our results demonstrate that calculating robustness is tractable across sev-
eral different case studies. In particular, our tool’s performance on the larger
PCA pump case study shows promising results in terms of scalability. Further-
more, we have shown that Δ is useful as a means for both analysis and compari-
son of controllers. For example, in the Therac-25 case study, robustness provided
a richer analysis than classic verification that helped us discover–and ultimately
fix–a critical race condition. Finally, we have also demonstrated in the voting
machine case study that robustness provides a means for comparing two prop-
erties with respect to a controller and an environment.
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Table 1. Summary of results from running our tool.

Example |Act| |QE | |QC | |QP | |W | |WPenv | |Δ| |dmax| Wall Heur Wall Plain

Running Example 2 4 2 4 6 NA 3 13 0.433 s 0.431 sec
Therac-25 w/bug 9 5 21 5 62 28,30,31,37 4 21 4.921 sec TO
Therac-25 w/fix 9 5 19 5 72 18,20,23,25 4 26 0.852 sec TO
Therac-20 9 5 11 5 40 17,19,21,23 4 26 0.626 sec TO
Voting wrt. Pcfm 9 7 13 3 66 7 1 12 0.469 sec TO
Voting wrt. Pall 9 7 13 3 66 7 1 12 0.426 sec TO
Oyster 8 4 17 2 15 8 1 4 0.472 sec TO
PCA Pump 21 11 105 4 1396 34 1 15 1.922 sec TO

7 Related Work

Quantitative robustness notions for discrete transition systems have been inves-
tigated in several works [3,4,8,16,24,32,40,42]. We capture robustness qualita-
tively, which avoids the need for external cost functions over the discrete tran-
sition systems. The problem of synthesizing robust controllers against deviated
environments given by a designer is investigated in [45]. Since [45] focuses on
synthesizing robust controllers, their framework does not address the analysis
of robustness. Moreover, robust controllers are measured via a rank function
(quantitatively). Robust linear temporal logic (rLTL) extends the binary view
of LTL to a 5-valued semantics to capture different levels of property satisfaction
[43]. This work is tangent to ours as it focuses on specifying robustness.

In [17,49], the authors define robustness as a set of environmental behav-
iors for which a software system can guarantee safety. Defining robustness in
the semantic domain–i.e. in terms of behaviors–implicitly describes safe environ-
mental deviations. Our notion of robustness captures safe environmental devia-
tions explicitly in terms of transitions, which offer both syntactic (transitions)
and semantic (implied behaviors) information. Transition-based robustness also
allows us to capture the safe environmental envelopes of a system; it is not clear
how one might efficiently capture this information with only behaviors.

In [29], the authors define robustness also based on additional transitions
to the environment. Their definition of robustness compares the perturbed con-
trolled behavior, i.e., beh(Ed|f), instead of directly comparing the additional
transitions. In this manner, the partial order used to define robustness in [29]
is different from our notion of robustness. Moreover, only an efficient algorithm
for invariance properties is presented. Extending the work in [29], the authors
explore the relationship between controller robustness and permissiveness for
invariance properties [30].

Robust control in discrete event systems is also an active area of research
[1,10,19–21,26,31,33,39,44,47,48]. However, they usually deal with specific
types of faults such as communication delays, loss of information, or deception



Safe Environmental Envelopes of Discrete Systems 347

attacks [1,20,21,26,31,39,47]. We capture model uncertainty with our robust-
ness definition, which can be attributed to these faults. Robustness against model
uncertainty is tackled in the works of [10,19,44,48]. In these works, deviations
are modeled by the behavior generated by the environment. On the other hand,
we modeled deviations by the inclusion of extra transitions. In [11], a controller
realizability problem is studied for environments modeled as modal transition
systems, where a controller satisfies a property in all, some, or none of the LTS
family. Our notion of robustness explicitly computes which systems in the LTS
family satisfy the property.

Lastly, robustness also relates to fault-tolerance. Fault-tolerance has been
studied in the context of distributed systems [13,22,34]. In [6,9,12,14], synthesis
of fault-tolerant programs by retrofitting initial fault-intolerant programs. These
works focus on specific types of fault models, whereas our robustness model
computes the safety envelope the controller is robust against.

8 Conclusion

In this paper, we introduced a new notion of robustness against environmen-
tal deviations for discrete-state transition systems. Our notion of robustness is
syntactically defined by additional transitions and semantically defined by the
controlled behavior generated by these additional transitions. We provided two
methods to compute robustness: a brute-force algorithm, and an algorithm based
on a controller synthesis problem. We implemented these methods in a proto-
type tool which we used to analyze several case studies. In these case studies,
we demonstrated that our robustness analysis provides crucial information by
identifying the environmental envelopes in which the system can guarantee its
safety properties.

As part of future work, we plan to extend our work to investigate robustness
in the context of partially observable systems as well as in stochastic systems such
as Markov decision processes (MDPs). We also plan to investigate the benefit
of considering additional environmental states–as well as additional transitions–
in our robustness analysis. Finally, we plan to extend our work beyond safety
properties, e.g. including liveness.
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Abstract. We present the Verse library with the aim of making hybrid
system verification more usable for multi-agent scenarios. In Verse, deci-
sion making agents move in a map and interact with each other through
sensors. The decision logic for each agent is written in a subset of Python
and the continuous dynamics is given by a black-box simulator. Multiple
agents can be instantiated, and they can be ported to different maps
for creating scenarios. Verse provides functions for simulating and veri-
fying such scenarios using existing reachability analysis algorithms. We
illustrate capabilities and use cases of the library with heterogeneous
agents, incremental verification, different sensor models, and plug-n-play
subroutines for post computations.

Keywords: Scenario verification · Reachability · Hybrid Systems

1 Introduction

Automatic verification tools for hybrid systems have been used to analyze linear
models with thousands of continuous dimensions [1,5,6] and nonlinear models
inspired by industrial applications [6,14]. The state of the art and the chal-
lenges are discussed in a recent survey [11]. Despite the potentially large user
base, currently this technology is inaccessible without formal methods training.
Automatic hybrid verification tools [10,13,17,25,31] require the input model to
be written in a tool-specific language. Tools like C2E2 [15] attempt to trans-
late models from Simulink/Stateflow, but the language-barrier goes down to the
underlying math models. The verification algorithms are based on variants of the
hybrid automaton [3,21,24] which requires the discrete states (or modes) to be
spelled out explicitly as a graph, with guards and resets labeling the transitions.
We discuss related works in more detail in Sect. 6, including recently developed
libraries that address usability barrier [5,7,8].
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In this paper, we present Verse, a Python library that aims to make hybrid
technologies more usable for multi-agent scenarios. The key features imple-
mented are as follows: (1) In Verse, users write scenarios in Python. User-defined
functions can be used to create complex agents, invariant requirements can be
written as assert statements, and scenarios can be created by instantiating mul-
tiple agents, all using the standard Python syntax. Verse parses this scenario
and constructs an internal representation of the hybrid automaton for simula-
tion and analysis. (2) Verse introduces an additional structure, called map, for
defining the modes and the transitions of a hybrid system. Map contains tracks
that can capture geometric objects (e.g., lanes or waypoints) that make it possi-
ble to create new scenarios just by instantiating agents on new maps. With track
modes, users do not have to explicitly write different modes for a vehicle following
different waypoint segments. Finally, (3) Verse comes with functions for simula-
tion and safety verification via reachability analysis. Developers can implement
new functions, plug-in existing tools, or implement advanced algorithms, e.g., for
incremental verification. In this tool paper, we illustrate use cases with heteroge-
neous agents and different scenario setups, the flexibility of plugging in different
reachability algorithms and the ability to develop more advanced algorithms
(Sect. 5). Verse is available at https://github.com/AutoVerse-ai/Verse-library.

2 Overview of Verse

We will highlight the key features of Verse with an example. Consider two drones
flying along three parallel ∞-shaped tracks that are vertically separated in space
(shown by black lines in Fig. 1). Each drone has a simple collision avoidance
logic: if it gets too close to another drone on the same track, then it switches to
either the track above or the one below. A drone on T1 has both choices. Verse
enables creation, simulation, and verification of such scenarios using Python, and
provides a collection of powerful functions for building new analysis algorithms.

Fig. 1. Left: A 3-d ∞-shaped map with example track mode labels. Center: Simulation
of a red drone nearing the blue drone on T1 and nondeterministically moving to T0 or T2.
Both branches are computed by Verse’s simulate function. Right: Computed reachable
sets of the two drones cover more possibilities: either drones can switch tracks when
they get close. All four branches are explored by Verse. The branch for blue drone
moving downwards violates safety as it may collide with the red drone following T1.

Creating Scenarios. Agents like the drones in this example are described by
a simulator and a decision logic in an expressive subset of Python (see code
in Fig. 2 and [26] for more details). The decision logic for an ego agent takes
as input its current state and the (observable) states of the other agents, and

https://github.com/AutoVerse-ai/Verse-library
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updates the discrete state or the mode of the ego agent. For example, in lines 41–
43 of Fig. 2 an agent updates its mode to begin a track change if there is any
agent near it. It may also update the continuous state of the ego agent. The
mode of an agent, as we shall see later in Sect. 3, has two parts—a tactical mode
corresponding to agent’s decision or discrete state, and a track mode that is
determined by the map. Using the any and all functions, the agent’s decision
logic can quantify over other agents in the scene. User defined functions are
also allowed (is_close, Fig. 2 line 41). Verse will parse this decision logic to
create an internal representation of the transition graph of the hybrid model
with guards and resets. The simulator can be written in any language and is
treated as a black-box1. For the examples discussed in this paper, the simulators
are also written in Python. Safety requirements can be specified using assert
statements (see Fig. 5).

38 def decisionLogic(ego: State, others: List[State], track_map):
39 next = copy.deepcopy(ego)
40 if ego.tactical_mode == TacticalMode.Normal:
41 if any((is_close(ego, other) and ego.track_mode==other.track_mode) for other in

others):↪→
42 next.tactical_mode = TacticalMode.MoveDown
43 next.track_mode = track_map.Tg(ego.track_mode, ego.tactical_mode,

TacticalMode.MoveDown)↪→
44 if any((is_close(ego, other) and ego.track_mode==other.track_mode) for other in

others):↪→
45 next.tactical_mode = TacticalMode.MoveUp
46

47 if ego.tactical_mode == TacticalMode.MoveUp:
48 if in_interval(track_map.altitude(ego.track_mode)-ego.z, -1, 1):
49 next.tactical_mode = TacticalMode.Normal
50 next.track_mode = track_map.Tg(ego.track_mode, ego.tactical_mode,

TacticalMode.Normal)↪→
51

Fig. 2. Decision Logic Code Snippet from drone_controller.py.

Maps and Sensors. The map of a scenario specifies the tracks that the agents can
follow. While a map may have infinitely many tracks, they fall in a finite number
of track modes. For example, in this ∞-shaped map, each layer is assigned to a
track mode (T0-2) and all the tracks between each pair of layers are also assigned
to a track mode (M10, M01 etc.). When an agent makes a decision and changes
its tactical mode, the map object determines the new track mode for the agent.
The map abstraction makes scenarios succinct and enables portability of agents
across different maps. Besides creating from scratch, Verse provides functions
for generating map objects from OpenDRIVE [4] files.

1 This design decision for Verse is relatively independent. For reachability analysis,
Verse currently uses black-box statistical approaches implemented in DryVR [14] and
NeuReach [35]. If the simulator is available as a white-box model, such as differential
equations, then Verse could use model-based reachability analysis.
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The sensor function defines which variables from an agent are visible to
other agents. The default sensor function allows all agents to see all variables;
we discuss how the sensor function can be modified to include bounded noise in
Sect. 5. A map, a sensor and a collection of (compatible) agents together define
a scenario object (Fig. 3). In the first few lines, the drone agents are created,
initialized, and added to the scenario object. A scenario can have heterogeneous
agents with different decision logics.

32 scenario = Scenario()
33 drone_red = DroneAgent(’drone_red’, file_name=’drone_controller.py’)
34 drone_red.set_initial([init_l_1, init_u_1],(CraftMode.Normal, TrackMode.T1))
35 scenario.add_agent(drone_red)
36 drone_blue = DroneAgent(’drone_blue’, file_name=’drone_controller.py’)
37 scenario.add_agent(drone_blue)
38

39 scenario.set_map(M6())
40 scenario.set_sensor(BaseSensor())
41

42 traces = scenario.verify(40, time_step)

Fig. 3. Scenario specification snippet.

Simulation and Reachability. Once a scenario is defined, Verse’s simulate func-
tion can generate simulation(s) of the system, which can be stored and plotted.
As shown in Fig. 1(Center), a simulation from a single initial state explores all
possible branches that can be generated by the decision logics of the interact-
ing agents, upto a specified time horizon. Verse verifies the safety assertions
of a scenario by computing the over-approximations of the reachable sets for
each agent, and checking these against the predicates defined by the assertions.
Figure 1(Right) visualizes the result of such a computation performed using the
verify function. In this example, the safety condition is violated when the blue
drone moves downward to avoid the red drone. The other branches of the sce-
nario are proved to be safe. The simulate and verify functions save a copy
of the resulting execution tree, which can be loaded and traversed to analyze
the sequences modes and states that leads to safety violations. Verse makes it
convenient to plug in different reachability subroutines. It also provides power-
ful functions to implement advanced verification algorithms, such as incremental
verification.

3 Scenarios in Verse

A scenario in Verse is specified by a map, a collection of agents in that map,
and a sensor function that defines the part of each agent visible to other agents.
We describe these components below, and in Sect. 4, we will discuss how they
formally define a hybrid system.

Tracks, Track Modes, and Maps. A workspace W is an Euclidean space
in which the agents reside (For example, a compact subset of R

2 or R
3). An

agent’s continuous dynamics makes it roughly follow certain continuous curves
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in W , called tracks, and occasionally the agent’s decision logic changes the track.
Formally, a track is simply a continuous function ω : [0, 1] → W , but not all such
functions are valid tracks. A map M defines the set of tracks ΩM it permits.
In a highway map, some tracks will be aligned along the lanes while others will
correspond to merges and exits.

We assume that an agent’s decision logic does not depend on exactly which of
the infinitely many tracks it is following, but instead, it depends only on which
type of track it is following or the track mode. In the example in Sect. 2, the
track modes are T0, T1, M01, etc. Every (blue) track for transitioning from point
on T0 to the corresponding point on T1 has track mode M01. A map has a finite
set of track modes LM and a labeling function VM : ΩM → LM that maps the
track to a track mode. It also has a mapping gM : W × LM → ΩM that maps
a track mode and a specific position in the workspace to a specific track.

Finally, a Verse agent’s decision logic can change its internal mode or tac-
tical mode P (E.g., Normal to MoveUp). When an agent changes its tactical
mode, it may also update the track it is following and this is encoded in the
track graph function: TgM : LM × P × P → LM which takes the current
track mode, the current and the next tactical mode, and generates the new
track mode the agent should follow. For example, when the tactical mode of
a drone changes from Normal to MoveUP while it is on T1, this map function
TgM(T1, Normal, MoveUp) = M10 informs that the agent should follow a track
with mode M10. These sets and functions together define a Verse map object
M = 〈LM, VM, gM, TgM〉. We will drop the subscript M when the map being
used is clear from context.

Agents. A Verse agent is defined by modes and continuous state variables, a
decision logic that defines (possibly nondeterministic) discrete transitions, and a
flow function that defines continuous evolution. An agent A is compatible with a
map M if the agent’s tactical modes P are a subset of the allowed input tactical
modes for Tg. This makes it possible to instantiate the same agent on different
compatible maps. The mode space for an agent instantiated on map M is the set
D = L × P , where L is the set of track modes in M and P is the set of tactical
modes of the agent. The continuous state space is X = W × Z, where W is the
workspace (of M) and Z is the space of other continuous state variables. The
(full) state space is the Cartesian product Y = X ×D. In the two-drone example
in Sect. 2, the continuous states variables are the positions and velocities along
the three axes of the workspace. The modes are 〈Normal, T1〉, 〈MoveUp, M10〉, etc.

An agent A in map M with k − 1 other agents is defined by a tuple A =
〈Y, Y 0, G,R, F 〉, where Y is the state space, Y 0 ⊆ Y is the set of initial states.
The guard G and reset R functions jointly define the discrete transitions. For
a pair of modes d, d′ ∈ D, G(d, d′) ⊆ Xk defines the condition under which a
transition from d to d′ is enabled. The R(d, d′) : Xk → X function specifies how
the continuous states of the agent are updated when the mode switch happens.
Both of these functions take as input the sensed continuous states of all the other
k−1 agents in the scenario. The G and the R functions are not defined separately,
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but are extracted by the Verse parser from a block of structured Python code as
shown in Fig. 2. The discrete states in if conditions and assignments define the
source and destination of discrete transitions. if conditions involving continuous
states define guards for the transitions and assignments of continuous states
define resets. Expressions with any and all functions are unrolled to disjunctions
and conjunctions according to the number of agents k.

For example in Fig. 2, Lines 47–50 define transitions 〈MoveUp, M10〉 to
〈Normal, T0〉 and 〈MoveUp, M21〉 to 〈Normal, T1〉. The change of track mode is
given by the Tg function. The guard for this transition comes from the if con-
dition at Line 48, G(〈MoveUp, M10〉, 〈Normal, T0〉) = {x | −1 < T0.pz −x.pz < 1}
for x ∈ X given by user defined in_interval function. Here continuous states
remain unchanged after transition.

The final component of the agent is the flow function F : X ×D ×R
≥0 → X

which defines the continuous time evolution of the continuous state. For any
initial condition 〈x0, d0〉 ∈ Y , F (x0, d0)(·) gives the continuous state of the
agent as a function of time. In this paper, we use F as a black-box function (see
Footnote 1).

Sensors and Scenarios. For a scenario with k agents, a sensor function S :
Y k → Y k defines the continuous observables as a function of the continuous
state. For simplifying exposition, in this paper we assume that observables have
the same type as the continuous state Y , and that each agent i is observed by
all other agents identically. This simple, overtly transparent sensor model, still
allows us to write realistic agents that only use information about nearby agents.
In a highway scenario, the observable part of agent j to another agent i may be
the relative distance yj = xj − xi, and vice versa, which can be computed as a
function of the continuous state variables xj and xi. A different sensor function
which gives nondeterministic noisy observations, appears in Sect. 5.

A Verse scenario SC is defined by (a) a map M, (b) a collection of k agent
instances {A1...Ak} that are compatible with M, and (c) a sensor S for the k
agents. Since all the agents are instantiated on the same compatible map M,
they share the same workspace. Currently, we require agents to have identical
state spaces, i.e., Yi = Yj , but they can have different decision logics and different
continuous dynamics.

4 Verse Scenario to Hybrid Verification

In this section, we define the underlying hybrid system H(SC), that a Verse sce-
nario SC specifies. The verification questions that Verse is equipped to answer
are stated in terms of the behaviors or executions of H(SC). Verse’s notion of
a hybrid automaton is close to that in Definition 5 of [14]. The only uncom-
mon aspect in [14] is that the continuous flows may be defined by a black-box
simulator functions, instead of white-box analytical models (see Footnote 1).

Given a scenario with k agents SC = 〈M, {A1, ...Ak},S, P 〉, the correspond-
ing hybrid automaton H(SC) = 〈X,X0,D,D0,G,R,TL〉, where
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1. X :=
∏

i Xi is the continuous state space. An element x ∈ X is called a state.
X0 :=

∏
i X0

i ⊆ X is the set of initial continuous states.
2. D :=

∏
i Di is the mode space. An element d ∈ D is called a mode. D0 :=∏

i D0
i ⊆ D is the finite set of initial modes.

3. For a mode pair d,d′ ∈ D, G(d,d′) ⊆ X defines the continuous states from
which a transition from d to d′ is enabled. A state x ∈ G(d,d′) iff there
exists an agent i ∈ {1, ..., k}, such that xi ∈ Gi(di,d′

i) and dj = d′
j for j �= i.

4. For a mode pair d,d′ ∈ D, R(d,d′) : X → X defines the change of contin-
uous states after a transition from d to d′. For a continuous state x ∈ X,
R(d,d′)(x) = Ri(di,d′

i)(x) if x ∈ Gi(di,d′
i), otherwise = xi.

5. TL is a set of pairs 〈ξ,d〉, where the trajectory ξ : [0, T ] → X describes the
evolution of continuous states in mode d ∈ D. Given d ∈ D,x0 ∈ X, ξ should
satisfy ∀t ∈ R

≥0, ξi(t) = Fi(x0
i ,di)(t).

We denote by ξ.fstate, ξ.lstate, and ξ.ltime the initial state ξ(0), the last
state ξ(T ), and ξ.ltime = T . For a sampling parameter δ > 0 and a length m,
a δ-execution of a hybrid automaton H = H(SC) is a sequence of m labeled
trajectories α := 〈ξ0,d0〉, ..., 〈ξm−1,dm−1〉, such that (1) ξ0.fstate ∈ X0,d0 ∈
D0, (2) For each i ∈ {1, ...,m − 1}, ξi.lstate ∈ G(di,di+1) and ξi+1.fstate =
R(di,di+1)(ξi.lstate), and (3) For each i ∈ {1, ...,m − 1}, ξi.ltime = δ for
i �= m − 1 and ξi.ltime ≤ δ for i = m − 1.

We define first and last state of an execution α = 〈ξ0,d0〉, ..., 〈ξm−1,dm−1〉
as α.fstate = ξ0.fstate, α.lstate = ξm−1.lstate and the first and last mode
as α.fmode = d0 and α.lmode = dm−1. The set of reachable states is defined
by ReachH := {α.lstate | α is an execution of H}. In addition, we denote the
reachable states in a specific mode d ∈ V as ReachH(d) and ReachH(T ) to be
the set of reachable states at time T . Similarly, denoting the unsafe states for
mode d as U(d), the safety verification problem for H can be solved by checking
whether ∀d ∈ D, ReachH(d) ∩ U(d) = ∅. Next, we discuss Verse functions for
verification via reachability.

Verification Algorithms in Verse. The Verse library comes with several
built-in verification algorithms, and it provides functions that users can use
to implement powerful new algorithms. We describe the basic algorithm and
functions in this section.

Consider a scenario SC with k agents and the corresponding hybrid automa-
ton H(SC). For a pair of modes, d,d′ the standard discrete postd,d′ : X → X
and continuous postd,δ : X → X operators are defined as follows: For any
state x,x′ ∈ X, postd,d′(x) = x′ iff x ∈ G(d,d′) and x′ = R(d,d′)(x); and,
postd,δ(x) = x′ iff ∀i ∈ 1, ..., k, x′

i = Fi(xi,di, δ). These operators are also lifted
to sets of states in the usual way. Verse provides postCont to compute postd,δ and
postDisc to compute postd,d′ . Instead of computing the exact post, postCont
and postDisc compute over-approximations using improved implementations of
the algorithms in [14]. Verse’s verify function implements a reachability analy-
sis algorithm using these post operators. The algorithm constructs an execution
tree Tree = 〈V,E〉 up to depth m in breadth first order. Each vertex 〈S,d〉 ∈ V
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is a pair of a set of states and a mode. The root is 〈X0,d0〉. There is an edge from
〈S,d〉 to 〈S′,d′〉, iff S′ = postd′,δ(postd,d′(S)). The safety conditions are checked
when the tree is constructed. Currently, Verse implements only bounded time
reachability, however, basic unbounded time analysis with fixed-point checks
could be added following [14,32].

5 Experiments and Use Cases

We evaluate key features and algorithms in Verse through examples. We consider
two types of agents: a 4-d ground vehicle with bicycle dynamics and the Stanley
controller [22] and a 6-d drone with a NN-controller [23]. Each of these agents
can be fitted with one of two types of decision logic: (1) a collision avoidance
logic (CA) by which the agent switches to a different available track when it
nears another agent on its own track, and (2) a simpler non-player vehicle logic
(NPV) by which the agent does not react to other agents (and just follows its
own track at constant speed). We denote the car agent with CA logic as agent
C-CA, drone with NPV as D-NPV, and so on. We use four 2-d maps (M1-4)
and two 3-d maps M5-6. M1 and M2 have 3 and 5 parallel straight tracks,
respectively. M3 has 3 parallel tracks with circular curve. M4 is imported from
OpenDRIVE. M6 is the figure-8 map used in Sect. 2.

Safety Analysis with Multiple Drones in a 3-d Map. The first example is a
scenario with two drones—D-CA agent (red) and D-NPV agent (blue)—in map
M5. The safety assertion requires agents to always separate by at least 1m.
Figure 4(left) shows the computed reachable set, its projection on x-position,
and on z position. Since the agents are separated in space-time, the scenario is
verified safe. These plots are generated using Verse’s plotting functions.

Fig. 4. Left to right: (1) Computed reachtubes for a 2-drone scenario; (2) same reach-
tube projected on x-dimension, and (3) on z-dimension. Since there is no overlap in
space-time, no collision. (4) Reachtube for a 3-drone scenario, the red drone violates
the safety condition by entering the unsafe region after moving downward. (Color figure
online)

Checking Multiple Safety Assertions. Verse supports multiple safety assertions
specified using assert statements. For example, the user can specify unsafe
regions (Line 77–78) or safe separation between agents (Line 79–82) as shown
in Fig. 5. We add a second D-NPV to the previous scenario and both safety
assertions. The result is shown in the rightmost Fig. 4. In this scenario, D-CA
violates the safety property by entering the unsafe region after moving downward
to avoid collision. The behavior of D-CA after moving upward is not influenced.
There is no violation of safe separation. Verse allow users to extract the set of
reachable states and mode transitions that leads to a safety violation.
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77 assert not (ego.x > 40 and ego.x < 50 and \
78 ego.y > -5 and ego.y < 5 and ego.z > -10 and ego.z < -6), "Unsafe Region"
79 assert not any(ego.x-other.x < 1 and ego.x-other.x > -1 and \
80 ego.y-other.y < 1 and ego.y-other.y > -1 and \
81 ego.z-other.z < 1 and ego.z-other.z > -1 \
82 for other in others), "Safe Separation"

Fig. 5. Safety assertions for three drone scenario.

Changing Maps. Verse allows users to easily create scenarios with different maps
and port agents across compatible maps. We start with a scenario with one C-CA
agent (red) and two C-NPV agents (blue, green) in M1. The safety assertion
is that the vehicles should be at least 1m apart in both x and y-dimensions.
Figure 6(left) shows the verification result and safety is not violated. However, if
we switch to map M3 by changing one line in the scenario definition, a reacha-
bility analysis shows that a safety violation can happen after C-CA merges left
Fig. 6(center). In addition, Verse allows importing map from OpenDRIVE [4]
format. An example is included in the extended version of the paper [26].

Fig. 6. Left: running the three car scenario on map with parallel straight lanes. Center:
same scenario with a curved map. Right: same scenario with a noisy sensor. (Color
figure online)

Adding Noisy Sensors. Verse supports scenarios with different sensor functions.
For example, the user can create a noisy sensor function that mimics a realistic
sensor with bounded noise. Such sensor functions are easily added to the scenario
using the set_sensor function.

Figure 6(right) shows exactly the same three-car scenario with a noisy sensor,
which adds ±0.5m noise to the perceived position of all other vehicles. Since
the sensed values of other agents only impacts the checking of the guards (and
hence the transitions) of the agents, Verse internally bloats the reachable set of
positions for the other agents by ±0.5 while checking guards. Compared with the
behavior of the same agent with no sensor noise (shown in yellow in Fig. 6(right)),
the sensor noise enlarges the region over which the transition can happen, causes
enlarged reachtubes for the red agent.

Plugging in Different Reachability Engines. With a little effort, Verse allows
users to plug in different reachability tools for the postCont computation. The
user will need to modify the interface of the reachability tool so that given a
set of initial states, a mode, and a non negative value δ, the reachability tool
can output the set of reachable states over a δ-period represented by a set of
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timed hyperrectangles. Currently, Verse implements computing postCont using
DryVR [14], NeuReach [35] and Mixed Monotone Decomposition [12]. A scenario
with two car agents in map M1 verified using NeuReach and DryVR is included
in the extended version of the paper [26].

Incremental Verification. We implemented an incremental verification algorithm
in Verse called verifyInc. This algorithm improves verify by caching and
reusing reachtubes, and can be effective when analyzing a sequence of slightly
different scenarios. The function verifyInc avoids re-computing postd,d′ and
postd,δ when constructing the execution tree by reusing earlier execution runs.
Experiments show that verifyInc reduces running time by 10x for two identi-
cal runs and 2x when the decision logic is slightly modified. (More details are
provided in the extended version of paper [26]). This exercise illustrates a usage
of Verse in creating alternative analysis algorithms.

Table 1 summarizes the running time of verifying all the examples in this
section. We additionally include three standard benchmarks: van-der-pol (Agent
V) [20], spacecraft rendezvous (Agent S) [20], and gearbox (Agent G) [2]. As
expected, the running times increase with the number of discrete mode transi-
tion. However, for complicated scenario with 7 agents and 37 transitions, the
verification can still finish in under 6 mins, which suggests some level of scala-
bility. The choice of reachability engine can also impact running time. For the
same scenario in rows 2, 3 and 10, 11, Verse with NeuReach2 as the reachability
engine takes more time than using DryVR as the reachability engine.

Table 1. Runtime for verifying examples in Sect. 5. Columns are: number of agents (#A), agent
type (A), map used (Map), reachability engine used (postCont), sensor type (NS), number of mode
transitions #TR, and the total run time (Rt). N/A for not available.

#A A Map postCont NS #Tr Rt (s) #A A Map postCont Noisy S #Tr Rt (s)

2 D M6 DryVR No 8 55.9 2 D M5 DryVR No 5 18.7
2 D M5 NeuReach No 5 1071.2 3 D M5 DryVR No 7 39.6
7 C M2 DryVR No 37 322.7 3 C M1 DryVR No 5 23.4
3 C M3 DryVR No 4 34.7 3 C M4 DryVR No 7 118.3
3 C M1 DryVR Yes 5 29.4 2 C M1 DryVR No 5 21.6
2 C M1 NeuReach No 5 914.9 1 V N/A DryVR N/A 1 0.33
1 S N/A DryVR N/A 3 2.3 1 G N/A DryVR N/A 3 67.14

6 Related Work

Automatic hybrid verification tools typically require the input model to be writ-
ten in a tool-specific language [10,13–15,17,25]. Libraries like JuliaReach [7]
2 Runtime for NeuReach includes training time.
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Hylaa [5] and HyPro [8] share our motivation to reduce the usability barrier by
providing reachability analysis APIs for popular programming languages. Verse
is distinct in this family in that it supports creation and analysis of multi-agent
scenarios. The work in [33] also supports multiple agents, however, Verse sig-
nificantly improves usability with maps, scenarios and decision logics written in
Python.

Interactive theorem provers have been used for modeling and verification
of multi-agent and hybrid systems [16,19,27,29]. KeYmeraX [19] uses quantified
differential dynamic logic for specifying multi-agent scenarios and supports proof
search and user defined tactics. Isabelle/HOL [16], PVS [27], and Maude [29] have
also been used for limited classes of hybrid systems. These approaches are geared
for a different user segment in that they provide higher expressive and analytical
power to expert users. Verse is inspired by widely used tools for simulating multi-
agent scenarios [9,18,28,30,36]. While the models created in these tools can be
flexible and expressive, currently they are not amenable to formal verification.

7 Conclusions and Future Directions

In this paper, we presented the new open source Verse library for broadening
applications of hybrid system verification technologies to scenarios involving mul-
tiple interacting decision-making agents. There are several future directions for
Verse. Verse currently assumes all agents interact with each other only through
the sensor in the scenario and all agents share the same sensor. This restriction
could be relaxed to have different types of asymmetric sensors. Functions for
constructing and systematically sampling scenarios could be developed. Func-
tions for post-computation for white-box models by building connections with
existing tools [1,10,15] would be a natural next step. Those approaches could
obviously utilize the symmetry property of agent dynamics as in [32,34], but
beyond that, new types of symmetry reductions should be possible by exploiting
the map geometry.
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Abstract. Given a specification as a Boolean relation between inputs
and outputs, Boolean functional synthesis generates a function, called a
Skolem function, for each output in terms of the inputs such that the
specification is satisfied. In general, there may be many possibilities for
Skolem functions satisfying the same specification, and criteria to pick
one or the other may vary from specification to specification.

In this paper, we develop a technique to represent the space of Skolem
functions in a criteria-agnostic form that makes it possible to subse-
quently extract Skolem functions for different criteria. Our focus is on
identifying such a form and on developing a compilation algorithm for
this form. Our approach is based on a novel counter-example guided
strategy for existentially quantifying a subset of variables from a spec-
ification in negation normal form. We implement this technique and
compare our performance with those of other knowledge compilation
approaches for Boolean functional synthesis, and show promising results.

1 Introduction

Manually designing systems that satisfy complex user-provided specifications
can be notoriously tricky. Automated synthesis has therefore attracted signifi-
cant attention of researchers over the past few decades [1–5]. In this paradigm,
a user describes the desired behaviour of a system as a relational specification
between its inputs and outputs, and an algorithm automatically generates an
implementation, such that the specification is provably satisfied. In this paper,
we focus only on systems with Boolean inputs and outputs with relational spec-
ifications given as Boolean formulas. The synthesis problem in this setting is
also called Boolean functional synthesis. Formally, let ϕ(X,Y ) be a Boolean
formula representing the specification, where X = (x1, . . . xm) is a vector of
Boolean inputs and Y = (y1, . . . yn) a vector of Boolean outputs of the system.
Boolean functional synthesis requires us to generate a vector of Boolean func-
tions Ψ(X) =

(
ψ1(X), . . . ψn(X)

)
such that ∀X

(∃Y ϕ(X,Y ) ⇔ ϕ(X,Ψ(X))
)
.
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For each i ∈ {1, . . . n}, the function ψi(X) is called a Skolem function for yi in
ϕ(X,Y ), and Ψ(X) is called a Skolem function vector.

There are several interesting applications of Boolean functional synthesis,
including automated program synthesis, circuit repair and debugging, crypt-
analysis and the like [2,6–10]. This has motivated researchers to develop novel
algorithms for solving increasingly larger and more complex synthesis bench-
marks [11–19]. Each such algorithm generates a single Skolem function vector
for a given relational specification, thereby providing an implementation of the
system. However, there may be many alternative function vectors that also serve
as Skolem function vectors for the same specification. Some of these may yield
system implementations that are more “desirable” than those obtained from other
Skolem function vectors, when non-functional metrics like size of program/circuit
needed for implementation, ease of understandability etc. are considered. There-
fore, having a tool output a single Skolem function vector (chosen by the tool,
without any user agency in the choice) can be restrictive in terms of implemen-
tation choices available to the user.

One way to address the above problem is to use a knowledge compilation app-
roach, i.e. to compile the specification to a special normal form from which it is
relatively easy to use downstream logic synthesis tools to generate any Skolem
function vector optimizing user-specified criteria. Unfortunately, earlier work on
knowledge compilation for Boolean functional synthesis [13,14,20] does not allow
us to do this easily. They simply allow efficient synthesis of one (among possi-
bly many) Skolem function vector from the compiled representation. Moreover,
the user has no agency in choosing which Skolem function vector is synthesized;
all choices are made implicitly deep inside heuristics of the compilation algo-
rithms. For example, if we compile a relational specification to wDNNF [14] or
SynNNF [13], the only guarantee we have is that the so-called GACKS Skolem
functions (see [14]) can be efficiently synthesized from the compiled forms. But
what if these functions are not the user’s preferred choice of Skolem functions
for an application? Unfortunately, not much can be done if we compile the spec-
ification to wDNNF or SynNNF. Similarly, the compilation approach proposed
in [20] allows efficient synthesis of Skolem functions of yet another form, but
even here, the user hardly has any agency in choosing which (among many alter-
native) Skolem function vectors is actually output. Existing algorithms therefore
effectively restrict the semantic choice of Skolem functions with hardly any way
for the user to influence this choice. Once the semantic choice has been made by
the compiler, the only agency the user has is in optimizing the implementation of
this semantic choice. We believe the inability of existing compilation approaches
to allow the user semantic choice of Skolem functions is a limiting factor in prac-
tical usage of these works. In this paper, we take a first step towards remedying
this problem.

The central question we ask in this paper is: Can we compile a Boolean rela-
tional specification to a representation that does not restrict the semantic choice
of Skolem functions, and yet allows easy deployment of downstream logic synthe-
sis tools to obtain Skolem functions customized to user-provided criteria? Our
main result is an affirmative answer to this question. We also design and imple-
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ment an algorithm that compiles a given specification in negation normal form
to such a representation form, We emphasize that our goal in this paper is not
to identify specific optimization criteria or to synthesize Skolem functions that
optimize some specific criteria. Instead, we focus on developing a representation
that makes it possible to use downstream logic optimization tools to synthesize
Skolem functions satisfying user-provided criteria. Our experiments show that
our approach is competitive performance-wise to earlier approaches that severely
restrict the semantic choice of Skolem functions.

The primary contributions of this paper can be summarized as follows.

– We formalize the problem of symbolically and compactly representing all
Skolem function vectors for a Boolean relational specification in such a way
that it is amenable to downstream optimization by logic synthesis tools.

– We propose a candidate for this representation as a set of pairs of functions,
one for each output, which we call the Skolem basis vector. We show that the
Skolem basis vector is guaranteed to exist for any specification and is unique
with respect to an ordering of the output variables.

– For single-output specifications, we show that the Skolem basis vector can
be computed easily, as a pair of (semantically unique) Boolean functions. For
multi-output specifications, we relate the problem of generating Skolem basis
vector to the question of performing efficient quantification of outputs.

– We investigate two properties, namely unateness and conflict-freeness of out-
puts, that permit efficient quantification of outputs. This, in turn, allows a
Skolem basis vector to be generated in polynomial time in special cases.

– We present a novel counterexample-guided algorithm for transforming a spec-
ification to one where a designated output variable is conflict-free. We call
this process rectification of the output.

– We present an overall algorithm that takes a specification and generates a
Skolem basis vector by successively rendering outputs unate or conflict-free.

– We present a tool implementing our algorithm, and report experimental
results on a suite of publicly available benchmarks.

Related Work. In knowledge compilation, the general goal is to represent a prob-
lem specification in a form that allows specific questions to be answered effi-
ciently (see e.g., [21–23]). In [22,24], representation forms for Boolean functions
were proposed that allow efficient enumeration of all satisfying assignments of
the function. However, this idea cannot be easily extended to enumerate Skolem
functions, since the space of functions is doubly exponentially large in the num-
ber of variables. For Boolean functional synthesis, [13,20,25,26] provide normal
forms and present compilers that render synthesis of a single Skolem function
vector easy. However, they do not provide the user any agency in choosing the
Skolem function vector. In fact, the optimizations used in [13] preclude gen-
eration of all Skolem function vectors for reasons of efficiency. In the current
work, our focus is on symbolically representing the space of all Skolem function
vectors, without necessarily converting the given specification to a semantically
equivalent one in special normal form. Thus, the problem addressed in this paper
is technically different from those addressed in [13,20,25,26]. Nevertheless, our
work can be viewed as knowledge representation for all Skolem functions.
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2 A Motivating Example

We start with a simple example that illustrates some of the problems we wish
to address. Suppose we are designing a memoryless arbiter that must arbitrate
requests from three users for a shared resource. Let the arbiter inputs be Boolean
variables r1, r2, r3, where ri is true iff there is a request from user i. Let the
corresponding arbiter outputs be g1, g2, g3, where gi is true iff access is granted
to user i. We want the arbiter to satisfy the following properties: (a) at most
one user must be granted access at a time, (b) if some user has requested access,
some user must be granted access, and (c) a user should be granted access only
if she has requested. The above properties can be encoded as a specification ϕ ≡
ϕ1∧ϕ2∧ϕ3, where ϕ1 ≡ (

g1 ⇒ ¬(g2∨g3)
)∧(

g2 ⇒ ¬(g1∨g3)
)∧(

g3 ⇒ ¬(g1∨g2)
)
,

ϕ2 ≡ (r1 ∨ r2 ∨ r3) ⇒ (g1 ∨ g2 ∨ g3), and ϕ3 ≡ (g1 ⇒ r1)∧ (g2 ⇒ r2)∧ (g3 ⇒ r3).
It turns out that there are many different Skolem function vectors Ψ =

(ψ1, ψ2, ψ3) for the above specification, where each ψi gives a Skolem function
for gi. We ran two state-of-the-art Boolean functional synthesis tools, viz. Man-
than2 [17] and BFSS [14], on this specification. BFSS required us to also specify
a linear order of outputs (we will shortly see why), and we used g1 ≺ g2 ≺ g3.
Both tools solved the problem in no time, and each reported a Skolem function
vector without any room for the user to influence the choice of Skolem functions.
Specifically, the Skolem functions returned by Manthan2 can be represented by
the And-Inverter Graph (AIG) shown in Fig. 1a. Here, each circle represents
a two-input AND gate, and each dotted (resp. solid) edge represents a con-
nection with (resp. without) logical negation. Thus, the Skolem functions are:
ψ2 ≡ r2 ∧ ¬r1 ∧ ¬r3, ψ1 ≡ r1 ∧ ¬r3 ∧ ¬g2 and ψ3 ≡ r3 ∧ ¬g1 ∧ ¬g2. Running
BFSS on the same specification yields Skolem functions represented by the AIG
in Fig. 1c. Here, ψ3 ≡ r3 ∧ ¬r1 ∧ ¬r2, ψ2 ≡ r2 ∧ ¬g3 and ψ1 ≡ r1 ∧ ¬g2 ∧ ¬g3.

Fig. 1. Unoptimized and optimized AIGs of Skolem functions

Are the Skolem functions generated by the two tools in their simplest forms,
and did they miss out some possibilities of optimization? To answer this, we used
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a widely used logic optimization tool, viz. abc [27], to simplify the two AIGs
using commands to minimize the AND gate count and to balance lengths of
paths in the AIGs. The resulting simplified AIGs are shown in Fig. 1b (obtained
from Fig. 1a) and Fig. 1d (obtained from Fig. 1c). Thus, Manthan2’s solution is
equivalent to ψ3 ≡ r3, ψ2 ≡ r2 ∧ ¬r1 ∧ ¬r3, ψ1 ≡ r1 ∧ ¬r3, while BFSS’ solution
is equivalent to ψ2 ≡ r2, ψ1 ≡ r1 ∧ ¬r2, ψ3 ≡ r3 ∧ ¬r1 ∧ ¬r2. Note that the two
solutions are semantically equivalent modulo permutaton of indices (although
this wasn’t obvious prior to optimization).

There are some important take-aways from this simple experiment. First,
neither Manthan2 nor BFSS gave the user any agency in the semantic choice
of the synthesized Skolem functions. The use of the abc tool with user-provided
optimization criteria at the end simply gave us choice of implementation for
the Skolem functions already determined by each tool. Significantly, there are
choices of Skolem function vectors, viz. ψ1 ≡ r1∧(¬r2∨¬r3), ψ2 ≡ r2∧(¬r1∨r3),
ψ3 ≡ (¬r1 ∧ ¬r2 ∧ r3), that are ignored by both Manthan2 and BFSS (and by
other tools like CADET [11]). This can lead to ignoring “better” Skolem func-
tion vectors in general. The user’s criteria for desirability of Skolem functions
may differ from one problem instance to another, and may be completely dif-
ferent from what is hard-coded in the innards of a tool like Manthan2/BFSS.
For example, the new Skolem function vector considered above admits an AIG
representation in which input-to-output shortest (resp. longest) path lengths are
equal across all outputs. This may indeed be a desirable feature in some appli-
cation where variability of output delays matters. However, there is currently no
way to influence BFSS/Manthan2 to arrive at Skolem functions optimized per
such criteria.

The above example also illustrates the important role played by logic opti-
mization in obtaining efficient implementations of Skolem functions generated
by state-of-the-art synthesis tools. However, using logic optimization as a post-
processor can only provide a better implementation of already chosen (seman-
tically) Skolem functions. Fortunately, more than five decades of research in
logic optimization has resulted in mature (even commercial) tools that can do
much more than just implementation optimization. Specifically, don’t-care based
optimizations [28] can search within a specified space of (semantically distinct)
functions to choose one that is optimized according to a given user criteria. Such
a choice involves a combined optimization across semantic and implementation
choices. Given this capability of logic optimizers, and their indispensable use in
synthesis flows, we posit that logic optimizers are the right engines to choose
between alternative semantic choices of Skolem functions, in addition to opti-
mizing their implementation. Of course, this requires specifying the semantic
space of all (Skolem) functions in a form that can be easily processed by logic
optimizers. State-of-the-art logic optimizers already allow specifying a family of
functions using on-sets and don’t-care sets [29]. Therefore, we propose to use
this representation for representing the space of Skolem functions as well.

Before presenting the details of on-sets and don’t-care sets for Skolem func-
tions in our example, we note that Skolem functions for different outputs cannot
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be chosen independently in general. For example, ψ3 ≡ r3 is generated by Man-
than2, and ψ2 ≡ r2 is generated by BFSS. However, there is no Skolem function
vector with ψ2 ≡ r2 and ψ3 ≡ r3), since this would lead to g2 = g3 = 1 when
r2 = r3 = 1. Therefore, any representation of the semantic space of all Skolem
function vectors must necessarily take into account dependence between Skolem
functions for different outputs. One way to achieve this is to impose a linear
order on the outputs, and to represent the set of Skolem functions for an output
in terms of Skolem functions for preceding (in the order) outputs. With this app-
roach, the semantic space of Skolem functions for each output can be expressed
by two functions: one representing the set of assignments for which every Skolem
function in the represented space must evaluate to 1 (i.e. on-set), and the other
representing assignments for which it is ok for a Skolem function to evaluate to
either 0 or 1 (i.e. don’t-care set).

The above representation is analogous to representing vector spaces using
a small set of mutually orthogonal basis vectors, where every vector in the
space can be expressed as a linear combination of these basis vectors. In a
similar manner, let A denote the on-set of a family of Skolem functions, and
B denote the don’t-care set for the same family. Let GenImpl

(
B

)
denote the

set of all generalized implicants of B, i.e. all formulas ν such that ν ⇒ B.
Every Skolem function in the represented space can then be obtained (mod-
ulo semantic equivalence) as A ∨ ν where ν ∈ GenImpl

(
B

)
. Specifically, for our

example, with g1 ≺ g2 ≺ g3 of outpus (same as that given to BFSS), we have
A1 ≡ (¬r3∧¬r2∧r1), B1 ≡ (r3∨r2)∧r1, A2 ≡ (¬r3∧r2∧¬g1), B2 ≡ r3∧r2∧¬g1,
A3 ≡ r3 ∧ ¬g2 ∧ ¬g1, B3 = 0. The Karnaugh-maps shown below depict how the
space of all Skolem function vectors can be visualized in terms of Ai and Bi.
To obtain a specific Skolem function vector, we must place a 1 in each Ai-cell,
choose a subset of the Bi cells and place 1’s in those cells and 0’s in the bal-
ance Bi cells. Each such choice provides a semantically distinct Skolem function
vector, and every Skolem function vector corresponds to one such choice. Specif-
ically, the Skolem function vector missed by Manthan2/BFSS can now be easily
obtained by choosing the red and blue B1 cells and the teal B2 cell to be 1 in
the Karnaugh-maps. Similarly, Manthan2’s solution is obtained by choosing the
blue B1 cell and teal B2 cell to be 1, and BFSS’ solution is obtained by choosing
the red B1 cell and teal B2 cell to be 1. Allowing a logic optimizer to optimize
Skolem functions with the spaces represented by (A1, B1, A2, B2, A3, B3) there-
fore makes it possible to synthesize each of these Skolem function vectors. This
motivates compiling a given specification into an (Ai, Bi) pair for the Skolem
functions for each output yi.

r2r3 → 00 01 11 10 r2r3 → 00 01 11 10 g2r3 → 00 01 11 10
r1 ↓ g1 ↓ g1 ↓
0 0 0 0 0 0 0 0 B2 A2 0 0 A3 0 0
1 A1 B1 B1 B1 1 0 0 0 0 1 0 0 0 0

Space of Sk fns for g1 Space of Sk fns for g2 Space of Sk fns for g3
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3 Preliminaries and Notation

Let Z = (z1, . . . , zn) be a vector of Boolean variables. A literal is a variable
(zi) or its complement (¬zi), a clause is a disjunction of literals and a cube is a
conjunction of literals. For 1 ≤ i ≤ j ≤ n, we use Zj

i to denote the slice (zi, . . . zj)
of the vector Z. An n-input Boolean function is a mapping from {0, 1}n to
{0, 1}. A Boolean formula ϕ(Z) is a syntactic object whose semantics is given
by a mapping from {0, 1}n to {0, 1}. Thus, every Boolean formula represents
a unique Boolean function, and every Boolean function can be represented by
a (not necessarily unique) Boolean formula. Henceforth, we refer to Boolean
formulas and Boolean functions interchangeably.

The support of ϕ(Z), denoted sup(ϕ), is the set of variables in Z. For ease
of exposition, we will abuse notation and use Z to denote either a vector or the
underlying set of elements, depending on the context. A complete (resp. partial)
assignment π for Z is a complete (resp. partial) mapping from Z to {0, 1}. The
value of variable zi assigned by π is denoted π[zi]. A complete assignment π of
Z is a satisfying assignment for ϕ(Z) if the Boolean function represented by ϕ
evaluates to 1 when all variables in sup(ϕ) are assigned values given by π. In
this case, we say that π |= F . A formula ϕ(Z) is satisfiable if it has at least one
satisfying assignment; otherwise it is unsatisfiable. We say that two formulas on n
variables are equivalent if they represent the same semantic mapping from {0, 1}n

to {0, 1}. Given Boolean formulas ϕ and α with zi ∈ sup(ϕ), we use ϕ[zi �→ α]
to denote the formula obtained by substituting α for every occurrence of zi in
ϕ. We use ϕ

∣
∣
zi=1 (resp. ϕ

∣
∣
zi=0) to denote the formula obtained by setting zi to

1 (resp. 0) in the formula ϕ(Z). The resulting formulas are also called positive
(resp. negative) co-factors of ϕ w.r.t. zi. For notational convenience, we use ϕ

∣
∣
π

to denote the formula obtained by repeatedly co-factoring ϕ using the (possibly
partial) assignment of variables given by π. As discussed in Sect. 2, we say that
a function ϕ′(Z) is a generalized implicant of ϕ(Z) if ϕ′(Z) ⇒ ϕ(Z). This
generalizes the notion of implicants used in the literature, which are restricted
to be cubes. The set of all generalized implication of ϕ is denoted GenImpl

(
ϕ
)
.

A Boolean formula ϕ(Z) can be represented as a circuit or a Directed Acyclic
Graph (DAG) consisting of ¬, ∧ and ∨ gates, with literals at leaves. Further, it
can be converted to a semantically equivalent formula in Negation Normal Form
(NNF), i.e., with no ¬-labelled internal nodes, in time linear in the size of the
circuit. We consider formulas to be given in NNF unless mentioned otherwise,
and interchangeably refer to a Boolean formula and the circuit representing it.
If an NNF formula in Conjunctive Normal Form (CNF), i.e., as conjunction of
clauses, is unsatisfiable, then there is a subset of its clauses whose conjunction is
unsatisfiable. This set is called its unsatisfiable core, and a minimal unsatisfiable
core is one without any proper subset that is also an unsatisfiable core.

The Boolean functional synthesis problem, and notions of Skolem functions
and Skolem function vectors have already been defined in Sect. 1. Let ϕ(X,Y )
be a Boolean relational specification over inputs X and outputs Y . A commonly
used approach, adopted by several Boolean functional synthesis algorithms [6,
14–16], works as follows. Without loss of generality, let y1 ≺ · · · ≺ yn be a
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linear ordering of the outputs in Y . We first define a set of derived specifications
ϕ(i)(X,Y n

i ) for all i ∈ {1, . . . n}, where ϕ(i) ⇔ ∃Y i−1
1 ϕ(X,Y ). Next, for each

i ∈ {1, . . . n}, we find a Skolem function for yi from the derived specification
ϕ(i)(X,Y n

i ), by treating yi as the sole output and all of X,Y n
i+1 as inputs in

ϕ(i). Let ψi(X,Y n
i+1) denote the Skolem function for yi thus obtained. Finally,

we substitute the Skolem functions ψi+1, . . . ψn for yi+1, . . . yn respectively in
the Skolem function ψi obtained above. This gives a Skolem function for yi only
in terms of X. By repeating the above process for all i in decreasing order from
n − 1 to 1, we obtain a Skolem function vector for ϕ.

4 A New Knowledge Representation for Skolem
Functions

We start with a key definition that is motivated by the desire to represent the
entire space of Skolem functions arising from a specification compactly, and in
a form that is easily amenable to well-established logic synthesis and optimiza-
tion workflows. Recall from Sect. 2 that for a multi-output specification, Skolem
functions for different outputs may be dependent on each other. Hence, the set
of Skolem function vectors cannot be expressed as a Cartesian product of sets
of Skolem functions for individual outputs. Instead, we impose a linear order
on the outputs, and express the Skolem function for one output in terms of the
inputs and other outputs that precede it in the order. Such a linear order may be
automatically generated, user-provided, or even generated with guidance from
the user, e.g., if the user provides a partial order on the outputs. We assume the
availability of such an order ≺ in the definition below.

Definition 1. Let ϕ(X,Y ) be a specification over a linearly ordered set of out-
puts Y = {y1, . . . , yn}. We say that output yi has a Skolem basis in ϕ if there
exists a pair of functions (Ai, Bi) over X ∪ Y n

i+1 such that

1. Ai ∧ Bi is unsatisfiable, and
2. any Skolem function ψi(X,Y n

i+1) for yi in the derived specification ϕ(i) can
be written as ψi ≡ Ai ∨ g for some g ∈ GenImpl

(
Bi

)
.

We call the vector of pairs 〈(Ai, Bi)〉1≤i≤n the Skolem basis vector for ϕ wrt ≺.

The Skolem basis vector can be seen as a succinct representation of the
Skolem function space, i.e., the set of all Skolem function vectors of ϕ. A natu-
ral question that arises at this point is: Given a specification ϕ and order ≺ of
outputs, does there always exist a Skolem basis for ϕ wrt ≺? Fortunately, as we
show in this paper, the answer is a resounding “Yes”. Not only that, the Skolem
basis for a given ϕ and ≺ is unique upto semantic equivalence of the basis func-
tions. It is important to note that not every set of functions can be represented
using just two basis functions. This is easy to see via a counting argument: the
number of sets of Boolean functions over m inputs is 22

2m

. However, the number
of sets that admit a Skolem basis is (loosely) upper bounded by 22·2m . Skolem
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functions are therefore special, since we show that the space of all Skolem func-
tions for every output in every specification always admits representation by two
basis functions, regardless of the order ≺. Interestingly, though the definition of
Skolem basis vector needs us to specify an order ≺ on the outputs, somewhat
surprisingly, the Skolem function space itself does not depend on the order.

Proposition 1. Suppose Ψ is a Skolem function vector for the outputs Y in
terms of inputs X in ϕ. Then, for any order ≺, Ψ can be generated using the
Skolem basis vector of ϕ wrt ≺, and then substituting, for each i ∈ {1, . . . n}, the
Skolem functions ψj for yj where i < j ≤ n, in the Skolem function for ψi.

Proof Sketch: With ordering y1 ≺ y2 ≺ . . . yn, let 〈(Ai, Bi)〉 be the corresponding
Skolem basis vector. The support of An, Bn are only the inputs X, while the
support of Ai, Bi (for i > 1) are X ∪ {yi+1, ...yn}. Let Ψ = (ψ1, . . . ψn) be an
arbitrary Skolem function vector, where each ψi is a function of X. By definition
of Skolem basis, since ψn is a Skolem function for yn, it can be obtained from
An and Bn (each of which has support X). Now consider ψi for 1 ≤ i < n.
By definition of Skolem basis, every Skolem function for yi in terms of X ∪
{yi+1, ...yn} can be obtained from Ai and Bi. In particular, if we set yi+1 to
ψi+1 and so on until yn to ψn, every Skolem function for yi in terms of X can
be obtained from Ai and Bi. ��

Another interesting property about Skolem basis vector is that, when it
exists, it is unique. Later we will show (constructively) that it always exists
and hence we would have also constructed the unique one.

Proposition 2. For any yi in ϕ, its Skolem basis, when it exists, is unique.

Proof. Fix i. Let S be the set of all Skolem functions for yi in ϕ(i). From Defini-
tion 1, we know that for all f ∈ S, Ai ⇒ f . Hence, Ai ⇒ ∧

f∈S f . However, we
also know that Ai ∈ S (corresponds to choosing the generalized implicant 0 from
GenImpl

(
Bi

)
). Therefore,

( ∧
f∈S f

) ⇒ Ai. It follows from the two implications
that A ⇔ ∧

f∈S f .
In a similar manner, Definition 1 implies that for all f ∈ S, f ⇒ Ai ∨ Bi.

Hence
( ∨

f∈S f
) ⇒ Ai ∨Bi. However, we know that Ai ∨Bi ∈ S (corresponds to

choosing the generalized implicant B from GenImpl
(
B

)
). Therefore, Ai ∨ Bi ⇒∨

f∈S f . It follows from the two implications that Bi ⇔ ∨
f∈S f . ��

Finally, we explain how our new representation of Skolem functions using
a Skolem basis vector naturally lends itself to easy processing by downstream
logic synthesis and optimization tools. Thus, a Skolem basis vector is not just an
arbitrary way to represent the space of all Skolem function vectors; instead, it
is strongly motivated by the way modern logic synthesis and optimization tools
work to search the semantic space of partially specified functions (i.e. functions
specified with on-sets and don’t-care sets). Specifically, in logic synthesis and
optimization parlance [29], Ai is the on-set and Bi is the don’t-care set for Skolem
functions for yi in ϕ. In other words, Ai describes all assignments for which every
Skolem function for yi must evaluate to 1 while Bi describes those assignments
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on which a Skolem function can evaluate to either 1 or 0 without violating
the requirement of being a Skolem function for yi in ϕ. Thus, every semantically
distinct Skolem function for yi in ϕ can be obtained by choosing a distinct subset
of satisfying assignments of Bi and choosing the Skolem function to evaluate on
this subset of assignments in addition to those determined by Ai. Indeed, state-
of-the-art logic synthesis and optimization tools (such as abc [27]) use on-sets
and don’t care sets expressed as Boolean functions to represent the space of all
realizations of a partially specified function. The don’t cares are then used to
optimize the semantic and implementation choices when choosing the optimal
realization of such a partially specified function, as per user provided criteria
like area, gate count, delay, power consumption, balance of delays across paths
etc. Indeed, the following guarantee follows rather trivially from Proposition 1.

Proposition 3. Suppose we have access to a logic optimization tool that finds
the optimal semantic and implementation choice of a partially specified function
as per user criteria. Using this tool on the Skolem basis vector of ϕ wrt ≺ yields
the optimal choice among all Skolem functions, where optimality of Skolem func-
tion for yi is conditioned on the choice of Skolem functions for yj, for 1 ≤ j < i.

Having defined and motivated the Skolem basis vector as our new knowledge
representation, in the rest of the paper we will show how it can actually be
computed, in theory and in practice.

5 Towards Synthesizing the Skolem Basis Vector

The Single Output Case: First, we consider the case of a singleton output
and show that here the existence of Skolem basis is easy to establish, and the
basis is also easy to compute.

Theorem 1. For a single-output specification ϕ(X, y), the Skolem basis for y
in ϕ is given by A ≡ ϕ(X, 1)∧ ¬ϕ(X, 0) and B ≡ ϕ(X, 1) ↔ ϕ(X, 0). Thus, in
this case, the Skolem basis vector for ϕ can be computed in time/space linear in
size of the circuit representing ϕ.

Proof. Let 2|X | denote the set of all complete assignments π of X. Define S1 =
{π | π ∈ 2|X |, π |= ϕ(X, 1)} and S0 = {π | π ∈ 2|X |, π |= ϕ(X, 0)}. By
definition of S0 and S1, (with Si denoting complement of set Si), we have:

– π ∈ S1 ∪ S0 iff π |= ∃y ϕ(X, y).
– π ∈ S1 ∩ S0 iff π |= ∀y ϕ(X, y).
– π ∈ S1 ∩ S0 iff π |= ∀y ¬ϕ(X, y).
– For every π ∈ S1 ∩ S0, the only value of y that makes ϕ(π, y) true is 1.
– For every π ∈ S0 ∩ S1, the only value of y that makes ϕ(π, y) true is 0.

Now let ψ(X) be an arbitrary Skolem function for y in ϕ(X). Recall that by
definition a Skolem function satisfies ∀X

(∃y ϕ(X, y) ⇔ ϕ(X, ψ(X))
)
. It then

follows from the above observations that if π ∈ S1 ∩ S0, ψ(π) must evaluate to
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1. Similarly, if π ∈ (S1 ∩ S0) ∪ (S1 ∩ S0), it makes no difference whether ψ(π)
evaluates to 0 or 1. Finally, if π ∈ S0 ∩ S1, ψ(π) must evaluate to 0. Since ψ
was an arbitrary Skolem function for y in ϕ, we infer that the Skolem basis for
AllSk(ϕ) is (A,B), where A ≡ ϕ(X, 1) ∧ ¬ϕ(X, 0) represents the set S1 ∩ S0,
and B ≡ (

ϕ(X, 0) ⇔ ϕ(X, 1)
)

represents the set (S1 ∩ S0) ∪ (S1 ∩ S0). ��
We next consider the multiple output case, where our strategy (as done usually
for Skolem function synthesis) is to reduce to the one-output case above.

Multiple Outputs and Existential Quantification: When we have multi-
ple outputs, from the definition of Skolem basis vector (Definition 1), it fol-
lows that the problem reduces to the single output case, if we can compute the
derived specifications ϕ(i)(X,Y n

i+1). Unfortunately, computing ϕ(i)(X,Y n
i ) can-

not always be done efficiently, even when ϕ(X,Y ) and the order ≺ on Y are
given. We compute ϕ(i) from a given ϕ(i−1), where the variable yi to be quantified
is either chosen on-the-fly (giving a dynamic computation of ≺) or determined
as per a statically provided order. Since ϕ(i+1) ⇔ ∃Y i

1 ϕ ⇔ ∃yiϕ
(i) for all

i ∈ {1, . . . n−1}, we first consider how a single output variable can be quantified
from a derived specification.

The conceptually simplest way to compute ∃yi ϕ(i) is as ϕ(i)
∣
∣
yi=1 ∨ϕ(i)

∣
∣
yi=0.

Unfortunately, this doubles the size of the circuit representation. An alternative
is to find a Skolem function, say ψi, for yi in ϕ(i), and then use ϕ(i)[yi �→
ψi]. This works well when ψi can be represented compactly. However, an NNF
representation of ψi can be as large as that of ϕ(i) (e.g. if ψi ≡ ϕ(i)

∣
∣
yi=1), in

which case we may double the circuit size. We therefore ask if it is possible
to compute ∃yi ϕ(i) by simply substituting a constant (not necessarily a Skolem
function) for yi in an NNF formula of almost the same size as ϕ(i). It turns out
that this is possible in two practically relevant cases. In other cases, we transform
the circuit to permit such constant substitutions. For notational convenience, in
the rest of this section, we omit i and use y and ϕ for yi and ϕ(i).

The Case of Unates: A variable y is positive (resp. negative) unate in ϕ if
ϕ
∣
∣
y=0 ⇒ ϕ

∣
∣
y=1 (resp. ϕ

∣
∣
y=1 ⇒ ϕ

∣
∣
y=0). A variable is unate in ϕ if it is either

positive or negative unate in ϕ. Then, we have: easily proved.

Lemma 1. If y is positive unate in ϕ, then ∃y ϕ ⇔ ϕ
∣
∣
y=1. Similarly, if y is

negative unate in ϕ, then ∃y ϕ ⇔ ϕ
∣
∣
y=0.

Proof. The proof immediately from the definition of positive and negative unate-
ness, and from the fact that ∃y ϕ ⇔ ϕ

∣
∣
y=0 ∨ ϕ

∣
∣
y=1. ��

As an example, consider ϕ ≡ (x∧(y1∨y2))∨(¬x∧¬y2). Here, y1 is positive unate
in ϕ, but y2 is not unate in ϕ. However, y2 is negative unate in ϕ

∣
∣
y1=1, which by

Lemma 1 is equivalent to ∃y1 ϕ. This shows that even if a variable is not unate
to begin with, it may become unate after some variables are quantified. If we use
the order y1 ≺ y2 in our example, both ∃y1 ϕ and ∃y1∃y2 ϕ can be computed by
substituting for y1 and y2 in ϕ. This is however not true for y2 ≺ y1.
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ϕ1

∧

∨

x1 y

∨

y x2

ϕ+
1

∧

∨

x1 y

∨

y x2

ϕ2

∧

∨

x2 ∨

x1 y

∨

¬y x1

ϕ3

∧

∨

x2 ∨

x1 y

∨

¬y ¬x1

Fig. 2. NNF circuit representations of formula ϕ1, ϕ
+
1 , ϕ2, ϕ3.

In general, given a specification ϕ(X,Y ) and a linear ordering ≺ of outputs,
if each output yi is unate in the derived specification ϕ(i) ≡ ∃Y i−1

1 ϕ, then we
can apply Lemma 1, Definition 1 and Theorem 1 to synthesize the entire Skolem
basis vector for ϕ w.r.t. ≺ efficiently. This also suggests a heuristic for finding a
(partial) order on the outputs Y . Specifically, given a derived specification ϕ(i),
we try to find an output variable y in its support such that y is unate in ϕ(i). If
such a variable exists, we use it as the next variable in the ≺ order, and obtain
ϕ(i+1) by using Lemma 1 to compute ∃y ϕ(i). As our experiments show (see
Sect. 7) and has also been observed elsewhere [14], this approach is surprisingly
effective for finding Skolem functions for many benchmarks.

The Case of No Conflicts: Next, we consider another case where quantifi-
cation can be achieved by substituing constants for variables.

Definition 2. Let ϕ be an NNF formula, y ∈ sup(ϕ). Suppose we replace every
occurence of ¬y in ϕ by a fresh variable ŷ (ŷ �∈ sup(ϕ)). The resulting formula
is called the y-positive form of ϕ and is denoted ϕ+y. The variable y is said to
be in conflict in ϕ if there exists an assignment π : sup(ϕ) \ {y} → {0, 1} such
that ϕ+y

∣
∣
π

⇔ y ∧ ŷ. Otherwise, we say that y is conflict-free in ϕ+y.

The assignment π in the above definition is called a counterexample to conflict-
freeness of y in ϕ. It is easy to see that both y and ŷ are positive unate in ϕ+y.
Henceforth, we use ϕ+ instead of ϕ+y when y is clear from the context.

We illustrate conflicts and conflict-freeness in Fig. 2. The y-positive form of
ϕ1 is shown as ϕ+

1 , where ŷ is a fresh variable. Clearly, y is in conflict in ϕ1
since ϕ+

1

∣
∣
π

⇔ y ∧ ŷ for π : x1 �→ 0, x2 �→ 0. Similarly, y is in conflict in ϕ2 (as
seen with π : x1 �→ 0, x2 �→ 0). However, y is not in conflict in ϕ3 as there is no
assignment π of x1, x2 for which ϕ+

3

∣
∣
π

⇔ y ∧ ŷ.

Lemma 2. If y is conflict-free in ϕ, then ∃y ϕ ⇔ ϕ+
∣
∣
y=1,ŷ=1.

Proof. Since y is conflict-free in ϕ, it follows that ϕ+
∣
∣
y=1,ŷ=1 ⇒ (

ϕ+
∣
∣
y=1,ŷ=0 ∨

ϕ+
∣
∣
y=0,̂y=1. Since all internal nodes in ϕ+ are labeled by either ∧ or ∨, it

also follows that y and ŷ are positive unate in ϕ+. Therefore,
(
ϕ+

∣
∣
y=1,ŷ=0 ∨
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ϕ+
∣
∣
y=0,ŷ=1 ⇒ ϕ+

∣
∣
y=1,ŷ=1. The proof is completed by observing that by defini-

tion ∃y ϕ ⇔ (
ϕ
∣
∣
y=0 ∨ ϕ

∣
∣
y=1

) ⇔ (
ϕ+

∣
∣
y=0,ŷ=1 ∨ ϕ+

∣
∣
y=1,ŷ=0

)
. ��

A notion similar to conflict as defined above was used in [13,20] for defining nor-
mal forms for synthesis. The difference is that unlike in [13,20], we do not require
a pre-specified subset of the support to be set to 1 in the assignment π. To iden-
tify conflicts, we define a conflict formula κϕ,y as

(
ϕ+

∣
∣
y=1,ŷ=1 ∧ ¬ϕ+

∣
∣
y=1,ŷ=0 ∧

¬ϕ+
∣
∣
y=0,ŷ=1

)
. By Definition 2, y is conflict-free in ϕ iff κϕ,y is unsatisfiable.

Proposition 4. For 1 ≤ i ≤ 4, there exist ϕi with yi ∈ sup(ϕi) s.t., (i) y1 is
neither unate nor conflict-free in ϕ1, (ii) y2 is unate but not conflict-free in ϕ2,
(iii) y3 is conflict-free but not unate in ϕ3, (iv) y4 is unate, conflict-free in ϕ4.

The formulas ϕ1, ϕ2, ϕ3 from Fig. 2 satisfy conditions (i), (ii) and (iii) respec-
tively. For (iv), we consider ϕ4 ≡ x ∧ y, in which y is unate and conflict-free.
Lemmas 1, 2 and Proposition 4 show that both unateness and conflict-freeness
are independently useful, and hence combining we directly obtain:

Theorem 2. Given ϕ(X,Y ) and a linear order ≺ on Y , if yi is either unate
or conflict-free in ϕ(i) for all i ∈ {1, . . . n}, then we can effectively synthesize the
Skolem basis vector in time linear in size of ϕ.

We remark that the implications of Theorem 2 go beyond what can be achieved
by earlier work on normal forms for synthesis [13,20]. Indeed, there are formulas
that are neither in SynNNF nor SAUNF but for which Theorem 2 applies.

Finally, unateness is a semantic property; hence if y is not unate in ϕ, it is
not unate in every μ such that ϕ ⇔ μ. However, conflict-freeness has a represen-
tational aspect. If y is in conflict in ϕ, we can always find another NNF formula
μ such that (i) μ ⇔ ϕ, and (ii) y is conflict-free in μ. To see why, note that
if μ ≡ (y ∧ ϕ

∣
∣
y=1) ∨ (¬y ∧ ϕ

∣
∣
y=0), i.e. Shannon expansion of ϕ w.r.t. y, then

μ ⇔ ϕ and y is conflict-free in μ. However, taking the Shannon expansion may
not always be the best way to render an output conflict-free, as it often leads
to blow-up in the size of the expanded formula. In the next section, we give a
counterexample guided algorithm to obtain μ from ϕ and y, that works much
more efficiently than Shannon expansion in practice.

6 Counterexample-Guided Rectification

Recall from the previous section that if y is in conflict in ϕ(X,Y ), then there
exists a counterexample (assignment) π : X ∪ Y \ {y} → {0, 1} such that
ϕ+

∣
∣
π

⇔ y ∧ ŷ. In this section, we discuss how we can use such counterexamples
to transform ϕ(X,Y ) to a specification μ(X,Y ) such that μ ⇔ ϕ and y is
conflict-free in μ. We call such a transformation rectification of ϕ w.r.t y, and
the resulting formula μ is said to be rectified w.r.t. y.

Lemma 3. Let π be a counterexample to conflict-freeness of y in ϕ(X,Y ) and
let ξ be a formula satisfying (a) sup(ξ) ⊆ X ∪ Y \ {y}, (b) ϕ ⇒ ξ, and (c)
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ξ
∣
∣
π

is unsatisfiable. Define τ ≡ ϕ ∧ ξ and let τ+ denotes the positive form of τ
w.r.t. y. Then the following hold: (i) τ ⇔ ϕ, (ii) π is not a counterexample to
conflict-freeness of y in τ , and (iii) every counterexample to conflict-freeness of
y in τ is also a counterexample to conflict-freeness of y in ϕ.

Proof. Since ϕ ⇒ ξ, it follows that τ ⇔ ϕ ∧ ξ ⇔ ϕ. This proves claim (i) of
Lemma 3. Next, note that since π is a counterexample to conflict-freeness of y
in ϕ, we must have ϕ+

∣
∣
π

⇔ (y ∧ ŷ). Since ξ does not have y in its support,
it follows that τ+ ⇔ ϕ+ ∧ ξ. Therefore, τ+

∣
∣
π

⇔ ϕ+
∣
∣
π

∧ ξ
∣
∣
π

⇔ (y ∧ ŷ) ∧ ξ
∣
∣
π
.

However, from the premise of Lemma 3, we know that ξ
∣
∣
π

is unsatisfiable. Hence
τ+

∣
∣
π

is false. Specifically, τ+
∣
∣
π

�⇔ (y ∧ ŷ), and hence π is not a counterexample
to conflict-freeness of y in τ . This proves claim (ii) of Lemma 3. Finally, let
π′ : X ∪ Y \ {y} → {0, 1} be a counterexample to conflict-freeness of y in τ . By
definition, τ+

∣
∣
π′ ⇔ (y ∧ ŷ). However, τ+

∣
∣
π′ ⇔ ϕ+

∣
∣
π′ ∧ ξ

∣
∣
π′ . Since all variables in

support of ξ are assigned by π′, we must have ξ
∣
∣
π′ being equivalent to either 0

or 1. If ξ
∣
∣
π′ is 0, then τ+

∣
∣
π′ must also be 0, a contradiction of τ+

∣
∣
π′ ⇔ (y ∧ ŷ).

Therefore, we must have ξ
∣
∣
π′ equivalent to 1, and hence ϕ+

∣
∣
π′ ⇔ (y ∧ ŷ) for

τ+
∣
∣
π′ to be equivalent to (y ∧ ŷ). It follows that π′ must be a counterexample to

conflict-freeness of y in ϕ. This proves claim (iii) of Lemma 3. ��
Henceforth, we call a formula ξ satisfying conditions (a), (b) and (c) of

Lemma 3 a partial rectifier of ϕ w.r.t. y. Given π, it is easy to find a partial
rectifier.

Lemma 4. For all v ∈ X ∪ Y \ {y}, let 
v,π denote v if π[v] = 1, and ¬v if
π[v] = 0. Let ξπ be ¬( ∧

v∈X ∪Y \{y} lv,π

)
. Then ξπ satisfies conditions (a), (b)

and (c) of Lemma 3.

The proof follows immediately from the observations: (i) π is the only satisfying
assignment of ¬ξπ, and (ii) ϕ

∣
∣
π

⇔ (
ϕ+[ŷ �→ ¬y]

)∣∣
π

⇔ (y ∧ ŷ)[ŷ �→ ¬y] ⇔ 0.
Consequently, ¬ξπ ⇒ ¬ϕ. Although Lemma 4 gives a partial rectifier, it prevents
only the assignment π from being a counterexample to conflict-freeness of y in
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τ . Later we will see a partial rectifier that prevents many more assignments
from being counterexamples. For the time being, however, we assume that we
have access to a procedure PartialRectifier that takes as inputs ϕ and π and
outputs a partial rectifier that satisfies conditions (a), (b) and (c) of Lemma 3.

The above discussion suggests a simple algorithm, shown as Algorithm Rec-
tifyOneOutput below, for rectifying a specification ϕ w.r.t. an output y.

The algorithm first initializes a temporary formula μ to ϕ. It then invokes
a propositional satisfiability (SAT) solver to obtain a satisfying assignment π
of the conflict formula κμ,y (defined in Sect. 5 just before Proposition 4). The
assignment π serves as a counterexample to conflict-freeness of y in μ, and is
used to obtain a partial rectifier ξ of μ w.r.t. y. The formula μ is then updated
by conjoining it with ξ. Lemma 3 guarantees that this gives a specification
semantically equivalent to ϕ, while removing π from the set of counterexamples
to conflict-freeness of y in μ. By repeating the process with the updated formula
μ, all counterexamples to conflict-freeness of y in μ are eventually removed.

Theorem 3. Algorithm RectifyOneOutput always terminates with a for-
mula μ s.t. μ ⇔ ϕ and y is conflict-free in μ.

Proof. The following inductive invariants hold at end of every iteration of the loop
in lines 2–8, thanks to Lemma 3: (i) μ ⇔ ϕ, (ii) the set of counterexamples to
conflict-freeness of y in μ has strictly fewer elements than at the start of the itera-
tion. Since the set of counterexamples is finite (at most 2|X |+|Y |−1 elements), even-
tually this set must become empty. By definition of the conflict formula, κμ,y must
be unsatisfiable when this happens. Hence, the algorithm eventually exits the loop
in lines 2–8 and terminates. Since there are no counterexamples to conflict-freeness
of y in μ on termination, y is indeed conflict-free in μ. ��

Rectification by Counterexample Generalization: The idea of counterex-
ample generalization is best illustrated by an example. Consider the specification
ϕ(X, y) ≡ (

(x1 ∧ x2) ∨ ((x2 ∧ x3) ∨ y)
) ∧ (¬y ∨ (¬x3 ∧ x4)

)
, wherein y is in

conflict. To see why this is so, consider ϕ+y (henceforth called ϕ+) represented
as a NNF circuit in Fig. 3. Let π be an assignment that assigns 1 to x1, x3 and
0 to x2, x4. The values in red below the leaves in Fig. 3 represent this assign-
ment. If we propagate these values upstream to the root of the circuit, we get
the values/formulas shown in red adjacent to internal nodes, as shown in Fig. 3.
This process is akin to constant/symbol propagation in symbolic simulation [30].
Note that the root of the circuit is assigned y ∧ ŷ by this process, indicating
that ϕ+

∣
∣
π

⇔ (y ∧ ŷ). Hence, y is in conflict in ϕ and π is a counterexample to
conflict-freeness of y in ϕ.
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0

∨
y

∧
0
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1
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∨
y

y ∧
0

¬x3
0

x4
0

Fig. 3. Circuit representing ϕ+y

Interestingly, the constant/symbol propa-
gation discussed above can yield many more
counterexamples beyond π. Specifically, let N
denote the set of coloured nodes in the figure.
Suppose we cut the circuit at the nodes in
N , as shown by the dotted line in Fig. 3. Let
the sub-circuit above the cut be denoted CN .
Notice that the leaf nodes of CN are either
nodes in N or leaf nodes of the original cir-
cuit corresponding to y or ŷ. Now consider any
assignment π′ : {x1, x2, x3, x4} → {0, 1} s.t.
when we propagate constants/symbols in the
original circuit starting with π′ at the leaves,
we get the same values as in Fig. 3 at all nodes
in N . This ensures that all leaves of CN have the same constant/symbol as in
Fig. 3. Therefore, further constant/symbol propagation must assign exactly the
same constant/symbol/formula at every internal node of CN as in Fig. 3. Specif-
ically, the root node is assigned y ∧ ŷ, implying that π′ is a counterexample to
conflict-freeness of y in ϕ.

Can we characterize all the counterexamples π′ obtainable by the above
method? It turns out we can do this. First, note from Fig. 3 that the sub-circuits
rooted at the orange, purple and green nodes represent the Boolean formulas
x1 ∧ x2, x2 ∧ x3 and (¬x3 ∧ x4) respectively. Hence, the set of all counterex-
amples π′ obtained above are precisely the satisfying assignment of the formula
β ≡ ¬(x1∧x2)∧¬(x2∧x3)∧¬(¬x3∧x4). Notice that there are many assignments
beyond π that satisfy β, e.g. x1x2x3x4 = 0000 or 0010 or 1000, and so on. Thus,
we have truly generalized the counterexample π.

In general, given a specification ϕ(X,Y ), an output variable y and a coun-
terexample π : X ∪ Y \ {y} → {0, 1} to conflict-freeness of y in ϕ, we first
construct an NNF circuit representing ϕ+. For every node n in the circuit, let
ϕ+

n denote the sub-formula represented by the sub-circuit rooted at n. Next,
we assign values given by π to the leaves of the circuit representing ϕ+ and
propagate these values to the root of the circuit. Let vn,π denote the con-
stant/symbol/formula assigned to node n in the circuit by this process. In
other words, vn,π ⇔ ϕ+

n

∣
∣
π
. We now choose a subset N of nodes n such that

(i) sup(ϕ+
n ) ∩ {y, ŷ} = ∅, (ii) vn,π is a constant, and (iii) every path from a non-

y, non-ŷ leaf to the root passes through a node in N . Such a set N can always be
found, for example, by choosing N to be the set of non-y, non-ŷ leaves. However,
as Fig. 3 shows, N need not include only leaf nodes. Let βπ,N denote the formula∧

n∈N

(
ϕ+

n ⇔ vπ,n

)
.

Lemma 5. Every satisfying assignment of βπ,N is a counterexample to conflict-
freeness of y in ϕ. Moreover, ¬βπ,N satisfies the three conditions required for a
partial rectifier as specified in Lemma 3.

Proof. Since every path from a non-y, non-ŷ leaf to the root passes through a
node in N , we can use nodes in N and the leaves corresponding to y and ŷ to cut
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the circuit (as shown in Fig. 3). Let CN denote the sub-circuit above this cut. Let
π′ be a satisfying assignment (not necessarily same as π) of βπ,N . By definition of
βπ,N , constant/symbol propagation starting from π′ assigns the constant value
vπ,n to every node n ∈ N . It follows that for all leaf nodes l of the sub-circuit CN ,
vπ′,l = vπ,l. Hence, every internal node m of CN must also have vπ′,m = vπ,m.
In particular the root node gets assigned the same value/symbol/formula that it
had when we did constant/symbol propagation starting from π. In other words,
ϕ+

∣
∣
π′ ⇔ ϕ+

∣
∣
π
. However, Since π is a counterexample to conflict-freeness of y in

ϕ, we know ϕ+
∣
∣
π

⇔ (y∧ŷ). Therefore, ϕ+
∣
∣
π′ ⇔ (y∧ŷ) and π′ is a counterexample

to conflict-freeness of y in ϕ+.
To see ¬βπ,N satisfies the conditions required of a partial rectifier in Lemma 3,

note that sup(ϕ+
n )∩{y, ŷ} = ∅. Therefore, sup(¬βπ,N )∩{y, ŷ} is also empty. Next,

by definiton, if an assignment π′ |= βπ,N , every node n ∈ N in the circuit ϕ+ gets
assigned the constant value vπ,n. Using the same argument as in the first part of
the proof, we can then show that ϕ+

∣
∣
π′ ⇔ (y ∧ ŷ). Hence ϕ

∣
∣
π′ ⇔ ϕ+[ŷ �→ ¬y]

∣
∣
π′

⇔ y ∧ ŷ[ŷ �→ ¬y] ⇔ 0. This shows that βπ,N ⇒ ¬ϕ. In other words, ϕ ⇒ ¬βπ,N .
Finally, βπ,N

∣
∣
π

⇔ ∧
n∈N

(
ϕ+

n

∣
∣
π

⇔ vπ,n

)
. However, vπ,n ⇔ ϕ+

n

∣
∣
π

by definition.
Hence βπ,N

∣
∣
π

⇔ 1 and hence ¬βπ,N

∣
∣
π

is unsatisfiable. ��
The above lemma allows us to use ¬βπ,N as a partial rectifier of ϕ w.r.t. y in
Algorithm RectifyOneOutput. Significantly, this eliminates in one shot all
counterexamples to conflict-freeness of y in ϕ that are satisfying assignments of
βπ,N , thereby reducing the number of iterations of the loop in Algorithm Recti-
fyOneOutput. As seen in the example above, βπ,N can indeed have many more
satisfying assignments beyond π. We use this technique to implement the sub-
routine PartialRectifier in Algorithm RectifyOneOutput. Specifically,
we choose the set N such that the longest path of each node n ∈ N from a leaf
of Cμ is within an empirically determined threshold (20 in our experiments).

Generalizing Using Unsatisfiable Cores: It turns out that we can gener-
alize counterexamples even beyond what was achieved above. To see a concrete
example, consider the specification γ(X, y) ≡ ϕ(X, y)∧ (¬y ∨ (x1 ∧ x2)

)
, where

ϕ(X, y) is the same specification considered in Fig. 3. The NNF circuit represent-
ing γ+y (or γ+ for short) is the same as that shown in Fig. 3 with an additional
∧-gate that feeds the root node, and that is fed by the ŷ leaf and output of the
orange node. The same assignment π as considered earlier serves as a counterex-
ample to conflict-freeness of y in γ, and the same set N can be chosen to obtain
the same partial rectifier ¬β, where β ≡ ¬(x1 ∧ x2) ∧ ¬(x2 ∧ x3) ∧ ¬(¬x3 ∧ x4).
Note, however, that in the circuit for γ+, if the orange and purple nodes are
assigned the value 0 by constant propagation starting from an assignment π′,
the root node must be assigned y∧ ŷ, regardless of the value assigned to the green
node. Therefore, we could have used β′ ≡ ¬(x1 ∧ x2) ∧ ¬(x2 ∧ x3), which repre-
sents a larger set of counterexamples than β. Specifically, x1x2x3x4 = 1001 does
not satisfy β but satisfies β′. It follows that rectification using ¬β′ eliminates
more counterexamples in one go than rectification using ¬β.

In general, given ϕ, y, π and N as in our previous discussion, let sn be
a fresh variable for every node n ∈ N , and define the formula ρπ,N ≡ ϕ ∧
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∧
n∈N

(
(sn ⇒ (ϕ+

n ⇔ vπ,n)) ∧ sn

)
. Since ϕ ⇒ ¬βπ,N (see Lemma 5) and since

βπ,N ≡ ∧
n∈N (ϕ+

n ⇔ vπ,n), it follows that ρπ,N is unsatisfiable. Assuming ϕ is
satisfiable (otherwise the synthesis problem is itself trivial), every unsatisfiable
core of ρπ,N must set a subset of the sn variables to 1. Let U ⊆ N be the
set of nodes n s.t. sn = 1 in a minimal unsatisfiable core of ρ. Then ρπ,U ≡
ϕ ∧ ∧

n∈U

(
(sn ⇒ (ϕ+

n ⇔ vπ,n)) ∧ sn

)
is unsatisfiable.

Lemma 6. Lemma 5 holds with βπ,N replaced by βπ,U . Moreover, βπ,N ⇒ βπ,U .

Overall Algorithm: We are now present Algorithm FindSkBasisVec. The
algorithm initializes a running specification α to ϕ. It then repeatedly chooses
the next output yi for whose Skolem functions a Skolem basis needs to be com-
puted. The choice of yi can be as per a static order, or as determined on-the-fly
heuristically. The algorithm then finds Skolem basis (Ai, Bi) using Theorem 1 by
treating yi as the sole output in the specification α. It next updates the running
specification α by existentially quantifying yi from α. In order to do this, it first
checks if yi is unate in α, and if so, substitutes an appropriate constant for yi

in α to quantify it out. Otherwise, the algorithm invokes Algorithm Rectify-
OneOutput. Thanks to Theorem 3, we can effectively and efficiently quantify
yi from α by setting yi = 1 and ŷi = 1 in the positive form of the formula μ
returned by RectifyOneOutput. Once all outputs are processed, the algo-
rithm outputs the vector of (Ai, Bi) pairs computed as the Skolem basis vector.

Theorem 4. Algorithm FindSkBasisVec terminates with a Skolem basis vec-
tor for the specification ϕ(X,Y ).

Proof. The proof of termination follows immediately from Theorem 3. The proof
of correctness follows from Definition 1, Theorems 1, 3, and Lemmas 1, 2. ��

Though we developed rectification as a technique for rendering a variable
conflict free with the objective of generating Skolem basis vectors, it can be
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independently used to compile a Boolean formula to a form that allows efficient
quantifier elimination. However, a performance evaluation of rectification versus
other quantification techniques in such applications is beyond the scope of this
paper.

7 Implementation and Experiments

We implemented the above algorithms in C++ using the abc package [27] and
ran our tool on a set of 602 Boolean functional synthesis benchmarks (also used
in [12,14]). We used an Intel(R) Xeon(R) CPU E5-2660 v2@2.20GHz machine
with 40 cores in single-threaded mode (multiple cores used only to run experi-
ments in parallel). We set an overall timeout of 3600 seconds, within which the
timeout for unate-check was 1000 seconds.

Detailed Analysis of Our Results. We did an ablation study to understand
which part of our approach was most successful in compiling the benchmarks.

DO SO CDO CSO
1 Total Solves 287 298 299 308
2 PAR2 Scores 3839.56 3672.65 3696.90 3565.01
3 Average time 151.28 74.29 146.94 95.24
4 allUnates 98 98 98 98
5 someUnates 146 157 151 160
6 noUnates 43 43 50 50
7 fixedConflicts 71 19 73 21
8 noConflicts 118 181 128 189
9 fixedConflicts

someUnates 68 16 69 17
10 noConflicts

someUnates 78 141 82 143
11 fixedConflicts

noUnates 3 3 4 4
12 noConflicts

noUnates 40 40 46 46

Fig. 4. Table of results

Our results are summarized in
Fig. 4. Here, “Total solves” denotes
the number (out of 602) bench-
marks for which Algorithm Find-
SkBasisVec completed within
the timeout. “PAR2 score” is
a widely used weighted perfor-
mance score, computed as sum
of time taken (in seconds) for
each solved instances and dou-
ble of timeouts (3600 s)s) for each
unsolved instance. For bench-
marks that were rectified, for each
application of rectification, we
verified (using a SAT solver) that
the rectified circuit was seman-
tically equivalent to the original.
The time for this verification is
included when computing PAR2
scores. In row 3, we note the “Average time” taken (including for verification),
in seconds, over all solved instances. In rows 4, 5 and 6, we count, respectively,
the number of solved benchmarks, where (i) all variables were unate (ii) some
but not all were unate and (iii) no variables were unate (these add up to row 1).
In row 7, we list the number of solved benchmarks for which there was at least
one conflict, i.e., a call to the rectification algorithm was needed. Row 8 lists the
solved benchmarks with at least one output that was not unate but no outputs
having conflicts. The other rows are self-explanatory.

Order Dependence. Since a Skolem basis vector depends on the ordering of out-
puts, we considered two order variants. In the first, we considered a heuristically
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determined static order (denoted SO), taken as is from [14]. Then, we tried a
heuristic dynamic order (denoted DO): after each output variable is processed,
the next is obtained on-the-fly by applying the heuristic from [14].

Conflict Optimization in Calculating Skolem Basis Vector. We found several
problem instances where the specification is not realizable, i.e., there exist input
values for which no output values can make the specification true. For such
instances, it is reasonable to restrict the computation of Skolem basis vector to
a set F of Skolem functions, such that for any Skolem function ψ �∈ F , there
exists ψ′ ∈ F such that ψ and ψ′ differ only on the space of input assignments
for which no assignment of outputs would satisfy the specification. It turns out
that this can be easily encoded in Algorithm 1 by modifying the conflict formula
κμ,y to κμ,y ∧ ϕ(X,Y ′), where Y ′ is a fresh set of variables. Doing this, along
with the static/dynamic ordering gives us the “CSO” and “CDO” columns in
Fig. 4.

Observations. With either SO or DO, without conflict optimization, we are able
to compute Skolem basis vectors for 299 of 602 benchmarks (286 were solved by
both, 1 by only DO and 12 by only SO). Interestingly, the static order (SO) had
fewer conflicts compared to the dynamic order (DO), when we had to rectify more
often. Further, in the presence of conflict optimization, we are able to compute
Skolem basis vectors for 309 out of 602 benchmarks. Note is that even though
the PAR2 score is large, the average time taken is less than 2.5min, including
time taken for verification. In other words, when we are able to compute Skolem
basis vectors, we are able to do so in remarkably short duration.

Comparison with Other Tools/Approaches. There are no existing tools that syn-
thesize a represention of the space of all Skolem function vectors. Knowledge
compilation tools e.g., C2Syn [13], NNF2SDD [25,31] come closest as they try
to obtain a single circuit that is semantically equivalent to the original and is in
a normal form: the SynNNF form for C2Syn and the SDD form for NNF2SDD.
Skolem functions hence could be potential alternative approaches. In practice,
C2Syn does refinement (see [13]) operations for performance boosting, thereby
restricting the space of Skolem function vectors. Even with this optimization
for C2Syn it can compile only 218 (out of 602) benchmarks, while NNF2SDD
compiles only 142 to SDD on the same computing platform.

An apples-to-apples performance comparison of Boolean functional synthesis
tools (that synthesize a single Skolem function vector) with our tool (that com-
putes Skolem basis vectors for all Skolem function vectors) is not possible, since
two different problems are being solved. Nevertheless, to understand the per-
formance penalty incurred in computing a representation of all Skolem function
vectors, we observe from [12] that with a 7200 s s timeout and using a more pow-
erful cluster, Manthan [12] (resp. BFSS [14]) could synthesize a single Skolem
function vector for ∼356 (resp. 247) out of the same 602 benchmarks. In com-
parison, with 3600 s s timeout, we are able to compute Skolem basis vector for
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∼ 300 benchmarks. In [17], an improved and highly engineered tool Manthan2
was developed, which could synthesize a single Skolem function vector for 502
benchmarks within 7200 s.s. Interestingly, we are able to compute Skolem basis
vectors for 22 benchmarks (out of which 13 have non-unate variables), for which
even Manthan2 [17] fails to synthesize a single Skolem function vector.

8 Conclusion

In this work, we have introduced a representation for the space of Skolem func-
tions, using the notion of Skolem basis vector. Our representation itself is criteria-
agnostic, but allows the use of other existing techniques to optimize Skolem func-
tions wrt different criteria. We develop a compilation algorithm that uses a com-
bination unate and conflict-detection along with generalized counter-example
guided approach to synthesize the Skolem basis vector. Our next step would
be to identify specific problem contexts and optimization criteria and integrate
our approach with the state-of-the-art logic synthesis tools to synthesize specific
Skolem functions satisfying the given criteria.
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Abstract. We provide a learning-based technique for guessing a win-
ning strategy in a parity game originating from an LTL synthesis prob-
lem. A cheaply obtained guess can be useful in several applications. Not
only can the guessed strategy be applied as best-effort in cases where the
game’s huge size prohibits rigorous approaches, but it can also increase
the scalability of rigorous LTL synthesis in several ways. Firstly, checking
whether a guessed strategy is winning is easier than constructing one.
Secondly, even if the guess is wrong in some places, it can be fixed by
strategy iteration faster than constructing one from scratch. Thirdly, the
guess can be used in on-the-fly approaches to prioritize exploration in
the most fruitful directions.

In contrast to previous works, we (i) reflect the highly structured logi-
cal information in game’s states, the so-called semantic labelling, coming
from the recent LTL-to-automata translations, and (ii) learn to reflect it
properly by learning from previously solved games, bringing the solving
process closer to human-like reasoning.

1 Introduction

LTL Synthesis. [38] is a framework for automatic construction of reactive sys-
tems specified by formulae of linear temporal logic (LTL) [37]. Since LTL is a
prominent logic in the area of safety-critical and provably reliable dynamic sys-
tems, LTL synthesis is a very tempting option to construct such systems since it
avoids error-prone manual implementation; instead it is replaced with the need
for a complete specification of the system (which is not trivial either, but in
some cases easier). However, there is also an important computational caveat:
the problem of LTL synthesis is 2-EXPTIME complete. Despite the infeasibility
in the worst-case, many heuristics have been designed that can cope with practi-
cal problems, as documented by the yearly progress in the synthesis competition
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SYNTCOMP [18], which has an LTL track for a number of years. Yet, many
reasonable instances even in the benchmark set of SYNTCOMP still remain
practically unsolvable. In this paper, we aim at guessing a solution through a
machine-learning model, even for hard cases, thus possibly providing an appli-
cable answer, in a sense, without reading the input formula. We achieve that by
learning from other games and by reflecting semantic information, bringing the
process closer to human reasoning.

The classic technique for solving LTL synthesis is to

1. turn the LTL formula into a deterministic parity automaton (DPA),
2. turn the DPA (and the partitioning of atomic propositions into system vari-

ables and environment variables) into a parity game (PG) between the system
and the environment players, and

3. solve the PG; any winning strategy of the system player then directly induces
a system policy (also representable as a circuit) satisfying the LTL formula.

Due to the worst-case doubly-exponential blowup in the first step and the prac-
tically bad performance of (Safra’s [39] and others’ [36,40]) determinization pro-
cedures, this option was rarely used practically until direct, more practical trans-
lations were given [8,12]. The significantly smaller automata [20] have made this
approach feasible and, in fact, winning in SYNTCOMP since then. The app-
roach is implemented in the tool Strix [33], which additionally constructs the
DPA/PG only partially, on-the-fly until it finds a winning strategy for one of
the players. This helps to overcome some more cases where the DPA is still very
large; yet, more complex specifications often remain out of reach.

Semantic Labelling. The key difficulty in the on-the-fly exploration is a good
heuristic that prioritizes exploration in promising directions, so that a solution
can be obtained quickly, without constructing “irrelevant” parts of the game.

In a concrete state of a PG, is it better to go left or right? While this question
obviously does not have a simple answer in general, we take a step back and
instead of a PG we solve the LTL synthesis problem. For instance, consider
a state of a PG corresponding to satisfying Ga, i.e. “always a holds”. Then,
the letter {a} is clearly a better choice (for the system) than ∅. The former
leads to the obligation of satisfying again Ga; the latter to the obligation ff
(falsifying the formula). Taking the former edge does not guarantee winning,
but the chances are certainly higher than giving up directly. In order to estimate
the chances of winning with some obligation, we can evaluate it by randomly
assigning truth values to temporal subformulae; intuitively, Ga can be true or
false, so its “trueness” is 0.5, ff has trueness 0. Trueness is examined in [22] and
utilized in newer versions of Strix [31] as guidance.

Does every state correspond to a goal in LTL? And if so, can we determine
which continuation brings us closer to satisfying it? Recall that the classic trans-
lations of LTL to non-deterministic Büchi automata (NBA), stemming from [43],
label the states of the NBA with a conjunction of LTL formulae, which are the
current goals in this state. For deterministic automata, the situation is inevitably
more complex. While the determinization procedures obfuscated any possible
such semantic labelling, the more recent approach re-established it, e.g., [8] with
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v1

v2

v3

goal

Fig. 1. Simple game where it is not clear which edges are “winning”.

[26], or [42] with [9]. Beside the overall goal, it is necessary to also monitor the
progress of subgoals. For example, consider GF(a ∧ Xb) “infinitely often a is
followed by b”. No matter what happens, the goal remains the same. However,
whenever a, we are progressing with the subgoal of seeing the a − b sequence
once, yielding a subgoal b, which is regarded as promising.

Our Aim. In this paper, we aim at better guessing of winning decisions than in
[22,31]. While the previous work only reflected trueness of the main goal, which
is just the percentage of truth assignments leading to satisfaction of a Boolean
formula, our approach reflects also (i) the temporal structure of the formulae,
(ii) the monitored subgoals, and (iii) learns from previously solved games. On
the technical level, we design over 200 structural features instead of just trueness,
learn an SVM classifier comparing which edge is most promising, and use data
from previously solved games, i.e. which edges are “winning”. As it turns out,
defining this notion already is surprisingly tricky: We cannot simply use the
output of classical strategy improvement algorithms, as there may be multiple,
incompatible solutions. Indeed, already for reachability, there are no maximal
permissive strategies [3], see Fig. 1. Here the edge (v2, v3) is winning iff (v3, v2)
is not used, and vice versa; using both makes them losing. Nevertheless, they are
“better” than, e.g., the self-loop on v1, which is always losing. Thus, we want to
value both edges between v2 and v3 equally, and higher than the self loop on v1.

Our Contribution can be summarized as follows:

– We learn a model predicting which edge has better chances to be winning. To
this end, we define features on the semantic labelling in Sect. 5.1, introduce
a way to measure the degree of “winning” of an edge in Sect. 4, and apply
learning of support vector machines using our novel ground truth in Sect. 5.2.

– We evaluate “how winning” the suggested strategy is, i.e. how many wrong
choices it made, on several inputs in Sect. 6.2. Surprisingly, this value often
is 0, i.e. our strategy is often winning even for complex formulae, and even
without reading them (meaning that our strategy is of constant size, inde-
pendent of the formula, as opposed to a decision table in the concrete game;
it can be run on the fly with no pre-computation, and decisions depend only
on the labelling of the current state).

– Besides, while Strix’s architecture and interface ask for a significantly
different type of advice (not just for the better of two edges), we show
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Strix already profits from our advice and—modulo our unoptimized advice
implementation—speeds up significantly, as we see in Sect. 6.3.

Usage of our Results:

– We provide an immediate solution (without even reading the input formula),
which is often winning; moreover, it is applicable even to games too huge to
be analyzed in any way. Besides, it is even of a constant size, i.e. independent
of the size of the state space.

– Our approach opens the way to (i) a solver based on the semantic labelling,
for instance, based on strategy iteration only quickly fine-tuning the already
almost correct guess, and (ii) an on-the-fly-exploration advisor to Strix, with
the proven potential to be the most efficient among the current techniques.

Related Work. To the best of our knowledge, there is only one other approach
to using machine learning in LTL-synthesis. Here, the authors train a very pow-
erful model (a hierarchical transformer) in order to directly predict a controller
or counter example solely off the LTL specification [41]. Further, if their predic-
tion is refuted by a classical model checking algorithm, they train a separated
hierarchical transformer to repair it [5] until it is correct. While this turns out
to be an overall competitive approach that also manages to solve some instances
where classical synthesis tools as Strix [33] fail, this does not yield a complete
procedure, as the repair loop is not guaranteed to ever terminate. In this work,
we aim to improve existing, complete procedures such as implemented in Strix
by means of machine learning based heuristics.

2 Preliminaries

We introduce notation and provide an overview of necessary background knowl-
edge. Due to space constraints, we only briefly comment on several topics and
refer the interested reader to the respective literature.

We use N to denote the set of non-negative integers. The constants tt and
ff denote true and false, respectively.

2.1 Synthesis & Games

The synthesis problem in its general form asks whether a system can be con-
trolled such that it satisfies a given specification under any (possible) environ-
ment. Moreover, one often is interested in obtaining a witness to this query, i.e.
some controller or strategy which specifies the system’s actions.

Parity Games are a standard formalism used in synthesis. A parity game is a
tuple G = ((V, E), v0, P, p), where (V, E) is a finite digraph, v0 ∈ V a starting
vertex, P : V → {S, E} a player mapping, and p : V → N a priority assignment.
Each vertex belongs to one of the two players S (called system) and E (called
environment). In other words, the set of vertices is partitioned into player S’s
vertices VS and player E ’s vertices VE . See Fig. 2 for an example.
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v0, 4 v1, 2

v2, 1

v3, 3

v4, 5

Fig. 2. An example parity game, taken from [22]. Rounded rectangles belong to the
system S and normal rectangles to the environment E . The vertices are additionally
labelled with their priorities.

Remark 1. In our implementation priorities are assigned to edges instead of ver-
tices, as this allows for a much more concise representation and suits most
translations better. However, for ease of presentation, we consider state-based
acceptance instead of transition-based.

Playing. To play the game, a token is placed in the initial vertex v0. Then,
the player owning the token’s current vertex moves the token along an outgoing
edge of the current vertex. This is repeated infinitely, giving rise to an infinite
sequence of vertices containing the token ρ = v0v1v2 · · · ∈ V ω, called a play. We
write ρi to refer to the i-th vertex in a play. A play ρ is winning (for the system
player) if the smallest priority occurring infinitely often is odd. (Using “maximal”
instead of “minimal” or “even” instead of “odd” does not fundamentally change
the problem at hand.) Formally, we define inf(ρ) = {v ∈ V | ∀j. ∃k ≥ j. ρj = v}
as the set of infinitely occurring states. Since the game graph is finite, this set
always is non-empty. The smallest priority occurring infinitely often is given as
p(ρ) = min{p(v) | v ∈ inf(ρ)} and system wins the play ρ if p(ρ) is odd.

Strategies. A strategy of player p is a mapping σp : Vp → E assigning to each
of p’s vertices an appropriate edge along which the token will be moved, i.e.
(v, σp(v)) ∈ E for all v ∈ Vp.1 Once both players fix a strategy, the game is
fully determined and a unique run is induced. We call a strategy of system σS
winning if for all strategies of the environment σE the induced play is winning,
i.e. system wins no matter what the environment does.

For example, consider again the game depicted in Fig. 2. Fixing the strategies
σS = {v0 	→ (v0, v2), v2 	→ (v2, v3), v4 	→ (v4, v4)} and σE = {v1 	→ (v1, v2), v3 	→
(v3, v3)} induces the play v0v2v3v3 · · · . The set of infinitely often seen priorities
equals {3}, hence the system player wins with these strategies. Moreover, the
strategy σ0 is winning, since the play always ends up in either v3 or v4.

Synthesis. With these notions, we can compactly define the synthesis question:
Given a parity game G, does there exist a winning strategy for the system player?
In the example above, σ0 is a witness to this question.
1 Strategies may be more complex, e.g., by using memory. However, “positional”

strategies are sufficient for parity games, thus we omit the general definition.
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This problem is still intensely studied due to its broad applications. It also
is one of the few problems which canonically lie in NP ∩ coNP (even in UP ∩
coUP [19]), with recent breakthroughs achieving quasi-polynomial algorithms
[4,14,28].

Extensive-Form Game. A common notion in game theory is the extensive-form
game. Intuitively, this means completely “unrolling” the game into an explicit
representation. See e.g. [34, Chp. 5–7] for details. In our case, we consider the
game tree, where each node corresponds to a simple path in the game G. Suppose
we are in state s = (v1, . . . , vi) of the game tree. Then, the successors of s are
determined by all successors of vi in the game, i.e. {u | (vi, u) ∈ E} as follows.
Suppose such a successor u already occurs along s, i.e. a loop is closed, we check
if the corresponding play is winning or losing. In that case, the choice leads to
a corresponding winning or losing leaf of the tree, respectively. Otherwise, i.e.
when no loop is closed by the choice, it leads to s ◦ u. Essentially, this game
tree represents all potential simple paths (and thus, intuitively, all potential
positional strategies) that can arise in the game, and each edge corresponds to
a particular move of a player (also called ply in game theory). In particular, it
is finite, however of potentially exponential size. Note that we can restrict to
simple paths only because positional strategies are sufficient.

Minimax Game Solving. A fundamental way to solve games is the minimax deci-
sion rule, which intuitively corresponds to exhaustively exploring the extensive-
form game (also discussed in [34]). Suppose we assign a value of 0 to “losing”
leaves of the game tree and a value of 1 to the “winning” leaves. Then, we can
“back-propagate” values by setting V (s) the maximum of all successors of s if
it currently is the turn of the system player and the minimum if instead it is
environment’s turn (which wants the system to lose). The game is winning if
the value in the initial state of the game tree is 1. This approach is also called
backward induction or retrograde analysis: starting from the winning / losing
positions of the game, we consider all moves which could lead to such situations.

Strategy Improvement (or strategy iteration, abbreviated by SI ) is the most
prominent practical way of solving parity games, i.e. answering the synthe-
sis question. It received significant attention due to recent practical advances
[13,15,17,32] and modern tool developments [6,33]. We explain the approach
briefly, since its details are not important for this work. Intuitively, SI starts
from arbitrary initial strategies for each player, and then performs the follow-
ing steps in a loop. First, we check whether either strategy is winning. If yes,
the algorithm exits, returning this strategy. Otherwise, one of the strategies is
improved by changing its choices in some vertices. If an improvement is not pos-
sible, there exists no winning strategy for the respective player. Otherwise, the
process is repeated with the new strategy.

This algorithm converges to the correct result in finite time for any initial
strategy. However, if this initial strategy is chosen “close” to a winning strat-
egy, then SI intuitively needs to perform fewer steps to converge to an optimal



396 J. Křetínský et al.

one. Thus, a heuristic which often comes up with a “good” initial strategy may
improve the runtime significantly over arbitrary or random initialization.

2.2 Linear Temporal Logic and Reactive Synthesis

Linear Temporal Logic (LTL) [37] is a standard logic used to specify desired
behaviour of a system. The syntax usually is given by

φ:: = ff | a | ¬φ | φ ∧ φ | Xφ | φ U φ,

where a ∈ AP is an atomic proposition, inducing the alphabet Σ = 2AP. These
formulae are interpreted over infinite sequences w ∈ Σω called ω-words. A word
w = w0w1 · · · ∈ Σω satisfies the next operator Xφ iff φ is satisfied in the next
step. Similarly, the until operator φUψ is satisfied iff φ holds until ψ is eventually
satisfied. Usual abbreviations are defined as finally Fφ ≡ tt U φ and globally
Gφ ≡ ¬F¬φ, which require that φ holds at least once or always, respectively.
Moreover, the construction underlying our work also considers strong release
φ M ψ ≡ ψ U (ψ ∧ φ), (weak) release φ R ψ ≡ Gψ ∨ (φ M ψ), and weak until
φ W ψ ≡ Gφ ∨ (φ U ψ). Considering these additional operators allows formulas
to be represented in negation normal form, i.e. the negation ¬ only appears in
front of atomic propositions. In the interest of space, we refer to [12] for precise
definition on the semantics and discussion of these subtleties. Understanding
these issues is however not required for this work.

LTL Synthesis is an instance of the general synthesis problem, where the spec-
ification to be satisfied is given in form of an LTL formula [38]. Due to recent
advances [11,12,16,20,21,25], the automata-based approach [43] to LTL synthe-
sis received significant attention. In particular, the tool Strix [33], built on top
of Owl [24], which in turn implements these ideas, won several iterations of the
synthesis competition SYNTCOMP [18]. Essentially, the given LTL formula is
translated into an ω-automaton, which in turn is transformed into a parity game.
Solving the resulting game yields a solution to the original synthesis question.

This game is obtained by “splitting” the automaton, as follows. The set
of atomic propositions is split into system- and environment-controlled propo-
sitions, i.e. AP = APS ∪ APE , and the players’ actions correspond to choosing
which of their propositions to enable. Once both players chose their propositions’
values, the automaton moves to the next vertex according to the players’ choices.
Concretely, for an automaton state p, the environment can choose to move into
(p, v) where v ⊆ 2APE , and from there, system can move to any automaton state
q = δ(p, v′∪v) where v′ ⊆ 2APS and δ is the transition function of the automaton.
In particular, this means that the obtained game is alternating, i.e. system and
environment take turns in alternation. Moreover, by convention the environment
moves first. See e.g. [33] for more details on this approach.

Semantic Translations from LTL to automata are the key ingredient to our
approach. On top of providing a parity game, they also give a semantic labelling,
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a XG b

a F c G(r F g) . . .
G b F c G(r F g) . . .

a a

Fig. 3. Motivational example to provide guidance through semantic labelling.

i.e. interpretable meaning, to the game’s vertices. In particular, the approach
introduced in [8] (see also [10–12]) and implemented in Owl [25] intuitively yields
for each vertex a list of LTL formulae, which roughly correspond to (sub-)goals
which still have to be fulfilled, possibly repetitively.

2.3 Our Goal

In this work, we want to demonstrate that this semantic labelling can be effi-
ciently exploited for reactive synthesis. For a motivational example to consider
semantic labelling, we display a (vastly simplified) labelled game in Fig. 3. We
are offered with the choice of choosing a or ¬a. While it is not completely clear
that choosing a is indeed better, it certainly seems to be more promising, as
the subsequent labelling seems much “easier” to handle. Thus, faced with a
choice, we likely would first try to win with a. Observe that without the seman-
tic labelling, our best option in this situation would be a random guess. In [22],
the authors used a simple, manually designed mechanism trying to capture this
notion, called trueness. Motivated by the (surprisingly good) results of this app-
roach, we want to tackle this problem by more sophisticated means. Concretely,
we want to make meaningful decisions based on the labelling. However, while
the theory underpinning semantic translations is quite clean and pleasant [12],
the actual labellings appearing in practice are quite complex. To further com-
plicate things, the highly optimized implementation thereof [25] employs several
subtle optimizations and special cases. We provide an example to showcase the
complexity of this labelling in practice later in Sect. 5, kept brief in the interest
of space, and a small real-world example in [23, Appendix A.1]. Since we have
a simple intuition which however seems difficult to formalize, we opt to tackle
this problem through means of machine learning.

3 Previous Approaches and Their Limitations

In this section, we briefly summarize the ideas of [22] and the inherent problems
associated with them. The primary motivation of [22] is to exploit the seman-
tic labelling provided by [25], which gives us an indication of the long term
goals in the game. As an analogy, consider the game of chess. Here, the “seman-
tic labelling” is given by the board state, i.e. the position of each piece. This
labelling provides us with a reasonable indication of (i) our current situation
and (ii) which moves might be better than others. In particular, understanding
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and evaluating the semantics of the game is what allows humans to have a good
intuition about the quality of moves, without thinking through the intractably
large game tree. Likewise, this understanding is what enabled algorithms to per-
form beyond human capabilities.

3.1 Parity Game Solving by Trueness

A central notion of [22] is trueness, an approximation of how close a formula is
to being satisfied, i.e. tt. The intuition is that the semantic labelling of states
effectively describes “goals” of the system player. If the formula is tt, the system
has satisfied all goals and consequently won the game. Likewise, increasing the
trueness is indicative for a good move. Remaining with the analogy of chess,
trueness somewhat corresponds to counting the number of pieces on the board (or
rather the difference between our and the opponent’s pieces): If no enemy pieces
remain, we certainly have won, and a change of this difference, i.e. capturing an
enemy piece or avoiding capture of own pieces, is a good indicator for the quality
of a move. In particular, this prohibits us from taking moves which immediately
lead to a piece being taken.

In [22], the authors propose two ideas. First, they suggest to use a trueness-
maximizing strategy as initial one for strategy iteration, i.e. in each state select
the edge which maximizes (or minimizes, in the case of E) the obtained trueness.
Second, they use Q-Learning, a popular reinforcement learning approach, as
a solver for parity games, i.e. as competitor to strategy iteration, using three
different reward signals. There, each edge is given a reward, which is mostly
based on (the change of) trueness, and these values then are back-propagated
until choosing optimal rewards in each step yields a winning strategy.

While they also show Q-Learning to be an interesting avenue, we primarily
focus on the “initializing strategy iteration” approach, since our goal is to aug-
ment exiting strategy iteration solvers. Moreover, the experimental evaluation
of [22] suggests that Q-Learning scales poorly to large real-world formulae.

3.2 Problems

We now outline two key issues of this approach.
Myopic Trueness The primary heuristic in [22] is trueness. While this app-

roach already performs surprisingly well, especially for so called safety and
co-safety formulae, it fails to take into account temporal dependencies; true-
ness is myopic. Again, considering chess, while counting the change of pieces
does help us avoid “obviously stupid” moves, it does not stop us from moving
pieces into positions where they are effectively guaranteed to be taken even-
tually and does not allow for sacrificing a piece in exchange for a long-term
advantage.

Manual Design Their reward functions were defined manually, in contrast to
being obtained from a learning process. While the intuition behind these
definitions is reasonable, obtaining a guidance heuristic as a result of an opti-
mization process is a much more principled approach.
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We proceed to outline how we tackle these issues by a more sophisticated app-
roach.

4 A New Hope

We want to improve reactive synthesis by applying machine learning. As already
motivated by [22], we want to approach this problem by identifying “promising”
edges, choosing those as initial strategy for SI. Naturally, as a first step, we need
training data for our learning approach. In particular, we need to identify which
actually are the actual good choices in games, i.e. the ground truth. As it turns
out, this is more complicated than one might expect.

4.1 Obtaining Training Data with SI

As SI allows us to solve a game and determine winning edges, one might try to
employ SI for obtaining a ground truth (as we did initially). However, SI actually
provides us with potentially misleading or even conflicting information! As we
already hinted in the introduction through Fig. 1, SI cannot give us a canonical
ground truth. In the example, one edge is winning iff the other is not used, and
vice versa. Thus, SI will yield a strategy which does not take both edges and we
would consider one of them losing. Moreover, note that there is no fundamental
reason to prefer one edge over the other, so SI might in one run classify the edge
from v2 to v3 as good and in a second run (or on a similar game) do the opposite
or even consider neither winning. The underlying problem is that parity games
do not allow for a unique maximally permissive strategy (see e.g. [3]), thus we
cannot derive the “suitability” of an edge from a single solution strategy.

4.2 Solving the Game Tree

Instead of using a particular strategy obtained from SI, we therefore propose to
identify “all” solutions, i.e. all edges which are part of a winning strategy. More
formally, for each vertex v we want to determine the value of each outgoing edge
in the corresponding game tree rooted at v. To prefer “shorter” solutions over
larger, we add a beta-decay to the value. Concretely, suppose we consider the
game tree state s = (v1, . . . , vi) which ends in a system state vi. Then, the value
of s is defined by val(s) = β · maxs′∈successors(s) val(s′) for a fixed 0 < β < 1.

As we already mentioned, evaluating this tree is intractably large, namely
exponential in the size of the game, which itself is already doubly-exponential in
the input formula [27,38]. Thus, we employ a classical technique of game theory.

4.3 Monte Carlo Tree Search (MCTS)

Intuitively, we explicitly unfold the tree up to a specified depth, e.g. 7 plies,
and then assign the results of (guided) random sampling to the occurring leaves,
approximating the (beta-decayed) value of the game in these vertices.
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We describe our method to approximate the value of a node s = (v1, . . . , vi)
in the game tree. In essence, starting from vi, we randomly select successors,
with the following restrictions for each player. The environment plays optimally,
i.e. if a state is winning for the environment (which we can determine beforehand
through classical approaches) we immediately stop sampling and return a value
of 0. Otherwise, the environment heuristically tries to delay the play as long
as possible (decreasing the value the system player obtains due to beta-decay).
In contrast, the system player checks in a one-step lookahead if a choice is
trivially winning, i.e. leading to a state labelled tt, always choosing such an
edge if one exists. Otherwise, the system randomly chooses among edges which
are not trivially losing, i.e. lead to a ff state. If either player closes a loop, i.e.
selects a successor which already occurs along the path, we determine the value
by checking if the loop is winning or losing. A loss yields a value of 0, while
a win yields βlength. In summary, we approximate the probability of winning
by playing randomly (avoiding obvious mistakes) against an optimal opponent,
under-approximating the true value. We deliberately opt for this random-choice
approach to prefer regions where there is less potential for error.

4.4 Optimizations

While MCTS makes approximation of the game tree value feasible, we added
several further technical improvements to arrive at a practically viable method.

SCC Decomposition. We exploit the structure of the game by decomposing it into
its strongly connected components (SCCs) and put them in reverse topological
order. Computing (or approximating) the value in that order allows for caching:
Once a run in the game tree leaves an SCC, it can only reach SCCs further down
in the topological order, and, since we compute values in this order, the value of
the reached state is already known, allowing us to re-use it immediately.

Pruning. In addition to employing the MCTS values as game values in the tree
expansion, we also use it to prune the game tree. In particular, once we computed
the Monte Carlo values for each state, we restrict the choice of the environment
to the successors which yield (close to) the lowest Monte Carlo value (recall that
the environment prefers lower values). We empirically chose 0.02 as a threshold,
i.e. we only keep those edges for the environment which are within 0.02 value
of the lowest decision. While in theory this might remove crucial paths due to
statistical fluctuations of MCTS, in practice it allows for a much deeper game
tree, which in our experiments heavily outweighed the theoretical downside.

5 Handling the Truth

We introduced a way how to obtain a well-founded notion of “value” (to be
precise, an approximation thereof) for a choice, i.e. an indication how good this
choice is. As such, we can rank edges by their value in each state. Intuitively,
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picking an edge which is ranked very highly should correspond to a good chance
of winning. A high value means that even against an optimal player we can very
likely close a winning loop, and, due to beta decay, do so quickly, thus minimizing
the chance for an error.

Recall that our goal is to provide a good initial strategy. Thus, the exact
values actually are irrelevant, since we only want to give the best edge as initial
choice. Instead of trying to predict the exact value, we therefore want to learn
this relative ranking. Formally, suppose we consider a system vertex v ∈ VS with
edges Ev = {(v, u) | (v, u) ∈ E}. A ranking of edges effectively corresponds to
a (total) order ≺v ⊆ Ev × Ev. The principle of pairwise ranking [30] suggests
that we learn a function f : Ev × Ev → {−1, 1} that classifies pairs of edges
depending on which one is the better choice, i.e. f(e, e′) = 1 if e′ ≺v e and
−1 otherwise. However, such a function might not be perfect. For example, we
could get f(e1, e2) = 1, f(e2, e3) = 1, and f(e3, e1) = 1, which is incompatible
with any order. Thus, learning to rank suggests to determine an ordering ≺ that
minimizes the inversions w.r.t. f , i.e. the number of cases where f(e, e′) = 1 but
e ≺v e′. This problem, called rank aggregation, is known to be NP-hard, and
we employ a greedy approximation as suggested by [30].

Our concrete goal thus now is to learn such a function f based on the semantic
labelling of the start and end vertices of the two edges. We want to employ
machine learning for this purpose: While the high-level intuition of the semantic
labelling is rather clear, the actual implementation used to obtain the games [24]
employs numerous optimizations, separate cases, etc. To provide the reader with
a sense of the complexity, we display a single edge in the automaton obtained
for a simple formula in Fig. 4, and a real-world scenario in [23, Appendix A.1].

((a b G b) ((c F c) GF c))

M1:
co-safety: [c F c]
safety: tt

M2:
co-safety: [tt]
safety: a b G b

((c F c) GF c)

M1:
co-safety: [c F c]
safety: tt

a tt, b ff, c ff

Fig. 4. A single transition in the automaton computed for the formula (a∧Gb)∨GFc.

We proceed to describe (i) (some of) the features we use, i.e. which quantities
we extract from the labelling, (ii) the model we employ, and (iii) the dataset and
methodology used to train our model.

5.1 Features

In total, we have defined over 200 different features to convert the edges into
a usable vector of reals. In the interest of space we only present the high-level
ideas of a small subset which covers most interesting ideas.

Since most information is contained in the states rather than in the edges
themselves, the majority of our features are defined for the former. An edge is
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then either associated with the feature value of its successor or with the change
in a feature value between its predecessor and successor. As indicated in Fig. 4,
the semantic labelling comprises several formulae, namely a “master” formula,
which intuitively indicates the global state, and several “monitors” (which them-
selves comprise several formulae), monitoring repeating sub-goals. We define base
features, which convert a single formula to a single number. These features can
then be applied to both the master as well as monitor formulae, where further
aggregation is necessary. Some notable base features are the following:

Number of Conjuncts We count the number of conjuncts if the top level
operator is a conjunction and otherwise default to 1. The intuition behind this
feature is that less conjuncts tend to correspond to a less constrained formula.
Further, reducing the number of conjuncts along an edge often means that
sub-goals have been achieved. (We consider several further syntactic features
such as the number of disjuncts, the height of the syntax tree, or the number
of temporal operators, which all follow similar ideas.)

Trueness Since this has proven to be a solid heuristic on its own, we again
incorporate it as a feature.

System Control This feature (and variations thereof) incorporate the infor-
mation of the variable partitioning by approximating how much impact the
choice of the system variables has on the truth value of the formula. Intu-
itively, a higher system control is desirable. Further, this feature also coun-
teracts false positives of, e.g., trueness, as high values of trueness are worth
much less if the system has no control on whether one of the many satisfying
assignments is played.

Obligation Set This group of features is based on the idea of obligation sets as
introduced by [29]. In essence, an obligation set for a formula ϕ is an assign-
ment that, if played indefinitely, satisfies the formula. Using the inductive
definition of [29], we can compute a formula ϕ′ whose satisfying assignments
are exactly the obligation sets of ϕ, see [23, Appendix A.2]. Using this new
formula, we can obtain numerous new features by applying other base fea-
tures to ϕ′. In particular, we are interested in the new formulas trueness as
this indicates how many obligation sets exist. Further, we are interested in
its system control, as a higher value makes it more likely that the system can
enforce at least one obligation set.

In addition to the base features, we define the following edge-specific features:

Priority As priorities are crucial for winning a play, it is only natural to incor-
porate that information in our features. However, as SVMs struggle with par-
ity information, we reorder the priorities by how beneficial they are for the
system and map them to [−1, 1] (similar to [22]). In particular, the smallest
odd priority gets mapped to 1 and the smallest even priority to −1. For this
normalization, we use an a-priori upper bound provided by the underlying
automaton construction.

Progress This feature is rather similar to [22]’s progress feature. We com-
pute the percentage of already succeeded sub-goals of a monitor (instead of
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their trueness) and aggregate by weighted average (rather than maximum).
Additionally, we introduce punishments for failing monitors. Intuitively, this
encourages long-term progress for temporal goals.

One Step Here, the idea is to recommend an assignment that is to be played
in the current state by traversing the syntax tree and propagating recom-
mendations upwards, which is inspired by message passing in graph neural
networks. For example, if we see a ∧ b we strongly recommend playing a and
b, if we see F(a ∧ b) we take the previous recommendation and tune it down,
since F is “less urgent”. The feature value is obtained by measuring how well
the valuation of an edge aligns with the recommended assignment.

5.2 Pair Classification by Support Vector Machines

To instantiate our pair classification function f , we opt for support vector
machines. In principle, one could employ any binary classifier, which is why
we also experimented with other models such as decision trees, random forests
or gradient boosted trees. However, SVMs proved to perform best, which we
attribute to their great ability to generalize due to their margin maximiz-
ing nature [30]. Additionally, SVMs are rather simple (compared to our other
options) and provide us with extra information known as confidence. Given by
the distance of the predicted sample to the decision hyperplane, its magnitude
can be interpreted as how confident the SVM is in its prediction. We denote the
confidence of a pair (e1, e2) by c(e1, e2) and use it to slightly alter the greedy
ranking algorithm from literature. To rank the edges of a vertex v, each edge
e ∈ Ev gets assigned a score s(e) =

∑
e′∈Ev,e′ �=e c(e, e′). Recall that if we predict

e ≺v e′, the confidence is negative. Finally, we rank the edges according to their
score, where a higher score corresponds to a better edge, and the recommended
strategy is obtained by playing the highest ranked edge for each state.

5.3 Further Notes on Implementation

In addition to the feature extraction, there are several other engineering aspects,
which are crucial for the final performance. In this section, we comment on the
three most important ones.

Statewise Feature Normalization. Before passing the features to the model, we
proceed to normalize them. Due to possible future applications in on-the-fly
solvers, we only consider feature values of edges from the same state for this
normalization. The crucial observation is that this already introduces compara-
tive information in the features. A normalized trueness value of 1, for example,
means this edge has the best trueness among all other edges from their state
although it does not tell us anything about its absolute value. While the latter
might also be important in theory, we observed that in practice the statewise
normalized value is more important with only a few exceptions.
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State Classification. We observed several significantly different behaviours
required in different states. For example, in some states we need to exclusively
focus on the master formula, while in others only the monitors play a role. This
also relates to the underlying principles of the automaton construction. It is very
difficult, especially for a simple model like an SVM, to switch between different
behaviours. We divide states into three groups which approximate the different
classes, and train separate models for each class. The three classes we suggest are
(i) states without monitors, (ii) states where the master formula does not change
in any successor, (iii) and states that fall into neither category. In addition to
having the separate models learn separate behaviours, we can also provide them
with separate feature sets that only include relevant information. For example,
the first class only requires features of the master formula, whereas these can be
neglected in the second one.

Complement Construction. The underlying automaton construction uses the fact
that the system being able to enforce satisfaction of a formula ϕ is equivalent to
the environment being able to enforce falsification of ¬ϕ. In other words, solving
the game for the negated formula and swapped roles yields the same result.
However, in the game obtained for ¬ϕ the role of “system”, the player who choses
second and for which we learnt the recommendation, i.e. for transitions from
states (p, v) to q, now corresponds to the original environment. This drastically
changes the meaning of features. For example, a trueness of 0 suddenly is very
desirable. We tackle this by training separate models for both cases. Together
with state classification, this yields a total of 6 different models that we assemble
for our heuristic.

5.4 Training the Model

With these ideas at hand, we conclude this section by discussing our dataset, in
particular how we preprocess it, and how we train our model.

Dataset and Preprocessing. As one of our goals is to exploit human bias in writ-
ing LTL formulae, the foundation of our dataset is given by the LTL benchmarks
of SYNTCOMP.2. To further augment the data, we mutate these formulae by
randomly replacing temporal operators. This yields new (random) samples that
syntactically resemble the original, human-written structure. For practical rea-
sons, we only consider formulae which can be converted to a DPA within 10 min.
Ultimately, this leaves us with 405 original and 514 mutated formulae, of which
we use 60% each for training, 20% for validation, and 20% for evaluation.

Obtaining the edge pairs for training requires several further steps. First of
all, we exclude trivial cases that can easily be detected by simple rules (see Sect.
4.3), allowing our model to focus on complicated cases. Further, we exclude pairs
where the ground truth value happens to be equal, as it is unclear which edge
the model should predict. In particular, we exclude all edges originating in losing

2 Available on GitHub https://github.com/SYNTCOMP/benchmarks.

https://github.com/SYNTCOMP/benchmarks
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states (since there is no sensible action to recommend). Finally, we only include
a limited amount of pairs per game in the training set: Pairs of the same game
tend to look similar, thus a few disproportionately large games would result in
a very unbalanced dataset. All remaining edge pairs are added in both orders,
i.e. ((e1, e2), y) and ((e2, e1), −y), where y ∈ {1, −1} determines which edge is
better, in order to prioritize teaching symmetry to the model.

Training. For each of the 6 models, we first compute mean and standard devi-
ation of the respective training set and use them to standardize the input to
N (0, 1). Further, we perform recursive feature elimination for each state class
individually, adapted to features appearing twice (once for each input edge). For
each state class, we ended up with 30–40 features.

For the actual training process, we performed an extensive grid search for
several model types (decision trees, random forests, etc., see Sect. 5.2) in order
to determine suitable values for the hyper-parameters. As mentioned earlier,
we ultimately opted for the SVMs due to their simplicity and generalization
abilities.

6 Experimental Evaluation

In this section, we present experimental evaluation of our tool SemML. The model
was learnt by communicating the relevant data to a Python process running
scikit-learn [35]. We then extracted the learnt weights and, based on them,
implemented the recommendation procedure in Java, on top of Owl [24]. The
artifact can be found at [1], which references a slightly improved version from
the one we submitted to the artifact evaluation [2].

6.1 Evaluation Goals

Our primary goal in this work is to show that our approach, enabled by our
new ground truth, can be used to solve more complicated instances than the
approach of [22], in particular formulae going beyond pure (co-)safety. Thus, our
first evaluation goal is the following:

Research Question 1: How much does our model based on SVM and the
game tree ground truth outperform the trueness-based initial strategy rec-
ommendation approach of [22]?

We refer to the trueness-based initial strategy of [22] as TrueSI.
Although not the focus of this work, we ultimately want to improve synthesis

through meaningful exploration guidance, in particular, by suggesting likely win-
ning edges. Thus, we are interested how our prototype performs in a real-world
scenario.

Research Question 2: How do initial strategies recommended by our app-
roach synergize with state-of-the-art synthesis tools?

We address both questions separately.
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6.2 RQ1: Quality of Initial Strategy

Datasets. To fairly compare to [22], we consider the same dataset, i.e. randomly
generated LTL formulae, split into three categories: “(Co-)Safety”, “Near (Co-
)Safety”, and “Parity”. See [22] for details on how these are obtained. In essence,
the tool randltl [7] is used to generate random formulae with different biases.
Then, we filter out formulae which need more than 10 min to be translated to a
parity automaton. As a second dataset, we also use some (original and mutated)
SYNTCOMP formulae (the test set described in Sect. 5.4). We only consider
formulae where the corresponding game can be won by system. We do this simply
because we can only recommend on games which are winning – otherwise there
is no preference on edges since every action is losing by definition. In total, this
leaves 262 randomly generated formulae and 123 from SYNTCOMP.

Metrics. We consider two metrics for our comparison. Firstly, similar to [22],
we consider the fraction of immediately solved games, i.e. games where following
actions recommended by SemML or TrueSI directly yields a winning strategy. In
light of our motivation to augment SI solvers, we want to measure how “close”
the recommended strategy is to being correct in case is not immediately winning.
To this end, we feed it to (a modified version of) the parity game solver Oink
[6] and compute the (relative) distance of the obtained strategy, as follows. We
count the number of (reachable) states in which the winning strategy determined
by Oink differs from the recommended one, i.e. how many “wrong” choices were
recommended, and divide it by the total amount of (reachable) states. We note
that this unfortunately induces a slight bias that we cannot measure: Oink may
potentially change winning decisions because of internal details of the algorithm.
Ideally, we would want to obtain the minimal distance over all winning strategies;
however this quantity is intractable to compute due to the exponential size of
the strategy space. Nevertheless, we believe that this measure strongly correlates
with the quality of the strategy.

We argue that simply measuring the number of iterations required by strategy
iteration to converge is a too crude metric: On the one hand, even a “very wrong”
strategy can be changed to a winning strategy in a single iteration by changing
the choice in every single state. On the other hand, even a nearly correct strategy,
requiring only a hand full of changes, may need as many iterations. Moreover,
this additionally induces the same bias as above.
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Table 1. Summary of our comparison between TrueSI, the approach of [22], and our
tool SemML. We first list the fraction of immediately winning strategies (larger is better),
followed by the geometric mean of the relative distance, i.e. the fraction of states in
which the decision was adapted by Oink to obtain a winning strategy (smaller is better).
For the first comparison, we also consider random initialization as a baseline. For this
second comparison to be fair, we only consider games where neither tool yielded an
immediately winning strategy.

Tool (Co-)Safety Near (Co-)Safety Parity SYNTCOMP
Immediately Solving

TrueSI 100% 85% 66% 44%
SemML 99% 95% 88% 85%
Random 7% 2% 5% 3%

Relative Distance
TrueSI – 75% 45% 29%
SemML – 52% 28% 16%
Ratio of both – 1.4 1.6 1.8
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Fig. 5. A detailed comparison on SYNTCOMP formulae. The left plot compares how
many games were immediately solved, grouped by size and considering the (arithmetic)
mean in each group. SemML’s values are displayed by crosses, TrueSI by circles. The
right plot compares the relative distance of SemML’s and TrueSI’s solutions.

Expectations. Since our approach incorporates trueness as one of its many fea-
tures, we expect that our approach should be at least on par with the previous
one of [22]. As we also consider long-term temporal information beyond true-
ness, we particularly expect to outperform TrueSI on larger, more complicated
instances.

Results. We ran this evaluation on consumer hardware (Intel Core i7-8565U
with 16GB RAM). We summarize our findings in Table 1. Clearly, our approach
vastly outperforms the previous one. In particular, while TrueSI perfectly han-
dles (co-)safety formulae, its performance quickly drops when going to more
complicated formulae. In comparison, the SemML solves the vast majority of for-
mulae immediately, even on the quite complicated SYNTCOMP dataset. We
note that these findings are not “absolute” (as to be expected from machine
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learning approaches). There are few instances where the previous approach does
perform better. Our baseline comparison to a random initialization approach
validates that both approaches indeed solve a non-trivial problem.

Since we are particularly interested in complex, “human written” formulae,
we investigate the SYNTCOMP dataset more closely. In Fig. 5, we provide a
more detailed view on our two metrics. First, we investigate how the “immedi-
ately solving” performance evolves in comparison to the size of the game, which
intuitively correlates with the difficulty of the synthesis question. We observe
that SemML solves practically all smaller games and still performs well on larger
games, compared to TrueSI, which quickly falls off. The second plot displays the
relative distances for each instance which neither recommendation solved imme-
diately. We clearly see that the strategies recommended by SemML are better in
almost all cases.

This positively answers our first question. Aside from the direct comparison
to the previous approach, the significant percentage of immediately solved games
gives us an interesting implication: If SemML solves many games immediately, we
can use SemML as a best-effort guidance tool for reactive synthesis questions
which are intractably large to solve. Moreover, SemML thus presents us with a
constant size representation of a winning strategy for many games, effectively
described by approximately a few hundred SVM weights compared to a decision
table for thousands of states in each game.

6.3 RQ2: On-the-fly SemML

In our second experiment, we evaluate the suitability of SemML for real-world
parity game solving by using it as guidance tool for the state-of-the-art reactive
synthesis tool Strix [33].

Strix’ Anatomy. We first briefly describe how Strix works and how it uses
guidance heuristics. In essence, Strix builds the parity game on-the-fly, i.e.
iteratively constructs parts of the game it deems important. Then, two strategy
improvements are running in parallel, one for either player. Not yet explored
states are treated as losing for both. In this way, if we find a winning strategy for
either player on the constructed part of the game, it is winning for the complete
game. Otherwise, we need to explore further. Here, a key ingredient for practical
efficiency is a heuristic to decide which states should be explored first: If we
explore states reachable under the “smallest” winning strategy, we naturally find
this strategy as quickly as possible. In its current form, Strix employs trueness
for this guidance and selects an automaton edge with the globally highest trueness
for exploration. (Dually, edges with the lowest trueness are also followed, since
these are “promising” for the environment.)

Integration. We integrate SemML with Strix as follows. Suppose we are asked to
compute a global score for an automaton edge e = (p, q) (recall that SemML gives
local advice on edges in the game). We explicitly build up the game between the
automaton states p and q, i.e. all choices of the environment in p followed by the
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respective system choices. For each occurring system state s, we compute the
SemML ranking score as explained in Sect. 5.2, i.e. the confidence based score.
This only gives us local information: the magnitude of our score only reflects the
preference relative to actions available in the system state s = (p, v). Since the
previously used trueness proved to be a good indicator for global progress, we
multiply our local score by this global value. Finally, to obtain a value for the
automaton edge, we take the minimal value of all arising system states, since
the environment chooses first. We additionally apply straightforward rules such
as assigning values of 0 and 1 values to ff and tt states, respectively. Finally,
Strix by default employs a decomposition approach, which does not build a
single DPA. Therefore, SemML would not be applicable, and we disable it for the
purpose of evaluation.

Dataset. We considered 188 randomly selected formulae of SYNTCOMP (which
were not used in the training of the model), also including unrealizable ones.

Metrics. We evaluate the total required time to solve the game and compare
to Strix in its normal configuration. Since we expect the unoptimized compu-
tation of SemML’s advice to take considerable time, we separately measure the
required time and additionally perform a comparison with this time subtracted.
Since our scoring function is a straightforward SVM, we strongly believe that by
tailoring the evaluation to Strix’ requirements, it can be significantly sped up.
In particular, our advice computation re-constructs information which is com-
puted during the exploration of the automaton but difficult to access without
significant changes to both Strix and Owl.

Expectations. We do not expect this approach to work to its full potential
because Strix architecture does not exactly fit our approach (recall that our
primary motivation was to compare to [22]). We discuss these differences and
possible ways to address them later. Moreover, as we construct the intermedi-
ate game states for every recommendation and evaluate the recommender SVM
several times, we expect that significant time is spent computing the advice of
SemML.

Results. We conducted our experiments on a server with an Intel Xeon E5-2630
v4 processor with 256GiB of RAM and employed a 10 min timeout per exe-
cution. We summarize our findings in Fig. 6. Strikingly, our approach already
performs favourably, despite the differences in architecture, hardly optimized
advice computation, and no specific re-training for the task at hand. Exclud-
ing the time spent for advice computation, our approach performs significantly
better in practically all instances. This answers our second question positively,
too.

Adapting SemML to Strix In order to adapt our underlying approach, we require
several non-trivial changes to SemML. We discuss the “mismatches” between the
current approach and how they could be addressed. First, Strix selects a glob-
ally optimal edge to explore while SemML suggest actions locally. In particular,
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Fig. 6. Scatter plot comparing Strix with guidance provided by SemML and the default
Trueness. On the left, we depict the total runtime excluding time spent for computing
the guidance, and on the right we show the total time. We plot all models for which at
least one method produced a result and count timeouts as 20 min (twice the timeout
of 10 min). Note that the plot is logarithmic. The dashed lines denote a 10x difference.

our scoring is not trained to compare edges of two different states. While true-
ness seems to be a good compromise for the time being, we believe that (through
significant engineering effort) Strix can be modified to accommodate local rec-
ommendations, or, alternatively, a more sophisticated indicator of a state’s global
relevance can be learnt. Second, Strix performs two searches, one for the environ-
ment and one for the system player. However, the parity games we deal with are
not entirely symmetric – environment always moves first. Thus, we cannot directly
apply SemML’s ranking to environment states, as they have a different structure.
Here, we believe that the best solution is to train a separate model for the environ-
ment (or rather, six further models). Thirdly, Strix only constructs the automa-
ton explicitly and computes the game implicitly. As such, Strix requests scoring
information only for edges in the automaton and not in the game. This can be
addressed by closely integrating the scoring computation with the exploration of
the automaton – instead of rebuilding the game for each edge (p, q), we can com-
pute all scores for all outgoing edges of p at once. Finally, as we mentioned, Strix
by default applies a decomposition approach which builds several sub-automata.
These also are equipped with semantic labelling, however with a different mean-
ing – enough to create a significant hurdle for our learning approach. We note
that Strix actually builds automata by communicating with Owl through a highly
optimized interface between Java and C++, significantly complicating passing
information back and forth between the processes.

7 Conclusion

We demonstrated that semantic labelling can be exploited for practical gains in
LTL synthesis. Our experimental evaluation shows that we vastly outperform the
simple approach of [22], the first step in this direction. Moreover, despite several
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mismatches, our approach shows promising results for real world applications of
this idea, i.e. when combined with the state-of-the-art tool Strix.

Future Work. As discussed above, the main point for future work is a tight,
tailored integration with Strix. In particular, we want to modify our approach to
be applicable to the decomposition methods of Strix, modify Strix to consider
local guidance, and actually learn for the precise task required by Strix.

Aside from this, we believe that there might be further interesting features
(hand-crafted or learnt) which could provide us with additional insights. In par-
ticular, we want to employ automated feature extraction, through more sophis-
ticated model architectures such as transformers or graph neural networks.
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Abstract. The difficulty of manually specifying reward functions has
led to an interest in using linear temporal logic (LTL) to express objec-
tives for reinforcement learning (RL). However, LTL has the downside
that it is sensitive to small perturbations in the transition probabilities,
which prevents probably approximately correct (PAC) learning without
additional assumptions. Time discounting provides a way of removing
this sensitivity, while retaining the high expressivity of the logic. We
study the use of discounted LTL for policy synthesis in Markov decision
processes with unknown transition probabilities, and show how to reduce
discounted LTL to discounted-sum reward via a reward machine when
all discount factors are identical.

1 Introduction

Reinforcement learning [39] (RL) is a sampling-based approach to synthesis in
systems with unknown dynamics where an agent seeks to maximize its accu-
mulated reward. This reward is typically a real-valued feedback that the agent
receives on the quality of its behavior at each step. However, designing a reward
function that captures the user’s intent can be tedious and error prone, and
misspecified rewards can lead to undesired behavior, called reward hacking [5].

Due to the aforementioned difficulty, recent research [8,17,23,31,35] has
shown interest in utilizing high-level logical specifications, particularly linear
temporal logic [7] (LTL), to express intent. However, a significant challenge arises
due to the sensitivity of LTL, similar to other infinite-horizon objectives like aver-
age reward and safety, to small changes in transition probabilities. Even slight
modifications in transition probabilities can lead to significant impacts on the
value, such as enabling previously unreachable states to become reachable. With-
out additional information on the transition probabilities, such as the minimum
nonzero transition probability, LTL is proven to be not probably approximately
correct (PAC) [29] learnable [3,43]. Ideally, it is desirable to maintain PAC learn-
ability while still keeping the benefits of a highly expressive temporal logic.
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Fig. 1. Example showing non-robustness of safety specifications.

Discounting can serve as a solution to this problem. Typically, discounting
is used to encode time-sensitive rewards (i.e., a payoff is worth more today than
tomorrow), but it has a useful secondary effect that payoffs received in the distant
future have small impact on the accumulated reward today. This insensitivity
enables PAC learning without requiring any prior knowledge of the transition
probabilities. In RL, discounted reward is commonly used and has numerous
associated PAC learning algorithms [29].

In this work, we examine the discounted LTL of [2] for policy synthesis
in Markov decision processes (MDPs) with unknown transition probabilities.
We refer to such MDPs as “unknown MDPs” throughout the paper. This logic
maintains the syntax of LTL, but discounts the temporal operators. Discounted
LTL gives a quantitative preference to traces that satisfy the objective sooner,
and those that delay failure as long as possible. The authors of [2] examined
discounted LTL in the model checking setting. Exploring policy synthesis and
learnability for discounted LTL specifications is novel to this paper.

To illustrate how discounting affects learnability, consider the example [32]
MDP shown in Fig. 1. It consists of a safe state s0, two sink states s1, s2, and
two actions a1, a2. Taking action ai in s0 leads to a sink state with probability
pi and stays in s0 with probability 1− pi. Suppose we are interested in learning
a policy to make sure that the system always stays in the state s0. Now consider
two scenarios—one in which p1 = 0 and p2 = δ and another in which p2 = 0
and p1 = δ where δ > 0 is a small positive value. In the former case, the optimal
policy is to always choose a1 in s0 and in the latter case, we need to choose
a2 in s0. Furthermore, it can be shown that a near-optimal policy in one case
is not near-optimal in another. However, we cannot select a finite number of
samples needed to distinguish between the two cases (with high probability)
without knowledge of δ. In contrast, the time-discounted semantics of the safety
property evaluates to 1 − λk where k is the number of time steps spent in the
state s0. Then, for sufficiently small δ, any policy achieves a high value w.r.t. the
discounted safety property in both scenarios. In general, small changes to the
transition probabilities do not have drastic effects on the nature of near-optimal
policies for discounted interpretations of LTL properties.

Contributions. Table 1 summarizes results of this paper in the context of known
results regarding policy synthesis for various classes of specifications. We consider
three key properties of specifications, namely, (1) whether there is a finite-state
optimal policy and whether there are known algorithms for (2) computing an opti-
mal policy when the MDP is known, as well as for (3) learning a near-optimal
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Table 1. Policy synthesis in MDPs for different classes of specifications.

Specification Memory Policy Synthesis Algorithm
Known MDP PAC Learning

Reward Machines Finite [24,34] Exists [24,34] Exists [38]
LTL Finite [7] Exists [7] Impossible [3,43]
Discounted LTL Infinite Open Exists
Uniformly Discounted LTL Finite Exists Exists

policy when the transition probabilities are unknown (without additional assump-
tions). The classes of specifications include reward machines with discounted-sum
rewards [24], linear temporal logic (LTL) [7], discounted LTL and a variant of dis-
counted LTL in which all discount factors are identical, which we call uniformly
discounted LTL. In this paper, we show the following.

– In general, finite-memory optimal policies may not exist for discounted LTL
specifications.

– There exists a PAC learning algorithm to learn policies for discounted LTL
specifications.

– There is a reward machine for any uniformly discounted LTL specification
such that the discounted-sum rewards capture the semantics of the specifi-
cation. From this we infer that for any given MDP finite-memory optimal
policies exist and can be computed.

Related Work. Linear temporal logic (LTL) is a popular and expressive formalism
to unambiguously express qualitative safety and progress requirements of Kripke
structures and MDPs [7]. The standard approach to model check LTL formu-
las against MDPs is the automata-theoretic approach where the LTL formulas
are first translated to a class of good-for-MDP automata [20], such as limit-
deterministic Büchi automata [18,36,37,40], and then, efficient graph-theoretic
techniques (computing accepting end-component and then maximizing the prob-
ability to reach states in such components) [13,30,40] over the product of the
automaton with the MDP can be used to compute optimal satisfaction proba-
bilities and strategies. Since LTL formulas can be translated into (deterministic)
automata in doubly exponential time, the probabilistic model checking problem
is in 2EXPTIME with a matching lower bound [11].

Several variants of LTL have been proposed that provide discounted tem-
poral modalities. De Alfaro et al. [15] proposed an extension of μ-calculus with
discounting and showed [14] the decidability of model-checking over finite MDPs.
Mandrali [33] introduced discounting in LTL by taking a discounted sum inter-
pretation of logic over a trace. Littman et al. [32] proposed geometric LTL as a
logic to express learning objectives in RL. However, this logic has unclear seman-
tics for nesting operators. Discounted LTL was proposed by Almagor, Boker, and
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Kupferman [2], which considers discounting without accumulation. The decid-
ability of the policy synthesis problem for discounted LTL against MDPs is an
open problem.

An alternative approach to discounting that ensuring PAC learnability is to
introduce a fixed time horizon, along with a temporal logic for finite traces. In
this setting, the logic LTLf is the most popular [10,16]. Using LTLf with a
finite horizon yields simple algorithms [41], finite automata suffice for checking
properties, but at the expense of the expressivity of the logic, formulas like GFp
and FGp both mean that p occurs at the end of the trace.

There has been a lot of recent work on reinforcement learning from temporal
specifications [1,9,16,19,21,22,24–28,31,32,42,44]. Such approaches often lack
strong convergence guarantees. Some methods have been developed to reduce
LTL properties to discounted-sum rewards [8,19] while preserving optimal poli-
cies; however they rely on the knowledge of certain parameters that depend
on the transition probabilities of the unknown MDP. Recent work [3,32,43] has
shown that PAC algorithms that do not depend on the transition probabilities do
not exist for the class of LTL specifications. There has also been work on learn-
ing algorithms for LTL specifications that provide guarantees when additional
information about the MDP (e.g., the smallest nonzero transition probability)
is available [6,12,17].

2 Problem Definition

An alphabet Σ is a finite set of letters. A finite word (resp. ω-word) over Σ is
defined as a finite sequence (resp. ω-sequence) of letters from Σ. We write Σ∗

and Σω for the set of finite and ω-words over Σ.
A probability distribution over a finite set S is a function d : S→[0, 1] such

that
∑

s∈S d(s) = 1. Let D(S) denote the set of all discrete distributions over S.

Markov Decision Processes. A Markov Decision Process (MDP) is a tuple M =
(S,A, s0, P ), where S is a finite set of states, s0 is the initial state, A is a finite
set of actions, and P : S × A → D(S) is the transition probability function. An
infinite run ψ ∈ (S×A)ω is a sequence ψ = s0a0s1a1 . . ., where si ∈ S and ai ∈ A
for all i ∈ Z≥0. For any run ψ and any i ≤ j, we let ψi:j denote the subsequence
siaisi+1ai+1 . . . aj−1sj . Similarly, a finite run h ∈ (S×A)∗×S is a finite sequence
h = s0a0s1a1 . . . at−1st. We use Z(S,A) = (S×A)ω and Zf (S,A) = (S×A)∗×S
to denote the set of infinite and finite runs, respectively.

A policy π : Zf (S,A) → D(A) maps a finite run h ∈ Zf (S,A) to a distri-
bution π(h) over actions. We denote by Π(S,A) the set of all such policies. A
policy π is deterministic if, for all finite runs h ∈ Zf (S,A), there is an action
a ∈ A with π(h)(a) = 1.

Given a finite run h = s0a0 . . . at−1st, the cylinder of h, denoted by Cyl(h),
is the set of all infinite runs with prefix h. Given an MDP M and a policy
π ∈ Π(S,A), we define the probability of the cylinder set by DM

π (Cyl(h)) =
∏t−1

i=0 π(h0:i)(ai)P (si, ai, si+1). It is known that DM
π can be uniquely extended
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to a probability measure over the σ-algebra generated by all cylinder sets. Let P
be a finite set of atomic propositions and Σ = 2P denote the set of all valuations
of propositions in P. An infinite word ρ ∈ Σω is a map ρ : Z≥0 → Σ.

Definition 1 (Discounted LTL). Given a set of atomic propositions P, dis-
counted LTL formulas over P are given by the grammar

ϕ := b ∈ P | ¬ϕ | ϕ ∨ ϕ | Xλϕ | ϕ Uλϕ

where λ ∈ [0, 1). Note that, in general, different temporal operators within the
same formula may have different discount factors λ. For a formula ϕ and a word
ρ = σ0σ1 . . . ∈ (2P)ω, the semantics �ϕ, ρ� ∈ [0, 1] is given by

�b, ρ� = 1
(
b ∈ σ0

)

�¬ϕ, ρ� = 1 − �ϕ, ρ�

�ϕ1 ∨ ϕ2, ρ� = max
{
�ϕ1, ρ�, �ϕ2, ρ�

}

�Xλϕ, ρ� = λ · �ϕ, ρ1:∞�

�ϕ1Uλϕ2, ρ� = sup
i≥0

{

min
{

λi[[ϕ2, ρi:∞]], min
0≤j<i

{λj [[ϕ1, ρj:∞]]}
}}

where ρi:∞ = σiσi+1 . . . denotes the infinite word starting at position i.

Conjunction is defined using ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2). We use Fλϕ = trueUλϕ
and Gλϕ = ¬Fλ¬ϕ to denote the discounted versions of finally and globally
operators respectively. Note that when all discount factors equal 1, the semantics
corresponds to the usual semantics of LTL.

For this paper, we consider the case of strict discounting, where λ < 1. We
refer to the case where the discount factor is the same for all temporal operators
as uniform discounting. Our definition differs from [2] in two ways: 1) we discount
the next operator, and 2) we enforce strict, exponential discounting.

Example Discounted LTL Specifications. To develop an intuition of the semantics
of discounted LTL, we now present a few example formulas and their meaning.

– Fλ p obtains a value of λn where n is the first index where p becomes true
in a trace, and 0 if p is never true. An optimal policy attempts to reach a
p-state as soon as possible.

– Gλ p obtains a value of 1−λn where n is the first index that a ¬p occurs in a
trace, and 1 if p always holds. An optimal policy attempts to delay reaching
a ¬p-state as long as possible.

– Xλ p obtains a value of λ if p is in the second position and 0 otherwise.
– p ∨ Xλ q obtains a value of 1 if p is in the first position of the trace, a value

of λ if the trace begins with ¬p followed by q, and a value of 0 otherwise.
– Fλ p ∧ Gλ q evaluates to the minimum of λn and (1−λm), where n is the first

position where p becomes true in a trace and m is the first position where
q becomes false. If n∗ = logλ0.5 is the index where these two competing
objectives coincide, then the optimal policy attempts to stay within q-states
for the first n∗ steps and then attempts to reach a p-state as soon as possible.
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– Consider the formula Fλ1Gλ2p. Given a trace, consider a p-block of length m
starting at position n, that is, p holds at all positions from n to n + m − 1,
and does not hold at position n − 1 (or n is the initial position). The value
of such a block is λn

1 (1 − λm
2 ). The value of the trace is then the maximum

over values of all such p-blocks. The optimal policy attempts to have as long
a p-block as possible as early as possible. The discount factor λ1 indicates the
preference for the p-block to occur sooner and the discount factor λ2 indicates
the preference for the p-block to be longer.

– Gλ1Fλ2p obtains a value equivalent to ¬Fλ1Gλ2¬p. Traces which contain
more p’s at shorter intervals are preferred. The discount factor λ1 indicates
the preference for the total number of p’s to be larger and λ2 indicates the
preference for the interval between the consecutive p’s to be shorter.

Policy Synthesis Problem. Given an MDP M = (S,A, s0, P ), we assume that we
have access to a labelling function L : S → Σ that maps each state to the set of
propositions that hold true in that state. Given any run ψ = s0a0s1a1 . . . we can
define an infinite word L(ψ) = L(s0)L(s1) . . . that denotes the corresponding
sequence of labels. Given a policy π for M, we define the value of π with respect
to a discounted LTL formula ϕ as

J M(π, ϕ) = E
ρ∼DM

π

�ϕ, ρ� (1)

and the optimal value for M with respect to ϕ as J ∗(M, ϕ) = supπ J M(π, ϕ).
We say that a policy π is optimal for ϕ if J M(π, ϕ) = J ∗(M, ϕ). Let Πopt(M, ϕ)
denote the set of optimal policies. Given an MDP M, a labelling function L and
a discounted LTL formula ϕ, the policy synthesis problem is to compute an
optimal policy π ∈ Πopt(M, ϕ) when one exists.

Reinforcement Learning Problem. In reinforcement learning, the transition prob-
abilities P are unknown. Therefore, we need to interact with the environment to
learn a policy for a given specification. In this case, it is sufficient to learn an ε-
optimal policy π that satisfies J M(π, ϕ) ≥ J ∗(M, ϕ)−ε. We use Πε

opt(M, ϕ) to
denote the set of ε-optimal policies. Formally, a learning algorithm A is an iter-
ative process which, in every iteration n, (i) takes a step in M from the current
state, (ii) outputs a policy πn and (iii) optionally resets the current state to s0.
We are interested in probably-approximately correct (PAC) learning algorithms.

Definition 2 (PAC-MDP). A learning algorithm A is said to be PAC-MDP
for a class of specifications C if, there is a function η such that for any p > 0,
ε > 0, MDP M = (S,A, s0, P ), labelling function L, and specification ϕ ∈ C,
taking N = η(|S|, |A|, |ϕ|, 1

p , 1
ε ), with probability at least 1 − p, we have

∣
∣
∣
{

n | πn /∈ Πε
opt(M, ϕ)

}∣
∣
∣ ≤ N.

It has been shown that there does not exist PAC-MDP algorithms for LTL
specifications. Therefore, we are interested in the class of discounted LTL spec-
ifications that are strictly discounted, i.e. λ < 1 for every temporal operator.
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3 Properties of Discounted LTL

In this section, we discuss important properties of discounted LTL regarding
the nature of optimal policies. We first show that, under uniform discounting,
the amount of memory required for the optimal policy may increase with the
discount factor. We then show that, in general, allowing multiple discount factors
may result in optimal policies requiring infinite memory. This motivates our
restriction to the uniform discounting case in Sect. 4. We end this section by
introducing a PAC learning algorithm for discounted LTL.

3.1 Nature of Optimal Policies

It is known that for any (undiscounted) LTL formula ϕ and any MDP M,
there exists a finite memory policy that is optimal—i.e., the policy stores only
a finite amount of information about the history. Formally, given an MDP M =
(S,A, s0, P ), a finite memory policy π = (M, δM , μ,m0) consists of a finite set
of memory states M , a transition function δM : M × S × A → M and an
action function μ : M × S → D(A). Given a finite run h = s0a0 . . . st = h′st,
the policy’s action is sampled from μ(δM (m0, h

′), st) where δM is also used to
represent the transition function extended to sequences of state-action pairs. We
use Πf (S,A) to denote the set of finite memory policies. In this paper, we will
show that uniformly discounted LTL admits finite memory optimal policies, but
that infinite memory may be required for the general case.

Unlike (undiscounted) LTL, discounted LTL allows a notion of satisfaction
quality. In discounted LTL, traces which satisfy a reachability objective sooner
are given a higher value, and are thus preferred. If an LTL formula cannot be
satisfied, the corresponding discounted LTL formula will assign higher values to
traces which delay failure as long as possible. These properties of discounted LTL
are desirable for enabling notions of promptness, but may yield more complex
strategies which try to balance the values of multiple competing subformulas.

Example 1. Consider the discounted LTL formula ϕ = Gλp∧Fλ¬p. This formula
contains two competing objectives that cannot both be completely satisfied.
Increasing the value of Gλp by increasing the number of p’s at the beginning of
the trace before the first ¬p decreases the value of Fλ¬p. Under the semantics of
conjunction, the value of ϕ is the minimum of the two subformulas. Specifically,
the value of ϕ w.r.t. a word ρ is

[[Gλp ∧ Fλ¬p, ρ]] = [[¬Fλ¬p ∧ Fλ¬p, ρ]]
= [[¬(Fλ¬p ∨ ¬Fλ¬p), ρ]]
= 1 − max{[[Fλ¬p, ρ]], [[¬Fλ¬p, ρ]]}

= 1 − max
{

sup
i≥0

{λi[[¬p, ρi:∞]]}, 1 − sup
i≥0

{λi[[¬p, ρi:∞]]}
}

.

where ρi:∞ is the trace starting from index i. Now consider a two state (deter-
ministic) MDP with two states S = {s1, s2} and two actions A = {a1, a2} in



422 R. Alur et al.

which the agent can decide to either stay in s1 or move to s2 at any step and
the system stays in s2 upon reaching s2. This MDP can be seen in Fig. 2. We
have one proposition p which holds in state s1 and not in s2. Note that all runs
produced by the example MDP are either of the form sω

1 or sk
1s

ω
2 . The discounted

LTL value of runs of the form sω
1 is 0. The value of runs of the form ψ = sk

1s
ω
2 is

v(k) = �ϕ,L(ψ)� = 1 − max{λk, 1 − λk} .

A finite memory policy stays in s1 for k steps will yield this value. Since λk is
decreasing in k and 1−λk is increasing in k, the integer value of k that maximizes
v(k) lies in the interval [γ − 1, γ +1] where γ ∈ R satisfies λγ = 1− λγ . Figure 2
shows this graphically. We have that γ = log(0.5)

log(λ) which is increasing in λ. Hence,
the amount of memory required increases with increase in λ.
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Fig. 2. An example showing that memory requirements for optimal policies may depend
on the discount factor. The red line is λk, the blue line is 1 − λk and the solid black
line is v(k) = 1−max{λn, 1−λn}, where k is the number of time steps one remains in
s0. The dashed vertical line shows the value γ where v(k) is maximized. We have set
λ = 0.99. Note that changing the value of λ corresponds to rescaling the x-axis. (Color
figure online)

The optimal strategy in the example above tries to balance the value of two
competing subformula. We will now show that extending this idea to the general
case of multiple discount factors requires balancing quantities that are decaying
at different speeds. This balancing may require remembering an arbitrarily long
history of the trace—infinite memory is required.

Theorem 1. There exists an MDP M = (S,A, s0, P ), a labelling function
L and a discounted LTL formula ϕ such that for all π ∈ Πf (S,A) we have
JM(π, ϕ) < J ∗(M, ϕ).

Proof. Consider the MDP M depicted in Fig. 3. It consists of three states
S = {s0, s1, s2} and two actions A = {a1, a2}. The edges are labelled with
actions and the corresponding transition probabilities. There are two proposi-
tions P = {p1, p2} and p1 holds true in state s1 and p2 holds true in state s2.
The specification is given by ϕ = Fλ1Gλ2p1 ∧ Fλ2p2 where λ1 < λ2 < 1.
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s0
⊥

s1
p1

s2
p2

1 − p

p

a1

a2

a1, a2

a1, a2

Fig. 3. The need for infinite memory for achieving optimality in discounted LTL.

For any run ψ that never visits s2, we have �ϕ,L(ψ)� = 0 since
�Fλ2p2, L(ψ)� = 0. Otherwise the run has the form ψ = sk0

0 sk1
1 sω

2 where k0
is stochastic and k1 is a strategic choice by the agent. To show that this requires
an infinite amount of memory to play optimally, one just has to show that the
optimal choice of k1 increases with k0. This means that the agent must remem-
ber k0, the number of steps spent in the initial state, via an unbounded counter.
Note that every value of k0 has a non-zero probability in M and therefore choos-
ing a suboptimal k1 for even a single value of k0 causes a decrease in value from
the policy that always chooses optimal k1.

The value of the run ψ is �ϕ,L(ψ)� = min(λk0
1 (1 − λk1

2 ), λk0+k1
2 ). Note that

λk0
1 (1− λk1

2 ) increases with increase in k1 and λk0+k1
2 decreases with increase in

k1. Therefore taking γ ∈ R to be such that λk0
1 (1 − λγ

2) = λk0+γ
2 , the optimal

choice of k1 lies in the interval [γ−1, γ+1]. Now γ satisfies 1 =
(
(λ2/λ1)k0+1

)
λγ
2 .

Since λ1 < λ2 < 1 we must have that γ increases with increase in k0. Therefore,
k1 also increases with increase in k0. �	

3.2 PAC Learning

In the above discussion, we showed that one might need infinite memory to act
optimally w.r.t a discounted LTL formula. However, it can be shown that for any
MDP M, labelling function L, discounted LTL formula ϕ and any ε > 0, there
is a finite-memory policy π that is ε-optimal for ϕ. In fact, we can show that
this class of discounted LTL formulas admit a PAC-MDP learning algorithm.

Theorem 2 (Existence of PAC-MDP). There exists a PAC-MDP learning
algorithm for discounted LTL specifications.

Proof (sketch). Our approach to compute ε-optimal policies for discounted LTL
is to compute a policy which is optimal for T steps. The policy will depend on
the entire history of atomic propositions that has occured so far.

Given discounted LTL specification ϕ, the first step of the algorithm is to
determine T . We select T such that for any two infinite words α and β where the
first T +1 indices match, i.e. α0:T = β0:T , we have that

∣
∣[[ϕ,α]]− [[ϕ, β]]

∣
∣ ≤ ε. Say

that the maximum discount factor appearing in all temporal operators is λmax .
Due to the strict discounting of discounted LTL, selecting T ≥ log ε

log λmax
ensures

that
∣
∣[[ϕ, α]] − [[ϕ, β]]

∣
∣ ≤ λn ≤ ε.
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Now we unroll the MDP for T steps. We include the history of the atomic
proposition sequence in the state. Given an MDP M = (S,A, s0, P ) and a label-
ing L : S → Σ, the unrolled MDP MT = (S′, A′, s′

0, P
′) is such that

S′ =
T⋃

t=0

S × Σ × . . . × Σ
︸ ︷︷ ︸

t times

,

A′ = A, P ′((s, σ0, . . . , σt−1), a, (s′, σ0, . . . , σt−1, σt)) = P (s, a, s′) if 0 ≤ t ≤ T
and σt = L(s′), and is 0 otherwise (the MDP goes to a sink state if t > T ). The
leaves of the unrolled MDP are the states where T timesteps have elapsed. In
these states, there is an associated finite word of length T . For a finite word of
length T , we define the value of any formula ϕ to be zero beyond the end of the
trace, i.e. [[ϕ, ρj:∞]] = 0 for any j > T . We then compute the value of the finite
words associated with the leaves which is then considered as the reward at the
final step. We can use existing PAC algorithms to compute an ε-optimal policy
w.r.t. this reward for the finite horizon MDP MT from which we can obtain a
2ε-optimal policy for M w.r.t the specification ϕ. �	

4 Uniformly Discounted LTL to Reward Machines

In general, optimal strategies for discounted LTL require infinite memory (Theo-
rem 1). However, producing such an example required the use of multiple, varied
discount factors. In this section, we will show that finite memory is sufficient
for optimal policies under uniform discounting, where the discount factors for
all temporal operators in the formula are the same. We will also provide an
algorithm for computing these strategies.

Our approach is to reduce uniformly discounted LTL formulas to reward
machines, which are finite state machines in which each transition is associated
with a reward. We show that the value of a given discounted LTL formula ϕ for
an infinite word ρ is the discounted-sum reward computed by a corresponding
reward machine.

Formally, a reward machine is a tuple R = (Q, δ, r, q0, λ) where Q is a finite
set of states, δ : Q × Σ → Q is the transition function, r : Q × Σ → R is
the reward function, q0 ∈ Q is the initial state, and λ ∈ [0, 1) is the discount
factor. With any infinite word ρ = σ0σ1 . . . ∈ Σω, we can associate a sequence
of rewards c0c1 . . . where ct = r(qt, σt) with qt = δ(qt−1, σt−1) for t > 0. We use
R(ρ) to denote the discounted reward achieved by ρ,

R(ρ) =
∞∑

t=0

λtct,

and R(w) to denotes the partial discounted reward achieved by the finite word
w = σ0σ1 . . . σT ∈ Σ∗—i.e., R(w) =

∑T
t=0 λtct where ct is the reward at time t.

Given a reward machine R and an MDP M, our objective is to maximize
the expected value R(ρ) from the reward machine reading the word ρ produced
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by the MDP. Specifically, the value for a policy π for M is

J M(π,R) = E
ρ∼DM

π

[R(ρ)]

where π is optimal if J M(π,R) = supπ J M(π,R). Finding such an optimal
policy is straightforward: we consider the product of the reward machine R with
the MDP M to form a product MDP with a discounted reward objective. In
the corresponding product MDP, we can compute optimal policies for maxi-
mizing the expected discounted-sum reward using standard techniques such as
policy iteration and linear programming. If the transition function of the MDP
is unknown, this product can be formed on-the-fly and any RL algorithm for
discounted reward can be applied. Using the state space of the reward machine
as memory, we can then obtain a finite-memory policy that is optimal for R.

We have the following theorem showing that we can construct a reward
machine Rϕ for every uniformly discounted LTL formula ϕ.

Theorem 3. For any uniformly discounted LTL formula ϕ, in which all tempo-
ral operators use a common discount factor λ, we can construct a reward machine
Rϕ = (Q, δ, r, q0, λ) such that for any ρ ∈ Σω, we have Rϕ(ρ) = �ρ, ϕ�.

We provide the reward machine construction for Theorem 3 in the next sub-
section. Using this theorem, one can use a reward machine Rϕ that matches
the value of a particular uniformly discounted LTL formula ϕ, and then apply
the procedure outlined above for computing optimal finite-memory policies for
reward machines.

Corollary 1. For any MDP M, labelling function L and a discounted LTL
formula ϕ in which all temporal operators use a common discount factor λ,
there exists a finite-memory optimal policy π ∈ Πopt(M, ϕ). Furthermore, there
is an algorithm to compute such a policy.

4.1 Reward Machine Construction

For our construction, we examine the case of uniformly discounted LTL formula
with positive discount factors λ ∈ (0, 1). This allows us to divide by λ in our
construction. We note that the case of uniformly discounted LTL formula with
λ = 0 can be evaluated after reading the initial letter of the word, and thus have
trivial reward machines.

The reward machine Rϕ constructed for the uniformly discounted LTL for-
mula ϕ exhibits a special structure. Specifically, all edges within any given
strongly-connected component (SCC) of Rϕ share the same reward, which is
either 0 or 1 − λ, while all other rewards fall within the range of [0, 1 − λ]. We
present an inductive construction of the reward machines over the syntax of
discounted LTL that maintains these invariants.

Lemma 1. For any uniformly discounted LTL formula ϕ there exists a reward
machine Rϕ = (Q, δ, r, q0, λ) such that following hold:
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q0

q1

q2

p, 1 − λ

¬p, 0

, 1 − λ

, 0

s0 s0

s1

s2

, 0

q, 1 − λ

¬q, 0

, 1 − λ

, 0

Fig. 4. Reward machines for ϕ = p (left) and ϕ = Xλq (right). The transitions are
labeled by the guard and reward.

I1. For any ρ ∈ Σω, we have Rϕ(ρ) = �ρ, ϕ�.
I2. There is a partition of the states Q =

⋃L
	=1 Q	 and a type mapping χ : [L] →

{0, 1 − λ} such that for any q ∈ Q	 and σ ∈ Σ,
(a) δ(q, σ) ∈ ⋃L

m=	 Qm, and
(b) if δ(q, σ) ∈ Q	 then r(q, σ) = χ(�).

I3. For any q ∈ Q and σ ∈ Σ, we have 0 ≤ r(q, σ) ≤ 1 − λ.

Our construction proceeds inductively. We define the reward machine for the
base case of a single atomic proposition, i.e. ϕ = p, and then the construction
for negation, the next operator, disjunction, the eventually operator (for ease of
presentation), and the until operator. The ideas used in the constructions for dis-
junction, the eventually operator, and the until operator build off of each other,
as they all involve keeping track of the maximum/minimum value over a set of
subformulas. We use properties I1 and I3 to show correctness, and properties I2
and I3 to show finiteness. A summary of the construction and detailed proofs
can be found in the full version of this paper [4].

Atomic Propositions. Let ϕ = p for some p ∈ P. The reward machine Rϕ =
(Q, δ, r, q0, λ) for ϕ is such that Q = {q0, q1, q2} and δ(q, σ) = q for all q ∈ {q1, q2}
and σ ∈ Σ. The reward machine is shown in Fig. 4 where edges are labelled with
propositions and rewards. If p ∈ σ, δ(q0, σ) = q1 and r(q0, σ) = 1 − λ. If p /∈ σ,
δ(q0, σ) = q2 and r(q0, σ) = 0. Finally, r(q1, σ) = 1 − λ and r(q2, σ) = 0 for all
σ ∈ Σ. It is clear to see that I1, I2, and I3 hold.

Negation. Let ϕ = ¬ϕ1 for some LTL formula ϕ1 and let Rϕ1 = (Q, δ, r, q0, λ)
be the reward machine for ϕ1. Notice that the reward machine for ϕ can be
constructed from Rϕ1 by simply replacing every reward c with (1 − λ) − c
as

∑∞
i=0 λi(1 − λ) = 1. Formally, Rϕ = (Q, δ, r′, q0, λ) where r′(q, σ) =

(1 − λ) − r(q, σ) for all q ∈ Q and σ ∈ Σ. Again, assuming that invariants
I1, I2, and I3 hold for Rϕ1 , it easily follows that they hold for Rϕ.

Next Operator. Let ϕ = Xλϕ1 for some ϕ1 and let Rϕ1 = (Q, δ, r, q0, λ) be
the reward machine for ϕ1. The reward machine for ϕ can be constructed from
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Rϕ1 by adding a new initial state q′
0 and a transition in the first step from it

to the initial state of Rϕ1 . From the next step Rϕ simulates Rϕ1 . This has the
resulting effect of skipping the first letter, and decreasing the value by λ. For-
mally, Rϕ = ({q′

0}	Q, δ′, r′, q′
0, λ) where δ′(q′

0, σ) = q0 and δ′(q, σ) = δ(q, σ) for
all q ∈ Q and σ ∈ Σ. Similarly, r′(q′

0, σ) = 0 and r′(q, σ) = r(q, σ) for all q ∈ Q
and σ ∈ Σ. Assuming that invariants I1, I2, and I3 hold for Rϕ1 , it follows that
they hold for Rϕ.

Disjunction. Let ϕ = ϕ1 ∨ ϕ2 for some ϕ1, ϕ2 and let Rϕ1 = (Q1, δ1, r1, q
1
0 , λ)

and Rϕ2 = (Q2, δ2, r2, q
2
0 , λ) be the reward machines for ϕ1 and ϕ2, respectively.

The reward machine Rϕ = (Q, δ, r, q0, λ) is constructed Rϕ1 and Rϕ2 such that
for any finite word it maintains the invariant that the discounted reward is
the maximum of the reward provided by Rϕ1 and Rϕ2 . Moreover, once it is
ascertained that the reward provided by one machine cannot be overtaken by
the other for any suffix, Rϕ begins simulating the reward machine with higher
reward.

The construction involves a product construction along with a real-valued
component that stores a scaled difference between the total accumulated reward
for ϕ1 and ϕ2. In particular, Q = (Q1 × Q2 × R) 	 Q1 	 Q2 and q0 = (q10 , q

2
0 , 0).

The reward deficit ζ of a state q = (q1, q2, ζ) denotes the difference between
the total accumulated reward for ϕ1 and ϕ2 divided by λn where n is the total
number of steps taken to reach q. The reward function is defined as follows.

– For q = (q1, q2, ζ), we let f(q, σ) = r1(q1, σ) − r2(q2, σ) + ζ denote the new
(scaled) difference between the discounted-sum rewards accumulated by Rϕ1

and Rϕ2 . The current reward depends on whether f(q, σ) is positive (accumu-
lated reward from Rϕ1 is higher) or negative and whether the sign is different
from ζ. Formally,

r(q, σ) =

{
r1(q1, σ) + min{0, ζ} if f(q, σ) ≥ 0
r2(q2, σ) − max{0, ζ} if f(q, σ) < 0

– For a state qi ∈ Qi we have r(qi, σ) = ri(qi, σ).

Now we need to make sure that ζ is updated correctly. We also want the transi-
tion function to be such that the (reachable) state space is finite and the reward
machine satisfies I1, I2 and I3.

– First, we make sure that, when the difference ζ is too large, the machine
transitions to the appropriate state in Q1 or Q2. For a state q = (q1, q2, ζ)
with |ζ| ≥ 1, we have

δ(q, σ) =

{
δ1(q1, σ) if ζ ≥ 1
δ2(q2, σ) if ζ ≤ −1.

– For states with |ζ| < 1, we simply advance both the states and update ζ
accordingly. Letting f(q, σ) = r1(q1, σ) − r2(q2, σ) + ζ, we have that for a
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state q = (q1, q2, ζ) with |ζ| < 1,

δ(q, σ) = (δ1(q1, σ), δ2(q2, σ), f(q, σ)/λ). (2)

– Finally, for qi ∈ Qi, δ(qi, σ) = δi(qi, σ).

Finiteness. We argue that the (reachable) state space of Rϕ is finite. Let Qi =⋃Li

	=1 Qi
	 for i ∈ {1, 2} be the SCC decompositions of Q1 and Q2 that satisfy

property I2 for Rϕ1 and Rϕ2 respectively. Intuitively, if Rϕ stays within Q1
	 ×

Q2
m × R for some � ≤ L1 and m ≤ L2, then the rewards from Rϕ1 and Rϕ2

are constant; this enables us to infer the reward machine (Rϕ1 and Rϕ2) with
the higher total accumulated reward in a finite amount of time after which we
transition to Q1 or Q2. Hence the set of all possible values of ζ in a reachable
state (q1, q2, ζ) ∈ Q1

	 × Q2
m × R is finite. This can be shown by induction.

Property I1. Intuitively, it suffices to show that Rϕ(w) = max{Rϕ1(w),Rϕ2(w)}
for every finite word w ∈ Σ∗. We show this property along with the fact that for
any w ∈ Σ∗ of length n, if the reward machine reaches a state (q1, q2, ζ), then
ζ = (Rϕ1(w) − Rϕ2(w))/λn. This can be proved using induction on n.

Property I2. This property is true if and only if for every SCC C of Rϕ there is a
type c ∈ {0, 1−λ} such that if δ(q, σ) = q′ for some q, q′ ∈ C and σ ∈ Σ, we have
r(q, σ) = c. From the definition of the transition function δ, C cannot contain
two states where one is of the form (q1, q2, ζ) ∈ Q1 × Q2 × R and the other is
qi ∈ Qi for some i ∈ {1, 2}. Now if C is completely contained in Qi for some
i, we can conclude from the inductive hypothesis that the rewards within C are
constant (and they are all either 0 or 1− λ). When all states of C are contained
in Q1 × Q2 ×R, they must be contained in Q̄1 × Q̄2 ×R where Q̄i is some SCC
of Rϕi

. In such a case, we can show that |C| = 1 and in the presence of a self
loop on a state within C, the reward must be either 0 or 1 − λ.

Property I3. We now show that all rewards are bounded between 0 and (1− λ).
Let q = (q1, q2, ζ) and f(q, σ) = r1(q1, σ) − r2(q2, σ) + ζ. We show the bound
for the case when f(q, σ) ≥ 0 and the other case is similar. If ζ ≥ 0, then
r(q, σ) = r1(q1, σ) ∈ [0, 1 − λ]. If ζ < 0, then r(q, σ) ≤ r1(q1, σ) ≤ 1 − λ and

r(q, σ) = r1(q1, σ) + ζ = f(q, σ) + r2(q2, σ) ≥ 0.

This concludes the construction for ϕ1 ∨ ϕ2.

Eventually Operator. For ease of presentation, we treat the until operator as
a generalization of the eventually operator Fλ and present it first. We have that
ϕ = Fϕ1 for some ϕ1. Let Rϕ1 = (Q1, δ1, r1, q

1
0 , λ) be the reward machine for

ϕ1. Let Xi
λ denote the operator Xλ applied i times. We begin by noting that

Fλϕ1 ≡
∨

i≥0

Xi
λϕ1 = ϕ1 ∨ Xλϕ1 ∨ X2

λϕ1 ∨ . . . .
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The idea of the construction is to keep track of the unrolling of this formula up
to the current timestep n,

Fn
λϕ1 =

∨

n≥i≥0

Xi
λϕ1 = ϕ1 ∨ Xλϕ1 ∨ X2

λϕ1 ∨ . . . ∨ Xn
λϕ1.

For this, we will generalize the construction for disjunction. In the disjunction
construction, there were states of the form (q1, q2, ζ) where ζ was a bookkeeping
parameter that kept track of the difference between Rϕ1(w) and Rϕ2(w), namely,
ζ = (Rϕ1(w)−Rϕ2(w))/λn where w ∈ Σ∗ is some finite word of length n. To gen-
eralize this notion to make a reward machine for max{R1, . . . ,Rk}, we will have
states of the form {(q1, ζ1), . . . , (qn, ζn)} where ζi = (Ri(w) − maxj Rj(w))/λn.
When ζi ≤ −1 then Ri(w)+λn ≤ maxj Rj(w) and we know that the associated
reward machine Ri cannot be the maximum, so we drop it from our set. We also
note that the value of Xi

λϕ1 can be determined by simply waiting i steps before
starting the reward machine Rϕ1 , i.e. λiRϕ1(ρi:∞) = RXi

λϕ1
(ρ). This allows us

to perform a subset construction for this operator.
For a finite word w = σ0σ1 . . . σn ∈ Σ∗ and a nonnegative integer k, let

wk:∞ denote the subword σk . . . σn which equals the empty word ε if k>n.
We use the notation �Xk

λϕ1, w� = λkRϕ1(wk:∞) and define �Fk
λϕ1, w� =

maxk≥i≥0 �Xk
λϕ1, w� which represents the maximum value accumulated by the

reward machine of some formula of the form Xi
λϕ1 with i ≤ k on a finite word

w. The reward machine for Fλϕ1 will consist of states of the form (v, S), con-
taining a value v for bookkeeping and a set S that keeps track of the states of
all RXi

λϕ1
that may still obtain the maximum given a finite prefix w of length

n, i.e. reward machine states of all subformulas Xi
λϕ1 for n ≥ i ≥ 0 that satisfy

�Xi
λϕ1, w�+λn > �Fn

λϕ1, w� since λn is the maximum additional reward obtain-
able by any ρ ∈ Σω with prefix w. The subset S consists of elements of the form
(qi, ζi) ∈ S where qi = δ1(q10 , wi:∞) and ζi = (�Xi

λϕ1, w� − �Fn
λϕ1, w�)/λn corre-

sponding to each subformula Xi
λϕ1. The value v = max{−1,−�Fn

λϕ1, w�/λn} is
a bookkeeping parameter used to initialize new elements in the set S and to stop
adding elements to S when v ≤ −1. We now present the construction formally.

We form a reward machine Rϕ = (Q, δ, r, q0, λ) where Q = R × 2Q1×R and
q0 = (0, {(q10 , 0)}). We define a few functions that ease defining our transition
function. Let f(ζ, q, σ) = r1(q, σ) + ζ and m(S, σ) = max

(qi,ζi)∈S
f(ζi, qi, σ). For the

subset construction, we define

Δ(S, σ) =
⋃

(q,ζ)∈S

{(δ1(q, σ), ζ ′) : ζ ′ =
(
(f(ζ, q, σ) − m(S, σ))/λ

)
> −1}

The transition function is

δ((v, S), σ) =

{(
v′(S, v, σ), Δ(S, σ) 	 (

q10 , v
′(S, v, σ)

))
if v′(S, v, σ) > −1

(−1, Δ(S, σ)) if v′(S, v, σ) ≤ −1

where v′(S, v, σ) = (v − m(S, σ))/λ. The reward function is r((v, S), σ) =
m(S, σ).
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We now argue that Rϕ satisfies properties I1, I2 and I3 and the set of reach-
able states in Rϕ is finite assuming Rϕ1 satisfies I1, I2 and I3.

Finiteness. Consider states of the form (v, S) ∈ Q. If v = 0, then it must be that
ζi = 0 for all (qi, ζi) ∈ S since receiving a non-zero reward causes the value of
v to become negative. There are only finitely many such states. If −1 < v < 0,
then we will reach a state (v′, S′) ∈ Q with v′ = −1 in at most n steps, where
n is such that v/λn ≤ −1. Therefore, the number of reachable states (v, S) with
−1 < v < 0 is also finite. Also, the number of states of the form (−1, S) that can
be initially reached (via paths consisting only of states of the form (v, S′) with
v > −1) is finite. Furthermore, upon reaching such a state (−1, S), the reward
machine is similar to that of a disjunction (maximum) of |S| reward machines.
From this we can conclude that the full reachable state space is finite.

Property I1. The transition function is designed so that the following holds true:
for any finite word w ∈ Σ∗ of length n and letter σ ∈ Σ, if δ(q0, w) = (v, S),
then m(S, σ) = (�Fn+1

λ ϕ1, wσ� − �Fn
λϕ1, w�)/λn. Since r((v, S), σ) = m(S, σ),

we get that Rϕ(w) = �Fn
λϕ1, w�. Thus, Rϕ(ρ) = �Fλϕ1, ρ� for any infinite

word ρ ∈ Σω. This property for m(S, σ) follows from the preservation of all the
properties outlined in the above description of the construction.

Property I2. Consider an SCC C in Rϕ such that (v, S) = δ((v, S), w) for some
(v, S) ∈ C and w ∈ Σ∗ of length n > 0. Note that if −1 < v < 0, then
(v′, S′) = δ((v, S), w) is such that v′ < v. Thus, it must be that v = 0 or v = −1.
If v = 0, then all the reward must be zero, since any nonzero rewards result in
v < 0. If v = −1, then it must be that for any (qi, ζi) ∈ S, qi is in an SCC Ci

1 in
Rϕ1 with some reward type ci ∈ {0, 1 − λ}. For all ζi to remain fixed (which is
necessary as otherwise some ζi strictly increases or decreases), it must be that
all ci are the same, say c. Thus, the reward type in Rϕ1 for SCC C equals c.

Property I3. We can show that for any finite word w ∈ Σ∗ of length n and
letter σ ∈ Σ, if δ(q0, w) = (v, S), then the reward is r((v, S), σ) = m(S, σ) =
(�Fn+1

λ ϕ1, wσ� − �Fn
λϕ1, w�)/λn using induction on n. Since property I3 holds

for Rϕ1 , we have that 0 ≤ (�Fn+1
λ ϕ1, wσ� − �Fn

λϕ1, w�) ≤ (1 − λ)λn.

Until Operator. We now present the until operator, generalizing the ideas
presented for the eventually operator. We have that ϕ = ϕ1Uλϕ2 for some ϕ1

and ϕ2. Let Rϕ1 = (Q1, δ1, r1, q
1
0 , λ) and Rϕ2 = (Q2, δ2, r2, q

2
0 , λ). Note that

ϕ1Uλϕ2 =
∨

i≥0

(Xi
λϕ2 ∧ ϕ1 ∧ Xλϕ1 ∧ . . . ∧ Xi−1

λ ϕ1)

= ϕ2 ∨ (Xλϕ2 ∧ ϕ1) ∨ (X2
λϕ2 ∧ ϕ1 ∧ Xλϕ1) ∨ . . . .

The goal of the construction is to keep track of the unrolling of this formula up
to the current timestep n,

ϕ1Un
λϕ2 =

∨

n≥i≥0

(Xi
λϕ2 ∧ ϕ1 ∧ Xλϕ1 ∧ . . . ∧ Xi−1

λ ϕ1) =
∨

n≥i≥0

ψi.
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Each ψi requires a subset construction in the style of the eventually opera-
tor construction to maintain the minimum. We then nest another subset con-
struction in the style of the eventually operator construction to maintain the
maximum over ψi. For a finite word w ∈ Σ∗, we use the notation �ψi, w� and
�ϕ1Uk

λϕ2, w� for the value accumulated by reward machine corresponding to
these formula on the word w, i.e. �ψi, w� = min{�Xi

λϕ2�,mini>j≥0{�Xj
λϕ1, w�}

and �ϕ1Uk
λϕ2, w� = maxk≥i≥0 �ψi, w�.

Let S = 2(Q1
Q2)×R be the set of subsets containing (q, ζ) pairs, where q
may be from either Q1 or Q2. The reward machine consists of states of the
form (v, I,X ) where the value v ∈ R and the subset I ∈ S are for bookkeeping,
and X ∈ 2S is a subset of subsets for each ψi. Specifically, each element of
X is a subset S corresponding to a particular ψi which may still obtain the
maximum, i.e. �ψi, w� + λn > �ϕ1Un

λϕ2, w�. Each element of S is of the form
(q, ζ). We have that q ∈ Q2 for at most one element where q = δ2(q20 , wk:∞)
and ζ = (�Xk

λϕ2, w� − �ϕ1Un
λϕ2, w�)/λn. For the other elements of S, we have

that q ∈ Q1 with q = δ1(q10 , wk:∞) and ζ = (�Xk
λϕ1, w� − �ϕ1Un

λϕ2, w�)/λn.
If for any of these elements, the value of its corresponding formula becomes
too large to be the minimum for the conjunction forming ψi, i.e. �ψi, w�+ λn ≤
�ϕ1Un

λϕ2, w�+λn ≤ �Xk
λϕt, w� which occurs when ζ ≥ 1, that element is dropped

from S. In order to update X , we add a new S corresponding to ψn on the next
timestep. The value v = max{−1, �ϕ1Un

λϕ2, w�} is a bookkeeping parameter for
initializing new elements in the subsets and for stopping the addition of new
elements when v ≤ −1. The subset I is a bookkeeping parameter that keeps
track of the subset construction for

∧
n>i≥0 X

i
λϕ1, which is used to initialize the

addition of a subset corresponding to ψn = Xn
λϕ2 ∧ (

∧
n>i≥0 X

i
λϕ1). We now

define the reward machine formally.
We define a few functions that ease defining our transition function. We define

δ∗(q, σ) = δi(q, σ) and f∗(ζ, q, σ) = ri(q, σ) + ζ if q ∈ Qi for i ∈ {1, 2}. We also
define n(S, σ) = min(qi,ζi)∈S f∗(ζi, qi, σ) and m(X , σ) = maxS∈X n(S, σ). For the
subset construction, we define

Δ(S, σ,m) =
⋃

(q,ζ)∈S

{(δ∗(q, σ), ζ ′) : ζ ′ < 1}

where ζ ′ = (f∗(ζ, q, σ) − m)/λ and

T (X , σ,m) =
⋃

S∈X
{Δ(S, σ,m) : n(S, σ) > −1}.

We form a reward machine Rϕ = (Q, δ, r, q0, λ) where Q = R × S × 2S and
q0 = (0, ∅, {{(q20 , 0)}}). The transition function is

δ((v, I,X ), σ) =

{(
v′, I ′, T (X , σ,m) 	 (

I ′ 	 (q20 , v
′)

))
if v′ > −1

(−1, ∅, T (X , σ,m)) if v′ ≤ −1

where m = m(X , σ), v′ = (v − m)/λ, and I ′ = Δ(I 	 (q10 , v
′), σ,m). The reward

function is r((v, I,X ), σ) = m(X , σ).
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We now show a sketch of correctness, which mimics the proof for the even-
tually operator closely.

Finiteness. Consider states of the form (v, I,X ) ∈ Q. If v = 0, then for all S ∈ X
and (qi, ζi) ∈ S it must be that ζi = 0 since receiving a non-zero reward causes
the value of v to become negative. Similarly, all ζi = 0 for (qi, ζi) ∈ I when v = 0.
There are only finitely many such states. If −1 < v < 0, then we will reach a
state (v′, I ′,X ′) ∈ Q with v′ = −1 in at most n steps, where n is such that
v/λn ≤ −1. Therefore, the number of reachable states −1 < v < 0 is also finite.
Additionally, the number of states where v = −1 that can be initially reached is
finite. Upon reaching such a state (−1, ∅,X ′), the reward machine is similar to
that of the finite disjunction of reward machines for finite conjunctions.

Property I1. The transition function is designed so that the following holds true:
for any finite word w ∈ Σ∗ of length n and letter σ ∈ Σ, if δ(q0, w) = (v, I,X ),
then m(X , σ) = (�ϕ1Un+1

λ ϕ2, wσ� − �ϕ1Un
λϕ2, w�)/λn. Since r((v, I,X ), σ) =

m(X , σ), we get that Rϕ(w) = �ϕ1Un
λϕ2, w�. Thus, Rϕ(ρ) = �ϕ1Uλϕ2, ρ� for

any infinite word ρ ∈ Σω. This property for m(X , σ) follows from the properties
outlined in the construction, which can be shown inductively.

Property I2. Consider an SCC C of Rϕ and a state (v, I,X ) ∈ C. If v = 0, then
we must receive zero reward because non-zero reward causes the value of v to
become negative. It cannot be that −1 < v < 0 since if v < 0, we reach a state
(v′, I ′,X ′) ∈ Q with v′ = −1 in at most n steps, where n is such that v/λn ≤ −1.
If v = −1, then we have a state of the form (−1, ∅,X ). For this to be an SCC,
all elements of the form (qk, ζk) ∈ S for S ∈ X must be such that qk is in an
SCC of its respective reward machine (either Rϕ1 or Rϕ2) with reward type
tk ∈ {0, 1 − λ}. Additionally, there cannot be a t′k �= tk otherwise there would
be a ζk that changes following a cycle in the SCC C. Thus, the reward for this
SCC C is tk.

Property I3. This property can be shown by recalling the property above that
r((v, I,X ), σ) = m(X , σ) = (�ϕ1Un+1

λ ϕ2, wσ� − �ϕ1Un
λϕ2, w�)/λn.

5 Conclusion

This paper studied policy synthesis for discounted LTL in MDPs with unknown
transition probabilities. Unlike LTL, discounted LTL provides an insensitivity
to small perturbations of the transitions probabilities which enables PAC learn-
ing without additional assumptions. We outlined a PAC learning algorithm for
discounted LTL that uses finite memory. We showed that optimal strategies for
discounted LTL require infinite memory in general due to the need to balance
the values of multiple competing objectives. To avoid this infinite memory, we
examined the case of uniformly discounted LTL, where the discount factors for
all temporal operators are identical. We showed how to translate uniformly dis-
counted LTL formula to finite state reward machines. This construction shows
that finite memory is sufficient, and provides an avenue to use discounted reward
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algorithms, such as reinforcement learning, for computing optimal policies for
uniformly discounted LTL formulas.
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Abstract. We present a novel method to compute permissive winning
strategies in two-player games over finite graphs with ω-regular winning
conditions. Given a game graph G and a parity winning condition Φ,
we compute a winning strategy template Ψ that collects an infinite num-
ber of winning strategies for objective Φ in a concise data structure. We
use this new representation of sets of winning strategies to tackle two
problems arising from applications of two-player games in the context
of cyber-physical system design – (i) incremental synthesis, i.e., adapt-
ing strategies to newly arriving, additional ω-regular objectives Φ′, and
(ii) fault-tolerant control, i.e., adapting strategies to the occasional or
persistent unavailability of actuators. The main features of our strat-
egy templates – which we utilize for solving these challenges – are their
easy computability, adaptability, and compositionality. For incremental
synthesis, we empirically show on a large set of benchmarks that our
technique vastly outperforms existing approaches if the number of added
specifications increases. While our method is not complete, our prototype
implementation returns the full winning region in all 1400 benchmark
instances, i.e. handling a large problem class efficiently in practice.

1 Introduction

Two-player ω-regular games on finite graphs are an established modeling and
solution formalism for many challenging problems in the context of correct-by-
construction cyber-physical system (CPS) design [2,7,39]. Here, control software
actuating a technical system “plays” against the physical environment. The win-
ning strategy of the system player in this two-player game results in software
which ensures that the controlled technical system fulfills a given temporal speci-
fication for any (possible) event or input sequence generated by the environment.
Examples include warehouse robot coordination [36], reconfigurable manufac-
turing systems [26], and adaptive cruise control [33]. In these applications, the
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Fig. 1. Experimental results over 1400 generalized parity games comparing the per-
formance of our tool PeSTel against the state-of-the-art generalized parity solver
GenZiel [16]. Data points give the average execution time (in ms) over all instances
with the same number of parity objectives. Left: all objectives are given upfront. Right:
objectives are added one-by-one. See Sect. 6 for more details on those experiments.

technical system under control, as well as its requirements, are developing and
changing during the design process. It is therefore desirable to allow for maintain-
able and adaptable control software. This, in turn, requires solution algorithms
for two-player ω-regular games which allow for this adaptability.

This paper addresses this challenge by providing a new algorithm to efficiently
compute permissive winning strategy templates in parity games which enable
rich strategy adaptations. Given a game graph G = (V,E) and an objective Φ
a winning strategy template Ψ characterizes the winning region W ⊆ V along
with three types of local edge conditions – a safety, a co-live, and a live-group
template. The conjunction of these basic templates allows us to capture infinitely
many winning strategies over G w.r.t. Φ in a simple data structure that is both
(i) easy to obtain during synthesis, and (ii) easy to adapt and compose.

We showcase the usefulness of permissive winning strategy templates in the
context of CPS design by two application scenarios: (i) incremental synthesis,
where strategies need to be adapted to newly arriving additional ω-regular objec-
tives Φ′, and (ii) fault-tolerant control, where strategies need to be adapted to
the occasional or persistent unavailability of actuators, i.e., system player edges.

We have implemented our algorithms in a prototype tool PeSTel and run it
on more than 1400 benchmarks adapted from the SYNTCOMP benchmark suite
[21]. These experiments show that our class of templates effectively avoids re-
computations for the required strategy adaptations. For incremental synthesis, our
experimental results are previewed in Fig. 1, where we compare PeSTel against
the state-of-the-art solverGenZiel [16] for generalized parity objectives, i.e., finite
conjunction of parity objectives. We see that PeSTel is as efficient as GenZiel
whenever all conjuncts of the objective are given up-front (Fig. 1(left)) - even out-
performing it in more than 90% of the instances. Whenever conjuncts of the objec-
tive arriveone at a time,PeSTel outperforms the existing approaches significantly
if the number of objectives increases (Fig. 1(right)). This shows the potential of
PeSTel towards more adaptable and maintainable control software for CPS.
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a b

c d e

f
Φ1 = ¬{f}
Φ2 = {c, d}
Φ3 = ¬{b}

⇒ Ψ1 = Ψunsafe(ede)
⇒ Ψ2 = Ψlive({eac, ead})
⇒ Ψ3 = Ψcolive(eab, edb, ede)

Fig. 2. A two-player game graph with Player 1 (squares) and Player 0 (circles) vertices,
different winning conditions Φi, and corresponding winning strategy templates Ψi.

Illustrative Example. To appreciate the simplicity and easy adaptability of
our strategy templates, consider the game graph in Fig. 2(left). The first winning
condition Φ1 requires vertex f to never be seen along a play. This can be enforced
by Player 0 from vertices W0 = {a, b, c, d} called the winning region. The safety
template Ψ1 ensures that the game always stays in W0 by forcing the edge ede to
never be taken. It is easy to see that every Player 0 strategy that follows this rule
results in plays which are winning if they start in W0. Now consider the second
winning condition Φ2 which requires vertex c or d to be seen infinitely often.
This induces the live-group template Ψ2 which requires that whenever vertex a
is seen infinitely often, either edge eac or edge ead needs to be taken infinitely
often. It is easy to see that any strategy that complies with this edge-condition
is winning for Player 0 from every vertex and there are infinitely many such
compliant winning strategies. Finally, we consider condition Φ3 requiring vertex
b to be seen only finitely often. This induces the strategy template Ψ3 which
is a co-liveness template requiring that all edges from Player 0 vertices which
unavoidably lead to b (i.e., eab, ebd, and ede) are taken only finitely often. We can
now combine all templates into a new template Ψ ′ = Ψ1 ∧ Ψ2 ∧ Ψ3 and observe
that all strategies compliant with Ψ ′ are winning for Φ′ = Φ1 ∧ Φ2 ∧ Φ3.

In addition to their compositionality, strategy templates also allow for local
strategy adaptations in case of edge unavailability faults. Consider again the
game in Fig. 2 with the objective Φ2. Suppose that Player 0 follows the strategy
π: a �→ d and d �→ a, which is compliant with Ψ2. If the edge ead becomes
unavailable, we would need to re-solve the game for the modified game graph
G′ = (V,E \ {ead}). However, given the strategy template Ψ2 we see that the
strategy π′: a �→ c and d �→ a is actually compliant with Ψ2 over G′. This allows
us to obtain a new strategy without re-solving the game.

While these examples demonstrate the potential of templates for strategy
adaptation, there exist scenarios where conflicts between templates or graph
modifications arise, which require re-computations. Our empirical results, how-
ever, show that such conflicts rarely appear in practical benchmarks. This sug-
gests that our technique can handle a large problem class efficiently in practice.
Related Work. The class of templates we use was introduced in [4] and utilized
to represent environment assumptions that enable a system to fulfill its specifi-
cations in a cooperative setting. Contrary to [4], this paper uses the same class
of templates to represent the system’s winning strategies in a zero-sum setting.
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While the computation of permissive strategies for the control of CPS is
an established concept in the field of supervisory control1 [14,42], it has also
been addressed in reactive synthesis where the considered specification class is
typically more expressive, e.g., Bernet et al. [8] introduce permissive strategies
that encompass all the behaviors of positional strategies and Neider et al. [31]
introduce permissiveness to subsume strategies that visit losing loops at most
twice. Finally, Bouyer et al. [11] take a quantitative approach to measure the
permissiveness of strategies, by minimizing the penalty of not being permissive.
However, all these approaches are not optimized towards strategy adaptation and
thereby typically fail to preserve enough behaviors to be able to effectively satisfy
subsequent objectives. A notable exception is a work by Baier et al. [23]. While
their strategy templates are more complicated and more costly to compute than
ours, they are maximally permissive (i.e., capture all winning strategies in the
game). However, when composing multiple objectives, they restrict templates
substantially which eliminates many compositional solutions that our method
retains. This results in higher computation times and lower result quality for
incremental synthesis compared to our approach. As no implementation of their
method is available, we could not compare both approaches empirically.

Even without the incremental aspect, synthesizing winning strategies for con-
junctions of ω-regular objectives is known to be a hard problem – Chatterjee
et al. [16] prove that the conjunction of even two parity objectives makes the
problem NP-complete. They provide a generalization of Zielonka’s algorithm,
called GenZiel for generalized parity objectives (i.e., finite conjunction of par-
ity objectives) which is compared to our tool PeSTel in Fig. 1. While PeSTel
is (in contrast to GenZiel) not complete—i.e., there exist realizable synthesis
problems for which PeSTel returns no solution—our prototype implementation
returns the full winning region in all 1400 benchmark instances.

Fault-tolerant control is a well-established topic in control engineering [9],
with recent emphasis on the logical control layer [19,30]. While most of this work
is conducted in the context of supervisory control, there are also some approaches
in reactive synthesis. While [29,32] considers the addition of “disturbance edges”
and synthesizes a strategy that tolerates as many of them as possible, we look
at the complementary problem, where edges, in particular system-player edges,
disappear. To the best of our knowledge, the only algorithm that is able to tackle
this problem without re-computation considers Büchi games [15]. In contrast, our
method is applicable to the more expressive class of Parity games.

2 Preliminaries

Notation. We use N to denote the set of natural numbers including zero.
Given two natural numbers a, b ∈ N with a < b, we use [a; b] to denote the
set {n ∈ N | a ≤ n ≤ b}. For any given set [a; b], we write i ∈even [a; b] and
i ∈odd [a; b] as shorthand for i ∈ [a; b] ∩ {0, 2, 4, . . .} and i ∈ [a; b] ∩ {1, 3, 5, . . .}

1 See [18,28,37] for connections between supervisory control and reactive synthesis.
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respectively. Given two sets A and B, a relation R ⊆ A × B, and an element
a ∈ A, we write R(a) to denote the set {b ∈ B | (a, b) ∈ R}.

Languages. Let Σ be a finite alphabet. The notation Σ∗ and Σω respectively
denote the set of finite and infinite words over Σ, and Σ∞ is equal to Σ∗ ∪ Σω.
For any word w ∈ Σ∞, wi denotes the i-th symbol in w. Given two words u ∈ Σ∗

and v ∈ Σ∞, the concatenation of u and v is written as the word uv.

Game Graphs. A game graph is a tuple G =
(
V = V 0 ·∪ V 1, E

)
where (V,E)

is a finite directed graph with vertices V and edges E, and V 0, V 1 ⊆ V form a
partition of V . Without loss of generality, we assume that for every v ∈ V there
exists v′ ∈ V s.t. (v, v′) ∈ E. A play originating at a vertex v0 is a finite or
infinite sequence of vertices ρ = v0v1 . . . ∈ V ∞.

Winning Conditions/Objectives. Given a game graph G, we consider win-
ning conditions/objectives specified using a formula Φ in linear temporal logic
(LTL) over the vertex set V , that is, we consider LTL formulas whose atomic
propositions are sets of vertices V . In this case the set of desired infinite plays
is given by the semantics of Φ which is an ω-regular language L(Φ) ⊆ V ω.
Every game graph with an arbitrary ω-regular set of desired infinite plays can
be reduced to a game graph (possibly with a different set of vertices) with an
LTL winning condition, as above. The standard definitions of ω-regular lan-
guages and LTL are omitted for brevity and can be found in standard textbooks
[6]. To simplify notation we use e = (u, v) in LTL formulas as syntactic sugar
for u ∧ ©v, with © as the LTL next operator. We further use a set of edges
E′ = {ei}i∈[0;k] as atomic proposition to denote

∨
i∈[0;k] ei.

Games and Strategies. A two-player (turn-based) game is a pair G = (G,Φ)
where G is a game graph and Φ is a winning condition over G. A strategy of
Player i, i ∈ {0, 1}, is a function πi : V ∗V i → V such that for every ρv ∈ V ∗V i

holds that πi(ρv) ∈ E(v). Given a strategy πi, we say that the play ρ = v0v1 . . .
is compliant with πi if vk−1 ∈ V i implies vk = πi(v0 . . . vk−1) for all k. We refer
to a play compliant with πi and a play compliant with both π0 and π1 as a
πi-play and a π0π1-play, respectively. We collect all plays originating in a set S
and compliant with πi, (and compliant with both π0 and π1) in the sets L(S, πi)
(and L(S, π0π1), respectively). When S = V , we drop the mention of the set
in the previous notation, and when S is singleton {v}, we simply write L(v, πi)
(and L(v, π0π1), respectively).

Winning. Given a game G = (G,Φ), a play ρ in G is winning for Player 0, if
ρ ∈ L(Φ), and it is winning for Player 1, otherwise. A strategy πi for Player i is
winning from a vertex v ∈ V if all plays compliant with πi and originating from
v are winning for Player i. We say that a vertex v ∈ V is winning for Player i,
if there exists a winning strategy πi from v. We collect all winning vertices of
Player i in the Player i winning region Wi ⊆ V . We always interpret winning
w.r.t. Player 0 if not stated otherwise.

Strategy Templates. Let π0 be a Player 0 strategy and Φ be an LTL formula.
Then we say π0 follows Φ, denoted π0 � Φ, if for all π0-plays ρ, ρ belongs to
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L(Φ), i.e. L(π0) ⊆ L(Φ). We refer to a set Ψ = {Ψ1, . . . , Ψk} of LTL formulas as
strategy templates representing the set of strategies that follows Ψ1 ∧ . . . ∧ Ψk.
We say a strategy template Ψ is winning from a vertex v for a game (G,Φ) if
every Player 0 strategy following the template Ψ is winning from v. Moreover,
we say a strategy template Ψ is winning if it is winning from every vertex in W0.
In addition, we call Ψ maximally permissive for G, if every Player 0 strategy π
which is winning in G also follows Ψ . With slight abuse of notation, we use Ψ for
the set of formulas {Ψ1, . . . , Ψk}, and the formula Ψ1 ∧ . . . ∧ Ψk, interchangeably.

Set Transformers. Let G = (V = V 0 ·∪ V 1, E) be a game graph, U ⊆ V be a
subset of vertices, and a ∈ {0, 1} be the player index. Then

upreG(U) ={v ∈ V | ∀(v, u) ∈ E. u ∈ U} (1)

cprea
G(U) ={v ∈ V a | ∃(v, u) ∈ E. u ∈ U} ∪ {v ∈ V 1−a | u ∈ upreG(U)} (2)

The universal predecessor operator upreG(U) computes the set of vertices with
all the successors in U and the controllable predecessor operator cprea

G(U) the
vertices from which Player a can force visiting U in exactly one step. In the
following, we introduce two types of attractor operators: attraG(U) that computes
the set of vertices from which Player a can force at least a single visit to U in
finitely many steps, and the universal attractor uattrG(U) that computes the set
of vertices from which both players are forced to visit U . For the following, let
pre ∈ {upre, cprea}

pre1G(U) = preG(U) ∪ U prei
G(U) = preG(pre

i−1
G (U)) ∪ prei−1

G (U) (3)

attraG(U) = ∪i≥1 cpre
a,i
G (U) uattrG(U) = ∪i≥1 upre

i
G(U) (4)

3 Computation of Winning Strategy Templates

Given a 2-player game G with an objective Φ, the goal of this section is to com-
pute a strategy template that characterizes a large class of winning strategies
of Player 0 from a set of vertices U ⊆ V in a local, permissive, and computa-
tionally efficient way. These templates are then utilized in Sect. 5.1 for computa-
tional synthesis. In particular, this section introduces three distinct template
classes—safety templates (Sect. 3.1), live-group-templates (Sect. 3.2), and co-
live-templates (Sect. 3.3) along with algorithms for their computation via safety,
Büchi, and co-Büchi games, respectively. We then turn to general parity objec-
tives which can be thought of as a sophisticated combination of Büchi and co-
Büchi games. We show in Sect. 3.4 how the three introduced templates can be
derived for a general parity objective by a suitable combination of the previ-
ously introduced algorithms for single templates. All presented algorithms have
the same worst-case computation time as the standard algorithms solving the
respective game. This shows that extracting strategy templates instead of ’nor-
mal’ strategies does not incur an additional computational cost. We prove the
soundness of the algorithms and discuss the complexities in the full version [5,
Appendix A].
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3.1 Safety Templates

We start the construction of strategy templates by restricting ourselves to games
with a safety objective—i.e., G = (G,Φ) with Φ := �U for some U ⊆ V . A
winning play in a safety game never leaves U ⊆ V . It is well known that such
games allow capturing all winning strategies by a simple local template which
essentially only allows Player 0 moves from winning vertices to other winning
vertices. This is formalized in our notation as a safety template as follows,

Theorem 1 ([8, Fact 7]). Let G = (G,�U) be a safety game with winning
region W0 and S = {(u, v) ∈ E | (

u ∈ V 0 ∩ W0
) ∧ (v /∈ W0)}. Then

Ψunsafe(S) := �
∧

e∈S ¬e, (5)

is a winning strategy template for the game G which is also maximally permissive.

It is easy to see that the computation of the safety template Ψunsafe(S)
reduces to computing the winning region W0 in the safety game (G,�U) and
extracting S. We refer to the edges in S as unsafe edges and we call this algorithm
computing the set S as SafetyTemplate(G,U). Note that it runs in O(m)
time, where m = |E|, as safety games are solvable in O(m) time.

3.2 Live-Group Templates

As the next step, we now move to simple liveness objectives which require a par-
ticular vertex set I ⊆ V to be seen infinitely often. Here, winning strategies need
to stay in the winning region (as before) but in addition always eventually need
to make progress towards the vertex set I. We capture this required progress by
live-group templates—given a group of edges H ⊆ E, we require that whenever
a source vertex v of an edge in H is seen infinitely often, an edge e ∈ H (not
necessarily starting at v) also needs to be taken infinitely often. This template
ensures that compliant strategies always eventually make progress towards I, as
illustrated by the following example.

Example 1. Consider the game graph in Fig. 2 where we require visiting {c, d}
infinitely often. To satisfy this objective from vertex a, Player 0 needs to not
get stuck at a, and should not visit b always (since Player 1 can force visiting
a again, and stop Player 0 from satisfying the objective). Hence, Player 0 has
to always eventually leave a and go to {c, d}. This can be captured by the live-
group {eac, ead}. Now if the play comes to a infinitely often, Player 0 will go to
either c or d infinitely often, hence satisfying the objective.

Formally, such games are called Büchi games, denoted by G = (G = (V,E), Φ)
with Φ := �♦I, for some I ⊆ V . In addition, a live-group H = {ej}j≥0 is a set
of edges ej = (sj , tj) with source vertices src(H) := {sj}j≥0. Given a set of
live-groups H = {Hi}i≥0 we define a live-group template as

Ψlive(H) :=
∧

i≥0

�♦src(Hi) =⇒ �♦Hi. (6)
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Algorithm 1. BüchiTemplate(G, I)
Input: A game graph G, and a subset of vertices I
Output: A set of unsafe edges S and a set of live-groups H
1: W0 ← Büchi(G, I); S ← SafetyTemplate(G, W0);
2: G ← G|W0 ; I ← I ∩ W0;
3: H ← ReachTemplate(G, I);
4: return (S, H)
5: procedure ReachTemplate(G, I ⊆ V )
6: H ← ∅;
7: while I �= V do
8: A ← uattrG(I); B ← cpre0G(A); H ← H ∪ {Edges(B, A)}; I ← A ∪ B;
9: return H

The live-group template says that if some vertex from the source of a live-group is
visited infinitely often, then some edge from this group should be taken infinitely
often by the following strategy.

Intuitively, winning strategy templates for Büchi games consist of a safety
template conjuncted with a live-group template. While the former enforces all
strategies to stay within the winning region W, the latter enforces progress
w.r.t. the goal set I within W. Therefore, the computation of a winning strategy
template for Büchi games reduces to the computation of the unsafe set S to
define Ψunsafe(S) in (5) and the live-group H to define Ψlive(H) in (6). We
denote by BüchiTemplate(G, I) the algorithm computing the above as detailed
in Algorithm1. The algorithm uses some new notations that we define here.
Here, the function Büchi solves a Büchi game and returns the winning region
(e.g., using the standard algorithm from [17]), Edges(X,Y ) = {(u, v) ∈ E |
u ∈ X, v ∈ Y }, is the set of edges between two subsets of vertices X and Y .
G|U :=

(
U = U0 ·∪ U1, E′) s.t. U0 := V 0∩U , U1 := V 1∩U , and E′ := E∩(U×U)

denotes the restriction of a game graph G :=
(
V = V 0 ·∪ V 1, E

)
to a subset of

its vertices U ⊆ V . We have the following formal result.

Theorem 2. Given a Büchi game G = (G,�♦I) for some I ⊆ V , if (S,H) =
BüchiTemplate(G, I) then Ψ = {Ψunsafe(S), Ψlive(H)} is a winning strategy
template for the game G, computable in time O(nm), where n = |V | and m = |E|.

While live-group templates capture infinitely many winning strategies in
Büchi games, they are not maximally permissive, as exemplified next.

Example 2. Consider the game graph in Fig. 2 restricted to the vertex set
{a, b, d} with the Büchi objective �♦d. Our algorithm outputs the live-group
template Ψ = Ψlive({ead}). Now consider the winning strategy with memory
that takes edge eda from d, and takes eab for play suffix bda and ead for play
suffix aba. This strategy does not follow the template—the play (abd)ω is in
L(π0) but not in L(Ψ).
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3.3 Co-live Templates

We now turn to yet another objective which is the dual of the one discussed
before. The objective requires that eventually, only a particular subset of vertices
I is seen. A winning strategy for this objective would try to restrict staying or
going away from I after a finite amount of time. It is easy to notice that live-
group templates can not ensure this, but it can be captured by co-live templates:
given a set of edges, eventually these edges are not taken anymore. Intuitively,
these are the edges that take or keep a play away from I.

Example 3. Consider the game graph in Fig. 2 where we require eventually stop
visiting b, i.e. staying in I = {a, c, d}. To satisfy this objective from vertex a,
Player 0 needs to stop getting out of I eventually. Hence, Player 0 has to stop
taking the edges {eab, edb, ede}, which can be ensured by marking both edges
co-live. Now since no edges are leading to b, the play eventually stays in I,
satisfying the objective. We note that this can not be captured by live-groups
{eaa, eac, ead} and {eda}, since now the strategy that visits c and b alternatively
from Player 0’s vertices, does not satisfy the objective, but follows the live-group.

Formally, a co-Büchi game is a game G = (G,Φ) with co-Büchi winning
condition Φ := ♦�I, for some goal vertices I ⊆ V . A play is winning for Player 0
in such a co-Büchi game if it eventually stays in I forever. The co-live template
is defined by a set of co-live edges D as follows,

Ψcolive(D) :=
∧

e∈D

♦�¬e.

The intuition behind the winning template is that it forces staying in the
winning region using the safety template, and ensures that the play does not go
away from the vertex set I infinitely often using the co-live template. We provide
the procedure in Algorithm2 and its correctness in the following theorem. Here,
CoBüchi(G, I) is a standard algorithm solving the co-Büchi game with the goal
vertices I, and outputs the winning regions for both players [17]. We also use the
standard algorithm Safety(G, I) that solves the safety game with the objective
to stay in A forever.

Theorem 3. Given a co-Büchi game G = (G,♦�I) for some I ⊆ V , if
(S,D) = coBüchiTemplate(G, I) then Ψ = {Ψunsafe(S), Ψcolive(D)} is a win-
ning strategy template for Player 0, computable in time O(nm) with n = |V | and
m = |E|.

3.4 Parity Games

We now consider a more complex but canonical class of ω-regular objectives.
Parity objectives are of central importance in the study of synthesis problems
as they are general enough to model a huge class of qualitative requirements of
cyber-physical systems, while enjoying the properties like positional determinacy.
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Algorithm 2. coBüchiTemplate(G, I)
Input: A game graph G, and a subset of vertices I
Output: A set of unsafe edges S and a set of co-live edges D
1: S ← ∅; D ← ∅
2: W0 ← CoBüchi(G, I); S ← SafetyTemplate(G, W0)
3: G ← G|W0 ; I ← I ∩ W0;
4: while V �= ∅ do
5: A ← Safety(G, I); D ← D ∪ Edges(A, V \A);
6: while cpre0G(A) �= A do � Outputs attr0G(A)
7: B ← cpre0G(A);
8: D ← D ∪ Edges(B, V \(A ∪ B)) ∪ Edges(B, B);
9: A ← A ∪ B;

10: G ← G|V \A; I ← I ∩ V \A;
11: return (S, D)

A parity game is a game G = (G,Φ) with parity winning condition Φ =
Parity(P), where

Parity(P) :=
∧

i∈odd[0;k]

(
�♦Pi =⇒ ∨

j∈even[i+1;k] �♦Pj

)
, (7)

with Pi = {q ∈ Q | P(q) = i} for some priority function P : V → [0; d] that
assigns each vertex a priority. A play is winning for Player 0 in such a game if
the maximum of priorities seen infinitely often is even.

Although parity objectives subsume previously described objectives, we can
construct strategy templates for parity games using the combinations of previ-
ously defined templates. To this end, we give the following algorithm.

Theorem 4. Given a parity game G = (G,Parity(P)) with priority function
P : V → [0; d], if ((W0,W1),H,D) = ParityTemplate(G,P), then Ψ =
{Ψunsafe(S), Ψlive(H), Ψcolive(D)} is a winning strategy template for the game
G, where S = Edges(W0,W1). Moreover, the algorithm terminates in time
O(nd+O(1)), which is same as that of Zielonka’s algorithm.

We refer the readers to the full version [5, Appendix A.3] for the complete
proofs, and here we provide the intuition behind the algorithm and the computa-
tion of the algorithm on the parity game in Fig. 3. The algorithm follows the divide-
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Fig. 3. A parity game, where a vertex with priority i has label pi. The dotted edge in
red is a co-live edge, while the dashed edges in blue are singleton live-groups. (Color
figure online)
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Algorithm 3. ParityTemplate(G,P)
Input: A game graph G, and a priority function P : V → {0, . . . , d}
Output: Winning regions (W0, W1), live-groups H, and co-live edges D
1: if d is odd then
2: A = attr1G(Pd)
3: if A = V then return (∅, V ), ∅, ∅
4: else
5: (W0, W1), H, D ← ParityTemplate(G|V \A,P)
6: if W0 = ∅ then return (∅, V ), ∅, ∅
7: else
8: B = attr0G(W0)
9: D ← D ∪ Edges(W0, V \W0)

10: H ← H ∪ ReachTemplate(G, W0)
11: (W ′

0, W ′
1), H′, D′ ← ParityTemplate(G|V \B ,P)

12: return (W ′
0 ∪ B, W ′

1), H ∪ H′, D ∪ D′

13: else � If d is even
14: A = attr0G(Pd)
15: if A=V then return (V, ∅),ReachTemplate(G, Pd), ∅
16: else
17: (W0, W1), H, D ← ParityTemplate(G|V \A,P)
18: if W1 = ∅ then return (V, ∅), H ∪ ReachTemplate(G|A, Pd), D
19: else
20: B = attr1G(W1)
21: (W ′

0, W ′
1), H′, D′ ← ParityTemplate(G|V \B ,P)

22: return (W ′
0, W ′

1 ∪ B), H′, D′

and-conquer approach of Zeilonka’s algorithm. Since the highest priority occurring
is 6which is even, we first find the vertices A = {d, h} from which Player 0 can force
visiting {d} (vertices with priority 6) in line 14. Then since A �= V , we find the
winning strategy template in the rest of the graph G1 = G|V \A. Then the highest
priority 5 is odd, hence we compute the region {c} from which Player 1 can ensure
visiting 5. We again restrict our graph to G2 = G|{a,b,e,f,g}. Again, the highest pri-
ority is even. We further compute the region A2 = {a, b} from which Player 0 can
ensure visiting the priority 4, giving us G3 = G|{e,f,g}. In G3, Player 0 can ensure
visiting the highest priority 2, hence satisfying the condition in line 15. Then since
in this small graph, Player 0 needs to keep visiting priority 2 infinitely often, which
gives us the live-groups {egf} and {eff} in line 15. Coming one recursive step back
to G2, since G3 doesn’t have a winning vertex for Player 1, the if condition in the
line 18 is satisfied. Hence, for the vertices in A2, it suffices to keep visiting priority
4 to win, which is ensured by the live-group {eab} added in the line 18. Now, again
going one recursive step back to G1, we have W0 = {a, b, e, f, g}. If Player 0 can
ensure reaching and staying in W0 from the rest of the graph G1, it can satisfy the
parity condition. Since from the vertex c, W0 will anyway be reached, we get a co-
live edge ebc in line 9 to eventually keep the play in W0. Coming back to the initial
recursive call, since now again G1 was winning for Player 0, they only need to be
able to visit the priority 6 from every vertex in A, giving another live-group {ehd}.
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4 Extracting Strategies from Strategy Templates

This section discusses how a strategy that follows a computed winning strategy
template can be extracted from the template. As our templates are just par-
ticular LTL formulas, one can of course use automata-theoretic techniques for
this. However, as the types of templates we presented put some local restrictions
on strategies, we can extract a strategy much more efficiently. For instance, the
game in Fig. 2 with strategy template Ψ = Ψlive({eac, ead}) allows the strategy
that simply uses the edges eac and ead alternatively from vertex a.

However, strategy extraction is not as straightforward for every template,
even if it only conjuncts the three template types we introduced in Sect. 3. For
instance, consider again the game graph from Fig. 2 with a strategy template
Ψ = {Ψunsafe(eac, ead), Ψcolive(eaa, eab)}. Here, non of the four choices of Player 0
(i.e., outgoing edges) from vertex a can be taken infinitely often, and, hence, the
only way a play satisfies Ψ is to not visit vertex a infinitely often. On the other
hand, given strategy template Ψ ′ = {Ψcolive(eab, edb), Ψlive({eab, eac, edb})}, edge
edb is both live and co-live, which raises a conflict for vertex d. Hence, the only
way a strategy can follow Ψ ′ is again to ensure that d is not visited infinitely
often. We call such situations conflicts. Interestingly, the methods we presented
in Sect. 3 never create such conflicts and the computed templates are therefore
conflict-free, as formalized next and proven in the full version [5, Appendix A.4].

Definition 1. A strategy template Ψ = {Ψunsafe(S), Ψcolive(D), Ψlive(H)} in a
game graph G = (V,E) is conflict-free if the following are true:

(i) or every vertex v, there is an outgoing edge that is neither co-live nor unsafe,
i.e., v × E(v) �⊆ D ∪ S, and

(ii) for every source vertex v in a live-group H ∈ H, there exists an outgoing
edge in H which is neither co-live nor unsafe, i.e., v × H(v) �⊆ D ∪ S.

Proposition 1. Algorithms 1, 2, and 3 always return conflict-free templates.

Due to the given conflict-freeness, winning strategies are indeed easy to
extract from winning strategy templates, as formalized next.

Proposition 2. Given a game graph G = (V,E) with conflict-free winning
strategy template Ψ = {Ψunsafe(S), Ψcolive(D), Ψlive(H)}, a winning strategy π0
that follows Ψ can be extracted in time O(m), where m is the number of edges.

The proof is straightforward by constructing the winning strategy as follows.
We first remove all unsafe and co-live edges from G and then construct a strategy
π0 that alternates between all remaining edges from every vertex in W0. This
strategy is well defined as condition (i) in Definition 1 ensures that after removing
all the unsafe and co-live edges a choice from every vertex remains. Moreover, if
the vertex is a source of a live-group edge, condition (ii) in Definition 1 ensures
that there are outgoing edges satisfying every live-group. It is easy to see that
the constructed strategy indeed follows Ψ and is hence winning from vertices in
W0, as Ψ was a winning strategy template. We call this procedure of strategy
extraction ExtractStrategy(G,Ψ).
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5 Applications of Strategy Templates

This section considers two concrete applications of strategy templates which
utilize their structural simplicity and easy adaptability.

In the context of CPS control design problems, it is well known that the
game graph of the resulting parity game used for strategy synthesis typically has
a physical interpretation and results from behavioral constraints on the existing
technical system that is subject to control. In particular, following the well-
established paradigm of abstraction-based control design (ABCD) [2,7,39], an
underlying (stochastic) disturbed non-linear dynamical system can be automat-
ically abstracted into a two-player game graph using standard abstraction tools,
e.g. SCOTS [35], ARCS [13], MASCOT [20], P-FACES [22], or ROCS [27].

In contrast to classical problems in reactive synthesis, it is very natural in
this context to think about the game graph and the specification as two different
objects. Here, specifications are naturally expressed via propositions that are
defined over sets of states of this underlying game graph, without changing its
structure. This separation is for example also present in the known LTL fragment
GR(1) [10]. Arguably, this feature has contributed to the success of GR(1)-based
synthesis for CPS applications, e.g. [1,3,24,25,38,40,41].

Given this insight, it is natural to define the incremental synthesis problem
such that the game graph stays unchanged, while newly arriving specifications
are modeled as new parity conditions over the same game graph. Formally, this
results in a generalized parity game where the different objectives arrive one at a
time. We show an incremental algorithm for synthesizing winning strategies for
such games in Sect. 5.1. Similarly, fault-tolerant control requires the controller to
adapt to unavailable actuators within the technical system under control. This
naturally translates to the removal of Player 0 edges within the game graph
given its physical interpretation. We show how strategy templates can be used
to adapt winning strategies to these game graph modifications in Sect. 5.2.

5.1 Incremental Synthesis via Strategy Templates

In this section we consider a 2-player game G with a conjunction Φ =
∧k

i=1 Φi of
multiple parity objectives Φi, also called a generalized parity objective. However,
in comparison to existing work [12,16], we consider the case that different objec-
tives Φi might not arrive all at the same time. The intuition of our algorithm
is to solve each parity game (G,Φi) separately and then combine the resulting
strategy templates Ψi to a global template Ψ =

∧k
i=1 Ψi. This allows to easily

incorporate newly arriving objectives Φk+1. We only need to solve the parity
game (G,Φk+1) and then combine the resulting template Ψk+1 with Ψ .

While Proposition 1 ensures that every individual template Ψi is conflict-
free, this does unfortunately not imply that their conjunction is also conflict-
free. Intuitively, combinations of strategy templates can cause the condition (i)
and (ii) in Definition 1 to not hold anymore, resulting in a conflict. As already
discussed in Sect. 4, this requires source vertices U ⊆ V with such conflicts to
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Algorithm 4. ComposeTemplate(G, (W ′
0,H′,D′, (Φi)i<�), (Φi)�≤i≤k) where

Φi = Parity(Pi)
Input: A generalized parity game G = (V, E) and objectives (Φi)i≤k with Φi =

Parity(Pi) such that Pi : V → [0; 2di +1] along with a partial winning region, live-
groups, and co-live edges (W0, H, D) for the generalized parity game (G,

∧
i<� Φi).

Output: A partial winning region W0, live-groups H, co-live edges D, and modified
parity objectives (Φ′

i)i≤k.
1: (Wi, V \ Wi), Hi, Di ← ParityTemplate(G|W0 , Φi) for each � ≤ i ≤ k
2: H = H′ ∪ ⋃

�≤i≤k Hi; D = D′ ∪ ⋃
�≤i≤k Di; W0 = W ′

0 ∩ ⋂
�≤i≤k Wi

3: C1 = {u ∈ W0 | u × (E(u) ∩ W0) ⊆ D}
4: C2 = {u ∈ W0 | u × (H(u) ∩ W0) ⊆ D, H ∈ H, H(u) �= ∅}
5: if C1 ∪ C2 = ∅ then
6: return (W0, H, D, (Φi)i≤k)
7: else
8: P

′
i(u) ← P[C1 ∪ C2 → 2d′

i + 1] for each i ≤ k
9: return ComposeTemplate(G, (W0, ∅, ∅, ∅), (Φ′

i)i≤k) with Φ′
i = Parity(P′

i))

eventually not be visited anymore. We therefore resolve such conflicts by adding
the specification ♦�¬U to every objective and recomputing the templates.

To efficiently formalize this objective change, we note that a parity objective
Parity(P) with an additional specification ♦�¬U for some U ⊆ V is equivalent to
another parity objective Parity(P′), where priority function P

′ can be obtained
from P : V → [0; 2d+1] just by modifying the priorities of vertices in U to 2d+1.
Let us denote such a priority function by P[U → 2d + 1]. In particular, we have
the following result:

Lemma 1. Given a game graph G and two parity objectives Φ = Parity(P),
Φ′ = Parity(P′) such that P : V → [0; 2d + 1] and P

′ = P[U → 2d + 1] for some
vertex set U ⊆ V , it holds that L(Φ′) = L(Φ ∧ ♦�¬U). Moreover, if a strategy
template is winning from some vertex u in the game G′ = (G,Φ′), then it is also
winning from u in the game G = (G,Φ).

Using the above ideas, we present Algorithm 4 to solve generalized parity
games (possibly incrementally). If no partial solution to the synthesis problem
exists so far we have � = 0, otherwise the game (G,

∧
i<� Φi) was already solved

and the respective winning region and templates are known. In both cases, the
algorithm starts with computing a winning strategy template for each game
(G,Φi) for i ∈ {� + 1, k} (line 1) and conjuncts them with the already com-
puted ones (line 2). Then the algorithm checks for conflicts (line 3–4). If there is
some conflict the algorithm modifies the objectives to ensure that the conflicted
vertices are eventually not visited anymore (line 8), and then re-computes the
templates in the game graph restricted to the intersection of winning regions
for all objectives (line 9). If there is no conflict, then the algorithm returns the
conjunction of the templates which is conflict-free, and hence, is winning from
the intersection of winning regions for every objective (line 6). The latter is for-
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malized in the following theorem. The proof can be found in the full version [5,
Appendix B.2].

Theorem 5. Given a generalized parity game G = (G,
∧

i≤k Φi) with
Φi = Parity(Pi) and priority functions Pi : V → [0; 2di + 1], if
(W0,H,D, (Φ′

i)i≤k) = ComposeTemplate(G, ∅, (V, ∅, ∅), (Φi)i≤k), then Ψ =
{Ψunsafe(S), Ψlive(H), Ψcolive(D)} is an conflict-free strategy template that is
winning from W0 in the game G, where S = Edges(W0, V \ W0). Further,
Ψ is computable in time O(kn2d+3) time, where n = |V | and d = maxi≤k di.

Due to the conflict checks carried out within Algorithm 4 the returned modi-
fied objectives Φ′

i ensure that the conjunction Ψ :=
∧k

i=1 Ψ ′
i of winning strategy

templates Ψ ′
i for the games (G,Φ′

i) is indeed conflict-free. In particular, the con-
juncted template Ψ is actually returned by the algorithm. Hence, incrementally
running Algorithm4 is actually sound. This is an immediate consequence of
Theorem 5 and stated as a corollary next.
Corollary 1. Given a generalized parity game G = (G,

∧
i≤k Φi) with Φi =

Parity(Pi) and priority functions Pi : V → [0; 2di + 1], s.t.

(W ′
0, H′, D′, (Φ′

i)i<�) := ComposeTemplate(G, (V, ∅, ∅, ∅), (Φi)i<�), and
(W0, H, D, (Φ′′

i )i≤k) := ComposeTemplate(G, (W ′
0, H′, D′, (Φ′

i)i<�), (Φi)�≤i≤k)

then Ψ = {Ψunsafe(S), Ψlive(H), Ψcolive(D)} is an conflict-free strategy template
that is winning from W0 in the game G, where S = Edges(W0, V \W0). Further,
Ψ is computable in time O(kn2d+3), where n = |V | and d = maxi≤k di.

We note that the generalized Zielonka algorithm [16] for solving generalized
parity games has time complexity O(mn

∑
2di)

( ∑
di

d1,d2,...,dk

)
for a game with n ver-

tices, m edges and k priority functions: Pi with 2di priorities for each i. Clearly,
Algorithm4 has a much better time complexity. However, it is not complete,
i.e., it does not always return the complete winning region. This is due to tem-
plates being not maximally permissive and hence potentially raising conflicts
which result in additional specifications that are not actually required. The next
example shows such an incomplete instance for illustration. We however note
that Algorithm4 returned the full winning region on all benchmarks considered
during evaluation, suggesting that such instances rarely occur in practice.

Example 4. Consider the game in Fig. 2 with objectives Φ3 ∧ Φ4 with Φ4 =
Parity(P), where P maps vertices a, b, c, d, e, f to 0, 2, 1, 1, 1, 1, respectively. The
winning strategy templates computed by ParityTemplate for objectives Φ3
and Φ4 are Ψ3 = Ψcolive(eab, edb, ede) and Ψ4 = Ψlive({eab, edb, ede}), respectively.
The conjunction of both templates marks all outgoing edges of vertex a and d in
the live-group co-live. Hence, the algorithm would ensure that these conflicted
vertices a and d are eventually not visited anymore. However, the only way to
satisfy Φ3∧Φ4 is by eventually looping on vertex a. But this solution was skipped
by the strategy template Ψ4 by putting edge eab in a live-group. Therefore,
the algorithm returns the empty set as the winning region, whereas the actual
winning region is the whole vertex set.
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5.2 Fault-Tolerant Strategy Adaptation

In this section we consider a 2-player parity game G = (G,Parity(P)) and a set of
faulty Player 0 edges F ⊆ E ∩ (V 0 ×V ) which might become unavailable during
runtime. Given a strategy template Ψ for G, we can use Ψ ′ = {Ψ, Ψunsafe(F )} for
the (linear-time) extraction of a new strategy for the game, if Ψ ′ is conflict-free for
G. In this case, no re-computation is needed. If Ψ ′ is not conflict-free for G, then
we can remove the edges in F and compute a new winning strategy template
using Algorithm3. This is formalized in Algorithm5, where we slightly abuse
notation and assume that ParityTemplate only outputs strategy templates.
The correctness of Algorithm 5 follows directly from Theorem 4.

Corollary 2. Given a 2-player parity game G = (G,Parity(P)) with a strategy
template Ψ = ParityTemplate(G,P) and faulty edge set F ⊆ E ∩ (V 0 × V ) it
holds that Ψ ′ obtained from Algorithm5 is a winning strategy template for G|E\F .

Faulty edges introduce an additional safety specification for which our templates
are maximally permissive. This implies that Algorithm5 is sound and complete
– if there exists a winning strategy for (G|E\F ,Parity(P)) Algorithm5 finds one.

Let us now assume that F collects all edges controlling vulnerable actuators
that might become unavailable. In this scenario, Algorithm5 returns a conserva-
tive strategy that never uses vulnerable actuators. It might however be desirable
to use actuators as long as they are available to obtain better performance. For-
mally, this application scenario can be defined via a time-dependent graph who’s
edges change over time, i.e., Et with E0 = E are the edges available at time
t ∈ N and F := {e ∈ E | e �∈ Ei, for some i}. Given the original parity game
G = (G,Parity(P)) with a winning strategy template Ψ we can easily modify
ExtractStrategy(G, Ψ) to obtain a time-dependent strategy πg which reacts
to the unavailability of edges, i.e., at time t, πg takes an edge e ∈ Et\(S ∪D) for
all vertices without any live-group, and for the ones with live-groups, it alter-
nates between the edges satisfying the live-groups whenever they are available,
and an edge e ∈ Et\(S ∪ D) when no live-group edge is available.

The online strategy πg can be implemented even without knowing when edges
are available2, i.e., without knowing the time dependent edge sequence {Et}t∈N

Algorithm 5. FaultCorrection(G,Ψ, F )
Input: A parity game G = (G,Parity(P)), a strategy template Ψ , and a set of faulty

edges F
Output: A new strategy template Ψ ′

1: Ψ ′ ← {Ψ, Ψunsafe(F )}
2: if CheckTemplate(G,Ψ ′) then return Ψ ′

3: else
4: return ParityTemplate(G|E\F ,P|E\F )

2 We note that it is reasonable to assume that current actuator faults are visible to
the controller at runtime, see e.g. [34] for a real water gate control example.
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up front. In this case πg is obviously winning in G = (G,Parity(P)) if Ψ is
conflict-free for G|E\F . If this is not the case, one needs to ensure that edges
that cause conflicts are always eventually available again, as formalized next.

Definition 2. Given a parity game G = (G,Parity(P)) we call the dynamic
edge set {Ei}i≥0 a guaranteed availability fault (GAF) if ∀ plays ρ = v0v1 . . .,
∀v ∈ V , if v ∈ inf(ρ), then ∀e = (v, w) ∈ F , ∃ infinitely many times t0, t1 . . .
such that vtj = v and e ∈ Etj , ∀j ≥ 0.

Intuitively, guaranteed availability faults (GAF) ensure that a faulty edge is
always eventually available when a play is in its source vertex. Under this fault,
the following fault-correction result holds, which is proven in the full version [5,
Appendix B.3].

Proposition 3. Given a game graph G with a parity objective Φ, a strategy
template Ψ = {Ψunsafe(S), Ψlive(H), Ψcolive(D)} computed by Algorithm3 and a
set F = {e ∈ E | e �∈ Ei, for some i} of faulty edges, the game with the objective
is realizable under GAF if for every vertex v ∈ V 0, there is an outgoing edge
which is not in S ∪ D ∪ F .

This proposition allows a simple linear-time algorithm to check if the tem-
plates computed by Algorithm3 are GAF-tolerant: check if every vertex in the
winning region has an outgoing edge which is not in S ∪D ∪F . If this is not the
case, the recomputation is non-trivial and is out of scope of this paper. We can
however collect the vertices which do not satisfy the above property and alert the
system engineer that these vulnerable actuators require additional maintenance
or protective hardware. Our experimental results in Sect. 6 show that conflicts
arising from actuator faults are rare and very local. Our strategy templates allow
to easily localize them, which supports their use for CPS applications.

6 Empirical Evaluation

We have developed a C++-based prototype tool PeSTel3 (computing
Permissive Strategy Templates) that implements Algorithms 1–5. We have
used PeSTel to show its superior performance on the two applications con-
sidered in Sect. 5, suggesting its practical relevance. All our experiments were
performed on a computer equipped with Apple M1 Pro 8-core CPU and 16GB
RAM.

Incremental Synthesis. We used PeSTel to solve generalized parity games
both in one shot and incremental. We compare our algorithm with existing algo-
rithms, i.e., GenZiel from [16] and three partial solvers4 from [12], by executing
3 Repository URL: https://github.com/satya2009rta/pestel.
4 While GenZiel is sound and complete [16], we found different randomly generated

games where the algorithms from [12] either return a superset or a subset of the
winning region, hence compromising soundness and completeness. Since [12] lacks
rigorous proof, it is not clear whether this is an implementation bug or a theoretical
mishap, leaving soundness and completeness guarantees of these algorithms open.

https://github.com/satya2009rta/pestel
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Table 1. Aggregated experimental results on generalize parity game benchmarks with
objectives given up-front (top) and one-by-one (bottom). Subrows: 1st row (mean time)
– average computation time (in ms); 2nd row (incomplete) – number of examples where
the corresponding tool failed to compute the complete winning region; 3rd row (faster
than) – number of examples where PeSTel is faster than the respective tool; 4th row
(timeouts) – number of examples where the respective tool timed out (10000 ms).

PeSTel GenZiel [16]
GenZiel &

GenBüchi [12]
GenZiel &

GenGoodEp[12]
GenZiel &
GenLay[12]

Benchmark A
(one shot)

mean time 343 64 68 553 1224
incomplete 0 - 3 3 2
faster than - 74% 75% 96% 85%
timeouts 0 0 0 2 20

Benchmark B
(one shot)

mean time 60 47 58 112 171
incomplete 0 - 28 27 2
faster than - 93% 93% 97% 95%
timeouts 1 0 2 4 18

Overall faster than - 90% 90% 97% 94%

Benchmark B
(incremental)

mean time 91 208 215 338 394
incomplete 0 - 24 23 2
faster than - 97% 97% 98% 99%
timeouts 2 0 0 8 23

them on a large set of benchmarks. We have generated two types of benchmarks
from the games used for the Reactive Synthesis Competition (SYNTCOMP) [21].
Benchmark A was generated by converting parity games into Street games using
standard methods, and as each Streett pair can be represented by a {0, 1, 2}-
priority parity game, we represented the complete Streett objective as a con-
junction of multiple {0, 1, 2}-priority parity objectives, resulting in a generalized
parity game. Benchmark B was generated by adding randomly5 generated parity
objectives to given parity games. We considered 200 examples in Benchmark A
and more than 1400 examples in Benchmark B.

We summarize the complete set of results of the experiments in6 Table 1 and
Fig. 1. We performed two kinds of experiments. First, we solved every generalized
parity game in Benchmark A and B in one shot using the different methods.
The results are shown in Table 1(top) and Fig. 1(left). Although the average
time taken by PeSTel is higher than GenZiel and one partial solver, it is
fastest in more than 90% of the games in both benchmarks. Thus, it shows that
PeSTel is as efficient as the other methods in most cases. Moreover, for every

5 The random generator takes three parameters: game graph “G”, number of objectives
“k”, and maximum priority “m”; and then it generates “k” random parity objectives
with maximum priority “m” as follows: 50% of the vertices in “G” are selected ran-
domly, and those vertices are assigned priorities ranging from 0 to “m” (including 0
and m) such that 1/m-th (of those 50%) vertices are assigned priority 0 and 1/m-
th are assigned priority 1 and so on. The rest 50% are assigned random priorities
ranging from 0 to “m”. Hence, for every priority, there are at least 1/(2m)-th vertices
(i.e., 1/m-th of 50% vertices) with that priority.

6 See the full version of this paper [5, Appendix C] for a version of Fig. 1 including all
solvers considered in Table 1.
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Fig. 4. Experimental results for parity games with faulty edges. Left: percentage of
instances with conflicts given a certain percentage of faulty edges. Right: average per-
centage of vertices that created conflicts given a certain percentage of faulty edges.

game in both benchmarks, PeSTel succeeded to compute the complete winning
region, whereas the partial solvers failed to do so in some cases7. We note that
the instances which are hard for PeSTel are those where the winning region
becomes empty, which is quickly detected by GenZiel but only seen by PeSTel
after most objectives are (separately) considered.

Second, we solved the examples in Benchmark B by adding the objectives
one-by-one, i.e., we solved the game with one objective, then we added one more
objective and solved it again, and so on. The results are shown in Table 1(bottom)
and Fig. 1(right). As PeSTel can use the pre-computed strategy templates if we
add a new objective to a game, it outperforms all the other solvers significantly
as they need to re-solve the game from scratch every time.
Fault-Tolerant Control. As discussed in Sect. 5.2, strategy templates can be
used to implement a fault tolerant time-dependent strategy, if the set of faulty
edges F does not cause conflicts with the strategy template. We have used PeS-
Tel on over 200 examples of parity games from SYNTCOMP [21] to evaluate
the relevance of such conflicts in practice. For this, we randomly selected different
percentages of edges to be faulty and checked for conflicts with the given tem-
plate. The results are summarized in Fig. 4. The left plot shows the number of
instances for which a conflict occurs if a certain percentage of randomly selected
edges is faulty. We see that the majority of the instances never faces a conflict
even when 30% of the edges are faulty. Looking more closely into the instances
with conflicts, Fig. 4(right) shows the average number of conflicting vertices in
these benchmarks. Here we see that conflicts occur very locally at a very small
number of vertices. Our strategy templates allow for a linear-time algorithm to
localize them, allowing to mitigate them in practice by additional hardware.

Remark 1. We remark again that our results are directly applicable to CPS
with continuous dynamics via the paradigm of abstraction-based control
design (ABCD). In particular, standard abstraction tools such as SCOTS [35],
7 Additionally, we outperform all algorithms on the benchmarks considered by Bruyère

et al. [12]. We have however chosen to not include them in our analysis as many of
their generalized parity games have only one objective and are therefore trivial.
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ARCS [13], MASCOT [20], P-FACES [20], or ROCS [27] automatically compute
a game graph from the (stochastic) continuous dynamics that can directly be
used as an input to PeSTel. The winning strategy computed by PeSTel can
further be refined into a correct-by-construction continuous feedback controller
for the original dynamical system using standard methods from ABCD. We leave
these tool integrations to future work.
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Abstract. Data scientists often need to write programs to process pre-
dictions of machine learning models, such as object detections and trajec-
tories in video data. However, writing such queries can be challenging due
to the fuzzy nature of real-world data; in particular, they often include
real-valued parameters that must be tuned by hand. We propose a novel
framework called Quivr that synthesizes trajectory queries matching a
given set of examples. To efficiently synthesize parameters, we introduce
a novel technique for pruning the parameter space and a novel quanti-
tative semantics that makes this more efficient. We evaluate Quivr on
a benchmark of 17 tasks, including several from prior work, and show
both that it can synthesize accurate queries for each task and that our
optimizations substantially reduce synthesis time.

1 Introduction

Over the past decade, deep neural networks (DNNs) have successfully solved
challenging artificial intelligence problems [47,70]. Abstractly, these models can
be thought of as providing interfaces to real-world data—e.g., they can pro-
vide object classes [30,47], detections [59,60], and trajectories [10,11,83]. Then,
these predictions are processed by programs, e.g., to identify driving patterns [5],
events in TV broadcasts [28], or animal behaviors [67].

However, writing such programs can be challenging since they must still
account for the fuzziness of real data. To do so, these programs typically include
real-valued parameters that need to be manually tuned by the user. For exam-
ple, consider a query over car trajectories designed to identify instances where
one car turns in front of another. This query must capture the shape of the
trajectory of both the turning car and the car crossing the intersection. In addi-
tion, the user must select the appropriate maximum duration from the first car
changing lanes to the second car crossing the intersection. Even an expert would
require significant experimentation to determine good parameter values; in our
experience, it can take up to an hour to tune the parameters for a single query.

Appendices are available in the technical report [51].
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We focus on programs that query databases of trajectories output by an
object tracker [5,7,8,28,40–42,54]. Given a video, the tracker predicts the posi-
tions of objects in each frame (e.g., cars, people, or mice), as well as associ-
ations between detections of the same object across successive frames. Appli-
cations often require subsequent analysis of these trajectories. For example, in
autonomous driving, when a risky scenario is encountered, engineers typically
search for additional examples of that driving pattern to improve their plan-
ner [63,64,66]—e.g., cars driving too close [82] or stopping in the middle of the
road [6]. Object tracking has also been used to track robots [58,81], animals for
behavioral analysis [12,67,75], and basketball players for sports analytics [67,85].

We propose an algorithm for synthesizing queries over object trajectories
given just a handful of input-output examples. A query takes as input a repre-
sentation of a trajectory as a sequence of states (e.g., position, velocity, and accel-
eration) in successive frames of the video, and outputs whether the trajectory
matches its semantics. Our query language is based on regular expressions—in
particular, a query is a composition of a user-extensible set of predicates using
the sequencing, conjunction, and iteration operators. For instance, trajectories
might correspond to cars in a video; Fig. 1 shows a query for identifying cars turn-
ing at an intersection. As we discuss in Sect. 6, the full query language semantics
is rich enough to subsume (variants of) Kleene algebras with tests (KAT) [46]
and signal temporal logic (STL) [50]; however, such generality is seldom needed,
so we use a pared-down query language that works well in practice.

Our algorithm performs enumerative search over the space of possible queries
to identify ones that are consistent with the given examples. A key challenge in
our setting is that our predicates have real-valued parameters that must also be
synthesized. Thus, our strategy enumerates sketches, which are partial programs
that only contain holes corresponding to real-valued parameters. For each sketch,
we search over the space of real-valued parameters, while using an efficient prun-
ing strategy to reduce the search space. At a high level, we use a quantitative
semantics to directly compute “boundary parameters” at which a given exam-
ple switches from being labeled positive to negative. Then, depending on the
target label, we can prune the entire region of the search space on one side of
these boundary parameters. We prove that this synthesis strategy comes with
soundness and (partial) completeness guarantees.

We implement our approach in a system called Quivr.1 Our implementa-
tion focuses on videos from fixed-position cameras. While our language and
synthesis algorithm are general, the predicates we design are tailored to specific
settings. We evaluate Quivr on identifying driving patterns in traffic videos,
including ones inspired by recent work on autonomous driving [63,64,66], on
behavior detection in a dataset of mouse trajectories [72], and on a synthetic
task from the temporal logic synthesis literature [44]. We demonstrate how both
our parameter pruning strategies and our query evaluation optimizations lead
to substantial reductions in the running time of our synthesizer.

1 Quivr stands for QUery Induction for Video tRajectories.
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(a) (b)

InLane1 ; Any ; InLane2

Fig. 1. (a) A video frame from a traffic camera, along with object trajectories (red) and
manually annotated lanes (black). (b) The trajectories selected by the query (bottom),
which selects cars turning at the intersection. (Color figure online)

In summary, our contributions are:

– A language for querying object trajectories (Sect. 3) and an algorithm for
synthesizing such queries from examples (Sect. 4).

– An efficient parameter pruning approach based on a novel quantitative seman-
tics (Sect. 4), yielding a 5.0× speedup over the state-of-the-art quantitative
pruning technique from the temporal logic synthesis literature.

– An implementation of our approach in Quivr, and an evaluation of Quivr on
identifying driving behaviors in traffic camera video and mouse behaviors in
a dataset of mouse trajectories (Sect. 5), demonstrating substantially better
accuracy than neural network baselines.

2 Overview

We consider a hypothetical scenario where an engineer is designing a control
algorithm for an autonomous car and would like to identify certain driving pat-
terns in video data. We show how they can use our framework to synthesize a
query to identify car trajectories that exhibit a given behavior.

Video Data. Traffic cameras are a rich source of driving behaviors [5,13,61];
one dataset used in our evaluation is YTStreams [7], which includes video from
several such cameras. Figure 1(a) shows a single frame from such a video; we
have used an object tracker [83] to identify all car trajectories (in red).

Predicates. Quivr assumes it is given a set of predicates that match portions of
trajectories exhibiting behaviors of interest; during synthesis, it considers queries
composed of these predicates. In Fig. 1(a), the engineer has manually annotated
the lanes of interest in this video (black), to specify four InLaneK predicates that
select trajectories of cars driving in each lane K visible in the video. Predicates
may be configured by real-valued parameters. For example,

〈InLane1〉 ∧ 〈DispLtθ〉
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InLane1(A) ; Any ; InLane2(A) ∧ InLane2(B)

Fig. 2. A single match (top) for the multi-object query (bottom) which captures one
car, A, turning into a lane behind another car, B, that is in that lane. The trajectories
change color from red to green as a function of time. As can be seen, the car making
the right turn does so just after the car going straight passes through the intersection.
(Color figure online)

searches for trajectories where the car stays in lane 1 for a period of time and
the car has a displacement at most θ between the beginning and end of that
period. Note that atomic predicates, like 〈DispLtθ〉, can match multiple time-
steps, whereas in formalisms like regular expressions and temporal logic, atomic
predicates are over single time-steps. A key feature of our framework is that the
set of available predicates is highly extensible, and the user can provide their
own. See Sect. 5.1 for the predicates we use in our evaluation.

Synthesis. To specify a driving pattern, the engineer provides a small number of
initial positive and negative examples of trajectories; then, Quivr synthesizes
a query that correctly labels these examples. In Fig. 1(b), we show the result of
executing the query shown, which is synthesized to identify left turns in the data.
Often, there are multiple queries consistent with the initial examples. While it
may be hard for users to sift through the video for positive examples, it is usually
easy for them to label a given trajectory. Thus, to disambiguate, Quivr asks
the user to label additional trajectories [19,36,62].

Multi-object Queries. So far, we have focused on queries that identify trajectories
by processing each trajectory in isolation. A key feature of our framework is that
users can express queries over multiple trajectories—for example,

(〈InLane1(B)〉 ∧ 〈ChangeLane2To1(A)〉) ; 〈InFront(A,B)〉.

This query says that car B is in lane 1 while car A changes from lane 2 to lane
1, and car A ends up in front of car B. Note that the predicates now include
variables indicating which object they refer to, and the predicate InFront(A,B)
refers to multiple objects. An example of a pair of trajectories selected by a
multi-object query is shown in Fig. 2.
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3 Query Language

We describe our query language for matching object trajectories in videos. Our
system first preprocesses the video using an object tracker to obtain trajectories,
which are sequences z = (x0, x1, ..., xn−1) of states xi ∈ X . Then, a query Q in
our language maps each trajectory z to a value B = {0, 1} indicating whether it
matches z. Our language is similar to both STL and KAT. One key difference is
that predicates are over arbitrary subsequences of z rather than single states x.
In the main paper, we consider a simpler language, but in Appendix A we show
how it can be extended to subsume both STL and KAT.

Trajectories. We begin by describing the input to a query in our language, which
is the representation of one or more concurrent object trajectories in a video.

Consider a space S corresponding to a single object detection in a single
video frame—e.g., s ∈ S ⊆ R

6 might encode the 2D position, velocity, and
acceleration of s in image coordinates. When considering m concurrent objects,
let the space of states X = Sm, and then a trajectory z ∈ Z = X ∗ is a sequence
z = (x0, x1, ..., xn−1) of states of length |z| = n. We use the notation zi:j =
(zi, zi+1, ..., zj−1) to denote a subtrajectory of z.

Predicates. We assume a set of predicates Φ is given, where each predicate ϕ ∈ Φ
matches trajectories z ∈ Z; we use satϕ(z) ∈ B = {0, 1} to indicate that ϕ
matches z. As discussed below, queries in our language compose these predicates
to match more complex patterns.

Next, predicates in our language may have real-valued parameters that must
be specified. We denote such a predicate ϕ with parameter θ ∈ R by ϕθ. To enable
our synthesis algorithm to efficiently synthesize these real-valued parameters, we
leverage the monotonicity in all such predicates we have used in our queries. In
particular, we assume that the semantics of these predicates have the form

�ϕθ�(z) := 1(ιϕ(z) ≥ θ),

where ιϕ : Z → R is a scoring function. We also assume that the range of ιϕ
is bounded (which can be achieved with a sigmoid function, if necessary). For
example, for the predicate DispLtθ, we have ιDispLt(z) = −‖z0 − zn−1‖. Thus,
ιDispLt(z) ≥ θ says the total displacement is at most −θ. We describe the predi-
cates we include in Sect. 5.1; they can easily be extended.

Syntax. The syntax of our language is

Q ::= ϕ | Q ; Q | Qk | Q ∧ Q,

where Qk = Q;Q; ...;Q (k times). That is, the base case is a single predicate ϕ,
and queries can be composed using sequencing (Q ; Q) and conjunction (Q∧Q).
Operators for disjunction, negation, Kleene star, and STL’s “until” are discussed
in Appendix A.2. We describe constraints imposed on our language during syn-
thesis in Sect. 4.7.

Semantics. The satisfaction semantics of queries have type �·� : Q → Z → B,
where Q is the set of all queries in our language, Z is the set of trajectories, and
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ϕ (z) := satϕ(z)

Q1 ∧ Q2 (z) := Q1 (z) ∧ Q2 (z)

Q1 ; Q2 (z) :=
n

k=0

Q1 (z0:k) ∧ Q2 (zk:n)

Fig. 3. Satisfaction semantics of our query language; z ∈ Z is a trajectory of length n
and ϕ ∈ Φ are predicates. Iteration (Qk) can be expressed as repeated sequencing.

B = {0, 1}. In particular, �Q�(z) ∈ B indicates whether the query Q matches
trajectory z. The semantics are defined in Fig. 3. The base case of a single predi-
cate ϕ checks whether ϕ matches z; conjunction Q1∧Q2 checks if both conjuncts
match; and sequencing Q1 ; Q2 checks if z can be split into z = z0:kzk:n in a way
that Q1 matches z0:k and Q2 matches zk:n. The semantics can be evaluated in
time O(|Q| · n2).

4 Synthesis Algorithm

We describe our algorithm for synthesizing queries consistent with a given set
of examples. It performs a syntax-guided enumerative search over the space of
possible queries [3]. In more detail, it enumerates sketches, which are partial
programs where only parameter values are missing. For each sketch, it uses a
quantitative pruning strategy to compute the subset of the input parameters for
which the resulting query is consistent with the given examples. A key contribu-
tion is how our algorithm uses quantitative semantics for quantitative pruning.

4.1 Problem Formulation

Partial Queries. A partial query is in the grammar

Q ::= ?? | ϕ?? | ϕ | Q ; Q | Qk | Q ∧ Q.

Note that there are two kinds of holes: (i) a predicate hole h = ?? that can be
filled by a sub-query Q, and (ii) a parameter hole h = ϕ?? that can be filled by a
real value θh ∈ R. We denote the predicate holes of Q by Hϕ(Q), the parameter
holes by Hθ(Q), and let H(Q) = Hϕ(Q) ∪ Hθ(Q). A partial query Q is a sketch
(denoted Q ∈ Qsketch) [71] if Hϕ(Q) = ∅, and is complete (denoted Q ∈ Q̄)
if H(Q) = ∅. For example, for Q = 〈DispLt??1〉∧??2, we have Hθ(Q) = {??1}
and Hϕ(Q) = {??2}. (We label each hole h = ??i with an identifier i ∈ N to
distinguish them.)

Refinements and Completions. Given query Q ∈ Q, predicate hole h ∈ Hϕ(Q),
and production R = Q → f(Q1, ..., Qk) we can fill h with R (denoted Q′ =
fill(Q,h,R)) by replacing h with f(??1, ..., ??k), where each ??i is a fresh hole,
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and similarly given a parameter hole h ∈ Hθ(Q) and a value θh ∈ R. We call Q′

a child of Q (denoted Q → Q′). Next, we call Q′′ a refinement of Q (denoted
Q

∗−→ Q′′) if there exists a sequence Q → ... → Q′′; if furthermore Q′′ ∈ Q̄, we
say it is a completion of Q. For example, we have

??1 → ??2 ; ??3 → 〈InLane1〉 ; ??3 → . . . .

Here, 〈InLane1〉 ; ??3 is a child (and refinement) of ??2 ; ??3 obtained by filling
??2 with Q → 〈InLane1〉—i.e.,

〈InLane1〉 ; ??3 = fill(??2 ; ??3, ??2, Q → 〈InLane1〉).

Parameters. We let θ ∈ R
|Hθ(Q)| denote a choice of parameters for each h ∈

Hθ(Q), let θh ∈ Θh ⊆ R denote the parameter for hole h, and let Qθ denote the
query obtained by filling each h ∈ Hθ(Q) with θh. Note that if Q ∈ Qsketch, then
Qθ ∈ Q̄ is complete. For example, consider the sketch

Q = 〈DispLt??1〉 ∧ 〈MinLength??2〉.
This query has two holes, so its parameters are θ ∈ R

2. If θ = (3.2, 5.0), then
θ??1 = 3.2 is used to fill hole ??1 and θ??2 = 5.0 is used to fill ??2. In particular,

Qθ = 〈DispLt3.2〉 ∧ 〈MinLength5.0〉.
Query Synthesis Problem. Given examples W ⊆ W = Z × B, where B = {0, 1},
our goal is to find a query Q ∈ Q̄ that correctly labels these examples—i.e.,

ψW (Q) :=
∧

(z,y)∈W

(�Q�(z) = y).

Thus, ψW (Q) indicates whether Q is consistent with the labeled examples W .
Our goal is to devise a synthesis algorithm that is sound and complete—i.e., it
finds a query that satisfies ψW (Q) = 1 if and only if one exists.

4.2 Algorithm Overview

Our algorithm enumerates sketches Q ∈ Qsketch; for each one, it tries to compute
parameter values θ such that the completed query Qθ is consistent with W—i.e.,
ψW (Qθ) = 1. It can either stop once it has found a consistent query, or identify
additional queries that are consistent with W . Algorithm 1 shows this high-level
strategy—at each iteration, it selects a sketch Q, determines a region B of the
parameter space containing consistent parameters θ ∈ B, and adds (Q,B) to a
list of consistent queries that solve the synthesis problem.

The key challenge is searching over the space of continuous parameters θ
for a given sketch Q such that Qθ is consistent with W . For efficiency, we rely
heavily on pruning the search space. At a high level, consider evaluating a single
candidate parameter θ on a single example (z, y) ∈ W—i.e., check whether
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Algorithm 1. Synthesizes consistent queries using the subroutine in Algorithm 2
1: procedure SynthesizeQuery(W )
2: Qcon ← ∅

3: for Q ∈ Qsketch do
4: B ← SynthesizeParameters(W, Q)
5: Qcon ← {(Q, B)}
6: return Qcon

�Qθ�(z) = y. If this condition does not hold, then we can not only prune θ from
the search space, but also a significant fraction of additional candidates. For
instance, suppose �Qθ�(z) = 1 but y = 0; if θ′ ≤ θ (in all components), then by
a monotonicity property we prove for our semantics, we also have �Qθ′�(z) = 1.
Thus, we can also prune θ′.

Previous work has leveraged this property to prune the search space [49,53,
78]. Using a strategy based on binary search, for a given example (z, y) ∈ W , we
can identify “boundary” parameters θ to accuracy ε in O(log(1/ε)) steps—i.e.,
compute θ for which �Qθ−�ε�(z) = 1 and �Qθ+�ε�(z) = 0.

Our algorithm avoids this binary search process, which can lead to a signifi-
cant speedup in practice. The key idea is to devise a quantitative semantics for
queries that directly computes θ; in fact, this quantitative semantics is closely
related to robust temporal logic semantics, where the conjunction and disjunc-
tion of the satisfaction semantics are replaced with minimum and maximum,
respectively.

4.3 Pruning with Boundary Parameters

We begin by describing how “boundary parameters” can be used to prune a
portion of the search space over parameters. First, for any candidate parameters
θ, we can prune parameters θ′ ≤ θ (if �Qθ�(z) = 1 and y = 0) or θ′ ≥ θ (if
�Qθ�(z) = 0 and y = 1). Pruned regions of the parameter space take the form of
hyper-rectangles, which we call boxes. For convenience, let 	∞ := (∞, . . . ,∞).

Definition 1. Given x, y ∈ R̄
d, where R̄ = R ∪ {±∞}, a box is an axis-aligned

half-open hyper-rectangle x, y� := {v | xi < vi ≤ yi} ⊆ R
d.

The key property ensuring that parameters prune boxes of the search space is
that the semantics are monotonically decreasing in θ.

Lemma 1. Given sketch Q, trajectory z, and two candidate parameters θ, θ′ ∈
R

d such that θ ≤ θ′ component-wise, we have �Qθ�(z) ≥ �Qθ′�(z).

The proof follows by structural induction on the query semantics: the base case
follows since the semantics 1(ιϕ(z) ≥ θk) for predicates is monotonically decreas-
ing in θk, and the inductive case follows since conjunction and disjunction are
monotonically increasing in their inputs (so they are also monotonically decreas-
ing in θk). Below, we show how monotonicity ensures that we can prune whole
regions of the search space if we find boundary parameters.
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As an example, suppose we have two trajectories, z0 of a car driving quickly
and then slowly, and z1 of a car driving slowly and then quickly, and that we are
trying to synthesize a query for W = {(z0, 0), (z1, 1)}. For simplicity, we assume
both z0 = (0.9, 0.6) and z1 = (0.5, 0.8) have just two time steps each, with just
a single component representing velocity. Furthermore, we assume there is just
a single predicate 〈VelGtθ〉 matching time steps where the velocity is at least θ,
where θ is a real-valued parameter. Since 〈VelGtθ〉 matches single time steps,
the satisfaction semantics is 0 except on trajectories of length 1, so:

ιVelGt((z0)0:1) = 0.9 ιVelGt((z0)1:2) = 0.6 ιVelGt((z)i:i) = −∞
ιVelGt((z1)0:1) = 0.5 ιVelGt((z1)1:2) = 0.8 ιVelGt((z)0:2) = −∞

Consider the sketch Q = 〈VelGt??1〉; 〈VelGt??2〉. We can see that the candidate
parameters (0.5, 0.6) satisfy �Q(0.5,0.6)�(z1) = 1:

�Q(0.5,0.6)�((z1)0:n) =
2∨

k=0

�〈VelGt0.5〉�((z1)0:k) ∧ �〈VelGt0.6〉�((z1)k:n)

= �〈VelGt0.5〉�((z1)0:1) ∧ �〈VelGt0.6〉�((z1)1:2)
= 1(0.5 ≥ 0.5) ∧ 1(0.8 ≥ 0.6)
= 1,

where the second equality holds because 〈VelGtθ〉 matches only length-1 trajec-
tories, so the k = 0 and k = 2 cases evaluate to 0. Since the semantics are mono-
tonically decreasing, we have �Qθ�(z1) = 1 for any θ ∈ (−∞,−∞), (0.5, 0.6)�.

Notice, however, that if we were to move any 	ε > 0 upward, we would have
�Q(0.5+ε1,0.6+ε2)�(z1) = 1(0.5 ≥ 0.5 + ε1) ∧ 1(0.8 ≥ 0.6 + ε2) = 0. So we know
�Qθ�(z1) = 0 for any θ ∈ (0.5, 0.6), (∞,∞)�. This is because (0.5, 0.6) lies on the
boundary between {θ′ | �Qθ′�(z) = 0} and {θ′ | �Qθ′�(z) = 1}. This boundary
plays a key role in our algorithm.

Definition 2. Given a sketch Q with d parameter holes and a trajectory z, we
say θ ∈ R

d ∪ {⊥,�} is a boundary parameter if one of the following holds:

– θ ∈ R
d and �Qθ�(z) = 1, but �Qθ′�(z) = 0 for all θ′ ∈ θ, 	∞�

– θ = ⊥ and �Qθ′�(z) = 0 for all θ′ ∈ − 	∞, 	∞�
– θ = � and �Qθ′�(z) = 1 for all θ′ ∈ − 	∞, 	∞�
In the first case, by monotonicity, we also have �Qθ′�(z) = 1 for all θ′ ∈ − 	∞, θ�;
thus, θ lies on the boundary between parameters θ′ where Qθ′ evaluates to 1 and
those where it evaluates to 0. The second and third cases are where Qθ′ always
evaluates to 0 and 1, respectively.

Given a boundary parameter θ for an example (z, y) ∈ W , we can prune
θ, 	∞� if y = 1 or − 	∞, θ� if y = 0. Intuitively, boundary parameters pro-
vide optimal pruning along a fixed direction in the parameter space. Thus, our
algorithm focuses on computing boundary parameters for pruning.
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Fig. 4. (a) shows a boundary parameter, θ1, for z1, and a region that is inconsistent
with z1 and can be pruned (red), as well as a region that is consistent with it (blue). (b)
similarly shows a boundary parameter θ0 for z0. (c) shows the pruning pair composed
of θ0 and θ1, a region consistent with both (blue), and regions inconsistent with either
(red). (d) is the same as (c), but if θ0 and θ1 swapped places. The labels b0 through b8
denote analogous boxes in (c) & (d). (e) shows how, if (d) were the result of the first
step of search and b6 were chosen next, search could proceed. (f) shows ground truth
consistent (blue) and inconsistent (red) regions that the search process in (d) & (e)
might converge toward. (Color figure online)

In Fig. 4(a), if θ1 is a boundary parameter for z1, we know that the blue
region satisfies z1, and thus is consistent with the label 1, while the red region
dissatisfies z1, and thus is inconsistent with the label 1. Similarly, in Fig. 4(b), if
θ0 is a boundary parameter for z0, we know that the red satisfies z1, and thus is
inconsistent with the label 0, while the blue dissatisfies z0, and thus is consistent
with the label 0.

4.4 Pruning with Pairs of Boundary Parameters

To extend pruning to the entire dataset W , we could simply prune the union of
the individual pruned regions for each (z, y) ∈ W . However, one important fea-
ture of our approach is that we can also establish regions of the parameter space
where the parameters are guaranteed to be consistent with W . To formalize this
idea, we introduce the concept of a “pruning pair”, which is a pair of boundary
parameters which might allow us to find such a consistent region.

Definition 3. Given a sketch Q and a dataset W , a pair of boundary parameters
θ−, θ+ ∈ R

d ∪ {⊥,�} is a pruning pair for Q and W if all of the following hold:

– θ+ is a boundary parameter for some z ∈ W+ and, for all z′ ∈ W+ such that
z′ �= z, we have �Qθ+�(z′) = 1.

– θ− is a boundary parameter for some z ∈ W− and, for all z′ ∈ W− such that
z′ �= z, we have �Qθ−�(z′) = 0.

– θ− < θ+ or θ− ≥ θ+.

If θ− < θ+, the pruning pair (θ−, θ+) is consistent, and inconsistent otherwise.

Our algorithm searches for pruning pairs along a fixed direction—i.e., it considers
a curve L ⊆ R

d and looks for the following pruning pair along L:

θ+ = sup

{

θ ∈ L

∣
∣
∣
∣

∧

z∈W+

�Qθ�(z) = 1

}

, θ− = inf

{

θ ∈ L

∣
∣
∣
∣

∧

z∈W −
�Qθ�(z) = 0

}

.
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Intuitively, θ+ is the largest θ that correctly classifies all positive examples, and
conversely for θ−. We restrict to curves L that are monotonically increasing in
all components, in which case the supremum and infimum are well defined since
L comes with a total ordering (from its smallest point to its largest) that is
consistent with the standard partial order on R

d. Then, (θ−, θ+) form a pruning
pair: since θ+ is a boundary parameter for z, if we take θ+ to be any larger, then
we must have �Qθ�(z) = 0 for some z ∈ W+, and similarly for θ−.

Given a curve L, we can compute an approximation to θ+ and θ− via binary
search. However, our algorithm avoids the need to do so by directly computing
θ+ and θ− using a quantitative semantics, which we describe in Sect. 4.6.

Figure 4(c) shows how the pair of boundary parameters θ0 for z0 and θ1 for
z1 (where L is the diagonal line) prunes the parameter space. The blue region is
guaranteed to be consistent with W , as it is the intersection of the region below
θ+, which must satisfy �Qθ�(z1) = 1, and the region above θ−, which must
satisfy �Qθ�(z0) = 0. Conversely, the red regions are inconsistent with either z0
or z1, and therefore with W . Thus, the red regions can be pruned, whereas the
blue regions are solutions to our synthesis problem. Note that the red region is
the union of the red regions in Fig. 4(a) and (b), whereas the blue region is the
intersection of the blue regions in Fig. 4(a) and (b).

This pattern holds for any consistent pruning pair (θ− < θ+); if instead
the pair is inconsistent (θ− ≥ θ+), then the resulting pattern is illustrated in
Fig. 4(d); in this case, we can prune the red regions as before, but there is no blue
region of solutions. In general, for a d dimensional parameter space, a pruning
pair divides the parameter space into 3d boxes (i.e., for each dimension, the
box can be below, in line with, or above the center box). The regions below
θ− and above θ+ can be pruned, and the region between θ− and θ+ (if one
exists) contains synthesis solutions. Precisely, it follows from the definitions and
monotonicity that:

Lemma 2. Every θ ∈ − 	∞, θ−� and θ ∈ θ+,∞� is inconsistent with W , and
every θ ∈ θ−, θ+� is consistent with W .

The remaining boxes need to be further analyzed by our algorithm.

4.5 Pruning Parameter Search Algorithm

Next, we describe Algorithm 2, which searches over the space of parameters to
fill a sketch Q for a given dataset W . The algorithm uses a subroutine that takes
a box and returns a pruning pair in that box, which we describe in Sect. 4.6.
Given this subroutine, our algorithm maintains a work-list of “unknown” boxes
(i.e., unknown whether parameters in these boxes are consistent or inconsistent
with W ). At each iteration, it pops a box from the work-list (in first-in-first-out
order), uses the given subroutine to find a pruning pair inside that box, applies
the pruning procedure described in the previous section, and then adds each new
unknown box to the work-list.

For the last step, the current box b is divided into 3d smaller boxes. The
box bcenter := min{θ−, θ+},max{θ−, θ+}� is pruned (added to Binc) if the
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Algorithm 2. Synthesizes consistent parameters for a given sketch
1: procedure SynthesizeParameters(W, Q)
2: Bcon ← ∅; Binc ← ∅, Bunk ← {binitial}
3: for i ∈ {1, ..., N} do
4: b ← Pop(Bunk)
5: θ−, θ+ ← ComputePruningPair(W, Q, b)
6: bcenter ← ⌊

min{θ−, θ+}, max{θ−, θ+}⌉

7: blower, bupper, Bincomp, Bextra ← SplitBox(b, bcenter)
8: if θ− < θ+ then
9: Bcon ← Bcon ∪ {bcenter}

10: Binc ← Binc ∪ {blower, bupper}
11: Bunk ← Bunk ∪ Bincomp ∪ Bextra

12: else if θ− ≥ θ+ then
13: Binc ← Binc ∪ {bcenter, blower, bupper} ∪ Bextra

14: Bunk ← Bunk ∪ Bincomp

15: return Bcon

pair (θ−, θ+) is inconsistent, and contains solutions to the synthesis prob-
lem otherwise (added to Bcon). The boxes blower = − 	∞,min{θ−, θ+}� and
bupper = max{θ−, θ+}, 	∞� are always pruned. The boxes b ∈ Bincomp are the
remaining corners of b, and always have indeterminate consistency (added to
Bunk). The remaining boxes b ∈ Bextra are indeterminate if (θ−, θ+) is consis-
tent, and inconsistent otherwise. In our example, if the first step of the algorithm
yielded Fig. 4(d), then the second step might pop b6 and yield Fig. 4(e).

The following soundness result follows directly from Lemma 2.

Theorem 1. In Algorithm2, every θ ∈ Bcon is consistent with W for Q, and
every θ ∈ Binc inconsistent.

In addition, the algorithm is complete for almost all parameters:

Theorem 2. The Lebesgue measure of {θ ∈ b | b ∈ Bunk} → 0 as N → ∞.

See Appendix D.1 for the proof. In other words, all parameters outside a sub-
set of measure zero are eventually classified as consistent or inconsistent; intu-
itively, the parameters that may never be classified are the ones along the deci-
sion boundary. This result holds since at any search depth, the fraction of the
parameter space pruned can be lower-bounded.

4.6 Computing Pruning Pairs via Quantitative Semantics

The pruning algorithm depends on the ability to compute, given a box b, a
pruning pair (θ−, θ+) on the restriction of the parameter space to b. Recall
that θ+ must be a boundary parameter for some z+ ∈ W+ and must satisfy
�Qθ+�(z) = 1 for all other z ∈ W+, and θ− must be a boundary parameter for
some z− ∈ W−, and must satisfy �Qθ−�(z) = 0 for all other z ∈ W−.

Given a box b = θmin, θmax�, our algorithm takes L ⊆ R
d to be the diagonal

from θmin to θmax and computes the pruning pair along L. We can näıvely
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ϕ??i
q
v,u(z) :=

ιϕ(z) − vi

ui

ϕ q
v,u(z) :=

∞ if satϕ(z) = 1
−∞ if satϕ(z) = 0.

Q1 ∧ Q2
q
v,u(z) := min{ Q1

q
v,u(z), Q2

q
v,u(z)}

Q1 ; Q2
q
v,u(z) := max

0 k n
min Q1

q
v,u(z0:k), Q2

q
v,u(zk:n)

Fig. 5. The quantitative semantics of our language, taking a sketch Q, trajectory z,
parameter v ∈ R

d, and positive vector u ∈ R
d
>0. n is the length of z.

use binary search: for θ+, we search for the parameters where
∧

z∈W+�Qθ�(z)
transitions from 0 to 1, and similarly for θ− and

∧
z∈W − ¬�Qθ�(z).

Instead, by leveraging a quantitative semantics, we can directly compute
θ+ and θ−, thereby reducing computation time substantially. Given a sketch
Q, trajectory z, parameter v ∈ R

d, and positive vector u ∈ R
d
>0, we devise a

quantitative semantics �Q�q
v,u(z) ∈ R̄ such that the parameter �Q�v,u(z) · u + v

is a boundary parameter. Intuitively, this semantics computes, starting at v,
how many u-sized steps must be taken to reach the boundary. (For the uses
in our algorithm, the number of steps is always in [0, 1].) Then, for a box b =
θmin, θmax�, we can take v = θmin and u = θmax − θmin, and compute

θ+ =
(

min
z∈W+

�Q�q
v,u(z)

)
· u + v, θ− =

(
max

z∈W −
�Q�q

v,u(z)
)

· u + v.

We define the quantitative semantics in Fig. 5. The base case of ϕ?? adjusts and
rescales ιϕ by v and u, and the other cases replace conjunction and disjunction in
the satisfaction semantics with minimum and maximum. We have the following
key result (where ∞ · u := �, −∞ · u := ⊥, � + v := �, and ⊥ + v := ⊥):

Theorem 3. For a sketch Q, trajectory z, parameter v ∈ R
d, and positive vector

u ∈ R
d
>0, we have that �Q�q

v,u(z) · u + v is a boundary parameter of z for Q.

See Appendix D.2 for the full proof. For intuition, consider θmin = 	0 and θmax = 	1
(i.e., the current box b ⊆ R

d is the unit hypercube). Then, v = 	0 and u = 	1,
so �Q�q

v,u reduces to the standard max-min quantitative semantics for temporal
logic [25].

Now, if we consider the satisfaction semantics of a base predicate �ϕθi
� =

1(ιϕ(z) ≥ θi), then the value of θi where the sementics flips is just ιϕ(z). So
any parameter with i-th component ιϕ(z) is a boundary parameter, and since
L has the same slope in all dimensions, the boundary parameter along L is
ιϕ(z) ·	1 +	0 = �ϕ??i�

q
�0,�1

(z) ·	1 +	0.
In the inductive cases, it suffices to show that we can replace conjunction and

disjunction with minimum and maximum in the semantics. Since the satisfaction
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semantics is monotonically decreasing, as we move upward along L, at some point
we will transition from 1 to 0. A conjunction becomes 0 when either conjunct
becomes 0, so the transition will occur when we hit the first of the conjuncts’
transition points (their minimum). Dually, a disjunction becomes 0 when both
disjuncts become 0, so we will transition at the last of the disjuncts’ transition
points (their maximum).

Finally, the intuition behind u and v is that they “preprocess” the parameters
so that we evaluate along the diagonal of the current box instead of

⌊
	0,	1

⌉
.

4.7 Implementation

We implement our approach in a system called Quivr. It begins by running
Algorithm 1 on a small number of labeled examples.

Active Learning. With a small number of examples, there are typically many
queries that are consistent with the labels, and yet which disagree on the labels of
the remaining data. To disambiguate, we use an active learning strategy, asking
the user to label specific trajectories that we choose, which are then added to
our set of labeled examples. Queries that are not consistent with the new label
are discarded. The labeling process continues until the set of consistent queries
agrees on the labels of all unlabeled data.

When choosing the trajectory z∗ to query the user for next, we select the
one on which the set of consistent queries C disagrees most—i.e.,

z∗ = arg min
z∈Z

∣
∣
∣
∣J(z) − 1

2

∣
∣
∣
∣ ,

where
J(z) := |C|−1

∑

Qθ∈C

1
(
ψ(z,y)(Qθ)

)

is the fraction of consistent queries that predict a positive label for trajectory z.

Search Implementation. In some cases, searching for consistent parameters may
take a very long time. To improve performance, we impose a timeout: for each
sketch, we pause search if either: (i) we find some consistent box of parameters
or (ii) we’ve exceeded 25 steps. In both cases, we save the sets of consistent,
inconsistent, and unknown boxes. At each step of active learning, the newly
labeled example may render previously consistent parameters inconsistent, so
we mark all consistent boxes as unknown. We then resume search, again until
(i) we find some consistent box (which may be the same one we had before), or
(ii) we again exceed 25 steps.

Note that while this timeout may cause us to query the user more often than
is strictly necessary, it does not affect either the soundness or completeness of
our approach, as we continue search after querying the user.

Complete Query Selection. Active learning and evaluation of F1 scores (in Sect. 5)
both require complete queries with specific parameters, rather than sketches
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Table 1. The predicates used for the YTStreams dataset.

Predicate Description

InLaneK(A) Whether, at every time-step in the interval, object A is sufficiently
close to the annotated curve for lane K and A’s movement direction
is sufficiently in line with the curve for K.

DurationNotShort Whether the interval spans at least 5 seconds.

AvgAccelGtθ Whether the average acceleration over the interval is at least θ.

DistanceLtθ Whether, at every time-step in the interval, the distance between the
two objects is less than θ.

SpeedRatioGtθ(A, B) Whether, at every time-step in the interval, the speed of A divided
by the speed of B is at least θ.

DispLtθ(A) Whether the distance between the position in the first frame of the
interval and the position in the last frame is less than θ.

with boxes of parameters. Since the set C of consistent queries is infinitely large,
we instead we use one query for each sketch that is known to have consistent
parameters (sketches where search timed-out are thus not included). For those
sketches, we pick the middle of the box of known-consistent parameters.

5 Evaluation

We demonstrate how our approach can be used to synthesize queries to solve
interesting tasks: in particular, we show that (i) given just a few initial examples,
it can synthesize queries that achieve good performance on a held-out test set,
and (ii) our optimizations significantly reduce the synthesis time.

5.1 Experimental Setup

Datasets. We evaluate on two datasets of object trajectories: YTStreams [7],
consisting of video and extracted object trajectories from fixed-position traffic
cameras, and MABe22 [72], consisting of trajectories of up to three mice interact-
ing in a laboratory setting. We also evaluate on a synthetic maritime surveillance
task from the STL synthesis literature [44]. On YTStreams, we use two traffic
cameras, one in Tokyo and one in Warsaw, and we consider single cars or pairs
of cars. On MABe22, we consider pairs of mice. For the predicates used, see
Table 1 for YTStreams, Appendix Table 5 for MABe22, and Appendix Table 6
for maritime surveillance.

Tasks. On YTStreams, we manually wrote 5 ground truth queries. Several queries
apply to multiple configurations (e.g., different pairs of lanes), resulting in 10
queries total (tasks H-Q in Table 2). The real-valued parameters were chosen
manually, by visually examining whether they were selecting the desired tra-
jectories. These queries cover a wide range of behaviors; for instance, they can
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Table 2. Ground-truth queries for the YTStreams dataset. “IDs” indicates which
tasks are instances of a given query. Multiple instantiations correspond to different
lanes being used for “lane 1” and “lane 2”. The first is a one-object Shibuya query, the
second is a one-object Warsaw query, and the rest are two-object Warsaw queries.

IDs Query

H, I, J, K
〈
InLane1(A)

〉
;
〈
Any

〉
;
〈
InLane2(A)

〉

Matches cars that turn, starting in lane 1 and ending in lane 2.

L, M
〈
InLane1(A)

〉
∧

〈
AvgAccelGt(A)

〉
?? ∧ 〈DurationNotShort〉

Matches cars that accelerate for a significant period of time while in lane 1.

N
(〈

InLane1(A)
〉

;
〈
Any

〉
;
〈
InLane2(A)

〉)
∧

〈
InLane2(B)

〉

Matches pairs of cars where car B is in lane 2 for the entire duration of A turning
from lane 1 into lane 2.

O, P
〈
InLane1(A)

〉
∧

〈
InLane2(B)

〉
∧ 〈DurationNotShort〉 ∧

〈
SpeedFactorGt(A, B)

〉
??

Matches pairs of cars in parallel lanes, 1 and 2, where car A is going faster than car B
for a significant period of time.

Q
〈
InLane1(A)

〉
∧

〈
InLane2(B)

〉
∧ 〈DurationNotShort〉 ∧

〈
DistanceLt(A, B)

〉
??

Matches pairs of cars in parallel lanes, 1 and 2, where the cars are close for a
significant period of time

Fig. 6. Trajectories selected by multi-object queries. Each image shows two objects;
the color of each one changes from red to green to denote the progression of time. Left:
Unprotected right turn into lane with oncoming traffic. Middle: Bottom car drives
faster than the top one and passes it. Right: One car driving closely behind the other.
(Color figure online)

capture behaviors such as human drivers making unprotected turns, an impor-
tant challenge for autonomous cars [64], as well as cars trying to pass [66]. We
show examples of trajectories selected by three of our multi-object queries in
Fig. 6. MABe22 describes 9 queries for scientifically interesting mouse behavior.
We implemented the 6 most complex to use as ground truth queries (tasks A-F
in Appendix Table 7). The maritime surveillance task has trajectory labels and
so does not need a ground truth query (task G).

Synthesis. For each task, we divide the set Z of all trajectories into a train
set Ztrain and a test set Ztest, using trajectories in the first half of the video
for training, and those in the second half for testing. We randomly sample a
set of initial labeled examples W from Ztrain, with 2 samples being positive
and 10 being negative, and then actively label 25 additional examples from
Ztrain. For YTStreams and MABe22, labels are from the ground truth query.
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Table 3. F1 score after n steps of active learning, with our algorithm for selecting tracks
to label (“Q”), an active learning ablation (“R”), an LSTM (“L”), and a transformer
(“T”). For Q and R, there may be many queries consistent with the labeled data, so
the median F1 score is reported. Bold indicates best score at a given number of steps.

ID
0 Steps 5 Steps 10 Steps 25 Steps

Q R L T Q R L T Q R L T Q R L T

A 0.69 0.69 1.00 0.74 1.00 1.00 1.00 0.74 1.00 1.00 1.00 0.74 1.00 1.00 1.00 0.74

B 0.99 0.99 0.47 0.20 0.99 0.99 0.47 0.25 0.99 0.99 0.47 0.05 0.99 0.98 0.47 0.06

C 0.96 0.96 0.38 0.09 0.99 0.96 0.38 0.08 0.99 0.96 0.38 0.02 0.99 0.98 0.38 0.01

D 0.77 0.77 0.52 0.27 0.99 0.96 0.52 0.28 0.99 0.99 0.52 0.32 0.99 1.00 0.52 0.08

E 1.00 1.00 0.44 0.29 1.00 1.00 0.44 0.14 1.00 1.00 0.44 0.13 1.00 1.00 0.44 0.07

F 0.88 0.88 0.78 0.38 0.99 0.96 0.78 0.39 1.00 0.96 0.78 0.18 1.00 0.96 0.78 0.27

G 0.68 0.68 0.65 0.78 1.00 1.00 0.65 0.77 1.00 1.00 0.65 0.77 1.00 1.00 0.65 0.77

H 0.30 0.30 0.12 0.22 0.34 0.34 0.13 0.23 0.92 0.92 0.13 0.22 0.92 0.92 0.13 0.37

I 0.37 0.37 0.13 0.00 1.00 0.37 0.13 0.00 1.00 1.00 0.13 0.00 1.00 1.00 0.13 0.31

J 0.07 0.07 0.01 1.00 0.41 0.07 0.01 0.86 0.80 0.09 0.04 0.75 0.80 0.09 0.04 0.86

K 0.28 0.28 0.15 0.00 0.99 0.27 0.15 0.00 0.99 0.99 0.15 0.00 0.99 0.99 0.15 0.00

L 0.67 0.67 0.07 0.37 0.96 0.88 0.07 0.42 0.96 0.88 0.07 0.08 0.96 0.88 0.07 0.31

M 0.92 0.92 0.10 0.37 0.99 0.92 0.10 0.46 0.99 0.92 0.10 0.00 0.99 0.92 0.10 0.18

N 0.60 0.60 0.02 0.00 0.20 0.09 0.02 0.00 0.11 0.21 0.02 0.00 0.18 0.78 0.02 0.31

O 0.11 0.11 0.01 0.04 0.50 0.17 0.01 0.21 0.70 0.17 0.01 0.21 1.00 0.21 0.01 0.00

P 0.16 0.16 0.04 0.04 0.23 0.21 0.03 0.04 0.82 0.21 0.03 0.14 1.00 0.29 0.03 0.14

Q 0.07 0.07 0.02 0.02 0.16 0.12 0.01 0.31 0.92 0.12 0.01 0.18 1.00 0.12 0.01 0.20

For tractability, we limit search to sketches with at most three predicates, at
most two of which may have parameters. In most cases, this excludes the ground
truth from the search space.

5.2 Accuracy of Synthesized Queries

We show that Quivr synthesizes accurate queries from just a few labeled exam-
ples. We evaluate the F1 score of the synthesized queries on Ztest. Recall that
our algorithm returns a list C of consistent queries; we report the median F1

score across Q ∈ C.

Baselines. We compare to (i) an ablation where we replace our active learning
strategy with an approach that labels z uniformly at random from the remaining
unlabeled training examples; (ii) an LSTM [16,33] neural network; and (iii) a
transformer neural network [26,29,77]. Because neural networks perform poorly
on such small datasets, we pretrain the LSTM on an auxiliary task, namely,
trajectory forecasting [43]. Then, we freeze the hidden representation of the
learned LSTM, and use these as features to train a logistic regression model
on our labeled examples. The neural network baselines do active learning by
selecting among the unlabeled trajectories the one with the highest predicted
probability of being positive.

Results. We show the F1 score of each of the 17 queries in Table 3 after 0, 5, 10,
and 25 steps of active learning. After just 10 steps, our approach provides F1

score above 0.99 on 10 of 17 queries, and after 25 steps, it yields an F1 score
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Table 4. Running time (seconds) of synthesis (mean ± standard error) using binary
search (B) and quantitative semantics (Q) running on CPU and GPU, with 25 steps
of active learning.

ID
CPU GPU

B Q B Q

A 8, 460 ± 1, 517 3, 343 ± 202 737 ± 36 174 ± 14

B 3, 511 ± 549 2, 291 ± 237 428 ± 37 110 ± 9

C 3, 319 ± 505 2, 007 ± 359 376 ± 6 113 ± 9

D 2, 728 ± 476 2, 714 ± 334 370 ± 8 119 ± 2

E 1, 264 ± 176 599 ± 54 225 ± 3 50 ± 1

F 1, 689 ± 360 748 ± 81 285 ± 7 60 ± 1

G 661 ± 141 133 ± 23 219 ± 77 30 ± 1

H 399 ± 70 147 ± 9 185 ± 94 32 ± 17

I 400 ± 74 84 ± 13 163 ± 85 23 ± 12

J 544 ± 120 173 ± 5 227 ± 121 36 ± 19

K 493 ± 77 125 ± 25 163 ± 83 30 ± 16

L 732 ± 47 286 ± 73 252 ± 133 57 ± 29

M 697 ± 40 253 ± 49 245 ± 128 56 ± 30

N 5, 691 ± 272 977 ± 176 1, 393 ± 590 264 ± 136

O 8, 306 ± 521 2, 314 ± 476 811 ± 12 127 ± 2

P 11, 326 ± 673 4, 198 ± 1, 333 970 ± 60 167 ± 8

Q 12, 430 ± 962 2, 915 ± 508 1, 141 ± 101 183 ± 11

above 0.9 on all but 2 queries. Thus, Quivr is able to synthesize accurate queries
with relatively little user input. The neural networks achieve poor performance,
particularly on the more difficult queries.

5.3 Synthesis Running Time

Next, we show that quantitative pruning and using a GPU each significantly
reduce synthesis time, evaluating total running time for 25 steps of active learn-
ing.

Ablations. We compare to two ablations: (i) using the binary search approach
of [53] to find pruning pairs, rather than using our quantitative semantics, and
(ii) evaluating the matrix semantics (Appendix A.1) on a CPU rather than a
GPU.

Results. In Fig. 4, we report the running time of our algorithms on a CPU (2×
AMD EPYC 7402 24-Core) and a GPU (1× NVIDIA RTX A6000). For binary
search, on average, the GPU is 7.6× faster than the CPU. On a GPU, using the
quantitative semantics rather than binary search offers another 5.0× speed-up.

6 Related Work

Monotonicity for Parameter Pruning. We build on [49] for our parameter pruning
algorithm. Their approach has been applied to synthesizing STL formulas for
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sequence classification by first enumerating sketches and then using monotonicity
to find parameters, similar to our binary search baseline [53]. We replace binary
search with our novel strategy based on quantitative semantics, leading to 5.0×
speedup. There is also work building on [49] to create logically-relevant distance
metrics between trajectories by taking the Hausdorff distance between parameter
satisfaction regions (which they call “validity domains”), with applications to
clustering [78]. For logics like STL, our quantitative semantics could provide a
speedup to their approach.

Synthesis of Temporal Logic Formulas. More broadly, there has been work syn-
thesizing parameters in a variant of STL by discretizing the parameter space and
then walking the satisfaction boundary [24]; in one dimension, their approach
becomes binary search, inheriting its shortcomings. There has been work on syn-
thesizing STL formulas that are satisfied by a closed-loop control model [38], but
they assume the ability to find counterexample traces for incorrect STL formu-
las, which is not applicable to our setting. Another approach is to synthesize
parameters in STL formulas using gradient-based optimization [35] or stochastic
optimization [45], but we found these methods to be ineffective in our setting,
and they do not come with either soundness or completeness guarantees. There
is work using decision trees to synthesize STL formulas [1,14,44,48], but these
operate on a restricted subset of STL, namely Boolean combinations of a fixed
set of template formulas. This restriction prevents these approaches from syn-
thesizing temporal structure, which is a key component of the queries in our
domains. Finally, there has been work on active learning of STL formulae using
decision trees [48], but it assumes the ability to query for equivalence between
a particular STL formula and the ground truth, which is not possible in our
setting.

Synthesizing Constants. There is work on synthesizing parameters of programs
using counterexampled-guided inductive synthesis and different theory solvers,
including Fourier-Motzkin variable elimination and an SMT solver [2]. Though
our synthesis objective can be encoded in the theory of linear arithmetic, it is
extremely large, and we have found such solvers to be ineffective in practice.

Querying Video Data. There has been recent work on querying object detec-
tions and trajectories in video data [5,7,8,28,40–42,54]. The main difference is
our focus on synthesis; in addition, these approaches focus on SQL-like opera-
tors such as select, inner-join, group-by, etc., over predefined predicates, which
cannot capture compositions such as the sequencing and iteration operators in
our language, which are necessary for identifying more complex behaviors.

Neurosymbolic Models. There has been recent work on leveraging program syn-
thesis in the context of machine learning. For instance, there has been work
on using programs to represent high-level structure in images [21–23,74,84],
for reinforcement learning [9,34,79,80], and for querying websites [18]; in con-
trast, we use programs to classify trajectories. The most closely related work is
on synthesizing functional programs operating over lists [67,76]. Our language
includes key constructs not included in their languages. Most importantly, we
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include sequencing; in their functional language, such an operator would need
to be represented as a nested series of if-then-else operators. In addition, their
language does not support predicates that match subsequences; while such a
predicate could be added, none of their operators can compose such predicates.

Quantitative Synthesis. There has been work on program synthesis with quan-
titative properties—e.g., on synthesis for producing optimized code [37,57,65],
for approximate computing [15,52], for probabilistic programming [56], and for
embedded control [17]. These approaches largely focus on search-based synthesis,
either using constraint optimization [52], continuous optimization [17], enumera-
tive search [15,57], or stochastic search [37,56,65]. While we leverage ideas from
this literature, our quantitative semantics based pruning strategy is novel.

Quantitative Semantics. Our quantitative semantics is similar to the “robustness
degree” [25] of a temporal logic formula. The difference is that, by adjusting the
denotations of the base predicates, our quantitative semantics gives a parameter
on the satisfaction boundary. More broadly, there has been work on quantita-
tive semantics for temporal logic for robust constraint satisfaction [20,25,73],
and to guide reinforcement learning [39]. There has been work on quantitative
regular expressions (QREs) [4], though in general, QREs cannot be efficiently
evaluated due to their nondeterminism, and our language is restricted to ensure
efficient computation. There has been work on synthesizing QREs for network
traffic classification [68], using binary search to compute decision thresholds.
Similarly, there has been work using the Viterbi semiring to obtain quantita-
tive semantics for Datalog programs [69], which they use in conjunction with
gradient descent to learn the rules of the Datalog program. In contrast, we use
our quantitative semantics to efficiently prune the parameter search space in a
provably correct way. Finally, there has been work on using GPUs to evaluate
regular expressions [55]; however, they focus on regular expressions over strings.

Query Languages. Our language is closely related to both signal temporal logic
(STL) [50] and Kleene algebras with tests (KAT) [46]. In particular, it can
straightforwardly be extended to subsume both (see Appendix A for details),
and our pruning strategy applies to this extended language. The addition of
Kleene star, required to subsume KAT, worsens the evaluation time. STL has
been used to monitor safety requirements for autonomous vehicles [32]. Spatio-
Temporal Perception Logic (SPTL) is an extension of STL to support spatial
reasoning [31]. Many of its operators are monotone, and thus would benefit
from our algorithm. Scenic [27] is a DSL for creating static and dynamic driving
scenes, but its focus is on generating scenes rather than querying for behaviors.

7 Conclusion

We have proposed a novel framework called Quivr for synthesizing queries over
video trajectory data. Our language is similar to KAT and STL, but supports
conjunction and sequencing over multi-step predicates. Given only a few exam-
ples, Quivr efficiently synthesizes trajectory queries consistent with those exam-
ples. A key contribution of our approach is the use of a quantitative semantics to
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prune the parameter search space, yielding a 5.0× speedup over the state-of-the-
art. In our evaluation, we demonstrate that Quivr effectively synthesizes queries
to identify interesting driving behaviors, and that our optimizations dramatically
reduce synthesis time.
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Milovančević, Dragana III-398
Mitra, Sayan I-351

N
Nagarakatte, Santosh III-226
Narayana, Srinivas III-226
Nayak, Satya Prakash I-436
Niemetz, Aina II-3
Nowotka, Dirk II-187

O
Offtermatt, Philip I-132
Opaterny, Anton I-170
Ozdemir, Alex II-163, III-154

P
Padhi, Saswat I-27
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