
Decision Procedures for Sequence Theories

Artur Jeż1 , Anthony W. Lin2,3 , Oliver Markgraf2(B) ,
and Philipp Rümmer4,5

1 University of Wrocław, Wrocław, Poland
2 TU Kaiserslautern, Kaiserslautern, Germany

markgraf@cs.uni-kl.de
3 Max Planck Institute for Software Systems,

Kaiserslautern, Germany
4 University of Regensburg, Regensburg, Germany

5 Uppsala University, Uppsala, Sweden

Abstract. Sequence theories are an extension of theories of strings with
an infinite alphabet of letters, together with a corresponding alphabet
theory (e.g. linear integer arithmetic). Sequences are natural abstrac-
tions of extendable arrays, which permit a wealth of operations including
append, map, split, and concatenation. In spite of the growing amount
of tool support for theories of sequences by leading SMT-solvers, little
is known about the decidability of sequence theories, which is in stark
contrast to the state of the theories of strings. We show that the decid-
able theory of strings with concatenation and regular constraints can be
extended to the world of sequences over an alphabet theory that forms a
Boolean algebra, while preserving decidability. In particular, decidability
holds when regular constraints are interpreted as parametric automata
(which extend both symbolic automata and variable automata), but fails
when interpreted as register automata (even over the alphabet theory of
equality). When length constraints are added, the problem is Turing-
equivalent to word equations with length (and regular) constraints. Sim-
ilar investigations are conducted in the presence of symbolic transduc-
ers, which naturally model sequence functions like map, split, filter, etc.
We have developed a new sequence solver, SeCo, based on parametric
automata, and show its efficacy on two classes of benchmarks: (i) invari-
ant checking on array-manipulating programs and parameterized sys-
tems, and (ii) benchmarks on symbolic register automata.

1 Introduction

Sequences are an extension of strings, wherein elements might range over an infi-
nite domain (e.g., integers, strings, and even sequences themselves). Sequences

A. Jeż was supported under National Science Centre, Poland project number
2017/26/E/ST6/00191. A. Lin and O. Markgraf were supported by the ERC Consol-
idator Grant 101089343 (LASD). P. Rümmer was supported by the Swedish Research
Council (VR) under grant 2018-04727, the Swedish Foundation for Strategic Research
(SSF) under the project WebSec (Ref. RIT17-0011), and the Wallenberg project
UPDATE.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 18–40, 2023.
https://doi.org/10.1007/978-3-031-37703-7_2

https://doi.org/10.5281/zenodo.7870650
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_2&domain=pdf
http://orcid.org/0000-0003-4321-3105
http://orcid.org/0000-0003-4715-5096
http://orcid.org/0000-0003-4817-4563
http://orcid.org/0000-0002-2733-7098
https://doi.org/10.1007/978-3-031-37703-7_2

Decision Procedures for Sequence Theories 19

are ubiquitous and commonly used data types in modern programming lan-
guages. They come under different names, e.g., Python/Haskell/Prolog lists,
Java ArrayList (and to some extent Streams) and JavaScript arrays. Crucially,
sequences are extendable, and a plethora of operations (including append, map,
split, filter, concatenation, etc.) can naturally be defined and are supported by
built-in library functions in most modern programming languages.

Various techniques in software model checking [30] — including symbolic
execution, invariant generation — require an appropriate SMT theory, to which
verification conditions could be discharged. In the case of programs operating on
sequences, we would consequently require an SMT theory of sequences, for which
leading SMT solvers like Z3 [6,38] and cvc5 [4] already provide some basic sup-
port for over a decade. The basic design of sequence theories, as done in Z3 and
cvc5, as well as in other formalisms like symbolic automata [15], is in fact quite
natural. That is, sequence theories can be thought of as extensions of theories of
strings with an infinite alphabet of letters, together with a corresponding alpha-
bet theory, e.g. Linear Integer Arithmetic (LIA) for reasoning about sequences of
integers. Despite this, very little is known about what is decidable over theories
of sequences.

In the case of finite alphabets, sequence theories become theories over strings,
in which a lot of progress has been made in the last few decades, barring the
long-standing open problem of string equations with length constraints (e.g. see
[26]). For example, it is known that the existential theory of concatenation over
strings with regular constraints is decidable (in fact, PSpace-complete), e.g.,
see [17,29,36,40,43]. Here, a regular constraint takes the form x ∈ L(E), where
E is a regular expression, mandating that the expression E matches the string
represented by x. In addition, several natural syntactic restrictions — including
straight-line, acylicity, and chain-free (e.g. [1,2,5,11,12,26,35]) — have been
identified, with which string constraints remain decidable in the presence of more
complex string functions (e.g. transducers, replace-all, reverse, etc.). In the case
of infinite alphabets, only a handful of results are available. Furia [25] showed
that the existential theory of sequence equations over the alphabet theory of
LIA is decidable by a reduction to the existential theory of concatenation over
strings (over a finite alphabet) without regular constraints. Loosely speaking, a
number (e.g. 4) can be represented as a string in unary (e.g. 1111), and addition
is then simulated by concatenation. Therefore, his decidability result does not
extend to other data domains and alphabet theories. Wang et al. [45] define an
extension of the array property fragment [9] with concatenation. This fragment
imposes strong restrictions, however, on the equations between sequences (here
called finite arrays) that can be considered.

“Regular Constraints” Over Sequences. One answer of what a regular constraint
is over sequences is provided by automata modulo theories. Automata modulo
theories [15,16] are an elegant framework that can be used to capture the notion
of regular constraints over sequences: Fix an alphabet theory T that forms a
Boolean algebra; this is satisfied by virtually all existing SMT theories. In this
framework, one uses formulas in T to capture multiple (possibly infinitely many)

20 A. Jeż et al.

transitions of an automaton. More precisely, between two states in a symbolic
automaton one associates a unary1 formula ϕ(x) ∈ T . For example, q →ϕ q′

with ϕ := x ≡ 0 (mod 2) over LIA corresponds to all transitions q →i q′ with
any even number i. Despite their nice properties, it is known that many sim-
ple languages cannot be captured using symbolic automata; e.g., one cannot
express the language consisting of sequences containing the same even number i
throughout the sequence.

There are essentially two (expressively incomparable) extensions of sym-
bolic automata that address the aforementioned problem: (i) Symbolic Regis-
ter Automata (SRA) [14] and (ii) Parametric Automata (PA) [21,23,24]. The
model SRA was obtained by combining register automata [31] and symbolic
automata. The model PA extends symbolic automata by allowing free variables
(a.k.a. parameters) in the transition guards, i.e., the guard will be of the form
ϕ(x, p̄), for parameters p̄. In an accepting path of PA, a parameter p used in
multiple transitions has to be instantiated with the same value, which enables
comparisons of different positions in an input sequence. For example, we can
assert that only sequences of the form i∗, for an even number i, are accepted by
the PA with a single transition q →ϕ q with ϕ(x, p) := x = p ∧ x ≡ 0 (mod 2)
and q being the start and final state. PA can also be construed as an extension
of both variable automata [27] and symbolic automata. SRA and PA are not
comparable: while parameters can be construed as read-only registers, SRA can
only compare two different positions using equality, while PA may use a general
formula in the theory in such a comparison (e.g., order).

Contributions. The main contribution of this paper is to provide the first decid-
able fragments of a theory of sequences parameterized in the element theory.
In particular, we show how to leverage string solvers to solve theories over
sequences. We believe this is especially interesting, in view of the plethora of
existing string solvers developed in the last 10 years (e.g. see the survey [3]).
This opens up new possibilities for verification tasks to be automated; in partic-
ular, we show how verification conditions for Quicksort, as well as Bakery and
Dijkstra protocols, can be captured in our sequence theory. This formalization
was done in the style of regular model checking [8,34], whose extension to infinite
alphabets has been a longstanding challenge in the field. We also provide a new
(dedicated) sequence solver SeCo We detail our results below.

We first show that the quantifier-free theory of sequences with concatenation
and PA as regular constraints is decidable. Assuming that the theory is solvable
in PSpace (which is reasonable for most SMT theories), we show that our algo-
rithm runs in ExpSpace (i.e., double-exponential time and exponential space).
We also identify conditions on the SMT theory T under which PSpace can be
achieved and as an example show that Linear Real Arithmetic (LRA) satisfies
those conditions. This matches the PSpace-completeness of the theory of strings
with concatenation and regular constraints [18].

We consider three different variants/extensions:

1 This can be generalized to any arity, which has to be set uniformly for the automaton.

Decision Procedures for Sequence Theories 21

(i) Add length constraints. Length constraints (e.g., |x| = |y| for two sequence
variables x,y) are often considered in the context of string theories, but
the decidability of the resulting theory (i.e., strings with concatenation and
length constraints) is still a long-standing open problem [26]. We show that
the case for sequences is Turing-equivalent to the string case.

(ii) Use SRA instead of PA. We show that the resulting theory of sequences is
undecidable, even over the alphabet theory T of equality.

(iii) Add symbolic transducers. Symbolic transducers [15,16] extend finite-state
input/output transducers in the same way that symbolic automata extend
finite-state automata. To obtain decidability, we consider formulas satisfying
the straight-line restriction that was defined over strings theories [35]. We
show that the resulting theory is decidable in 2-ExpTime and is ExpSpace-
hard, if T is solvable in PSpace.

We have implemented the solver SeCo based on our algorithms, and demon-
strated its efficacy on two classes of benchmarks: (i) invariant checking on
array-manipulating programs and parameterized systems, and (ii) benchmarks
on Symbolic Register Automata (SRA) from [14]. For the first benchmarks,
we model as sequence constraints invariants for QuickSort, Dijkstra’s Self-
Stabilizing Protocol [20] and Lamport’s Bakery Algorithm [33]. For (ii), we solve
decision problems for SRA on benchmarks of [14] such as emptiness, equivalence
and inclusion on regular expressions with back-references. We report promising
experimental results: our solver SeCo is up to three orders of magnitude faster
than the SRA solver in [14].

Organization. We provide a motivating example of sequence theories in Sect. 2.
Section 3 contains the syntax and semantics of the sequence constraint language,
as well as some basic algorithmic results. We deal with equational and regular
constraints in Sect. 4. In Sect. 5, we deal with the decidable fragments with equa-
tional constraints, regular constraints, and transducers. We deal with extensions
of these languages with length and SRA constraints in Sect. 6. In Sect. 7 we report
our implementation and experimental results. We conclude in Sect. 8. Missing
details and proofs can be found in the full version.

2 Motivating Example

We illustrate the use of sequence theories in verification using a implementation
of QuickSort [28], shown in Listing 1. The example uses the Java Streams API
and resembles typical implementations of QuickSort in functional languages; the
program uses high-level operations on streams and lists like filter and concatena-
tion. As we show, the data types and operations can naturally be modelled using
a theory of sequences over integer arithmetic, and our results imply decidability
of checks that would be done by a verification system.

The function quickSort processes a given list l by picking the first element
as the pivot p, then creating two sub-lists left, right in which all numbers

22 A. Jeż et al.

/*@
* ensures \forall int i; \result.contains(i) == l.contains(i);
*/

public static List<Integer > quickSort(List<Integer > l) {
if (l.size() < 1) return l;
Integer p = l.get(0);
List<Integer > left = l.stream().filter(i -> i < p)

.collect(Collectors.toList());
List<Integer > right = l.stream().skip(1).filter(i -> i >= p)

.collect(Collectors.toList());
List<Integer > result = quickSort(left);
result.add(p); result.addAll(quickSort(right));
return result;

}

Listing 1. Implementation of QuickSort with Java Streams.

≥p (resp., <p) have been eliminated. The function quickSort is then recur-
sively invoked on the two sub-lists, and the results are finally concatenated and
returned.

We focus on the verification of the post-condition shown in the beginning of
Listing 1: sorting does not change the set of elements contained in the input list.
This is a weaker form of the permutation property of sorting algorithms, and as
such known to be challenging for verification methods (e.g., [42]). Sortedness of
the result list can be stated and verified in a similar way, but is not considered
here. Following the classical design-by-contract approach [37], to verify the par-
tial correctness of the function it is enough to show that the post-condition is
established in any top-level call of the function, assuming that the post-condition
holds for all recursive calls. For the case of non-empty lists, the verification con-
dition, expressed in our logic, is:

⎛
⎝
left = T<l0(l) ∧ right = T≥l0(skip1(l)) ∧
∀i. (i ∈ left ↔ i ∈ left′) ∧ ∀i. (i ∈ right ↔ i ∈ right′) ∧
res = left′ . [l0] . right′

⎞
⎠

→ ∀i. (i ∈ l ↔ i ∈ res)

The variables l, res, left, right, left′, right′ range over sequences of integers,
while i is a bound integer variable. The formula uses several operators that a
useful sequence theory has to provide: (i) l0: the first element of input list l;
(ii) ∈ and 	∈: membership and non-membership of an integer in a list, which
can be expressed using symbolic parametric automata; (iii) skip1, T<l0 , T≥l0 :
sequence-to-sequence functions, which can be represented using symbolic para-
metric transducers; (iv) · . ·: concatenation of several sequences. The formula oth-
erwise is a direct model of the method in Listing 1; the variables left′, right′ are
the results of the recursive calls, and concatenated to obtain the result sequence.

Decision Procedures for Sequence Theories 23

In addition, the formula contains quantifiers. To demonstrate validity of the
formula, it is enough to eliminate the last quantifier ∀i by instantiating with a
Skolem symbol k, and then instantiate the other quantifiers (left of the implica-
tion) with the same k:
⎛
⎝
left = T<l0(l) ∧ right = T≥l0(skip1(l)) ∧
(k ∈ left ↔ k ∈ left′) ∧ (k ∈ right ↔ k ∈ right′) ∧
res = left′ . [l0] . right′

⎞
⎠ → (k ∈ l ↔ k ∈ res)

As one of the results of this paper, we prove that this final formula is in a
decidable logic. The formula can be rewritten to a disjunction of straight-line
formulas, and shown to be valid using the decision procedure presented in Sect. 5.

3 Models

In this section, we will define our sequence constraint language, and prove some
basic results regarding various constraints in the language. The definition is a
natural generalization of string constraints (e.g. see [12,17,26,29,35]) by employ-
ing an alphabet theory (a.k.a. element theory), as is done in symbolic automata
and automata modulo theories [15,16,44].

For simplicity, our definitions will follow a model-theoretic approach. Let σ
be a vocabulary. We fix a σ-structure S = (D; I), where D can be a finite or
an infinite set (i.e., the universe) and I maps each function/relation symbol in
σ to a function/relation over D. The elements of our sequences will range over
D. We assume that the quantifier-free theory TS over S (including equality)
is decidable. Examples of such TS are abound from SMT, e.g., LRA and LIA.
We write T instead of TS, when S is clear. Our quantifier-free formula will use
uninterpreted T -constants a, b, c, . . ., and may also use variables x, y, z, (The
distinction between uninterpreted constants and variables is made only for the
purpose of presentation of sequence constraints, as will be clear shortly.) We use
C to denote the set of all uninterpreted T -constants. A formula ϕ is satisfiable if
there is an assignment that maps the uninterpreted constants and variables to
concrete values in D such that the formula becomes true in S.

Next, we define how we lift T to sequence constraints, using T as the alphabet
theory (a.k.a. element theory). As in the case of strings (over a finite alphabet),
we use standard notation like D∗ to refer to the set of all sequences over D. By
default, elements of D∗ are written as standard in mathematics, e.g., 7, 8, 100,
when D = Z. Sometimes we will disambiguate them by using brackets, e.g.,
(7, 8, 100) or [7, 8, 100]. We will use the symbol s (with/without subscript) to
refer to concrete sequences (i.e., a member of D∗). We will use x,y, z to refer
to T -sequence variables. Let V denote the set of all T -sequence variables, and
Γ := C ∪ D. We will define constraint languages syntactically at the beginning,
and will instantiate them to specific sequence operations. The theory T ∗ of T -
sequences consists of the following constraints:

ϕ ::= R(x1, . . . ,xr) | ϕ ∧ ϕ

24 A. Jeż et al.

where R is an r-ary relation symbol. In our definition of each atom R below, we
will specify if an assignment μ, which maps each xi to a T -sequence and each
uninterpreted constant to a T -element, satisfies R. If μ satisfies all atoms, we
say that μ is a solution and the satisfiability problem is to decide whether there
is a solution for a given ϕ.

A few remarks about the missing boolean operators in the constraint lan-
guage above are in order. Disjunctions can be handled easily using the DPLL(T)
framework (e.g. see [32]), so we have kept our theory conjunctive. As in the case
of strings, negations are usually handled separately because they can sometimes
(but not in all cases) be eliminated while preserving decidability.

Equational Constraints. A T -sequence equation is of the form

L = R

where each of L and R is a concatenation of concrete T -elements, uninterpreted
constants, and T -sequence variables. That is, if Θ := Γ ∪ V, then L,R ∈ Θ∗.

For example, in the equation

0.1.x = x.0.1

the set of all solutions is of the form x �→ (01)∗. To make this more formal, we
extend each assignment μ to a homomorphism on Θ∗. We write μ |= L = R if
μ(L) = μ(R). Notice that this definition is just direct extension of that of word
equations (e.g. see [17]), i.e., when the domain D is finite.

In most cases the inequality constraints L 	= R can be reduced to equality in
our case this requires also element constraints, described below.

Element Constraints. We allow T -formulas to constrain the uninterpreted con-
stants. More precisely, given a T -sentence (i.e., no free variables) ϕ that uses C
as uninterpreted constants, we obtain a proposition P (i.e., 0-ary relation) that
μ |= P iff T |=μ ϕ.

Negations in the equational constraints can be removed just like in the case of
strings, i.e., by means of additional variables/constants and element constraints.
For example, x 	= y can be replaced by (x = zax′ ∧ y = zby′ ∧ a 	= b) ∨ x =
yaz∨xaz = y. Notice that a 	= b is a T -formula because we assume the equality
symbol in T .

Regular Constraints. Over strings, regular constraints are simply unary con-
straints U(x), where U is an automaton. The interpretation is x is in the language
of U . We define an analogue of regular constraints over sequences using paramet-
ric automata [21,23,24], which generalize both symbolic automata [15,16] and
variable automata [27].

A parametric automaton (PA) over T is of the form A = (X , Q,Δ, q0, F),
where X is a finite set of parameters, Q is a finite set of control states, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states, and Δ⊆finQ × T (curr,X) × Q.
Here, parameters are simply uninterpreted T -constants, i.e., X ⊆ C. Formulas

Decision Procedures for Sequence Theories 25

that appear in transitions in Δ will be referred to as guards, since they restrict
which transitions are enabled at a given state. Note that curr is an uninterpreted
constant that refers to the “current” position in the sequence. The semantics is
quite simply defined: a sequence (d1, d2, . . . , dn) is in the language of A under
the assignment of parameters μ, written as (d1, . . . , dn) ∈ Lμ(A), when there is
a sequence of Δ-transitions

(q0, ϕ1(curr,X), q1), (q1, ϕ2(curr,X), q2), . . . , (qn−1, ϕn(curr,X), qn),

such that qn ∈ F and T |= ϕi(di, μ(X)). Finally, for a regular constraint A(x) is
satisfied by μ, when μ(x) ∈ Lμ(A).

Note, that it is possible to complement a PA A, one has to be careful with the
semantics: we treat A as a symbolic automaton, which are closed under boolean
operations [15]. So we are looking for μ such that μ(x) ∈ Lμ(x). What we cannot
do using the complementation, is a universal quantification over the parameters;
note that already theory of strings with universal and existential quantifiers is
undecidable.

We state next a lemma showing that PAs using only “local” parameters,
together with equational constraints, can encode the constraint language that
we have defined so far.

Lemma 1. Satisfiability of sequence constraints with equation, element, and reg-
ular constraints can be reduced in polynomial-time to satisfiability of sequence
constraints with equation and regular constraints (i.e., without element con-
straints). Furthermore, it can be assumed that no two regular constraints share
any parameter.

Proposition 1. Assume that T is solvable in NP (resp. PSpace). Then, decid-
ing nonemptiness of a parametric automaton over T is in NP (resp. PSpace).

The proof is standard (e.g. see [21,23,24]), and only sketched here. The algorithm
first nondeterministically guesses a simple path in the automaton A from an
initial state q0 to some final state qF . Let us say that the guards appearing
in this path are ψ1(curr,X), . . . , ψk(curr,X). We need to check if this path is
realizable by checking T -satisfiability of

∃X .

k∧
i=1

∃curr. (ψi(curr,X)).

It is easy to see that this is an NP (resp. NPSPACE = PSpace) procedure.

Parametric Transducers. We define a suitable extension of symbolic transducers
over parameters following the definition from Veanes et al. [44]. A transducer
constraint is of the form y = T (x), for a parametric transducer T . A parametric
transducer over T is of the form T = (X , Q,Δ, q0, F), where X , Q, q0, F are
just like in parametric automata. Unlike parametric automata, Δ is a finite set
of tuples of the form (p, (ϕ,w), q), where (p, ϕ, q) is a standard transition in

26 A. Jeż et al.

parametric automaton, and w is a (possibly empty) sequence of T -terms over
variable curr and constants X , e.g., w = (curr+7, curr+2). One can think of w
as the output produced by the transition. Given an assignment μ of parameters
and the sequence variables, the constraint y = T (x) is satisfied when there is a
sequence of Δ-transitions

(q0, ϕ1(curr,X),w1, q1), (q1, ϕ2(curr,X),w2, q2), . . . (qn−1, ϕn(curr,X),wn, qn),

such that qn ∈ F and T |= ϕi(di, μ(X)), where μ(x) = (d1, . . . , dn), and finally

μ(y) = μ1(w1) · · · μn(wn)

where μi is μ but maps curr to di. The definition assumes that μi is extended
to terms and concatenation thereof by homomorphism, e.g., in LRA, if w1 =
(curr+ 7, curr+ 2) and μ1 maps curr to 10, then w1 will get mapped to 17, 12.
Given a set S ⊆ D∗ and an assignment μ (mapping the constants to D), we define
the pre-image T −1

μ (S) of S under T with respect to μ as the set of sequences
w ∈ D∗ such that w′ = T (w) holds with respect to μ.

4 Solving Equational and Regular Constraints

Here we present results on solving equational constraints, together with regular
constraints, by a reduction to the string case, for which a wealth of results are
already available. In general, this reduction causes an exponential blow-up in the
resulting string constraint, which we show to be unavoidable in general. That
said, we also provide a more refined analysis in the case when the underlying
theory is LRA, where we can avoid this exponential blow-up.

Prelude: The Case of Strings. We start with some known results about the
case of strings. The satisfiability of word equations with regular constraints is
PSpace-complete [18,19]. This upper bound can be extended to full quantifier-
free theory [10]. When no regular constraints are given, the problem is only
known to be NP-hard, and it is widely believed to be in NP. In the absence of
regular constraints, without loss of generality Γ can be assumed to contain only
letters from the equations; this is not the case in presence of regular constraints.
The algorithm solving word equations [19] does not need an explicit access to
Γ : it is enough to know whether there is a letter which labels a given set of
transitions in the NFAs used in the regular constraints. In principle, there could
be exponentially many different (i.e., inducing different transitions in the NFAs)
letters. When oracle access to such alphabet is provided, the satisfiability can still
be decided in PSpace: while not explicitly claimed, this is exactly the scenario
in [19, Sect. 5.2]

Other constraints are also considered for word equations; perhaps the most
widely known are the length constraints, which are of the form:

∑
x∈V ax ·|x| ≤ c,

where {ax}x∈V , c are integer constants and |x| denotes the length |μ(x)|, with an
obvious semantics. It is an open problem, whether word equations with length
constraints are decidable, see [26].

Decision Procedures for Sequence Theories 27

Reduction to Word Equations. We assume Lemma 1, i.e. that the parame-
ters used for different automata-based constraints are pairwise different. In par-
ticular, when looking for a satisfying assignment μ we can first fix assignment
for X and then try to extend it to V. To avoid confusion, we call this partial
assignment π : X → D.

Consider a set Φ of all atoms in all guards in the regular constraints together
with the set of formulas {x = c} over all constants c ∈ D that appear in all equa-
tional constraints and the negations of both types of formulas. Fix an assignment
π : X → D. The type typeπ(a) of a (under assignment π) is the set of formulas
in Φ satisfied by a, i.e. {ϕ ∈ Φ : ϕ(π(X), a) holds}. Clearly there are at most
exponentially many different types (for a fixed π). A type t is realizable (for π)
when t = typeπ(a) and it is realized by a.

If the constraints are satisfiable (for some parameters assignment π) then they
are satisfiable over a subset Dπ⊆finD, in the sense that we assign uniterpreted
constants elements from Dπ and T -sequence variables elements of D∗

π, where Dπ

is created by taking (arbitrarily) one element of a realizable type. Note that for
each constant c in the equational constraints there is a formula “x = c” in Φ, in
particular typeπ(c) is realizable (only by c) and so c ∈ Dπ.

Lemma 2. Given a system of constraints and a parameter assignment π let
Dπ ⊆ D be obtained by choosing (arbitrarily) for each realizable type a single
element of this type. Then the set of constraints is satisfiable (for π) over D if
and only if they are satisfiable (for π) over Dπ. To be more precise, there is a
letter-to-letter homomorphism ψ : D∗ → D∗

π such that if μ is a solution of a
system of constraints then ψ ◦ μ is also a solution.

The proof can be found in the full version, its intuition is clear: we map each
letter a ∈ D to the unique letter in Dπ of the same type.

Once the assignment is fixed (to π) and domain restricted to a finite set (Dπ),
the equational and regular constraints reduce to word equations with regular
constraints: treat Dπ as a finite alphabet, for a parametric automaton A =
(X , Q,Δ, q0, F) create an NFA A′ = (Dπ, Q,Δ′, q0, F), i.e. over the alphabet Dπ,
with the same set of states Q, same starting state q0 and accepting states F and
the relation defined as (q, a, q′) ∈ Δ′ if and only if there is (q, ϕ(curr,X), q′) ∈ Δ
such that ϕ(a, π(X)) holds, i.e. we can move from q to q′ by a in A′ if and only if
we can make this move in A under assignment π. Clearly, from the construction

Lemma 3. Given an assignment of parameters π let Dμ be a set from Lemma 2,
A be a parametric automaton and A′ the automaton as constructed above. Then

Lπ(A) ∩ D∗
π = L(A′) .

We can rewrite the parametric automata-constraints with regular constraints
and treat equational constraints as word equations (over the finite alphabet Dπ).
From Lemma 2 and Lemma 3 it follows that the original constraints have a
solution for assignment π if and only if the constructed system of constraints
has a solution. Therefore once the appropriate assignment π is fixed, the validity

28 A. Jeż et al.

of constraints can be verified [19]. It turns out that we do not need the actual
π, it is enough to know which types are realisable for it, which translates to an
exponential-size formula. We will use letter τ to denote subset of Φ; the idea is
that τ = {typeπ(a) : a ∈ D} ⊆ 2Φ and if different π, π′ give the same sets of
realizable types, then they both yield a satisfying assignment or both not. Hence
it is enough to focus on τ and not on actual π.

Lemma 4. Given a system of equational and regular constraints we can non-
deterministically reduce them to a formula of a form

∃t∈τat ∈ D.∃X ∈ D+.
∧
t∈τ

∧
ϕ∈t

ϕ(X , at) , (1)

where τ ⊆ 2Φ is of at most exponential size, and a system of word equations with
regular constraints of linear size and over an |τ |-size alphabet, using auxiliary
O(n|τ |) space. The solution of the latter word equations (for which also (1) holds)
are solutions of the original system, by appropriate identifications of symbols.

Proof. We guess the set τ of types of the assignment of parameters π, i.e. τ =
{typeπ(a) : a ∈ D} such that there is an assignment μ extending π; note that
as Φ has linearly many atoms and τ ⊆ 2Φ, then |τ | may be of exponential size,
in general. The (1) verifies the guess: we validate whether there are values of X
such that for each type t ∈ τ there is a value a such that typeπ(a) = t.

Let Dπ be a set having one symbol per every type in τ , as in Lemma 2; note
that this includes all constants in the equational constraints. The algorithm will
not have access to particular values, instead we store each t ∈ τ , say as a bitvector
describing which atoms in Φ this letter satisfies. In particular, |Dπ| = |τ | and it
is at most exponential. In the following we will consider only solutions over Dπ.

For each a ∈ Dπ we can validate, which transitions in A it can take: the
transition is labelled by a guard which is a conjunction of atoms from Φ and
either each such atom is in typeπ(a) or not. Hence we can treat A as an NFA for
Dπ. We do not need to construct nor store it, we can use A: when we want to
make a transition by ϕ(X , a) we look up, whether each atom of ϕ is in typeπ(a)
or not. Similarly, the constraint A(x) is restricted to x ∈ Lπ(A) and for x ∈ D∗

π

this is a usual regular constraint.
We treat equational constraints as word equations over alphabet Dπ.
Concerning the correctness of the reduction: if the system of word equations

(with regular constraints) is satisfiable and the formula (1) is also satisfiable,
then there is a satisfying assignment μ over Dπ and D∗

π in particular, there is an
assignment of parameters for which there are letters of the given types (note that
in principle it could be that μ induces more types, i.e. there is a value a such that
typeμ(a) /∈ τ and so it is not represented in Dπ, but this is fine: enlarging the
alphabet cannot invalidate a solution), i.e. the transitions for at in the automata
after the reduction are the same as in the corresponding parametric automata
for the assignment π, this is guaranteed by the satisfiability of (1) and the way
we construct the instance, see Lemma 3.

Decision Procedures for Sequence Theories 29

On the other hand, when there is a solution of the input constraints, there is
one for some assignment of parameters π. Hence, by Lemma 2, there is a solution
over Dπ. The algorithm guesses τ = {typeπ(a) : a ∈ D} and (1) is true for it.
Then by Lemma 2 there is a solution over Dπ as constructed in the reduction
and by Lemma 3 the regular constraints define the same subsets of D∗

π both
when interpreted as parametric automata and NFAs. ��

Theorem 1. If theory T is in PSpace then sequence constraints are in
ExpSpace.

If τ is polynomial size and the formula (1) can be verified in PSpace, then
sequence constraints can be verified in PSpace.

One of the difficulties in deciding sequence constraints using the word equa-
tions approach is the size of set of realizable types τ , which could be exponential.
For some concrete theories it is known to be smaller and thus a lower upper
bound on complexity follows. For instance, it is easy to show that for LRA there
are linearly many realizable types, which implies a PSpace upper bound.

Corollary 1. Sequence constraints for Linear Real Arithmetic are in PSpace.

In general, the ExpSpace upper bound from Theorem 1 cannot be improved,
as even non-emptiness of intersection of parametric automata is ExpSpace-
complete for some theories decidable in PSpace. This is in contrast to the case
of symbolic automata, for which the non-emptiness of intersection (for a theory
T decidable in PSpace) is in PSpace. This shows the importance of parameters
in our lower bound proof.

Theorem 2. There are theories with existential fragment decidable in PSpace
and whose non-emptiness of intersection of parametric automata is ExpSpace-
complete.

When no regular constraints are allowed, we can solve the equational and
element constraints in PSpace (note that we do not use Lemma 1).

Theorem 3. For a theory T decidable in PSpace, the element and equational
constraints (so no regular constraints) can be decided in PSpace.

5 Algorithm for Straight-Line Formulas

It is known that adding finite transducers into word equations results in an
undecidable model (e.g. see [35]). Therefore, we extend the straight-line restric-
tion [12,35] to sequences, and show that it suffices to recover decidability for
equational constraints, together with regular and transducer constraints. In fact,
we will show that deciding problems in the straight-line fragment is solvable in
doubly exponential time and is ExpSpace-hard, if T is solvable in PSpace. It
has been observed that the straight-line fragment for the theory of strings already
covers many interesting benchmarks [12,35], and similarly many properties of
sequence-manipulating programs can be proven using the fragment, including
the QuickSort example from Sect. 2 and other benchmarks shown in Sect. 7.

30 A. Jeż et al.

The Straight-Line Fragment SL. We start by defining recognizable formu-
las over sequences, followed by the syntactic and semantic restrictions on our
constraint language. This definition follows closely the definition of recogniz-
able relations over finite alphabets, except that we replace finite automata with
parametric automata.

Definition 1 (Recognizable formula). A formula R(x1, . . . ,xr) is recogniz-
able if it is equivalent to a positive Boolean combination of regular constraints.

Note that this is simply a generalization of regular constraints to multiple vari-
ables, i.e., 1-ary recognizable formula can be turned into a regular constraint,
which is closed under intersection and union.

To define the straight-line fragment, we use the approach of [12]; that is,
the fragment is defined in terms of “feasibility of a symbolic execution”. Here,
a symbolic execution is just a sequence of assignments and assertions, whereas
the feasibility problem amounts to deciding whether there are concrete values
of the variables so that the symbolic execution can be run and none of the
assertions are violated. We now make this intuition formal. A symbolic execution
is syntactically generated by the following grammar:

S ::= y := f(x1, . . . ,xk,X) | assert(R(x1, . . . ,xr)) | assert(ϕ) | S;S (2)

where f : (D∗)k × D|X | → D is a function, R are recognizable formulas, and ϕ
are element constraints.

The symbolic execution S can be turned into a sequence constraint as follows.
Firstly, we can turn S into the standard Static Single Assignment (SSA) form
by means of introducing new variables on the left-hand-side of an assignment.
For example, y := f(x);y := g(z) becomes y := f(x1);y′ := g(z). Then, in the
resulting constraint, each variable appears at most once on the left-hand-side
of an assignment. That way, we can simply replace each assignment symbol :=
with an equality symbol =. We then treat each sequential composition as the
conjunction operator ∧ and assertion as a conjunct. Note that individual asser-
tions are already sequence constraints. Next, we define how an interpretation μ
satisfies the constraint y = f(x1, . . . ,xr,X):

μ |= y = f(x1, . . . ,xr,X) iff μ(y) = f(μ(x1), . . . , μ(xr), μ(X)).

Note that ’=’ on the l.h.s. is syntactic, while the ’=’ on the r.h.s. is in the
metalanguage. The definition of the semantics of the language is now inherited
from Sect. 3.

In addition to the syntactic restrictions, we also need a semantic condition:
in our language, we only permit functions f such that the pre-image of each
regular constraint under f is effectively a recognizable formula:

(RegInvRel) A function f is permitted if for each regular constraint A(y), it is
possible to compute a recognizable formula that is equivalent to the formula
∃y : A(y) ∧ y = f(x1, . . . ,xr,X).

Decision Procedures for Sequence Theories 31

Two functions satisfying (RegInvRel) are the concatenation function x := y.z
(here y could be the same as z) and parametric transducers y := T (x). We will
only use these two functions in the paper, but the result is generalizable to other
functions.

Proposition 2. Given a regular constraint A(y) and a constraint y = x.z, we
can compute a recognizable formula ψ(x, z) equivalent to ∃y : A(y) ∧ y = x.z.
Furthermore, this can be achieved in polynomial time.

The proof of this proposition is exactly the same as in the case of strings, e.g.,
see [12,35].

Proposition 3. Given a regular constraint A(y) and a parametric transducer
constraint y = T (x), we can compute a regular constraint A′(x) that is equivalent
to ∃y : A(y) ∧ y = T (x). This can be achieved in exponential time.

The construction in Proposition 3 is essentially the same as the pre-image com-
putation of a symbolic automaton under a symbolic transducer [44]. The com-
plexity is exponential in the maximum number of output symbols of a single
transition (i.e. the maximum length of w in the transducer), which is in practice
a small natural number.

The following is our main theorem on the SL fragment with equational con-
straints, regular constraints, and transducers.

Theorem 4. If T is solvable in PSpace, then the SL fragment with concatena-
tion and parametric transducers over T is in 2-ExpTime and is ExpSpace-hard.

Proof. We give a decision procedure. We assume that S is already in SSA (i.e.
each variable appears at most once on the left-hand side). Let us assume that S
is of the form S′;y := f(x1, ...xr), for some symbolic execution S′. Without loss
of generality, we may assume that each recognizable constraint is of the form
A(x). This is no limitation: (1) since each R in the assertion is a recognizable
formula, we simply have to “guess” one of the implicants for each R, and (2)
assert(ψ1 ∧ ψ2) is equivalent to assert(ψ1);assert(ψ2).

Assume now that {A1(y), . . . ,Am(y)} are all the regular constraints on y in
S. By our assumption, it is possible to compute a recognizable formula equivalent
to

ψ(x1, . . . ,xr) := ∃y :
m∧

i=1

Ai(y) ∧ y = f(x1, . . . ,xr).

There are two ways to see this. The first way is that regular constraints are closed
under intersection. This is in general computationally quite expensive because
of a product automata construction before applying the pre-image computation.
A better way to do this is to observe that ψ is equivalent to the conjunction of
ψi’s over i = 1, . . . ,m, where

ψi := ∃y : Ai(y) ∧ y = f(x1, . . . ,xr).

32 A. Jeż et al.

q0start

curr �= k

0

q0start q1

�

curr = k

�

1

Fig. 1. A0 accepts all words not containing k and A1 accepts all words containing k.

By our semantic condition, we can compute recognizable formulas ψ′
i, . . . , ψ

′
m

equivalent to ψ1, . . . , ψm respectively. Therefore, we simply replace S by

S′;assert(ψ′
1); · · · ;assert(ψ′

m),

in which every occurrence of y has been completely eliminated. Applying the
above variable elimination iteratively, we obtain a conjunction of regular con-
straints. We now end up with a conjunction of regular constraints and element
constraints, which as we saw from Sect. 4 is decidable. ��

Example 1. We consider the example from Sect. 2 where a weaker form of the
permutation property is shown for QuickSort. The formula that has to be proven
is a disjunction of straight-line formulas and in the following we execute our
procedure only on one disjunct without redundant formulas:

assert(A0(left′));assert(A0(right′)); res = left′ . [l0] . right′;assert(A1(res))

We model L(A1) as the language which accepts all words which contain
one letter equal to k and L(A0) as the language which accepts only words not
containing k, where k is an uninterpreted constant, so a single element. See
Fig. 1. We begin by removing the operation res = left′ . [l0] . right′. The product
automaton for all assertions that contain res is just A1. Hence, we can remove the
assertion assert(A1(res)). The concatenation function . satisfies RegInvRel
and the pre-image g can be represented by

∨
0≤i,j≤1

Aq0,{qi}
1 (left′) ∧ Aqi,{qj}

1 ([l0]) ∧ Aqj ,{q1}
1 (right′),

where Ap,F ′
i is Ai with start state set to p and finals to F ′.

In the next step, the assertion g is added to the program and all assertions
containing res and the concatenation function are removed.

assert(A0(left′));assert(A(right′));assert(g(left′, [l0], right′))

From here, we pick a tuple from g, lets say i = j = 1, and obtain

assert(A0(left′));assert(A0(right′));assert(left′ ∈ Aq0,{q1}
1);

assert([l0] ∈ Aq1,{q1}
1);assert(right′ ∈ Aq1,{q1}

1)

Decision Procedures for Sequence Theories 33

Finally, the product automata A0 × Aq0,{q1}
1 and A0 × Aq0,{q1}

1 are com-
puted for the variables left′, right′ and a non-emptiness check over the prod-
uct automata and the automaton for [l0] is done. The procedure will find no
combination of paths for each automaton which can be satisfied, since left′

is forced to accept no words containing k by A0 and only accepts by read-
ing a k from Aq0,{q1}

1 . Next, the procedure needs to exhaust all tuples from
(Aq0,{qi}

1 ,Aqi,{qj}
1 ,Aqj ,{q1}

1)0≤i,j≤1 before it is proven that this disjunct is unsat-
isfiable.

6 Extensions and Undecidability

Length Constraints. We consider the extension of our model by allowing
length-constraints on the sequence variables: for each sequence variable x we
consider the associated length variable �x, let the set of length variables be
L = {�x : x ∈ V}, we extend μ to L, it assigns natural numbers to them. The
length constraints are of the form

∑
x ax�x?0, where ? ∈ {<,≤,=, 	=,≥, >} and

each ax is an integer constant, i.e., linear arithmetic formulas on the length-
variables. The semantics is natural: we require that |μ(x)| = μ(�x) (the assigned
values are the true lengths of sequences) and that μ(L) satisfies each length
constraint.

There is, however, another possible extensions: if we the theory TS is the
Presburger arithmetic, then the parameter automata could use the values �x.
We first deal with a more generic, though restricted case, when this is not
allowed: then all reductions from Sect. 4 generalize and we can reduce to the
word equations with regular and length constraints. However, the decidability
status of this problem is unknown. When we consider Presburger arithmetic and
allow the automata to employ the length variables, then it turns out that we
can interpret the formula (1) as a collection of length constraints, and again we
reduce to word equations with regular and length constraints.

Automata Oblivious of Lengths. We first consider the setting, in which the length
variables L can only be used in length constraints. It is routine to verify that
the reduction from Sect. 4 generalize to the case of length constraints: it is pos-
sible to first fix μ for parameters, calling it again π. Then Lemma 2 shows
that each solution μ can be mapped by a letter-to-letter homomorphism to a
finite alphabet Dπ, and this mapping preserves the satisfiability/unsatisfiability
of length constraints, so Lemma 2 still holds when also length constraints are
allowed. Similarly, Lemma 3 is also not affected by the length constraints and
finally Lemma 4 deals with regular and equational constraints, ignoring the other
possible constraints and the length of substitutions for variables are the same.
Hence it holds also when the length constraints are allowed then the resulting
word equations use regular and length constraints.

Unfortunately, the decidability of word equations with linear length con-
straints (even without regular constraints) is a notorious open problem. Thus
instead of decidability, we get Turing-equivalent problems.

34 A. Jeż et al.

Theorem 5. Deciding regular, equational and length constraints for T -
sequences of a decidable theory T is Turing-equivalent to word equations with
regular and length constraints.

Automata Aware of the Sequence Lengths. We now consider the case when
the underlying theory TS is the Presburger arithmetic, i.e. S is the natural
numbers and we can use addition, constants 0, 1 and comparisons (and vari-
ables). The additional functionality of the parametric automaton A is that
Δ⊆finQ × T (curr,X ,L) × Q, i.e. the guards can also use the length variables;
the semantics is extended in the natural way.

Then the type typeπ(a) of a ∈ N now depends on μ values on X and L, hence
we denote by π the restriction of μ to X ∪ L. Then Lemma 2, 3 still hold, when
we fix π. Similarly, Lemma 4 holds, but the analogue of (1) now uses also the
length variables, which are also used in the length constraints. Such a formula
can be seen as a collection of length constraints for original length variables L
as well as length variables X ∪ {at : t ∈ τ}. Hence we validate this formula as
part of the word equations with length constraints. Note that at has two roles:
as a letter in Dπ and as a length variable. However, the connection is encoded
in the formula from the reduction (analogue of (1)) and we can use two different
sets of symbols.

Theorem 6. Deciding conjunction of regular, equational and length constraints
for sequences of natural numbers with Presburger arithmetic, where the regular
constraints can use length variables, is Turing-equivalent to word equations with
regular and (up to exponentially many) length constraints.

Undecidability of Register Automata Constraints. One could use more
powerful automata for regular constraints; one such popular model are register
automata; informally, such automaton has k registers r1, . . . , rk and its transi-
tion depends on state and a value of formula using the registers and curr: the
read value [23]; note that the registers can be updated: to curr or to one of
register’s values; this is specified in the transition. In “classic” register automata
guards can only use equality and inequality between registers and curr; in SRA
model more powerful atoms are allowed. We show that sequence constraints and
register automata constraints (which use quantifier-free formulas with equality
and inequality as only atoms, i.e. do not employ the SRA extension) lead to
undecidability (over infinite domain D).

Theorem 7. Satisfiability of equational constraints and register automata con-
straints, which use equality and inequality only, over infinite domain, is unde-
cidable.

7 Implementations, Optimizations and Benchmarks

Implementation. We have implemented our decision procedure for problems
in the constraint language SL for the theory of sequences in a new tool SeCo

Decision Procedures for Sequence Theories 35

(Sequence Constraint Solver) on top of the SMT solver Princess [41]. We extend a
publicly available library for symbolic automata and transducers [13] to paramet-
ric automata and transducers by connecting them to the uninterpreted constants
in our theory of sequences. Our tool supports symbolic transducers, concatena-
tion of sequences and reversing of sequences. Any additional function which
satisfies RegInvRel such as a replace function which replaces only the first and
leftmost longest match can be added in the future.

Our algorithm is an adaption of the tool OSTRICH [12] and closely follows
the proof of Theorem 4. To summarize the procedure, a depth-first search is
employed to remove all functions in the given input and splitting on the pre-
images of those functions. When removing a function, new assertions are added
to the pre-image constraints. After all functions have been removed and only
assertions are left a nonemptiness check is called over all parametric automata
which encoded the assertions. If the check is successful a corresponding model
can be constructed, otherwise the procedure computes a conflict set and back-
jumps to the last split in the depth search.2

Benchmarks. We have performed experiments on two benchmark suites. The
first one concerns itself with the verification of properties for programs manipu-
lating sequences. The second benchmark suite compares our tool against an algo-
rithm using symbolic register automata [13] on decision procedures of regular
expressions with back-references such as emptiness, equivalence and inclusion.

Both benchmark suites require universal quantification over the parameters;
there are existing methods for eliminating these universal quantifiers, one such
class are the semantically deterministic (SD) [22] PAs; despite its name, being
SD is algorithmically checkable. Most of considered the PAs are SD, in particular
all in benchmark suite 2.

Experiments were conducted on an AMD Ryzen 5 1600 Six-Core CPU with
16 GB of RAM running on Windows 10. The results for second benchmark suite
is shown Table 1. The timeout for all benchmarks is 300 s.

In the first benchmarks suite we are looking to verify a weaker form of the
permutation property of sorting as shown in Sect. 2. Furthermore, we verify
properties of two self-stabilizing algorithms for mutual exclusion on parameter-
ized systems. The first one is Lamport’s bakery algorithm [33], for which we
proved that the algorithm ensures mutual exclusion. The system is modelled in
the style of regular model checking [8], with system states represented as words,
here over an infinite alphabet: the character representing a thread stores the
thread control state, a Boolean flag, and an integer as the number drawn by
the thread. The system transitions are modelled as parametric transducers, and
invariants as parametric automata. The second algorithm is known as Dijkstra’s
Self-Stabilizing Protocol [20], in which system states are encoded as sequences
of integers, and in which we verify that the set of states in which exactly one
processor is privileged forms an invariant. The mentioned benchmarks require
2 For a more detailed write-up of the depth-first search algorithm see OSTRICH [12]

Algorithm 1.

36 A. Jeż et al.

Table 1. Benchmark suite 2. SRA is used for the algorithm for symbolic register
automata and SEQ for our tool. The symbol ∅ indicates the column where emptiness
was checked, ≡ indicates self equivalence and ⊆ inclusion of languages.

L1 L2 SRA∅(L1) SeCo∅(L1) SRA≡(L1) SeCo≡(L1) SRA⊆(L2,L1) SeCo⊆(L2,L1)

Pr-C2 Pr-CL2 0.03 s 0.65 s 0.43 s 0.10 s 4.7 s 0.10 s
Pr-C3 Pr-CL3 0.58 s 0.70 s 10.73 s 0.12 s 36.90 s 0.10 s
Pr-C4 Pr-CL4 18.40 s 0.77 s 98.38 s 0.14 s – 0.10 s
Pr-C6 Pr-CL6 – 1.00 s – 0.12 s – 0.10 s
Pr-CL2 Pr-C2 0.33 s 0.30 s 1.03 s 0.13 s 0.52 s 0.76 s
Pr-CL3 Pr-C3 14.04 s 0.38 s 20.44 s 0.13 s 10.52 s 0.76 s
Pr-CL4 Pr-C4 – 0.41 s 0.43 s 0.12 s – 0.82 s
Pr-CL6 Pr-C6 – 0.62 s 0.43 s 0.12 s – 1.27 s
IP-2 IP-3 0.11 s 1.53 s 0.63 s 0.14 s 2.43 s 0.15 s
IP-3 IP-4 1.83 s 1.45 s 4.66 s 0.14 s 28.60 s 0.17 s
IP-4 IP-6 30.33 s 1.75 s 80.03 s 0.14 s – 0.17 s
IP-6 IP-9 – 1.60 s 0.43 s 0.13 s – 0.17 s

universal quantification, but similar to the motivating example from Sect. 2 one
can eliminate quantifiers by Skolemization and instantiation which was done by
hand.

The second benchmark suite consists of three different types of benchmarks,
summarized in Table 1. The benchmark PR-Cn describes a regular expression
for matching products which have the same code number of length n, and PR-
CLn matches not only the code number but also the lot number. The last type
of benchmark is IP-n, which matches n positions of 2 IP addresses. The bench-
marks are taken from the regular-expression crowd-sourcing website RegExLib
[39] and are also used in experiments for symbolic register automata [14] which
we also compare our results against. To apply our decision procedure to the
benchmarks, we encode each of the benchmarks as a parametric automaton,
using parameters for the (bounded-size) back-references. The task in the exper-
iments is to check emptiness, language equivalence, and language inclusion for
the same combinations of the benchmarks as considered in [14].

Results of the Experiments. All properties can be encoded by parametric
automata with very few states and parameters. As a result the properties for
each program can be verified in < 2.6 s, in detail the property for Dijkstra’s algo-
rithm was proven in 0.6 s, QuickSort in 1.1 s and Lamport’s bakery algorithm in
2.5 s.

The results for the second benchmark suite are shown in Table 1. The algo-
rithm for symbolic register automata times out on 11 of the 36 benchmarks and
our tool solves most benchmarks in <1 s. One thing to observe that the symbolic
register automata scales poorly when more registers are needed to capture the
back-references while the performance of our approach does not change notice-
ably when more parameters are introduced.

Decision Procedures for Sequence Theories 37

8 Conclusion and Future Work

In this paper, we have performed a systematic investigation of decidability and
complexity of constraints on sequences. Our starting point is the subcase of
string constraints (i.e. over a finite set of sequence elements), which include equa-
tional constraints with concatenation, regular constraints, length constraints,
and transducers. We have identified parametric automata (extending symbolic
automata and variable automata) as suitable notion of “regular constraints” over
sequences, and parametric transducers (extending symbolic transducers) as suit-
able notion of transducers over sequences. We showed that decidability results in
the case of strings carry over to sequences, although the complexity is in general
higher than in the case of strings (sometimes exponentially higher). For certain
element theory (e.g. Linear Real Arithmetic), it is possible to retain the same
complexity as in the string case. We also delineate the boundary of the suitable
notion of “regular constraints” by showing that the equational constraints with
symbolic register automata [14] yields undecidable satisfiability. Finally, our new
sequence solver SeCo shows promising experimental results.

There are several future research avenues. Firstly, the complexity of sequence
constraints over other specific element theories (e.g. Linear Integer Arithmetic)
should be precisely determined. Secondly, is it possible to recover decidability
with other fragments of register automata (e.g., single-use automata [7])? On
the implementation side, there are some algorithmic improvements, e.g., better
nonemptiness checks for parametric automata in the case of a single automaton,
as well as product of multiple automata.

Acknowledgment. We thank anonymous reviewers for their thorough and helpful
feedback. We are grateful to Nikolaj Bjørner, Rupak Majumdar and Margus Veanes
for the inspiring discussion.

References

1. Abdulla, P.A., et al.: String constraints for verification. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9_10

2. Abdulla, P.A., Atig, M.F., Diep, B.P., Holík, L., Janků, P.: Chain-free string con-
straints. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol.
11781, pp. 277–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3_16

3. Amadini, R.: A survey on string constraint solving. ACM Comput. Surv. 55(2),
16:1-16:38 (2023). https://doi.org/10.1145/3484198

4. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

5. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations. Log.
Methods Comput. Sci. 9(3) (2013). https://doi.org/10.2168/LMCS-9(3:1)2013

6. Bjørner, N., de Moura, L., Nachmanson, L., Wintersteiger, C.M.: Programming
Z3. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.) SETSS 2018. LNCS, vol. 11430, pp.
148–201. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17601-3_4

https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1145/3484198
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.2168/LMCS-9(3:1)2013
https://doi.org/10.1007/978-3-030-17601-3_4

38 A. Jeż et al.

7. Bojanczyk, M., Stefanski, R.: Single-use automata and transducers for infinite
alphabets. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Col-
loquium on Automata, Languages, and Programming, ICALP 2020, July 8–11,
2020, Saarbrücken, Germany (Virtual Conference). LIPIcs, vol. 168, pp. 113:1–
113:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPIcs.ICALP.2020.113

8. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular Model Checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_31

9. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005). https://doi.org/10.1007/11609773_28

10. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation
and undecidable extensions of this theory. In: The Collected Works of J. Richard
Büchi, pp. 671–683. Springer, New York (1990). https://doi.org/10.1007/978-1-
4613-8928-6_37

11. Chen, T., et al.: Solving string constraints with regex-dependent functions through
transducers with priorities and variables. Proc. ACM Program. Lang. 6(POPL),
1–31 (2022). https://doi.org/10.1145/3498707

12. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. Proc. ACM
Program. Lang. 3(POPL), 49:1–49:30 (2019). https://doi.org/10.1145/3290362

13. D’Antoni, L.: SVPAlib. Symbolic Automata Library (2018). https://github.com/
lorisdanto/symbolicautomata. Accessed 2 Feb 2023

14. D’Antoni, L., Ferreira, T., Sammartino, M., Silva, A.: Symbolic register automata.
In: Dillig, I., Tasiran, S. (eds.) CAV. vol. 11561, pp. 3–21. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4_1

15. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 47–67.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_3

16. D’Antoni, L., Veanes, M.: Automata modulo theories. Commun. ACM 64(5), 86–
95 (2021). https://doi.org/10.1145/3419404

17. Diekert, V.: Makanin’s algorithm. In: Lothaire, M. (ed.) Algebraic Combinatorics
on Words, Encyclopedia of Mathematics and its Applications, vol. 90, chap. 12,
pp. 387–442. Cambridge University Press (2002)

18. Diekert, V., Gutiérrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Inf. Comput. 202(2), 105–
140 (2005). https://doi.org/10.1016/j.ic.2005.04.002

19. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. Inf. Comput. 251, 263–286 (2016). https://
doi.org/10.1016/j.ic.2016.09.009

20. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974). https://doi.org/10.1145/361179.361202

21. Faran, R., Kupferman, O.: On synthesis of specifications with arithmetic. In:
Chatzigeorgiou, A., et al. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp. 161–173.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38919-2_14

22. Faran, R., Kupferman, O.: On synthesis of specifications with arithmetic. In:
Chatzigeorgiou, A., et al. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp. 161–173.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38919-2_14

https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-1-4613-8928-6_37
https://doi.org/10.1007/978-1-4613-8928-6_37
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3290362
https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata
https://doi.org/10.1007/978-3-030-25540-4_1
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1145/3419404
https://doi.org/10.1016/j.ic.2005.04.002
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1145/361179.361202
https://doi.org/10.1007/978-3-030-38919-2_14
https://doi.org/10.1007/978-3-030-38919-2_14

Decision Procedures for Sequence Theories 39

23. Figueira, D., Jeż, A., Lin, A.W.: Data path queries over embedded graph databases.
In: PODS ’22: International Conference on Management of Data, Philadelphia, 12–
17 June, 2022. pp. 189–201 (2022). https://doi.org/10.1145/3517804.3524159

24. Figueira, D., Lin, A.W.: Reasoning on data words over numeric domains. In: LICS
’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa,
Israel, 2–5 August 2022, pp. 37:1–37:13 (2022). https://doi.org/10.1145/3531130.
3533354

25. Furia, C.A.: What’s decidable about sequences? In: Bouajjani, A., Chin, W.-N.
(eds.) ATVA 2010. LNCS, vol. 6252, pp. 128–142. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15643-4_11

26. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012.
LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39611-3_21

27. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite
alphabets. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS,
vol. 6031, pp. 561–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13089-2_47

28. Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10–15 (1962). https://doi.org/10.1093/
comjnl/5.1.10

29. Jeż, A.: Recompression: a simple and powerful technique for word equations. J.
ACM 63(1), 4:1–4:51 (2016). https://doi.org/10.1145/2743014

30. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
21:1–21:54 (2009). https://doi.org/10.1145/1592434.1592438

31. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

32. Kroening, D., Strichman, O.: Decision Procedures. Springer (2008)
33. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-

mun. ACM 17(8), 453–455 (1974). https://doi.org/10.1145/361082.361093
34. Lin, A.W., Rümmer, P.: Regular model checking revisited. In: Olderog, E.-R., Stef-

fen, B., Yi, W. (eds.) Model Checking, Synthesis, and Learning. LNCS, vol. 13030,
pp. 97–114. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91384-7_6

35. Lin, A.W., Barceló, P.: String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, 20–22 January 2016, pp. 123–136 (2016). https://doi.
org/10.1145/2837614.2837641

36. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Sbornik:
Mathematics 32(2), 129–198 (1977)

37. Meyer, B.: Applying “Design by contract.” IEEE Comput. 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

38. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS (2008)
39. None: RegExLib (2017). https://regexlib.com/. Accessed 2 Feb 2023
40. Plandowski, W.: On PSPACE generation of a solution set of a word equation and

its applications. Theor. Comput. Sci. 792, 20–61 (2019). https://doi.org/10.1016/
j.tcs.2018.10.023

41. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1_20

https://doi.org/10.1145/3517804.3524159
https://doi.org/10.1145/3531130.3533354
https://doi.org/10.1145/3531130.3533354
https://doi.org/10.1007/978-3-642-15643-4_11
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-13089-2_47
https://doi.org/10.1007/978-3-642-13089-2_47
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1145/2743014
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1145/361082.361093
https://doi.org/10.1007/978-3-030-91384-7_6
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.1109/2.161279
https://regexlib.com/
https://doi.org/10.1016/j.tcs.2018.10.023
https://doi.org/10.1016/j.tcs.2018.10.023
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20

40 A. Jeż et al.

42. Safari, M., Huisman, M.: A generic approach to the verification of the permutation
property of sequential and parallel swap-based sorting algorithms. In: Dongol, B.,
Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 257–275. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-63461-2_14

43. Schulz, K.U.: Makanin’s algorithm for word equations–two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT. Lecture Notes in Computer Sci-
ence, vol. 572, pp. 85–150. Springer, Cham (1990). https://doi.org/10.1007/3-540-
55124-7_4

44. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjorner, N.: Symbolic finite
state transducers: algorithms and applications. SIGPLAN Not. 47(1), 137–150
(2012). https://doi.org/10.1145/2103621.2103674

45. Wang, Q., Appel, A.W.: A solver for arrays with concatenation. J. Autom. Reason.
67(1), 4 (2023). https://doi.org/10.1007/s10817-022-09654-y

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-63461-2_14
https://doi.org/10.1007/3-540-55124-7_4
https://doi.org/10.1007/3-540-55124-7_4
https://doi.org/10.1145/2103621.2103674
https://doi.org/10.1007/s10817-022-09654-y
http://creativecommons.org/licenses/by/4.0/

	Decision Procedures for Sequence Theories
	1 Introduction
	2 Motivating Example
	3 Models
	4 Solving Equational and Regular Constraints
	5 Algorithm for Straight-Line Formulas
	6 Extensions and Undecidability
	7 Implementations, Optimizations and Benchmarks
	8 Conclusion and Future Work
	References

