
Rounding Meets Approximate Model
Counting

Jiong Yang(B) and Kuldeep S. Meel

National University of Singapore, Singapore, Singapore
jiong@comp.nus.edu.sg

Abstract. The problem of model counting, also known as #SAT, is
to compute the number of models or satisfying assignments of a given
Boolean formula F . Model counting is a fundamental problem in com-
puter science with a wide range of applications. In recent years, there has
been a growing interest in using hashing-based techniques for approx-
imate model counting that provide (ε, δ)-guarantees: i.e., the count
returned is within a (1 + ε)-factor of the exact count with confidence
at least 1 − δ. While hashing-based techniques attain reasonable scala-
bility for large enough values of δ, their scalability is severely impacted
for smaller values of δ, thereby preventing their adoption in application
domains that require estimates with high confidence.

The primary contribution of this paper is to address the Achilles
heel of hashing-based techniques: we propose a novel approach
based on rounding that allows us to achieve a significant reduc-
tion in runtime for smaller values of δ. The resulting counter, called
ApproxMC6 (The resulting tool ApproxMC6 is available open-source at
https://github.com/meelgroup/approxmc), achieves a substantial run-
time performance improvement over the current state-of-the-art counter,
ApproxMC. In particular, our extensive evaluation over a benchmark suite
consisting of 1890 instances shows ApproxMC6 solves 204 more instances
than ApproxMC, and achieves a 4× speedup over ApproxMC.

1 Introduction

Given a Boolean formula F , the problem of model counting is to compute the
number of models of F . Model counting is a fundamental problem in computer
science with a wide range of applications, such as control improvisation [13],
network reliability [9,28], neural network verification [2], probabilistic reason-
ing [5,11,20,21], and the like. In addition to myriad applications, the problem of
model counting is a fundamental problem in theoretical computer science. In his
seminal paper, Valiant showed that #SAT is #P-complete, where #P is the set
of counting problems whose decision versions lie in NP [28]. Subsequently, Toda
demonstrated the theoretical hardness of the problem by showing that every
problem in the entire polynomial hierarchy can be solved by just one call to a
#P oracle; more formally, PH ⊆ P#P [27].

Given the computational intractability of #SAT, there has been sustained
interest in the development of approximate techniques from theoreticians and
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practitioners alike. Stockmeyer introduced a randomized hashing-based tech-
nique that provides (ε, δ)-guarantees (formally defined in Sect. 2) given access
to an NP oracle [25]. Given the lack of practical solvers that could handle
problems in NP satisfactorily, there were no practical implementations of Stock-
meyere’s hashing-based techniques until the 2000s [14]. Building on the unprece-
dented advancements in the development of SAT solvers, Chakraborty, Meel,
and Vardi extended Stockmeyer’s framework to a scalable (ε, δ)-counting algo-
rithm, ApproxMC [7]. The subsequent years have witnessed a sustained inter-
est in further optimizations of the hashing-based techniques for approximate
counting [5,6,10,11,17–19,23,29,30]. The current state-of-the-art technique for
approximate counting is a hashing-based framework called ApproxMC, which is
in its fourth version, called ApproxMC4 [22,24].

The core theoretical idea behind the hashing-based framework is to use 2-
universal hash functions to partition the solution space, denoted by sol(F) for a
formula F , into roughly equal small cells, wherein a cell is considered small if
it contains solutions less than or equal to a pre-computed threshold, thresh. An
NP oracle (in practice, a SAT solver) is employed to check if a cell is small by
enumerating solutions one-by-one until either there are no more solutions or we
have already enumerated thresh + 1 solutions. Then, we randomly pick a cell,
enumerate solutions within the cell (if the cell is small), and scale the obtained
count by the number of cells to obtain an estimate for |sol(F)|. To amplify the
confidence, we rely on the standard median technique: repeat the above process,
called ApproxMCCore, multiple times and return the median. Computing the
median amplifies the confidence as for the median of t repetitions to be outside
the desired range (i.e.,

[
|sol(F)|
1+ε , (1 + ε)|sol(F)|

]
), it should be the case that at

least half of the repetitions of ApproxMCCore returned a wrong estimate.
In practice, every subsequent repetition of ApproxMCCore takes a similar

time, and the overall runtime increases linearly with the number of invocations.
The number of repetitions depends logarithmically on δ−1. As a particular exam-
ple, for ε = 0.8, the number of repetitions of ApproxMCCore to attain δ = 0.1
is 21, which increases to 117 for δ = 0.001: a significant increase in the number
of repetitions (and accordingly, the time taken). Accordingly, it is no surprise
that empirical analysis of tools such as ApproxMC has been presented with a
high delta (such as δ = 0.1). On the other hand, for several applications, such as
network reliability, and quantitative verification, the end users desire estimates
with high confidence. Therefore, the design of efficient counting techniques for
small δ is a major challenge that one needs to address to enable the adoption of
approximate counting techniques in practice.

The primary contribution of our work is to address the above challenge.
We introduce a new technique called rounding that enables dramatic reduc-
tions in the number of repetitions required to attain a desired value of confi-
dence. The core technical idea behind the design of the rounding technique is
based on the following observation: Let L (resp. U) refer to the event that a
given invocation of ApproxMCCore under (resp. over)-estimates |sol(F)|. For a
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median estimate to be wrong, either the event L happens in half of the invo-
cations of ApproxMCCore or the event U happens in half of the invocations
of ApproxMCCore. The number of repetitions depends on max(Pr[L],Pr[U ]).
The current algorithmic design (and ensuing analysis) of ApproxMCCore pro-
vides a weak upper bound on max{Pr[L],Pr[U ]}: in particular, the bounds on
max{Pr[L],Pr[U ]} and Pr[L∪U ] are almost identical. Our key technical contribu-
tion is to design a new procedure, ApproxMC6Core, based on the rounding tech-
nique that allows us to obtain significantly better bounds on max{Pr[L],Pr[U ]}.

The resulting algorithm, called ApproxMC6, follows a similar structure
to that of ApproxMC: it repeatedly invokes the underlying core procedure
ApproxMC6Core and returns the median of the estimates. Since a single invo-
cation of ApproxMC6Core takes as much time as ApproxMCCore, the reduction in
the number of repetitions is primarily responsible for the ensuing speedup. As
an example, for ε = 0.8, the number of repetitions of ApproxMC6Core to attain
δ = 0.1 and δ = 0.001 is just 5 and 19, respectively; the corresponding num-
bers for ApproxMC were 21 and 117. An extensive experimental evaluation on
1890 benchmarks shows that the rounding technique provided 4× speedup than
the state-of-the-art approximate model counter, ApproxMC. Furthermore, for a
given timeout of 5000 s, ApproxMC6 solves 204 more instances than ApproxMC
and achieves a reduction of 1063 s in the PAR-2 score.

The rest of the paper is organized as follows. We introduce notation and
preliminaries in Sect. 2. To place our contribution in context, we review related
works in Sect. 3. We identify the weakness of the current technique in Sect. 4 and
present the rounding technique in Sect. 5 to address this issue. Then, we present
our experimental evaluation in Sect. 6. Finally, we conclude in Sect. 7.

2 Notation and Preliminaries

Let F be a Boolean formula in conjunctive normal form (CNF), and let Vars(F )
be the set of variables appearing in F . The set Vars(F ) is also called the support
of F . An assignment σ of truth values to the variables in Vars(F ) is called a
satisfying assignment or witness of F if it makes F evaluate to true. We denote
the set of all witnesses of F by sol(F). Throughout the paper, we will use n to
denote |Vars(F )|.

The propositional model counting problem is to compute |sol(F)| for a given
CNF formula F . A probably approximately correct (or PAC) counter is a proba-
bilistic algorithm ApproxCount(·, ·, ·) that takes as inputs a formula F , a tolerance
parameter ε > 0, and a confidence parameter δ ∈ (0, 1], and returns an (ε, δ)-
estimate c, i.e., Pr

[
|sol(F)|
1+ε ≤ c ≤ (1 + ε)|sol(F)|

]
≥ 1−δ. PAC guarantees are also

sometimes referred to as (ε, δ)-guarantees.
A closely related notion is projected model counting, where we are interested

in computing the cardinality of sol(F) projected on a subset of variables P ⊆
Vars(F ). While for clarity of exposition, we describe our algorithm in the context
of model counting, the techniques developed in this paper are applicable to
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projected model counting as well. Our empirical evaluation indeed considers
such benchmarks.

2.1 Universal Hash Functions

Let n,m ∈ N and H(n,m)
�
= {h : {0, 1}n → {0, 1}m} be a family of hash func-

tions mapping {0, 1}n to {0, 1}m. We use h
R← H(n,m) to denote the probability

space obtained by choosing a function h uniformly at random from H(n,m). To
measure the quality of a hash function we are interested in the set of elements of
sol(F) mapped to α by h, denoted Cell〈F,h,α〉 and its cardinality, i.e., |Cell〈F,h,α〉|.
We write Pr[Z : Ω] to denote the probability of outcome Z when sampling from
a probability space Ω. For brevity, we omit Ω when it is clear from the context.
The expected value of Z is denoted E [Z] and its variance is denoted σ2[Z].

Definition 1. A family of hash functions H(n,m) is strongly 2-universal if
∀x, y ∈ {0, 1}n, α ∈ {0, 1}m, h

R← H(n,m),

Pr [h(x) = α] =
1
2m

= Pr [h(x) = h(y)]

For h
R← H(n, n) and ∀m ∈ {1, ..., n}, the mth prefix-slice of h, denoted h(m), is

a map from {0, 1}n to {0, 1}m, such that h(m)(y)[i] = h(y)[i], for all y ∈ {0, 1}n

and for all i ∈ {1, ...,m}. Similarly, the mth prefix-slice of α ∈ {0, 1}n, denoted
α(m), is an element of {0, 1}m such that α(m)[i] = α[i] for all i ∈ {1, ...,m}.
To avoid cumbersome terminology, we abuse notation and write Cell〈F,m〉(resp.
Cnt〈F,m〉) as a short-hand for Cell〈F,h(m),α(m)〉 (resp. |Cell〈F,h(m),α(m)〉|). The fol-
lowing proposition presents two results that are frequently used throughout this
paper. The proof is deferred to Appendix A.

Proposition 1. For every 1 ≤ m ≤ n, the following holds:

E
[
Cnt〈F,m〉

]
=

|sol(F)|
2m

(1)

σ2
[
Cnt〈F,m〉

] ≤ E
[
Cnt〈F,m〉

]
(2)

The usage of prefix-slice of h ensures monotonicity of the random variable,
Cnt〈F,m〉, since from the definition of prefix-slice, we have that for every 1 ≤
m < n, h(m+1)(y) = α(m+1) ⇒ h(m)(y) = α(m). Formally,

Proposition 2. For every 1 ≤ m < n, Cell〈F,m+1〉 ⊆ Cell〈F,m〉

2.2 Helpful Combinatorial Inequality

Lemma 1. Let η(t,m, p) =
∑t

k=m

(
t
k

)
pk(1 − p)t−k and p < 0.5, then

η(t, �t/2�, p) ∈ Θ

(
t−

1
2

(
2
√

p(1 − p)
)t

)
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Proof. We will derive both an upper and a matching lower bound for
η(t, �t/2�, p). We begin by deriving an upper bound: η(t, �t/2�, p) =∑t

k=� t
2 �

(
t
k

)
pk(1−p)t−k ≤ (

t
�t/2�

)∑t
k=� t

2 � pk(1−p)t−k ≤ (
t

�t/2�
)·(p(1−p))�

t
2 �· 1

1−2p

≤ 1√
2π

· t√
( t

2−0.5)( t
2+0.5)

·
(

t
t−1

)t

· e
1

12t − 1
6t+6− 1

6t−6 · t−
1
2 2t · (p(1 − p))

t
2 · (p(1 −

p))
1
2 · 1

1−2p . The last inequality follows Stirling’s approximation. As a result,

η(t, �t/2�, p) ∈ O
(

t−
1
2

(
2
√

p(1 − p)
)t

)
. Afterwards; we move on to deriving a

matching lower bound: η(t, �t/2�, p) = ∑t
k=� t

2 �
(

t
k

)
pk(1−p)t−k ≥ (

t
�t/2�

)
p� t

2 �(1−
p)t−� t

2 � ≥ 1√
2π

· t√
( t

2−0.5)( t
2+0.5)

·
(

t
t+1

)t

· e
1

12t − 1
6t+6− 1

6t−6 · t−
1
2 2t · (p(1 − p))

t
2 ·

p
1
2 (1 − p)−

1
2 · 1

1−2p . The last inequality again follows Stirling’s approximation.

Hence, η(t, �t/2�, p) ∈ Ω

(
t−

1
2

(
2
√

p(1 − p)
)t

)
. Combining these two bounds,

we conclude that η(t, �t/2�, p) ∈ Θ

(
t−

1
2

(
2
√

p(1 − p)
)t

)
. �

3 Related Work

The seminal work of Valiant established that #SAT is #P-complete [28]. Toda
later showed that every problem in the polynomial hierarchy could be solved
by just a polynomial number of calls to a #P oracle [27]. Based on Carter and
Wegman’s seminal work on universal hash functions [4], Stockmeyer proposed a
probabilistic polynomial time procedure, with access to an NP oracle, to obtain
an (ε, δ)-approximation of F [25].

Built on top of Stockmeyer’s work, the core theoretical idea behind the
hashing-based approximate solution counting framework, as presented in Algo-
rithm 1 (ApproxMC [7]), is to use 2-universal hash functions to partition the
solution space (denoted by sol(F) for a given formula F ) into small cells of
roughly equal size. A cell is considered small if the number of solutions it con-
tains is less than or equal to a pre-determined threshold, thresh. An NP oracle is
used to determine if a cell is small by iteratively enumerating its solutions until
either there are no more solutions or thresh + 1 solutions have been found. In
practice, an SAT solver is used to implement the NP oracle. To ensure a polyno-
mial number of calls to the oracle, the threshold, thresh, is set to be polynomial
in the input parameter ε at Line 1. The subroutine ApproxMCCore takes the
formula F and thresh as inputs and estimates the number of solutions at Line 7.
To determine the appropriate number of cells, i.e., the value of m for H(n,m),
ApproxMCCore uses a search procedure at Line 3 of Algorithm 2. The estimate
is calculated as the number of solutions in a randomly chosen cell, scaled by
the number of cells, i.e., 2m at Line 5. To improve confidence in the estimate,
ApproxMC performs multiple runs of the ApproxMCCore subroutine at Lines 5–
9 of Algorithm 1. The final count is computed as the median of the estimates
obtained at Line 10.
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Algorithm 1. ApproxMC(F, ε, δ)

1: thresh ← 9.84
(
1 + ε

1+ε

) (
1 + 1

ε

)2
;

2: Y ← BoundedSAT(F, thresh);
3: if (|Y | < thresh) then return |Y |;
4: t ← �17 log2(3/δ)� ; C ← emptyList; iter ← 0;
5: repeat
6: iter ← iter + 1;
7: nSols ← ApproxMCCore(F, thresh);
8: AddToList(C, nSols);
9: until (iter ≥ t);

10: finalEstimate ← FindMedian(C);
11: return finalEstimate;

Algorithm 2. ApproxMCCore(F, thresh)
1: Choose h at random from H(n, n);
2: Choose α at random from {0, 1}n;
3: m ← LogSATSearch(F, h, α, thresh);

4: Cnt〈F,m〉 ← BoundedSAT

(
F ∧

(
h(m)

)−1 (
α(m)

)
, thresh

)
;

5: return (2m × Cnt〈F,m〉);

In the second version of ApproxMC [8], two key algorithmic improvements
are proposed to improve the practical performance by reducing the number of
calls to the SAT solver. The first improvement is using galloping search to more
efficiently find the correct number of cells, i.e., LogSATSearch at Line 3 of Algo-
rithm 2. The second is using linear search over a small interval around the
previous value of m before resorting to the galloping search. Additionally, the
third and fourth versions [22,23] enhance the algorithm’s performance by effec-
tively dealing with CNF formulas conjuncted with XOR constraints, commonly
used in the hashing-based counting framework. Moreover, an effective prepro-
cessor named Arjun [24] is proposed to enhance ApproxMC’s performance by
constructing shorter XOR constraints. As a result, the combination of Arjun and
ApproxMC4 solved almost all existing benchmarks [24], making it the current
state of the art in this field.

In this work, we aim to address the main limitation of the ApproxMC algo-
rithm by focusing on an aspect that still needs to be improved upon by previous
developments. Specifically, we aim to improve the core algorithm of ApproxMC,
which has remained unchanged.

4 Weakness of ApproxMC

As noted above, the core algorithm of ApproxMC has not changed since 2016,
and in this work, we aim to address the core limitation of ApproxMC. To put our
contribution in context, we first review ApproxMC and its core algorithm, called



138 J. Yang and K. S. Meel

ApproxMCCore. We present the pseudocode of ApproxMC and ApproxMCCore in
Algorithms 1 and 2, respectively. ApproxMCCore may return an estimate that
falls outside the PAC range

[
|sol(F)|
1+ε , (1 + ε)|sol(F)|

]
with a certain probability of

error. Therefore, ApproxMC repeatedly invokes ApproxMCCore (Lines 5– 9) and
returns the median of the estimates returned by ApproxMCCore (Line 10), which
reduces the error probability to the user-provided parameter δ.

Let Errort denote the event that the median of t estimates falls out-
side

[
|sol(F)|
1+ε , (1 + ε)|sol(F)|

]
. Let L denote the event that an invocation

ApproxMCCore returns an estimate less than |sol(F)|
1+ε . Similarly, let U denote the

event that an individual estimate of |sol(F)| is greater than (1+ε)|sol(F)|. For sim-
plicity of exposition, we assume t is odd; the current implementation of t indeed
ensures that t is odd by choosing the smallest odd t for which Pr[Errort] ≤ δ.

In the remainder of the section, we will demonstrate that reducing
max {Pr [L] ,Pr [U ]} can effectively reduce the number of repetitions t, mak-
ing the small-δ scenarios practical. To this end, we will first demonstrate the
existing analysis technique of ApproxMC leads to loose bounds on Pr[Errort]. We
then present a new analysis that leads to tighter bounds on Pr[Errort].

The existing combinatorial analysis in [7] derives the following proposition:

Proposition 3.

Pr [Errort] ≤ η(t, �t/2�,Pr [L ∪ U ])

where η(t,m, p) =
∑t

k=m

(
t
k

)
pk(1 − p)t−k.

Proposition 3 follows from the observation that if the median falls outside
the PAC range, at least �t/2� of the results must also be outside the range. Let
η(t, �t/2�,Pr [L ∪ U ]) ≤ δ, and we can compute a valid t at Line 4 of ApproxMC.

Proposition 3 raises a question: can we derive a tight upper bound for
Pr [Errort]? The following lemma provides an affirmative answer to this ques-
tion.

Lemma 2. Assuming t is odd, we have:

Pr [Errort] = η(t, �t/2�,Pr [L]) + η(t, �t/2�,Pr [U ])

Proof. Let IL
i be an indicator variable that is 1 when ApproxMCCore returns a

nSols less than |sol(F)|
1+ ε , indicating the occurrence of event L in the i-th repetition.

Let IU
i be an indicator variable that is 1 when ApproxMCCore returns a nSols

greater than (1+ε)|sol(F)|, indicating the occurrence of event U in the i-th repeti-
tion. We aim first to prove that Errort ⇔

(∑t
i=1 IL

i ≥ ⌈
t
2

⌉)∨
(∑t

i=1 IU
i ≥ ⌈

t
2

⌉)
.

We will begin by proving the right (⇒) implication. If the median of t esti-
mates violates the PAC guarantee, the median is either less than |sol(F)|

1+ε or
greater than (1 + ε)|sol(F)|. In the first case, since half of the estimates are
less than the median, at least

⌈
t
2

⌉
estimates are less than |sol(F)|

1+ε . Formally, this
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implies
∑t

i=1 IL
i ≥ ⌈

t
2

⌉
. Similarly, in the case that the median is greater than

(1+ε)|sol(F)|, since half of the estimates are greater than the median, at least
⌈

t
2

⌉
estimates are greater than (1+ε)|sol(F)|, thus formally implying

∑t
i=1 IU

i ≥ ⌈
t
2

⌉
.

On the other hand, we prove the left (⇐) implication. Given
∑t

i=1 IL
i ≥ ⌈

t
2

⌉
,

more than half of the estimates are less than |sol(F)|
1+ε , and therefore the median is

less than |sol(F)|
1+ε , violating the PAC guarantee. Similarly, given

∑t
i=1 IU

i ≥ ⌈
t
2

⌉
,

more than half of the estimates are greater than (1 + ε)|sol(F)|, and therefore
the median is greater than (1 + ε)|sol(F)|, violating the PAC guarantee. This
concludes the proof of Errort ⇔

(∑t
i=1 IL

i ≥ ⌈
t
2

⌉)∨
(∑t

i=1 IU
i ≥ ⌈

t
2

⌉)
. Then we

obtain:

Pr [Errort] = Pr

[(
t∑

i=1

IL
i ≥ �t/2�

)
∨
(

t∑
i=1

IU
i ≥ �t/2�

)]

= Pr

[(
t∑

i=1

IL
i ≥ �t/2�

)]
+ Pr

[(
t∑

i=1

IU
i ≥ �t/2�

)]

− Pr

[(
t∑

i=1

IL
i ≥ �t/2�

)
∧
(

t∑
i=1

IU
i ≥ �t/2�

)]

Given IL
i + IU

i ≤ 1 for i = 1, 2, ..., t,
∑t

i=1(I
L
i + IU

i ) ≤ t is there, but if(∑t
i=1 IL

i ≥ �t/2�
)

∧
(∑t

i=1 IU
i ≥ �t/2�

)
is also given, we obtain

∑t
i=1(I

L
i +

IU
i ) ≥ t + 1 contradicting

∑t
i=1(I

L
i + IU

i ) ≤ t; Hence, we can conclude that
Pr

[(∑t
i=1 IL

i ≥ �t/2�
)

∧
(∑t

i=1 IU
i ≥ �t/2�

)]
= 0. From this, we can deduce:

Pr [Errort] = Pr

[(
t∑

i=1

IL
i ≥ �t/2�

)]
+ Pr

[(
t∑

i=1

IU
i ≥ �t/2�

)]

= η(t, �t/2�,Pr [L]) + η(t, �t/2�,Pr [U ])

�
Though Lemma 2 shows that reducing Pr [L] and Pr [U ] can decrease the error

probability, it is still uncertain to what extent Pr [L] and Pr [U ] affect the error
probability. To further understand this impact, the following lemma is presented
to establish a correlation between the error probability and t depending on Pr [L]
and Pr [U ].

Lemma 3. Let pmax = max {Pr [L] ,Pr [U ]} and pmax < 0.5, we have

Pr [Errort] ∈ Θ

(
t−

1
2

(
2
√

pmax(1 − pmax)
)t

)
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Proof. Applying Lemmas 1 and 2, we have

Pr [Errort] ∈ Θ

(
t−

1
2

((
2
√

Pr [L] (1 − Pr [L])
)t

+
(
2
√

Pr [U ] (1 − Pr [U ])
)t

))

= Θ

(
t−

1
2

(
2
√

pmax(1 − pmax)
)t

)

�
In summary, Lemma 3 provides a way to tighten the bound on Pr[Errort]

by designing an algorithm such that we can obtain a tighter bound on pmax

in contrast to previous approaches that relied on obtaining a tighter bound on
Pr[L ∪ U ].

5 Rounding Model Counting

In this section, we present a rounding-based technique that allows us to obtain
a tighter bound on pmax. On a high-level, instead of returning the estimate from
one iteration of the underlying core algorithm as the number of solutions in a
randomly chosen cell multiplied by the number of cells, we round each estimate of
the model count to a value that is more likely to be within (1+ ε)-bound. While
counter-intuitive at first glance, we show that rounding the estimate reduces
max {Pr [L] ,Pr [U ]}, thereby resulting in a smaller number of repetitions of the
underlying algorithm.

We present ApproxMC6, a rounding-based approximate model counting algo-
rithm, in Sect. 5.1. Section 5.2 will demonstrate how ApproxMC6 decreases
max {Pr [L] ,Pr [U ]} and the number of estimates. Lastly, in Sect. 5.3, we will
provide proof of the theoretical correctness of the algorithm.

5.1 Algorithm

Algorithm 3 presents the procedure of ApproxMC6. ApproxMC6 takes as
input a formula F , a tolerance parameter ε, and a confidence param-
eter δ. ApproxMC6 returns an (ε, δ)-estimate c of |sol(F)| such that
Pr

[
|sol(F)|
1+ε ≤ c ≤ (1 + ε)|sol(F)|

]
≥ 1− δ. ApproxMC6 is identical to ApproxMC in

its initialization of data structures and handling of base cases (Lines 1–4).
In Line 5, we pre-compute the rounding type and rounding value to be

used in ApproxMC6Core. configRound is implemented in Algorithm 5; the precise
choices arise due to technical analysis, as presented in Sect. 5.2. Note that, in
configRound, Cnt〈F,m〉 is rounded up to roundValue for ε < 3 (roundUp = 1) but
rounded to roundValue for ε ≥ 3 (roundUp = 0). Rounding up means we assign
roundValue to Cnt〈F,m〉 if Cnt〈F,m〉 is less than roundValue and, otherwise, keep
Cnt〈F,m〉 unchanged. Rounding means that we assign roundValue to Cnt〈F,m〉 in
all cases. ApproxMC6 computes the number of repetitions necessary to lower error
probability down to δ at Line 6. The implementation of computeIter is presented
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Algorithm 3. ApproxMC6(F, ε, δ)

1: thresh ← 9.84
(
1 + ε

1+ε

) (
1 + 1

ε

)2
;

2: Y ← BoundedSAT(F, thresh);
3: if (|Y | < thresh) then return |Y |;
4: C ← emptyList; iter ← 0;
5: (roundUp, roundValue) ← configRound(ε)
6: t ← computeIter(ε, δ)
7: repeat
8: iter ← iter + 1;
9: nSols ← ApproxMC6Core(F, thresh, roundUp, roundValue);

10: AddToList(C, nSols);
11: until (iter ≥ t);
12: finalEstimate ← FindMedian(C);
13: return finalEstimate ;

in Algorithm 6 following Lemma 2. The iterator keeps increasing until the tight
error bound is no more than δ. As we will show in Sect. 5.2, Pr [L] and Pr [U ]
depend on ε. In the loop of Lines 7–11, ApproxMC6Core repeatedly estimates
|sol(F)|. Each estimate nSols is stored in List C, and the median of C serves as
the final estimate satisfying the (ε, δ)-guarantee.

Algorithm 4 shows the pseudo-code of ApproxMC6Core. A random hash func-
tion is chosen at Line 1 to partition sol(F) into roughly equal cells. A random
hash value is chosen at Line 2 to randomly pick a cell for estimation. In Line 3,
we search for a value m such that the cell picked from 2m available cells is small
enough to enumerate solutions one by one while providing a good estimate of
|sol(F)|. In Line 4, a bounded model counting is invoked to compute the size of the
picked cell, i.e., Cnt〈F,m〉. Finally, if roundUp equals 1, Cnt〈F,m〉 is rounded up to
roundValue at Line 6. Otherwise, roundUp equals 0, and Cnt〈F,m〉 is rounded to
roundValue at Line 8. Note that rounding up returns roundValue only if Cnt〈F,m〉
is less than roundValue. However, in the case of rounding, roundValue is always
returned no matter what value Cnt〈F,m〉 is.

For large ε (ε ≥ 3), ApproxMC6Core returns a value that is independent of
the value returned by BoundedSAT in line 4 of Algorithm 4. However, observe
the value depends on m returned by LogSATSearch [8], which in turn uses
BoundedSAT to find the value of m; therefore, the algorithm’s run is not indepen-
dent of all the calls to BoundedSAT. The technical reason for correctness stems
from the observation that for large values of ε, we can always find a value of m
such that 2m ×c (where c is a constant) is a (1+ε)-approximation of |sol(F)|. An
example, consider n = 7 and let c = 1, then a (1+3)-approximation of a number
between 1 and 128 belongs to [1, 2, 4, 8, 16, 32, 64, 128]; therefore, returning an
answer of the form c × 2m suffices as long as we are able to search for the right
value of m, which is accomplished by LogSATSearch. We could skip the final call
to BoundedSAT in line 4 of ApproxMC6Core for large values of ε, but the actual
computation of BoundedSAT comes with LogSATSearch.
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Algorithm 4. ApproxMC6Core(F, thresh, roundUp, roundValue)
1: Choose h at random from H(n, n);
2: Choose α at random from {0, 1}n;
3: m ← LogSATSearch(F, h, α, thresh);

4: Cnt〈F,m〉 ← BoundedSAT

(
F ∧

(
h(m)

)−1 (
α(m)

)
, thresh

)
;

5: if roundUp = 1 then
6: return (2m × max{Cnt〈F,m〉, roundValue});
7: else
8: return (2m × roundValue);

Algorithm 5. configRound(ε)

1: if (ε <
√
2 − 1) then return (1,

√
1+2ε
2

pivot);

2: else if (ε < 1) then return (1, pivot√
2
);

3: else if (ε < 3) then return (1, pivot);
4: else if (ε < 4

√
2 − 1) then return (0, pivot);

5: else
6: return (0,

√
2pivot);

5.2 Repetition Reduction

We will now show that ApproxMC6Core allows us to obtain a smaller
max {Pr [L] ,Pr [U ]}. Furthermore, we show the large gap between the error prob-
ability of ApproxMC6 and that of ApproxMC both analytically and visually.

The following lemma presents the upper bounds of Pr [L] and Pr [U ] for
ApproxMC6Core. Let pivot = 9.84

(
1 + 1

ε

)2 for simplicity.

Lemma 4. The following bounds hold for ApproxMC6:

Pr [L] ≤

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.262 if ε <
√
2 − 1

0.157 if
√
2 − 1 ≤ ε < 1

0.085 if 1 ≤ ε < 3
0.055 if 3 ≤ ε < 4

√
2 − 1

0.023 if ε ≥ 4
√
2 − 1

Pr [U ] ≤
{
0.169 if ε < 3
0.044 if ε ≥ 3

The proof of Lemma 4 is deferred to Sect. 5.3. Observe that Lemma 4 influ-
ences the choices in the design of configRound (Algorithm 5). Recall that
max {Pr [L] ,Pr [U ]} ≤ 0.36 for ApproxMC (Appendix C), but Lemma 4 ensures
max {Pr [L] ,Pr [U ]} ≤ 0.262 for ApproxMC6. For ε ≥ 4

√
2 − 1, Lemma 4 even

delivers max {Pr [L] ,Pr [U ]} ≤ 0.044.
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Algorithm 6. computeIter(ε, δ)
1: iter ← 1;
2: while (η(iter, �iter/2�,Prε[L]) + η(iter, �iter/2�,Prε[U ]) > δ) do
3: iter ← iter + 2;

4: return iter;

The following theorem analytically presents the gap between the error prob-
ability of ApproxMC6 and that of ApproxMC1.

Theorem 1. For
√
2 − 1 ≤ ε < 1,

Pr [Errort] ∈
⎧
⎨
⎩

O
(
t−

1
2 0.75t

)
for ApproxMC6

O
(
t−

1
2 0.96t

)
for ApproxMC

Proof. From Lemma 4, we obtain pmax ≤ 0.169 for ApproxMC6. Applying
Lemma 3, we have

Pr [Errort] ∈ O
(

t−
1
2

(
2
√

0.169(1 − 0.169)
)t

)
⊆ O

(
t−

1
2 0.75t

)

For ApproxMC, combining pmax ≤ 0.36 (Appendix C) and Lemma 3, we obtain

Pr [Errort] ∈ O
(

t−
1
2

(
2
√

0.36(1 − 0.36)
)t

)
= O

(
t−

1
2 0.96t

)

�
Figure 1 visualizes the large gap between the error probability of ApproxMC6
and that of ApproxMC. The x-axis represents the number of repetitions (t) in
ApproxMC6 or ApproxMC. The y-axis represents the upper bound of error proba-
bility in the log scale. For example, as t = 117, ApproxMC guarantees that with a
probability of 10−3, the median over 117 estimates violates the PAC guarantee.
However, ApproxMC6 allows a much smaller error probability that is at most
10−15 for

√
2 − 1 ≤ ε < 1. The smaller error probability enables ApproxMC6

to repeat fewer repetitions while providing the same level of theoretical guar-
antee. For example, given δ = 0.001 to ApproxMC, i.e., y = 0.001 in Fig. 1,
ApproxMC requests 117 repetitions to obtain the given error probability. How-
ever, ApproxMC6 claims that 37 repetitions for ε <

√
2 − 1, 19 repetitions for√

2 − 1 ≤ ε < 1, 17 repetitions for 1 ≤ ε < 3, 7 repetitions for 3 ≤ ε < 4
√
2 − 1,

and 5 repetitions for ε ≥ 4
√
2− 1 are sufficient to obtain the same level of error

probability. Consequently, ApproxMC6 can obtain 3×, 6×, 7×, 17×, and 23×
speedups, respectively, than ApproxMC.

1 We state the result for the case
√
2−1 ≤ ε < 1. A similar analysis can be applied to

other cases, which leads to an even bigger gap between ApproxMC6 and ApproxMC.
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Fig. 1. Comparison of error bounds for ApproxMC6 and ApproxMC.

5.3 Proof of Lemma 4 for Case
√
2 − 1 ≤ ε < 1

We provide full proof of Lemma 4 for case
√
2 − 1 ≤ ε < 1. We defer the proof

of other cases to Appendix D.
Let Tm denote the event

(
Cnt〈F,m〉 < thresh

)
, and let Lm and Um denote the

events
(
Cnt〈F,m〉 <

E[Cnt〈F,m〉]
1+ε

)
and

(
Cnt〈F,m〉 > E

[
Cnt〈F,m〉

]
(1 + ε)

)
, respec-

tively. To ease the proof, let U ′
m denote

(
Cnt〈F,m〉 > E

[
Cnt〈F,m〉

]
(1 + ε

1+ε )
)
,

and thereby Um ⊆ U ′
m. Let m∗ = �log2 |sol(F)| − log2 (pivot) + 1� such that m∗

is the smallest m satisfying |sol(F)|
2m (1 + ε

1+ε ) ≤ thresh − 1.
Let us first prove the lemmas used in the proof of Lemma 4.

Lemma 5. For every 0 < β < 1, γ > 1, and 1 ≤ m ≤ n, the following holds:

1. Pr
[
Cnt〈F,m〉 ≤ βE

[
Cnt〈F,m〉

]] ≤ 1

1+(1−β)2E[Cnt〈F,m〉]
2. Pr

[
Cnt〈F,m〉 ≥ γE

[
Cnt〈F,m〉

]] ≤ 1

1+(γ−1)2E[Cnt〈F,m〉]

Proof. Statement 1 can be proved following the proof of Lemma 1 in [8]. For
statement 2, we rewrite the left-hand side and apply Cantelli’s inequality:

Pr
[
Cnt〈F,m〉−E

[
Cnt〈F,m〉

]≥(γ−1)E
[
Cnt〈F,m〉

]]≤ σ2[Cnt〈F,m〉]
σ2[Cnt〈F,m〉]+((γ−1)E[Cnt〈F,m〉])2

.

Finally, applying Eq. 2 completes the proof. �

Lemma 6. Given
√
2 − 1 ≤ ε < 1, the following bounds hold:

1. Pr [Tm∗−3] ≤ 1
62.5

2. Pr [Lm∗−2] ≤ 1
20.68

3. Pr [Lm∗−1] ≤ 1
10.84

4. Pr [U ′
m∗ ] ≤ 1

5.92
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Proof. Following the proof of Lemma 2 in [8], we can prove statements 1, 2, and
3. To prove statement 4, replacing γ with (1 + ε

1+ε ) in Lemma 5 and employing
E
[
Cnt〈F,m∗〉

] ≥ pivot/2, we obtain Pr [U ′
m∗ ] ≤ 1

1+( ε
1+ε )

2
pivot/2

≤ 1
5.92 . �

Now we prove the upper bounds of Pr [L] and Pr [U ] in Lemma 4 for
√
2−1 ≤

ε < 1. The proof for other ε is deferred to Appendix D due to the page limit.
Lemma 4. The following bounds hold for ApproxMC6:

Pr [L] ≤

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.262 if ε <
√
2 − 1

0.157 if
√
2 − 1 ≤ ε < 1

0.085 if 1 ≤ ε < 3
0.055 if 3 ≤ ε < 4

√
2 − 1

0.023 if ε ≥ 4
√
2 − 1

Pr [U ] ≤
{
0.169 if ε < 3
0.044 if ε ≥ 3

Proof. We prove the case of
√
2− 1 ≤ ε < 1. The proof for other ε is deferred to

Appendix D. Let us first bound Pr [L]. Following LogSATSearch in [8], we have

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3)

Equation 3 can be simplified by three observations labeled O1, O2 and O3 below.

O1 : ∀i ≤ m∗ − 3, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−3}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−3}

Ti ⊆ Tm∗−3

O2 :]For i ∈ {m∗ − 2,m∗ − 1}, we have
⋃

i∈{m∗−2,m∗−1}
(Ti−1 ∩ Ti ∩ Li) ⊆ Lm∗−2 ∪ Lm∗−1

O3 : ∀i ≥ m∗, since rounding Cnt〈F,i〉 up to pivot√
2

and m∗ ≥ log2 |sol(F)| −
log2 (pivot), we have 2i × Cnt〈F,i〉 ≥ 2m∗ × pivot√

2
≥ |sol(F)|√

2
≥ |sol(F)|

1+ε . The last

inequality follows from ε ≥ √
2 − 1. Then we have Cnt〈F,i〉 ≥ E[Cnt〈F,i〉]

1+ε .
Therefore, Li = ∅ for i ≥ m∗ and we have

⋃
i∈{m∗,...,n}

(Ti−1 ∩ Ti ∩ Li) = ∅
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Following the observations O1, O2, and O3, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−3] + Pr [Lm∗−2] + Pr [Lm∗−1]

Employing Lemma 6 gives Pr [L] ≤ 0.157.
Now let us bound Pr [U ]. Similarly, following LogSATSearch in [8], we have

Pr [U ] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Ui

)
⎤
⎦ (4)

We derive the following observations O4 and O5.

O4 : ∀i ≤ m∗ − 1, since m∗ ≤ log2 |sol(F)| − log2 (pivot) + 1, we have 2i ×
Cnt〈F,i〉 ≤ 2m∗−1 × thresh ≤ |sol(F)|

(
1 + ε

1+ε

)
. Then we obtain Cnt〈F,i〉 ≤

E
[
Cnt〈F,i〉

] (
1 + ε

1+ε

)
. Therefore, Ti ∩ U ′

i = ∅ for i ≤ m∗ − 1 and we have

⋃
i∈{1,...,m∗−1}

(
Ti−1 ∩ Ti ∩ Ui

) ⊆
⋃

i∈{1,...,m∗−1}

(
Ti−1 ∩ Ti ∩ U ′

i

)
= ∅

O5 : ∀i ≥ m∗, Ti implies Cnt〈F,i〉 > thresh, and then we have 2i × Cnt〈F,i〉 >

2m∗ × thresh ≥ |sol(F)|
(
1 + ε

1+ε

)
. The second inequality follows from m∗ ≥

log2 |sol(F)| − log2 (pivot). Then we obtain Cnt〈F,i〉 > E
[
Cnt〈F,i〉

] (
1 + ε

1+ε

)
.

Therefore, Ti ⊆ U ′
i for i ≥ m∗. Since ∀i, Ti ⊆ Ti−1, we have

⋃
i∈{m∗,...,n}

(
Ti−1 ∩ Ti ∩ Ui

) ⊆
⋃

i∈{m∗+1,...,n}
Ti−1 ∪ (Tm∗−1 ∩ Tm∗ ∩ Um∗)

⊆ Tm∗ ∪ (Tm∗−1 ∩ Tm∗ ∩ Um∗)

⊆ Tm∗ ∪ Um∗

⊆ U ′
m∗ (5)

Remark that for
√
2 − 1 ≤ ε < 1, we round Cnt〈F,m∗〉 up to pivot√

2
, and we

have 2m∗ × pivot√
2

≤ |sol(F)|(1 + ε), which means rounding doesn’t affect the
event Um∗ ; therefore, Inequality 5 still holds.

Following the observations O4 and O5, we simplify Eq. 4 and obtain

Pr [U ] ≤ Pr [U ′
m∗ ]

Employing Lemma 6 gives Pr [U ] ≤ 0.169. �
The breakpoints in ε of Lemma 4 arise from how we use rounding to lower

the error probability for events L and U . Rounding up counts can lower Pr [L]
but may increase Pr [U ]. Therefore, we want to round up counts to a value that
doesn’t affect the event U . Take

√
2−1 ≤ ε < 1 as an example; we round up the
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count to a value such that Lm∗ becomes an empty event with zero probability
while Um∗ remains unchanged. To make Lm∗ empty, we have

2m∗ × roundValue ≥ 2m∗ × 1
1 + ε

pivot ≥ 1
1 + ε

|sol(F)| (6)

where the last inequality follows from m∗ ≥ log2 |sol(F)| − log2 (pivot). To main-
tain Um∗ unchanged, we obtain

2m∗ × roundValue ≤ 2m∗ × 1 + ε

2
pivot ≤ (1 + ε)|sol(F)| (7)

where the last inequality follows from m∗ ≤ log2 |sol(F)| − log2 (pivot)+ 1. Com-
bining Eqs. 6 and 7 together, we obtain

2m∗ × 1
1 + ε

pivot ≤ 2m∗ × 1 + ε

2
pivot

which gives us ε ≥ √
2 − 1. Similarly, we can derive other breakpoints.

6 Experimental Evaluation

It is perhaps worth highlighting that both ApproxMCCore and ApproxMC6Core
invoke the underlying SAT solver on identical queries; the only difference between
ApproxMC6 and ApproxMC lies in what estimate to return and how often
ApproxMCCore and ApproxMC6Core are invoked. From this viewpoint, one would
expect that theoretical improvements would also lead to improved runtime per-
formance. To provide further evidence, we perform extensive empirical evalua-
tion and compare ApproxMC6’s performance against the current state-of-the-art
model counter, ApproxMC [22]. We use Arjun as a pre-processing tool. We used
the latest version of ApproxMC, called ApproxMC4; an entry based on ApproxMC4
won the Model Counting Competition 2022.

Previous comparisons of ApproxMC have been performed on a set of 1896
instances, but the latest version of ApproxMC is able to solve almost all the
instances when these instances are pre-processed by Arjun. Therefore, we sought
to construct a new comprehensive set of 1890 instances derived from various
sources, including Model Counting Competitions 2020–2022 [12,15,16], program
synthesis [1], quantitative control improvisation [13], quantification of software
properties [26], and adaptive chosen ciphertext attacks [3]. As noted earlier, our
technique extends to projected model counting, and our benchmark suite indeed
comprises 772 projected model counting instances.

Experiments were conducted on a high-performance computer cluster, with
each node consisting of 2xE5-2690v3 CPUs featuring 2 × 12 real cores and 96GB
of RAM. For each instance, a counter was run on a single core, with a time limit
of 5000 s and a memory limit of 4GB. To compare runtime performance, we use
the PAR-2 score, a standard metric in the SAT community. Each instance is
assigned a score that is the number of seconds it takes the corresponding tool to
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complete execution successfully. In the event of a timeout or memory out, the
score is the doubled time limit in seconds. The PAR-2 score is then calculated as
the average of all the instance scores. We also report the speedup of ApproxMC6
over ApproxMC4, calculated as the ratio of the runtime of ApproxMC4 to that of
ApproxMC6 on instances solved by both counters. We set δ to 0.001 and ε to 0.8.

Specifically, we aim to address the following research questions:

RQ 1. How does the runtime performance of ApproxMC6 compare to that of
ApproxMC4?

RQ 2. How does the accuracy of the counts computed by ApproxMC6 compare
to that of the exact count?

Summary. In summary, ApproxMC6 consistently outperforms ApproxMC4.
Specifically, it solved 204 additional instances and reduced the PAR-2 score by
1063 s in comparison to ApproxMC4. The average speedup of ApproxMC6 over
ApproxMC4 was 4.68. In addition, ApproxMC6 provided a high-quality approxi-
mation with an average observed error of 0.1, much smaller than the theoretical
error tolerance of 0.8.

6.1 RQ1. Overall Performance

Figure 2 compares the counting time of ApproxMC6 and ApproxMC4. The x-axis
represents the index of the instances, sorted in ascending order of runtime, and
the y-axis represents the runtime for each instance. A point (x, y) indicates that
a counter can solve x instances within y seconds. Thus, for a given time limit y,
a counter whose curve is on the right has solved more instances than a counter
on the left. It can be seen in the figure that ApproxMC6 consistently outperforms
ApproxMC4. In total, ApproxMC6 solved 204 more instances than ApproxMC4.

Table 1 provides a detailed comparison between ApproxMC6 and ApproxMC4.
The first column lists three measures of interest: the number of solved instances,
the PAR-2 score, and the speedup of ApproxMC6 over ApproxMC4. The second
and third columns show the results for ApproxMC4 and ApproxMC6, respec-
tively. The second column indicates that ApproxMC4 solved 998 of the 1890
instances and achieved a PAR-2 score of 4934. The third column shows that
ApproxMC6 solved 1202 instances and achieved a PAR-2 score of 3871. In com-
parison, ApproxMC6 solved 204 more instances and reduced the PAR-2 score
by 1063 s in comparison to ApproxMC4. The geometric mean of the speedup
for ApproxMC6 over ApproxMC4 is 4.68. This speedup was calculated only for
instances solved by both counters.

6.2 RQ2. Approximation Quality

We used the state-of-the-art probabilistic exact model counter Ganak to compute
the exact model count and compare it to the results of ApproxMC6. We collected
statistics on instances solved by both Ganak and ApproxMC6. Figure 3 presents
results for a subset of instances. The x-axis represents the index of instances
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Table 1. The number of solved instances and PAR-2 score for ApproxMC6 versus
ApproxMC4 on 1890 instances. The geometric mean of the speedup of ApproxMC6 over
ApproxMC4 is also reported.

ApproxMC4 ApproxMC6

# Solved 998 1202
PAR-2 score 4934 3871

Speedup — 4.68
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Fig. 2. Comparison of counting times for ApproxMC6 and ApproxMC4.

Fig. 3. Comparison of approximate counts from ApproxMC6 to exact counts from
Ganak.

sorted in ascending order by the number of solutions, and the y-axis represents
the number of solutions in a log scale. Theoretically, the approximate count
from ApproxMC6 should be within the range of |sol(F)| ·1.8 and |sol(F)|/1.8 with
probability 0.999, where |sol(F)| denotes the exact count returned by Ganak.
The range is indicated by the upper and lower bounds, represented by the
curves y = |sol(F)| · 1.8 and y = |sol(F)|/1.8, respectively. Figure 3 shows
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that the approximate counts from ApproxMC6 fall within the expected range
[|sol(F)|/1.8, |sol(F)| · 1.8] for all instances except for four points slightly above
the upper bound. These four outliers are due to a bug in the preprocessor Arjun
that probably depends on the version of the C++ compiler and will be fixed
in the future. We also calculated the observed error, which is the mean relative
difference between the approximate and exact counts in our experiments, i.e.,
max{finalEstimate/|sol(F)| − 1, |sol(F)|/finalEstimate − 1}. The overall observed
error was 0.1, which is significantly smaller than the theoretical error tolerance
of 0.8.

7 Conclusion

In this paper, we addressed the scalability challenges faced by ApproxMC in
the smaller δ range. To this end, we proposed a rounding-based algorithm,
ApproxMC6, which reduces the number of estimations required by 84% while
providing the same (ε, δ)-guarantees. Our empirical evaluation on 1890 instances
shows that ApproxMC6 solved 204 more instances and achieved a reduction in
PAR-2 score of 1063 s. Furthermore, ApproxMC6 achieved a 4× speedup over
ApproxMC on the instances both ApproxMC6 and ApproxMC could solve.
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A Proof of Proposition 1

Proof. For ∀y ∈ {0, 1}n, α(m) ∈ {0, 1}m, let γy,α(m) be an indicator variable that
is 1 when h(m)(y) = α(m). According to the definition of strongly 2-universal
function, we obtain ∀x, y ∈ {0, 1}n,E

[
γy,α(m)

]
= 1

2m and E
[
γx,α(m) · γy,α(m)

]
=

1
22m . To prove Eq. 1, we obtain

E
[
Cnt〈F,m〉

]
= E

⎡
⎣ ∑

y∈sol(F)

γy,α(m)

⎤
⎦ =

∑
y∈sol(F)

E
[
γy,α(m)

]
=

|sol(F)|
2m

https://www.nscc.sg
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To prove Eq. 2, we derive

E
[
Cnt2〈F,m〉

]
= E

⎡
⎣ ∑

y∈sol(F)

γ2
y,α(m) +

∑
x�=y∈sol(F)

γx,α(m) · γy,α(m)

⎤
⎦

= E

⎡
⎣ ∑

y∈sol(F)

γy,α(m)

⎤
⎦+

∑
x�=y∈sol(F)

E
[
γx,α(m) · γy,α(m)

]

= E
[
Cnt〈F,m〉

]
+

|sol(F)|(|sol(F)| − 1)
22m

Then, we obtain

σ2
[
Cnt〈F,m〉

]
= E

[
Cnt2〈F,m〉

]
− E

[
Cnt〈F,m〉

]2

= E
[
Cnt〈F,m〉

]
+

|sol(F)|(|sol(F)| − 1)
22m

−
( |sol(F)|

2m

)2

= E
[
Cnt〈F,m〉

] − |sol(F)|
22m

≤ E
[
Cnt〈F,m〉

]

�

B Weakness of Proposition 3

The following proposition states that Proposition 3 provides a loose upper bound
for Pr [Errort].

Proposition 4. Assuming t is odd, we have:

Pr [Errort] < η(t, �t/2�,Pr [L ∪ U ])

Proof. We will now construct a case counted by η(t, �t/2�,Pr [L ∪ U ]) but not
contained within the event Errort. Let IL

i be an indicator variable that is 1
when ApproxMCCore returns a nSols less than |sol(F)|

1+ε , indicating the occurrence
of event L in the i-th repetition. Let IU

i be an indicator variable that is 1
when ApproxMCCore returns a nSols greater than (1 + ε)|sol(F)|, indicating the
occurrence of event U in the i-th repetition. Consider a scenario where IL

i = 1
for i = 1, 2, ...,

⌈
t
4

⌉
, IU

j = 1 for j =
⌈

t
4

⌉
+ 1, ...,

⌈
t
2

⌉
, and IL

k = IU
k = 0

for k >
⌈

t
2

⌉
. η(t, �t/2�,Pr [L ∪ U ]) represents

∑t
i=1(I

L
i ∨ IU

i ) ≥ � t
2�. We can

see that this case is included in
∑t

i=1(I
L
i ∨ IU

i ) ≥ � t
2� and therefore counted

by η(t, �t/2�,Pr [L ∪ U ]) since there are
⌈

t
2

⌉
estimates outside the PAC range.

However, this case means that
⌈

t
4

⌉
estimates fall within the range less than |sol(F)|

1+ε

and
⌈

t
2

⌉−⌈
t
4

⌉
estimates fall within the range greater than (1+ε)|sol(F)|, while the

remaining
⌊

t
2

⌋
estimates correctly fall within the range

[
|sol(F)|
1+ε , (1 + ε)|sol(F)|

]
.
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Therefore, after sorting all the estimates, ApproxMC6 returns a correct estimate
since the median falls within the PAC range

[
|sol(F)|
1+ε , (1 + ε)|sol(F)|

]
. In other

words, this case is out of the event Errort. In conclusion, there is a scenario that
is out of the event Errort, undesirably included in expression

∑t
i=1(I

L
i ∨IU

i ) ≥ � t
2�

and counted by η(t, �t/2�,Pr [L ∪ U ]), which means Pr [Errort] is strictly less than
η(t, �t/2�,Pr [L ∪ U ]). �

C Proof of pmax ≤ 0.36 for ApproxMC

Proof. We prove the case of
√
2 − 1 ≤ ε < 1. Similarly to the proof in Sect. 5.3,

we aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by three observations labeled O1, O2 and O3 below.
O1 : ∀i ≤ m∗ − 3, Ti ⊆ Ti+1. Therefore,

⋃
i∈{1,...,m∗−3}

(Ti−1 ∩ Ti ∩ Li) ⊆
⋃

i∈{1,...,m∗−3}
Ti ⊆ Tm∗−3

O2 : For i ∈ {m∗ − 2,m∗ − 1}, we have
⋃

i∈{m∗−2,m∗−1}
(Ti−1 ∩ Ti ∩ Li) ⊆ Lm∗−2 ∪ Lm∗−1

O3 : ∀i ≥ m∗, Ti implies Cnt〈F,i〉 > thresh and then we have 2i ×
Cnt〈F,i〉 > 2m∗ × thresh ≥ |sol(F)|

(
1 + ε

1+ε

)
. The second inequal-

ity follows from m∗ ≥ log2 |sol(F)| − log2 (pivot). Then we obtain(
Cnt〈F,i〉 > E

[
Cnt〈F,i〉

] (
1 + ε

1+ε

))
. Therefore, Ti ⊆ U ′

i for i ≥ m∗. Since

∀i, Ti ⊆ Ti−1, we have
⋃

i∈{m∗,...,n}

(
Ti−1 ∩ Ti ∩ Li

) ⊆
⋃

i∈{m∗+1,...,n}
Ti−1 ∪ (Tm∗−1 ∩ Tm∗ ∩ Lm∗)

⊆ Tm∗ ∪ (Tm∗−1 ∩ Tm∗ ∩ Lm∗)

⊆ Tm∗ ∪ Lm∗

⊆ U ′
m∗ ∪ Lm∗

Following the observations O1, O2 and O3, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−3] + Pr [Lm∗−2] + Pr [Lm∗−1] + Pr [U ′
m∗ ∪ Lm∗ ]

Employing Lemma 2 in [8] gives Pr [L] ≤ 0.36. Note that U in [8] represents U ′

of our definition.
Then, following the O4 and O5 in Sect. 5.3, we obtain

Pr [U ] ≤ Pr [U ′
m∗ ]

Employing Lemma 6 gives Pr [U ] ≤ 0.169. As a result, pmax ≤ 0.36. �
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D Proof of Lemma 4

We restate the lemma below and prove the statements section by section. The
proof for

√
2 − 1 ≤ ε < 1 has been shown in Sect. 5.3.

Lemma 4. The following bounds hold for ApproxMC6:

Pr [L] ≤

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.262 if ε <
√
2 − 1

0.157 if
√
2 − 1 ≤ ε < 1

0.085 if 1 ≤ ε < 3
0.055 if 3 ≤ ε < 4

√
2 − 1

0.023 if ε ≥ 4
√
2 − 1

Pr [U ] ≤
{
0.169 if ε < 3
0.044 if ε ≥ 3

D.1 Proof of Pr [L] ≤ 0.262 for ε <
√
2 − 1

We first consider two cases: E
[
Cnt〈F,m∗〉

]
< 1+ε

2 thresh and E
[
Cnt〈F,m∗〉

] ≥
1+ε
2 thresh, and then merge the results to complete the proof.

Case 1: E
[
Cnt〈F,m ∗〉

]
< 1+ε

2
thresh

Lemma 7. Given ε <
√
2 − 1, the following bounds hold:

1. Pr [Tm∗−2] ≤ 1
29.67

2. Pr [Lm∗−1] ≤ 1
10.84

Proof. Let’s first prove the statement 1. For ε <
√
2 − 1, we have

thresh < (2 −
√
2
2 )pivot and E

[
Cnt〈F,m∗−2〉

] ≥ 2pivot. Therefore, Pr [Tm∗−2] ≤
Pr

[
Cnt〈F,m∗−2〉 ≤ (1 −

√
2
4 )E

[
Cnt〈F,m∗−2〉

]]
. Finally, employing Lemma 5 with

β = 1 −
√
2
4 , we obtain Pr [Tm∗−2] ≤ 1

1+(
√

2
4 )2·2pivot ≤ 1

1+(
√

2
4 )2·2·9.84·(1+ 1√

2−1
)2

≤
1

29.67 . To prove the statement 2, we employ Lemma 5 with β = 1
1+ε and

E
[
Cnt〈F,m∗−1〉

] ≥ pivot to obtain Pr [Lm∗−1] ≤ 1

1+(1− 1
1+ε )

2·E[Cnt〈F,m∗−1〉]
≤

1
1+(1− 1

1+ε )
2·9.84·(1+ 1

ε )
2 = 1

10.84 . �

Then, we prove that Pr [L] ≤ 0.126 for E
[
Cnt〈F,m∗〉

]
< 1+ε

2 thresh.

Proof. We aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by the three observations labeled O1, O2 and O3 below.
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O1 : ∀i ≤ m∗ − 2, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−2}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−2}

Ti ⊆ Tm∗−2

O2 : For i = m∗ − 1, we have

Tm∗−2 ∩ Tm∗−1 ∩ Lm∗−1 ⊆ Lm∗−1

O3 : ∀i ≥ m∗, since rounding Cnt〈F,i〉 up to
√
1+2ε
2 pivot, we have Cnt〈F,i〉 ≥

√
1+2ε
2 pivot ≥ thresh

2 >
E[Cnt〈F,m∗〉]

1+ε ≥ E[Cnt〈F,i〉]
1+ε . The second last inequality

follows from E
[
Cnt〈F,m∗〉

]
< 1+ε

2 thresh. Therefore, Li = ∅ for i ≥ m∗ and we
have

⋃
i∈{m∗,...,n}

(Ti−1 ∩ Ti ∩ Li) = ∅

Following the observations O1, O2 and O3, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−2] + Pr [Lm∗−1]

Employing Lemma 7 gives Pr [L] ≤ 0.126. �

Case 2: E
[
Cnt〈F,m ∗〉

] ≥ 1+ε
2

thresh

Lemma 8. Given E
[
Cnt〈F,m∗〉

] ≥ 1+ε
2 thresh, the following bounds hold:

1. Pr [Tm∗−1] ≤ 1
10.84

2. Pr [Lm∗ ] ≤ 1
5.92

Proof. Let’s first prove the statement 1. From E
[
Cnt〈F,m∗〉

] ≥ 1+ε
2 thresh,

we can derive E
[
Cnt〈F,m∗−1〉

] ≥ (1 + ε)thresh. Therefore, Pr [Tm∗−1] ≤
Pr

[
Cnt〈F,m∗−1〉 ≤ 1

1+εE
[
Cnt〈F,m∗−1〉

]]
. Finally, employing Lemma 5 with β =

1
1+ε , we obtain Pr [Tm∗−1] ≤ 1

1+(1− 1
1+ε )

2·E[Cnt〈F,m∗−1〉]
≤ 1

1+(1− 1
1+ε )

2·(1+ε)thresh
=

1
1+9.84(1+2ε) ≤ 1

10.84 . To prove the statement 2, we employ Lemma 5
with β = 1

1+ε and E
[
Cnt〈F,m∗〉

] ≥ 1+ε
2 thresh to obtain Pr [Lm∗ ] ≤

1

1+(1− 1
1+ε )

2·E[Cnt〈F,m∗〉]
≤ 1

1+(1− 1
1+ε )

2· 1+ε
2 thresh

= 1
1+4.92(1+2ε) ≤ 1

5.92 . �

Then, we prove that Pr [L] ≤ 0.262 for E
[
Cnt〈F,m∗〉

] ≥ 1+ε
2 thresh.

Proof. We aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by the three observations labeled O1, O2 and O3 below.
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O1 : ∀i ≤ m∗ − 1, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−1}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−1}

Ti ⊆ Tm∗−1

O2 : For i = m∗, we have

Tm∗−1 ∩ Tm∗ ∩ Lm∗ ⊆ Lm∗

O3 : ∀i ≥ m∗ + 1, since rounding Cnt〈F,i〉 up to
√
1+2ε
2 pivot and m∗ ≥

log2 |sol(F)| − log2 (pivot), we have 2i × Cnt〈F,i〉 ≥ 2m∗+1 ×
√
1+2ε
2 pivot ≥

√
1 + 2ε|sol(F)| ≥ |sol(F)|

1+ε . Then we have
(
Cnt〈F,i〉 ≥ E[Cnt〈F,i〉]

1+ε

)
. Therefore,

Li = ∅ for i ≥ m∗ + 1 and we have
⋃

i∈{m∗+1,...,n}
(Ti−1 ∩ Ti ∩ Li) = ∅

Following the observations O1, O2 and O3, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−1] + Pr [Lm∗ ]

Employing Lemma 8 gives Pr [L] ≤ 0.262. �
Combining the Case 1 and 2, we obtain Pr [L] ≤ max{0.126, 0.262} = 0.262.

Therefore, we prove the statement for ApproxMC6: Pr [L] ≤ 0.262 for ε <
√
2−1.

D.2 Proof of Pr [L] ≤ 0.085 for 1 ≤ ε < 3

Lemma 9. Given 1 ≤ ε < 3, the following bounds hold:

1. Pr [Tm∗−4] ≤ 1
86.41

2. Pr [Lm∗−3] ≤ 1
40.36

3. Pr [Lm∗−2] ≤ 1
20.68

Proof. Let’s first prove the statement 1. For ε < 3, we have
thresh < 7

4pivot and E
[
Cnt〈F,m∗−4〉

] ≥ 8pivot. Therefore, Pr [Tm∗−4] ≤
Pr

[
Cnt〈F,m∗−4〉 ≤ 7

32E
[
Cnt〈F,m∗−4〉

]]
. Finally, employing Lemma 5 with β =

7
32 , we obtain Pr [Tm∗−4] ≤ 1

1+(1− 7
32 )

2·8pivot ≤ 1
1+(1− 7

32 )
2·8·9.84·(1+ 1

3 )
2 ≤

1
86.41 . To prove the statement 2, we employ Lemma 5 with β = 1

1+ε and
E
[
Cnt〈F,m∗−3〉

] ≥ 4pivot to obtain Pr [Lm∗−3] ≤ 1

1+(1− 1
1+ε )

2·E[Cnt〈F,m∗−3〉]
≤

1
1+(1− 1

1+ε )
2·4·9.84·(1+ 1

ε )
2 = 1

40.36 . Following the proof of Lemma 2 in [8] we can
prove the statement 3. �

Now let us prove the statement for ApproxMC6: Pr [L] ≤ 0.085 for 1 ≤ ε < 3.
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Proof. We aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by the three observations labeled O1, O2 and O3 below.

O1 : ∀i ≤ m∗ − 4, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−4}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−4}

Ti ⊆ Tm∗−4

O2 : For i ∈ {m∗ − 3,m∗ − 2}, we have
⋃

i∈{m∗−3,m∗−2}
(Ti−1 ∩ Ti ∩ Li) ⊆ Lm∗−3 ∪ Lm∗−2

O3 : ∀i ≥ m∗ − 1, since rounding Cnt〈F,i〉 up to pivot and m∗ ≥ log2 |sol(F)| −
log2 (pivot), we have 2i × Cnt〈F,i〉 ≥ 2m∗−1 × pivot ≥ |sol(F)|

2 ≥ |sol(F)|
1+ε . The

last inequality follows from ε ≥ 1. Then we have
(
Cnt〈F,i〉 ≥ E[Cnt〈F,i〉]

1+ε

)
.

Therefore, Li = ∅ for i ≥ m∗ − 1 and we have
⋃

i∈{m∗−1,...,n}
(Ti−1 ∩ Ti ∩ Li) = ∅

Following the observations O1, O2 and O3, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−4] + Pr [Lm∗−3] + Pr [Lm∗−2]

Employing Lemma 9 gives Pr [L] ≤ 0.085. �

D.3 Proof of Pr [L] ≤ 0.055 for 3 ≤ ε < 4
√
2 − 1

Lemma 10. Given 3 ≤ ε < 4
√
2 − 1, the following bound hold:

Pr [Tm∗−3] ≤ 1
18.19

Proof. For ε < 4
√
2 − 1, we have thresh < (2 −

√
2
8 )pivot and E

[
Cnt〈F,m∗−3〉

] ≥
4pivot. Therefore, Pr [Tm∗−3] ≤ Pr

[
Cnt〈F,m∗−3〉 ≤ ( 12 −

√
2

32 )E
[
Cnt〈F,m∗−3〉

]]
.

Finally, employing Lemma 5 with β = 1
2 −

√
2

32 , we obtain Pr [Tm∗−3] ≤
1

1+(1−( 1
2−

√
2

32 ))2·4pivot ≤ 1

1+(1−( 1
2−

√
2

32 ))2·4·9.84·(1+ 1
4

√
2−1

)2
≤ 1

18.19 . �

Now let us prove the statement for ApproxMC6: Pr [L] ≤ 0.055 for 3 ≤ ε <
4
√
2 − 1.
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Proof. We aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by the two observations labeled O1 and O2 below.

O1 : ∀i ≤ m∗ − 3, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−3}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−3}

Ti ⊆ Tm∗−3

O2 : ∀i ≥ m∗ − 2, since rounding Cnt〈F,i〉 to pivot and m∗ ≥ log2 |sol(F)| −
log2 (pivot), we have 2i × Cnt〈F,i〉 ≥ 2m∗−2 × pivot ≥ |sol(F)|

4 ≥ |sol(F)|
1+ε . The

last inequality follows from ε ≥ 3. Then we have
(
Cnt〈F,i〉 ≥ E[Cnt〈F,i〉]

1+ε

)
.

Therefore, Li = ∅ for i ≥ m∗ − 2 and we have
⋃

i∈{m∗−2,...,n}
(Ti−1 ∩ Ti ∩ Li) = ∅

Following the observations O1 and O2, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−3]

Employing Lemma 10 gives Pr [L] ≤ 0.055. �

D.4 Proof of Pr [L] ≤ 0.023 for ε ≥ 4
√
2 − 1

Lemma 11. Given ε ≥ 4
√
2 − 1, the following bound hold:

Pr [Tm∗−4] ≤ 1
45.28

Proof. We have thresh < 2pivot and E
[
Cnt〈F,m∗−4〉

] ≥ 8pivot. Therefore,
Pr [Tm∗−4] ≤ Pr

[
Cnt〈F,m∗−4〉 ≤ 1

4E
[
Cnt〈F,m∗−4〉

]]
. Finally, employing Lemma 5

with β = 1
4 , we obtain Pr [Tm∗−4] ≤ 1

1+(1− 1
4 )

2·8pivot ≤ 1
1+(1− 1

4 )
2·8·9.84

≤ 1
45.28 . �

Now let us prove the statement for ApproxMC6: Pr [L] ≤ 0.023 for ε ≥ 4
√
2−1.

Proof. We aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by the two observations labeled O1 and O2 below.
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O1 : ∀i ≤ m∗ − 4, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−4}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−4}

Ti ⊆ Tm∗−4

O2 : ∀i ≥ m∗ − 3, since rounding Cnt〈F,i〉 to
√
2pivot and m∗ ≥ log2 |sol(F)| −

log2 (pivot), we have 2i × Cnt〈F,i〉 ≥ 2m∗−3 × √
2pivot ≥

√
2|sol(F)|

8 ≥
|sol(F)|
1+ε . The last inequality follows from ε ≥ 4

√
2 − 1. Then we have(

Cnt〈F,i〉 ≥ E[Cnt〈F,i〉]
1+ε

)
. Therefore, Li = ∅ for i ≥ m∗ − 3 and we have

⋃
i∈{m∗−3,...,n}

(Ti−1 ∩ Ti ∩ Li) = ∅

Following the observations O1 and O2, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−4]

Employing Lemma 11 gives Pr [L] ≤ 0.023. �

D.5 Proof of Pr [U ] ≤ 0.169 for ε < 3

Lemma 12

Pr [U ′
m∗ ] ≤ 1

5.92

Proof. Employing Lemma 5 with γ = (1+ ε
1+ε ) and E

[
Cnt〈F,m∗〉

] ≥ pivot/2, we
obtain Pr [U ′

m∗ ] ≤ 1

1+( ε
1+ε )

2
pivot/2

≤ 1
1+9.84/2 ≤ 1

5.92 . �

Now let us prove the statement for ApproxMC6: Pr [U ] ≤ 0.169 for ε < 3.

Proof. We aim to bound Pr [U ] by the following equation:

Pr [U ] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Ui

)
⎤
⎦ (4 revisited)

We derive the following observations O1 and O2.

O1 : ∀i ≤ m∗ − 1, since m∗ ≤ log2 |sol(F)| − log2 (pivot) + 1, we have
2i × Cnt〈F,i〉 ≤ 2m∗−1 × thresh ≤ |sol(F)|

(
1 + ε

1+ε

)
. Then we obtain(

Cnt〈F,i〉 ≤ E
[
Cnt〈F,i〉

] (
1 + ε

1+ε

))
. Therefore, Ti ∩ U ′

i = ∅ for i ≤ m∗ − 1
and we have

⋃
i∈{1,...,m∗−1}

(
Ti−1 ∩ Ti ∩ Ui

) ⊆
⋃

i∈{1,...,m∗−1}

(
Ti−1 ∩ Ti ∩ U ′

i

)
= ∅
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O2 : ∀i ≥ m∗, Ti implies Cnt〈F,i〉 > thresh and then we have 2i ×
Cnt〈F,i〉 > 2m∗ × thresh ≥ |sol(F)|

(
1 + ε

1+ε

)
. The second inequal-

ity follows from m∗ ≥ log2 |sol(F)| − log2 (pivot). Then we obtain(
Cnt〈F,i〉 > E

[
Cnt〈F,i〉

] (
1 + ε

1+ε

))
. Therefore, Ti ⊆ U ′

i for i ≥ m∗. Since

∀i, Ti ⊆ Ti−1, we have
⋃

i∈{m∗,...,n}

(
Ti−1 ∩ Ti ∩ Ui

) ⊆
⋃

i∈{m∗+1,...,n}
Ti−1 ∪ (Tm∗−1 ∩ Tm∗ ∩ Um∗)

⊆ Tm∗ ∪ (Tm∗−1 ∩ Tm∗ ∩ Um∗)

⊆ Tm∗ ∪ Um∗

⊆ U ′
m∗ (8)

Remark that for ε <
√
2 − 1, we round Cnt〈F,m∗〉 up to

√
1+2ε
2 pivot and we

have 2m∗ ×
√
1+2ε
2 pivot ≤ |sol(F)|(1 + ε). For

√
2 − 1 ≤ ε < 1, we round

Cnt〈F,m∗〉 up to pivot√
2

and we have 2m∗ × pivot√
2

≤ |sol(F)|(1+ ε). For 1 ≤ ε < 3,
we round Cnt〈F,m∗〉 up to pivot and we have 2m∗ × pivot ≤ |sol(F)|(1 + ε).
The analysis means rounding doesn’t affect the event Um∗ and therefore
Inequality 8 still holds.

Following the observations O1 and O2, we simplify Eq. 4 and obtain

Pr [U ] ≤ Pr [U ′
m∗ ]

Employing Lemma 12 gives Pr [U ] ≤ 0.169. �

D.6 Proof of Pr [U ] ≤ 0.044 for ε ≥ 3

Lemma 13

Pr
[
Tm∗+1

] ≤ 1
23.14

Proof. Since E
[
Cnt〈F,m∗+1〉

] ≤ pivot
2 , we have Pr

[
Tm∗+1

] ≤
Pr

[
Cnt〈F,m∗+1〉 > 2(1 + ε

1+ε )E
[
Cnt〈F,m∗+1〉

]]
. Employing Lemma 5 with γ =

2(1 + ε
1+ε ) and E

[
Cnt〈F,m∗+1〉

] ≥ pivot
4 , we obtain Pr

[
Tm∗+1

] ≤
1

1+(1+ 2ε
1+ε )

2
pivot/4

= 1

1+2.46·(3+ 1
ε )

2 ≤ 1
1+2.46·32 ≤ 1

23.14 . �

Now let us prove the statement for ApproxMC6: Pr [U ] ≤ 0.044 for ε ≥ 3.

Proof. We aim to bound Pr [U ] by the following equation:

Pr [U ] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Ui

)
⎤
⎦ (4 revisited)

We derive the following observations O1 and O2.



160 J. Yang and K. S. Meel

O1 : ∀i ≤ m∗+1, for 3 ≤ ε < 4
√
2−1, because we round Cnt〈F,i〉 to pivot and have

m∗ ≤ log2 |sol(F)|− log2 (pivot)+1, we obtain 2i ×Cnt〈F,i〉 ≤ 2m∗+1×pivot ≤
4 · |sol(F)| ≤ (1+ε)|sol(F)|. For ε ≥ 4

√
2−1, we round Cnt〈F,i〉 to

√
2pivot and

obtain 2i×Cnt〈F,i〉 ≤ 2m∗+1×√
2pivot ≤ 4

√
2·|sol(F)| ≤ (1+ε)|sol(F)|. Then,

we obtain Cnt〈F,i〉 ≤ E
[
Cnt〈F,i〉

]
(1 + ε). Therefore, Ui = ∅ for i ≤ m∗ + 1

and we have
⋃

i∈{1,...,m∗+1}

(
Ti−1 ∩ Ti ∩ Ui

)
= ∅

O2 : ∀i ≥ m∗ + 2, since ∀i, Ti ⊆ Ti−1, we have
⋃

i∈{m∗+2,...,n}

(
Ti−1 ∩ Ti ∩ Ui

) ⊆
⋃

i∈{m∗+2,...,n}
Ti−1 ⊆ Tm∗+1

Following the observations O1 and O2, we simplify Eq. 4 and obtain

Pr [U ] ≤ Pr
[
Tm∗+1

]

Employing Lemma 13 gives Pr [U ] ≤ 0.044. �
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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