
Constantin Enea
Akash Lal (Eds.)

LN
CS

 1
39

65

35th International Conference, CAV 2023
Paris, France, July 17–22, 2023
Proceedings, Part II

Computer Aided
Verification

Lecture Notes in Computer Science 13965
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Constantin Enea · Akash Lal
Editors

Computer Aided
Verification
35th International Conference, CAV 2023
Paris, France, July 17–22, 2023
Proceedings, Part II

Editors
Constantin Enea
LIX, Ecole Polytechnique, CNRS and Institut
Polytechnique de Paris
Palaiseau, France

Akash Lal
Microsoft Research
Bangalore, India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-37702-0 ISBN 978-3-031-37703-7 (eBook)
https://doi.org/10.1007/978-3-031-37703-7

© The Editor(s) (if applicable) and The Author(s) 2023, corrected publication 2023. This book is an open
access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2727-8865
https://orcid.org/0009-0002-4359-9378
https://doi.org/10.1007/978-3-031-37703-7
http://creativecommons.org/licenses/by/4.0/

Preface

It was our privilege to serve as the program chairs for CAV 2023, the 35th International
Conference on Computer-Aided Verification. CAV 2023 was held during July 19–22,
2023 and the pre-conference workshops were held during July 17–18, 2023. CAV 2023
was an in-person event, in Paris, France.

CAV is an annual conference dedicated to the advancement of the theory and practice
of computer-aided formal analysis methods for hardware and software systems. The
primary focus of CAV is to extend the frontiers of verification techniques by expanding
to new domains such as security, quantum computing, and machine learning. This puts
CAVat the cutting edgeof formalmethods research, and this year’s program is a reflection
of this commitment.

CAV 2023 received a large number of submissions (261). We accepted 15 tool
papers, 3 case-study papers, and 49 regular papers, which amounts to an acceptance
rate of roughly 26%. The accepted papers cover a wide spectrum of topics, from theo-
retical results to applications of formal methods. These papers apply or extend formal
methods to a wide range of domains such as concurrency, machine learning and neu-
ral networks, quantum systems, as well as hybrid and stochastic systems. The program
featured keynote talks by Ruzica Piskac (Yale University), Sumit Gulwani (Microsoft),
and Caroline Trippel (Stanford University). In addition to the contributed talks, CAV
also hosted the CAV Award ceremony, and a report from the Synthesis Competition
(SYNTCOMP) chairs.

In addition to themain conference,CAV2023hosted the followingworkshops:Meet-
ing on String Constraints and Applications (MOSCA), Verification Witnesses and Their
Validation (VeWit), Verification of Probabilistic Programs (VeriProP), Open Problems
in Learning and Verification of Neural Networks (WOLVERINE), Deep Learning-aided
Verification (DAV), Hyperproperties: Advances in Theory and Practice (HYPER), Syn-
thesis (SYNT), FormalMethods forML-Enabled Autonomous Systems (FoMLAS), and
VerificationMentoringWorkshop (VMW). CAV 2023 also hosted a workshop dedicated
to Thomas A. Henzinger for this 60th birthday.

Organizing a flagship conference like CAV requires a great deal of effort from the
community. The Program Committee for CAV 2023 consisted of 76 members—a com-
mittee of this size ensures that each member has to review only a reasonable number of
papers in the allotted time. In all, the committee members wrote over 730 reviews while
investing significant effort to maintain and ensure the high quality of the conference pro-
gram.We are grateful to the CAV 2023 Program Committee for their outstanding efforts
in evaluating the submissions and making sure that each paper got a fair chance. Like
recent years in CAV, we made artifact evaluation mandatory for tool paper submissions,
but optional for the rest of the accepted papers. This year we received 48 artifact submis-
sions, out of which 47 submissions received at least one badge. The Artifact Evaluation
Committee consisted of 119 members who put in significant effort to evaluate each arti-
fact. The goal of this process was to provide constructive feedback to tool developers and

vi Preface

help make the research published in CAV more reproducible. We are also very grateful
to the Artifact Evaluation Committee for their hard work and dedication in evaluating
the submitted artifacts.

CAV 2023 would not have been possible without the tremendous help we received
from several individuals, and we would like to thank everyone who helped make CAV
2023 a success. We would like to thank Alessandro Cimatti, Isil Dillig, Javier Esparza,
Azadeh Farzan, Joost-Pieter Katoen and Corina Pasareanu for serving as area chairs.
We also thank Bernhard Kragl and Daniel Dietsch for chairing the Artifact Evaluation
Committee.We also thankMohamedFaouziAtig for chairing theworkshop organization
as well as leading publicity efforts, Eric Koskinen as the fellowship chair, Sebastian
Bardin and Ruzica Piskac as sponsorship chairs, and Srinidhi Nagendra as the website
chair. Srinidhi, along with Enrique Román Calvo, helped prepare the proceedings. We
also thankAnkushDesai, EricKoskinen, BurcuKulahciogluOzkan,Marijana Lazic, and
Matteo Sammartino for chairing the mentoring workshop. Last but not least, we would
like to thank the members of the CAV Steering Committee (Kenneth McMillan, Aarti
Gupta, Orna Grumberg, and Daniel Kroening) for helping us with several important
aspects of organizing CAV 2023.

We hope that you will find the proceedings of CAV 2023 scientifically interesting
and thought-provoking!

June 2023 Constantin Enea
Akash Lal

Organization

Conference Co-chairs

Constantin Enea LIX, École Polytechnique, France
Akash Lal Microsoft Research, India

Artifact Co-chairs

Bernhard Kragl Amazon Web Services, USA
Daniel Dietsch Qt Group/University of Freiburg, Germany

Workshop Chair

Mohamed Faouzi Atig Uppsala University, Sweden

Verification Mentoring Workshop Organizing Committee

Ankush Densai AWS CA, USA
Eric Koskinen Stevens Institute of Technology, USA
Burcu Kulahcioglu Ozkan TU Delft, The Netherlands
Marijana Lazic TU Munich, Germany
Matteo Sammartino Royal Holloway, University of London, UK

Fellowship Chair

Eric Koskinen Stevens Institute of Technology, USA

Website Chair

Srinidhi Nagendra Université Paris Cité, CNRS, IRIF, France and
Chennai Mathematical Institute, India

viii Organization

Sponsorship Co-chairs

Sebastian Bardin CEA LIST, France
Ruzica Piskac Yale University, USA

Proceedings Chairs

Srinidhi Nagendra Université Paris Cité, CNRS, IRIF, France and
Chennai Mathematical Institute, India

Enrique Román Calvo Université Paris Cité, CNRS, IRIF, France

Program Committee

Aarti Gupta Princeton University, USA
Abhishek Bichhawat IIT Gandhinagar, India
Aditya V. Thakur University of California, USA
Ahmed Bouajjani University of Paris, France
Aina Niemetz Stanford University, USA
Akash Lal Microsoft Research, India
Alan J. Hu University of British Columbia, Canada
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Alexander Nadel Intel, Israel
Anastasia Mavridou KBR, NASA Ames Research Center, USA
Andreas Podelski University of Freiburg, Germany
Ankush Desai Amazon Web Services
Anna Slobodova Intel, USA
Anthony Widjaja Lin TU Kaiserslautern and Max-Planck Institute for

Software Systems, Germany
Arie Gurfinkel University of Waterloo, Canada
Arjun Radhakrishna Microsoft, India
Aws Albarghouthi University of Wisconsin-Madison, USA
Azadeh Farzan University of Toronto, Canada
Bernd Finkbeiner CISPA Helmholtz Center for Information

Security, Germany
Bettina Koenighofer Graz University of Technology, Austria
Bor-Yuh Evan Chang University of Colorado Boulder and Amazon,

USA
Burcu Kulahcioglu Ozkan Delft University of Technology, The Netherlands
Caterina Urban Inria and École Normale Supérieure, France
Cezara Dragoi Amazon Web Services, USA

Organization ix

Christoph Matheja Technical University of Denmark, Denmark
Claudia Cauli Amazon Web Services, UK
Constantin Enea LIX, CNRS, Ecole Polytechnique, France
Corina Pasareanu CMU, USA
Cristina David University of Bristol, UK
Dirk Beyer LMU Munich, Germany
Elizabeth Polgreen University of Edinburgh, UK
Elvira Albert Complutense University, Spain
Eunsuk Kang Carnegie Mellon University, USA
Gennaro Parlato University of Molise, Italy
Hossein Hojjat Tehran University and Tehran Institute of

Advanced Studies, Iran
Ichiro Hasuo National Institute of Informatics, Japan
Isil Dillig University of Texas, Austin, USA
Javier Esparza Technische Universität München, Germany
Joost-Pieter Katoen RWTH-Aachen University, Germany
Juneyoung Lee AWS, USA
Jyotirmoy Deshmukh University of Southern California, USA
Kenneth L. McMillan University of Texas at Austin, USA
Kristin Yvonne Rozier Iowa State University, USA
Kshitij Bansal Google, USA
Kuldeep Meel National University of Singapore, Singapore
Kyungmin Bae POSTECH, South Korea
Marcell Vazquez-Chanlatte Alliance Innovation Lab

(Nissan-Renault-Mitsubishi), USA
Marieke Huisman University of Twente, The Netherlands
Markus Rabe Google, USA
Marta Kwiatkowska University of Oxford, UK
Matthias Heizmann University of Freiburg, Germany
Michael Emmi AWS, USA
Mihaela Sighireanu University Paris Saclay, ENS Paris-Saclay and

CNRS, France
Mohamed Faouzi Atig Uppsala University, Sweden
Naijun Zhan Institute of Software, Chinese Academy of

Sciences, China
Nikolaj Bjorner Microsoft Research, USA
Nina Narodytska VMware Research, USA
Pavithra Prabhakar Kansas State University, USA
Pierre Ganty IMDEA Software Institute, Spain
Rupak Majumdar Max Planck Institute for Software Systems,

Germany
Ruzica Piskac Yale University, USA

x Organization

Sebastian Junges Radboud University, The Netherlands
Sébastien Bardin CEA, LIST, Université Paris Saclay, France
Serdar Tasiran Amazon, USA
Sharon Shoham Tel Aviv University, Israel
Shaz Qadeer Meta, USA
Shuvendu Lahiri Microsoft Research, USA
Subhajit Roy Indian Institute of Technology, Kanpur, India
Suguman Bansal Georgia Institute of Technology, USA
Swarat Chaudhuri UT Austin, USA
Sylvie Putot École Polytechnique, France
Thomas Wahl GrammaTech, USA
Tomáš Vojnar Brno University of Technology, FIT, Czech

Republic
Yakir Vizel Technion - Israel Institute of Technology, Israel
Yu-Fang Chen Academia Sinica, Taiwan
Zhilin Wu State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of
Sciences, China

Artifact Evaluation Committee

Alejandro Hernández-Cerezo Complutense University of Madrid, Spain
Alvin George IISc Bangalore, India
Aman Goel Amazon Web Services, USA
Amit Samanta University of Utah, USA
Anan Kabaha Technion, Israel
Andres Noetzli Cubist, Inc., USA
Anna Becchi Fondazione Bruno Kessler, Italy
Arnab Sharma University of Oldenburg, Germany
Avraham Raviv Bar Ilan University, Israel
Ayrat Khalimov TU Clausthal, Germany
Baoluo Meng General Electric Research, USA
Benjamin Jones Amazon Web Services, USA
Bohua Zhan Institute of Software, Chinese Academy of

Sciences, China
Cayden Codel Carnegie Mellon University, USA
Charles Babu M. CEA LIST, France
Chungha Sung Amazon Web Services, USA
Clara Rodriguez-Núñez Universidad Complutense de Madrid, Spain
Cyrus Liu Stevens Institute of Technology, USA
Daniel Hausmann University of Gothenburg, Sweden

Organization xi

Daniela Kaufmann TU Wien, Austria
Debasmita Lohar MPI SWS, Germany
Deivid Vale Radboud University Nijmegen, Netherlands
Denis Mazzucato Inria, France
Dorde Žikelić Institute of Science and Technology Austria,

Austria
Ekanshdeep Gupta New York University, USA
Enrico Magnago Amazon Web Services, USA
Ferhat Erata Yale University, USA
Filip Cordoba Graz University of Technology, Austria
Filipe Arruda UFPE, Brazil
Florian Dorfhuber Technical University of Munich, Germany
Florian Sextl TU Wien, Austria
Francesco Parolini Sorbonne University, France
Frédéric Recoules CEA LIST, France
Goktug Saatcioglu Cornell, USA
Goran Piskachev Amazon Web Services, USA
Grégoire Menguy CEA LIST, France
Guy Amir Hebrew University of Jerusalem, Israel
Habeeb P. Indian Institute of Science, Bangalore, India
Hadrien Renaud UCL, UK
Haoze Wu Stanford University, USA
Hari Krishnan University of Waterloo, Canada
Hünkar Tunç Aarhus University, Denmark
Idan Refaeli Hebrew University of Jerusalem, Israel
Ignacio D. Lopez-Miguel TU Wien, Austria
Ilina Stoilkovska Amazon Web Services, USA
Ira Fesefeldt RWTH Aachen University, Germany
Jahid Choton Kansas State University, USA
Jie An National Institute of Informatics, Japan
John Kolesar Yale University, USA
Joseph Scott University of Waterloo, Canada
Kevin Lotz Kiel University, Germany
Kirby Linvill CU Boulder, USA
Kush Grover Technical University of Munich, Germany
Levente Bajczi Budapest University of Technology and

Economics, Hungary
Liangcheng Yu University of Pennsylvania, USA
Luke Geeson UCL, UK
Lutz Klinkenberg RWTH Aachen University, Germany
Marek Chalupa Institute of Science and Technology Austria,

Austria

xii Organization

Mario Bucev EPFL, Switzerland
Mário Pereira NOVA LINCS—Nova School of Science and

Technology, Portugal
Marius Mikucionis Aalborg University, Denmark
Martin Jonáš Masaryk University, Czech Republic
Mathias Fleury University of Freiburg, Germany
Matthias Hetzenberger TU Wien, Austria
Maximilian Heisinger Johannes Kepler University Linz, Austria
Mertcan Temel Intel Corporation, USA
Michele Chiari TU Wien, Austria
Miguel Isabel Universidad Complutense de Madrid, Spain
Mihai Nicola Stevens Institute of Technology, USA
Mihály Dobos-Kovács Budapest University of Technology and

Economics, Hungary
Mikael Mayer Amazon Web Services, USA
Mitja Kulczynski Kiel University, Germany
Muhammad Mansur Amazon Web Services, USA
Muqsit Azeem Technical University of Munich, Germany
Neelanjana Pal Vanderbilt University, USA
Nicolas Koh Princeton University, USA
Niklas Metzger CISPA Helmholtz Center for Information

Security, Germany
Omkar Tuppe IIT Bombay, India
Pablo Gordillo Complutense University of Madrid, Spain
Pankaj Kalita Indian Institute of Technology, Kanpur, India
Parisa Fathololumi Stevens Institute of Technology, USA
Pavel Hudec HKUST, Hong Kong, China
Peixin Wang University of Oxford, UK
Philippe Heim CISPA Helmholtz Center for Information

Security, Germany
Pritam Gharat Microsoft Research, India
Priyanka Darke TCS Research, India
Ranadeep Biswas Informal Systems, Canada
Robert Rubbens University of Twente, Netherlands
Rubén Rubio Universidad Complutense de Madrid, Spain
Samuel Judson Yale University, USA
Samuel Pastva Institute of Science and Technology Austria,

Austria
Sankalp Gambhir EPFL, Switzerland
Sarbojit Das Uppsala University, Sweden
Sascha Klüppelholz Technische Universität Dresden, Germany
Sean Kauffman Aalborg University, Denmark

Organization xiii

Shaowei Zhu Princeton University, USA
Shengjian Guo Amazon Web Services, USA
Simmo Saan University of Tartu, Estonia
Smruti Padhy University of Texas at Austin, USA
Stanly Samuel Indian Institute of Science, Bangalore, India
Stefan Pranger Graz University of Technology, Austria
Stefan Zetzsche Amazon Web Services, USA
Sumanth Prabhu TCS Research, India
Sumit Lahiri Indian Institute of Technology, Kanpur, India
Sunbeom So Korea University, South Korea
Syed M. Iqbal Amazon Web Services, USA
Tobias Meggendorfer Institute of Science and Technology Austria,

Austria
Tzu-Han Hsu Michigan State University, USA
Verya Monjezi University of Texas at El Paso, USA
Wei-Lun Tsai Academia Sinica, Taiwan
William Schultz Northeastern University, USA
Xiao Liang Yu National University of Singapore, Singapore
Yahui Song National University of Singapore, Singapore
Yasharth Bajpai Microsoft Research, USA
Ying Sheng Stanford University, USA
Yuriy Biktairov University of Southern California, USA
Zafer Esen Uppsala University, Sweden

Additional Reviewers

Azzopardi, Shaun
Baier, Daniel
Belardinelli, Francesco
Bergstraesser, Pascal
Boker, Udi
Ceska, Milan
Chien, Po-Chun
Coglio, Alessandro
Correas, Jesús
Doveri, Kyveli
Drachsler Cohen, Dana
Durand, Serge
Fried, Dror
Genaim, Samir
Ghosh, Bishwamittra
Gordillo, Pablo

Guillermo, Roman Diez
Gómez-Zamalloa, Miguel
Hernández-Cerezo, Alejandro
Holík, Lukáš
Isabel, Miguel
Ivrii, Alexander
Izza, Yacine
Jothimurugan, Kishor
Kaivola, Roope
Kaminski, Benjamin Lucien
Kettl, Matthias
Kretinsky, Jan
Lengal, Ondrej
Losa, Giuliano
Luo, Ning
Malik, Viktor

xiv Organization

Markgraf, Oliver
Martin-Martin, Enrique
Meller, Yael
Perez, Mateo
Petri, Gustavo
Pote, Yash
Preiner, Mathias
Rakamaric, Zvonimir
Rastogi, Aseem
Razavi, Niloofar
Rogalewicz, Adam
Sangnier, Arnaud
Sarkar, Uddalok
Schoepe, Daniel
Sergey, Ilya

Stoilkovska, Ilina
Stucki, Sandro
Tsai, Wei-Lun
Turrini, Andrea
Vafeiadis, Viktor
Valiron, Benoît
Wachowitz, Henrik
Wang, Chao
Wang, Yuepeng
Wies, Thomas
Yang, Jiong
Yen, Di-De
Zhu, Shufang
Žikelić, Ɖor -de
Zohar, Yoni

Contents – Part II

Decision Procedures

Bitwuzla . 3
Aina Niemetz and Mathias Preiner

Decision Procedures for Sequence Theories . 18
Artur Jeż, Anthony W. Lin, Oliver Markgraf, and Philipp Rümmer

Exploiting Adjoints in Property Directed Reachability Analysis 41
Mayuko Kori, Flavio Ascari, Filippo Bonchi, Roberto Bruni,
Roberta Gori, and Ichiro Hasuo

Fast Approximations of Quantifier Elimination . 64
Isabel Garcia-Contreras, V. K. Hari Govind, Sharon Shoham,
and Arie Gurfinkel

Local Search for Solving Satisfiability of Polynomial Formulas 87
Haokun Li, Bican Xia, and Tianqi Zhao

Partial Quantifier Elimination and Property Generation . 110
Eugene Goldberg

Rounding Meets Approximate Model Counting . 132
Jiong Yang and Kuldeep S. Meel

Satisfiability Modulo Finite Fields . 163
Alex Ozdemir, Gereon Kremer, Cesare Tinelli, and Clark Barrett

Solving String Constraints Using SAT . 187
Kevin Lotz, Amit Goel, Bruno Dutertre, Benjamin Kiesl-Reiter,
Soonho Kong, Rupak Majumdar, and Dirk Nowotka

The Golem Horn Solver . 209
Martin Blicha, Konstantin Britikov, and Natasha Sharygina

Model Checking

CoqCryptoLine: A Verified Model Checker with Certified Results 227
Ming-Hsien Tsai, Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Bow-Yaw Wang,
and Bo-Yin Yang

xvi Contents – Part II

Incremental Dead State Detection in Logarithmic Time . 241
Caleb Stanford and Margus Veanes

Model Checking Race-Freedom When “Sequential Consistency
for Data-Race-Free Programs” is Guaranteed . 265

Wenhao Wu, Jan Hückelheim, Paul D. Hovland, Ziqing Luo,
and Stephen F. Siegel

Searching for i-Good Lemmas to Accelerate Safety Model Checking 288
Yechuan Xia, Anna Becchi, Alessandro Cimatti, Alberto Griggio,
Jianwen Li, and Geguang Pu

Second-Order Hyperproperties . 309
Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger

Neural Networks and Machine Learning

Certifying the Fairness of KNN in the Presence of Dataset Bias 335
Yannan Li, Jingbo Wang, and Chao Wang

Monitoring Algorithmic Fairness . 358
Thomas A. Henzinger, Mahyar Karimi, Konstantin Kueffner,
and Kaushik Mallik

nl2spec: Interactively Translating Unstructured Natural Language
to Temporal Logics with Large Language Models . 383

Matthias Cosler, Christopher Hahn, Daniel Mendoza,
Frederik Schmitt, and Caroline Trippel

NNV 2.0: The Neural Network Verification Tool . 397
Diego Manzanas Lopez, Sung Woo Choi, Hoang-Dung Tran,
and Taylor T. Johnson

QEBVerif: Quantization Error Bound Verification of Neural Networks 413
Yedi Zhang, Fu Song, and Jun Sun

Verifying Generalization in Deep Learning . 438
Guy Amir, Osher Maayan, Tom Zelazny, Guy Katz, and Michael Schapira

Correction to: CoqCryptoLine: A Verified Model Checker with Certified
Results . C1

Ming-Hsien Tsai, Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Bow-Yaw Wang,
and Bo-Yin Yang

Author Index . 457

Decision Procedures

Bitwuzla

Aina Niemetz(B) and Mathias Preiner

Stanford University, Stanford, USA
{niemetz,preiner}@cs.stanford.edu

Abstract. Bitwuzla is a new SMT solver for the quantifier-free and
quantified theories of fixed-size bit-vectors, arrays, floating-point arith-
metic, and uninterpreted functions. This paper serves as a comprehen-
sive system description of its architecture and components. We evaluate
Bitwuzla’s performance on all benchmarks of supported logics in SMT-
LIB and provide a comparison against other state-of-the-art SMT solvers.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers serve as back-end reasoning engines
for a wide range of applications in formal methods (e.g., [13,14,21,23,35]). In
particular, the theory of fixed-size bit-vectors, in combination with arrays, unin-
terpreted functions and floating-point arithmetic, have received increasing inter-
est in recent years, as witnessed by the high and increasing numbers of bench-
marks submitted to the SMT-LIB benchmark library [5] and the number of
participants in corresponding divisions in the annual SMT competition (SMT-
COMP) [42]. State-of-the-art SMT solvers supporting (a subset of) these the-
ories include Boolector [31], cvc5 [3], MathSAT [15], STP [19], Yices2 [17] and
Z3 [25]. Among these, Boolector had been largely dominating the quantifier-free
divisions with bit-vectors and arrays in SMT-COMP over the years [2].

Boolector was originally published in 2009 by Brummayer and Biere [11] as
an SMT solver for the quantifier-free theories of fixed-size bit-vectors and arrays.
Since 2012, Boolector has been mainly developed and maintained by the authors
of this paper, who have extended it with support for uninterpreted functions and
lazy handling of non-recursive lambda terms [32,38,39], local search strategies
for quantifier-free bit-vectors [33,34], and quantified bit-vector formulas [40].

While Boolector is still competitive in terms of performance, it has several
limitations. Its code base consists of largely monolithic C code, with a rigid
architecture focused on a very specialized, tight integration of bit-vectors and
arrays. Consequently, it is cumbersome to maintain, and adding new features
is difficult and time intensive. Further, Boolector requires manual management
of memory and reference counts from API users; terms and sorts are tied to a
specific solver instance and cannot be shared across instances; all preprocessing

This work was supported in part by the Stanford Center for Automated Reasoning,
the Stanford Agile Hardware Center, the Stanford Center for Blockchain Research and
a gift from Amazon Web Services.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 3–17, 2023.
https://doi.org/10.1007/978-3-031-37703-7_1

https://doi.org/10.5281/zenodo.7864687
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_1&domain=pdf
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0002-7142-6258
https://doi.org/10.1007/978-3-031-37703-7_1

4 A. Niemetz and M. Preiner

techniques are destructive, which disallows incremental preprocessing; and due to
architectural limitations, incremental solving with quantifiers is not supported.

In 2018, we forked Boolector in preparation for addressing these issues, and
entered an improved and extended version of this fork as Bitwuzla in the SMT
competition 2020 [26]. At that time, Bitwuzla extended Boolector with: sup-
port for floating-point arithmetic by integrating SymFPU [8] (a C++ library of
bit-vector encodings of floating-point operations); a novel generalization of its
propagation-based local search strategy [33] to ternary values [27]; unsat core
extraction; and since 2022, support for reasoning about quantified formulas for all
supported theories and their combinations. This version of Bitwuzla was already
made available on GitHub at [28], but not officially released. However, archi-
tectural and structural limitations inherited from Boolector remained. Thus, to
overcome these limitations and address the above issues, we decided to discard
the existing code base and rewrite Bitwuzla from scratch.

In this paper, we present the first official release of Bitwuzla, an SMT solver
for the (quantified and quantifier-free) theories of fixed-size bit-vectors, arrays,
floating-point arithmetic, uninterpreted functions and their combinations. Its
name (pronounced as bitvootslah) is derived from an Austrian dialect expression
that can be translated as someone who tinkers with bits. Bitwuzla is written
in C++, inspired by techniques implemented in Boolector. That is, rather than
only redesigning problematic aspects of Boolector, we carefully dissected and
(re)evaluated its parts to serve as guidance when writing a new solver from
scratch. In that sense, it is not a reimplementation of Boolector, but can be
considered its superior successor. Bitwuzla is available on GitHub [28] under the
MIT license, and its documentation is available at [29].

2 Architecture

Bitwuzla supports reasoning about quantifier-free and quantified formulas over
fixed-size bit-vectors, floating-point arithmetic, arrays and uninterpreted func-
tions as standardized in SMT-LIB [4]. In this section, we provide an overview of
Bitwuzla’s system architecture and its core components as given in Fig. 1.

Bitwuzla consists of two main components: the Solving Context and
the Node Manager. The Solving Context can be seen as a solver instance
that determines satisfiability of a set of formulas and implements the lazy,
abstraction/refinement-based SMT paradigm lemmas on demand [6,24] (in con-
trast to SMT solvers like cvc5 and Z3, which are based on the CDCL(T) [36]
framework). The Node Manager is responsible for constructing and maintaining
nodes and types and is shared across multiple Solving Context instances.

Bitwuzla provides a comprehensive C++ API as its main interface, with a C
and Python API built on top. All features of the C++ API are also accessible
to C and Python users. The API documentation is available at [29]. The C++

API exports Term, Sort, Bitwuzla, and Option classes for constructing nodes
and types, configuring solver options and constructing Bitwuzla solver instances
(the external representation of Solving Contexts). Term and Sort objects may be

Bitwuzla 5

Fig. 1. Bitwuzla system architecture.

used in multiple Bitwuzla instances. The parser interacts with the solver instance
via the C++ API. A textual command line interface (CLI) builds on top of the
parser, supporting SMT-LIBv2 [4] and BTOR2 [35] as input languages.

2.1 Node Manager

Bitwuzla represents formulas and terms as reference-counted, immutable nodes
in a directed acyclic graph. The Node Manager is responsible for constructing
and managing these nodes and employs hash-consing to maximize sharing of
subgraphs. Automatic reference counting allows the Node Manager to determine
when to delete nodes. Similarly, types are constructed and managed by the Type
Manager, which is maintained by the Node Manager. Nodes and types are stored
globally (thread-local) in the Node Database and Type Database, which has the
key advantage that they can be shared between arbitrarily many solving contexts
within one thread. This is one of the key differences to Boolector’s architecture,
where terms and types are manually reference counted and tied to a single solver
instance, which does not allow sharing between solver instances.

2.2 Solving Context

A Solving Context is the internal equivalent of a solver instance and deter-
mines the satisfiability of a set of asserted formulas (assertions). Solving Con-
texts are fully configurable via options and provide an incremental interface for
adding and removing assertions via push and pop. Incremental solving allows
users to perform multiple satisfiability checks with similar sets of assertions

6 A. Niemetz and M. Preiner

while reusing work from earlier checks. On the API level, Bitwuzla also sup-
ports satisfiability queries under a given set of assumptions (SMT-LIB command
check-sat-assuming), which are internally handled via push and pop.

Nodes and types constructed via the Node Manager may be shared between
multiple Solving Contexts. If the set of assertions is satisfiable, the Solving Con-
text provides a model for the input formula. It further allows to query model
values for any term, based on this model (SMT-LIB command get-value). In
case of unsatisfiable queries, the Solving Context can be configured to extract
an unsatisfiable core and unsat assumptions.

A Solving Context consists of three main components: a Rewriter, a Prepro-
cessor and a Solver Engine. The Rewriter and Preprocessor perform local (node
level) and global (over all assertions) simplifications, whereas the Solver Engine
is the central solving engine, managing theory solvers and their interaction.

Preprocessor. As a first step of each satisfiability check, prior to solving, the
preprocessor applies a pipeline of preprocessing passes in a predefined order
to the current set of assertions until fixed-point. Each preprocessing pass imple-
ments a set of satisfiability-preserving transformations. All passes can be option-
ally disabled except for one mandatory transformation, the reduction of the full
set of operators supported on the API level to a reduced operator set: Boolean
connectives are expressed by means of {¬,∧}, quantifier ∃ is represented in terms
of ∀, inequalities are represented in terms of < and >, signed bit-vector oper-
ators are expressed in terms of unsigned operators, and more. These reduction
transformations are a subset of the term rewrites performed by the Rewriter,
and rewriting is implemented as one preprocessing pass. Additionally, Bitwuzla
implements 7 preprocessing passes, which are applied sequentially, after rewrit-
ing, until no further transformations are possible: and flattening, which splits
a top-level ∧ into its subformulas, e.g., a ∧ (b ∧ (c = d)) into {a, b, c = d};
substitution, which replaces all occurrences of a constant x with a term t if x = t
is derived on the top level; skeleton preprocessing, which simplifies the Boolean
skeleton of the input formula with a SAT solver; embedded constraints, which
substitutes all occurrences of top-level constraints in subterms of other top-level
constraints with true; extract elimination, which eliminates bit-vector extracts
over constants; lambda elimination, which applies beta reduction on lambda
terms; and normalization of arithmetic expressions.

Preprocessing in Bitwuzla is fully incremental : all passes are applied to the
current set of assertions, from all assertion levels, and simplifications derived
from lower levels are applied to all assertions of higher levels (including assump-
tions). Assertions are processed per assertion level i, starting from i = 0, and for
each level i > 0, simplifications are applied based on information from all levels
j ≤ i. Note that when solving under assumptions, Bitwuzla internally pushes an
assertion level and handles these assumptions as assertions of that level. When
a level i is popped, the assertions of that level are popped, and the state of the
preprocessor is backtracked to the state that was associated with level i−1. Note
that preprocessing assertion levels i < j with information derived from level j
requires to not only restore the state of the preprocessor, but to also reconstruct

Bitwuzla 7

the assertions on levels i < j when level j is popped to the state before level j
was pushed, and is left to future work.

Boolector, on the other hand, only performs preprocessing based on top-
level assertions (assertion level 0) and does not incorporate any information
from assumptions or higher assertion levels.

Rewriter. The rewriter transforms terms via a predefined set of rewrite rules
into semantically equivalent normal forms. This transformation is local in the
sense that it is independent from the current set of assertions. We distinguish
between required and optional rewrite rules, and further group rules into so-
called rewrite levels from 0–2. The set of required rules consists of operator
elimination rewrites, which are considered level 0 rewrites and ensure that nodes
only contain operators from a reduced base set. For example, the two’s com-
plement −x of a bit-vector term x is rewritten to (∼ x + 1) by means of one’s
complement and bit-vector addition. Optional rewrite rules are grouped into
level 1 and level 2. Level 1 rules perform rewrites that only consider the imme-
diate children of a node, whereas level 2 rules may consider multiple levels of
children. If not implemented carefully, level 2 rewrites can potentially destroy
sharing of subterms and consequently increase the overall size of the formula.
For example, rewriting (t + 0) to t is considered a level 1 rewrite rule, whereas
rewriting (a − b = c) to (b + c = a) is considered a level 2 rule since it may
introduce an additional bit-vector addition (b + c) if (a − b) occurs somewhere
else in the formula. The maximum rewrite level of the rewriter can be configured
by the user.

Rewriting is applied on the current set of assertions as a preprocessing pass
and, as all other passes, applied until fixed-point. That is, on any given term,
the rewriter applies rewrite rules until no further rewrite rules can be applied.
For this, the rewriter must guarantee that no set of applied rewrite rules may
lead to cyclic rewriting of terms. Additionally, all components of the solving
context apply rewriting on freshly created nodes to ensure that all nodes are
always fully normalized. In order to avoid processing nodes more than once, the
rewriter maintains a cache that maps nodes to their fully rewritten form.

Solver Engine. After preprocessing, the solving context sends the current set
of assertions to the Solver Engine, which implements a lazy SMT paradigm
called lemmas on demand [6,24]. However, rather than using a propositional
abstraction of the input formula as in [6,24], it implements a bit-vector abstrac-
tion similar to Boolector [12,38]. At its core, the Solver Engine maintains a
bit-vector theory solver and a solver for each supported theory. Quantifier rea-
soning is handled by a dedicated quantifiers module, implemented as a theory
solver. The Solver Engine manages all theory solvers, the distribution of relevant
terms, and the processing of lemmas generated by the theory solvers.

The bit-vector solver is responsible for reasoning about the bit-vector abstrac-
tion of the input assertions and lemmas generated during solving, which includes
all propositional and bit-vector terms. Theory atoms that do not belong to
the bit-vector theory are abstracted as Boolean constants, and bit-vector terms

8 A. Niemetz and M. Preiner

whose operator does not belong to the bit-vector theory are abstracted as bit-
vector constants. For example, an array select operation of type bit-vector is
abstracted as a bit-vector constant, while an equality between two arrays is
abstracted as a Boolean constant.

If the bit-vector abstraction is satisfiable, the bit-vector solver produces a sat-
isfying assignment, and the floating-point, array, function and quantifier solvers
check this assignment for theory consistency. If a solver finds a theory inconsis-
tency, i.e., a conflict between the current satisfying assignment and the solver’s
theory axioms, it produces a lemma to refine the bit-vector abstraction and rule
out the detected inconsistency. Theory solvers are allowed to send any number
of lemmas, with the only requirement that if a theory solver does not send a
lemma, the current satisfying assignment is consistent with the theory.

Finding a satisfying assignment for the bit-vector abstraction and the subse-
quent theory consistency checks are implemented as an abstraction/refinement
loop as given in Algorithm 1. Whenever a theory solver sends lemmas, the loop
is restarted to get a new satisfying assignment for the refined bit-vector abstrac-
tion. The loop terminates if the bit-vector abstraction is unsatisfiable, or if the
bit-vector abstraction is satisfiable and none of the theory solvers report any the-
ory inconsistencies. Note that the abstraction/refinement algorithm may return
unknown if the input assertions include quantified formulas.

Algorithm 1. Abstraction/refinement loop in Solver Engine. Function solve
(A) is called on the current set of preprocessed assertions A, which is iteratively
refined with a set of Lemmas L.

function solve(A)
r ← Unknown, L ← ∅
repeat

A ← A ∪ L
r, M ← TBV ::solve(A) � Solve bit-vector abstraction of A
if r = Unsat then break end if

L ← TFP ::check(M) � Check FP theory consistency of M
if L �= ∅ then continue end if

L ← TA::check(M) � Check array theory consistency of M
if L �= ∅ then continue end if

L ← TUF ::check(M) � Check UF theory consistency of M
if L �= ∅ then continue end if

L ← TQ::check(M) � Check quantified formulas in M
until L = ∅
return r

end function

Backtrackable Data Structures. Every component of the Solver Context
except for the Rewriter depends on the current set of assertions. When solving

Bitwuzla 9

incrementally, the assertion stack is modified by adding (SMT-LIB command
push) and removing (SMT-LIB command pop) assertions. In contrast to Boolec-
tor, Bitwuzla supports saving and restoring the internal solver state, i.e., the
state of the Solving Context, corresponding to these push and pop operations
by means of backtrackable data structures. These data structures are custom vari-
ants of mutable data structures provided in the C++ standard library, extended
with an interface to save and restore their state on push and pop calls. This
allows the solver to take full advantage of incremental solving by reusing work
from previous satisfiability checks and backtracking to previous states. Further,
this enables incremental preprocessing. Bitwuzla’s backtrable data structures are
conceptually similar to context-dependent data structures in cvc5 [3].

3 Theory Solvers

The Solver Engine maintains a theory solver for each supported theory and
implements a module for handling quantified formulas as a dedicated theory
solver. The central engine of the Solver Engine is the bit-vector theory solver,
which reasons about a bit-vector abstraction of the current set of input asser-
tions, refined with lemmas generated by other theory solvers. The theories of
fixed-size bit-vectors, arrays, floating-point arithmetic, and uninterpreted func-
tions are combined via a model-based theory combination approach similar
to [12,38].

Theory combination is based on candidate models produced by the bit-vector
theory solver for the bit-vector abstraction (function TBV ::solve() in Algorithm
1). For each candidate model, each theory solver checks consistency with the
axioms of the corresponding theory (functions T∗::check() in Algorithm 1). If a
theory solver requests a model value for a term that is not part of the current
bit-vector abstraction, the theory solver who “owns” that term is queried for a
value. If this value or the candidate model is inconsistent with the axioms of the
theory querying the value, it sends a lemma to refine the bit-vector abstraction.

3.1 Arrays

The array theory solver implements and extends the array procedure from [12]
with support for reasoning over (equalities of) nested arrays and non-extensional
constant arrays. This is in contrast to Boolector, which generalizes the lemmas
on demand procedure for extensional arrays as described in [12] to non-recursive
first-order lambda terms [37,38], without support for nested arrays. Generalizing
arrays to lambda terms allows to use the same procedure for arrays and uninter-
preted functions and enables a natural, compact representation and extraction
of extended array operations such as memset, memcpy and array initialization
patterns as described in [39]. As an example, memset(a, i, n, e), which updates
n elements of array a within range [i, i + n[to a value e starting from index i,
can be represented as λj . ite(i ≤ j < i + n, e, a[j]). Reasoning over equalities
involving arbitrary lambda terms (including these operations), however, requires

10 A. Niemetz and M. Preiner

higher-order reasoning, which is not supported by Boolector. Further, extension-
ality over standard array operators that are represented as lambda terms (e.g.,
store) requires special handling, which makes the procedure unnecessarily com-
plex. Bitwuzla, on the other hand, implements separate theory solvers for arrays
and uninterpreted functions. Consequently, since it does not generalize arrays
to lambda terms, it cannot utilize the elegant representation of Boolector for
the extended array operations of [39]. Thus, currently, extracting and reason-
ing about these operations is not yet supported. Instead of representing such
operators as lambda terms, we plan to introduce specific array operators. This
will allow a seamless integration into Bitwuzla’s array procedure, with support
for reasoning about extensionality involving these operators. We will also add
support for reasoning about extensional constant arrays in the near future.

3.2 Bit-Vectors

The bit-vector theory solver implements two orthogonal approaches: the classic
bit-blasting technique employed by most state-of-the-art bit-vector solvers, which
eagerly translates the current bit-vector abstraction to SAT; and the ternary
propagation-based local search approach presented in [27]. Since local search pro-
cedures only allow to determine satisfiability, they are particularly effective as
a complementary strategy, in combination with (rather than instead of) bit-
blasting [27,33]. Bitwuzla’s bit-vector solver allows to combine local search with
bit-blasting in a sequential portfolio setting: the local search procedure is run
until a predefined resource limit is reached before falling back on the bit-blasting
procedure. Currently, Bitwuzla allows combining these two approaches only in
this particular setting. We plan to explore more interleaved configurations, pos-
sibly while sharing information between the procedures as future work.

Bit-Blasting. Bitwuzla implements the eager reduction of the bit-vector abstrac-
tion to propositional logic in two phases. First, it constructs an And-Inverter-
Graph (AIG) circuit representation of the abstraction while applying AIG-level
rewriting techniques [10]. This AIG circuit is then converted into Conjunctive
Normal Form (CNF) via Tseitin transformation and sent to the SAT solver
back-end. Note that for assertions from levels > 0, Bitwuzla leverages solving
under assumptions in the SAT solver in order to be able to backtrack to lower
assertion levels on pop. Bitwuzla supports CaDiCaL [7], CryptoMiniSat [41],
and Kissat [7] as SAT back-ends and uses CaDiCaL as its default SAT solver.

Local Search. Bitwuzla implements an improved version of the ternary propa-
gation-based local search procedure described in [27]. This procedure is a gener-
alization of the propagation-based local search approach implemented in Boolec-
tor [33] and addresses one of its main weaknesses: its obliviousness to bits that
can be simplified to constant values. Propagation-based local search is based
on propagating target values from the outputs to the inputs, does not require
bit-blasting, brute-force randomization or restarts, and lifts the concept of back-
tracing of Automatic Test Pattern Generation (ATPG) [22] to the word-level.

Bitwuzla 11

Boolector additionally implements the stochastic local search (SLS) approach
presented in [18], optionally augmented with a propagation-based strategy [34].
Bitwuzla, however, only implements our ternary propagation-based approach
since it was shown to significantly outperform these approaches [33].

3.3 Floating-Point Arithmetic

The solver for the theory of floating-point arithmetic implements an eager
translation of floating-point atoms in the bit-vector abstraction to equisatis-
fiable formulas in the theory of bit-vectors, a process sometimes referred to as
word-blasting. To translate floating-point expressions to the word-level, Bitwuzla
integrates SymFPU [9], a C++ library of bit-vector encodings of floating-point
operations. SymFPU uses templated types for Booleans (un)signed bit-vectors,
rounding modes and floating-point formats, which allows utilizing solver-specific
representations. SymFPU has also been integrated into cvc5 [3].

3.4 Uninterpreted Functions

For the theory of uninterpreted functions (UF), Bitwuzla implements dynamic
Ackermannization [16], which is a lazy form of Ackermann’s reduction. The
UF solver checks whether the current satisfying assignment of the bit-vector
abstraction is consistent with the function congruence axiom ā = b̄ → f(ā) =
f(b̄) and produces a lemma whenever the axiom is violated.

3.5 Quantifiers

Quantified formulas are handled by the quantifiers module, which is treated as
a theory solver and implements model-based quantifier instantiation [20] for all
supported theories and their combinations. In the bit-vector abstraction, quan-
tified formulas are abstracted as Boolean constants. Based on the assignment of
these constants, the quantifiers solver produces instantiation or Skolemization
lemmas. If the constant is assigned to true, the quantifier is treated as univer-
sal quantifier and the solver produces instantiation lemmas. If the constant is
assigned to false, the solver generates a Skolemization lemma. Bitwuzla allows
to combine quantifiers with all supported theories as well as incremental solving
and unsat core extraction. This is in contrast to Boolector, which only supports
sequential reasoning about quantified bit-vector formulas and, generally, does
not provide unsat cores for unsatisfiable instances.

4 Evaluation

We evaluate the overall performance of Bitwuzla on all non-incremental and
incremental benchmarks of all supported logics in SMT-LIB [5]. We further
include logics with floating-point arithmetic that are classified as containing
linear integer arithmetic (LRA). Bitwuzla does not support LRA reasoning, but

12 A. Niemetz and M. Preiner

Table 1. Solved instances and total runtime on solved instances (non-incremental).

Logic Boolector Z3 cvc5 SC22 Bitwuzla

ABV (169) – 89 32 0 1

ABVFP (30) – 25 19 0 16

ABVFPLRA (75) – 47 36 0 31

AUFBV (1,522) – 403 486 597 983

AUFBVFP (57) – 7 21 24 39

BV (6,045) 5,659 5,593 5,818 5,624 5,705

BVFP (205) – 176 171 148 188

BVFPLRA (209) – 189 107 140 199

FP (2,669) – 2,128 2,353 2,513 2,481

FPLRA (87) – 72 51 55 83

QF ABV (15,084) 15,041 14,900 14,923 15,043 15,041

QF ABVFP (18,129) – 18,017 18,113 18,125 18,125

QF ABVFPLRA (74) – 69 74 34 74

QF AUFBV (67) 45 50 42 46 55

QF AUFBVFP (1) – 1 1 1 1

QF BV (42,472) 41,958 40,876 41,574 42,039 42,049

QF BVFP (17,244) – 17,229 17,238 17,242 17,241

QF FP (40,409) – 40,303 40,357 40,368 40,358

QF FPLRA (57) – 41 48 56 56

QF UFBV (1,434) 1,403 1,404 1,387 1,413 1,411

QF UFFP (2) – 2 2 2 2

UFBV (192) – 156 141 146 147

UFBVFP (2) – 1 1 1 1

Total (146,235) 64,106 141,778 142,995 143,617 144,287

Time (solved) [s] 417,643 1,212,584 1,000,466 563,832 580,435

the benchmarks in these logics currently only involve to-floating-point conversion
(SMT-LIB command to fp) from real values, which is supported.

We compare against Boolector [31] and the SMT-COMP 2022 version of
Bitwuzla [26] (configuration SC22), which, at that time, was an improved and
extended version of Boolector and won several divisions in all tracks of SMT-
COMP 2022 [2]. Boolector did not participate in SMT-COMP 2022, thus we use
the current version of Boolector available on GitHub (commit 13a8a06d) [1].
Further, since Boolector does not support logics involving floating-point arith-
metic, quantified logics other than pure quantified bit-vectors and incremental
solving when quantifiers are involved, we also compare against the SMT-COMP
2022 versions of cvc5 [3] and Z3 [25]. Both solvers are widely used, high per-
formance SMT solvers with support for a wide range of theories, including the
theories supported by Bitwuzla. Note that this version of cvc5 uses a sequential
portfolio of multiple configurations for some logics.

Bitwuzla 13

Table 2. Solved queries and total runtime on solved queries (incremental).

Logic Boolector Z3 cvc5 SC22 Bitwuzla

ABVFPLRA (2,269) – 2,220 818 55 2,269

BV (38,856) – 37,188 36,169 35,567 35,246

BVFP (458) – 458 458 274 458

BVFPLRA (5,597) – 5,507 2,964 3,144 4,797

QF ABV (3,411) 3,238 2,866 2,746 3,242 2,939

QF ABVFP (550,088) – 515,714 534,629 550,034 550,041

QF ABVFPLRA (1,876) – 48 1,876 1,876 1,876

QF AUFBV (967) 23 860 320 23 956

QF BV (53,684) 52,218 51,826 51,683 51,581 52,305

QF BVFP (3,465) – 3,403 3,437 3,444 3,438

QF BVFPLRA (32,736) – 31,287 32,681 32,736 32,736

QF FP (663) – 663 663 663 663

QF FPLRA (48) – 48 48 48 48

QF UFBV (5,492) 4,634 5,422 5,148 2,317 5,489

QF UFFP (2) – 2 2 2 2

Total (699,612) 60,113 657,512 673,642 685,006 693,263

Time (solved) [s] 102,812 3,359,645 1,516,672 157,083 172,534

We ran all experiments on a cluster with Intel Xeon E5-2620 v4 CPUs. We
allocated one CPU core and 8GB of RAM for each solver and benchmark pair,
and used a 1200 s s time limit, the same time limit as used in SMT-COMP
2022 [2].

Table 1 shows the number of solved benchmarks for each solver in the non-
incremental quantifier-free (QF) and quantified divisions. Overall, Bitwuzla
solves the largest number of benchmarks in the quantified divisions, considerably
improving over SC22 and Boolector with over 600 and 4,200 solved benchmarks,
respectively. Bitwuzla also takes the lead in the quantifier-free divisions, with 44
more solved instances compared to SC22, and more than 650 solved benchmarks
compared to cvc5. On the 140,438 commonly solved instances between Bitwuzla,
SC22, cvc5, and Z3 over all divisions, Bitwuzla is the fastest solver with 203,838s,
SC22 is slightly slower with 208,310s, cvc5 is 2.85× slower (586,105s), and Z3 is
5.1× slower (1,049,534s).

Table 2 shows the number of solved incremental check-sat queries for each
solver in the incremental divisions. Again, Bitwuzla solves the largest number of
queries overall and in the quantifier-free divisions. For the quantified divisions,
Bitwuzla solves 42,770 queries, the second largest number of solved queries after
Z3 (45,373), and more than 3700 more queries than SC22 (39,040). On bench-
marks of the ABVFPLRA division, Bitwuzla significantly outperforms SC22 due
to the occurrence of nested arrays, which were unsupported in SC22.

The artifact of this evaluation is archived and available in the Zenodo open-
access repository at https://zenodo.org/record/7864687.

https://zenodo.org/record/7864687

14 A. Niemetz and M. Preiner

5 Conclusion

Our experimental evaluation shows that Bitwuzla is a state-of-the-art SMT
solver for the quantified and quantifier-free theories of fixed-size bit-vectors,
arrays, floating-point arithmetic, and uninterpreted functions. Bitwuzla has been
extensively tested for robustness and correctness with Murxla [30], an API fuzzer
for SMT solvers, which is an integral part of its development workflow. We have
outlined several avenues for future work throughout the paper. We further plan
to add support for the upcoming SMT-LIB version 3 standard, when finalized.

References

1. Boolector. (2023). https://github.com/boolector/boolector
2. The International Satisfiability Modulo Theories Competition (SMT-COMP)

(2023). https://smt-comp.github.io
3. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS

2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9 24

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep. Department of Computer Science, The University of Iowa (2017). http://smt-
lib.org

5. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2023). http://smt-lib.org

6. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas
by incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, pp. 236–249. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45657-0 18

7. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 - Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

8. Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for floating-point
problems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp.
79–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0 5

9. Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for floating-point
problems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp.
79–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0 5

10. Brummayer, R., Biere, A.: Local two-level and-inverter graph minimization with-
out blowup. In: Proceedings of the 2nd Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science (MEMICS’06), Mikulov, Czechia, Octo-
ber 2006 (2006)

11. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp.
174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-
2 16

12. Brummayer, R., Biere, A.: Lemmas on demand for the extensional theory of arrays.
J. Satisf. Boolean Model. Comput. 6(1–3), 165–201 (2009). https://doi.org/10.
3233/sat190067

https://github.com/boolector/boolector
https://smt-comp.github.io
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
http://smt-lib.org
http://smt-lib.org
http://smt-lib.org
https://doi.org/10.1007/3-540-45657-0_18
https://doi.org/10.1007/3-540-45657-0_18
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.3233/sat190067
https://doi.org/10.3233/sat190067

Bitwuzla 15

13. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In: Draves, R., van
Renesse, R. (eds.) 8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008 (December), pp. 8–10, 2008. San Diego, California,
USA, Proceedings. pp. 209–224. USENIX Association (2008). http://www.usenix.
org/events/osdi08/tech/full papers/cadar/cadar.pdf

14. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 29

15. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

16. Dutertre, B., de Moura, L.: The Yices SMT Solver (2006). https://yices.csl.sri.
com/papers/tool-paper.pdf

17. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

18. Fröhlich, A., Biere, A., Wintersteiger, C.M., Hamadi, Y.: Stochastic local search
for satisfiability modulo theories. In: Bonet, B., Koenig, S. (eds.) Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30 January 2015,
Austin, Texas, USA, pp. 1136–1143. AAAI Press (2015). http://www.aaai.org/ocs/
index.php/AAAI/AAAI15/paper/view/9896

19. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3 52

20. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02658-4 25

21. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: whitebox fuzzing for security
testing. Commun. ACM 55(3), 40–44 (2012). https://doi.org/10.1145/2093548.
2093564

22. Kunz, W., Stoffel, D.: Reasoning in Boolean Networks - Logic Synthesis and Verifi-
cation Using Testing Techniques. Frontiers in Electronic Testing. Springer (1997).
https://doi.org/10.1007/978-1-4757-2572-8

23. Mann, M., et al.: Pono: a flexible and extensible SMT-based model checker. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 461–474. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 22

24. Moura, L.D., Rueß, H.: Lemmas on demand for satisfiability solvers. In: The 5th
International Symposium on the Theory and Applications of Satisfiability Testing,
SAT 2002, Cincinnati, 15 May 2002 (2002)

25. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. arXiv preprint (2020).
https://arxiv.org/abs/2006.01621

27. Niemetz, A., Preiner, M.: Ternary propagation-based local search for more bit-
precise reasoning. In: 2020 Formal Methods in Computer Aided Design, FMCAD
2020, Haifa, Israel, 21–24 September 2020, pp. 214–224. IEEE (2020). https://doi.
org/10.34727/2020/isbn.978-3-85448-042-6 29

http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-642-36742-7_7
https://yices.csl.sri.com/papers/tool-paper.pdf
https://yices.csl.sri.com/papers/tool-paper.pdf
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9896
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9896
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1007/978-1-4757-2572-8
https://doi.org/10.1007/978-3-030-81688-9_22
https://doi.org/10.1007/978-3-540-78800-3_24
https://arxiv.org/abs/2006.01621
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29

16 A. Niemetz and M. Preiner

28. Niemetz, A., Preiner, M.: Bitwuzla (2023). https://github.com/bitwuzla/bitwuzla
29. Niemetz, A., Preiner, M.: Bitwuzla Documentation (2023). https://bitwuzla.

github.io
30. Niemetz, A., Preiner, M., Barrett, C.W.: Murxla: a modular and highly extensible

API fuzzer for SMT solvers. In: Shoham, S., Vizel, Y. (eds.) Computer Aided
Verification - 34th International Conference, CAV 2022, Haifa, Israel, 7–10 August
2022, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13372, pp.
92–106. Springer (2022). https://doi.org/10.1007/978-3-031-13188-2 5

31. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model. Com-
put. 9(1), 53–58 (2014). https://doi.org/10.3233/sat190101

32. Niemetz, A., Preiner, M., Biere, A.: Turbo-charging lemmas on demand with don’t
care reasoning. In: Formal Methods in Computer-Aided Design, FMCAD 2014,
Lausanne, Switzerland, 21–24 October 2014. pp. 179–186. IEEE (2014). https://
doi.org/10.1109/FMCAD.2014.6987611

33. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for bit-precise
reasoning. Formal Methods Syst. Design 51(3), 608–636 (2017). https://doi.org/
10.1007/s10703-017-0295-6

34. Niemetz, A., Preiner, M., Biere, A., Fröhlich, A.: Improving local search for bit-
vector logics in SMT with path propagation. In: Proceedings of the Fourth Inter-
national Workshop on Design and Implementation of Formal Tools and Systems
(DIFTS), affiliated with FMCAD, Austin, pp. 1–10 (2015)

35. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , BtorMC and Boolector 3.0.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 587–
595. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 32

36. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006). https://doi.org/10.1145/1217856.1217859

37. Preiner, M.: Lambdas, Arrays and Quantifiers. Ph.D. thesis, Informatik, Johannes
Kepler University Linz (2017)

38. Preiner, M., Niemetz, A., Biere, A.: Lemmas on demand for lambdas. In: Ganai,
M.K., Sen, A. (eds.) Proceedings of the Second International Workshop on Design
and Implementation of Formal Tools and Systems, Portland, OR, USA, October
19, 2013. CEUR Workshop Proceedings, vol. 1130. CEUR-WS.org (2013). http://
ceur-ws.org/Vol-1130/paper 7.pdf

39. Preiner, M., Niemetz, A., Biere, A.: Better lemmas with lambda extraction. In:
Kaivola, R., Wahl, T. (eds.) Formal Methods in Computer-Aided Design, FMCAD
2015, Austin, Texas, 27–30 September 2015, pp. 128–135. IEEE (2015). https://
doi.org/10.1109/FMCAD.2015.7542262

40. Preiner, M., Niemetz, A., Biere, A.: Counterexample-guided model synthesis. In:
Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 264–280.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 15

41. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2 24

42. Weber, T., Conchon, S., Déharbe, D., Heizmann, M., Niemetz, A., Reger, G.: The
SMT competition 2015–2018. J. Satisf. Boolean Model. Comput. 11(1), 221–259
(2019). https://doi.org/10.3233/SAT190123

https://github.com/bitwuzla/bitwuzla
https://bitwuzla.github.io
https://bitwuzla.github.io
https://doi.org/10.1007/978-3-031-13188-2_5
https://doi.org/10.3233/sat190101
https://doi.org/10.1109/FMCAD.2014.6987611
https://doi.org/10.1109/FMCAD.2014.6987611
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1145/1217856.1217859
http://ceur-ws.org/Vol-1130/paper_7.pdf
http://ceur-ws.org/Vol-1130/paper_7.pdf
https://doi.org/10.1109/FMCAD.2015.7542262
https://doi.org/10.1109/FMCAD.2015.7542262
https://doi.org/10.1007/978-3-662-54577-5_15
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.3233/SAT190123

Bitwuzla 17

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Decision Procedures for Sequence Theories

Artur Jeż1 , Anthony W. Lin2,3 , Oliver Markgraf2(B) ,
and Philipp Rümmer4,5

1 University of Wrocław, Wrocław, Poland
2 TU Kaiserslautern, Kaiserslautern, Germany

markgraf@cs.uni-kl.de
3 Max Planck Institute for Software Systems,

Kaiserslautern, Germany
4 University of Regensburg, Regensburg, Germany

5 Uppsala University, Uppsala, Sweden

Abstract. Sequence theories are an extension of theories of strings with
an infinite alphabet of letters, together with a corresponding alphabet
theory (e.g. linear integer arithmetic). Sequences are natural abstrac-
tions of extendable arrays, which permit a wealth of operations including
append, map, split, and concatenation. In spite of the growing amount
of tool support for theories of sequences by leading SMT-solvers, little
is known about the decidability of sequence theories, which is in stark
contrast to the state of the theories of strings. We show that the decid-
able theory of strings with concatenation and regular constraints can be
extended to the world of sequences over an alphabet theory that forms a
Boolean algebra, while preserving decidability. In particular, decidability
holds when regular constraints are interpreted as parametric automata
(which extend both symbolic automata and variable automata), but fails
when interpreted as register automata (even over the alphabet theory of
equality). When length constraints are added, the problem is Turing-
equivalent to word equations with length (and regular) constraints. Sim-
ilar investigations are conducted in the presence of symbolic transduc-
ers, which naturally model sequence functions like map, split, filter, etc.
We have developed a new sequence solver, SeCo, based on parametric
automata, and show its efficacy on two classes of benchmarks: (i) invari-
ant checking on array-manipulating programs and parameterized sys-
tems, and (ii) benchmarks on symbolic register automata.

1 Introduction

Sequences are an extension of strings, wherein elements might range over an infi-
nite domain (e.g., integers, strings, and even sequences themselves). Sequences

A. Jeż was supported under National Science Centre, Poland project number
2017/26/E/ST6/00191. A. Lin and O. Markgraf were supported by the ERC Consol-
idator Grant 101089343 (LASD). P. Rümmer was supported by the Swedish Research
Council (VR) under grant 2018-04727, the Swedish Foundation for Strategic Research
(SSF) under the project WebSec (Ref. RIT17-0011), and the Wallenberg project
UPDATE.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 18–40, 2023.
https://doi.org/10.1007/978-3-031-37703-7_2

https://doi.org/10.5281/zenodo.7870650
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_2&domain=pdf
http://orcid.org/0000-0003-4321-3105
http://orcid.org/0000-0003-4715-5096
http://orcid.org/0000-0003-4817-4563
http://orcid.org/0000-0002-2733-7098
https://doi.org/10.1007/978-3-031-37703-7_2

Decision Procedures for Sequence Theories 19

are ubiquitous and commonly used data types in modern programming lan-
guages. They come under different names, e.g., Python/Haskell/Prolog lists,
Java ArrayList (and to some extent Streams) and JavaScript arrays. Crucially,
sequences are extendable, and a plethora of operations (including append, map,
split, filter, concatenation, etc.) can naturally be defined and are supported by
built-in library functions in most modern programming languages.

Various techniques in software model checking [30] — including symbolic
execution, invariant generation — require an appropriate SMT theory, to which
verification conditions could be discharged. In the case of programs operating on
sequences, we would consequently require an SMT theory of sequences, for which
leading SMT solvers like Z3 [6,38] and cvc5 [4] already provide some basic sup-
port for over a decade. The basic design of sequence theories, as done in Z3 and
cvc5, as well as in other formalisms like symbolic automata [15], is in fact quite
natural. That is, sequence theories can be thought of as extensions of theories of
strings with an infinite alphabet of letters, together with a corresponding alpha-
bet theory, e.g. Linear Integer Arithmetic (LIA) for reasoning about sequences of
integers. Despite this, very little is known about what is decidable over theories
of sequences.

In the case of finite alphabets, sequence theories become theories over strings,
in which a lot of progress has been made in the last few decades, barring the
long-standing open problem of string equations with length constraints (e.g. see
[26]). For example, it is known that the existential theory of concatenation over
strings with regular constraints is decidable (in fact, PSpace-complete), e.g.,
see [17,29,36,40,43]. Here, a regular constraint takes the form x ∈ L(E), where
E is a regular expression, mandating that the expression E matches the string
represented by x. In addition, several natural syntactic restrictions — including
straight-line, acylicity, and chain-free (e.g. [1,2,5,11,12,26,35]) — have been
identified, with which string constraints remain decidable in the presence of more
complex string functions (e.g. transducers, replace-all, reverse, etc.). In the case
of infinite alphabets, only a handful of results are available. Furia [25] showed
that the existential theory of sequence equations over the alphabet theory of
LIA is decidable by a reduction to the existential theory of concatenation over
strings (over a finite alphabet) without regular constraints. Loosely speaking, a
number (e.g. 4) can be represented as a string in unary (e.g. 1111), and addition
is then simulated by concatenation. Therefore, his decidability result does not
extend to other data domains and alphabet theories. Wang et al. [45] define an
extension of the array property fragment [9] with concatenation. This fragment
imposes strong restrictions, however, on the equations between sequences (here
called finite arrays) that can be considered.

“Regular Constraints” Over Sequences. One answer of what a regular constraint
is over sequences is provided by automata modulo theories. Automata modulo
theories [15,16] are an elegant framework that can be used to capture the notion
of regular constraints over sequences: Fix an alphabet theory T that forms a
Boolean algebra; this is satisfied by virtually all existing SMT theories. In this
framework, one uses formulas in T to capture multiple (possibly infinitely many)

20 A. Jeż et al.

transitions of an automaton. More precisely, between two states in a symbolic
automaton one associates a unary1 formula ϕ(x) ∈ T . For example, q →ϕ q′

with ϕ := x ≡ 0 (mod 2) over LIA corresponds to all transitions q →i q′ with
any even number i. Despite their nice properties, it is known that many sim-
ple languages cannot be captured using symbolic automata; e.g., one cannot
express the language consisting of sequences containing the same even number i
throughout the sequence.

There are essentially two (expressively incomparable) extensions of sym-
bolic automata that address the aforementioned problem: (i) Symbolic Regis-
ter Automata (SRA) [14] and (ii) Parametric Automata (PA) [21,23,24]. The
model SRA was obtained by combining register automata [31] and symbolic
automata. The model PA extends symbolic automata by allowing free variables
(a.k.a. parameters) in the transition guards, i.e., the guard will be of the form
ϕ(x, p̄), for parameters p̄. In an accepting path of PA, a parameter p used in
multiple transitions has to be instantiated with the same value, which enables
comparisons of different positions in an input sequence. For example, we can
assert that only sequences of the form i∗, for an even number i, are accepted by
the PA with a single transition q →ϕ q with ϕ(x, p) := x = p ∧ x ≡ 0 (mod 2)
and q being the start and final state. PA can also be construed as an extension
of both variable automata [27] and symbolic automata. SRA and PA are not
comparable: while parameters can be construed as read-only registers, SRA can
only compare two different positions using equality, while PA may use a general
formula in the theory in such a comparison (e.g., order).

Contributions. The main contribution of this paper is to provide the first decid-
able fragments of a theory of sequences parameterized in the element theory.
In particular, we show how to leverage string solvers to solve theories over
sequences. We believe this is especially interesting, in view of the plethora of
existing string solvers developed in the last 10 years (e.g. see the survey [3]).
This opens up new possibilities for verification tasks to be automated; in partic-
ular, we show how verification conditions for Quicksort, as well as Bakery and
Dijkstra protocols, can be captured in our sequence theory. This formalization
was done in the style of regular model checking [8,34], whose extension to infinite
alphabets has been a longstanding challenge in the field. We also provide a new
(dedicated) sequence solver SeCo We detail our results below.

We first show that the quantifier-free theory of sequences with concatenation
and PA as regular constraints is decidable. Assuming that the theory is solvable
in PSpace (which is reasonable for most SMT theories), we show that our algo-
rithm runs in ExpSpace (i.e., double-exponential time and exponential space).
We also identify conditions on the SMT theory T under which PSpace can be
achieved and as an example show that Linear Real Arithmetic (LRA) satisfies
those conditions. This matches the PSpace-completeness of the theory of strings
with concatenation and regular constraints [18].

We consider three different variants/extensions:

1 This can be generalized to any arity, which has to be set uniformly for the automaton.

Decision Procedures for Sequence Theories 21

(i) Add length constraints. Length constraints (e.g., |x| = |y| for two sequence
variables x,y) are often considered in the context of string theories, but
the decidability of the resulting theory (i.e., strings with concatenation and
length constraints) is still a long-standing open problem [26]. We show that
the case for sequences is Turing-equivalent to the string case.

(ii) Use SRA instead of PA. We show that the resulting theory of sequences is
undecidable, even over the alphabet theory T of equality.

(iii) Add symbolic transducers. Symbolic transducers [15,16] extend finite-state
input/output transducers in the same way that symbolic automata extend
finite-state automata. To obtain decidability, we consider formulas satisfying
the straight-line restriction that was defined over strings theories [35]. We
show that the resulting theory is decidable in 2-ExpTime and is ExpSpace-
hard, if T is solvable in PSpace.

We have implemented the solver SeCo based on our algorithms, and demon-
strated its efficacy on two classes of benchmarks: (i) invariant checking on
array-manipulating programs and parameterized systems, and (ii) benchmarks
on Symbolic Register Automata (SRA) from [14]. For the first benchmarks,
we model as sequence constraints invariants for QuickSort, Dijkstra’s Self-
Stabilizing Protocol [20] and Lamport’s Bakery Algorithm [33]. For (ii), we solve
decision problems for SRA on benchmarks of [14] such as emptiness, equivalence
and inclusion on regular expressions with back-references. We report promising
experimental results: our solver SeCo is up to three orders of magnitude faster
than the SRA solver in [14].

Organization. We provide a motivating example of sequence theories in Sect. 2.
Section 3 contains the syntax and semantics of the sequence constraint language,
as well as some basic algorithmic results. We deal with equational and regular
constraints in Sect. 4. In Sect. 5, we deal with the decidable fragments with equa-
tional constraints, regular constraints, and transducers. We deal with extensions
of these languages with length and SRA constraints in Sect. 6. In Sect. 7 we report
our implementation and experimental results. We conclude in Sect. 8. Missing
details and proofs can be found in the full version.

2 Motivating Example

We illustrate the use of sequence theories in verification using a implementation
of QuickSort [28], shown in Listing 1. The example uses the Java Streams API
and resembles typical implementations of QuickSort in functional languages; the
program uses high-level operations on streams and lists like filter and concatena-
tion. As we show, the data types and operations can naturally be modelled using
a theory of sequences over integer arithmetic, and our results imply decidability
of checks that would be done by a verification system.

The function quickSort processes a given list l by picking the first element
as the pivot p, then creating two sub-lists left, right in which all numbers

22 A. Jeż et al.

/*@
* ensures \forall int i; \result.contains(i) == l.contains(i);
*/

public static List<Integer > quickSort(List<Integer > l) {
if (l.size() < 1) return l;
Integer p = l.get(0);
List<Integer > left = l.stream().filter(i -> i < p)

.collect(Collectors.toList());
List<Integer > right = l.stream().skip(1).filter(i -> i >= p)

.collect(Collectors.toList());
List<Integer > result = quickSort(left);
result.add(p); result.addAll(quickSort(right));
return result;

}

Listing 1. Implementation of QuickSort with Java Streams.

≥p (resp., <p) have been eliminated. The function quickSort is then recur-
sively invoked on the two sub-lists, and the results are finally concatenated and
returned.

We focus on the verification of the post-condition shown in the beginning of
Listing 1: sorting does not change the set of elements contained in the input list.
This is a weaker form of the permutation property of sorting algorithms, and as
such known to be challenging for verification methods (e.g., [42]). Sortedness of
the result list can be stated and verified in a similar way, but is not considered
here. Following the classical design-by-contract approach [37], to verify the par-
tial correctness of the function it is enough to show that the post-condition is
established in any top-level call of the function, assuming that the post-condition
holds for all recursive calls. For the case of non-empty lists, the verification con-
dition, expressed in our logic, is:

⎛
⎝
left = T<l0(l) ∧ right = T≥l0(skip1(l)) ∧
∀i. (i ∈ left ↔ i ∈ left′) ∧ ∀i. (i ∈ right ↔ i ∈ right′) ∧
res = left′ . [l0] . right′

⎞
⎠

→ ∀i. (i ∈ l ↔ i ∈ res)

The variables l, res, left, right, left′, right′ range over sequences of integers,
while i is a bound integer variable. The formula uses several operators that a
useful sequence theory has to provide: (i) l0: the first element of input list l;
(ii) ∈ and 	∈: membership and non-membership of an integer in a list, which
can be expressed using symbolic parametric automata; (iii) skip1, T<l0 , T≥l0 :
sequence-to-sequence functions, which can be represented using symbolic para-
metric transducers; (iv) · . ·: concatenation of several sequences. The formula oth-
erwise is a direct model of the method in Listing 1; the variables left′, right′ are
the results of the recursive calls, and concatenated to obtain the result sequence.

Decision Procedures for Sequence Theories 23

In addition, the formula contains quantifiers. To demonstrate validity of the
formula, it is enough to eliminate the last quantifier ∀i by instantiating with a
Skolem symbol k, and then instantiate the other quantifiers (left of the implica-
tion) with the same k:
⎛
⎝
left = T<l0(l) ∧ right = T≥l0(skip1(l)) ∧
(k ∈ left ↔ k ∈ left′) ∧ (k ∈ right ↔ k ∈ right′) ∧
res = left′ . [l0] . right′

⎞
⎠ → (k ∈ l ↔ k ∈ res)

As one of the results of this paper, we prove that this final formula is in a
decidable logic. The formula can be rewritten to a disjunction of straight-line
formulas, and shown to be valid using the decision procedure presented in Sect. 5.

3 Models

In this section, we will define our sequence constraint language, and prove some
basic results regarding various constraints in the language. The definition is a
natural generalization of string constraints (e.g. see [12,17,26,29,35]) by employ-
ing an alphabet theory (a.k.a. element theory), as is done in symbolic automata
and automata modulo theories [15,16,44].

For simplicity, our definitions will follow a model-theoretic approach. Let σ
be a vocabulary. We fix a σ-structure S = (D; I), where D can be a finite or
an infinite set (i.e., the universe) and I maps each function/relation symbol in
σ to a function/relation over D. The elements of our sequences will range over
D. We assume that the quantifier-free theory TS over S (including equality)
is decidable. Examples of such TS are abound from SMT, e.g., LRA and LIA.
We write T instead of TS, when S is clear. Our quantifier-free formula will use
uninterpreted T -constants a, b, c, . . ., and may also use variables x, y, z, (The
distinction between uninterpreted constants and variables is made only for the
purpose of presentation of sequence constraints, as will be clear shortly.) We use
C to denote the set of all uninterpreted T -constants. A formula ϕ is satisfiable if
there is an assignment that maps the uninterpreted constants and variables to
concrete values in D such that the formula becomes true in S.

Next, we define how we lift T to sequence constraints, using T as the alphabet
theory (a.k.a. element theory). As in the case of strings (over a finite alphabet),
we use standard notation like D∗ to refer to the set of all sequences over D. By
default, elements of D∗ are written as standard in mathematics, e.g., 7, 8, 100,
when D = Z. Sometimes we will disambiguate them by using brackets, e.g.,
(7, 8, 100) or [7, 8, 100]. We will use the symbol s (with/without subscript) to
refer to concrete sequences (i.e., a member of D∗). We will use x,y, z to refer
to T -sequence variables. Let V denote the set of all T -sequence variables, and
Γ := C ∪ D. We will define constraint languages syntactically at the beginning,
and will instantiate them to specific sequence operations. The theory T ∗ of T -
sequences consists of the following constraints:

ϕ ::= R(x1, . . . ,xr) | ϕ ∧ ϕ

24 A. Jeż et al.

where R is an r-ary relation symbol. In our definition of each atom R below, we
will specify if an assignment μ, which maps each xi to a T -sequence and each
uninterpreted constant to a T -element, satisfies R. If μ satisfies all atoms, we
say that μ is a solution and the satisfiability problem is to decide whether there
is a solution for a given ϕ.

A few remarks about the missing boolean operators in the constraint lan-
guage above are in order. Disjunctions can be handled easily using the DPLL(T)
framework (e.g. see [32]), so we have kept our theory conjunctive. As in the case
of strings, negations are usually handled separately because they can sometimes
(but not in all cases) be eliminated while preserving decidability.

Equational Constraints. A T -sequence equation is of the form

L = R

where each of L and R is a concatenation of concrete T -elements, uninterpreted
constants, and T -sequence variables. That is, if Θ := Γ ∪ V, then L,R ∈ Θ∗.

For example, in the equation

0.1.x = x.0.1

the set of all solutions is of the form x �→ (01)∗. To make this more formal, we
extend each assignment μ to a homomorphism on Θ∗. We write μ |= L = R if
μ(L) = μ(R). Notice that this definition is just direct extension of that of word
equations (e.g. see [17]), i.e., when the domain D is finite.

In most cases the inequality constraints L 	= R can be reduced to equality in
our case this requires also element constraints, described below.

Element Constraints. We allow T -formulas to constrain the uninterpreted con-
stants. More precisely, given a T -sentence (i.e., no free variables) ϕ that uses C
as uninterpreted constants, we obtain a proposition P (i.e., 0-ary relation) that
μ |= P iff T |=μ ϕ.

Negations in the equational constraints can be removed just like in the case of
strings, i.e., by means of additional variables/constants and element constraints.
For example, x 	= y can be replaced by (x = zax′ ∧ y = zby′ ∧ a 	= b) ∨ x =
yaz∨xaz = y. Notice that a 	= b is a T -formula because we assume the equality
symbol in T .

Regular Constraints. Over strings, regular constraints are simply unary con-
straints U(x), where U is an automaton. The interpretation is x is in the language
of U . We define an analogue of regular constraints over sequences using paramet-
ric automata [21,23,24], which generalize both symbolic automata [15,16] and
variable automata [27].

A parametric automaton (PA) over T is of the form A = (X , Q,Δ, q0, F),
where X is a finite set of parameters, Q is a finite set of control states, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states, and Δ⊆finQ × T (curr,X) × Q.
Here, parameters are simply uninterpreted T -constants, i.e., X ⊆ C. Formulas

Decision Procedures for Sequence Theories 25

that appear in transitions in Δ will be referred to as guards, since they restrict
which transitions are enabled at a given state. Note that curr is an uninterpreted
constant that refers to the “current” position in the sequence. The semantics is
quite simply defined: a sequence (d1, d2, . . . , dn) is in the language of A under
the assignment of parameters μ, written as (d1, . . . , dn) ∈ Lμ(A), when there is
a sequence of Δ-transitions

(q0, ϕ1(curr,X), q1), (q1, ϕ2(curr,X), q2), . . . , (qn−1, ϕn(curr,X), qn),

such that qn ∈ F and T |= ϕi(di, μ(X)). Finally, for a regular constraint A(x) is
satisfied by μ, when μ(x) ∈ Lμ(A).

Note, that it is possible to complement a PA A, one has to be careful with the
semantics: we treat A as a symbolic automaton, which are closed under boolean
operations [15]. So we are looking for μ such that μ(x) ∈ Lμ(x). What we cannot
do using the complementation, is a universal quantification over the parameters;
note that already theory of strings with universal and existential quantifiers is
undecidable.

We state next a lemma showing that PAs using only “local” parameters,
together with equational constraints, can encode the constraint language that
we have defined so far.

Lemma 1. Satisfiability of sequence constraints with equation, element, and reg-
ular constraints can be reduced in polynomial-time to satisfiability of sequence
constraints with equation and regular constraints (i.e., without element con-
straints). Furthermore, it can be assumed that no two regular constraints share
any parameter.

Proposition 1. Assume that T is solvable in NP (resp. PSpace). Then, decid-
ing nonemptiness of a parametric automaton over T is in NP (resp. PSpace).

The proof is standard (e.g. see [21,23,24]), and only sketched here. The algorithm
first nondeterministically guesses a simple path in the automaton A from an
initial state q0 to some final state qF . Let us say that the guards appearing
in this path are ψ1(curr,X), . . . , ψk(curr,X). We need to check if this path is
realizable by checking T -satisfiability of

∃X .

k∧
i=1

∃curr. (ψi(curr,X)).

It is easy to see that this is an NP (resp. NPSPACE = PSpace) procedure.

Parametric Transducers. We define a suitable extension of symbolic transducers
over parameters following the definition from Veanes et al. [44]. A transducer
constraint is of the form y = T (x), for a parametric transducer T . A parametric
transducer over T is of the form T = (X , Q,Δ, q0, F), where X , Q, q0, F are
just like in parametric automata. Unlike parametric automata, Δ is a finite set
of tuples of the form (p, (ϕ,w), q), where (p, ϕ, q) is a standard transition in

26 A. Jeż et al.

parametric automaton, and w is a (possibly empty) sequence of T -terms over
variable curr and constants X , e.g., w = (curr+7, curr+2). One can think of w
as the output produced by the transition. Given an assignment μ of parameters
and the sequence variables, the constraint y = T (x) is satisfied when there is a
sequence of Δ-transitions

(q0, ϕ1(curr,X),w1, q1), (q1, ϕ2(curr,X),w2, q2), . . . (qn−1, ϕn(curr,X),wn, qn),

such that qn ∈ F and T |= ϕi(di, μ(X)), where μ(x) = (d1, . . . , dn), and finally

μ(y) = μ1(w1) · · · μn(wn)

where μi is μ but maps curr to di. The definition assumes that μi is extended
to terms and concatenation thereof by homomorphism, e.g., in LRA, if w1 =
(curr+ 7, curr+ 2) and μ1 maps curr to 10, then w1 will get mapped to 17, 12.
Given a set S ⊆ D∗ and an assignment μ (mapping the constants to D), we define
the pre-image T −1

μ (S) of S under T with respect to μ as the set of sequences
w ∈ D∗ such that w′ = T (w) holds with respect to μ.

4 Solving Equational and Regular Constraints

Here we present results on solving equational constraints, together with regular
constraints, by a reduction to the string case, for which a wealth of results are
already available. In general, this reduction causes an exponential blow-up in the
resulting string constraint, which we show to be unavoidable in general. That
said, we also provide a more refined analysis in the case when the underlying
theory is LRA, where we can avoid this exponential blow-up.

Prelude: The Case of Strings. We start with some known results about the
case of strings. The satisfiability of word equations with regular constraints is
PSpace-complete [18,19]. This upper bound can be extended to full quantifier-
free theory [10]. When no regular constraints are given, the problem is only
known to be NP-hard, and it is widely believed to be in NP. In the absence of
regular constraints, without loss of generality Γ can be assumed to contain only
letters from the equations; this is not the case in presence of regular constraints.
The algorithm solving word equations [19] does not need an explicit access to
Γ : it is enough to know whether there is a letter which labels a given set of
transitions in the NFAs used in the regular constraints. In principle, there could
be exponentially many different (i.e., inducing different transitions in the NFAs)
letters. When oracle access to such alphabet is provided, the satisfiability can still
be decided in PSpace: while not explicitly claimed, this is exactly the scenario
in [19, Sect. 5.2]

Other constraints are also considered for word equations; perhaps the most
widely known are the length constraints, which are of the form:

∑
x∈V ax ·|x| ≤ c,

where {ax}x∈V , c are integer constants and |x| denotes the length |μ(x)|, with an
obvious semantics. It is an open problem, whether word equations with length
constraints are decidable, see [26].

Decision Procedures for Sequence Theories 27

Reduction to Word Equations. We assume Lemma 1, i.e. that the parame-
ters used for different automata-based constraints are pairwise different. In par-
ticular, when looking for a satisfying assignment μ we can first fix assignment
for X and then try to extend it to V. To avoid confusion, we call this partial
assignment π : X → D.

Consider a set Φ of all atoms in all guards in the regular constraints together
with the set of formulas {x = c} over all constants c ∈ D that appear in all equa-
tional constraints and the negations of both types of formulas. Fix an assignment
π : X → D. The type typeπ(a) of a (under assignment π) is the set of formulas
in Φ satisfied by a, i.e. {ϕ ∈ Φ : ϕ(π(X), a) holds}. Clearly there are at most
exponentially many different types (for a fixed π). A type t is realizable (for π)
when t = typeπ(a) and it is realized by a.

If the constraints are satisfiable (for some parameters assignment π) then they
are satisfiable over a subset Dπ⊆finD, in the sense that we assign uniterpreted
constants elements from Dπ and T -sequence variables elements of D∗

π, where Dπ

is created by taking (arbitrarily) one element of a realizable type. Note that for
each constant c in the equational constraints there is a formula “x = c” in Φ, in
particular typeπ(c) is realizable (only by c) and so c ∈ Dπ.

Lemma 2. Given a system of constraints and a parameter assignment π let
Dπ ⊆ D be obtained by choosing (arbitrarily) for each realizable type a single
element of this type. Then the set of constraints is satisfiable (for π) over D if
and only if they are satisfiable (for π) over Dπ. To be more precise, there is a
letter-to-letter homomorphism ψ : D∗ → D∗

π such that if μ is a solution of a
system of constraints then ψ ◦ μ is also a solution.

The proof can be found in the full version, its intuition is clear: we map each
letter a ∈ D to the unique letter in Dπ of the same type.

Once the assignment is fixed (to π) and domain restricted to a finite set (Dπ),
the equational and regular constraints reduce to word equations with regular
constraints: treat Dπ as a finite alphabet, for a parametric automaton A =
(X , Q,Δ, q0, F) create an NFA A′ = (Dπ, Q,Δ′, q0, F), i.e. over the alphabet Dπ,
with the same set of states Q, same starting state q0 and accepting states F and
the relation defined as (q, a, q′) ∈ Δ′ if and only if there is (q, ϕ(curr,X), q′) ∈ Δ
such that ϕ(a, π(X)) holds, i.e. we can move from q to q′ by a in A′ if and only if
we can make this move in A under assignment π. Clearly, from the construction

Lemma 3. Given an assignment of parameters π let Dμ be a set from Lemma 2,
A be a parametric automaton and A′ the automaton as constructed above. Then

Lπ(A) ∩ D∗
π = L(A′) .

We can rewrite the parametric automata-constraints with regular constraints
and treat equational constraints as word equations (over the finite alphabet Dπ).
From Lemma 2 and Lemma 3 it follows that the original constraints have a
solution for assignment π if and only if the constructed system of constraints
has a solution. Therefore once the appropriate assignment π is fixed, the validity

28 A. Jeż et al.

of constraints can be verified [19]. It turns out that we do not need the actual
π, it is enough to know which types are realisable for it, which translates to an
exponential-size formula. We will use letter τ to denote subset of Φ; the idea is
that τ = {typeπ(a) : a ∈ D} ⊆ 2Φ and if different π, π′ give the same sets of
realizable types, then they both yield a satisfying assignment or both not. Hence
it is enough to focus on τ and not on actual π.

Lemma 4. Given a system of equational and regular constraints we can non-
deterministically reduce them to a formula of a form

∃t∈τat ∈ D.∃X ∈ D+.
∧
t∈τ

∧
ϕ∈t

ϕ(X , at) , (1)

where τ ⊆ 2Φ is of at most exponential size, and a system of word equations with
regular constraints of linear size and over an |τ |-size alphabet, using auxiliary
O(n|τ |) space. The solution of the latter word equations (for which also (1) holds)
are solutions of the original system, by appropriate identifications of symbols.

Proof. We guess the set τ of types of the assignment of parameters π, i.e. τ =
{typeπ(a) : a ∈ D} such that there is an assignment μ extending π; note that
as Φ has linearly many atoms and τ ⊆ 2Φ, then |τ | may be of exponential size,
in general. The (1) verifies the guess: we validate whether there are values of X
such that for each type t ∈ τ there is a value a such that typeπ(a) = t.

Let Dπ be a set having one symbol per every type in τ , as in Lemma 2; note
that this includes all constants in the equational constraints. The algorithm will
not have access to particular values, instead we store each t ∈ τ , say as a bitvector
describing which atoms in Φ this letter satisfies. In particular, |Dπ| = |τ | and it
is at most exponential. In the following we will consider only solutions over Dπ.

For each a ∈ Dπ we can validate, which transitions in A it can take: the
transition is labelled by a guard which is a conjunction of atoms from Φ and
either each such atom is in typeπ(a) or not. Hence we can treat A as an NFA for
Dπ. We do not need to construct nor store it, we can use A: when we want to
make a transition by ϕ(X , a) we look up, whether each atom of ϕ is in typeπ(a)
or not. Similarly, the constraint A(x) is restricted to x ∈ Lπ(A) and for x ∈ D∗

π

this is a usual regular constraint.
We treat equational constraints as word equations over alphabet Dπ.
Concerning the correctness of the reduction: if the system of word equations

(with regular constraints) is satisfiable and the formula (1) is also satisfiable,
then there is a satisfying assignment μ over Dπ and D∗

π in particular, there is an
assignment of parameters for which there are letters of the given types (note that
in principle it could be that μ induces more types, i.e. there is a value a such that
typeμ(a) /∈ τ and so it is not represented in Dπ, but this is fine: enlarging the
alphabet cannot invalidate a solution), i.e. the transitions for at in the automata
after the reduction are the same as in the corresponding parametric automata
for the assignment π, this is guaranteed by the satisfiability of (1) and the way
we construct the instance, see Lemma 3.

Decision Procedures for Sequence Theories 29

On the other hand, when there is a solution of the input constraints, there is
one for some assignment of parameters π. Hence, by Lemma 2, there is a solution
over Dπ. The algorithm guesses τ = {typeπ(a) : a ∈ D} and (1) is true for it.
Then by Lemma 2 there is a solution over Dπ as constructed in the reduction
and by Lemma 3 the regular constraints define the same subsets of D∗

π both
when interpreted as parametric automata and NFAs. ��

Theorem 1. If theory T is in PSpace then sequence constraints are in
ExpSpace.

If τ is polynomial size and the formula (1) can be verified in PSpace, then
sequence constraints can be verified in PSpace.

One of the difficulties in deciding sequence constraints using the word equa-
tions approach is the size of set of realizable types τ , which could be exponential.
For some concrete theories it is known to be smaller and thus a lower upper
bound on complexity follows. For instance, it is easy to show that for LRA there
are linearly many realizable types, which implies a PSpace upper bound.

Corollary 1. Sequence constraints for Linear Real Arithmetic are in PSpace.

In general, the ExpSpace upper bound from Theorem 1 cannot be improved,
as even non-emptiness of intersection of parametric automata is ExpSpace-
complete for some theories decidable in PSpace. This is in contrast to the case
of symbolic automata, for which the non-emptiness of intersection (for a theory
T decidable in PSpace) is in PSpace. This shows the importance of parameters
in our lower bound proof.

Theorem 2. There are theories with existential fragment decidable in PSpace
and whose non-emptiness of intersection of parametric automata is ExpSpace-
complete.

When no regular constraints are allowed, we can solve the equational and
element constraints in PSpace (note that we do not use Lemma 1).

Theorem 3. For a theory T decidable in PSpace, the element and equational
constraints (so no regular constraints) can be decided in PSpace.

5 Algorithm for Straight-Line Formulas

It is known that adding finite transducers into word equations results in an
undecidable model (e.g. see [35]). Therefore, we extend the straight-line restric-
tion [12,35] to sequences, and show that it suffices to recover decidability for
equational constraints, together with regular and transducer constraints. In fact,
we will show that deciding problems in the straight-line fragment is solvable in
doubly exponential time and is ExpSpace-hard, if T is solvable in PSpace. It
has been observed that the straight-line fragment for the theory of strings already
covers many interesting benchmarks [12,35], and similarly many properties of
sequence-manipulating programs can be proven using the fragment, including
the QuickSort example from Sect. 2 and other benchmarks shown in Sect. 7.

30 A. Jeż et al.

The Straight-Line Fragment SL. We start by defining recognizable formu-
las over sequences, followed by the syntactic and semantic restrictions on our
constraint language. This definition follows closely the definition of recogniz-
able relations over finite alphabets, except that we replace finite automata with
parametric automata.

Definition 1 (Recognizable formula). A formula R(x1, . . . ,xr) is recogniz-
able if it is equivalent to a positive Boolean combination of regular constraints.

Note that this is simply a generalization of regular constraints to multiple vari-
ables, i.e., 1-ary recognizable formula can be turned into a regular constraint,
which is closed under intersection and union.

To define the straight-line fragment, we use the approach of [12]; that is,
the fragment is defined in terms of “feasibility of a symbolic execution”. Here,
a symbolic execution is just a sequence of assignments and assertions, whereas
the feasibility problem amounts to deciding whether there are concrete values
of the variables so that the symbolic execution can be run and none of the
assertions are violated. We now make this intuition formal. A symbolic execution
is syntactically generated by the following grammar:

S ::= y := f(x1, . . . ,xk,X) | assert(R(x1, . . . ,xr)) | assert(ϕ) | S;S (2)

where f : (D∗)k × D|X | → D is a function, R are recognizable formulas, and ϕ
are element constraints.

The symbolic execution S can be turned into a sequence constraint as follows.
Firstly, we can turn S into the standard Static Single Assignment (SSA) form
by means of introducing new variables on the left-hand-side of an assignment.
For example, y := f(x);y := g(z) becomes y := f(x1);y′ := g(z). Then, in the
resulting constraint, each variable appears at most once on the left-hand-side
of an assignment. That way, we can simply replace each assignment symbol :=
with an equality symbol =. We then treat each sequential composition as the
conjunction operator ∧ and assertion as a conjunct. Note that individual asser-
tions are already sequence constraints. Next, we define how an interpretation μ
satisfies the constraint y = f(x1, . . . ,xr,X):

μ |= y = f(x1, . . . ,xr,X) iff μ(y) = f(μ(x1), . . . , μ(xr), μ(X)).

Note that ’=’ on the l.h.s. is syntactic, while the ’=’ on the r.h.s. is in the
metalanguage. The definition of the semantics of the language is now inherited
from Sect. 3.

In addition to the syntactic restrictions, we also need a semantic condition:
in our language, we only permit functions f such that the pre-image of each
regular constraint under f is effectively a recognizable formula:

(RegInvRel) A function f is permitted if for each regular constraint A(y), it is
possible to compute a recognizable formula that is equivalent to the formula
∃y : A(y) ∧ y = f(x1, . . . ,xr,X).

Decision Procedures for Sequence Theories 31

Two functions satisfying (RegInvRel) are the concatenation function x := y.z
(here y could be the same as z) and parametric transducers y := T (x). We will
only use these two functions in the paper, but the result is generalizable to other
functions.

Proposition 2. Given a regular constraint A(y) and a constraint y = x.z, we
can compute a recognizable formula ψ(x, z) equivalent to ∃y : A(y) ∧ y = x.z.
Furthermore, this can be achieved in polynomial time.

The proof of this proposition is exactly the same as in the case of strings, e.g.,
see [12,35].

Proposition 3. Given a regular constraint A(y) and a parametric transducer
constraint y = T (x), we can compute a regular constraint A′(x) that is equivalent
to ∃y : A(y) ∧ y = T (x). This can be achieved in exponential time.

The construction in Proposition 3 is essentially the same as the pre-image com-
putation of a symbolic automaton under a symbolic transducer [44]. The com-
plexity is exponential in the maximum number of output symbols of a single
transition (i.e. the maximum length of w in the transducer), which is in practice
a small natural number.

The following is our main theorem on the SL fragment with equational con-
straints, regular constraints, and transducers.

Theorem 4. If T is solvable in PSpace, then the SL fragment with concatena-
tion and parametric transducers over T is in 2-ExpTime and is ExpSpace-hard.

Proof. We give a decision procedure. We assume that S is already in SSA (i.e.
each variable appears at most once on the left-hand side). Let us assume that S
is of the form S′;y := f(x1, ...xr), for some symbolic execution S′. Without loss
of generality, we may assume that each recognizable constraint is of the form
A(x). This is no limitation: (1) since each R in the assertion is a recognizable
formula, we simply have to “guess” one of the implicants for each R, and (2)
assert(ψ1 ∧ ψ2) is equivalent to assert(ψ1);assert(ψ2).

Assume now that {A1(y), . . . ,Am(y)} are all the regular constraints on y in
S. By our assumption, it is possible to compute a recognizable formula equivalent
to

ψ(x1, . . . ,xr) := ∃y :
m∧

i=1

Ai(y) ∧ y = f(x1, . . . ,xr).

There are two ways to see this. The first way is that regular constraints are closed
under intersection. This is in general computationally quite expensive because
of a product automata construction before applying the pre-image computation.
A better way to do this is to observe that ψ is equivalent to the conjunction of
ψi’s over i = 1, . . . ,m, where

ψi := ∃y : Ai(y) ∧ y = f(x1, . . . ,xr).

32 A. Jeż et al.

q0start

curr �= k

0

q0start q1

�

curr = k

�

1

Fig. 1. A0 accepts all words not containing k and A1 accepts all words containing k.

By our semantic condition, we can compute recognizable formulas ψ′
i, . . . , ψ

′
m

equivalent to ψ1, . . . , ψm respectively. Therefore, we simply replace S by

S′;assert(ψ′
1); · · · ;assert(ψ′

m),

in which every occurrence of y has been completely eliminated. Applying the
above variable elimination iteratively, we obtain a conjunction of regular con-
straints. We now end up with a conjunction of regular constraints and element
constraints, which as we saw from Sect. 4 is decidable. ��

Example 1. We consider the example from Sect. 2 where a weaker form of the
permutation property is shown for QuickSort. The formula that has to be proven
is a disjunction of straight-line formulas and in the following we execute our
procedure only on one disjunct without redundant formulas:

assert(A0(left′));assert(A0(right′)); res = left′ . [l0] . right′;assert(A1(res))

We model L(A1) as the language which accepts all words which contain
one letter equal to k and L(A0) as the language which accepts only words not
containing k, where k is an uninterpreted constant, so a single element. See
Fig. 1. We begin by removing the operation res = left′ . [l0] . right′. The product
automaton for all assertions that contain res is just A1. Hence, we can remove the
assertion assert(A1(res)). The concatenation function . satisfies RegInvRel
and the pre-image g can be represented by

∨
0≤i,j≤1

Aq0,{qi}
1 (left′) ∧ Aqi,{qj}

1 ([l0]) ∧ Aqj ,{q1}
1 (right′),

where Ap,F ′
i is Ai with start state set to p and finals to F ′.

In the next step, the assertion g is added to the program and all assertions
containing res and the concatenation function are removed.

assert(A0(left′));assert(A(right′));assert(g(left′, [l0], right′))

From here, we pick a tuple from g, lets say i = j = 1, and obtain

assert(A0(left′));assert(A0(right′));assert(left′ ∈ Aq0,{q1}
1);

assert([l0] ∈ Aq1,{q1}
1);assert(right′ ∈ Aq1,{q1}

1)

Decision Procedures for Sequence Theories 33

Finally, the product automata A0 × Aq0,{q1}
1 and A0 × Aq0,{q1}

1 are com-
puted for the variables left′, right′ and a non-emptiness check over the prod-
uct automata and the automaton for [l0] is done. The procedure will find no
combination of paths for each automaton which can be satisfied, since left′

is forced to accept no words containing k by A0 and only accepts by read-
ing a k from Aq0,{q1}

1 . Next, the procedure needs to exhaust all tuples from
(Aq0,{qi}

1 ,Aqi,{qj}
1 ,Aqj ,{q1}

1)0≤i,j≤1 before it is proven that this disjunct is unsat-
isfiable.

6 Extensions and Undecidability

Length Constraints. We consider the extension of our model by allowing
length-constraints on the sequence variables: for each sequence variable x we
consider the associated length variable �x, let the set of length variables be
L = {�x : x ∈ V}, we extend μ to L, it assigns natural numbers to them. The
length constraints are of the form

∑
x ax�x?0, where ? ∈ {<,≤,=, 	=,≥, >} and

each ax is an integer constant, i.e., linear arithmetic formulas on the length-
variables. The semantics is natural: we require that |μ(x)| = μ(�x) (the assigned
values are the true lengths of sequences) and that μ(L) satisfies each length
constraint.

There is, however, another possible extensions: if we the theory TS is the
Presburger arithmetic, then the parameter automata could use the values �x.
We first deal with a more generic, though restricted case, when this is not
allowed: then all reductions from Sect. 4 generalize and we can reduce to the
word equations with regular and length constraints. However, the decidability
status of this problem is unknown. When we consider Presburger arithmetic and
allow the automata to employ the length variables, then it turns out that we
can interpret the formula (1) as a collection of length constraints, and again we
reduce to word equations with regular and length constraints.

Automata Oblivious of Lengths. We first consider the setting, in which the length
variables L can only be used in length constraints. It is routine to verify that
the reduction from Sect. 4 generalize to the case of length constraints: it is pos-
sible to first fix μ for parameters, calling it again π. Then Lemma 2 shows
that each solution μ can be mapped by a letter-to-letter homomorphism to a
finite alphabet Dπ, and this mapping preserves the satisfiability/unsatisfiability
of length constraints, so Lemma 2 still holds when also length constraints are
allowed. Similarly, Lemma 3 is also not affected by the length constraints and
finally Lemma 4 deals with regular and equational constraints, ignoring the other
possible constraints and the length of substitutions for variables are the same.
Hence it holds also when the length constraints are allowed then the resulting
word equations use regular and length constraints.

Unfortunately, the decidability of word equations with linear length con-
straints (even without regular constraints) is a notorious open problem. Thus
instead of decidability, we get Turing-equivalent problems.

34 A. Jeż et al.

Theorem 5. Deciding regular, equational and length constraints for T -
sequences of a decidable theory T is Turing-equivalent to word equations with
regular and length constraints.

Automata Aware of the Sequence Lengths. We now consider the case when
the underlying theory TS is the Presburger arithmetic, i.e. S is the natural
numbers and we can use addition, constants 0, 1 and comparisons (and vari-
ables). The additional functionality of the parametric automaton A is that
Δ⊆finQ × T (curr,X ,L) × Q, i.e. the guards can also use the length variables;
the semantics is extended in the natural way.

Then the type typeπ(a) of a ∈ N now depends on μ values on X and L, hence
we denote by π the restriction of μ to X ∪ L. Then Lemma 2, 3 still hold, when
we fix π. Similarly, Lemma 4 holds, but the analogue of (1) now uses also the
length variables, which are also used in the length constraints. Such a formula
can be seen as a collection of length constraints for original length variables L
as well as length variables X ∪ {at : t ∈ τ}. Hence we validate this formula as
part of the word equations with length constraints. Note that at has two roles:
as a letter in Dπ and as a length variable. However, the connection is encoded
in the formula from the reduction (analogue of (1)) and we can use two different
sets of symbols.

Theorem 6. Deciding conjunction of regular, equational and length constraints
for sequences of natural numbers with Presburger arithmetic, where the regular
constraints can use length variables, is Turing-equivalent to word equations with
regular and (up to exponentially many) length constraints.

Undecidability of Register Automata Constraints. One could use more
powerful automata for regular constraints; one such popular model are register
automata; informally, such automaton has k registers r1, . . . , rk and its transi-
tion depends on state and a value of formula using the registers and curr: the
read value [23]; note that the registers can be updated: to curr or to one of
register’s values; this is specified in the transition. In “classic” register automata
guards can only use equality and inequality between registers and curr; in SRA
model more powerful atoms are allowed. We show that sequence constraints and
register automata constraints (which use quantifier-free formulas with equality
and inequality as only atoms, i.e. do not employ the SRA extension) lead to
undecidability (over infinite domain D).

Theorem 7. Satisfiability of equational constraints and register automata con-
straints, which use equality and inequality only, over infinite domain, is unde-
cidable.

7 Implementations, Optimizations and Benchmarks

Implementation. We have implemented our decision procedure for problems
in the constraint language SL for the theory of sequences in a new tool SeCo

Decision Procedures for Sequence Theories 35

(Sequence Constraint Solver) on top of the SMT solver Princess [41]. We extend a
publicly available library for symbolic automata and transducers [13] to paramet-
ric automata and transducers by connecting them to the uninterpreted constants
in our theory of sequences. Our tool supports symbolic transducers, concatena-
tion of sequences and reversing of sequences. Any additional function which
satisfies RegInvRel such as a replace function which replaces only the first and
leftmost longest match can be added in the future.

Our algorithm is an adaption of the tool OSTRICH [12] and closely follows
the proof of Theorem 4. To summarize the procedure, a depth-first search is
employed to remove all functions in the given input and splitting on the pre-
images of those functions. When removing a function, new assertions are added
to the pre-image constraints. After all functions have been removed and only
assertions are left a nonemptiness check is called over all parametric automata
which encoded the assertions. If the check is successful a corresponding model
can be constructed, otherwise the procedure computes a conflict set and back-
jumps to the last split in the depth search.2

Benchmarks. We have performed experiments on two benchmark suites. The
first one concerns itself with the verification of properties for programs manipu-
lating sequences. The second benchmark suite compares our tool against an algo-
rithm using symbolic register automata [13] on decision procedures of regular
expressions with back-references such as emptiness, equivalence and inclusion.

Both benchmark suites require universal quantification over the parameters;
there are existing methods for eliminating these universal quantifiers, one such
class are the semantically deterministic (SD) [22] PAs; despite its name, being
SD is algorithmically checkable. Most of considered the PAs are SD, in particular
all in benchmark suite 2.

Experiments were conducted on an AMD Ryzen 5 1600 Six-Core CPU with
16 GB of RAM running on Windows 10. The results for second benchmark suite
is shown Table 1. The timeout for all benchmarks is 300 s.

In the first benchmarks suite we are looking to verify a weaker form of the
permutation property of sorting as shown in Sect. 2. Furthermore, we verify
properties of two self-stabilizing algorithms for mutual exclusion on parameter-
ized systems. The first one is Lamport’s bakery algorithm [33], for which we
proved that the algorithm ensures mutual exclusion. The system is modelled in
the style of regular model checking [8], with system states represented as words,
here over an infinite alphabet: the character representing a thread stores the
thread control state, a Boolean flag, and an integer as the number drawn by
the thread. The system transitions are modelled as parametric transducers, and
invariants as parametric automata. The second algorithm is known as Dijkstra’s
Self-Stabilizing Protocol [20], in which system states are encoded as sequences
of integers, and in which we verify that the set of states in which exactly one
processor is privileged forms an invariant. The mentioned benchmarks require
2 For a more detailed write-up of the depth-first search algorithm see OSTRICH [12]

Algorithm 1.

36 A. Jeż et al.

Table 1. Benchmark suite 2. SRA is used for the algorithm for symbolic register
automata and SEQ for our tool. The symbol ∅ indicates the column where emptiness
was checked, ≡ indicates self equivalence and ⊆ inclusion of languages.

L1 L2 SRA∅(L1) SeCo∅(L1) SRA≡(L1) SeCo≡(L1) SRA⊆(L2,L1) SeCo⊆(L2,L1)

Pr-C2 Pr-CL2 0.03 s 0.65 s 0.43 s 0.10 s 4.7 s 0.10 s
Pr-C3 Pr-CL3 0.58 s 0.70 s 10.73 s 0.12 s 36.90 s 0.10 s
Pr-C4 Pr-CL4 18.40 s 0.77 s 98.38 s 0.14 s – 0.10 s
Pr-C6 Pr-CL6 – 1.00 s – 0.12 s – 0.10 s
Pr-CL2 Pr-C2 0.33 s 0.30 s 1.03 s 0.13 s 0.52 s 0.76 s
Pr-CL3 Pr-C3 14.04 s 0.38 s 20.44 s 0.13 s 10.52 s 0.76 s
Pr-CL4 Pr-C4 – 0.41 s 0.43 s 0.12 s – 0.82 s
Pr-CL6 Pr-C6 – 0.62 s 0.43 s 0.12 s – 1.27 s
IP-2 IP-3 0.11 s 1.53 s 0.63 s 0.14 s 2.43 s 0.15 s
IP-3 IP-4 1.83 s 1.45 s 4.66 s 0.14 s 28.60 s 0.17 s
IP-4 IP-6 30.33 s 1.75 s 80.03 s 0.14 s – 0.17 s
IP-6 IP-9 – 1.60 s 0.43 s 0.13 s – 0.17 s

universal quantification, but similar to the motivating example from Sect. 2 one
can eliminate quantifiers by Skolemization and instantiation which was done by
hand.

The second benchmark suite consists of three different types of benchmarks,
summarized in Table 1. The benchmark PR-Cn describes a regular expression
for matching products which have the same code number of length n, and PR-
CLn matches not only the code number but also the lot number. The last type
of benchmark is IP-n, which matches n positions of 2 IP addresses. The bench-
marks are taken from the regular-expression crowd-sourcing website RegExLib
[39] and are also used in experiments for symbolic register automata [14] which
we also compare our results against. To apply our decision procedure to the
benchmarks, we encode each of the benchmarks as a parametric automaton,
using parameters for the (bounded-size) back-references. The task in the exper-
iments is to check emptiness, language equivalence, and language inclusion for
the same combinations of the benchmarks as considered in [14].

Results of the Experiments. All properties can be encoded by parametric
automata with very few states and parameters. As a result the properties for
each program can be verified in < 2.6 s, in detail the property for Dijkstra’s algo-
rithm was proven in 0.6 s, QuickSort in 1.1 s and Lamport’s bakery algorithm in
2.5 s.

The results for the second benchmark suite are shown in Table 1. The algo-
rithm for symbolic register automata times out on 11 of the 36 benchmarks and
our tool solves most benchmarks in <1 s. One thing to observe that the symbolic
register automata scales poorly when more registers are needed to capture the
back-references while the performance of our approach does not change notice-
ably when more parameters are introduced.

Decision Procedures for Sequence Theories 37

8 Conclusion and Future Work

In this paper, we have performed a systematic investigation of decidability and
complexity of constraints on sequences. Our starting point is the subcase of
string constraints (i.e. over a finite set of sequence elements), which include equa-
tional constraints with concatenation, regular constraints, length constraints,
and transducers. We have identified parametric automata (extending symbolic
automata and variable automata) as suitable notion of “regular constraints” over
sequences, and parametric transducers (extending symbolic transducers) as suit-
able notion of transducers over sequences. We showed that decidability results in
the case of strings carry over to sequences, although the complexity is in general
higher than in the case of strings (sometimes exponentially higher). For certain
element theory (e.g. Linear Real Arithmetic), it is possible to retain the same
complexity as in the string case. We also delineate the boundary of the suitable
notion of “regular constraints” by showing that the equational constraints with
symbolic register automata [14] yields undecidable satisfiability. Finally, our new
sequence solver SeCo shows promising experimental results.

There are several future research avenues. Firstly, the complexity of sequence
constraints over other specific element theories (e.g. Linear Integer Arithmetic)
should be precisely determined. Secondly, is it possible to recover decidability
with other fragments of register automata (e.g., single-use automata [7])? On
the implementation side, there are some algorithmic improvements, e.g., better
nonemptiness checks for parametric automata in the case of a single automaton,
as well as product of multiple automata.

Acknowledgment. We thank anonymous reviewers for their thorough and helpful
feedback. We are grateful to Nikolaj Bjørner, Rupak Majumdar and Margus Veanes
for the inspiring discussion.

References

1. Abdulla, P.A., et al.: String constraints for verification. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9_10

2. Abdulla, P.A., Atig, M.F., Diep, B.P., Holík, L., Janků, P.: Chain-free string con-
straints. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA 2019. LNCS, vol.
11781, pp. 277–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31784-3_16

3. Amadini, R.: A survey on string constraint solving. ACM Comput. Surv. 55(2),
16:1-16:38 (2023). https://doi.org/10.1145/3484198

4. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

5. Barceló, P., Figueira, D., Libkin, L.: Graph logics with rational relations. Log.
Methods Comput. Sci. 9(3) (2013). https://doi.org/10.2168/LMCS-9(3:1)2013

6. Bjørner, N., de Moura, L., Nachmanson, L., Wintersteiger, C.M.: Programming
Z3. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.) SETSS 2018. LNCS, vol. 11430, pp.
148–201. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17601-3_4

https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-319-08867-9_10
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1007/978-3-030-31784-3_16
https://doi.org/10.1145/3484198
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.2168/LMCS-9(3:1)2013
https://doi.org/10.1007/978-3-030-17601-3_4

38 A. Jeż et al.

7. Bojanczyk, M., Stefanski, R.: Single-use automata and transducers for infinite
alphabets. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Col-
loquium on Automata, Languages, and Programming, ICALP 2020, July 8–11,
2020, Saarbrücken, Germany (Virtual Conference). LIPIcs, vol. 168, pp. 113:1–
113:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPIcs.ICALP.2020.113

8. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular Model Checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_31

9. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005). https://doi.org/10.1007/11609773_28

10. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation
and undecidable extensions of this theory. In: The Collected Works of J. Richard
Büchi, pp. 671–683. Springer, New York (1990). https://doi.org/10.1007/978-1-
4613-8928-6_37

11. Chen, T., et al.: Solving string constraints with regex-dependent functions through
transducers with priorities and variables. Proc. ACM Program. Lang. 6(POPL),
1–31 (2022). https://doi.org/10.1145/3498707

12. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. Proc. ACM
Program. Lang. 3(POPL), 49:1–49:30 (2019). https://doi.org/10.1145/3290362

13. D’Antoni, L.: SVPAlib. Symbolic Automata Library (2018). https://github.com/
lorisdanto/symbolicautomata. Accessed 2 Feb 2023

14. D’Antoni, L., Ferreira, T., Sammartino, M., Silva, A.: Symbolic register automata.
In: Dillig, I., Tasiran, S. (eds.) CAV. vol. 11561, pp. 3–21. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4_1

15. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 47–67.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_3

16. D’Antoni, L., Veanes, M.: Automata modulo theories. Commun. ACM 64(5), 86–
95 (2021). https://doi.org/10.1145/3419404

17. Diekert, V.: Makanin’s algorithm. In: Lothaire, M. (ed.) Algebraic Combinatorics
on Words, Encyclopedia of Mathematics and its Applications, vol. 90, chap. 12,
pp. 387–442. Cambridge University Press (2002)

18. Diekert, V., Gutiérrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Inf. Comput. 202(2), 105–
140 (2005). https://doi.org/10.1016/j.ic.2005.04.002

19. Diekert, V., Jeż, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. Inf. Comput. 251, 263–286 (2016). https://
doi.org/10.1016/j.ic.2016.09.009

20. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974). https://doi.org/10.1145/361179.361202

21. Faran, R., Kupferman, O.: On synthesis of specifications with arithmetic. In:
Chatzigeorgiou, A., et al. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp. 161–173.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38919-2_14

22. Faran, R., Kupferman, O.: On synthesis of specifications with arithmetic. In:
Chatzigeorgiou, A., et al. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp. 161–173.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38919-2_14

https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/11609773_28
https://doi.org/10.1007/978-1-4613-8928-6_37
https://doi.org/10.1007/978-1-4613-8928-6_37
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3290362
https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata
https://doi.org/10.1007/978-3-030-25540-4_1
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1145/3419404
https://doi.org/10.1016/j.ic.2005.04.002
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1145/361179.361202
https://doi.org/10.1007/978-3-030-38919-2_14
https://doi.org/10.1007/978-3-030-38919-2_14

Decision Procedures for Sequence Theories 39

23. Figueira, D., Jeż, A., Lin, A.W.: Data path queries over embedded graph databases.
In: PODS ’22: International Conference on Management of Data, Philadelphia, 12–
17 June, 2022. pp. 189–201 (2022). https://doi.org/10.1145/3517804.3524159

24. Figueira, D., Lin, A.W.: Reasoning on data words over numeric domains. In: LICS
’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa,
Israel, 2–5 August 2022, pp. 37:1–37:13 (2022). https://doi.org/10.1145/3531130.
3533354

25. Furia, C.A.: What’s decidable about sequences? In: Bouajjani, A., Chin, W.-N.
(eds.) ATVA 2010. LNCS, vol. 6252, pp. 128–142. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15643-4_11

26. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012.
LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39611-3_21

27. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite
alphabets. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS,
vol. 6031, pp. 561–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13089-2_47

28. Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10–15 (1962). https://doi.org/10.1093/
comjnl/5.1.10

29. Jeż, A.: Recompression: a simple and powerful technique for word equations. J.
ACM 63(1), 4:1–4:51 (2016). https://doi.org/10.1145/2743014

30. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
21:1–21:54 (2009). https://doi.org/10.1145/1592434.1592438

31. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

32. Kroening, D., Strichman, O.: Decision Procedures. Springer (2008)
33. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-

mun. ACM 17(8), 453–455 (1974). https://doi.org/10.1145/361082.361093
34. Lin, A.W., Rümmer, P.: Regular model checking revisited. In: Olderog, E.-R., Stef-

fen, B., Yi, W. (eds.) Model Checking, Synthesis, and Learning. LNCS, vol. 13030,
pp. 97–114. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91384-7_6

35. Lin, A.W., Barceló, P.: String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, St. Petersburg, 20–22 January 2016, pp. 123–136 (2016). https://doi.
org/10.1145/2837614.2837641

36. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Sbornik:
Mathematics 32(2), 129–198 (1977)

37. Meyer, B.: Applying “Design by contract.” IEEE Comput. 25(10), 40–51 (1992).
https://doi.org/10.1109/2.161279

38. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS (2008)
39. None: RegExLib (2017). https://regexlib.com/. Accessed 2 Feb 2023
40. Plandowski, W.: On PSPACE generation of a solution set of a word equation and

its applications. Theor. Comput. Sci. 792, 20–61 (2019). https://doi.org/10.1016/
j.tcs.2018.10.023

41. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1_20

https://doi.org/10.1145/3517804.3524159
https://doi.org/10.1145/3531130.3533354
https://doi.org/10.1145/3531130.3533354
https://doi.org/10.1007/978-3-642-15643-4_11
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-13089-2_47
https://doi.org/10.1007/978-3-642-13089-2_47
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1145/2743014
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1145/361082.361093
https://doi.org/10.1007/978-3-030-91384-7_6
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.1145/2837614.2837641
https://doi.org/10.1109/2.161279
https://regexlib.com/
https://doi.org/10.1016/j.tcs.2018.10.023
https://doi.org/10.1016/j.tcs.2018.10.023
https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20

40 A. Jeż et al.

42. Safari, M., Huisman, M.: A generic approach to the verification of the permutation
property of sequential and parallel swap-based sorting algorithms. In: Dongol, B.,
Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 257–275. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-63461-2_14

43. Schulz, K.U.: Makanin’s algorithm for word equations–two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT. Lecture Notes in Computer Sci-
ence, vol. 572, pp. 85–150. Springer, Cham (1990). https://doi.org/10.1007/3-540-
55124-7_4

44. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjorner, N.: Symbolic finite
state transducers: algorithms and applications. SIGPLAN Not. 47(1), 137–150
(2012). https://doi.org/10.1145/2103621.2103674

45. Wang, Q., Appel, A.W.: A solver for arrays with concatenation. J. Autom. Reason.
67(1), 4 (2023). https://doi.org/10.1007/s10817-022-09654-y

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-63461-2_14
https://doi.org/10.1007/3-540-55124-7_4
https://doi.org/10.1007/3-540-55124-7_4
https://doi.org/10.1145/2103621.2103674
https://doi.org/10.1007/s10817-022-09654-y
http://creativecommons.org/licenses/by/4.0/

Exploiting Adjoints in Property Directed
Reachability Analysis

Mayuko Kori1,2(B) , Flavio Ascari3 , Filippo Bonchi3 , Roberto Bruni3 ,
Roberta Gori3 , and Ichiro Hasuo1,2

1 National Institute of Informatics, Tokyo, Japan
{mkori,hasuo}@nii.ac.jp

2 The Graduate University for Advanced Studies
(SOKENDAI), Hayama, Japan

3 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
flavio.ascari@phd.unipi.it,

{filippo.bonchi,roberto.bruni,roberta.gori}@unipi.it

Abstract. We formulate, in lattice-theoretic terms, two novel algo-
rithms inspired by Bradley’s property directed reachability algorithm.
For finding safe invariants or counterexamples, the first algorithm
exploits over-approximations of both forward and backward transition
relations, expressed abstractly by the notion of adjoints. In the absence
of adjoints, one can use the second algorithm, which exploits lower sets
and their principals. As a notable example of application, we consider
quantitative reachability problems for Markov Decision Processes.

Keywords: PDR · Lattice theory · Adjoints · MDPs ·
Over-approximation

1 Introduction

Property directed reachability analysis (PDR) refers to a class of verification
algorithms for solving safety problems of transition systems [5,12]. Its essence
consists of 1) interleaving the construction of an inductive invariant (a positive
chain) with that of a counterexample (a negative sequence), and 2) making the
two sequences interact, with one narrowing down the search space for the other.

PDR algorithms have shown impressive performance both in hardware and
software verification, leading to active research [15,18,28,29] going far beyond
its original scope. For instance, an abstract domain [8] capturing the over-
approximation exploited by PDR has been recently introduced in [13], while
PrIC3 [3] extended PDR for quantitative verification of probabilistic systems.

Research supported by MIUR PRIN Project 201784YSZ5 ASPRA, by JST ERATO
HASUO Metamathematics for Systems Design Project JPMJER1603, by JST CREST
Grant JPMJCR2012, by JSPS DC KAKENHI Grant 22J21742 and by EU Next-
GenerationEU (NRRP) SPOKE 10, Mission 4, Component 2, Investment N. 1.4, CUP
N. I53C22000690001.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 41–63, 2023.
https://doi.org/10.1007/978-3-031-37703-7_3

https://doi.org/10.6084/m9.figshare.22707718.v6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_3&domain=pdf
http://orcid.org/0000-0002-8495-5925
http://orcid.org/0000-0003-4624-9752
http://orcid.org/0000-0002-3433-723X
http://orcid.org/0000-0002-7771-4154
http://orcid.org/0000-0002-7424-9576
http://orcid.org/0000-0002-8300-4650
https://doi.org/10.1007/978-3-031-37703-7_3

42 M. Kori et al.

To uncover the abstract principles behind PDR and its extensions, Kori et
al. proposed LT-PDR [19], a generalisation of PDR in terms of lattice/category
theory. LT-PDR can be instantiated using domain-specific heuristics to create
effective algorithms for different kinds of systems such as Kripke structures,
Markov Decision Processes (MDPs), and Markov reward models. However, the
theory in [19] does not offer guidance on devising concrete heuristics.

Adjoints in PDR. Our approach shares the same vision of LT-PDR, but we
identify different principles: adjunctions are the core of our toolset.

An adjunction f � g is one of the central concepts in category
theory [23]. It is prevalent in various fields of computer science,
too, such as abstract interpretation [8] and functional program-
ming [22]. Our use of adjoints in this work comes in the following two flavours.

– (forward-backward adjoint) f describes the forward semantics of a transition
system, while g is the backward one, where we typically have A = C.

– (abstraction-concretization adjoint) C is a concrete semantic domain, and A
is an abstract one, much like in abstract interpretation. An adjoint enables
us to convert a fixed-point problem in C to that in A.

Our Algorithms. The problem we address is the standard lattice theoretical
formulation of safety problems, namely whether the least fixed point of a con-
tinuous map b over a complete lattice (L,�) is below a given element p ∈ L. In
symbols μb �? p. We present two algorithms.

The first one, named AdjointPDR, assumes to have an ele-
ment i ∈ L and two adjoints f � g : L → L, representing respec-
tively initial states, forward semantics and backward semantics
(see right) such that b(x) = f(x) � i for all x ∈ L. Under this assumption, we
have the following equivalences (they follow from the Knaster-Tarski theorem,
see §2):

μb � p ⇔ μ(f � i) � p ⇔ i � ν(g � p),

where μ(f � i) and ν(g � p) are, by the Kleene theorem, the limits of the initial
and final chains illustrated below.

⊥ � i � f(i) � i � · · · · · · � g(p) � p � p �

As positive chain, PDR exploits an over-approximation of the initial chain: it is
made greater to accelerate convergence; still it has to be below p.

The distinguishing feature of AdjointPDR is to take as a negative sequence
(that is a sequential construction of potential counterexamples) an over-
approximation of the final chain. This crucially differs from the negative sequence
of LT-PDR, namely an under-approximation of the computed positive chain.

We prove that AdjointPDR is sound (Theorem 5) and does not loop (Propo-
sition 7) but since, the problem μb �? p is not always decidable, we cannot prove
termination. Nevertheless, AdjointPDR allows for a formal theory of heuris-
tics that are essential when instantiating the algorithm to concrete problems.

A
g

⊥ �� C

f
��

L
g

⊥ �� L

f
��

Exploiting Adjoints in PDR 43

The theory prescribes the choices to obtain the boundary executions, using
initial and final chains (Proposition 10); it thus identifies a class of heuristics
guaranteeing termination when answers are negative (Theorem 12).

AdjointPDR’s assumption of a forward-backward adjoint f � g, however, does
not hold very often, especially in probabilistic settings. Our second algorithm
AdjointPDR↓ circumvents this problem by extending the lattice for the negative
sequence, from L to the lattice L↓ of lower sets in L.

↓
r

Specifically, by using the second form of
adjoints, namely an abstraction-concretization
pair, the problem μb �? p in L can be trans-
lated to an equivalent problem on b↓ in L↓, for
which an adjoint b↓ � b↓

r is guaranteed. This allows one to run AdjointPDR in
the lattice L↓. We then notice that the search for a positive chain can be con-
veniently restricted to principals in L↓, which have representatives in L. The
resulting algorithm, using L for positive chains and L↓ for negative sequences,
is AdjointPDR↓.

The use of lower sets for the negative sequence is a key advantage. It not
only avoids the restrictive assumption on forward-backward adjoints f � g, but
also enables a more thorough search for counterexamples. AdjointPDR↓ can sim-
ulate step-by-step LT-PDR (Theorem 17), while the reverse is not possible due
to a single negative sequence in AdjointPDR↓ potentially representing multiple
(Proposition 18) or even all (Proposition 19) negative sequences in LT-PDR.

Concrete Instances. Our lattice-theoretic algorithms yield many concrete
instances: the original IC3/PDR [5,12] as well as Reverse PDR [27] are instances
of AdjointPDR with L being the powerset of the state space; since LT-PDR can
be simulated by AdjointPDR↓, the latter generalizes all instances in [19].

As a notable instance, we apply AdjointPDR↓ to MDPs, specifically to decide
if the maximum reachability probability [1] is below a given threshold. Here
the lattice L = [0, 1]S is that of fuzzy predicates over the state space S. Our
theory provides guidance to devise two heuristics, for which we prove negative
termination (Corollary 20). We present its implementation in Haskell, and its
experimental evaluation, where comparison is made against existing probabilistic
PDR algorithms (PrIC3 [3], LT-PDR [19]) and a non-PDR one (Storm [11]). The
performance of AdjointPDR↓ is encouraging—it supports the potential of PDR
algorithms in probabilistic model checking. The experiments also indicate the
importance of having a variety of heuristics, and thus the value of our adjoint
framework that helps coming up with those.

Additionally, we found that abstraction features of Haskell allows us to code
lattice-theoretic algorithms almost literally (∼100 lines). Implementing a few
heuristics takes another ∼240 lines. This way, we found that mathematical
abstraction can directly help easing implementation effort.

Related Work. Reverse PDR [27] applies PDR from unsafe states using a back-
ward transition relation T and tries to prove that initial states are unreachable.
Our right adjoint g is also backward, but it differs from T in the presence of
nondeterminism: roughly, T(X) is the set of states which can reach X in one

Lb

(−)↓
⊥ �� L

↓ b↓ � b↓
r��

⊔

��

44 M. Kori et al.

step, while g(X) are states which only reach X in one step. fbPDR [28,29] runs
PDR and Reverse PDR in parallel with shared information. Our work uses both
forward and backward directions (the pair f � g), too, but approximate differ-
ently: Reverse PDR over-approximates the set of states that can reach an unsafe
state, while we over-approximate the set of states that only reach safe states.

The comparison with LT-PDR [19] is extensively discussed in Sect. 4.2.
PrIC3 [3] extended PDR to MDPs, which are our main experimental ground:
Sect. 6 compares the performances of PrIC3, LT-PDR and AdjointPDR↓.

We remark that PDR has been applied to other settings, such as soft-
ware model checking using theories and SMT-solvers [6,21] or automated plan-
ning [30]. Most of them (e.g., software model checking) fall already in the gen-
erality of LT-PDR and thus they can be embedded in our framework.

It is also worth to mention that, in the context of abstract interpretation, the
use of adjoints to construct initial and final chains and exploit the interaction
between their approximations has been investigated in several works, e.g., [7].

Structure of the Paper. After recalling some preliminaries in Sect. 2, we
present AdjointPDR in Sect. 3 and AdjointPDR↓ in Sect. 4. In Sect. 5 we introduce
the heuristics for the max reachability problems of MDPs, that are experimen-
tally tested in Sect. 6.

2 Preliminaries and Notation

We assume that the reader is familiar with lattice theory, see, e.g., [10]. We use
(L,�), (L1,�1), (L2,�2) to range over complete lattices and x, y, z to range over
their elements. We omit subscripts and order relations whenever clear from the
context. As usual,

⊔
and

�
denote least upper bound and greatest lower bound,

� and � denote join and meet,
 and ⊥ top and bottom. Hereafter we will tacitly
assume that all maps are monotone. Obviously, the identity map id : L → L
and the composition f ◦ g : L1 → L3 of two monotone maps g : L1 → L2 and
f : L2 → L3 are monotone. For a map f : L → L, we inductively define f0 = id
and fn+1 = f ◦ fn. Given l : L1 → L2 and r : L2 → L1, we say that l is the
left adjoint of r, or equivalently that r is the right adjoint of l, written l � r,
when it holds that l(x) �2 y iff x �1 r(y) for all x ∈ L1 and y ∈ L2. Given a
map f : L → L, the element x ∈ L is a post-fixed point iff x � f(x), a pre-fixed
point iff f(x) � x and a fixed point iff x = f(x). Pre, post and fixed points form
complete lattices: we write μf and νf for the least and greatest fixed point.

Several problems relevant to computer science can be reduced to check if
μb � p for a monotone map b : L → L on a complete lattice L. The Knaster-
Tarski fixed-point theorem characterises μb as the least upper bound of all pre-
fixed points of b and νb as the greatest lower bound of all its post-fixed points:

μb =
�

{x | b(x) � x} νb =
⊔

{x | x � b(x)} .

This immediately leads to two proof principles, illustrated below:

∃x, b(x) � x � p
μb � p

∃x, i � x � b(x)
i � νb

(KT)

Exploiting Adjoints in PDR 45

s1 s5 s6

s0 s3 s4

s2

Fig. 1. The transition system of Example 1, with S = {s0, . . . s6} and I = {s0}.

By means of (KT), one can prove μb � p by finding some pre-fixed point x, often
called invariant, such that x � p. However, automatically finding invariants
might be rather complicated, so most of the algorithms rely on another fixed-
point theorem, usually attributed to Kleene. It characterises μb and νb as the
least upper bound and the greatest lower bound, of the initial and final chains:

⊥ � b(⊥) � b2(⊥) � · · · and · · · � b2(
) � b(
) �
. That is, (Kl)

μb =
⊔

n∈N

bn(⊥), νb =
�

n∈N

bn(
).

The assumptions are stronger than for Knaster-Tarski: for the leftmost state-
ment, it requires the map b to be ω-continuous (i.e., it preserves

⊔
of ω-chains)

and, for the rightmost ω-co-continuous (similar but for
�

). Observe that every
left adjoint is continuous and every right adjoint is co-continuous (see e.g. [23]).

As explained in [19], property directed reachability (PDR) algorithms [5]
exploits (KT) to try to prove the inequation and (Kl) to refute it. In the algo-
rithm we introduce in the next section, we further assume that b is of the form
f � i for some element i ∈ L and map f : L → L, namely b(x) = f(x) � i for all
x ∈ L. Moreover we require f to have a right adjoint g : L → L. In this case

μ(f � i) � p iff i � ν(g � p) (1)

(which is easily shown using the Knaster-Tarski theorem) and (f � i) and (g �p)
are guaranteed to be (co)continuous. Since f � g and left and right adjoints
preserve, resp., arbitrary joins and meets, then for all n ∈ N

(f � i)n(⊥) =
⊔

j<n f j(i) (g � p)n(
) =
�

j<n gj(p) (2)

which by (Kl) provide useful characterisations of least and greatest fixed points.

μ(f � i) =
⊔

n∈N
fn(i) ν(g � p) =

�
n∈N

gn(p) (Kl�)

We conclude this section with an example that we will often revisit. It also
provides a justification for the intuitive terminology that we sporadically use.

Example 1 (Safety problem for transition systems). A transition system consists
of a triple (S, I, δ) where S is a set of states, I ⊆ S is a set of initial states, and
δ : S → PS is a transition relation. Here PS denotes the powerset of S, which

46 M. Kori et al.

x0 = ⊥ (I0)

1 ≤ k ≤ n (I1)

∀j ∈ [0, n − 2], xj � xj+1 (I2)

i � x1 (P1)

xn−2 � p (P2)

∀j ∈ [0, n − 2], f(xj) � xj+1 (P3)

j [0, n 2], xj g(xj+1) (P3a)

If y �= ε then p � yn−1 (N1)

∀j ∈ [k, n − 2], g(yj+1) � yj (N2)

∀j ∈ [k, n − 1], xj �� yj (PN)

∀j ∈ [0, n − 1], (f � i)
j
(⊥) � xj � (g 	 p)

n−1−j
(
) (A1)

∀j ∈ [1, n − 1], xj−1 � g
n−1−j

(p) (A2)

j [k, n 1], g
n−1−j

(p) yj (A3)

Fig. 2. Invariants of AdjointPDR.

forms a complete lattice ordered by inclusion ⊆. By defining F : PS → PS as
F (X) def=

⋃
s∈X δ(s) for all X ∈ PS, one has that μ(F ∪ I) is the set of all

states reachable from I. Therefore, for any P ∈ PS, representing some safety
property, μ(F ∪ I) ⊆ P holds iff all reachable states are safe. It is worth to
remark that F has a right adjoint G : PS → PS defined for all X ∈ PS as
G(X) def= {s | δ(s) ⊆ X}. Thus by (1), μ(F ∪ I) ⊆ P iff I ⊆ ν(G ∩ P).

Consider the transition system in Fig. 1. Hereafter we write Sj for the set
of states {s0, s1, . . . , sj} and we fix the set of safe states to be P = S5. It is
immediate to see that μ(F ∪ I) = S4 ⊆ P . Automatically, this can be checked
with the initial chains of (F ∪ I) or with the final chain of (G ∩ P) displayed
below on the left and on the right, respectively.

∅ ⊆ I ⊆ S2 ⊆ S3 ⊆ S4 ⊆ S4 ⊆ · · · · · · ⊆ S4 ⊆ S4 ⊆ P ⊆ S

The (j + 1)-th element of the initial chain contains all the states that can be
reached by I in at most j transitions, while (j + 1)-th element of the final chain
contains all the states that in at most j transitions reach safe states only.

3 Adjoint PDR

In this section we present AdjointPDR, an algorithm that takes in input a tuple
(i, f, g, p) with i, p ∈ L and f � g : L → L and, if it terminates, it returns true
whenever μ(f � i) � p and false otherwise.

The algorithm manipulates two sequences of elements of L: x def= x0, . . . , xn−1

of length n and y
def= yk, . . . yn−1 of length n − k. These satisfy, through the

executions of AdjointPDR, the invariants in Fig. 2. Observe that, by (A1), xj

over-approximates the j-th element of the initial chain, namely (f � i)j(⊥) � xj ,
while, by (A3), the j-indexed element yj of y over-approximates gn−j−1(p) that,
borrowing the terminology of Example 1, is the set of states which are safe in
n − j − 1 transitions. Moreover, by (PN), the element yj witnesses that xj is
unsafe, i.e., that xj �� gn−1−j(p) or equivalently fn−j−1(xj) �� p. Notably, x is
a positive chain and y a negative sequence, according to the definitions below.

Exploiting Adjoints in PDR 47

AdjointPDR (i, f, g, p)

<INITIALISATION >

(x‖y)n,k := (⊥, �‖ε)2,2
<ITERATION > % x,y not conclusive

case (x‖y)n,k of

y = ε and xn−1 � p : %(Unfold)

(x‖y)n,k := (x, �‖ε)n+1,n+1

y = ε and xn−1 �� p : %(Candidate)

choose z ∈ L such that xn−1 �� z and p � z;
(x‖y)n,k := (x‖z)n,n−1

y �= ε and f(xk−1) �� yk : %(Decide)

choose z ∈ L such that xk−1 �� z and g(yk) � z;
(x‖y)n,k := (x‖z,y)n,k−1

y �= ε and f(xk−1) � yk : %(Conflict)

choose z ∈ L such that z � yk and (f � i)(xk−1 	 z) � z;
(x‖y)n,k := (x 	k z‖tail(y))n,k+1

endcase

<TERMINATION >

if ∃j ∈ [0, n − 2] . xj+1 � xj then return true % x conclusive

if i y1 then return false % y conclusive

Fig. 3. AdjointPDR algorithm checking μ(f � i) � p.

Definition 2 (positive chain). A positive chain for μ(f � i) � p is a finite
chain x0 � · · · � xn−1 in L of length n ≥ 2 which satisfies (P1), (P2), (P3) in
Fig. 2. It is conclusive if xj+1 � xj for some j ≤ n − 2.

In a conclusive positive chain, xj+1 provides an invariant for f � i and thus,
by (KT), μ(f � i) � p holds. So, when x is conclusive, AdjointPDR returns true.

Definition 3 (negative sequence). A negative sequence for μ(f � i) � p is
a finite sequence yk, . . . , yn−1 in L with 1 ≤ k ≤ n which satisfies (N1) and (N2)
in Fig. 2. It is conclusive if k = 1 and i �� y1.

When y is conclusive, AdjointPDR returns false as y1 provides a counterex-
ample: (N1) and (N2) entail (A3) and thus i �� y1 � gn−2(p). By (Kl�),
gn−2(p) � ν(g � p) and thus i �� ν(g � p). By (1), μ(f � i) �� p.

The pseudocode of the algorithm is displayed in Fig. 3, where we write
(x‖y)n,k to compactly represents the state of the algorithm: the pair (n, k) is
called the index of the state, with x of length n and y of length n − k. When
k = n, y is the empty sequence ε. For any z ∈ L, we write x, z for the chain
x0, . . . , xn−1, z of length n + 1 and z,y for the sequence z, yk, . . . yn−1 of length
n−(k−1). Moreover, we write x�jz for the chain x0�z, . . . , xj�z, xj+1, . . . , xn−1.
Finally, tail(y) stands for the tail of y, namely yk+1, . . . yn−1 of length n−(k+1).

The algorithm starts in the initial state s0
def= (⊥,
‖ε)2,2 and, unless one

of x and y is conclusive, iteratively applies one of the four mutually exclusive
rules: (Unfold), (Candidate), (Decide) and (Conflict). The rule (Unfold) extends
the positive chain by one element when the negative sequence is empty and the
positive chain is under p; since the element introduced by (Unfold) is
, its
application typically triggers rule (Candidate) that starts the negative sequence

48 M. Kori et al.

with an over-approximation of p. Recall that the role of yj is to witness that
xj is unsafe. After (Candidate) either (Decide) or (Conflict) are possible: if yk

witnesses that, besides xk, also f(xk−1) is unsafe, then (Decide) is used to further
extend the negative sequence to witness that xk−1 is unsafe; otherwise, the rule
(Conflict) improves the precision of the positive chain in such a way that yk no
longer witnesses xk � z unsafe and, thus, the negative sequence is shortened.

Note that, in (Candidate), (Decide) and (Conflict), the element z ∈ L is
chosen among a set of possibilities, thus AdjointPDR is nondeterministic.

To illustrate the executions of the algorithm, we adopt a labeled transition
system notation. Let S def= {(x‖y)n,k | n ≥ 2, k ≤ n, x ∈ Ln and y ∈ Ln−k} be
the set of all possible states of AdjointPDR. We call (x‖y)n,k ∈ S conclusive if

x or y are such. When s ∈ S is not conclusive, we write s
D→ to mean that s

satisfies the guards in the rule (Decide), and s
D→zs

′ to mean that, being (Decide)
applicable, AdjointPDR moves from state s to s′ by choosing z. Similarly for the
other rules: the labels Ca, Co and U stands for (Candidate), (Conflict) and
(Unfold), respectively. When irrelevant we omit to specify labels and choices
and we just write s → s′. As usual →+ stands for the transitive closure of →
while →∗ stands for the reflexive and transitive closure of →.

Example 4. Consider the safety problem in Example 1. Below we illustrate two
possible computations of AdjointPDR that differ for the choice of z in (Conflict).
The first run is conveniently represented as the following series of transitions.

(∅, S‖ε)2,2
Ca→P (∅, S‖P)2,1

Co→I (∅, I‖ε)2,2
U→ (∅, I, S‖ε)3,3

Ca→P (∅, I, S‖P)3,2
Co→S2(∅, I, S2‖ε)3,3

U→Ca→P (∅, I, S2, S‖P)4,3
Co→S3 (∅, I, S2, S3‖ε)4,4

U→Ca→P (∅, I, S2, S3, S‖P)5,4
Co→S4(∅, I, S2, S3, S4‖ε)5,5

U→Ca→P (∅, I, S2, S3, S4, S‖P)6,5
Co→S4 (∅, I, S2, S3, S4, S4‖ε)6,6

The last state returns true since x4 = x5 = S4. Observe that the elements of
x, with the exception of the last element xn−1, are those of the initial chain of
(F ∪ I), namely, xj is the set of states reachable in at most j − 1 steps. In the
second computation, the elements of x are roughly those of the final chain of
(G∩P). More precisely, after (Unfold) or (Candidate), xn−j for j < n− 1 is the
set of states which only reach safe states within j steps.

(∅, S‖ε)2,2
Ca→P (∅, S‖P)2,1

Co→P (∅, P‖ε)2,2
U→Ca→P (∅, P, S‖P)3,2

D→S4 (∅, P, S‖S4, P)3,1
Co→S4 (∅, S4, S‖P)3,2

Co→P (∅, S4, P‖ε)3,3
U→Ca→P (∅, S4, P, S‖P)4,3

D→S4 (∅, S4, P, S‖S4, P)4,2
Co→S4 (∅, S4, S4, S‖P)4,3

Observe that, by invariant (A1), the values of x in the two runs are, respectively,
the least and the greatest values for all possible computations of AdjointPDR.

Theorem 5.1 follows by invariants (I2), (P1), (P3) and (KT); Theorem 5.2
by (N1), (N2) and (Kl�). Note that both results hold for any choice of z.

Theorem 5 (Soundness). AdjointPDR is sound. Namely,

1. If AdjointPDR returns true then μ(f � i) � p.
2. If AdjointPDR returns false then μ(f � i) �� p.

Exploiting Adjoints in PDR 49

3.1 Progression

It is necessary to prove that in any step of the execution, if the algorithm does
not return true or false, then it can progress to a new state, not yet visited.
To this aim we must deal with the subtleties of the non-deterministic choice of
the element z in (Candidate), (Decide) and (Conflict). The following proposition
ensures that, for any of these three rules, there is always a possible choice.

Proposition 6 (Canonical choices). The following are always possible:
1. in (Candidate) z = p;
2. in (Decide) z = g(yk);

3. in (Conflict) z = yk;
4. in (Conflict) z = (f � i)(xk−1).

Thus, for all non-conclusive s ∈ S, if s0 →∗ s then s →.

Then, Proposition 7 ensures that AdjointPDR always traverses new states.

Proposition 7 (Impossibility of loops). If s0 →∗ s →+ s′, then s �= s′.

Observe that the above propositions entail that AdjointPDR terminates
whenever the lattice L is finite, since the set of reachable states is finite in
this case.

Example 8. For (I, F,G, P) as in Example 1, AdjointPDR behaves essentially
as IC3/PDR [5], solving reachability problems for transition systems with finite
state space S. Since the lattice PS is also finite, AdjointPDR always terminates.

3.2 Heuristics

The nondeterministic choices of the algorithm can be resolved by using heuristics.
Intuitively, a heuristic chooses for any states s ∈ S an element z ∈ L to be
possibly used in (Candidate), (Decide) or (Conflict), so it is just a function
h : S → L. When defining a heuristic, we will avoid to specify its values on
conclusive states or in those performing (Unfold), as they are clearly irrelevant.

With a heuristic, one can instantiate AdjointPDR by making the choice
of z as prescribed by h. Syntactically, this means to erase from the code of
Fig. 3 the three lines of choose and replace them by z:= h((x‖c)n,k). We call
AdjointPDRh the resulting deterministic algorithm and write s→hs′ to mean
that AdjointPDRh moves from state s to s′. We let Sh def= {s ∈ S | s0→∗

hs} be
the sets of all states reachable by AdjointPDRh.

Definition 9 (legit heuristic). A heuristic h : S → L is called legit whenever
for all s, s′ ∈ Sh, if s→hs′ then s → s′.

When h is legit, the only execution of the deterministic algorithm AdjointPDRh

is one of the possible executions of the non-deterministic algorithm AdjointPDR.
The canonical choices provide two legit heuristics: first, we call simple any

legit heuristic h that chooses z in (Candidate) and (Decide) as in Proposition 6:

(x‖y)n,k �→
{

p if (x‖y)n,k
Ca→

g(yk) if (x‖y)n,k
D→

(3)

50 M. Kori et al.

Then, if the choice in (Conflict) is like in Proposition 6.4, we call h initial ; if
it is like in Proposition 6.3, we call h final. Shortly, the two legit heuristics are:

simple initial (3) and (x‖y)n,k �→ (f � i)(xk−1) if (x‖y)n,k ∈ Co

simple final (3) and (x‖y)n,k �→ yk if (x‖y)n,k ∈ Co

Interestingly, with any simple heuristic, the sequence y takes a familiar shape:

Proposition 10. Let h : S → L be any simple heuristic. For all (x‖y)n,k ∈ Sh,
invariant (A3) holds as an equality, namely for all j ∈ [k, n−1], yj = gn−1−j(p).

By the above proposition and (A3), the negative sequence y occurring in the
execution of AdjointPDRh, for a simple heuristic h, is the least amongst all the
negative sequences occurring in any execution of AdjointPDR.

Instead, invariant (A1) informs us that the positive chain x is always in
between the initial chain of f � i and the final chain of g � p. Such values of x
are obtained by, respectively, simple initial and simple final heuristic.

Example 11. Consider the two runs of AdjointPDR in Example 4. The first one
exploits the simple initial heuristic and indeed, the positive chain x coincides
with the initial chain. Analogously, the second run uses the simple final heuristic.

3.3 Negative Termination

When the lattice L is not finite, AdjointPDR may not terminate, since checking
μ(f � i) � p is not always decidable. In this section, we show that the use of
certain heuristics can guarantee termination whenever μ(f � i) �� p.

The key insight is the following: if μ(f � i) �� p then by (Kl), there should
exist some ñ ∈ N such that (f � i)ñ(⊥) �� p. By (A1), the rule (Unfold) can be
applied only when (f � i)n−1(⊥) � xn−1 � p. Since (Unfold) increases n and n
is never decreased by other rules, then (Unfold) can be applied at most ñ times.

The elements of negative sequences are introduced by rules (Candidate) and
(Decide). If we guarantee that for any index (n, k) the heuristic in such cases
returns a finite number of values for z, then one can prove termination. To make
this formal, we fix CaDh

n,k
def= {(x‖y)n,k ∈ Sh | (x‖y)n,k

Ca→ or (x‖y)n,k
D→},

i.e., the set of all (n, k)-indexed states reachable by AdjointPDRh that trigger
(Candidate) or (Decide), and h(CaDh

n,k) def= {h(s) | s ∈ CaDh
n,k}, i.e., the set of

all possible values returned by h in such states.

Theorem 12 (Negative termination). Let h be a legit heuristic. If
h(CaDh

n,k) is finite for all n, k and μ(f � i) �� p, then AdjointPDRh terminates.

Corollary 13. Let h be a simple heuristic. If μ(f � i) �� p, then AdjointPDRh

terminates.

Note that this corollary ensures negative termination whenever we use the
canonical choices in (Candidate) and (Decide) irrespective of the choice for (Con-
flict), therefore it holds for both simple initial and simple final heuristics.

Exploiting Adjoints in PDR 51

4 Recovering Adjoints with Lower Sets

In the previous section, we have introduced an algorithm for checking μb � p
whenever b is of the form f � i for an element i ∈ L and a left-adjoint f : L → L.
This, unfortunately, is not the case for several interesting problems, like the max
reachability problem [1] that we will illustrate in Sect. 5.

The next result informs us that, under standard assumptions, one can transfer
the problem of checking μb � p to lower sets, where adjoints can always be
defined. Recall that, for a lattice (L,�), a lower set is a subset X ⊆ L such that
if x ∈ X and x′ � x then x′ ∈ X; the set of lower sets of L forms a complete
lattice (L↓,⊆) with joins and meets given by union and intersection; as expected
⊥ is ∅ and
 is L. Given b : L → L, one can define two functions b↓, b↓

r : L↓ → L↓

as b↓(X) def= b(X)↓ and b↓
r(X) def= {x | b(x) ∈ X}. It holds that b↓ � b↓

r .

(L,�)b ��

(−)↓
⊥ �� (L

↓,⊆) b↓ � b↓
r		

⊔

(4)

In the diagram above, (−)↓ : x �→ {x′ | x′ � x} and
⊔

: L↓ → L maps a lower set
X into

⊔{x | x ∈ X}. The maps
⊔

and (−)↓ form a Galois insertion, namely⊔ � (−)↓ and
⊔

(−)↓ = id, and thus one can think of (4) in terms of abstract
interpretation [8,9]: L↓ represents the concrete domain, L the abstract domain
and b is a sound abstraction of b↓. Most importantly, it turns out that b is
forward-complete [4,14] w.r.t. b↓, namely the following equation holds.

(−)↓ ◦ b = b↓ ◦ (−)↓ (5)

Proposition 14. Let (L,�) be a complete lattice, p ∈ L and b : L → L be a
ω-continuous map. Then μb � p iff μ(b↓ ∪ ⊥↓) ⊆ p↓.

By means of Proposition 14, we can thus solve μb � p in L by run-
ning AdjointPDR on (⊥↓, b↓, b↓

r , p
↓). Hereafter, we tacitly assume that b is ω-

continuous.

4.1 AdjointPDR↓: Positive Chain in L, Negative Sequence in L↓

While AdjointPDR on (⊥↓, b↓, b↓
r , p

↓) might be computationally expensive, it
is the first step toward the definition of an efficient algorithm that exploits a
convenient form of the positive chain.

A lower set X ∈ L↓ is said to be a principal if X = x↓ for some x ∈ L.
Observe that the top of the lattice (L↓,⊆) is a principal, namely
↓, and that
the meet (intersection) of two principals x↓ and y↓ is the principal (x � y)↓.

Suppose now that, in (Conflict), AdjointPDR(⊥↓, b↓, b↓
r , p

↓) always chooses
principals rather than arbitrary lower sets. This suffices to guarantee that all the
elements of x are principals (with the only exception of x0 which is constantly
the bottom element of L↓ that, note, is ∅ and not ⊥↓). In fact, the elements of

52 M. Kori et al.

AdjointPDR (b, p)

<INITIALISATION >

(x‖Y)n,k := (∅, ⊥, �‖ε)3,3
<ITERATION >

case (x‖Y)n,k of % x,Y not conclusive

Y = ε and xn−1 � p : %(Unfold)

(x‖Y)n,k := (x, �‖ε)n+1,n+1

Y = ε and xn−1 �� p : %(Candidate)

choose Z ∈ L such that xn−1 �∈ Z and p ∈ Z;

(x‖Y)n,k := (x‖Z)n,n−1

Y �= ε and b(xk−1) �∈ Yk : %(Decide)

choose Z ∈ L such that xk−1 �∈ Z and br(Yk) ⊆ Z;

(x‖Y)n,k := (x‖Z,Y)n,k−1

Y �= ε and b(xk−1) ∈ Yk : %(Conflict)

choose z ∈ L such that z ∈ Yk and b(xk−1 	 z) � z;
(x‖Y)n,k := (x 	k z‖tail(Y))n,k+1

endcase

<TERMINATION >

if ∃j ∈ [0, n − 2] . xj+1 � xj then return true % x conclusive

if Y1 = then return false % Y conclusive

Fig. 4. The algorithm AdjointPDR↓ for checking μb � p: the elements of negative
sequence are in L↓, while those of the positive chain are in L, with the only exception
of x0 which is constantly the bottom lower set ∅. For x0, we fix b(x0) = ⊥.

x are all obtained by (Unfold), that adds the principal
↓, and by (Conflict),
that takes their meets with the chosen principal.

Since principals are in bijective correspondence with the elements of L, by
imposing to AdjointPDR(⊥↓, b↓, b↓

r , p
↓) to choose a principal in (Conflict), we

obtain an algorithm, named AdjointPDR↓, where the elements of the positive
chain are drawn from L, while the negative sequence is taken in L↓. The algo-
rithm is reported in Fig. 4 where we use the notation (x‖Y)n,k to emphasize
that the elements of the negative sequence are lower sets of elements in L.

All definitions and results illustrated in Sect. 3 for AdjointPDR are inherited1

by AdjointPDR↓, with the only exception of Proposition 6.3. The latter does not
hold, as it prescribes a choice for (Conflict) that may not be a principal. In
contrast, the choice in Proposition 6.4 is, thanks to (5), a principal. This means
in particular that the simple initial heuristic is always applicable.

Theorem 15. All results in Sect. 3, but Proposition 6.3, hold for AdjointPDR↓.

4.2 AdjointPDR↓ Simulates LT-PDR

The closest approach to AdjointPDR and AdjointPDR↓ is the lattice-theoretic
extension of the original PDR, called LT-PDR [19]. While these algorithms
exploit essentially the same positive chain to find an invariant, the main differ-
ence lies in the sequence used to witness the existence of some counterexamples.

1 Up to a suitable renaming: the domain is (L↓, ⊆) instead of (L, �), the parameters
are ⊥↓, b↓, b↓

r , p↓ instead of i, f, g, p and the negative sequence is Y instead of y.

Exploiting Adjoints in PDR 53

Definition 16 (Kleene sequence, from [19]). A sequence c = ck, . . . , cn−1 of
elements of L is a Kleene sequence if the conditions (C1) and (C2) below hold.
It is conclusive if also condition (C0) holds.

(C0) c1 � b(⊥), (C1) cn−1 �� p, (C2) ∀j ∈ [k, n − 2]. cj+1 � b(cj).

LT-PDR tries to construct an under-approximation cn−1 of bn−2(⊥) that
violates the property p. The Kleene sequence is constructed by trial and error,
starting by some arbitrary choice of cn−1.

AdjointPDR crucially differs from LT-PDR in the search for counterex-
amples: LT-PDR under-approximates the final chain while AdjointPDR over-
approximates it. The algorithms are thus incomparable. However, we can draw
a formal correspondence between AdjointPDR↓ and LT-PDR by showing that
AdjointPDR↓ simulates LT-PDR, but cannot be simulated by LT-PDR. In
fact, AdjointPDR↓ exploits the existence of the adjoint to start from an over-
approximation Yn−1 of p↓ and computes backward an over-approximation of the
set of safe states. Thus, the key difference comes from the strategy to look for
a counterexample: to prove μb �� p, AdjointPDR↓ tries to find Yn−1 satisfying
p ∈ Yn−1 and μb �∈ Yn−1 while LT-PDR tries to find cn−1 s.t. cn−1 �� p and
cn−1 � μb.

Theorem 17 below states that any execution of LT-PDR can be mimicked
by AdjointPDR↓. The proof exploits a map from LT-PDR’s Kleene sequences c
to AdjointPDR↓’s negative sequences neg(c) of a particular form. Let (L↑,⊇)
be the complete lattice of upper sets, namely subsets X ⊆ L such that
X = X↑ def= {x′ ∈ L | ∃x ∈ X .x � x′}. There is an isomorphism ¬ : (L↑,⊇)

∼=←→
(L↓,⊆) mapping each X ⊆ S into its complement. For a Kleene sequence
c = ck, . . . , cn−1 of LT-PDR, the sequence neg(c) def= ¬({ck}↑), . . . ,¬({cn−1}↑)
is a negative sequence, in the sense of Definition 3, for AdjointPDR↓. Most impor-
tantly, the assignment c �→ neg(c) extends to a function, from the states of
LT-PDR to those of AdjointPDR↓, that is proved to be a strong simulation [24].

Theorem 17. AdjointPDR↓ simulates LT-PDR.

Remarkably, AdjointPDR↓’s negative sequences are not limited to the images
of LT-PDR’s Kleene sequences: they are more general than the complement
of the upper closure of a singleton. In fact, a single negative sequence of
AdjointPDR↓ can represent multiple Kleene sequences of LT-PDR at once. Intu-
itively, this means that a single execution of AdjointPDR↓ can correspond to
multiple runs of LT-PDR. We can make this formal by means of the following
result.

Proposition 18. Let {cm }m∈M be a family of Kleene sequences. Then its point-
wise intersection

⋂
m∈M neg(cm) is a negative sequence.

The above intersection is pointwise in the sense that, for all j ∈ [k, n − 1],
it holds (

⋂
m∈M neg(cm))j

def=
⋂

m∈M (neg(cm))j = ¬({cm
j | m ∈ M}↑): intu-

itively, this is (up to neg(·)) a set containing all the M counterexamples. Note

54 M. Kori et al.

that, if the negative sequence of AdjointPDR↓ makes (A3) hold as an equality, as
it is possible with any simple heuristic (see Proposition 10), then its complement
contains all Kleene sequences possibly computed by LT-PDR.

Proposition 19. Let c be a Kleene sequence and Y be the negative sequence s.t.
Yj = (b↓

r)
n−1−j(p↓) for all j ∈ [k, n − 1]. Then cj ∈ ¬(Yj) for all j ∈ [k, n − 1].

While the previous result suggests that simple heuristics are always the best
in theory, as they can carry all counterexamples, this is often not the case in
practice, since they might be computationally hard and outperformed by some
smart over-approximations. An example is given by (6) in the next section.

5 Instantiating AdjointPDR↓ for MDPs

In this section we illustrate how to use AdjointPDR↓ to address the max reach-
ability problem [1] for Markov Decision Processes.

A Markov Decision Process (MDP) is a tuple (A,S, sι, δ) where A is a set of
labels, S is a set of states, sι ∈ S is an initial state, and δ : S × A → DS + 1 is a
transition function. Here DS is the set of probability distributions over S, namely
functions d : S → [0, 1] such that

∑
s∈S d(s) = 1, and DS+1 is the disjoint union

of DS and 1 = {∗}. The transition function δ assigns to every label a ∈ A and
to every state s ∈ S either a distribution of states or ∗ ∈ 1. We assume that
both S and A are finite sets and that the set Act(s) def= {a ∈ A | δ(s, a) �= ∗} of
actions enabled at s is non-empty for all states.

Intuitively, the max reachability problem requires to check whether the proba-
bility of reaching some bad states β ⊆ S is less than or equal to a given threshold
λ ∈ [0, 1]. Formally, it can be expressed in lattice theoretic terms, by consider-
ing the lattice ([0, 1]S ,≤) of all functions d : S → [0, 1], often called frames,
ordered pointwise. The max reachability problem consists in checking μb ≤ p for
p ∈ [0, 1]S and b : [0, 1]S → [0, 1]S , defined for all d ∈ [0, 1]S and s ∈ S, as

p(s) def=

{
λ if s = sι,

1 if s �= sι,
b(d)(s) def=

⎧
⎨

⎩

1 if s ∈ β,

max
a∈Act(s)

∑

s′∈S

d(s′) · δ(s, a)(s′) if s /∈ β.

The reader is referred to [1] for all details.
Since b is not of the form f � i for a left adjoint f (see e.g. [19]), rather

than using AdjointPDR, one can exploit AdjointPDR↓. Beyond the simple ini-
tial heuristic, which is always applicable and enjoys negative termination, we
illustrate now two additional heuristics that are experimentally tested in Sect. 6.

The two novel heuristics make the same choices in (Candidate) and (Decide).
They exploit functions α : S → A, also known as memoryless schedulers, and the
function bα : [0, 1]S → [0, 1]S defined for all d ∈ [0, 1]S and s ∈ S as follows:

bα(d)(s) def=

{
1 if s ∈ β,
∑

s′∈S d(s′) · δ(s, α(s))(s′) otherwise.

Exploiting Adjoints in PDR 55

Since for all D ∈ ([0, 1]S)↓, b↓
r(D) = {d | b(d) ∈ D} =

⋂
α{d | bα(d) ∈ D} and

since AdjointPDR↓ executes (Decide) only when b(xk−1) /∈ Yk, there should exist
some α such that bα(xk−1) /∈ Yk. One can thus fix

(x‖Y)n,k �→
{

p↓ if (x‖Y)n,k
Ca→

{d | bα(d) ∈ Yk} if (x‖Y)n,k
D→

(6)

Intuitively, such choices are smart refinements of those in (3): for (Candidate)
they are exactly the same; for (Decide) rather than taking b↓

r(Yk), we consider a
larger lower-set determined by the labels chosen by α. This allows to represent
each Yj as a set of d ∈ [0, 1]S satisfying a single linear inequality, while using
b↓
r(Yk) would yield a systems of possibly exponentially many inequalities (see

Example 21 below). Moreover, from Theorem 12, it follows that such choices
ensures negative termination.

Corollary 20. Let h be a legit heuristic defined for (Candidate) and (Decide)
as in (6). If μb �≤ p, then AdjointPDR↓

h terminates.

Example 21. Consider the maximum reachability problem with threshold λ = 1
4

and β = {s3} for the following MDP on alphabet A = {a, b} and sι = s0.

s2

b,1
�� s0

b, 13

��
a, 12 b, 23

a, 12

�� s1

a, 12
�� a, 12 �� s3 a,1

��
,

Hereafter we write d ∈ [0, 1]S as column vectors with four entries v0 . . . v3 and
we will use · for the usual matrix multiplication. With this notation, the lower
set p↓ ∈ ([0, 1]S)↓ and b : [0, 1]S → [0, 1]S can be written as

p↓ = {
[

v0
v1
v2
v3

]

| [1 0 0 0]·
[

v0
v1
v2
v3

]

≤ [1
4]} and b(

[
v0
v1
v2
v3

]

) =

[
max(

v1+v2
2 ,

v0+2v2
3)

v0+v3
2
v0
1

]

.

Amongst the several memoryless schedulers, only two are relevant for us: ζ
def=

(s0 �→ a, s1 �→ a, s2 �→ b, s3 �→ a) and ξ
def= (s0 �→ b, s1 �→ a, s2 �→ b, s3 �→ a).

By using the definition of bα : [0, 1]S → [0, 1]S , we have that

bζ(
[

v0
v1
v2
v3

]

) =

[
v1+v2

2
v0+v3

2
v0
1

]

and bξ(
[

v0
v1
v2
v3

]

) =

[
v0+2v2

3
v0+v3

2
v0
1

]

.

It is immediate to see that the problem has negative answer, since using ζ in
4 steps or less, s0 can reach s3 already with probability 1

4 + 1
8 .

To illustrate the advantages of (6), we run AdjointPDR↓ with the simple
initial heuristic and with the heuristic that only differs for the choice in (Decide),
taken as in (6). For both heuristics, the first iterations are the same: several

56 M. Kori et al.

0 def= {
v0
v1
v2
v3

| [1 0 0 0]·
v0
v1
v2
v3

≤ [14]} {
v0
v1
v2
v3

| [1 0 0 0]·
v0
v1
v2
v3

≤ [14]}

1 def= {
[

v0
v1
v2
v3

]

|
[
0 1 1 0
1 0 2 0

]
·
[

v0
v1
v2
v3

]

≤
[

1
2
3
4

]
} {

[
v0
v1
v2
v3

]

| [0 1
2

1
2 0]·

[
v0
v1
v2
v3

]

≤ [14]}

2 def= {
[

v0
v1
v2
v3

]

|
[
3 0 0 1
2 1 1 0
4 0 2 0

]

·
[

v0
v1
v2
v3

]

≤
[

1
3
2
9
4

]

} {
[

v0
v1
v2
v3

]

| [34 0 0 1
4]·

[
v0
v1
v2
v3

]

≤ [14]}

3 def= {
[

v0
v1
v2
v3

]

|

⎡

⎢
⎢
⎣

0 3
2

3
2 0

1 0 2 0
3
2 1 1 1

2
13
6 0 4

3
1
2

2 2 2 0
10
3 0 8

3 0

⎤

⎥
⎥
⎦·

[
v0
v1
v2
v3

]

≤

⎡

⎢
⎢
⎣

0
0
3
2
3
2
9
4
9
4

⎤

⎥
⎥
⎦} {

[
v0
v1
v2
v3

]

| [0 3
8

3
8 0]·

[
v0
v1
v2
v3

]

≤ [0]}

4 def= {
[

v0
v1
v2
v3

]

|
[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]

·
[

v0
v1
v2
v3

]

≤
[

0
0
0
0

]

} = {
[

0
0
0
0

]

} {
[

v0
v1
v2
v3

]

| [9
16 0 0 3

16]·
[

v0
v1
v2
v3

]

≤ [0]}
5 def=

Fig. 5. The elements of the negative sequences computed by AdjointPDR↓ for the MDP
in Example 21. In the central column, these elements are computed by means of the
simple initial heuristics, that is F i = (b↓

r)
i(p↓). In the rightmost column, these elements

are computed using the heuristic in (6). In particular F i = {d | bζ(d) ∈ F i−1} for i ≤ 3,
while for i ≥ 4 these are computed as F i = {d | bξ(d) ∈ F i−1}.

repetitions of (Candidate), (Conflict) and (Unfold) exploiting elements of the
positive chain that form the initial chain (except for the last element xn−1).

(∅
[

0
0
0
0

][
1
1
1
1

]
‖ε)3,3

Ca→Co→ (∅
[

0
0
0
0

][
0
0
0
1

]
‖ε)3,3

U→Ca→Co→ U→Ca→Co→ U→Ca→Co→ U→Ca→ (∅
[

0
0
0
0

][
0
0
0
1

][
0
1
2
0
1

][1
4
1
2
0
1

][1
4
5
8
1
4
1

][
1
1
1
1

]
‖p↓)7,6.

In the latter state the algorithm has to perform (Decide), since b(x5) /∈ p↓.
Now the choice of z in (Decide) is different for the two heuristics: the former uses
b↓
r(p

↓) = {d | b(d) ∈ p↓}, the latter uses {d | bζ(d) ∈ p↓}. Despite the different
choices, both the heuristics proceed with 6 steps of (Decide):

(∅
[

0
0
0
0

][
0
0
0
1

][
0
1
2
0
1

][1
4
1
2
0
1

][1
4
5
8
1
4
1

][
1
1
1
1

]
‖F0)7,6

D→ D→ D→ D→ D→ (∅
[

0
0
0
0

][
0
0
0
1

][
0
1
2
0
1

][1
4
1
2
0
1

][1
4
5
8
1
4
1

][
1
1
1
1

]
‖F5, F4, F3, F2, F1, F0)7,1

The element of the negative sequence F i are illustrated in Fig. 5 for both the
heuristics. In both cases, F5 = ∅ and thus AdjointPDR↓ returns false.

To appreciate the advantages provided by (6), it is enough to compare the
two columns for the F i in Fig. 5: in the central column, the number of inequalities
defining F i significantly grows, while in the rightmost column is always 1.

Whenever Yk is generated by a single linear inequality, we observe that Yk =
{d ∈ [0, 1]S | ∑

s∈S(rs · d(s)) ≤ r} for suitable non-negative real numbers r and
rs for all s ∈ S. The convex set Yk is generated by finitely many d ∈ [0, 1]S

enjoying a convenient property: d(s) is different from 0 and 1 only for at most
one s ∈ S. The set of its generators, denoted by Gk, can thus be easily computed.

Exploiting Adjoints in PDR 57

We exploit this property to resolve the choice for (Conflict). We consider its sub
set Zk

def= {d ∈ Gk | b(xk−1) ≤ d} and define zB , z01 ∈ [0, 1]S for all s ∈ S as

zB(s)def=

{
(
∧ Zk)(s) if rs �= 0,Zk �= ∅

b(xk−1)(s) otherwise
z01(s)

def=

{
�zB(s)� if rs = 0,Zk �= ∅
zB(s) otherwise

(7)

where, for u ∈ [0, 1], �u� denotes 0 if u = 0 and 1 otherwise. We call hCoB and
hCo01 the heuristics defined as in (6) for (Candidate) and (Decide) and as zB,
respectively z01, for (Conflict). The heuristics hCo01 can be seen as a Boolean
modification of hCoB, rounding up positive values to 1 to accelerate convergence.

Proposition 22. The heuristics hCoB and hCo01 are legit.

By Corollary 20, AdjointPDR↓ terminates for negative answers with both
hCoB and hCo01. We conclude this section with a last example.

Example 23. Consider the following MDP with alphabet A = {a, b} and sι = s0

s2a,1
��

s0

a,1

��

b, 12

��

b, 12

�� s1

a, 13
�� a, 23 �� s3 a,1

��

and the max reachability problem with threshold λ = 2
5 and β = {s3}. The

lower set p↓ ∈ ([0, 1]S)↓ and b : [0, 1]S → [0, 1]S can be written as

p↓ = {
[

v0
v1
v2
v3

]

| [1 0 0 0]·
[

v0
v1
v2
v3

]

≤ [2
5]} and b(

[
v0
v1
v2
v3

]

) =

[
max(v0,

v1+v2
2)

v0+2·v3
3
v2
1

]

With the simple initial heuristic, AdjointPDR↓ does not terminate. With the
heuristic hCo01, it returns true in 14 steps, while with hCoB in 8. The first 4
steps, common to both hCoB and hCo01, are illustrated below.

(∅
[

0
0
0
0

][
1
1
1
1

]
‖ε)3,3

Ca→ (∅
[

0
0
0
0

][
1
1
1
1

]
‖p↓)3,2

Co→ (∅
[

0
0
0
0

][
2
5
0
0
1

]
‖ε)3,3 b(

[
0
0
0
0

]
) =

[
0
0
0
1

]
Z2 = {

[
2
5
0
0
1

]
,

[
2
5
1
0
1

]
,

[
2
5
0
1
1

]
,

[
2
5
1
1
1

]
}

U→Ca→(∅
[

0
0
0
0

][
2
5
0
0
1

][
1
1
1
1

]
‖p↓)4,3

Co→ (∅
[

0
0
0
0

][
2
5
0
0
1

][
2
5
1
0
1

]
‖ε)4,4 (∅

[
0
0
0
0

][
2
5
0
0
1

][2
5
4
5
0
1

]
‖ε)4,4 b(

[
2
5
0
0
1

]
) =

[2
5
4
5
0
1

]
Z3 = {

[
2
5
1
0
1

]
,

[
2
5
1
1
1

]
}

Observe that in the first (Conflict) zB = z01, while in the second z01(s1) = 1
and zB(s1) = 4

5 , leading to the two different states prefixed by vertical lines.

6 Implementation and Experiments

We first developed, using Haskell and exploiting its abstraction features, a com-
mon template that accommodates both AdjointPDR and AdjointPDR↓. It is a

58 M. Kori et al.

program parametrized by two lattices—used for positive chains and negative
sequences, respectively—and by a heuristic.

For our experiments, we instantiated the template to AdjointPDR↓ for MDPs
(letting L = [0, 1]S), with three different heuristics: hCoB and hCo01 from Propo-
sition 22; and hCoS introduced below. Besides the template (∼100 lines), we
needed ∼140 lines to account for hCoB and hCo01, and additional ∼100 lines
to further obtain hCoS. All this indicates a clear benefit of our abstract the-
ory: a general template can itself be coded succinctly; instantiation to concrete
problems is easy, too, thanks to an explicitly specified interface of heuristics.

Our implementation accepts MDPs expressed in a symbolic format inspired
by Prism models [20], in which states are variable valuations and transitions are
described by symbolic functions (they can be segmented with symbolic guards
{guardi}i). We use rational arithmetic (Rational in Haskell) for probabilities
to limit the impact of rounding errors.

Heuristics. The three heuristics (hCoB, hCo01, hCoS) use the same choices in
(Candidate) and (Decide), as defined in (6), but different ones in (Conflict).

The third heuristics hCoS is a symbolic variant of hCoB; it relies on our sym-
bolic model format. It uses zS for z in (Conflict), where zS(s) = zB(s) if rs �= 0
or Zk = ∅. The definition of zS(s) otherwise is notable: we use a piecewise affine
function (ti ·s+ui)i for zS(s), where the affine functions (ti ·s+ui)i are guarded
by the same guards {guardi}i of the MDP’s transition function. We let the SMT
solver Z3 [25] search for the values of the coefficients ti, ui, so that zS satisfies
the requirements of (Conflict) (namely b(xk−1)(s) ≤ zS(s) ≤ 1 for each s ∈ S
with rs = 0), together with the condition b(zS) ≤ zS for faster convergence. If
the search is unsuccessful, we give up hCoS and fall back on the heuristic hCoB.

As a task common to the three heuristics, we need to calculate Zk = {d ∈ Gk |
b(xk−1) ≤ d} in (Conflict) (see (7)). Rather than computing the whole set Gk

of generating points of the linear inequality that defines Yk, we implemented an
ad-hoc algorithm that crucially exploits the condition b(xk−1) ≤ d for pruning.

Experiment Settings. We conducted the experiments on Ubuntu 18.04 and
AWS t2.xlarge (4 CPUs, 16 GB memory, up to 3.0 GHz Intel Scalable Processor).
We used several Markov chain (MC) benchmarks and a couple of MDP ones.

Research Questions. We wish to address the following questions.

RQ1 Does AdjointPDR↓ advance the state-of-the-art performance of PDR algo-
rithms for probabilistic model checking?

RQ2 How does AdjointPDR↓’s performance compare against non-PDR algo-
rithms for probabilistic model checking?

RQ3 Does the theoretical framework of AdjointPDR↓ successfully guide the
discovery of various heuristics with practical performance?

RQ4 Does AdjointPDR↓ successfully manage nondeterminism in MDPs (that
is absent in MCs)?

Experiments on MCs (Table 1). We used six benchmarks: Haddad-Monmege
is from [17]; the others are from [3,19]. We compared AdjointPDR↓ (with three

Exploiting Adjoints in PDR 59

Table 1. Experimental results on MC benchmarks. |S| is the number of states, P
is the reachability probability (calculated by manual inspection), λ is the threshold
in the problem P ≤? λ (shaded if the answer is no). The other columns show the
average execution time in seconds; TO is timeout (900 s); MO is out-of-memory. For
AdjointPDR↓ and LT-PDR we used the tasty-bench Haskell package and repeated
executions until std. dev. is < 5% (at least three execs). For PrIC3 and Storm, we
made five executions. Storm’s execution does not depend on λ: it seems to answer
queries of the form P ≤? λ by calculating P . We observed a wrong answer for the
entry with (†) (Storm, sp.-num., Haddad-Monmege); see the discussion of RQ2.

Benchmark |S| P λ AdjointPDR↓ LT-PDR PrIC3 Storm

hCoB hCo01 hCoS none lin. pol. hyb. sp.-num. sp.-rat. sp.-sd.

Grid

102 0.033
0.3 0.013 0.022 0.659 0.343 1.383 23.301 MO MO

0.010 0.010 0.010
0.2 0.013 0.031 0.657 0.519 1.571 26.668 TO MO

103 <0.001
0.3 1.156 2.187 5.633 126.441 TO TO TO MO

0.010 0.017 0.011
0.2 1.146 2.133 5.632 161.667 TO TO TO MO

BRP 103 0.035

0.1 12.909 7.969 55.788 TO TO TO MO MO

0.012 0.018 0.0110.01 1.977 8.111 5.645 21.078 60.738 626.052 524.373 823.082

0.005 0.604 2.261 2.709 1.429 12.171 254.000 197.940 318.840

Zero-
Conf

102 0.5

0.9 1.217 68.937 0.196 TO 19.765 136.491 0.630 0.468

0.010 0.018 0.011
0.75 1.223 68.394 0.636 TO 19.782 132.780 0.602 0.467

0.52 1.228 60.024 0.739 TO 19.852 136.533 0.608 0.474

0.45 <0.001 0.001 0.001 <0.001 0.035 0.043 0.043 0.043

104 0.5

0.9 MO TO 7.443 TO TO TO 0.602 0.465

0.037 262.193 0.031
0.75 MO TO 15.223 TO TO TO 0.599 0.470

0.52 MO TO TO TO TO TO 0.488 0.475

0.45 0.108 0.119 0.169 0.016 0.035 0.040 0.040 0.040

Chain 103 0.394

0.9 36.083 TO 0.478 TO 269.801 TO 0.938 0.686

0.010 0.014 0.011
0.4 35.961 TO 394.955 TO 271.885 TO 0.920 TO

0.35 101.351 TO 454.892 435.199 238.613 TO TO TO

0.3 62.036 463.981 120.557 209.346 124.829 746.595 TO TO

Double-
Chain

103 0.215

0.9 12.122 7.318 TO TO TO TO 1.878 2.053

0.011 0.018 0.010
0.3 12.120 20.424 TO TO TO TO 1.953 2.058

0.216 12.096 19.540 TO TO TO TO 172.170 TO

0.15 12.344 16.172 TO 16.963 TO TO TO TO

Haddad-
Mon-
mege

41 0.7
0.9 0.004 0.009 8.528 TO 1.188 31.915 TO MO

0.011 0.011 1.560
0.75 0.004 0.011 2.357 TO 1.209 32.143 TO 712.086

103 0.7
0.9 59.721 61.777 TO TO TO TO TO TO

0.013 (†) 0.043 TO
0.75 60.413 63.050 TO TO TO TO TO TO

heuristics) against LT-PDR [19], PrIC3 (with four heuristics none, lin., pol.,
hyb., see [3]), and Storm 1.5 [11]. Storm is a recent comprehensive toolsuite
that implements different algorithms and solvers. Among them, our comparison
is against sparse-numeric, sparse-rational, and sparse-sound. The sparse engine
uses explicit state space representation by sparse matrices; this is unlike another
representative dd engine that uses symbolic BDDs. (We did not use dd since it
often reported errors, and was overall slower than sparse.) Sparse-numeric is a
value-iteration (VI) algorithm; sparse-rational solves linear (in)equations using
rational arithmetic; sparse-sound is a sound VI algorithm [26].2

2 There are another two sound algorithms in Storm: one that utilizes interval iter-
ation [2] and the other does optimistic VI [16]. We have excluded them from the
results since we observed that they returned incorrect answers.

60 M. Kori et al.

Table 2. Experimental results on MDP benchmarks. The legend is the same as Table 1,
except that P is now the maximum reachability probability.

Benchmark |S| P λ AdjointPDR↓ Storm

hCoB hCo01 hCoS sp.-num sp.-rat. sp.-sd.

CDrive2 38 0.865

0.9 MO 0.172 TO

0.019 0.019 0.0180.75 MO 0.058 TO

0.5 0.015 0.029 86.798

TireWorld 8670 0.233

0.9 MO 3.346 TO

0.070 0.164 0.069
0.75 MO 3.337 TO

0.5 MO 6.928 TO

0.2 4.246 24.538 TO

Experiments on MDPs (Table 2). We used two benchmarks from [17]. We
compared AdjointPDR↓ only against Storm, since RQ1 is already addressed using
MCs (besides, PrIC3 did not run for MDPs).

Discussion. The experimental results suggest the following answers to the RQs.

RQ1. The performance advantage of AdjointPDR↓, over both LT-PDR and
PrIC3, was clearly observed throughout the benchmarks. AdjointPDR↓ out-
performed LT-PDR, thus confirming empirically the theoretical observation in
Sect. 4.2. The profit is particularly evident in those instances whose answer is
positive. AdjointPDR↓ generally outperformed PrIC3, too. Exceptions are in
ZeroConf, Chain and DoubleChain, where PrIC3 with polynomial (pol.) and
hybrid (hyb.) heuristics performs well. This seems to be thanks to the expres-
sivity of the polynomial template in PrIC3, which is a possible enhancement we
are yet to implement (currently our symbolic heuristic hCoS uses only the affine
template).

RQ2. The comparison with Storm is interesting. Note first that Storm’s sparse-
numeric algorithm is a VI algorithm that gives a guaranteed lower bound without
guaranteed convergence. Therefore its positive answer to P ≤? λ may not be
correct. Indeed, for Haddad-Monmege with |S| ∼ 103, it answered P = 0.5
which is wrong ((†) in Table 1). This is in contrast with PDR algorithms that
discovers an explicit witness for P ≤ λ via their positive chain.

Storm’s sparse-rational algorithm is precise. It was faster than PDR algo-
rithms in many benchmarks, although AdjointPDR↓ was better or comparable
in ZeroConf (104) and Haddad-Monmege (41), for λ such that P ≤ λ is true.
We believe this suggests a general advantage of PDR algorithms, namely to
accelerate the search for an invariant-like witness for safety.

Storm’s sparse-sound algorithm is a sound VI algorithm that returns cor-
rect answers aside numerical errors. Its performance was similar to that of
sparse-numeric, except for the two instances of Haddad-Monmege: sparse-sound

Exploiting Adjoints in PDR 61

returned correct answers but was much slower than sparse-numeric. For these
two instances, AdjointPDR↓ outperformed sparse-sound.

It seems that a big part of Storm’s good performance is attributed to the
sparsity of state representation. This is notable in the comparison of the two
instances of Haddad-Monmege (41 vs. 103): while Storm handles both of them
easily, AdjointPDR↓ struggles a bit in the bigger instance. Our implementation
can be extended to use sparse representation, too; this is future work.

RQ3. We derived the three heuristics (hCoB, hCo01, hCoS) exploiting the theory
of AdjointPDR↓. The experiments show that each heuristic has its own strength.
For example, hCo01 is slower than hCoB for MCs, but it is much better for MDPs.
In general, there is no silver bullet heuristic, so coming up with a variety of them
is important. The experiments suggest that our theory of AdjointPDR↓ provides
great help in doing so.

RQ4. Table 2 shows that AdjointPDR↓ can handle nondeterminism well: once a
suitable heuristic is chosen, its performances on MDPs and on MCs of similar
size are comparable. It is also interesting that better-performing heuristics vary,
as we discussed above.

Summary. AdjointPDR↓ clearly outperforms existing probabilistic PDR algo-
rithms in many benchmarks. It also compares well with Storm—a highly sophis-
ticated toolsuite—in a couple of benchmarks. These are notable especially given
that AdjointPDR↓ currently lacks enhancing features such as richer symbolic
templates and sparse representation (adding which is future work). Overall, we
believe that AdjointPDR↓ confirms the potential of PDR algorithms in proba-
bilistic model checking. Through the three heuristics, we also observed the value
of an abstract general theory in devising heuristics in PDR, which is probably
true of verification algorithms in general besides PDR.

References

1. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
2. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-

ability of your model checker: interval iteration for Markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 8

3. Batz, K., et al.: PrIC3: property directed reachability for MDPs. In: Lahiri, S.K.,
Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 512–538. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8 27

4. Bonchi, F., Ganty, P., Giacobazzi, R., Pavlovic, D.: Sound up-to techniques and
complete abstract domains. In: Dawar, A., Grädel, E. (eds.) Proceedings of LICS
2018, pp. 175–184. ACM (2018). https://doi.org/10.1145/3209108.3209169

5. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

6. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 23

https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1145/3209108.3209169
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31424-7_23

62 M. Kori et al.

7. Cousot, P.: Partial completeness of abstract fixpoint checking. In: Choueiry, B.Y.,
Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 1–25. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-44914-0 1

8. Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021)
9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM (1977). https://doi.org/10.1145/512950.512973

10. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd Edn. Cam-
bridge University Press (2002)

11. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

12. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Bjesse, P., Slobodová, A. (eds.) Proc. of FMCAD 2011.
pp. 125–134. FMCAD Inc. (2011). http://dl.acm.org/citation.cfm?id=2157675

13. Feldman, Y.M.Y., Sagiv, M., Shoham, S., Wilcox, J.R.: Property-directed reach-
ability as abstract interpretation in the monotone theory. Proc. ACM Program.
Lang. 6(POPL), 1–31 (2022). https://doi.org/10.1145/3498676

14. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47(2), 361–416 (2000). https://doi.org/10.1145/333979.333989

15. Gurfinkel, A.: IC3, PDR, and friends (2015). https://arieg.bitbucket.io/pdf/
gurfinkel ssft15.pdf

16. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 488–511. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8 26

17. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quanti-
tative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 20

18. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 13

19. Kori, M., Urabe, N., Katsumata, S., Suenaga, K., Hasuo, I.: The lattice-theoretic
essence of property directed reachability analysis. In: Shoham, S., Vizel, Y. (eds.)
Proceedings of CAV 2022, Part I. Lecture Notes in Computer Science, vol.
13371, pp. 235–256. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-13185-1 12

20. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

21. Lange, T., Neuhäußer, M.R., Noll, T., Katoen, J.-P.: IC3 software model checking.
Int. J. Softw. Tools Technol. Trans. 22(2), 135–161 (2019). https://doi.org/10.
1007/s10009-019-00547-x

22. Levy, P.B.: Call-By-Push-Value: A Functional/Imperative Synthesis, Semantics
Structures in Computation, vol. 2. Springer, Dordrecht (2004). https://doi.org/
10.1007/978-94-007-0954-6

23. MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, vol. 5. Springer-Verlag, New York (1971)

https://doi.org/10.1007/3-540-44914-0_1
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
http://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1145/3498676
https://doi.org/10.1145/333979.333989
https://arieg.bitbucket.io/pdf/gurfinkel_ssft15.pdf
https://arieg.bitbucket.io/pdf/gurfinkel_ssft15.pdf
https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-030-17462-0_20
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-031-13185-1_12
https://doi.org/10.1007/978-3-031-13185-1_12
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/s10009-019-00547-x
https://doi.org/10.1007/s10009-019-00547-x
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1007/978-94-007-0954-6

Exploiting Adjoints in PDR 63

24. Milner, R.: Communication and Concurrency. Prentice-Hall Inc, USA (1989)
25. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

26. Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3 37

27. Seufert, T., Scholl, C.: Sequential verification using reverse PDR. In: Große, D.,
Drechsler, R. (eds.) Proceedings of MBMV 2017, pp. 79–90. Shaker Verlag (2017)

28. Seufert, T., Scholl, C.: Combining PDR and reverse PDR for hardware model
checking. In: Madsen, J., Coskun, A.K. (eds.) Proceedings of DATE 2018, pp.
49–54. IEEE (2018). https://doi.org/10.23919/DATE.2018.8341978

29. Seufert, T., Scholl, C.: fbPDR: In-depth combination of forward and backward
analysis in property directed reachability. In: Teich, J., Fummi, F. (eds.) Proceed-
ings of DATE 2019, pp. 456–461. IEEE (2019). https://doi.org/10.23919/DATE.
2019.8714819

30. Suda, M.: Property directed reachability for automated planning. In: Chien, S.A.,
Do, M.B., Fern, A., Ruml, W. (eds.) Proceedings of ICAPS 2014. AAAI (2014).
https://doi.org/10.1613/jair.4231

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.23919/DATE.2018.8341978
https://doi.org/10.23919/DATE.2019.8714819
https://doi.org/10.23919/DATE.2019.8714819
https://doi.org/10.1613/jair.4231
http://creativecommons.org/licenses/by/4.0/

Fast Approximations of Quantifier
Elimination

Isabel Garcia-Contreras1(B) , V. K. Hari Govind1 , Sharon Shoham2 ,
and Arie Gurfinkel1

1 University of Waterloo, Waterloo, Canada
{igarciac,hgvedira,agurfink}@uwaterloo.ca

2 Tel-Aviv University, Tel Aviv, Israel
sharon.shoham@cs.tau.ac.il

Abstract. Quantifier elimination (qelim) is used in many automated
reasoning tasks including program synthesis, exist-forall solving, quan-
tified SMT, Model Checking, and solving Constrained Horn Clauses
(CHCs). Exact qelim is computationally expensive. Hence, it is often
approximated. For example, Z3 uses “light” pre-processing to reduce the
number of quantified variables. CHC-solver Spacer uses model-based pro-
jection (MBP) to under-approximate qelim relative to a given model, and
over-approximations of qelim can be used as abstractions.

In this paper, we present the QEL framework for fast approximations
of qelim. QEL provides a uniform interface for both quantifier reduction
and model-based projection. QEL builds on the egraph data structure –
the core of the EUF decision procedure in SMT – by casting quantifier
reduction as a problem of choosing ground (i.e., variable-free) represen-
tatives for equivalence classes. We have used QEL to implement MBP for
the theories of Arrays and Algebraic Data Types (ADTs). We integrated
QEL and our new MBP in Z3 and evaluated it within several tasks that
rely on quantifier approximations, outperforming state-of-the-art.

1 Introduction

Quantifier Elimination (qelim) is used in many automated reasoning tasks
including program synthesis [18], exist-forall solving [8,9], quantified SMT [5],
and Model Checking [17]. Complete qelim, even when possible, is computation-
ally expensive, and solvers often approximate it. We call these approximations
quantifier reductions, to separate them from qelim. The difference is that quan-
tifier reduction might leave some free variables in the formula.

For example, Z3 [19] performs quantifier reduction, called QeLite, by greed-
ily substituting variables by definitions syntactically appearing in the formulas.
While it is very useful, it is necessarily sensitive to the order in which variables
are substituted and depends on definitions appearing explicitly in the formula.
Even though it may seem that these shortcomings need to be tolerated to keep
QeLite fast, in this paper we show that it is not actually the case; we propose
an egraph-based algorithm, QEL, to perform fast quantifier reduction that is
complete relative to some semantic properties of the formula.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 64–86, 2023.
https://doi.org/10.1007/978-3-031-37703-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_4&domain=pdf
http://orcid.org/0000-0001-6098-3895
http://orcid.org/0000-0002-2789-5997
http://orcid.org/0000-0002-7226-3526
http://orcid.org/0000-0002-5964-6792
https://doi.org/10.1007/978-3-031-37703-7_4

Fast Approximations of Quantifier Elimination 65

Egraph [20] is a data structure that compactly represents infinitely many
terms and their equivalence classes. It was initially proposed as a decision
procedure for EUF [20] and used for theorem proving (e.g., Simplify [7]).
Since then, the applications of egraphs have grown. Egraphs are now used as
term rewrite systems in equality saturation [15,23], for theory combination
in SMT solvers [7,21], and for term abstract domains in Abstract Interpreta-
tion [6,10,12].

Using egraphs for rewriting or other formula manipulations (like qelim)
requires a special operation, called extract, that converts nodes in the egraph
back into terms. Term extraction was not considered when egraphs were first
designed [20]. As far as we know, extraction was first studied in the application
of egraphs for compiler optimization. Specifically, equality saturation [15,22] is
an optimization technique over egraphs that consists in populating an egraph
with many equivalent terms inferred by applying rules. When the egraph is sat-
urated, i.e., applying the rules has no effect, the equivalent term that is most
desired, e.g., smallest in size, is extracted. This is a recursive process that extracts
each sub-term by choosing one representative among its equivalents.

Application of egraphs to rewriting have recently resurged driven by the egg
library [24] and the associated workshop1. In [24], the authors show, once again,
the power and versatility of this data structure. Motivated by applications of
equality saturation, they provide a generic and efficient framework equipped
with term extraction, based on an extensible class analysis.

Egraphs seem to be the perfect data-structure to address the challenges of
quantifier reduction: they allow reasoning about infinitely many equivalent terms
and consider all available variable definitions and orderings at once. However,
things are not always what they appear. The key to quantifier reduction is finding
ground (i.e., variable-free) representatives for equivalence classes with free vari-
ables. This goes against existing techniques for term extraction since it requires
selecting larger, rather than smaller, terms to be representatives. Selecting repre-
sentatives carelessly makes term extraction diverge. To our surprise, this problem
has not been studied so far. In fact, egg [24] incorrectly claims that any represen-
tative function can be used with its term extraction, while the implementation
diverges. In this paper, we bridge this gap by providing necessary and sufficient
conditions for a representative function to be admissible for term extraction as
defined in [15,24]. Furthermore, we extend extraction from terms to formulas to
enable extracting a formula of the egraph.

Our main contribution is a new quantifier reduction algorithm, called QEL.
Building on the term extraction described above, it is formulated as finding a
representative function that maximizes the number of ground terms as represen-
tatives. Furthermore, it greedily attempts to represent variables without ground
representatives in terms of other variables, thus further reducing the number
of variables in the output. We show that QEL is complete relative to ground
definitions entailed by the formula. Specifically, QEL guarantees to eliminate a
variable if it is equivalent to a ground term.

1 https://pldi22.sigplan.org/series/egraphs.

https://pldi22.sigplan.org/series/egraphs

66 I. Garcia-Contreras et al.

Whenever an application requires eliminating all free variables, incomplete
techniques such as QeLite or QEL are insufficient. In this case, qelim is under-
approximated using a Model-based Projection (MBP) that uses a model M of a
formula to guide under-approximation using equalities and variable definitions
that are consistent with M . In this paper, we show that MBP can be implemented
using our new techniques for QEL together with the machinery from equality
saturation. Just like SMT solvers use egraphs as glue to combine different theory
solvers, we use egraphs as glue to combine projection for different theories. In
particular, we give an algorithm for MBP in the combined theory of Arrays and
Algebraic DataTypes (ADTs). The algorithm uses insights from QEL to produce
less under-approximate MBPs.

We implemented QEL and the new MBP using egraphs inside the state-of-
art SMT solver Z3 [19]. Our implementation (referred to as Z3eg) replaces the
existing QeLite and MBP. We evaluate our algorithms in two contexts. First,
inside the QSAT [5] algorithm for quantified satisfiability. The performance of
QSAT in Z3eg is improved, compared to QSAT in Z3, when ADTs are involved.
Second, we evaluate our algorithms inside the Constrained Horn Clause (CHC)
solver Spacer [17]. Our experiments show that Spacer in Z3eg solves many
more benchmarks containing nested Arrays and ADTs.

Related Work. Quantifier reduction by variable substitution is widely used in
quantified SMT [5,11]. To our knowledge, we are the first to look at this prob-
lem semantically and provide an algorithm that guarantees that the variable is
eliminated if the formula entails that it has a ground definition.

Term extraction for egraphs comes from equality saturation [15,22]. The
egg Rust library [24] is a recent implementation of equality saturation that
supports rewriting and term extraction. However, we did not use egg because
we integrated QEL within Z3 and built it using Z3 data structures instead.

Model-based projection was first introduced for the Spacer CHC solver for
LIA and LRA [17] and extended to the theory of Arrays [16] and ADTs [5]. Until
now, it was implemented by syntactic rewriting. Our egraph-based MBP imple-
mentation is less sensitive to syntax and, more importantly, allows for combining
MBPs of multiple theories for MBP of the combination. As a result, our MBP
is more general and less model dependent. Specifically, it requires fewer model
equalities and produces more general under-approximations than [5,16].

Outline. The rest of the paper is organized as follows. Section 2 provides back-
ground. Section 3 introduces term extraction, extends it to formulas, and char-
acterizes representative-based term extraction for egraphs. Section 4 presents
QEL, our algorithm for fast quantifier reduction that is relatively complete.
Section 5 shows how to compute MBP combining equality saturation and the
ideas from Sect. 4 for the theories of ADTs and Arrays. All algorithms have been
implemented in Z3 and evaluated in Sect. 6.

Fast Approximations of Quantifier Elimination 67

2 Background

We assume the reader is familiar with multi-sorted first-order logic (FOL) with
equality and the theory of equality with uninterpreted functions (EUF) (for an
introduction see, e.g. [4]). We use ≈ to denote the designated logical equality
symbol. For simplicity of presentation, we assume that the FOL signature Σ
contains only functions (i.e., no predicates) and constants (i.e., 0-ary functions).
To represent predicates, we assume the FOL signature has a designated sort
Bool, and two Bool constants � and ⊥, representing true, and false respectively.
We then use Bool-valued functions to represent predicates, using P (a)≈ � and
P (a)≈ ⊥ to mean that P (a) is true or false, respectively. Informally, we continue
to write P (a) and ¬P (a) as a syntactic sugar for P (a)≈ � and P (a)≈ ⊥, respec-
tively. We use lowercase letters like a, b for constants, and f , g for functions,
and uppercase letters like P , Q for Bool functions that represent predicates. We
denote by ψ∃ the existential closure of ψ.

Quantifier Elimination (qelim). Given a quantifier-free (QF) formula ϕ with
free variables v, quantifier elimination of ϕ∃ is the problem of finding a QF
formula ψ with no free variables such that ψ ≡ ϕ∃. For example, a qelim of
∃a · (a≈ x ∧ f(a) > 3) is f(x) > 3; and, there is no qelim of ∃x · (f(x) > 3),
because it is impossible to restrict f to have “at least one value in its range that
is greater than 3” without a quantifier.

Model Based Projection (MBP). Let ϕ be a formula with free variables v, and
M a model of ϕ. A model-based projection of ϕ relative to M is a QF formula
ψ such that ψ ⇒ ϕ∃ and M |= ψ. That is, ψ has no free variables, is an under-
approximation of ϕ, and satisfies the designated model M , just like ϕ. MBP is
used by many algorithms to under-approximate qelim, when the computation of
qelim is too expensive or, for some reason, undesirable.

Egraphs. An egraph is a well-known data structure to compactly represent a set
of terms and an equivalence relation on those terms [20]. Throughout the paper,
we assume that graphs have an ordered successor relation and use n[i] to denote
the ith successor (child) of a node n. An out-degree of a node n, deg(n), is the
number of edges leaving n. Given a node n, parents(n) denotes the set of nodes
with an outgoing edge to n and children(n) denotes the set of nodes with an
incoming edge from n.

Definition 1. Let Σ be a first-order logic signature. An egraph is a tuple G =
〈N ,E , L, root〉, where

(a) 〈N ,E 〉 is a directed acyclic graph,
(b) L maps nodes to function symbols in Σ or logical variables, and
(c) root : N �→ N maps a node to its root such that the relation ρroot �

{(n, n′) | root(n) = root(n′)} is an equivalence relation on N that is closed
under congruence: (n, n′) ∈ ρroot whenever n and n′ are congruent under
root, i.e., whenever L(n) = L(n′), deg(n) = deg(n′) > 0, and, ∀1 ≤ i ≤
deg(n) · (n[i], n′[i]) ∈ ρroot.

68 I. Garcia-Contreras et al.

ϕ1(x, y, z) z ≈ read(a, x) ∧ k + 1≈ read(a, y) ∧ x ≈ y ∧ 3 > z

>

3 z read

a x

read

y

+

k 1

(0) (1)

(2) (3) (4) (5) (6)

(7) (8) (9) (10) (11)

Fig. 1. Example egraph of ϕ1.

Given an egraph G, the class of a node n ∈ G, class(n) � ρroot(n), is the set
of all nodes that are equivalent to n. The term of n, term(n), with L(n) = f is
f if deg(n) = 0 and f(term(n[1]), . . . , term(n[deg(n)])), otherwise. We assume
that the terms of different nodes are different, and refer to a node n by its term.

An example of an egraph G = 〈N ,E , L, root〉 is shown in Fig. 1. A symbol f
inside a circle depicts a node n with label L(n) = f , solid black and dashed red
arrows depict E and root, respectively. The order of the black arrows from left
to right defines the order of the children. In our examples, we refer to a specific
node i by its number using N(i) or its term, e.g., N(k+1). A node n without an
outgoing red arrow is its own root. A set of nodes connected to the same node
with red edges forms an equivalence class. In this example, root defines the
equivalence classes {N(3),N(4),N(5),N(6)}, {N(8),N(9)}, and a class for each
of the remaining nodes. Examples of some terms in G are term(N(9)) = y and
term(N(5)) = read(a, y).

An Egraph of a Formula. We consider formulas that are conjunctions of equal-
ity literals (recall that we represent predicate applications by equality literals).
Given a formula ϕ � (t1 ≈ u1 ∧ · · ·∧ tk ≈ uk), an egraph from ϕ is built (follow-
ing the standard procedure [20]) by creating nodes for each ti and ui, recursively
creating nodes for their subexpressions, and merging the classes of each pair ti
and ui, computing the congruence closure for root. We write egraph(ϕ) for an
egraph of ϕ constructed via some deterministic procedure based on the recipe
above. Figure 1 shows an egraph(ϕ1) of ϕ1. The equality z ≈ read(a, x) is cap-
tured by N(3) and N(4) belonging to the same class (i.e., red arrow from N(4) to
N(3)). Similarly, the equality x≈ y is captured by a red arrow from N(9) to N(8).
Note that by congruence, ϕ1 implies read(a, x)≈ read(a, y), which, by transitiv-
ity, implies that k+1≈ read(a, x). In Fig. 1, this corresponds to red arrows from
N(5) and N(6) to N(3). The predicate application 3 > z is captured by the red
arrow from N(1) to N(0). From now on, we omit � and ⊥ and the corresponding
edges from figures to avoid clutter.

Explicit and Implicit Equality. Note that egraphs represent equality implicitly
by placing nodes with equal terms in the same equivalence class. Sometimes, it
is necessary to represent equality explicitly, for example, when using egraphs for

Fast Approximations of Quantifier Elimination 69

ϕ2(x, y) eq(c, f(x)) ∧ eq(d, f(y)) ∧ eq(x, y)

c f d f

x y

(a) Ga, interpreting eq as .

c f d f

x y

eq eq

eq

(b) Gb, not interpreting eq .

c f d f

x y

eq eq

eq

(c) Gc, combining (a) and (b).

Fig. 2. Different egraph interpretations for ϕ2.

equality-aware rewriting (e.g., in egg [24]). To represent equality explicitly, we
introduce a binary Bool function eq and write eq(a, b) for an equality that has
to be represented explicitly. We change the egraph algorithm to treat eq(a, b) as
both a function application, and as a logical equality a≈ b: when processing term
eq(a, b), the algorithm both adds eq(a, b) to the egraph, and merges the nodes for
a and b into one class. For example, Fig. 2 shows three different interpretations
of a formula ϕ2 with equality interpreted: implicitly (as in [20]), explicitly (as
in [24]), and both implicitly and explicitly (as in this paper).

3 Extracting Formulas from Egraphs

Egraphs were proposed as a decision procedure for EUF [20] – a setting in
which converting an egraph back to a formula, or extracting, is irrelevant. Term
extraction has been studied in the context of equality saturation and term rewrit-
ing [15,24]. However, existing literature presents extraction as a heuristic, and,
to the best of our knowledge, has not been exhaustively explored. In this section,
we fill these gaps in the literature and extend extraction from terms to formulas.

Term Extraction. We begin by recalling how to extract the term of a node.
The function ntt (node-to-term) in Fig. 3 does an extraction parametrized by a
representative function repr : N �→ N (same as in [24]). A function repr assigns
each class a unique representative node (i.e., nodes in the same class are mapped
to the same representative) so that ρroot = ρrepr. The function ntt extracts a
term of a node recursively, similarly to term, except that the representatives of
the children of a node are used instead of the actual children. We refer to terms
built in this way by ntt(n, repr) and omit repr when it is clear from the context.

As an example, consider repr1 � {N(3),N(8))} for Fig. 1. For readability, we
denote representative functions by sets of nodes that are the class representatives,
omitting N(�) that always represents its class, and omitting all singleton classes.
Thus, repr1 maps all nodes in class(N(3)) to N(3), nodes in class(N(8)) to
N(8), nodes in class(N(�)) to N(�), and all singleton classes to themselves. For
example, ntt(N(5)) extracts read(a, x), since N(9) has as representative N(8).

70 I. Garcia-Contreras et al.

egraph :: to formula(repr, S)
1: Lits := ∅
2: for r = repr(r) ∈ N do
3: t := ntt(r, repr)
4: for n ∈ (class(r) \ r) do
5: if n S then
6: Lits := Lits ∪ {t ≈ ntt(n, repr)}
7: ret Lits

egraph :: ntt(n, repr)
8: f := L[n]
9: if deg(n) = 0 then

10: ret f
11: else
12: for i ∈ [1, deg(n)] do
13: Args[i] := ntt(repr(n[i]), repr)
14: ret f(Args)

Fig. 3. Producing formulas from an egraph.

Formula Extraction. Let G = egraph(ϕ) be an egraph of some formula ϕ. A
formula ψ is a formula of G, written isFormula(G,ψ), if ψ∃ ≡ ϕ∃.

Figure 3 shows an algorithm to_formula(repr, S) to compute a formula
ψ that satisfies isFormula(G,ψ) for a given egraph G. In addition to repr,
to_formula is parameterized by a set of nodes S ⊆ N to exclude2. To pro-
duce the equalities corresponding to the classes, for each representative r, for
each n ∈ (class(r) \ {r}) the output formula has a literal ntt(r)≈ ntt(n). For
example, using repr1 for the egraph in Fig. 1, we obtain for class(N(8)), (x≈ y);
for class(N(3)), (z ≈ read(a, x) ∧ z ≈ read(a, x) ∧ z ≈ k + 1); and for class(N(0)),
(�≈ 3 > z). The final result (slightly simplified) is: x≈ y∧z ≈ read(a, x)∧z ≈ k+
1 ∧ 3 > z.

Let G = egraph(ϕ) for some formula ϕ. Note that, ψ computed by
to_formula is not syntactically the same as ϕ. That is, to_formula is not
an inverse of egraph. Furthermore, since to_formula commits to one represen-
tative per class, it is limited in what formulas it can generate. For example, since
x≈ y is in ϕ1, for any repr, ϕ1 cannot be the result of to_formula, because
the output can contain only one of read(a, x) or read(a, y).

Representative Functions. The representative function is instrumental for deter-
mining the terms that appear in the extracted formula. To illustrate the impor-
tance of representative choice, consider the formula ϕ4 of Fig. 4 and its egraph
G4 = egraph(ϕ4). For now, ignore the blue dotted lines. For repr4a, to_formula
obtains ψa � (x≈ g(6) ∧ f(x)≈ 6 ∧ y ≈ 6). For repr4b, to_formula produces
ψb � (g(6)≈ x∧ f(g(6))≈ 6∧ y ≈ 6). In some applications (like qelim considered
in this paper) ψb is preferred to ψa: simply removing the literals g(6)≈ x and
y ≈ 6 from ψb results in a formula equivalent to ∃x, y · ϕ4 that does not contain
variables. Consider a third representative choice repr4c, for node N(1), ntt does
not terminate: to produce a term for N(1), a term for N(3), the representative
of its child, N(2), is required. Similarly to produce a term for N(3), a term for
the representative of its child node N(5), N(1), is necessary. Thus, none of the
terms can be extracted with repr4c.

For extraction, representative functions repr are either provided explicitly or
implicitly (as in [24]), the latter by associating a cost to nodes and/or terms and

2 The set S affects the result, but for this section, we restrict to the case of S � ∅.

Fast Approximations of Quantifier Elimination 71

ϕ4(x, y) y ≈ f(x) ∧ x ≈ g(y) ∧ f(x)≈ 6

g

y f

x

6

(1)

(3) (4)

(5)

(2)

(a) repr4a N(4),N(5) .

g

y f

x

6

(1)

(3) (4)

(5)

(2)

(b) repr4b N(4),N(1) .

g

y f

x

6

(1)

(3) (4)

(5)

(2)

(c) repr4c N(3),N(1) .

Fig. 4. Egraphs of ϕ4 with Grepr (Color figure online).

letting the representative be a node with minimal cost. However, observe that
not all costs guarantee that the chosen repr can be used (the computation does
not terminate). For example, the ill-defined repr4c from above is a representative
function that satisfies the cost function that assigns function applications cost 0
and variables and constants cost 1. A commonly used cost function is term AST
size, which is sufficient to ensure termination of ntt(n, repr).

We are thus interested in characterizing representative functions motivated
by two observations: not every cost function guarantees that ntt(n) terminates;
and the kind of representative choices that are most suitable for qelim (repr4b)
cannot be expressed over term AST size.

Definition 2. Given an egraph G = 〈N ,E , L, root〉, a representative function
repr : N → N is admissible for G if

(a) repr assigns a unique representative per class,
(b) ρroot = ρrepr, and
(c) the graph Grepr is acyclic, where Grepr = 〈N , Erepr〉 and Erepr �

{(n, repr(c)) | c ∈ children(n), n ∈ N }.
Dotted blue edges in the graphs of Fig. 4 show the corresponding Grepr.

Intuitively, for each node n, all reachable nodes in Grepr are the nodes whose
ntt term is necessary to produce the ntt(n). Observe that Grepr4c

has a cycle,
thus, repr4c is not admissible.

Theorem 1. Given an egraph G and a representative function repr, the func-
tion G.to_formula(repr, ∅) terminates with result ψ such that isFormula(G,ψ)
iff repr is admissible for G.

To the best of our knowledge, Theorem 1 is the first complete characterization
of all terms of a node that can be obtained by extraction based on class repre-
sentatives (via describing all admissible repr, note that the number is finite).
This result contradicts [24], where it is claimed to be possible to extract a term
of a node for any cost function. The counterexample is repr4c. Importantly, this
characterization allows us to explore representative functions outside those in
the existing literature, which, as we show in the next section, is key for qelim.

72 I. Garcia-Contreras et al.

Input: A formula ϕ with free variables v.
Output: A quantifier reduction of ϕ.
QEL(ϕ, v)
1: G := egraph(ϕ)
2: repr := G.find_defs(v)
3: repr := G.refine_defs(repr, v)
4: core := G.find_core(repr)
5: ret G.to_formula(repr, G.Nodes() \ core)

Algorithm 1: QEL – Quantifier reduction using egraphs.

4 Quantifier Reduction

Quantifier reduction is a relaxation of quantifier elimination: given two formulas
ϕ and ψ with free variables v and u, respectively, ψ is a quantifier reduction of
ϕ if u ⊆ v and ϕ∃ ≡ ψ∃. If u is empty, then ψ is a quantifier elimination of ϕ∃.
Note that quantifier reduction is possible even when quantifier elimination is not
(e.g., for EUF). We are interested in an efficient quantifier reduction algorithm
(that can be used as pre-processing for qelim), even if a complete qelim is possible
(e.g., for LIA). In this section, we present such an algorithm called QEL.

Intuitively, QEL is based on the well-known substitution rule: (∃x·x≈ t∧ϕ) ≡
ϕ[x �→ t]. A naive implementation of this rule, called QeLite in Z3, looks for syn-
tactic definitions of the form x≈ t for a variable x and an x-free term t and sub-
stitutes x with t. While efficient, QeLite is limited because of: (a) dependence
on syntactic equality in the formula (specifically, it misses implicit equalities due
to transitivity and congruence); (b) sensitivity to the order in which variables are
eliminated (eliminating one variable may affect available syntactic equalities for
another); and (c) difficulty in dealing with circular equalities such as x≈ f(x).

For example, consider the formula ϕ4(x, y) in Fig. 4. Assume that y is elimi-
nated first using y ≈ f(x), resulting in x≈ g(f(x))∧ f(x)≈ 6. Now, x cannot be
eliminated since the only equality for x is circular. Alternatively, assume that
QeLite somehow noticed that by transitivity, ϕ4 implies y ≈ 6, and obtains
(∃y · ϕ4) � x≈ g(6) ∧ f(x)≈ 6. This time, x≈ g(6) can be used to obtain
f(g(6))≈ 6 that is a qelim of ϕ∃

4 . Thus, both the elimination order and implicit
equalities are crucial.

In QEL, we address the above issues by using an egraph data structure to
concisely capture all implicit equalities and terms. Furthermore, egraphs allow
eliminating multiple variables together, ensuring that a variable is eliminated if
it is equivalent (explicitly or implicitly) to a ground term in the egraph.

Pseudocode for QEL is shown in Algorithm 1. Given an input formula ϕ, QEL
first builds its egraph G (line 1). Then, it finds a representative function repr
that maps variables to equivalent ground terms, as much as possible (line 2).
Next, it further reduces the remaining free variables by refining repr to map
each variable x to an equivalent x-free (but not variable-free) term (line 3).
At this point, QEL is committed to the variables to eliminate. To produce the
output, find_core identifies the subset of the nodes of G, which we call core,

Fast Approximations of Quantifier Elimination 73

ϕ5 x ≈ g(f(x)) ∧ y ≈ h(f(y)) ∧ f(x)≈ f(y)

g

f

x

h

f

y

(1)

(2)

(3)

(4)

(5)

(6)

(a) repr5a= N(1),N(4),N(5)

g

f

x

h

f

y

(1)

(2)

(3)

(4)

(5)

(6)

(b) repr5b= N(3),N(6),N(5)

g

f

x

h

f

y

(1)

(2)

(3)

(4)

(5)

(6)

(c) repr5c= N(1),N(6),N(5)

Fig. 5. Egraphs including Grepr (Color figure online) of ϕ5.

that must be considered in the output (line 4). Finally, to_formula converts
the core of G to the resulting formula (line 5). We show that the combination of
these steps is even stronger than variable substitution.

To illustrate QEL, we apply it on ϕ1 and its egraph G from Fig. 1. The func-
tion find_defs returns repr = {N(6),N(8)}3. Node N(6) is the only node with
a ground term in the equivalence class class(N(3)). This corresponds to the defi-
nition z ≈ k+1. Node N(8) is chosen arbitrarily since class(N(8)) has no ground
terms. There is no refinement possible, so refine_defs returns repr. The core
is N \ {N(3),N(5),N(9)}. Nodes N(3) and N(9) are omitted because they corre-
spond to variables with definitions (under repr), and N(5) is omitted because
it is congruent to N(4) so only one of them is needed. Finally, to_formula
produces k + 1≈ read(a, x) ∧ 3 > k + 1. Variables z and y are eliminated.

In the rest of this section we present QEL in detail and QEL’s key properties.

Finding Ground Definitions. Ground variable definitions are found by selecting
a representative function repr that ensures that the maximum number of terms
in the formula are rewritten into ground equivalent ones, which, in turn, means
finding a ground definition for all variables that have one.

Computing a representative function repr that is admissible and ensures
finding ground definitions when they exist is not trivial. Naive approaches for
identifying ground terms, such as iterating arbitrarily over the classes and select-
ing a representative based on term(n) are not enough – term(n) may not be in
the output formula. It is also not possible to make a choice based on ntt(n),
since, in general, it cannot be yet computed (repr is not known yet).

Admissibility raises an additional challenge since choosing a node that
appears to be a definition (e.g., not a leaf) may cause cycles in Grepr. For exam-
ple, consider ϕ5 of Fig. 5. Assume that N(1) and N(4) are chosen as representa-
tives of their equivalence classes. At this point, Grepr has two edges: 〈N(5),N(4)〉
and 〈N(2),N(1)〉, shown by blue dotted lines in Fig. 5a. Next, if either N(2) or
N(5) are chosen as representatives (the only choices in their class), then Grepr

3 Recall that we only show representatives of non-singleton classes.

74 I. Garcia-Contreras et al.

egraph :: find_defs(v)
1: for n ∈ N do repr(n) := �
2: todo := {leaf (n) | n ∈ N ∧ ground(n)}
3: repr := process(repr, todo)
4: todo := {leaf (n) | n ∈ N}
5: repr := process(repr, todo)
6: ret repr

egraph :: process(repr, todo)
7: while todo �= ∅ do
8: n := todo.pop()
9: if repr(n) �= � then continue

10: for n′ ∈ class(n) do repr(n′) := n

11: for n′ ∈ class(n) do
12: for p ∈ parents(n′) do
13: if ∀c ∈ children(p) · repr(c) �= � then
14: todo.push(p)
15: ret repr

Algorithm 2: Find definitions maximizing groundness.

becomes cyclic (shown in blue in Fig. 5a). Furthermore, backtracking on repre-
sentative choices needs to be avoided if we are to find a representative function
efficiently.

Algorithm 2 finds a representative function repr while overcoming these
challenges. To ensure that the computed representative function is admissible
(without backtracking), Algorithm 2 selects representatives for each class using
a “bottom up” approach. Namely, leaves cannot be part of cycles in Grepr because
they have no outgoing edges. Thus, they can always be safely chosen as repre-
sentatives. Similarly, a node whose children have already been assigned repre-
sentatives in this way (leaves initially), will also never be part of a cycle in Grepr.
Therefore, these nodes are also safe to be chosen as representatives.

This intuition is implemented in find_defs by initializing repr to be unde-
fined (�) for all nodes, and maintaining a workset, todo, containing nodes that, if
chosen for the remaining classes (under the current selection), maintain acyclic-
ity of Grepr. The initialization of todo includes leaves only. The specific choice
of leaves ensures that ground definitions are preferred, and we return to it later.
After initialization, the function process extracts an element from todo and sets
it as the representative of its class if the class has not been assigned yet (lines 9
and 10). Once a class representative has been chosen, on lines 11 to 14, the par-
ents of all the nodes in the class such that all the children have been chosen (the
condition on line 13) are added to todo.

So far, we discussed how admissibility of repr is guaranteed. To also ensure
that ground definitions are found whenever possible, we observe that a similar
bottom up approach identifies terms that can be rewritten into ground ones.
This builds on the notion of constructively ground nodes, defined next.

A class c is ground if c contains a constructively ground, or c-ground for short,
node n, where a node n is c-ground if either (a) term(n) is ground, or (b) n is
not a leaf and the class class(n[i]) of every child n[i] is ground. Note that nodes
labeled by variables are never c-ground.

In the example in Fig. 1, class(N(7)) and class(N(8)) are not ground, because
all their nodes represent variables; class(N(6)) is ground because N(6) is c-
ground. Nodes N(4) and N(5) are not c-ground because the class of N(8) (a

Fast Approximations of Quantifier Elimination 75

child of both nodes) is not ground. Interestingly, N(1) is c-ground, because
class(N(3)) = class(N(6)) is ground, even though its term 3 > z is not ground.

Ground classes and c-ground nodes are of interest because whenever ϕ |=
term(n)≈ t for some node n and ground term t, then class(n) is ground, i.e.,
it contains a c-ground node, where c-ground nodes can be found recursively
starting from ground leaves. Furthermore, the recursive definition ensures that
when the aforementioned c-ground nodes are selected as representatives, the
corresponding terms w.r.t. repr are ground.

As a result, to maximize the ground definitions found, we are interested in
finding an admissible representative function repr that is maximally ground,
which means that for every node n ∈ N , if class(n) is ground, then repr(n) is
c-ground. That means that c-ground nodes are always chosen if they exist.

Theorem 2. Let G = egraph(ϕ) be an egraph and repr an admissible represen-
tative function that is maximally ground. For all n ∈ N , if ϕ |= term(n)≈ t for
some ground term t, then repr(n) is c-ground and ntt(repr(n)) is ground.

We note that not every choice of c-ground nodes as representatives results in
an admissible representative function. For example, consider the formula ϕ4 of
Fig. 4 and its egraph. All nodes except for N(5) and N(2) are c-ground. However,
a repr with N(3) and N(1) as representatives is not admissible. Intuitively, this
is because the “witness” for c-groundness of N(1) in class(N(2)) is N(4) and
not N(3). Therefore, it is important to incorporate the selection of c-ground
representatives into the bottom up procedure that ensures admissibility of repr.

To promote c-ground nodes over non c-ground in the construction of an
admissible representative function, find_defs chooses representatives in two
steps. First, only the ground leaves are processed (line 2). This ensures that
c-ground representatives are chosen while guaranteeing the absence of cycles.
Then, the remaining leaves are added to todo (line 4). This triggers representative
selection of the remaining classes (those that are not ground).

We illustrate find_defs with two examples. For ϕ4 of Fig. 4, there is only one
leaf that is ground, N(4), which is added to todo on line 2, and todo is processed.
N(4) is chosen as representative and, as a consequence, its parent N(1) is added
to todo. N(1) is chosen as representative so N(3), even though added to the queue
later, is not chosen as representative, obtaining repr4b = {N(4),N(1)}. For ϕ5 of
Fig. 5, no nodes are added to todo on line 2. N(3) and N(6) are added on line 4.
In process, both are chosen as representatives obtaining, repr5b.

Algorithm 2 guarantees that repr is maximally ground. Together with The-
orem 2, this implies that all terms that can be rewritten into ground equivalent
ones will be rewritten, which, in turn, means that for each variable that has a
ground definition, its representative is one such definition.

Finding Additional (Non-ground) Definitions. At this point, QEL found ground
definitions while avoiding cycles in Grepr. However, this does not mean that as
many variables as possible are eliminated. A variable can also be eliminated if
it can be expressed as a function of other variables. This is not achieved by

76 I. Garcia-Contreras et al.

egraph :: refine_defs(repr, v)
1: for n ∈ N do
2: if n = repr(n) and L(n) ∈ v then
3: r := n
4: for n′ ∈ class(n) \ {n} do
5: if L(n′) �∈ v then
6: if not cycle(n′, repr) then
7: r := n′;
8: break
9: for n′ ∈ class(n) do

10: repr[n′] := r

11: ret repr

egraph :: find_core(repr, v)
1: core := ∅
2: for n ∈ N s.t. n = repr(n) do
3: core := core ∪ {n}
4: for n′ ∈ (class(n) \ n) do
5: if L(n′) ∈ v then continue
6: else if ∃m ∈ core · m congruent with n′

then
7: continue
8: core := core ∪ {n′}
9: ret core

Algorithm 3: Refining repr and building core.

find_defs. For example, in repr5b both variables are representatives, hence
none is eliminated, even though, since x≈ g(f(y)), x could be eliminated in f5
by rewriting x as a function of y, allowing to eliminate x by rewriting it as a
function of y, g(f(y)). Algorithm 3 shows function refine_defs that refines
maximally ground reprs to further find such definitions while keeping admissi-
bility and ground maximality. This is done by greedily attempting to change class
representatives if they are labeled with a variable. refine_defs iterates over
the nodes in the class checking if there is a different node that is not a variable
and that does not create a cycle in Grepr (line 6). The resulting repr remains
maximally ground because representatives of ground classes are not changed.

For example, let us refine repr5b = {N(3),N(6),N(5)} obtained for ϕ5.
Assume that x is processed first. For class(N(x)), changing the representative
to N(1) does not introduce a cycle (see Fig. 5c), so N(1) is selected. Next, for
class(N(y)), choosing N(4) causes Grepr to be cyclic since N(1) was already cho-
sen (Fig. 5a), so the representative of class(N(y)) is not changed. The final refine-
ment is repr5c = {N(1),N(6),N(5)}.

At this point, QEL found a representative function repr with as many ground
definitions as possible and attempted to refine repr to have fewer variables as
representatives. Next, QEL finds a core of the nodes of the egraph, based on
repr, that will govern the translation of the egraph to a formula. While repr
determines the semantic rewrites of terms that enable variable elimination, it is
the use of the core in the translation that actually eliminates them.

Variable Elimination Based on a Core. A core of an egraph G = 〈N ,E , L, root〉
and a representative function repr, is a subset of the nodes Nc ⊆ N such that
ψc = G.to_formula(repr, N \ Nc) satisfies isFormula(G,ψc).

Algorithm 3 shows pseudocode for find_core that computes a core of an
egraph for a given representative function. The idea is that non-representative
nodes that are labeled by variables, as well as nodes congruent to nodes that
are already in the core, need not be included in the core. The former are not
needed since we are only interested in preserving the existential closure of the
output, while the latter are not needed since congruent nodes introduce the same

Fast Approximations of Quantifier Elimination 77

syntactic terms in the output. For example, for ϕ1 and repr1, find_core returns
core1 = N1\{N(3),N(5),N(9)}. Nodes N(3) and N(9) are excluded because they
are labeled with variables; and node N(5) because it is congruent with N(4).

Finally, QEL produces a quantifier reduction by applying to_formula with
the computed repr and core. Variables that are not in the core (they are not
representatives) are eliminated – this includes variables that have a ground defi-
nition. However, QEL may eliminate a variable even if it is a representative (and
thus it is in the core). As an example, consider ψ(x, y) � f(x)≈ f(y) ∧ x≈ y,
whose egraph G contains 2 classes with 2 nodes each. The core Nc relative to
any admissible repr contains only one representative per class: in the class(N(x))
because both nodes are labeled with variables, and in the class(N(f(x))) because
nodes are congruent. In this case, to_formula(repr, Nc) results in � (since sin-
gleton classes in the core produce no literals in the output formula), a quantifier
elimination of ψ. More generally, the variables are eliminated because none of
them is reachable in Grepr from a non-singleton class in the core (only such
classes contribute literals to the output).

We conclude the presentation of QEL by showing its output for our exam-
ples. For ϕ1, QEL obtains (k+1≈ read(a, x)∧3 > k+1), a quantifier reduction,
using repr1 = {N(3),N(8))} and core1 = N1 \ {N(3),N(5),N(9)}. For ϕ4, QEL
obtains (6≈ f(g(6))), a quantifier elimination, using repr4b = {N(4),N(1)},
and core4b = N4 \ {N(3),N(2)}. Finally, for ϕ5, QEL obtains (y ≈h(f(y)) ∧
f(g(f(y)))≈ f(y)), a quantifier reduction, using repr5c = {N(1),N(6),N(5)}
and core5c = N5 \ {N(3)}.

Guarantees of QEL. Correctness of QEL is straightforward. We conclude this
section by providing two conditions that ensure that a variable is eliminated by
QEL. The first condition guarantees that a variable is eliminated whenever a
ground definition for it exists (regardless of the specific representative function
and core computed by QEL). This makes QEL complete relative to quantifier
elimination based on ground definitions. Relative completeness is an important
property since it means that QEL is unaffected by variable orderings and syn-
tactic rewrites, unlike QeLite. The second condition, illustrated by ψ above,
depends on the specific representative function and core computed by QEL.

Theorem 3. Let ϕ be a QF conjunction of literals with free variables v, and let
v ∈ v. Let G = egraph(ϕ), nv the node in G such that L(nv) = v and repr and
core computed by QEL. We denote by NS = {n ∈ core | (class(n) ∩ core) �=
{n}} the set of nodes from classes with two or more nodes in core. If one of the
following conditions hold, then v does not appear in QEL(ϕ,v):

(1) there exists a ground term t s.t. ϕ |= v ≈ t, or
(2) nv is not reachable from any node in NS in Grepr.

As a corollary, if every variable meets one of the two conditions, then QEL finds
a quantifier elimination.

This concludes the presentation of our quantifier reduction algorithm. Next,
we show how QEL can be used to under-approximate quantifier elimination,
which allows working with formulas for which QEL does not result in a qelim.

78 I. Garcia-Contreras et al.

ElimWrRd1
ϕ[read(write(t, i, v), j)]

ϕ[v] ∧ i ≈ j
M |= i ≈ j

ElimWrRd2
ϕ[read(write(t, i, v), j)]

ϕ[read(t, j)] i j
M |= i j

Fig. 6. Two MBP rules from [16]. The
notation ϕ[t] means that ϕ contains
term t. The rules rewrite all occur-
rences of read(write(t, i, v), j) with v
and read(t, j), respectively.

ElimWrRd

1: function match(t)
2: ret t = read(write(s, i, v), j)
3: function apply(t, M, G)
4: if M |= i ≈ j then
5: G.assert(i ≈ j)
6: G.assert(t ≈ v)
7: else
8: G.assert(i j)
9: G.assert(t read(s, j))

Fig. 7. Adaptation of rules in Fig. 6
using QEL API.

5 Model Based Projection Using QEL

Applications like model checking and quantified satisfiability require efficient
computation of under-approximations of quantifier elimination. They make use
of model-based projection (MBP) algorithms to project variables that cannot be
eliminated cheaply. Our QEL algorithm is efficient and relatively complete, but it
does not guarantee to eliminate all variables. In this section, we use a model and
theory-specific projection rules to implement an MBP algorithm on top of QEL.

We focus on two important theories: Arrays and Algebraic DataTypes (ADT).
They are widely used to encode program verification tasks. Prior works separately
develop MBP algorithms for Arrays [16] and ADTs [5]. Both MBPs were presented
as a set of syntactic rewrite rules applied until fixed point.

Combining the MBP algorithms for Arrays and ADTs is non-trivial because
applying projection rules for one theory may produce terms of the other theory.
Therefore, separately achieving saturation in either theory is not sufficient to
reach saturation in the combined setting. The MBP for the combined setting
has to call both MBPs, check whether either one of them produced terms that
can be processed by the other, and, if so, call the other algorithm. This is similar
to theory combination in SMT solving where the core SMT solver has to keep
track of different theory solvers and exchange terms between them.

Our main insight is that egraphs can be used as a glue to combine MBP
algorithms for different theories, just like egraphs are used in SMT solvers to
combine satisfiability checking for different theories. Implementing MBP using
egraphs allows us to use the insights from QEL to combine MBP with on-the-fly
quantifier reduction to produce less under-approximate formulas than what we
get by syntactic application of MBP rules.

Fast Approximations of Quantifier Elimination 79

To implement MBP using egraphs, we implement all rewrite rules for MBP in
Arrays [16] and ADTs [5] on top of egraphs. In the interest of space, we explain
the implementation of just a couple of the MBP rules for Arrays4.

Figure 6 shows two Array MBP rules from [16]: ElimWrRd1 and
ElimWrRd2. Here, ϕ is a formula with arrays and M is a model for ϕ. Both
rules rewrite terms which match the pattern read(write(t, i, v), j), where t, i, j, k
are all terms and t contains a variable to be projected. ElimWrRd1 is applicable
when M |= i≈ j. It rewrites the term read(write(t, i, v), j) to v. ElimWrRd2
is applicable when M �|= i≈ j and rewrites read(write(t, i, v), j) to read(t, j).

Figure 7 shows the egraph implementation of ElimWrRd1 andElimWrRd2.
The match(t)method checks if t syntactically matches read(write(s, i, v), j), where
s contains a variable to be projected. The apply(t) method assumes that t is
read(write(s, i, v), j). It first checks if M |= i≈ j, and, if so, it adds i≈ j and t ≈ v
to the egraph G. Otherwise, if M �|= i≈ j, apply(t) adds a disequality i �≈ j and
an equality t ≈ read(s, v) to G. That is, the egraph implementation of the rules
only adds (and does not remove) literals that capture the side condition and the
conclusion of the rule.

Our algorithm for MBP based on egraphs, MBP-QEL, is shown in Alg. 4.
It initializes an egraph with the input formula (line 1), applies MBP rules until
saturation (line 4), and then uses the steps of QEL (lines 7–12) to generate the
projected formula.

Applying rules is as straightforward as iterating over all terms t in the egraph,
and for each rule r such that r.match(t) is true, calling r.apply(t,M,G) (lines 14–
22). As opposed to the standard approach based on formula rewriting, here the
terms are not rewritten – both remain. Therefore, it is possible to get into an
infinite loop by re-applying the same rules on the same terms over and over again.
To avoid this, MBP-QEL marks terms as seen (line 23) and avoids them in the
next iteration (line 15). Some rules in MBP are applied to pairs of terms. For
example, Ackermann rewrites pairs of read terms over the same variable. This
is different from usual applications where rewrite rules are applied to individual
expressions. Yet, it is easy to adapt such pairwise rewrite rules to egraphs by
iterating over pairs of terms (lines 25–30).

MBP-QEL does not apply MBP rules to terms that contain variables but
are already c-ground (line 16), which is sound because such terms are replaced by
ground terms in the output (Theorem 3). This prevents unnecessary application
of MBP rules thus allowing MBP-QEL to compute MBPs that are closer to a
quantifier elimination (less model-specific).

Just like each application of a rewrite rule introduces a new term to a formula,
each call to the apply method of a rule adds new terms to the egraph. Therefore,
each call to ApplyRules (line 4) makes the egraph bigger. However, provided
that the original MBP combination is terminating, the iterative application of
ApplyRules terminates as well (due to marking).

Some MBP rules introduce new variables to the formula. MBP-QEL com-
putes repr based on both original and newly introduced variables (line 7). This

4 Implementation of all other rules is similar.

80 I. Garcia-Contreras et al.

Input: A QF formula ϕ with free variables v all of sort Array(I, V) or ADT, a model
M |= ϕ∃, and sets of rules ArrayRules and ADTRules
Output: A cube ψ s.t. ψ∃ ⇒ ϕ∃, M |= ψ∃, and vars(ψ) are not Arrays or ADTs

MBP-QEL(ϕ, v, M)
1: G := egraph(ϕ)
2: p1, p2 :=
,
; S, Sp := ∅, ∅
3: while p1 ∨ p2 do
4: p1 := ApplyRules(G, M,ArrayRules, S, Sp)
5: p2 := ApplyRules(G, M,ADTRules, S, Sp)
6: v′ := G.Vars()
7: repr := G.find_defs(v′)
8: repr := G.refine_defs(repr, v′)
9: core := G.find_core(repr, v′)

10: ve := {v ∈ v′ | is_arr(v) ∨ is_adt(v)}
11: coree := {n ∈ core | gr(term(n), ve)}
12: ret G.to_formula(repr, G.Nodes()\coree)

ApplyRules(G, M, R, S, Sp)
13: progress := ⊥
14: N := G.Nodes()
15: U := {n | n ∈ N \ S}
16: T := {term(n) | n ∈ U ∧

(is_eq(term(n))∨¬c-ground(n))}
17: Rp := {r ∈ R | r.is_for_pairs()}
18: Ru := R \ Rp

19: for each t ∈ T, r ∈ Ru do
20: if r.match(t) then
21: r.apply(t, M, G)
22: progress :=

23: S := S ∪ N
24: Np := {〈n1, n2〉 | n1, n2 ∈ N}
25: Tp := {term(np) | np ∈ Np \ Sp}
26: for each tp ∈ Tp, r ∈ Rp do
27: if r.match(p) then
28: r.apply(p, M, G)
29: progress :=

30: Sp := Sp ∪ Np

31: ret progress

Algorithm 4: MBP-QEL: an MBP using QEL. Here gr(t,v) checks whether
term t contains any variables in v and is_eq(t) checks if t is an equality literal.

allows MBP-QEL to eliminate all variables, including non-Array, non-ADT vari-
ables, that are equivalent to ground terms (Theorem 3).

As mentioned earlier, MBP-QEL never removes terms while rewrite rules
are saturating. Therefore, after saturation, the egraph still contains all original
terms and variables. From soundness of the MBP rules, it follows that after
each invocation of apply, MBP-QEL creates an under-approximation of ϕ∃

based on the model M . From completeness of MBP rules, it follows that, after
saturation, all terms containing Array or ADT variables can be removed from
the egraph without affecting equivalence of the saturated egraph. Hence, when
calling to_formula, MBP-QEL removes all terms containing Array or ADT
variables (line 12). This includes, in particular, all the terms on which rewrite
rules were applied, but potentially more.

We demonstrate our MBP algorithm on an example with nested ADTs and
Arrays. Let P � 〈AI×I , I〉 be the datatype of a pair of an integer array and an
integer, and let pair : AI×I × I → P be its sole constructor with destructors
fst : P → AI×I and snd : P → I. In the following, let i, l, j be integers, a an
integer array, p, p′ pairs, and p1, p2 arrays of pairs (AI×P). Consider the formula:

ϕmbp(p, a) � read(a, i)≈ i ∧ p≈ pair(a, l) ∧ p2 ≈write(p1, j, p) ∧ p �≈ p′

Fast Approximations of Quantifier Elimination 81

where p and a are free variables that we want to project and all of i, j, l,p1,p2, p
′

are constants that we want to keep. MBP is guided by a model Mmbp |= ϕmbp .
To eliminate p and a, MBP-QEL constructs the egraph of ϕmbp and applies the
MBP rules. In particular, it uses Array MBP rules to rewrite the write(p1, j, p)
term by adding the equality read(p2, j)≈ p and merging it with the equivalence
class of p2 ≈write(p1, j, p). It then applies ADT MBP rules to deconstruct the
equality p≈ pair(a, l) by creating two equalities fst(p)≈ a and snd(p)≈ l. Finally,
the call to to_formula produces

read(fst(read(p1, j)), i)≈ i ∧ snd(read(p1, j))≈ l ∧
read(p2, j)≈ pair(fst(read(p1, j)), l) ∧

p2 ≈write(p1, j, read(p2, j)) ∧ read(p2, j) �≈ p′

The output is easy to understand by tracing it back to the input. For example,
the first literal is a rewrite of the literal read(a, i)≈ i where a is represented
with fst(p) and p is represented with read(p1, j). While the interaction of these
rules might seem straightforward in this example, the MBP implementation in
Z3 fails to project a in this example because of the multilevel nesting.

Notably, in this example, the c-ground computation during projection allows
MBP-QEL not splitting on the disequality p �≈ p′ based on the model. While
ADT MBP rules eliminate disequalities by using the model to split them, MBP-
QEL benefits from the fact that, after the application of Array MBP rules, the
class of p becomes ground, making p �≈ p′ c-ground. Thus, the c-ground compu-
tation allows MBP-QEL to produce a formula that is less approximate than
those produced by syntactic application of MBP rules. In fact, in this example,
a quantifier elimination is obtained (the model Mmbp was not used).

In the next section, we show that our improvements to MBP translate to
significant improvements in a CHC-solving procedure that relies on MBP.

6 Evaluation

We implement QEL (Alg. 1) and MBP-QEL (Alg. 4) inside Z3 [19] (version
4.12.0), a state-of-the-art SMT solver. Our implementation (referred to as Z3eg),
is publicly available on GitHub5. Z3eg replaces QeLite with QEL, and the
existing MBP with MBP-QEL.

We evaluate Z3eg using two solving tasks. Our first evaluation is on the
QSAT algorithm [5] for checking satisfiability of formulas with alternating quan-
tifiers. In QSAT, Z3 uses both QeLite and MBP to under-approximate quan-
tified formulas. We compare three QSAT implementations: the existing version
in Z3 with the default QeLite and MBP; the existing version in Z3 in which
QeLite and MBP are replaced by our egraph-based algorithms, Z3eg; and the
QSAT implementation in YicesQS6, based on the Yices [8] SMT solver. Dur-
ing the evaluation, we found a bug in QSAT implementation of Z3 and fixed it7.
5 Available at https://github.com/igcontreras/z3/tree/qel-cav23.
6 Available at https://github.com/disteph/yicesQS.
7 Available at https://github.com/igcontreras/z3/commit/133c9e438ce.

https://github.com/igcontreras/z3/tree/qel-cav23
https://github.com/disteph/yicesQS
https://github.com/igcontreras/z3/commit/133c9e438ce

82 I. Garcia-Contreras et al.

Table 1. Instances solved within 20 min by dif-
ferent implementations. Benchmarks are quanti-
fied LIA and LRA formulas from SMT-LIB [2].

Cat. Count
Z3eg Z3 YicesQS

sat unsat sat unsat sat unsat

LIA 416 150 266 150 266 107 102
LRA 2 419 795 1 589 793 1 595 808 1 610

Table 2. Instances solved within
60 s for our handcrafted bench-
marks.

Cat. Count
Z3eg Z3

sat unsat sat unsat

LIA-ADT 416 150 266 150 56
LRA-ADT 2 419 757 1 415 196 964

The fix resulted in Z3 solving over 40 sat instances and over 120 unsat instances
more than before. In the following, we use the fixed version of Z3.

We use benchmarks in the theory of (quantified) LIA and LRA from SMT-
LIB [2,3], with alternating quantifiers. LIA and LRA are the only tracks in which
Z3 uses the QSAT tactic by default. To make our experiments more comprehen-
sive, we also consider two modified variants of the LIA and LRA benchmarks,
where we add some non-recursive ADT variables to the benchmarks. Specif-
ically, we wrap all existentially quantified arithmetic variables using a record
type ADT and unwrap them whenever they get used8. Since these benchmarks
are similar to the original, we force Z3 to use the QSAT tactic on them with a
tactic.default_tactic=qsat command line option.

Table 1 summarizes the results for the SMT-LIB benchmarks. In LIA, both
Z3eg and Z3 solve all benchmarks in under a minute, while YicesQS is unable
to solve many instances. In LRA, YicesQS solves all instances with very good
performance. Z3 is able to solve only some benchmarks, and our Z3eg performs
similarly to Z3. We found that in the LRA benchmarks, the new algorithms in
Z3eg are not being used since there are not many equalities in the formula, and
no equalities are inferred during the run of QSAT. Thus, any differences between
Z3 and Z3eg are due to inherent randomness of the solving process.

Table 2 summarizes the results for the categories of mixed ADT and arith-
metic. YicesQS is not able to compete because it does not support ADTs. As
expected, Z3eg solves many more instances than Z3.

The second part of our evaluation shows the efficacy of MBP-QEL for Arrays
and ADTs (Alg. 4) in the context of CHC-solving. Z3 uses both QeLite and
MBP inside the CHC-solver Spacer [17]. Therefore, we compare Z3 and Z3eg
on CHC problems containing Arrays and ADTs. We use two sets of benchmarks
to test out the efficacy of our MBP. The benchmarks in the first set were gener-
ated for verification of Solidity smart contracts [1] (we exclude benchmarks with
non-linear arithmetic, they are not supported by Spacer). These benchmarks
have a very complex structure that nests ADTs and Arrays. Specifically, they
contain both ADTs of Arrays, as well as Arrays of ADTs. This makes them suit-
able to test our MBP-QEL. Row 1 of Table 3 shows the number of instances

8 The modified benchmarks are available at https://github.com/igcontreras/LIA-
ADT and https://github.com/igcontreras/LRA-ADT.

https://github.com/igcontreras/LIA-ADT
https://github.com/igcontreras/LIA-ADT
https://github.com/igcontreras/LRA-ADT

Fast Approximations of Quantifier Elimination 83

Table 3. Instances solved within 20min by Z3eg, Z3, and Eldarica. Benchmarks are
CHCs from Solidity [1] and CHC competition [13]. The abi benchmarks are a subset
of Solidity benchmarks.

Cat. Count
Z3eg Z3 Eldarica

sat unsat sat unsat sat unsat

Solidity 3 468 2 324 1 133 2 314 1 114 2 329 1 134

�

abi 127 19 108 19 88 19 108
LIA-lin-Arrays 488 214 72 212 75 147 68

solved by Z3 (Spacer) with and without MBP-QEL. Z3eg solves 29 instances
more than Z3. Even though MBP is just one part of the overall Spacer algo-
rithm, we see that for these benchmarks, MBP-QEL makes a significant impact
on Spacer. Digging deeper, we find that many of these instances come from
the category called abi (row 2 in Table 3). Z3eg solves all of these benchmarks,
while Z3 fails to solve 20 of them. We traced the problem down to the MBP
implementation in Z3: it fails to eliminate all variables, causing runtime excep-
tion. In contrast, MBP-QEL eliminates all variables successfully, allowing Z3eg
to solve these benchmarks.

We also compare Z3eg with Eldarica [14], a state-of-the-art CHC-solver
that is particularly effective on these benchmarks. Z3eg solves almost as many
instances as Eldarica. Furthermore, like Z3, Z3eg is orders of magnitude faster
than Eldarica. Finally, we compare the performance of Z3eg on Array bench-
marks from the CHC competition [13]. Z3eg is competitive with Z3, solving 2
additional safe instances and almost as many unsafe instances as Z3 (row 3 of
Table 3). Both Z3eg and Z3 solve quite a few instances more than Eldarica.

Our experiments show the effectiveness of our QEL and MBP-QEL in dif-
ferent settings inside the state-of-the-art SMT solver Z3. While we maintain
performance on quantified arithmetic benchmarks, we improve Z3’s QSAT algo-
rithm on quantified benchmarks with ADTs. On verification tasks, QEL and
MBP-QEL help Spacer solve 30 new instances, even though MBP is only a
relatively small part of the overall Spacer algorithm.

7 Conclusion

Quantifier elimination, and its under-approximation, Model-Based Projection
are used by many SMT-based decision procedures, including quantified SAT
and Constrained Horn Clause solving. Traditionally, these are implemented by
a series of syntactic rules, operating directly on the syntax of an input formula.
In this paper, we argue that these procedures should be implemented directly
on the egraph data-structure, already used by most SMT solvers. This results
in algorithms that better handle implicit equality reasoning and result in easier

84 I. Garcia-Contreras et al.

to implement and faster procedures. We justify this argument by implement-
ing quantifier reduction and MBP in Z3 using egraphs and show that the new
implementation translates into significant improvements to the target decision
procedures. Thus, our work provides both theoretical foundations for quantifier
reduction and practical contributions to Z3 SMT-solver.

Acknowledgment. The research leading to these results has received funding from
the European Research Council under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No [759102-SVIS]). This research was
partially supported by the Israeli Science Foundation (ISF) grant No. 1810/18. We
acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC), MathWorks Inc., and the Microsoft Research PhD Fellowship.

References

1. Alt, L., Blicha, M., Hyvärinen, A.E.J., Sharygina, N.: SolCMC: Solidity Compiler’s
Model Checker. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th
International Conference, CAV 2022, Haifa, Israel, August 7–10, 2022, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 13371, pp. 325–338. Springer
(2022). https://doi.org/10.1007/978-3-031-13185-1_16

2. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories (Edinburgh, UK) (2010)

4. Barrett, Clark, Tinelli, Cesare: Satisfiability modulo theories. In: Handbook of
Model Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-10575-8_11

5. Bjørner, N.S., Janota, M.: Playing with quantified satisfaction. In: Fehnker, A.,
McIver, A., Sutcliffe, G., Voronkov, A. (eds.) 20th International Conferences on
Logic for Programming, Artificial Intelligence and Reasoning - Short Presentations,
LPAR 2015, Suva, Fiji, November 24–28, 2015. EPiC Series in Computing, vol. 35,
pp. 15–27. EasyChair (2015). https://doi.org/10.29007/vv21

6. Chang, B.E., Leino, K.R.M.: Abstract interpretation with alien expressions and
heap structures. In: Cousot, R. (ed.) Verification, Model Checking, and Abstract
Interpretation, 6th International Conference, VMCAI 2005, Paris, France, January
17–19, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3385, pp. 147–
163. Springer (2005). https://doi.org/10.1007/978-3-540-30579-8_11

7. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. J. ACM 52(3), 365–473 (may 2005). https://doi.org/10.1145/1066100.1066102

8. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of
Logic, VSL 2014, Vienna, Austria, July 18–22, 2014. Proceedings. Lecture Notes
in Computer Science, vol. 8559, pp. 737–744. Springer (2014). https://doi.org/10.
1007/978-3-319-08867-9_49

9. Dutertre, B.: Solving Exists/Forall Problems with Yices. In: Workshop on Satisfi-
ability Modulo Theories (2015). https://yices.csl.sri.com/papers/smt2015.pdf

https://doi.org/10.1007/978-3-031-13185-1_16
www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.29007/vv21
https://doi.org/10.1007/978-3-540-30579-8_11
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://yices.csl.sri.com/papers/smt2015.pdf

Fast Approximations of Quantifier Elimination 85

10. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: An abstract
domain of uninterpreted functions. In: Jobstmann, B., Leino, K.R.M. (eds.) Verifi-
cation, Model Checking, and Abstract Interpretation - 17th International Confer-
ence, VMCAI 2016, St. Petersburg, FL, USA, January 17–19, 2016. Proceedings.
Lecture Notes in Computer Science, vol. 9583, pp. 85–103. Springer (2016). https://
doi.org/10.1007/978-3-662-49122-5_4

11. Gascón, A., Subramanyan, P., Dutertre, B., Tiwari, A., Jovanovic, D., Malik, S.:
Template-based circuit understanding. In: Formal Methods in Computer-Aided
Design, FMCAD 2014, Lausanne, Switzerland, October 21–24, 2014, pp. 83–90.
IEEE (2014). https://doi.org/10.1109/FMCAD.2014.6987599

12. Gulwani, S., Tiwari, A., Necula, G.C.: Join algorithms for the theory of unin-
terpreted functions. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004: Founda-
tions of Software Technology and Theoretical Computer Science, 24th International
Conference, Chennai, India, December 16–18, 2004, Proceedings. Lecture Notes in
Computer Science, vol. 3328, pp. 311–323. Springer (2004). https://doi.org/10.
1007/978-3-540-30538-5_26

13. Gurfinkel, A., Ruemmer, P., Fedyukovich, G., Champion, A.: CHC-COMP.
https://chc-comp.github.io/ (2018)

14. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: Bjørner, N.S., Gurfinkel,
A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin,
TX, USA, October 30 - November 2, 2018, pp. 1–7. IEEE (2018). https://doi.org/
10.23919/FMCAD.2018.8603013

15. Joshi, R., Nelson, G., Randall, K.H.: Denali: A goal-directed superoptimizer. In:
Knoop, J., Hendren, L.J. (eds.) Proceedings of the 2002 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI), Berlin,
Germany, June 17–19, 2002, pp. 304–314. ACM (2002). https://doi.org/10.1145/
512529.512566

16. Komuravelli, A., Bjørner, N.S., Gurfinkel, A., McMillan, K.L.: Compositional ver-
ification of procedural programs using horn clauses over integers and arrays. In:
Kaivola, R., Wahl, T. (eds.) Formal Methods in Computer-Aided Design, FMCAD
2015, Austin, Texas, USA, September 27–30, 2015, pp. 89–96. IEEE (2015).
https://doi.org/10.5555/2893529.2893548

17. Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification - 26th Inter-
national Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18–22, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8559, pp. 17–34. Springer (2014). https://doi.org/10.1007/978-3-319-
08867-9_2

18. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional synthesis. In:
Zorn, B.G., Aiken, A. (eds.) Proceedings of the 2010 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2010, Toronto,
Ontario, Canada, June 5–10, 2010, pp. 316–329. ACM (2010). https://doi.org/10.
1145/1806596.1806632

19. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Com-
puter Science, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/
978-3-540-78800-3_24

https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1007/978-3-662-49122-5_4
https://doi.org/10.1109/FMCAD.2014.6987599
https://doi.org/10.1007/978-3-540-30538-5_26
https://doi.org/10.1007/978-3-540-30538-5_26
https://chc-comp.github.io/
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1145/512529.512566
https://doi.org/10.1145/512529.512566
https://doi.org/10.5555/2893529.2893548
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1145/1806596.1806632
https://doi.org/10.1145/1806596.1806632
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24

86 I. Garcia-Contreras et al.

20. Nelson, G., Oppen, D.C.: Fast decision algorithms based on union and find. In:
18th Annual Symposium on Foundations of Computer Science, Providence, Rhode
Island, USA, 31 October - 1 November 1977, pp. 114–119. IEEE Computer Society
(1977). https://doi.org/10.1109/SFCS.1977.12

21. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979). https://doi.org/10.1145/
357073.357079

22. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: A new approach to
optimization. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. p. 264–276. POPL ’09, Associ-
ation for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.
1145/1480881.1480915

23. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: A new approach
to optimization. Log. Methods Comput. Sci. 7(1) (2011). https://doi.org/10.2168/
LMCS-7(1:10)2011

24. Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha, P.: egg:
Fast and extensible equality saturation. Proc. ACM Program. Lang. 5(POPL),
1–29 (2021). https://doi.org/10.1145/3434304

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/SFCS.1977.12
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.2168/LMCS-7(1:10)2011
https://doi.org/10.2168/LMCS-7(1:10)2011
https://doi.org/10.1145/3434304
http://creativecommons.org/licenses/by/4.0/

Local Search for Solving Satisfiability
of Polynomial Formulas

Haokun Li , Bican Xia , and Tianqi Zhao(B)

School of Mathematical Sciences, Peking University, Beijing, China
{haokunli,zhaotq}@pku.edu.cn, xbc@math.pku.edu.cn

Abstract. Satisfiability Modulo the Theory of Nonlinear Real Arith-
metic, SMT(NRA) for short, concerns the satisfiability of polynomial
formulas, which are quantifier-free Boolean combinations of polynomial
equations and inequalities with integer coefficients and real variables. In
this paper, we propose a local search algorithm for a special subclass of
SMT(NRA), where all constraints are strict inequalities. An important
fact is that, given a polynomial formula with n variables, the zero level
set of the polynomials in the formula decomposes the n-dimensional real
space into finitely many components (cells) and every polynomial has
constant sign in each cell. The key point of our algorithm is a new oper-
ation based on real root isolation, called cell-jump, which updates the
current assignment along a given direction such that the assignment can
‘jump’ from one cell to another. One cell-jump may adjust the values of
several variables while traditional local search operations, such as flip for
SAT and critical move for SMT(LIA), only change that of one variable.
We also design a two-level operation selection to balance the success rate
and efficiency. Furthermore, our algorithm can be easily generalized to
a wider subclass of SMT(NRA) where polynomial equations linear with
respect to some variable are allowed. Experiments show the algorithm is
competitive with state-of-the-art SMT solvers, and performs particularly
well on those formulas with high-degree polynomials.

Keywords: SMT · Local search · Nonlinear real arithmetic ·
Cell-jump · Cylindrical Algebraic Decomposition (CAD)

1 Introduction

Satisfiability modulo theories (SMT) refers to the problem of determining
whether a first-order formula is satisfiable with respect to (w.r.t.) certain theo-
ries, such as the theories of linear integer/real arithmetic, nonlinear integer/real
arithmetic and strings. In this paper, we consider the theory of nonlinear real
arithmetic (NRA) and restrict our attention to the problem of solving satisfia-
bility of quantifier-free polynomial formulas.

Solving polynomial constraints has been a central problem in the develop-
ment of mathematics. In 1951, Tarski’s decision procedure [33] made it pos-
sible to solve polynomial constraints in an algorithmic way. However, Tarski’s

The authors are listed in alphabetical order and they make equal contribution.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 87–109, 2023.
https://doi.org/10.1007/978-3-031-37703-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_5&domain=pdf
http://orcid.org/0000-0001-6411-9324
http://orcid.org/0000-0002-2570-2338
http://orcid.org/0000-0001-5099-0805
https://doi.org/10.1007/978-3-031-37703-7_5

88 H. Li et al.

algorithm is impractical because of its super-exponential complexity. The first
relatively practical method is cylindrical algebraic decomposition (CAD) algo-
rithm [13] proposed by Collins in 1975, followed by lots of improvements. See
for example [6,14,20,22,26]. Unfortunately, those variants do not improve the
complexity of the original algorithm, which is doubly-exponential. On the other
hand, SMT(NRA) is important in theorem proving and program verification,
since most complicated programs use real variables and perform nonlinear arith-
metic operation on them. Particularly, SMT(NRA) has various applications in
the formal analysis of hybrid systems, dynamical systems and probabilistic sys-
tems (see the book [12] for reference).

The most popular approach for solving SMT(NRA) is the lazy approach,
also known as CDCL(T) [5]. It combines a propositional satisfiability (SAT)
solver that uses a conflict-driven clause learning (CDCL) style algorithm to find
assignments of the propositional abstraction of a polynomial formula and a the-
ory solver that checks the consistency of sets of polynomial constraints. The
solving effort in the approach is devoted to both the Boolean layer and the the-
ory layer. For the theory solver, the only complete method is the CAD method,
and there also exist many efficient but incomplete methods, such as lineari-
sation [10], interval constraint propagation [34] and virtual substitution [35].
Recall that the complexity of the CAD method is doubly-exponential. In order
to ease the burden of using CAD, an improved CDCL-style search framework,
the model constructing satisfiability calculus (MCSAT) framework [15,21], was
proposed. Further, there are many optimizations on CAD projection operation,
e.g. [7,24,29], custom-made for this framework. Besides, an alternative algo-
rithm for determining the satisfiability of conjunctions of non-linear polynomial
constraints over the reals based on CAD is presented in [1].

The development of this approach brings us effective SMT(NRA) solvers.
Almost all state-of-the-art SMT(NRA) solvers are based on the lazy approach,
including Z3 [28], CVC5 [3], Yices2 [16] and MathSAT5 [11]. These solvers have
made great progress in solving SMT(NRA). However, the time and memory
usage of them on some hard instances may be unacceptable, particularly when
the proportion of nonlinear polynomials in all polynomials appearing in the
formula is high. It pushes us to design algorithms which perform well on these
hard instances.

Local search plays an important role in solving satisfiability problems, which
is an incomplete method since it can only determine satisfiability but not unsat-
isfiability. A local search algorithm moves in the space of candidate assignments
(the search space) by applying local changes, until a satisfied assignment is found
or a time bound is reached. It is well known that local search method has been
successfully applied to SAT problems [2,4,9,23]. In recent years, some efforts
trying to develop local search method for SMT solving are inspiring: Under
the DPLL(T) framework, Griggio et al. [19] introduced a general procedure for
integrating a local search solver of the WalkSAT family with a theory solver.
Pure local search algorithms [17,30,31] were proposed to solve SMT problems
with respect to the theory of bit-vectors directly on the theory level. Cai et al.

Local Search for Solving Satisfiability of Polynomial Formulas 89

[8] developed a local search procedure for SMT on the theory of linear inte-
ger arithmetic (LIA) through the critical move operation, which works on the
literal-level and changes the value of one variable in a false LIA literal to make it
true. We also notice that there exists a local search SMT solver for the theory of
NRA, called NRA-LS, performing well at the SMT Competition 20221. A simple
description of the solver without details about local search can be found in [25].

In this paper, we propose a local search algorithm for a special subclass of
SMT(NRA), where all constraints are strict inequalities. The idea of applying the
local search method to SMT(NRA) comes from CAD, which is a decomposition
of the search space R

n into finitely many cells such that every polynomial in the
formula is sign-invariant on each cell. CAD guarantees that the search space only
has finitely many states. Similar to the local search method for SAT which moves
between finitely many Boolean assignments, local search for SMT(NRA) should
jump between finitely many cells. So, we may use a local search framework for
SAT to solve SMT(NRA).

Local search algorithms require an operation to perform local changes. For
SAT, a standard operation is flip, which modifies the current assignment by
flipping the value of one Boolean variable from false to true or vice-versa. For
SMT(NRA), we propose a novel operation, called cell-jump, updating the current
assignment x1 �→ a1, . . . , xn �→ an (ai ∈ Q) to a solution of a false polynomial
constraint ‘p < 0’ or ‘p > 0’, where xi is a variable appearing in the given
polynomial formula. Different from the critical move operation for linear integer
constraints [8], it is difficult to determine the threshold value of some variable xi

such that the false polynomial constraint becomes true. We deal with the issue by
the method of real root isolation, which isolates every real root of the univariate
polynomial p(a1, . . . , ai−1, xi, ai+1, . . . , an) in an open interval sufficiently small
with rational endpoints. If there exists at least one endpoint making the false
constraint true, a cell-jump operation assigns xi to one closest to ai. The proce-
dure can be viewed as searching for a solution along a line parallel to the xi-axis.
In fact, a cell-jump operation can search along any fixed straight line, and thus
one cell-jump may change the values of more than one variables. Each step, the
local search algorithm picks a cell-jump operation to execute according to a two-
level operation selection and updates the current assignment, until a solution to
the polynomial formula is found or the terminal condition is satisfied. Moreover,
our algorithm can be generalized to deal with a wider subclass of SMT(NRA)
where polynomial equations linear w.r.t. some variable are allowed.

The local search algorithm is implemented with Maple2022 as a tool. Experi-
ments are conducted to evaluate the tool on two classes of benchmarks, including
selected instances from SMT-LIB2, and some hard instances generated randomly
with only nonlinear constraints. Experimental results show that our tool is com-
petitive with state-of-the-art SMT solvers on the SMT-LIB benchmarks, and
performs particularly well on the hard instances. We also combine our tool with

1 https://smt-comp.github.io/2022.
2 https://smtlib.cs.uiowa.edu/benchmarks.shtml.

https://smt-comp.github.io/2022
https://smtlib.cs.uiowa.edu/benchmarks.shtml

90 H. Li et al.

Z3, CVC5, Yices2 and MathSAT5 respectively to obtain four sequential portfolio
solvers, which show better performance.

The rest of the paper is organized as follows. The next section introduces some
basic definitions and notation and a general local search framework for solving
a satisfiability problem. Section 3 shows from the CAD perspective, the search
space for SMT(NRA) only has finite states. In Sect. 4, we describe cell-jump
operations, while in Sect. 5 we provide the scoring function which gives every
operation a score. The main algorithm is presented in Sect. 6. And in Sect. 7,
experimental results are provided to indicate the efficiency of the algorithm.
Finally, the paper is concluded in Sect. 8.

2 Preliminaries

2.1 Notation

Let x̄ := (x1, . . . , xn) be a vector of variables. Denote by Q, R and Z the set of
rational numbers, real numbers and integer numbers, respectively. Let Q[x̄] and
R[x̄] be the ring of polynomials in the variables x1, . . . , xn with coefficients in Q

and in R, respectively.

Definition 1 (Polynomial Formula). Suppose Λ = {P1, . . . , Pm} where every
Pi is a non-empty finite subset of Q[x̄]. The following formula

F =
∧

Pi∈Λ

∨

pij∈Pi

pij(x1, . . . , xn) �ij 0, where �ij ∈ {<,>,=},

is called a polynomial formula. Additionally, we call pij(x1, . . . , xn) �ij 0 an
atomic polynomial formula, and

∨
pij∈Pj

pij(x1, . . . , xn) �ij 0 a polynomial
clause.

For any polynomial formula F , poly(F) denotes the set of polynomials
appearing in F . For any atomic formula �, poly(�) denotes the polynomial
appearing in � and rela(�) denotes the relational operator (‘<’, ‘>’ or ‘=’)
of �.

For any polynomial formula F , an assignment is a mapping α : x̄ → R
n such

that α(x̄) = (a1, . . . , an) where ai ∈ R. Given an assignment α,

– an atomic polynomial formula is true under α if it evaluates to true under α,
and otherwise it is false under α,

– a polynomial clause is satisfied under α if at least one atomic formula in the
clause is true under α, and falsified under α otherwise.

When the context is clear, we simply say a true (or false) atomic polynomial
formula and a satisfied (or falsified) polynomial clause. A polynomial formula
is satisfiable if there exists an assignment α such that all clauses in the formula
are satisfied under α, and such an assignment is a solution to the polynomial
formula. A polynomial formula is unsatisfiable if any assignment is not a solution.

Local Search for Solving Satisfiability of Polynomial Formulas 91

2.2 A General Local Search Framework

When applying local search algorithms to solve a satisfiability problem, the
search space is the set of all assignments. A general local search framework
begins with a complete, initial assignment. Every time, one of the operations
with the highest score is picked and the assignment is updated after executing
the operation until reaching the set terminal condition. Below, we give the formal
definitions of operation and scoring function.

Definition 2 (Operation). Let F be a formula. Given an assignment α which
is not a solution of F , an operation modifies α to another assignment α′.

Definition 3 (Scoring Function). Let F be a formula. Suppose α is the
current assignment and op is an operation. A scoring function is defined as
score(op, α) := cost(α) − cost(α′), where the real-valued function cost mea-
sures the cost of making F satisfied under an assignment according to some
heuristic, and α′ is the assignment after executing op.

Example 1. In local search algorithms for SAT, a standard operation is flip,
which modifies the current assignment by flipping the value of one Boolean vari-
able from false to true or vice-versa. A commonly used scoring function measures
the change on the number of falsified clauses by flipping a variable. Thus, oper-
ation op is flip(b) for some Boolean variable b, and cost(α) is interpreted as
the number of falsified clauses under the assignment α.

Actually, only when score(op, α) is a positive number does it make sense to
execute operation op, since the operation guides the current assignment to an
assignment with less cost of being a solution.

Definition 4 (Decreasing Operation). Suppose α is the current assignment.
Given a scoring function score, an operation op is a decreasing operation under
α if score(op, α) > 0.

A general local search framework is described in Algorithm 1. The framework
was used in GSAT [27] for solving SAT problems. Note that if the input formula
F is satisfied, Algorithm 1 outputs either (i) a solution of F if the solution is
found successfully, or (ii) “unknown” if the algorithm fails.

Algorithm 1. General Local Search Framework
Input : a formula F and a terminal condition ϕ
Output: a solution to F or unknown

1 initialize assignment α
2 while the terminal condition ϕ is not satisfied do
3 if α satisfies F then
4 return α
5 else
6 op ← one of the decreasing operations with the highest score
7 perform op to modify α

8 return unknown

92 H. Li et al.

3 The Search Space of SMT(NRA)

The search space for SAT problems consists of finitely many assignments. So,
theoretically speaking, a local search algorithm can eventually find a solution,
as long as the formula indeed has a solution and there is no cycling during
the search. It seems intuitive, however, that the search space of an SMT(NRA)
problem, e.g. Rn, is infinite and thus search algorithms may not work.

Fortunately, due to Tarski’s work and the theory of CAD, SMT(NRA) is
decidable. Given a polynomial formula in n variables, by the theory of CAD,
R

n is decomposed into finitely many cells such that every polynomial in the
formula is sign-invariant on each cell. Therefore, the search space of the problem
is essentially finite. The cells of SMT(NRA) are very similar to the Boolean
assignments of SAT, so just like traversing all Boolean assignments in SAT,
there exists a basic strategy to traverse all cells.

In this section, we describe the search space of SMT(NRA) based on the
CAD theory from a local search perspective, providing a theoretical foundation
for the operators and heuristics we will propose in the next sections.

Example 2. Consider the polynomial formula

F = (f1 > 0 ∨ f2 > 0) ∧ (f1 < 0 ∨ f2 < 0),

where f1 = 17x2+2xy+17y2+48x−48y and f2 = 17x2−2xy+17y2−48x−48y.
The solution set of F is shown as the shaded area in Fig. 1. Notice

that poly(F) consists of two polynomials and decomposes R
2 into 10 areas:

C1, . . . , C10 (see Fig. 2). We refer to these areas as cells.

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2

3

4

x

y

Fig. 1. The solution set of F in Example
2.

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2

3

4

C1C2
C3

C4

C5 C6

C7 C8

C9

C10

x

y

Fig. 2. The zero level set of poly(F)
decomposes R

2 into 10 cells.

Definition 5 (Cell). For any finite set Q ⊆ R[x̄], a cell of Q is a maximally
connected set in R

n on which the sign of every polynomial in Q is constant. For
any point ā ∈ R

n, we denote by cell(Q, ā) the cell of Q containing ā.

By the theory of CAD, we have

Corollary 1. For any finite set Q ⊆ R[x̄], the number of cells of Q is finite.

It is obvious that any two cells of Q are disjoint and the union of all cells of Q
equals Rn. Definition 5 shows that for a polynomial formula F with poly(F) = Q,

Local Search for Solving Satisfiability of Polynomial Formulas 93

the satisfiability of F is constant on every cell of Q, that is, either all the points
in a cell are solutions to F or none of them are solutions to F .

Example 3. Consider the polynomial formula F in Example 2. As shown in
Fig. 3, assume that we start from point a to search for a solution to F . Jumping
from a to b makes no difference, as both points are in the same cell and thus
neither are solutions to F . However, jumping from a to c or from a to d crosses
different cells and we may discover a cell satisfying F . Herein, the cell containing
d satisfies F .

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2

3

4
ab

c

d x

y

Fig. 3. Jumping from point a to search
for a solution of F .

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2

3

4

x

y

Fig. 4. A cylindrical expansion of a
cylindrically complete set containing
poly(F).

For the remainder of this section, we will demonstrate how to traverse all
cells through point jumps between cells. The method of traversing cell by cell in
a variable by variable direction will be explained step by step from Definition 6
to Definition 8.

Definition 6 (Expansion). Let Q ⊆ R[x̄] be finite and ā = (a1, . . . , an) ∈
R

n. Given a variable xi (1 ≤ i ≤ n), let r1 < · · · < rs be all real roots of
{q(a1, . . . , ai−1, xi, ai+1, . . . , an) | q(a1, . . . , ai−1, xi, ai+1, . . . , an) 	≡ 0, q ∈ Q},
where s ∈ Z≥0. An expansion of ā to xi on Q is a point set Λ ⊆ R

n satisfying

(a) ā ∈ Λ and (a1, . . . , ai−1, rj , ai+1, . . . , an) ∈ Λ for 1 ≤ j ≤ s,
(b) for any b̄ = (b1, ..., bn) ∈ Λ, bj = aj for j ∈ {1, . . . , n} \ {i}, and
(c) for any interval I ∈ {(−∞, r1), (r1, r2), . . . , (rs−1, rs), (rs,+∞)}, there

exists a unique b̄ = (b1, ..., bn) ∈ Λ such that bi ∈ I.

For any point set {ā(1), . . . , ā(m)} ⊆ R
n, an expansion of the set to xi on Q is⋃m

j=1 Λj, where Λj is an expansion of ā(j) to xi on Q.

Example 4. Consider the polynomial formula F in Example 2. The set of black
solid points in Fig. 3, denoted as Λ, is an expansion of point (0, 0) to x on
poly(F). The set of all points (including black solid points and hollow points)
is an expansion of Λ to y on poly(F).

As shown in Fig. 3, an expansion of a point to some variable is actually a
result of the point continuously jumping to adjacent cells along that variable
direction. Next, we describe the expansion of all variables in order, which is
a result of jumping from cell to cell along the directions of variables w.r.t. a
variable order.

94 H. Li et al.

Definition 7 (Cylindrical Expansion). Let Q ⊆ R[x̄] be finite and ā ∈ R
n.

Given a variable order x1 ≺ · · · ≺ xn, a cylindrical expansion of ā w.r.t. the
variable order on Q is

⋃n
i=1 Λi, where Λ1 is an expansion of ā to x1 on Q, and

for 2 ≤ i ≤ n, Λi is an expansion of Λi−1 to xi on Q. When the context is clear,
we simply call

⋃n
i=1 Λi a cylindrical expansion of Q.

Example 5. Consider the formula F in Example 2. It is clear that the set of all
points in Fig. 3 is a cylindrical expansion of point (0, 0) w.r.t. x ≺ y on poly(F).
The expansion actually describes the following jumping process. First, the origin
(0, 0) jumps along the x-axis to the black points, and then those black points
jump along the y-axis direction to the white points.

Clearly, a cylindrical expansion is similar to how a Boolean vector is flipped
variable by variable. Note that the points in the expansion in Fig. 3 do not cover
all the cells (e.g. C7 and C8 in Fig. 2), but if we start from (0, 2), all the cells
can be covered. This implies that whether all the cells can be covered depends
on the starting point.

Definition 8 (Cylindrically Complete). Let Q ⊆ R[x̄] be finite. Given a
variable order x1 ≺ · · · ≺ xn, Q is said to be cylindrically complete w.r.t. the
variable order, if for any ā ∈ R

n and for any cylindrical expansion Λ of ā w.r.t.
the order on Q, every cell of Q contains at least one point in Λ.

Theorem 1. For any finite set Q ⊆ R[x̄] and any variable order, there exists
Q′ such that Q ⊆ Q′ ⊆ R[x̄] and Q′ is cylindrically complete w.r.t. the variable
order.

Proof. Let Q′ be the projection set of Q [6,13,26] obtained from the CAD pro-
jection operator w.r.t. the variable order. According to the theory of CAD, Q′

is cylindrically complete. �

Corollary 2. For any polynomial formula F and any variable order, there exists
a finite set Q ⊆ R[x̄] such that for any cylindrical expansion Λ of Q, every cell
of poly(F) contains at least one point in Λ. Furthermore, F is satisfiable if and
only if F has solutions in Λ.

Example 6. Consider the polynomial formula F in Example 2. By the proof of
Theorem 1, Q′ := {x,−2 − 3x + x2, −2 + 3x + x2, 10944 + 17x2, f1, f2} is a
cylindrically complete set w.r.t. x ≺ y containing poly(F). As shown in Fig. 4,
the set of all (hollow) points is a cylindrical expansion of point (0, 0) w.r.t. x ≺ y
on Q′, which covers all cells of poly(F).

Corollary 2 shows that for a polynomial formula F , there exists a finite
set Q ⊆ R[x̄] such that we can traverse all the cells of poly(F) through a
search path containing all points in a cylindrical expansion of Q. The cost of
traversing the cells is very high, and in the worst case, the number of cells will
grow exponentially with the number of variables.

The key to building a local search on SMT(NRA) is to construct a heuristic
search based on the operation of jumping between cells.

Local Search for Solving Satisfiability of Polynomial Formulas 95

4 The Cell-Jump Operation

In this section, we propose a novel operation, called cell-jump, that performs local
changes in our algorithm. The operation is determined by the means of real root
isolation. We review the method of real root isolation and define sample points
in Sect. 4.1. Section 4.2 and Sect. 4.3 present a cell-jump operation along a line
parallel to a coordinate axis and along any fixed straight line, respectively.

4.1 Sample Points

Real root isolation is a symbolic way to compute the real roots of a polynomial,
which is of fundamental importance in computational real algebraic geometry
(e.g., it is a routing sub-algorithm for CAD). There are many efficient algorithms
and popular tools in computer algebra systems such as Maple and Mathematica
to isolate the real roots of polynomials.

We first introduce the definition of sequences of isolating intervals for nonzero
univariate polynomials, which can be obtained by any real root isolation tool,
e.g. CLPoly3.

Definition 9 (Sequence of Isolating Intervals). For any nonzero univariate
polynomial p(x) ∈ Q[x], a sequence of isolating intervals of p(x) is a sequence
of open intervals (a1, b1), . . . , (as, bs) where s ∈ Z≥0, such that

(i) for each i (1 ≤ i ≤ s), ai, bi ∈ Q, ai < bi and bi < ai+1,
(ii) each interval (ai, bi) (1 ≤ i ≤ s) has exactly one real root of p(x), and
(iii) none of the real roots of p(x) are in R \ ⋃s

i=1(ai, bi).

Specially, the sequence of isolating intervals is empty, i.e., s = 0, when p(x) has
no real roots.

By means of sequences of isolating intervals, we define sample points of uni-
variate polynomials, which is the key concept of the cell-jump operation proposed
in Sect. 4.2 and Sect. 4.3.

Definition 10 (Sample Point). For any nonzero univariate polynomial
p(x) ∈ Q[x], let (a1, b1), . . . , (as, bs) be a sequence of isolating intervals of p(x)
where s ∈ Z≥0. Every point in the set {a1, bs}∪⋃s−1

i=1 {bi,
bi+ai+1

2 , ai+1} is a sam-
ple point of p(x). If x∗ is a sample point of p(x) and p(x∗) > 0 (or p(x∗) < 0),
then x∗ is a positive sample point (or negative sample point) of p(x). For the
zero polynomial, it has no sample point, no positive sample point and no neg-
ative sample point.

Remark 1. For any nonzero univariate polynomial p(x) that has real roots, let
r1, . . . , rs (s ∈ Z≥1) be all distinct real roots of p(x). It is obvious that the
sign of p(x) is positive constantly or negative constantly on each interval I of
the set {(−∞, r1), (r1, r2), . . . , (rs−1, rs), (rs,+∞)}. So, we only need to take a
point x∗ from the interval I, and then the sign of p(x∗) is the constant sign of

3 https://github.com/lihaokun/CLPoly.

https://github.com/lihaokun/CLPoly

96 H. Li et al.

p(x) on I. Specially, we take a1 as the sample point for the interval (−∞, r1),
bi,

bi+ai+1
2 or ai+1 as a sample point for (ri, ri+1) where 1 ≤ i ≤ s − 1, and bs

as the sample point for (rs,+∞). By Definition 10, there exists no sample point
for the zero polynomial and a univariate polynomial with no real roots.

Example 7. Consider the polynomial p(x) = x8 −4x6 +6x4 −4x2 +1. It has two
real roots −1 and 1, and a sequence of isolating intervals of it is (− 215

128 ,− 19
32),

(1932 , 215
128). Every point in the set {− 215

128 ,− 19
32 , 0, 19

32 , 215
128} is a sample point of p(x).

Note that p(x) > 0 holds on the intervals (−∞,−1) and (1,+∞), and p(x) < 0
holds on the interval (−1, 1). Thus, −215

128 and 215
128 are positive sample points of

p(x); − 19
32 , 0 and 19

32 are negative sample points of p(x).

4.2 Cell-Jump Along a Line Parallel to a Coordinate Axis

The critical move operation [8, Definition 2] is a literal-level operation. For any
false LIA literal, the operation changes the value of one variable in it to make
the literal true. In the subsection, we propose a similar operation which adjusts
the value of one variable in a false atomic polynomial formula with ‘<’ or ‘>’.

Definition 11. Suppose the current assignment is α : x1 �→ a1, . . . , xn �→ an

where ai ∈ Q. Let � be a false atomic polynomial formula under α with a rela-
tional operator ‘<’ or ‘>’.

(i) Suppose � is p(x̄) < 0. For each variable xi such that the univariate polyno-
mial p(a1, . . . , ai−1, xi, ai+1, . . . , an) has negative sample points, there exists
a cell-jump operation, denoted as cjump(xi, �), assigning xi to a negative
sample point closest to ai.

(ii) Suppose � is p(x̄) > 0. For each variable xi such that the univariate polyno-
mial p(a1, . . . , ai−1, xi, ai+1, . . . , an) has positive sample points, there exists
a cell-jump operation, denoted as cjump(xi, �), assigning xi to a positive
sample point closest to ai.

Every assignment in the search space can be viewed as a point in R
n. Then,

performing a cjump(xi, �) operation is equivalent to moving one step from the
current point α(x̄) along the line (a1, . . . , ai−1,R, ai+1, . . . , an). Since the line is
parallel to the xi-axis, we call cjump(xi, �) a cell-jump along a line parallel to a
coordinate axis.

Theorem 2. Suppose the current assignment is α : x1 �→ a1, . . . , xn �→ an

where ai ∈ Q. Let � be a false atomic polynomial formula under α with a rela-
tional operator ‘<’ or ‘>’. For every i (1 ≤ i ≤ n), there exists a solution of
� in {α′ | α′(x̄) ∈ (a1, . . . , ai−1,R, ai+1, . . . , an)} if and only if there exists a
cjump(xi, �) operation.

Proof. ⇐ It is clear by the definition of negative (or positive) sample points.
⇒ Let S := {α′ | α′(x̄) ∈ (a1, . . . , ai−1,R, ai+1, . . . , an)}. It is equivalent to

proving that if there exists no cjump(xi, �) operation, then no solution to � exists
in S. We only prove it for � of the form p(x̄) < 0. Recall Definition 10 and Remark
1. There are only three cases in which cjump(xi, �) does not exist: (1) p∗ is the
zero polynomial, (2) p∗ has no real roots, (3) p∗ has a finite number of real roots,

Local Search for Solving Satisfiability of Polynomial Formulas 97

say r1, . . . , rs (s ∈ Z≥1), and p∗ is positive on R \ {r1, . . . , rs}, where p∗ denotes
the polynomial p(a1, . . . , ai−1, xi, ai+1, . . . , an). In the first case, p(α′(x̄)) = 0
and in the third case, p(α′(x̄)) ≥ 0 for any assignment α′ ∈ S. In the second
case, the sign of p∗ is positive constantly or negative constantly on the whole
real axis. Since � is false under α, we have p(α(x̄)) ≥ 0, that is, p∗(ai) ≥ 0. So,
p∗(xi) > 0 for any xi ∈ R, which means p(α′(x̄)) > 0 for any α′ ∈ S. Therefore,
no solution to � exists in S in the three cases. That completes the proof. �

The above theorem shows that if cjump(xi, �) does not exist, then there is
no need to search for a solution to � along the line (a1, . . . , ai−1,R, ai+1, . . . , an).
And we can always obtain a solution to � after executing a cjump(xi, �) operation.

Example 8. Assume the current assignment is α : x1 �→ 1, x2 �→ 1. Consider two
false atomic polynomial formulas �1 : 2x2

1 + 2x2
2 − 1 < 0 and �2 : x8

1x
3
2 − 4x6

1 +
6x4

1x2 − 4x2
1 + x2 > 0. Let p1 := poly(�1) and p2 := poly(�2).

We first consider cjump(xi, �1). For the variable x1, the corresponding uni-
variate polynomial is p1(x1, 1) = 2x2

1 + 1, and for x2, the corresponding one is
p1(1, x2) = 2x2

2 + 1. Both of them have no real roots, and thus there exists no
cjump(x1, �1) operation and no cjump(x2, �1) operation for �1. Applying Theo-
rem 2, we know a solution of �1 can only locate in R

2 \ (1,R) ∪ (R, 1) (also see
Fig. 5 (a)). So, we cannot find a solution of �1 through one-step cell-jump from
the assignment point (1, 1) along the lines (1,R) and (R, 1).

Then consider cjump(xi, �2). For the variable x1, the corresponding univariate
polynomial is p2(x1, 1) = x8

1 − 4x6
1 + 6x4

1 − 4x2
1 + 1. Recall Example 7. There are

two positive sample points of p2(x1, 1) : − 215
128 , 215

128 . And 215
128 is the closest one

to α(x1). So, cjump(x1, �2) assigns x1 to 215
128 . After executing cjump(x1, �2), the

assignment becomes α′ : x1 �→ 215
128 , x2 �→ 1 which is a solution of �2. For the

variable x2, the corresponding polynomial is p2(1, x2) = x3
2 + 7x2 − 8, which has

one real root 1. A sequence of isolating intervals of p2(1, x2) is (1932 , 215
128), and 215

128
is the only positive sample point. So, cjump(x2, �2) assigns x2 to 215

128 , and then
the assignment becomes α′′ : x1 �→ 1, x2 �→ 215

128 which is another solution of �2.

4.3 Cell-Jump Along a Fixed Straight Line

Given the current assignment α such that α(x̄) = (a1, . . . , an) ∈ Q
n, a false

atomic polynomial formula � of the form p(x̄) > 0 or p(x̄) < 0 and a vector
dir = (d1, . . . , dn) ∈ Q

n, we propose Algorithm 2 to find a cell-jump operation
along the straight line L specified by the point α(x̄) and the direction dir,
denoted as cjump(dir, �).

In order to analyze the values of p(x̄) on line L, we introduce a new variable
t and replace every xi in p(x̄) with ai + dit to get p∗(t). If rela(�) =‘<’ and
p∗(t) has negative sample points, there exists a cjump(dir, �) operation. Let t∗

be a negative sample point of p∗(t) closest to 0. The assignment becomes α′ :
x1 �→ a1 + d1t

∗, . . . , xn �→ an + dnt∗ after executing the operation cjump(dir, �).
It is obvious that α′ is a solution to �. If rela(�) =‘>’ and p∗(t) has positive
sample points, the situation is similar. Otherwise, � has no cell-jump operation
along line L.

98 H. Li et al.

Similarly, we have:

Theorem 3. Suppose the current assignment is α : x1 �→ a1, . . . , xn �→ an

where ai ∈ Q. Let � be a false atomic polynomial formula under α with a
relational operator ‘<’ or ‘>’, dir := (d1, . . . , dn) a vector in Q

n and L :=
{(a1 + d1t, . . . , an + dnt) | t ∈ R}. There exists a solution of � in L if and only
if there exists a cjump(dir, �) operation.

Theorem 3 implies that through one-step cell-jump from the point α(x̄) along
any line that intersects the solution set of �, a solution to � will be found.

Example 9. Assume the current assignment is α : x1 �→ 1, x2 �→ 1. Consider
the false atomic polynomial formula �1 : 2x2

1 + 2x2
2 − 1 < 0 in Example 8. Let

p := poly(�1). By Fig. 5 (b), the line (line L3) specified by the point α(x̄) and
the direction vector dir = (1, 1) intersects the solution set of �1. So, there exists
a cjump(dir, �1) operation by Theorem 3. Notice that the line can be described
in a parametric form, that is {(x1, x2) | x1 = 1+t, x2 = 1+t where t ∈ R}. Then,
analyzing the values of p(x̄) on the line is equivalent to analyzing those of p∗(t)
on the real axis, where p∗(t) = p(1+t, 1+t) = 4t2+8t+3. A sequence of isolating
intervals of p∗ is (− 215

128 ,− 75
64), (− 19

32 ,− 61
128), and there are two negative sample

points: − 75
64 , − 19

32 . Since − 19
32 is the closest one to 0, the operation cjump(dir, �1)

changes the assignment to α′ : x1 �→ 13
32 , x2 �→ 13

32 , which is a solution of
�1. Again by Fig. 5, there are other lines (the dashed lines) that go through
α(x̄) and intersect the solution set. So, we can also find a solution to �1 along
these lines. Actually, for any false atomic polynomial formula with ‘<’ or ‘>’
that really has solutions, there always exists some direction dir in Q

n such that
cjump(dir, �) finds one of them. Therefore, the more directions we try, the greater
the probability of finding a solution of �.

Algorithm 2.. Cell-Jump Along a Fixed Straight Line
Input : α = (a1, . . . , an), the current assignment x1 �→ a1, . . . , xn �→ an where ai ∈ Q

�, a false atomic polynomial formula under α with a relational operator ‘<’ or ‘>’
dir = (d1, . . . , dn), a vector in Q

n

Output: α′, the assignment after executing a cjump(dir, �) operation, which is a solution to �;
FAIL, if there exists no cjump(dir, �) operation

1 p ← poly(�)
2 p∗ ← replace every xi in p with ai + dit, where t is a new variable
3 if rela(�) =‘<’ and p∗ has negative sample points then
4 t∗ ← a negative sample point of p∗ closest to 0

5 α′ ← (a1 + d1t∗, . . . , an + dnt∗)
6 return α′

7 if rela(�) =‘>’ and p∗ has positive sample points then
8 t∗ ← a positive sample point of p∗ closest to 0

9 α′ ← (a1 + d1t∗, . . . , an + dnt∗)
10 return α′

11 return FAIL

Local Search for Solving Satisfiability of Polynomial Formulas 99

−1 1

−1

1

x1

x2

A

L1

L2

(a) Neither L1 nor L2 intersects

the solution set.

−1 1

−1

1

x1

x2

L1

L2L3

A

(b) Line L3 and the dashed lines

intersect the solution set.

Fig. 5. The figure of the cell-jump operations along the lines L1, L2 and L3 for the
false atomic polynomial formula �1 : 2x2

1 + 2x2
2 − 1 < 0 under the assignment α : x1 �→

1, x2 �→ 1. The dashed circle denotes the circle 2x2
1+2x2

2−1 = 0 and the shaded part in
it represents the solution set of the atom. The coordinate of point A is (1, 1). Lines L1,
L2 and L3 pass through A and are parallel to the x1-axis, the x2-axis and the vector
(1, 1), respectively.

Remark 2. For a false atomic polynomial formula � with ‘<’ or ‘>’, cjump(xi, �)
and cjump(dir, �) make an assignment move to a new assignment, and both
assignments map to an element in Q

n. In fact, we can view cjump(xi, �) as a
special case of cjump(dir, �) where the i-th component of dir is 1 and all the other
components are 0. The main difference between cjump(xi, �) and cjump(dir, �) is
that cjump(xi, �) only changes the value of one variable while cjump(dir, �) may
change the values of many variables. The advantage of cjump(xi, �) is to avoid
that some atoms can never become true when the values of many variables are
adjusted together. However, performing cjump(dir, �) is more efficient in some
cases, since it may happen that a solution to � can be found through one-step
cjump(dir, �), but through many steps of cjump(xi, �).

5 Scoring Functions

Scoring functions guide local search algorithms to pick an operation at each step.
In this section, we introduce a score function which measures the difference of
the distances to satisfaction under the assignments before and after performing
an operation.

First, we define the distance to truth of an atomic polynomial formula.

Definition 12 (Distance to Truth). Given the current assignment α such
that α(x̄) = (a1, . . . , an) ∈ Q

n and a positive parameter pp ∈ Q>0, for an atomic
polynomial formula � with p := poly(�), its distance to truth is

dtt(�, α, pp) :=

{
0, if α is a solution to �,

|p(a1, . . . , an)| + pp, otherwise.

For an atomic polynomial formula �, the parameter pp is introduced to guar-
antee that the distance to truth of � is 0 if and only if the current assignment

100 H. Li et al.

α is a solution of �. Based on the definition of dtt, we use the method of [8,
Definition 3 and 4] to define the distance to satisfaction of a polynomial clause
and the score of an operation, respectively.

Definition 13 (Distance to Satisfaction). Given the current assignment α
and a parameter pp ∈ Q>0, the distance to satisfaction of a polynomial clause c
is dts(c, α, pp) := min�∈c{dtt(�, α, pp)}.
Definition 14 (Score). Given a polynomial formula F , the current assignment
α and a parameter pp ∈ Q>0, the score of an operation op is defined as

score(op, α, pp) :=
∑

c∈F

(dts(c, α, pp) − dts(c, α′, pp)) · w(c),

where w(c) denotes the weight of clause c, and α′ is the assignment after per-
forming op.

Note that the definition of the score is associated with the weights of clauses.
In our algorithm, we employ the probabilistic version of the PAWS scheme [9,
32] to update clause weights. The initial weight of every clause is 1. Given a
probability sp, the clause weights are updated as follows: with probability 1−sp,
the weight of every falsified clause is increased by one, and with probability sp,
for every satisfied clause with weight greater than 1, the weight is decreased by
one.

6 The Main Algorithm

Based on the proposed cell-jump operation (see Sect. 4) and scoring function (see
Sect. 5), we develop a local search algorithm, called LS Algorithm, for solving
satisfiability of polynomial formulas in this section. The algorithm is a refined
extension of the general local search framework as described in Sect. 2.2, where
we design a two-level operation selection. The section also explains the restart
mechanism and an optimization strategy used in the algorithm.

Given a polynomial formula F such that every relational operator appearing
in it is ‘<’ or ‘>’ and an initial assignment that maps to an element in Q

n, LS
Algorithm (Algorithm 3) searches for a solution of F from the initial assignment,
which has the following four steps:

(i) Test whether the current assignment is a solution if the terminal
condition is not reached. If the assignment is a solution, return the
solution. If it is not, go to the next step. The algorithm terminates at once
and returns “unknown” if the terminal condition is satisfied.

(ii) Try to find a decreasing cell-jump operation along a line parallel to
a coordinate axis. We first need to check whether such an operation exists.
That is, to determine whether the set D is empty, where D = {cjump(xi, �) |
� is a false atom, xi appears in � and cjump(xi, �) is decreasing}. If D =
∅, go to the next step. Otherwise, we adopt the two-level heuristic in [8,

Local Search for Solving Satisfiability of Polynomial Formulas 101

Section 4.2]. The heuristic distinguishes a special subset S ⊆ D from the
rest of D, where S = {cjump(xi, �) ∈ D | � appears in a falsified clause},
and searches for an operation with the highest score from S. If it fails to find
any operation from S (i.e. S = ∅), then it searches for one with the highest
score from D \ S. Perform the found operation and update the assignment.
Go to Step (i).

(iii) Update clause weights according to the PAWS scheme.
(iv) Generate some direction vectors and try to find a decreas-

ing cell-jump operation along a line parallel to a gener-
ated vector. Since it fails to execute a decreasing cell-jump opera-
tion along any line parallel to a coordinate axis, we generate some
new directions and search for a decreasing cell-jump operation along
one of them. The candidate set of such operations is {cjump(dir, �) |
� isafalseatom, dir isagenerateddirection and cjump(dir, �) isdecreasing}.
If the set is empty, the algorithm returns “unknown”. Otherwise, we use
the two-level heuristic in Step (ii) again to choose an operation from the
set. Perform the chosen operation and update the assignment. Go to Step
(i).

We propose a two-level operation selection in LS Algorithm, which prefers to
choose an operation changing the values of less variables. Concretely, only when
there does not exist a decreasing cjump(xi, �) operation that changes the value of
one variable, do we update clause weights and pick a cjump(dir, �) operation that
may change values of more variables. The strategy makes sense in experiments,
since it is observed that changing too many variables together at the beginning
might make some atoms never become true.

It remains to explain the restart mechanism and an optimization strategy.

Restart Mechanism. Given any initial assignment, LS Algorithm takes it
as the starting point of the local search. If the algorithm returns “unknown”,
we restart LS Algorithm with another initial assignment. A general local search
framework, like Algorithm 1, searches for a solution from only one starting point.
However, the restart mechanism allows us to search from more starting points.
The approach of combining the restart mechanism and a local search procedure
also aids global search, which finds a solution over the entire search space.

We set the initial assignments for restarts as follows: All variables are assigned
with 1 for the first time. For the second time, for a variable xi, if there exists
clause xi < ub ∨ xi = ub or xi > lb ∨ xi = lb, then xi is assigned with ub or lb;
otherwise, xi is assigned with 1. For the i-th time (3 ≤ i ≤ 7), every variable
is assigned with 1 or −1 randomly. For the i-th time (i ≥ 8), every variable is
assigned with a random integer between −50(i − 6) and 50(i − 6).

Forbidding Strategies. An inherent problem of the local search method is
cycling, i.e., revisiting assignments. Cycle phenomenon wastes time and prevents
the search from getting out of local minima. So, we employ a popular forbidding

102 H. Li et al.

strategy, called tabu strategy [18], to deal with it. The tabu strategy forbids
reversing the recent changes and can be directly applied in LS Algorithm. Notice
that every cell-jump operation increases or decreases the values of some variables.
After executing an operation that increases/decreases the value of a variable,
the tabu strategy forbids decreasing/increasing the value of the variable in the
subsequent tt iterations, where tt ∈ Z≥0 is a given parameter.

Algorithm 3. LS Algorithm
Input : F , a polynomial formula such that the relational operator of every atom is ‘<’ or ‘>’
initα, an initial assignment that maps to an element in Q

n

Output: a solution (in Q
n) to F or unknown

1 α ← initα

2 while the terminal condition is not reached do
3 if α satisfies F then return α
4 fal cl ← the set of atoms in falsified clauses
5 sat cl ← the set of false atoms in satisfied clauses
6 if ∃ a decreasing cjump(xi, �) operation where � ∈ fal cl then
7 op ← such an operation with the highest score
8 α ← α with op performed

9 else if ∃ a decreasing cjump(xi, �) operation where � ∈ sat cl then
10 op ← such an operation with the highest score
11 α ← α with op performed

12 else
13 update clause weights according to the PAWS scheme
14 generate a direction vector set dset
15 if ∃ a decreasing cjump(dir, �) operation where dir ∈ dset and � ∈ fal cl then
16 op ← such an operation with the highest score
17 α ← α with op performed

18 else if ∃ a decreasing cjump(dir, �) operation where dir ∈ dset and � ∈ sat cl then
19 op ← such an operation with the highest score
20 α ← α with op performed

21 else
22 return unknown

23 return unknown

Remark 3. If the input formula has equality constraints, then we need to define
a cell-jump operation for a false atom of the form p(x̄) = 0. Given the current
assignment α : x1 �→ a1, . . . , xn �→ an (ai ∈ Q), the operation should assign some
variable xi to a real root of p(a1, . . . , ai−1, xi, ai+1, . . . , an), which may be not a
rational number. Since it is time-consuming to isolate real roots of a polynomial
with algebraic coefficients, we must guarantee that all assignments are rational
during the search. Thus, we restrict that for every equality equation p(x̄) = 0
in the formula, there exists at least one variable such that the degree of p w.r.t.
the variable is 1. Then, LS Algorithm also works for such a polynomial formula
after some minor modifications: In Line 6 (or Line 9), for every atom � ∈ fal cl
(or � ∈ sat cl) and for every variable xi, if � has the form p(x̄) = 0, p is linear
w.r.t. xi and p(a1, . . . , ai−1, xi, ai+1, . . . , an) is not a constant polynomial, there
is a candidate operation that changes the value of xi to the (rational) solution
of p(a1, . . . , ai−1, xi, ai+1, . . . , an) = 0; if � has the form p(x̄) > 0 or p(x̄) < 0, a
candidate operation is cjump(xi, �). We perform a decreasing candidate operation
with the highest score if such one exists, and update α in Line 8 (or Line 11).

Local Search for Solving Satisfiability of Polynomial Formulas 103

In Line 15 (or Line 18), we only deal with inequality constraints from fal cl (or
sat cl), and skip equality constraints.

7 Experiments

We carried out experiments to evaluate LS Algorithm on two classes of instances,
where one class consists of selected instances from SMT-LIB while another is
generated randomly, and compared our tool with state-of-the-art SMT(NRA)
solvers. Furthermore, we combine our tool with Z3, CVC5, Yices2 and Math-
SAT5 respectively to obtain four sequential portfolio solvers, which show better
performance.

7.1 Experiment Preparation

Implementation: We implemented LS Algorithm with Maple2022 as a tool,
which is also named LS. There are 3 parameters in LS Algorithm: pp for com-
puting the score of an operation, tt for the tabu strategy and sp for the PAWS
scheme, which are set as pp = 1, tt = 10 and sp = 0.003. The direction vec-
tors in LS Algorithm are generated in the following way: Suppose the current
assignment is x1 �→ a1, . . . , xn �→ an (ai ∈ Q) and the polynomial appearing in
the atom to deal with is p. We generate 12 vectors. The first one is the gradient
vector (∂p

∂x1
, . . . , ∂p

∂xn
)|(a1,...,an). The second one is the vector (a1, . . . , an). And

the rest are random vectors where every component is a random integer between
−1000 and 1000.

Experiment Setup: All experiments were conducted on 16-Core Intel Core
i9-12900KF with 128GB of memory and ARCH LINUX SYSTEM. We compare
our tool with 4 state-of-the-art SMT(NRA) solvers, namely Z3 (4.11.2), CVC5
(1.0.3), Yices2 (2.6.4) and MathSAT5 (5.6.5). Each solver is executed with a
cutoff time of 1200 seconds (as in the SMT Competition) for each instance. We
also combine LS with every competitor solver as a sequential portfolio solver,
referred to as “LS+OtherSolver”, where we first run LS with a time limit of 10
seconds, and if LS fails to solve the instance within that time, we then proceed
to run OtherSolver from scratch, allotting it the remaining 1190 seconds.

7.2 Instances

We prepare two classes of instances. One class consists of in total 2736 unknown
and satisfiable instances from SMT-LIB(NRA)4, where in every equality poly-
nomial constraint, the degree of the polynomial w.r.t. each variable is less than
or equal to 1.

The rest are random instances. Before introducing the generation approach
of random instances, we first define some notation. Let rn(down, up) denote a

4 https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF NRA.

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA

104 H. Li et al.

random integer between two integers down and up, and rp({x1, . . . , xn}, d,m)
denote a random polynomial

∑m
i=1 ciMi + c0, where ci = rn(−1000, 1000) for

0 ≤ i ≤ m, M1 is a random monomial in {xa1
1 · · · xan

n | ai ∈ Z≥0, a1+· · ·+an = d}
and Mi (2 ≤ i ≤ m) is a random monomial in {xa1

1 · · · xan
n | ai ∈ Z≥0, a1 + · · ·+

an ≤ d}.
A randomly generated polynomial formula rf({v n1, v n2}, {p n1, p n2}, {d−,

d+}, {n−, n+}, {m−,m+}, {cl n1, cl n2}, {cl l1, cl l2}), where all parameters are
in Z≥0, is constructed as follows: First, let n := rn(v n1, v n2) and gener-
ate n variables x1, . . . , xn. Second, let num := rn(p n1, p n2) and generate
num polynomials p1, . . . , pnum. Every pi is a random polynomial rp({xi1 , . . .
, xini

}, d,m), where ni = rn(n−, n+), d = rn(d−, d+), m = rn(m−,m+), and
{xi1 , . . . , xini

} are ni variables randomly selected from {x1, . . . , xn}. Finally, let
cl n := rn(cl n1, cl n2) and generate cl n clauses such that the number of atoms
in a generated clause is rn(cl l1, cl l2). The rn(cl l1, cl l2) atoms are randomly
picked from {pi < 0, pi > 0, pi = 0 | 1 ≤ i ≤ num}. If some picked atom has
the form pi = 0 and there exists a variable such that the degree of pi w.r.t. the
variable is greater than 1, replace the atom with pi < 0 or pi > 0 with equal
probability. We generate totally 500 random polynomial formulas according to
rf({30, 40}, {60, 80}, {20, 30}, {10, 20}, {20, 30}, {40, 60}, {3, 5}).

The two classes of instances have different characteristics. The instances
selected from SMT-LIB(NRA) usually contain lots of linear constraints, and their
complexity is reflected in the propositional abstraction. For a random instance,
all the polynomials in it are nonlinear and of high degrees, while its propositional
abstraction is relatively simple.

7.3 Experimental Results

The experimental results are presented in Table 1. The column “#inst” records
the number of instances. Let us first see Column “Z3”–Column “LS”. On
instances from SMT-LIB(NRA), LS performs worse than all competitors except
MathSAT5, but it is still comparable. It is crucial to note that our approach is
much faster than both CVC5 and Z3 on 90% of the Meti-Tarski benchmarks of
SMT-LIB (2194 instances in total). On random instances, only LS solved all of
them, while the competitor Z3 with the best performance solved 29% of them.
The results show that LS is not good at solving polynomial formulas with com-
plex propositional abstraction and lots of linear constraints, but it has great
ability to handle those with high-degree polynomials. A possible explanation is
that as a local search solver, LS cannot exploit the propositional abstraction well
to find a solution. However, for a formula with plenty of high-degree polynomials,
cell-jump may ‘jump’ to a solution faster.

The data revealed in the last column “LS+CVC5” of Table 1 indicates that
the combination of LS and CVC5 manages to solve the majority of the instances
across both classes, suggesting a complementary performance between LS and
top-tier SMT(NRA) solvers. As shown in Table 2, when evaluating combinations
of different solvers with LS, it becomes evident that our method significantly
enhances the capabilities of existing solvers in the portfolio configurations. The

Local Search for Solving Satisfiability of Polynomial Formulas 105

Table 1. Results on SMT-LIB(NRA) and random instances.

#inst Z3 CVC5 Yices2 MathSAT5 LS LS+CVC5

SMT-LIB(NRA) 2736 2519 2563 2411 1597 2246 2602

meti-tarski 2194 2194 2155 2173 1185 2192 2193

20220314-Uncu 19 19 19 19 16 19 19

other 523 306 389 219 396 35 390

Random instances 500 145 0 22 0 500 500

Total 3236 2664 2563 2433 1597 2746 3102

most striking improvement can be witnessed in the “LS+MathSAT5” combina-
tion, which demonstrates superior performance and the most significant enhance-
ment among all the combination solvers.

Table 2. Performance Comparison of Different Solver Combinations with LS.

#inst LS+Z3 LS+CVC5 LS+Yices2 LS+MathSAT5

SMT-LIB(NRA) 2736 2518 2602 2432 2609

meti-tarski 2194 2194 2193 2194 2191

20220314-Uncu 19 19 19 19 19

other 523 305 390 219 399

Random instances 500 500 500 500 500

Total 3236 3018 3102 2932 3109

Besides, Fig. 6 shows the performance of LS and the competitors on all
instances. The horizontal axis represents time, while the vertical axis represents
the number of solved instances within the corresponding time. Figure 7 presents
the run time comparisons between LS+CVC5 and CVC5. Every point in the
figure represents an instance. The horizontal coordinate of the point is the com-
puting time of LS+CVC5 while the vertical coordinate is the computing time
of CVC5 (for every instance out of time, we record its computing time as 1200
seconds). The figure shows that LS+CVC5 improves the performance of CVC5.
We also present the run time comparisons between LS and each competitor in
Figs. 8–11.

106 H. Li et al.

Fig. 6. Number of solved instances
within given time (sec: seconds).

Fig. 7. Comparing LS+CVC5 with
CVC5.

Fig. 8. Comparing LS with Z3. Fig. 9. Comparing LS with CVC5.

Fig. 10. Comparing LS with MathSAT5. Fig. 11. Comparing LS with Yices2.

8 Conclusion

For a given SMT(NRA) formula, although the domain of variables in the for-
mula is infinite, the satisfiability of the formula can be decided through tests on
a finite number of samples in the domain. A complete search on such samples
is inefficient. In this paper, we propose a local search algorithm for a special
class of SMT(NRA) formulas, where every equality polynomial constraint is
linear with respect to at least one variable. The novelty of our algorithm con-
tains the cell-jump operation and a two-level operation selection which guide the

Local Search for Solving Satisfiability of Polynomial Formulas 107

algorithm to jump from one sample to another heuristically. The algorithm has
been applied to two classes of benchmarks and the experimental results show
that it is competitive with state-of-the-art SMT solvers and is good at solving
those formulas with high-degree polynomial constraints. Tests on the solvers
developed by combining this local search algorithm with Z3, CVC5, Yices2 or
MathSAT5 indicate that the algorithm is complementary to these state-of-the-
art SMT(NRA) solvers. For the future work, we will improve our algorithm such
that it is able to handle all polynomial formulas.

Acknowledgement. This work is supported by National Key R&D Program of China
(No. 2022YFA1005102) and the NSFC under grant No. 61732001. The authors are
grateful to the reviewers for their valuable comments and constructive suggestions.

References

1. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consistency
of non-linear real arithmetic constraints with a conflict driven search using cylin-
drical algebraic coverings. J. Logical Algebraic Methods Programm. 119, 100633
(2021)

2. Balint, A., Schöning, U.: Choosing probability distributions for stochastic local
search and the role of make versus break. In: Cimatti, A., Sebastiani, R. (eds.)
SAT 2012. LNCS, vol. 7317, pp. 16–29. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31612-8 3

3. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, pp. 415–442. Springer, Cham (2022). https://doi.org/10.1007/978-3-
030-99524-9 24

4. Biere, A.: Splatz, lingeling, plingeling, treengeling, yalsat entering the sat compe-
tition 2016. In: Proceedings of SAT Competition, pp. 44–45 (2016)

5. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS
press (2009)

6. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J.
Symb. Comput. 32(5), 447–465 (2001)

7. Brown, C.W., Košta, M.: Constructing a single cell in cylindrical algebraic decom-
position. J. Symb. Comput. 70, 14–48 (2015)

8. Cai, S., Li, B., Zhang, X.: Local search for SMT on linear integer arithmetic. In:
International Conference on Computer Aided Verification. pp. 227–248. Springer
(2022). https://doi.org/10.1007/978-3-031-13188-2 12

9. Cai, S., Su, K.: Local search for Boolean satisfiability with configuration checking
and subscore. Artif. Intell. 204, 75–98 (2013)

10. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Log. 19(3), 1–52 (2018)

11. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

12. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Handbook of Model
Checking, vol. 10. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8

https://doi.org/10.1007/978-3-642-31612-8_3
https://doi.org/10.1007/978-3-642-31612-8_3
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-031-13188-2_12
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-319-10575-8

108 H. Li et al.

13. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4 17

14. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. J. Symb. Comput. 12(3), 299–328 (1991)

15. De Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Inter-
national Workshop on Verification, Model Checking, and Abstract Interpretation,
pp. 1–12. Springer (2013). https://doi.org/10.1007/978-3-642-35873-9 1

16. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

17. Fröhlich, A., Biere, A., Wintersteiger, C., Hamadi, Y.: Stochastic local search for
satisfiability modulo theories. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29 (2015)

18. Glover, F., Laguna, M.: Tabu search. In: Handbook of Combinatorial Optimization,
pp. 2093–2229. Springer (1998)

19. Griggio, A., Phan, Q.-S., Sebastiani, R., Tomasi, S.: Stochastic local search
for SMT: combining theory solvers with WalkSAT. In: Tinelli, C., Sofronie-
Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 163–178.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24364-6 12

20. Hong, H.: An improvement of the projection operator in cylindrical algebraic
decomposition. In: Proceedings of the International Symposium on Symbolic and
Algebraic Computation, pp. 261–264 (1990)

21. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 27

22. Lazard, D.: An improved projection for cylindrical algebraic decomposition. In:
Algebraic Geometry and its Applications, pp. 467–476. Springer (1994). https://
doi.org/10.1007/978-1-4612-2628-4 29

23. Li, C.M., Li, Yu.: Satisfying versus falsifying in local search for satisfiability.
In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 477–478.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8 43

24. Li, H., Xia, B.: Solving satisfiability of polynomial formulas by sample-cell projec-
tion. arXiv preprint arXiv:2003.00409 (2020)

25. Liu, M., et al.: NRA-LS at the SMT competition 2022. Tool description document,
see https://github.com/minghao-liu/NRA-LS (2022)

26. McCallum, S.: An improved projection operation for cylindrical algebraic decom-
position. In: Quantifier Elimination and Cylindrical Algebraic Decomposition, pp.
242–268. Springer (1998). https://doi.org/10.1007/978-3-7091-9459-1 12

27. Mitchell, D., Selman, B., Leveque, H.: A new method for solving hard satisfiability
problems. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp.
440–446 (1992)

28. Moura, L.d., Bjørner, N.: Z3: An efficient SMT solver. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3 24

29. Nalbach, J., Ábrahám, E., Specht, P., Brown, C.W., Davenport, J.H., England,
M.: Levelwise construction of a single cylindrical algebraic cell. arXiv preprint
arXiv:2212.09309 (2022)

30. Niemetz, A., Preiner, M.: Ternary propagation-based local search for more bit-
precise reasoning. In: 2020 Formal Methods in Computer Aided Design (FMCAD),
pp. 214–224. IEEE (2020)

https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-642-24364-6_12
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-1-4612-2628-4_29
https://doi.org/10.1007/978-1-4612-2628-4_29
https://doi.org/10.1007/978-3-642-31612-8_43
http://arxiv.org/abs/2003.00409
https://github.com/minghao-liu/NRA-LS
https://doi.org/10.1007/978-3-7091-9459-1_12
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/2212.09309

Local Search for Solving Satisfiability of Polynomial Formulas 109

31. Niemetz, A., Preiner, M., Biere, A.: Precise and complete propagation based local
search for satisfiability modulo theories. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 199–217. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-41528-4 11

32. Talupur, M., Sinha, N., Strichman, O., Pnueli, A.: Range allocation for separation
logic. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 148–161.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 12

33. Tarski, A.: A decision method for elementary algebra and geometry. University of
California Press (1951)

34. Tung, V.X., Van Khanh, T., Ogawa, M.: raSAT: an SMT solver for polynomial
constraints. Formal Methods Syst Design 51(3), 462–499 (2017). https://doi.org/
10.1007/s10703-017-0284-9

35. Weispfenning, V.: Quantifier elimination for real algebra-the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-41528-4_11
https://doi.org/10.1007/978-3-319-41528-4_11
https://doi.org/10.1007/978-3-540-27813-9_12
https://doi.org/10.1007/s10703-017-0284-9
https://doi.org/10.1007/s10703-017-0284-9
http://creativecommons.org/licenses/by/4.0/

Partial Quantifier Elimination and
Property Generation

Eugene Goldberg(B)

Land O Lakes, USA

eu.goldberg@gmail.com

Abstract. We study partial quantifier elimination (PQE) for proposi-
tional CNF formulas with existential quantifiers. PQE is a generalization
of quantifier elimination where one can limit the set of clauses taken out
of the scope of quantifiers to a small subset of clauses. The appeal of PQE
is that many verification problems (e.g., equivalence checking and model
checking) can be solved in terms of PQE and the latter can be dramati-
cally simpler than full quantifier elimination. We show that PQE can be
used for property generation that one can view as a generalization of test-
ing. The objective here is to produce an unwanted property of a design
implementation, thus exposing a bug. We introduce two PQE solvers
called EG-PQE and EG-PQE+. EG-PQE is a very simple SAT-based
algorithm. EG-PQE+ is more sophisticated and robust than EG-PQE .
We use these PQE solvers to find an unwanted property (namely, an
unwanted invariant) of a buggy FIFO buffer. We also apply them to
invariant generation for sequential circuits from a HWMCC benchmark
set. Finally, we use these solvers to generate properties of a combinational
circuit that mimic symbolic simulation.

1 Introduction

In this paper, we consider the following problem. Let F (X,Y) be a propositional
formula in conjunctive normal form (CNF)1 where X,Y are sets of variables.
Let G be a subset of clauses of F . Given a formula ∃X[F], find a quantifier-free
formula H(Y) such that ∃X[F] ≡ H ∧ ∃X[F \ G]. In contrast to full quantifier
elimination (QE), only the clauses of G are taken out of the scope of quantifiers
here. So, we call this problem partial QE (PQE) [1]. (In this paper, we consider
PQE only for formulas with existential quantifiers.) We will refer to H as a
solution to PQE. Like SAT, PQE is a way to cope with the complexity of QE.
But in contrast to SAT that is a special case of QE (where all variables are
quantified), PQE generalizes QE. The latter is just a special case of PQE where
G = F and the entire formula is unquantified. Interpolation [2,3] can be viewed
as a special case of PQE as well [4,5].
1 Every formula is a propositional CNF formula unless otherwise stated. Given a CNF

formula F represented as the conjunction of clauses C1∧· · ·∧Ck, we will also consider
F as the set of clauses {C1, . . . , Ck}.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 110–131, 2023.
https://doi.org/10.1007/978-3-031-37703-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_6&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_6

Partial Quantifier Elimination and Property Generation 111

The appeal of PQE is threefold. First, it can be much more efficient than
QE if G is a small subset of F . Second, many verification problems like SAT,
equivalence checking, model checking can be solved in terms of PQE [1,6–8]. So,
PQE can be used to design new efficient methods for solving known problems.
Third, one can apply PQE to solving new problems like property generation
considered in this paper. In practice, to perform PQE, it suffices to have an
algorithm that takes a single clause out of the scope of quantifiers. Namely, given
a formula ∃X[F (X,Y)] and a clause C ∈ F , this algorithm finds a formula H(Y)
such that ∃X[F] ≡ H ∧ ∃X[F \ {C}]. To take out k clauses, one can apply this
algorithm k times. Since H ∧∃X[F] ≡ H ∧∃X[F \ {C}], solving the PQE above
reduces to finding H(Y) that makes C redundant in H ∧ ∃X[F]. So, the PQE
algorithms we present here employ redundancy based reasoning. We describe
two PQE algorithms called EG-PQE and EG-PQE+ where “EG” stands for
“Enumerate and Generalize”. EG-PQE is a very simple SAT-based algorithm
that can sometimes solve very large problems. EG-PQE+ is a modification of
EG-PQE that makes the algorithm more powerful and robust.

In [7], we showed the viability of an equivalence checker based on PQE. In par-
ticular, we presented instances for which this equivalence checker outperformed
ABC [9], a high quality tool. In this paper, we describe and check experimen-
tally one more important application of PQE called property generation. Our
motivation here is as follows. Suppose a design implementation Imp meets the
set of specification properties P1, . . . , Pm. Typically, this set is incomplete. So,
Imp can still be buggy even if every Pi, i = 1, . . . , m holds. Let P ∗

m+1, . . . , P
∗
n

be desired properties adding which makes the specification complete. If Imp
meets the properties P1, . . . , Pm but is still buggy, a missed property P ∗

i above
fails. That is, Imp has the unwanted property P ∗

i . So, one can detect bugs by
generating unspecified properties of Imp and checking if there is an unwanted
one.

Currently, identification of unwanted properties is mostly done by massive
testing. (As we show later, the input/output behavior specified by a single test
can be cast as a simple property of Imp.) Another technique employed in prac-
tice is guessing unwanted properties that may hold and formally checking if
this is the case. The problem with these techniques is that they can miss an
unwanted property. In this paper, we describe property generation by PQE. The
benefit of PQE is that it can produce much more complex properties than those
corresponding to single tests. So, using PQE one can detect bugs that testing
overlooks or cannot find in principle. Importantly, PQE generates properties
covering different parts of Imp. This makes the search for unwanted properties
more systematic and facilitates discovering bugs that can be missed if one simply
guesses unwanted properties that may hold.

In this paper, we experimentally study generation of invariants of a sequen-
tial circuit N . An invariant of N is unwanted if a state that is supposed to be
reachable in N falsifies this invariant and hence is unreachable. Note that find-
ing a formal proof that N has no unwanted invariants is impractical. (It is hard
to efficiently prove a large set of states reachable because different states are

112 E. Goldberg

reached by different execution traces.) So developing practical methods for find-
ing unwanted invariants if very important. We also study generation of properties
mimicking symbolic simulation for a combinational circuit obtained by unrolling
a sequential circuit. An unwanted property here exposes a wrong execution trace.

This paper is structured as follows. (Some additional information can be
found in the supporting technical report [5].) In Sect. 2, we give basic defi-
nitions. Section 3 presents property generation for a combinational circuit. In
Sect. 4, we describe invariant generation for a sequential circuit. Sections 5 and 6
present EG-PQE and EG-PQE+ respectively. In Sect. 7, invariant generation is
used to find a bug in a FIFO buffer. Experiments with invariant generation for
HWMCC benchmarks are described in Sect. 8. Section 9 presents an experiment
with property generation for combinational circuits. In Sect. 10 we give some
background. Finally, in Sect. 11, we make conclusions and discuss directions for
future research.

2 Basic Definitions

In this section, when we say “formula” without mentioning quantifiers, we mean
“a quantifier-free formula”.

Definition 1. We assume that formulas have only Boolean variables. A literal
of a variable v is either v or its negation. A clause is a disjunction of literals.
A formula F is in conjunctive normal form (CNF) if F = C1 ∧ · · · ∧ Ck where
C1, . . . , Ck are clauses. We will also view F as the set of clauses {C1, . . . , Ck}.
We assume that every formula is in CNF.

Definition 2. Let F be a formula. Then Vars(F) denotes the set of variables
of F and Vars(∃X[F]) denotes Vars(F)\X.

Definition 3. Let V be a set of variables. An assignment #»q to V is a mapping
V ′ → {0, 1} where V ′ ⊆ V . We will denote the set of variables assigned in #»q as
Vars(q). We will refer to #»q as a full assignment to V if Vars(q) = V . We
will denote as #»q ⊆ #»r the fact that a) Vars(q) ⊆ Vars(r) and b) every variable
of Vars(q) has the same value in #»q and #»r .

Definition 4. A literal, a clause and a formula are said to be satisfied (respec-
tively falsified) by an assignment #»q if they evaluate to 1 (respectively 0) under
#»q .

Definition 5. Let C be a clause. Let H be a formula that may have quantifiers,
and #»q be an assignment to Vars(H). If C is satisfied by #»q , then Cq ≡ 1. Oth-
erwise, Cq is the clause obtained from C by removing all literals falsified by #»q .
Denote by Hq the formula obtained from H by removing the clauses satisfied by
#»q and replacing every clause C unsatisfied by #»q with Cq .

Definition 6. Given a formula ∃X[F (X,Y)], a clause C of F is called a quan-
tified clause if Vars(C) ∩ X 	= ∅. If Vars(C) ∩ X = ∅, the clause C depends
only on free, i.e., unquantified variables ofF and is called a free clause.

Partial Quantifier Elimination and Property Generation 113

Definition 7. Let G,H be formulas that may have existential quantifiers. We
say that G,H are equivalent, written G ≡ H, if Gq = Hq for all full assign-
ments #»q to Vars(G) ∪ Vars(H).

Definition 8. Let F (X,Y) be a formula and G ⊆ F and G 	= ∅. The clauses
of G are said to be redundant in ∃X[F] if ∃X[F] ≡ ∃X[F \ G]. Note that if
F \ G implies G, the clauses of G are redundant in ∃X[F].

Definition 9. Given a formula ∃X[F (X,Y))] and G where G ⊆ F , the Par-
tial Quantifier Elimination (PQE) problem is to find H(Y) such that
∃X[F] ≡ H ∧ ∃X[F \ G]. (So, PQE takes G out of the scope of quantifiers.)
The formula H is called a solution to PQE. The case of PQE where G = F is
called Quantifier Elimination (QE).

Example 1. Consider the formula F = C1∧C2∧C3∧C4 where C1 = x3∨x4, C2=
y1∨x3, C3 = y1 ∨ x4, C4=y2∨x4. Let Y denote {y1, y2} and X denote {x3, x4}.
Consider the PQE problem of taking C1 out of ∃X[F], i.e., finding H(Y) such
that ∃X[F] ≡ H ∧ ∃X[F \ {C1}]. As we show later, ∃X[F] ≡ y1 ∧ ∃X[F \ {C1}].
That is, H =y1 is a solution to the PQE problem above.

Remark 1. Let D be a clause of a solution H to the PQE problem of Definition 9.
If F \ G implies D, then H \ {D} is a solution to this PQE problem too.

Proposition 1. Let H be a solution to the PQE problem of Definition 9. That
is, ∃X[F] ≡ H ∧ ∃X[F \ G]. Then F ⇒ H (i.e., F implies H).

The proofs of propositions can be found in [5].

Definition 10. Let clauses C ′,C ′′ have opposite literals of exactly one variable
w ∈ Vars(C ′)∩Vars(C ′′). Then C ′,C ′′ are called resolvable on w. Let C be a
clause of a formula G and w ∈ Vars(C). The clause C is said to be blocked [10]
in G with respect to the variable w if no clause of G is resolvable with C on w.

Proposition 2. Let a clause C be blocked in a formula F (X,Y) with respect to
a variable x ∈ X. Then C is redundant in ∃X[F], i.e., ∃X[F \ {C}] ≡ ∃X[F].

3 Property Generation by PQE

Many known problems can be formulated in terms of PQE, thus facilitating the
design of new efficient algorithms. In [5], we give a short summary of results
on solving SAT, equivalence checking and model checking by PQE presented
in [1,6–8]. In this section, we describe application of PQE to property generation
for a combinational circuit. The objective of property generation is to expose a
bug via producing an unwanted property.

Let M(X,V,W) be a combinational circuit where X,V,W specify the sets
of the internal, input and output variables of M respectively. Let F (X,V,W)
denote a formula specifying M . As usual, this formula is obtained by Tseitin’s
transformations [11]. Namely, F equals FG1 ∧· · ·∧FGk

where G1, . . . , Gk are the
gates of M and FGi

specifies the functionality of gate Gi.

114 E. Goldberg

Example 2. Let G be a 2-input AND gate defined as x3 = x1 ∧ x2 where x3

denotes the output value and x1, x2 denote the input values of G. Then G is
specified by the formula FG=(x1∨x2∨x3)∧(x1∨x3)∧(x2∨x3). Every clause of
FG is falsified by an inconsistent assignment (where the output value of G is not
implied by its input values). For instance, x1∨ x3 is falsified by the inconsistent
assignment x1 = 0, x3 = 1. So, every assignment satisfying FG corresponds to a
consistent assignment to G and vice versa. Similarly, every assignment satisfying
the formula F above is a consistent assignment to the gates of M and vice versa.

3.1 High-Level View of Property Generation by PQE

One generates properties by PQE until an unwanted property exposing a bug
is produced. (Like in testing, one runs tests until a bug-exposing test is encoun-
tered.) The benefit of property generation by PQE is fourfold. First, by property
generation, one can identify bugs that are hard or simply impossible to find by
testing. Second, using PQE makes property generation efficient. Third, by tak-
ing out different clauses one can generate properties covering different parts of
the design. This increases the probability of discovering a bug. Fourth, every
property generated by PQE specifies a large set of high-quality tests.

In this paper (Sects. 7, 9), we consider cases where identifying an unwanted
property is easy. However, in general, such identification is not trivial. A discus-
sion of this topic is beyond the scope of this paper. (An outline of a procedure
for deciding if a property is unwanted is given in [5].)

3.2 Property Generation as Generalization of Testing

The behavior of M corresponding to a single test can be cast as a property. Let
wi ∈ W be an output variable of M and #»v be a test, i.e., a full assignment to
the input variables V of M . Let Bv denote the longest clause falsified by #»v , i.e.,
Vars(Bv) = V . Let l(wi) be the literal satisfied by the value of wi produced by
M under input #»v . Then the clause Bv ∨ l(wi) is satisfied by every assignment
satisfying F , i.e., Bv ∨ l(wi) is a property of M . We will refer to it as a single-
test property (since it describes the behavior of M for a single test). If the
input #»v is supposed to produce the opposite value of wi (i.e., the one falsifying
l(wi)), then #»v exposes a bug in M . In this case, the single-test property above
is an unwanted property of M exposing the same bug as the test #»v .

A single-test property can be viewed as a weakest property of M as opposed
to the strongest property specified by ∃X[F]. The latter is the truth table of M
that can be computed explicitly by performing QE on ∃X[F]. One can use PQE
to generate properties of M that, in terms of strength, range from the weakest
ones to the strongest property inclusively. (By combining clause splitting with
PQE one can generate single-test properties, see the next subsection.) Consider
the PQE problem of taking a clause C out of ∃X[F]. Let H(V,W) be a solution
to this problem, i.e., ∃X[F] ≡ H ∧ ∃X[F \ {C}]. Since H is implied by F , it can
be viewed as a property of M . If H is an unwanted property, M has a bug.

Partial Quantifier Elimination and Property Generation 115

(Here we consider the case where a property of M is obtained by taking a clause
out of formula ∃X[F] where only the internal variables of M are quantified.
Later we consider cases where some external variables of M are quantified too.)

We will assume that the property H generated by PQE has no redundant
clauses (see Remark 1). That is, if D ∈ H, then F \ {C} 	⇒ D. Then one can
view H as a property that holds due to the presence of the clause C in F .

3.3 Computing Properties Efficiently

If a property H is obtained by taking only one clause out of ∃X[F], its computa-
tion is much easier than performing QE on ∃X[F]. If computing H still remains
too time-consuming, one can use the two methods below that achieve better
performance at the expense of generating weaker properties. The first method
applies when a PQE solver forms a solution incrementally, clause by clause (like
the algorithms described in Sects. 5 and 6). Then one can simply stop computing
H as soon as the number of clauses in H exceeds a threshold. Such a formula H
is still implied by F and hence specifies a property of M .

The second method employs clause splitting. Here we consider clause splitting
on input variables v1, . . . , vp, i.e., those of V (but one can split a clause on
any subset of variables from Vars(F)). Let F ′ denote the formula F where a
clause C is replaced with p + 1 clauses: C1 = C ∨ l(v1),. . . , Cp = C ∨ l(vp),
Cp+1 = C ∨ l(v1)∨· · ·∨ l(vp), where l(vi) is a literal of vi. The idea is to obtain a
property H by taking the clause Cp+1 out of ∃X[F ′] rather than C out of ∃X[F].
The former PQE problem is simpler than the latter since it produces a weaker
property H. One can show that if {v1, . . . , vp} = V , then a) the complexity of
PQE reduces to linear; b) taking out Cp+1 actually produces a single-test
property. The latter specifies the input/output behavior of M for the test #»v
falsifying the literals l(v1), . . . , l(vp). (The details can be found in [5].)

3.4 Using Design Coverage for Generation of Unwanted Properties

Arguably, testing is so effective in practice because one verifies a particular
design. Namely, one probes different parts of this design using some coverage
metric rather than sampling the truth table (which would mean verifying every
possible design). The same idea works for property generation by PQE for the
following two reasons. First, by taking out a clause, PQE generates a property
inherent to the specific circuit M . (If one replaces M with an equivalent but
structurally different circuit, PQE will generate different properties.) Second, by
taking out different clauses of F one generates properties corresponding to dif-
ferent parts of M thus “covering” the design. This increases the chance to take
out a clause corresponding to the buggy part of M and generate an unwanted
property.

3.5 High-Quality Tests Specified by a Property Generated by PQE

In this subsection, we show that a property H generated by PQE, in general,
specifies a large set of high-quality tests. Let H(V,W) be obtained by taking C

116 E. Goldberg

out of ∃X[F (X,V,W)]. Let Q(V,W) be a clause of H. As mentioned above, we
assume that F \ {C} 	⇒ Q. Then there is an assignment (#»x , #»v , #»w) satisfying
formula (F \ {C}) ∧ Q where #»x , #»v , #»w are assignments to X,V,W respectively.
(Note that by definition, (#»v , #»w) falsifies Q.) Let (#»x ∗, #»v , #»w∗) be the execution
trace of M under the input #»v . So, (#»x ∗, #»v , #»w∗) satisfies F . Note that the output
assignments #»w and #»w∗ must be different because (#»v , #»w∗) has to satisfy Q. (Oth-
erwise, (#»x ∗, #»v , #»w∗) satisfies F ∧ Q and so F 	⇒ Q and hence F 	⇒ H.) So, one
can view #»v as a test “detecting” disappearance of the clause C from F . Note
that different assignments satisfying (F \ {C}) ∧ Q correspond to different tests
#»v . So, the clause Q of H, in general, specifies a very large number of tests. One
can show that these tests are similar to those detecting stuck-at faults and so
have very high quality [5].

4 Invariant Generation by PQE

In this section, we extend property generation for combinational circuits to
sequential ones. Namely, we generate invariants. Note that generation of desired
auxiliary invariants is routinely used in practice to facilitate verification of a
predefined property. The problem we consider here is different in that our goal
is to produce an unwanted invariant exposing a bug. We picked generation of
invariants (over that of weaker properties just claiming that a state cannot be
reached in k transitions or less) because identification of an unwanted invariant
is, arguably, easier.

4.1 Bugs Making States Unreachable

Let N be a sequential circuit and S denote the state variables of N . Let I(S)
specify the initial state #»sini (i.e.,I(#»sini)=1). Let T (S′, V, S′′) denote the tran-
sition relation of N where S′, S′′ are the present and next state variables and
V specifies the (combinational) input variables. We will say that a state #»s of
N is reachable if there is an execution trace leading to #»s . That is, there is
a sequence of states #»s0, . . . ,

#»sk where #»s0 = #»sini , #»sk = #»s and there exist #»vi
i = 0, . . . , k−1 for which T (#»si, #»vi, #»si+1) = 1. Let N have to satisfy a set of
invariants P0(S), . . . , Pm(S). That is, Pi holds iff Pi(#»s) = 1 for every reach-
able state #»s of N . We will denote the aggregate invariant P0 ∧ · · · ∧ Pm as
Pagg . We will call #»s a bad state of N if Pagg(#»s) = 0. If Pagg holds, no bad
state is reachable. We will call #»s a good state of N if Pagg(#»s) = 1.

Typically, the set of invariants P0, . . . , Pm is incomplete in the sense that it
does not specify all states that must be unreachable. So, a good state can well
be unreachable. We will call a good state operative (or op-state for short) if
it is supposed to be used by N and so should be reachable. We introduce the
term an operative state just to factor out “useless” good states. We will say that
N has an op-state reachability bug if an op-state is unreachable in N . In
Sect. 7, we consider such a bug in a FIFO buffer. The fact that Pagg holds says
nothing about reachability of op-states. Consider, for instance, a trivial circuit

Partial Quantifier Elimination and Property Generation 117

Ntriv that simply stays in the initial state #»sini and Pagg(#»sini) = 1. Then Pagg

holds for Ntriv but the latter has op-state reachability bugs (assuming that the
correct circuit must reach states other than #»sini).

Let R #»s (S) be the predicate satisfied only by a state #»s . In terms of CTL,
identifying an op-state reachability bug means finding #»s for which the property
EF.R #»s must hold but it does not. The reason for assuming #»s to be unknown
is that the set of op-states is typically too large to explicitly specify every prop-
erty ET.R #»s to hold. This makes finding op-state reachability bugs very hard.
The problem is exacerbated by the fact that reachability of different states is
established by different traces. So, in general, one cannot efficiently prove many
properties EF.R #»s (for different states) at once.

4.2 Proving Operative State Unreachability by Invariant
Generation

In practice, there are two methods to check reachability of op-states for large
circuits. The first method is testing. Of course, testing cannot prove a state
unreachable, however, the examination of execution traces may point to a poten-
tial problem. (For instance, after examining execution traces of the circuit Ntriv

above one realizes that many op-states look unreachable.) The other method
is to check unwanted invariants, i.e., those that are supposed to fail. If an
unwanted invariant holds for a circuit, the latter has an op-state reachability
bug. For instance, one can check if a state variable si ∈ S of a circuit never
changes its initial value. To break this unwanted invariant, one needs to find
an op-state where the initial value of si is flipped. (For the circuit Ntriv above
this unwanted invariant holds for every state variable.) The potential unwanted
invariants are formed manually, i.e., simply guessed.

The two methods above can easily overlook an op-state reachability bug.
Testing cannot prove that an op-state is unreachable. To correctly guess an
unwanted invariant that holds, one essentially has to know the underlying bug.
Below, we describe a method for invariant generation by PQE that is based on
property generation for combinational circuits. The appeal of this method is
twofold. First, PQE generates invariants “inherent” to the implementation at
hand, which drastically reduces the set of invariants to explore. Second, PQE is
able to generate invariants related to different parts of the circuit (including the
buggy one). This increases the probability of generating an unwanted invariant.
We substantiate this intuition in Sect. 7.

Let formula Fk specify the combinational circuit obtained by unfolding a
sequential circuit N for k time frames and adding the initial state constraint
I(S0). That is, Fk = I(S0) ∧ T (S0, V0, S1) ∧ · · · ∧ T (Sk−1, Vk−1, Sk) where Sj , Vj

denote the state and input variables of j-th time frame respectively. Let H(Sk)
be a solution to the PQE problem of taking a clause C out of ∃Xk[Fk] where
Xk = S0∪V0∪· · ·∪Sk−1∪Vk−1. That is, ∃Xk[Fk] ≡ H∧ ∃Xk[Fk\{C}]. Note that
in contrast to Sect. 3, here some external variables of the combinational circuit
(namely, the input variables V0, . . . , Vk−1) are quantified too. So, H depends only

118 E. Goldberg

on state variables of the last time frame. H can be viewed as a local invariant
asserting that no state falsifying H can be reached in k transitions.

One can use H to find global invariants (holding for every time frame) as
follows. Even if H is only a local invariant, a clause Q of H can be a global
invariant. The experiments of Sect. 8 show that, in general, this is true for many
clauses of H. (To find out if Q is a global invariant, one can simply run a model
checker to see if the property Q holds.) Note that by taking out different clauses
of Fk one can produce global single-clause invariants Q relating to different parts
of N . From now on, when we say “an invariant” without a qualifier we mean a
global invariant.

5 Introducing EG-PQE

In this section, we describe a simple SAT-based algorithm for performing PQE
called EG-PQE . Here ‘EG’ stands for ‘Enumerate and Generalize’. EG-PQE
accepts a formula ∃X[F (X,Y)] and a clause C ∈ F . It outputs a formula H(Y)
such that ∃X[Fini] ≡ H ∧ ∃X[Fini \ {C}] where Fini is the initial formula F .
(This point needs clarification because EG-PQE changes F by adding clauses.)

5.1 An Example

Before describing the pseudocode of EG-PQE , we explain how it solves the PQE
problem of Example 1. That is, we consider taking clause C1 out of ∃X[F (X,Y)]
where F = C1 ∧ · · · ∧ C4, C1 = x3 ∨ x4, C2 =y1∨x3, C3 = y1 ∨ x4, C4 =y2∨x4

and Y = {y1, y2} and X = {x3, x4}.
EG-PQE iteratively generates a full assignment #»y to Y and checks if (C1)y

is redundant in ∃X[Fy] (i.e., if C1 is redundant in ∃X[F] in subspace #»y). Note
that if (F \ {C1})y implies (C1)y , then (C1)y is trivially redundant in ∃X[Fy].
To avoid such subspaces, EG-PQE generates #»y by searching for an assignment
(#»y , #»x) satisfying the formula (F \{C1})∧C1. (Here #»y and #»x are full assignments
to Y and X respectively.) If such (#»y , #»x) exists, it satisfies F \ {C1} and falsifies
C1 thus proving that (F \ {C1})y does not imply (C1)y .

Assume that EG-PQE found an assignment(y1 = 0, y2 = 1, x3 = 1, x4 = 0)
satisfying (F \{C1})∧C1. So #»y = (y1=0, y2=1). Then EG-PQE checks if Fy is
satisfiable. Fy = (x3∨x4)∧x3∧x4 and so it is unsatisfiable. This means that (C1)y
is not redundant in ∃X[Fy]. (Indeed, (F \ {C1})y is satisfiable. So, removing
C1 makes F satisfiable in subspace #»y .) EG-PQE makes (C1)y redundant in
∃X[Fy] by adding to F a clause B falsified by #»y . The clause B equals y1
and is obtained by identifying the assignments to individual variables of Y that
made Fy unsatisfiable. (In our case, this is the assignment y1 = 0.) Note that
derivation of clause y1 generalizes the proof of unsatisfiability of F in subspace
(y1=0, y2=1) so that this proof holds for subspace (y1=0, y2=0) too.

Now EG-PQE looks for a new assignment satisfying (F \{C1})∧C1. Let the
assignment (y1 = 1, y2 = 1, x3 = 1, x4 = 0) be found. So, #»y = (y1 = 1, y2 = 1).
Since (y1 =1, y2 =1, x3 = 0) satisfies F , the formula Fy is satisfiable. So, (C1)y

Partial Quantifier Elimination and Property Generation 119

is already redundant in ∃X[Fy]. To avoid re-visiting the subspace #»y , EG-PQE
generates the plugging clause D = y1 ∨ y2 falsified by #»y .

EG-PQE fails to generate a new assignment #»y because the formula
D ∧ (F \ {C1}) ∧ C1 is unsatisfiable. Indeed, every full assignment #»y we have
examined so far falsifies either the clause y1 added to F or the plugging clause
D. The only assignment EG-PQE has not explored yet is #»y = (y1 = 1, y2 = 0).
Since (F \ {C1})y = x4 and (C1)y = x3 ∨ x4, the formula (F \ {C1}) ∧ C1 is
unsatisfiable in subspace #»y . In other words, (C1)y is implied by (F \{C1})y and
hence is redundant. Thus, C1 is redundant in ∃X[Fini ∧y1] for every assignment
to Y where Fini is the initial formula F . That is, ∃X[Fini] ≡ y1∧ ∃X[Fini \{C1}]
and so the clause y1 is a solution H to our PQE problem.

5.2 Description of EG-PQE

EG-PQE(F,X, Y, C) {
1 Plg := ∅; Fini := F
2 while (true) {
3 G := F \ {C}
4 y :=Sat1(Plg∧ G∧C)
5 if (y = nil)
6 return(F \ Fini)
7 (x ∗, B) := Sat2(F, y)
8 if (B �= nil) {
9 F := F ∪ {B}
10 continue }
11 D :=PlugCls(y ,x ∗,F)
12 Plg := Plg D

Fig. 1. Pseudocode of EG-PQE

The pseudo-code of EG-PQE is shown in
Fig. 1. EG-PQE starts with storing the ini-
tial formula F and initializing formula Plg
that accumulates the plugging clauses gener-
ated by EG-PQE (line 1). As we mentioned
in the previous subsection, plugging clauses
are used to avoid re-visiting the subspaces
where the formula F is proved satisfiable.

All the work is carried out in a while
loop. First, EG-PQE checks if there is a new
subspace #»y where ∃X[(F \ {C})y] does not
imply Fy . This is done by searching for an
assignment (#»y , #»x) satisfying Plg∧(F \{C})∧
C (lines 3–4). If such an assignment does not
exist, the clause C is redundant in ∃X[F].
(Indeed, let #»y be a full assignment to Y .

The formula Plg ∧ (F \{C})∧C is unsatisfiable in subspace #»y for one of the two
reasons. First, #»y falsifies Plg . Then Cy is redundant because Fy is satisfiable.
Second, (F \ {C})y ∧ Cy is unsatisfiable. In this case, (F \ {C})y implies Cy .)
Then EG-PQE returns the set of clauses added to the initial formula F as a
solution H to the PQE problem (lines 5–6).

If the satisfying assignment (#»y , #»x) above exists, EG-PQE checks if the for-
mula Fy is satisfiable (line 7). If not, then the clause Cy is not redundant in
∃X[Fy] (because (F \ {C})y is satisfiable). So, EG-PQE makes Cy redundant
by generating a clause B(Y) falsified by #»y and adding it to F (line 9). Note
that adding B also prevents EG-PQE from re-visiting the subspace #»y again.
The clause B is built by finding an unsatisfiable subset of Fy and collecting the
literals of Y removed from clauses of this subset when obtaining Fy from F .

If Fy is satisfiable, EG-PQE generates an assignment #»x ∗ to X such that
(#»y , #»x ∗) satisfies F (line 7). The satisfiability of Fy means that every clause
of Fy including Cy is redundant in ∃X[Fy]. At this point, EG-PQE uses the

120 E. Goldberg

longest clause D(Y) falsified by #»y as a plugging clause (line 11). The clause D is
added to Plg to avoid re-visiting subspace #»y . Sometimes it is possible to remove
variables from #»y to produce a shorter assignment #»y ∗ such that (#»y ∗, #»x ∗) still
satisfies F . Then one can use a shorter plugging clause D that is falsified by #»y ∗

and involves only the variables assigned in #»y ∗.

5.3 Discussion

EG-PQE is similar to the QE algorithm presented at CAV-2002 [12]. We will
refer to it as CAV02 -QE . Given a formula ∃X[F (X,Y)], CAV02 -QE enumerates
full assignments to Y . In subspace #»y , if Fy is unsatisfiable, CAV02 -QE adds
to F a clause falsified by #»y . Otherwise, CAV02 -QE generates a plugging clause
D. (In [12], D is called “a blocking clause”. This term can be confused with the
term “blocked clause” specifying a completely different kind of a clause. So, we
use the term “the plugging clause” instead.) To apply the idea of CAV02 -QE
to PQE, we reformulated it in terms of redundancy based reasoning.

The main flaw of EG-PQE inherited from CAV02 -QE is the necessity to
use plugging clauses produced from a satisfying assignment. Consider the PQE
problem of taking a clause C out of ∃X[F (X,Y)]. If F is proved unsatisfiable in
subspace #»y , typically, only a small subset of clauses of Fy is involved in the proof.
Then the clause generated by EG-PQE is short and thus proves C redundant
in many subspaces different from #»y . On the contrary, to prove F satisfiable
in subspace #»y , every clause of F must be satisfied. So, the plugging clause
built off a satisfying assignment includes almost every variable of Y . Despite
this flaw of EG-PQE , we present it for two reasons. First, it is a very simple
SAT-based algorithm that can be easily implemented. Second, EG-PQE has
a powerful advantage over CAV02 -QE since it solves PQE rather than QE.
Namely, EG-PQE does not need to examine the subspaces #»y where C is implied
by F \ {C}. Surprisingly, for many formulas this allows EG-PQE to completely
avoid examining subspaces where F is satisfiable. In this case, EG-PQE is very
efficient and can solve very large problems. Note that when CAV02 -QE performs
complete QE on ∃X[F], it cannot avoid subspaces #»y where Fy is satisfiable
unless F itself is unsatisfiable (which is very rare in practical applications).

6 Introducing EG-PQE+

In this section, we describe EG-PQE+, an improved version of EG-PQE .

6.1 Main Idea

The pseudocode of EG-PQE+ is shown in Fig. 2. It is different from that of
EG-PQE only in line 11 marked with an asterisk. The motivation for this change
is as follows. Line 11 describes proving redundancy of C for the case where Cy

is not implied by (F \ {C})y and Fy is satisfiable. Then EG-PQE simply uses a
satisfying assignment as a proof of redundancy of C in subspace #»y . This proof
is unnecessarily strong because it proves that every clause of F (including C) is

Partial Quantifier Elimination and Property Generation 121

redundant in ∃X[F] in subspace #»y . Such a strong proof is hard to generalize to
other subspaces.

EG-PQE+(F,X, Y, C) {
1 Plg := ∅; Fini := F
2 while (true) {
........
11∗ D :=PrvClsRed(y ,F,C)
12 Plg := Plg D

Fig. 2. Pseudocode of EG-PQE+

The idea of EG-PQE+ is to generate a
proof for a much weaker proposition namely
a proof of redundancy of C (and only C).
Intuitively, such a proof should be easier
to generalize. So, EG-PQE+ calls a pro-
cedure PrvClsRed generating such a proof.
EG-PQE+ is a generic algorithm in the sense
that any suitable procedure can be employed
as PrvClsRed. In our current implementa-
tion, the procedure DS -PQE [1] is used as

PrvClsRed. DS -PQE generates a proof stating that C is redundant in ∃X[F]
in subspace #»y ∗ ⊆ #»y . Then the plugging clause D falsified by #»y ∗ is generated.
Importantly, #»y ∗ can be much shorter than #»y . (A brief description of DS -PQE
in the context of EG-PQE+ is given in [5].)

Example 3. Consider the example solved in Subsect. 5.1. That is, we consider
taking clause C1 out of ∃X[F (X,Y)] where F = C1 ∧ · · · ∧ C4, C1 = x3 ∨ x4,
C2 = y1∨x3, C3 = y1 ∨ x4, C4 = y2∨x4 and Y = {y1, y2} and X = {x3, x4}.
Consider the step where EG-PQE proves redundancy of C1 in subspace #»y =
(y1 = 1, y2 = 1). EG-PQE shows that (y1 = 1, y2 = 1,x3 = 0) satisfies F , thus
proving every clause of F (including C1) redundant in ∃X[F] in subspace #»y .
Then EG-PQE generates the plugging clause D = y1 ∨ y2 falsified by #»y .

In contrast to EG-PQE , EG-PQE+ calls PrvClsRed to produce a proof of
redundancy for the clause C1 alone. Note that F has no clauses resolvable with
C1 on x3 in subspace #»y ∗ = (y1 = 1). (The clause C2 containing x3 is satisfied by
#»y ∗.) This means that C1 is blocked in subspace #»y ∗ and hence redundant there
(see Proposition 2). Since #»y ∗ ⊂ #»y , EG-PQE+ produces a more general proof of
redundancy than EG-PQE . To avoid re-examining the subspace #»y ∗, EG-PQE+

generates a shorter plugging clause D = y1.

6.2 Discussion

Consider the PQE problem of taking a clause C out of ∃X[F (X,Y)]. There are
two features of PQE that make it easier than QE. The first feature mentioned
earlier is that one can ignore the subspaces #»y where F \{C} implies C. The sec-
ond feature is that when Fy is satisfiable, one only needs to prove redundancy of
the clause C alone. Among the three algorithms we run in experiments, namely,
DS -PQE , EG-PQE and EG-PQE+ only the latter exploits both features. (In
addition to using DS -PQE inside EG-PQE+ we also run it as a stand-alone
PQE solver.) DS -PQE does not use the first feature [1] and EG-PQE does not
exploit the second one. As we show in Sects. 7 and 8, this affects the performance
of DS -PQE and EG-PQE .

122 E. Goldberg

7 Experiment with FIFO Buffers

In this and the next two sections we describe some experiments with
DS -PQE , EG-PQE and EG-PQE+ (their sources are available at [13,14]
and [15] respectively). We used Minisat2.0 [16] as an internal SAT-solver. The
experiments were run on a computer with Intel Core i5-8265U CPU of 1.6 GHz.

if (write == 1 && currSize < n)
* if (dataIn != Val)

begin
Data[wrPnt] = dataIn;
wrPnt = wrPnt + 1;
end

Fig. 3. A buggy fragment of Ver-
ilog code describing Fifo

In this section, we give an example of bug
detection by invariant generation for a FIFO
buffer. Our objective here is threefold. First,
we want to give an example of a bug that
can be overlooked by testing and guessing
the unwanted properties to check (see Sub-
sect. 7.3). Second, we want to substantiate the
intuition of Subsect. 3.4 that property genera-
tion by PQE (in our case, invariant generation
by PQE) has the same reasons to be effective
as testing. In particular, by taking out differ-
ent clauses one generates invariants relating to

different parts of the design. So, taking out a clause of the buggy part is likely
to produce an unwanted invariant. Third, we want to give an example of an
invariant that can be easily identified as unwanted2.

7.1 Buffer Description

Consider a FIFO buffer that we will refer to as Fifo. Let n be the number of
elements of Fifo and Data denote the data buffer of Fifo. Let each Data[i], i =
1, . . . , n have p bits and be an integer where 0 ≤ Data[i] < 2p. A fragment of the
Verilog code describing Fifo is shown in Fig. 3. This fragment has a buggy line
marked with an asterisk. In the correct version without the marked line, a new
element dataIn is added to Data if the write flag is on and Fifo has less than
n elements. Since Data can have any combination of numbers, all Data states
are supposed to be reachable. However, due to the bug, the number Val cannot
appear in Data. (Here Val is some constant 0 < Val < 2p. We assume that the
buffer elements are initialized to 0.) So, Fifo has an op-state reachability bug
since it cannot reach operative states where an element of Data equals Val .

2 Let P (Ŝ) be an invariant for a circuit N depending only on a subset Ŝ of the state
variables S. Identifying P as an unwanted invariant is much easier if Ŝ is meaningful
from the high-level view of the design. Suppose, for instance, that assignments to Ŝ
specify values of a high-level variable v. Then P is unwanted if it claims unreachabil-
ity of a value of v that is supposed to be reachable. Another simple example is that
assignments to Ŝ specify values of high-level variables v and w that are supposed to
be independent. Then P is unwanted if it claims that some combinations of values of
v and w are unreachable. (This may mean, for instance, that an assignment operator
setting the value of v erroneously involves the variable w.)

Partial Quantifier Elimination and Property Generation 123

7.2 Bug Detection by Invariant Generation

Let N be a circuit implementing Fifo. Let S be the set of state variables of N
and Sdata ⊂ S be the subset corresponding to the data buffer Data. We used
DS -PQE , EG-PQE and EG-PQE+ to generate invariants of N as described
in Sect. 4. Note that an invariant Q depending only on Sdata is an unwanted
one. If Q holds for N , some states of Data are unreachable. Then Fifo has an
op-state reachability bug since every state of Data is supposed to be reachable.
To generate invariants, we used the formula Fk = I(S0) ∧ T (S0, V0, S1) ∧ · · · ∧
T (Sk−1, Vk−1, Sk) introduced in Subsect. 4.2. Here I and T describe the initial
state and the transition relation of N respectively and Sj and Vj denote state
variables and combinational input variables of j-th time frame respectively. First,
we used a PQE solver to generate a local invariant H(Sk) obtained by taking a
clause C out of ∃Xk[Fk] where Xk = S0 ∪ V0 ∪ · · · ∪ Sk−1 ∪ Vk−1. So, ∃Xk[Fk] ≡
H∧ ∃Xk[Fk \ {C}]. (Since Fk ⇒ H, no state falsifying H can be reached in k
transitions.) In the experiment, we took out only clauses of Fk containing an
unquantified variable, i.e., a state variable of the k-th time frame. The time limit
for solving the PQE problem of taking out a clause was set to 10 s.

Table 1. FIFO buffer with n elements of 32 bits. Time limit is 10 s per PQE problem

buff. lat- time total pqe probs finished pqe probs unwant. invar runtime (s.)

size ches fra- ds- eg- eg- ds- eg- eg- ds- eg- eg- ds- eg- eg-
n mes pqe pqe pqe+ pqe pqe pqe+ pqe pqe pqe+ pqe pqe pqe+

8 300 5 1,236 311 8 2% 36% 35% no yes yes 12,141 2,138 52

8 300 10 560 737 39 2% 1% 3% yes yes yes 5,551 7,681 380

16 560 5 2,288 2,288 16 1% 65% 71% no no yes 22,612 9,506 50

16 560 10 653 2,288 24 1% 36% 38% yes no yes 6,541 16,554 153

For each clause Q of every local invariant H generated by PQE, we checked
if Q was a global invariant. Namely, we used a public version of IC3 [17,18] to
verify if the property Q held (by showing that no reachable state of N falsified Q).
If so, and Q depended only on variables of Sdata , N had an unwanted invariant.
Then we stopped invariant generation. The results of the experiment for buffers
with 32-bit elements are given in Table 1. When picking a clause to take out,
i.e., a clause with a state variable of k-th time frame, one could make a good
choice by pure luck. To address this issue, we picked clauses to take out randomly
and performed 10 different runs of invariant generation and then computed the
average value. So, the columns four to twelve of Table 1 actually give the average
value of 10 runs.

Let us use the first line of Table 1 to explain its structure. The first two
columns show the number of elements in Fifo implemented by N and the number
of latches in N (8 and 300). The third column gives the number k of time frames
(i.e., 5). The next three columns show the total number of PQE problems solved
by a PQE solver before an unwanted invariant was generated. For instance,

124 E. Goldberg

EG-PQE+ found such an invariant after solving 8 problems. On the other hand,
DS -PQE failed to find an unwanted invariant and had to solve all 1,236 PQE
problems of taking out a clause of Fk with an unquantified variable. The following
three columns show the share of PQE problems finished in the time limit of 10 s.
For instance, EG-PQE finished 36% of 311 problems. The next three columns
show if an unwanted invariant was generated by a PQE solver. (EG-PQE and
EG-PQE+ found one whereas DS -PQE did not.) The last three columns give
the total run time. Table 1 shows that only EG-PQE+ managed to generate an
unwanted invariant for all four instances of Fifo. This invariant asserted that
Fifo cannot reach a state where an element of Data equals Val .

7.3 Detection of the Bug by Conventional Methods

The bug above (or its modified version) can be overlooked by conventional meth-
ods. Consider, for instance, testing. It is hard to detect this bug by random tests
because it is exposed only if one tries to add Val to Fifo. The same applies to
testing using the line coverage metric [19]. On the other hand, a test set with
100% branch coverage [19] will find this bug. (To invoke the else branch of the
if statement marked with ‘*’ in Fig. 3, one must set dataIn to Val .) However, a
slightly modified bug can be missed even by tests with 100% branch coverage [5].

Now consider, manual generation of unwanted properties. It is virtually
impossible to guess an unwanted invariant of Fifo exposing this bug unless one
knows exactly what this bug is. However, one can detect this bug by checking
a property asserting that the element dataIn must appear in the buffer if Fifo
is ready to accept it. Note that this is a non-invariant property involving states
of different time frames. The more time frames are used in such a property the
more guesswork is required to pick it. Let us consider a modified bug. Suppose
Fifo does not reject the element Val . So, the non-invariant property above holds.
However, if dataIn == Val , then Fifo changes the previous accepted element if
that element was Val too. So, Fifo cannot have two consecutive elements Val .
Our method will detect this bug via generating an unwanted invariant falsified by
states with consecutive elements Val . One can also identify this bug by checking
a property involving two consecutive elements of Fifo. But picking it requires a
lot of guesswork and so the modified bug can be easily overlooked.

8 Experiments with HWMCC Benchmarks

In this section, we describe three experiments with 98 multi-property bench-
marks of the HWMCC-13 set [20]. (We use this set because it has a multi-
property track, see the explanation below.) The number of latches in those
benchmarks range from 111 to 8,000. More details about the choice of bench-
marks and the experiments can be found in [5]. Each benchmark consists of a
sequential circuit N and invariants P0, . . . , Pm to prove. Like in Sect. 4, we call
Pagg = P0 ∧ · · · ∧ Pm the aggregate invariant. In experiments 2 and 3 we used
PQE to generate new invariants of N . Since every invariant P implied by Pagg

Partial Quantifier Elimination and Property Generation 125

is a desired one, the necessary condition for P to be unwanted is Pagg 	⇒ P . The
conjunction of many invariants Pi produces a stronger invariant Pagg , which
makes it harder to generate P not implied by Pagg . (This is the reason for using
multi-property benchmarks in our experiments.) The circuits of the HWMCC-13
set are anonymous, so, we could not know if an unreachable state is supposed to
be reachable. For that reason, we just generated invariants not implied by Pagg

without deciding if some of them were unwanted.
Similarly to the experiment of Sect. 7, we used the formula Fk = I(S0) ∧

T (S0, V0, S1) ∧ · · · ∧ T (Sk−1, Vk−1, Sk) to generate invariants. The number k of
time frames was in the range of 2 ≤ k ≤ 10. As in the experiment of Sect. 7, we
took out only clauses containing a state variable of the k-th time frame. In all
experiments, the time limit for solving a PQE problem was set to 10 s.

8.1 Experiment 1

In the first experiment, we generated a local invariant H by taking out a clause
C of ∃Xk[Fk] where Xk = S0 ∪ V0 ∪ · · · ∪ Sk−1 ∪ Vk−1. The formula H asserts
that no state falsifying H can be reached in k transitions. Our goal was to show
that PQE can find H for large formulas Fk that have hundreds of thousands
of clauses. We used EG-PQE to partition the PQE problems we tried into two
groups. The first group consisted of 3,736 problems for which we ran EG-PQE
with the time limit of 10 s and it never encountered a subspace #»sk where Fk was
satisfiable. Here #»sk is a full assignment to Sk. Recall that only the variables Sk

are unquantified in ∃Xk[Fk]. So, in every subspace #»sk, formula Fk was either
unsatisfiable or (Fk \ {C}) ⇒ C. (The fact that so many problems meet the
condition of the first group came as a big surprise.) The second group consisted of
3,094 problems where EG-PQE encountered subspaces where Fk was satisfiable.

For the first group, DS -PQE finished only 30% of the problems within 10 s
whereas EG-PQE and EG-PQE+ finished 88% and 89% respectively. The poor
performance of DS -PQE is due to not checking if (Fk \{C}) ⇒ C in the current
subspace. For the second group, DS -PQE , EG-PQE and EG-PQE+ finished
15%, 2% and 27% of the problems respectively within 10 s. EG-PQE finished far
fewer problems because it used a satisfying assignment as a proof of redundancy
of C (see Subsect. 6.2).

To contrast PQE and QE, we employed a high-quality tool CADET [21,22]
to perform QE on the 98 formulas ∃Xk[Fk] (one formula per benchmark). That
is, instead of taking a clause out of ∃Xk[Fk] by PQE, we applied CADET to
perform full QE on this formula. (Performing QE on ∃Xk[Fk] produces a formula
H(Sk) specifying all states unreachable in k transitions.) CADET finished only
25% of the 98 QE problems with the time limit of 600 s. On the other hand,
EG-PQE+ finished 60% of the 6,830 problems of both groups (generated off
∃Xk[Fk]) within 10 s. So, PQE can be much easier than QE if only a small part
of the formula gets unquantified.

126 E. Goldberg

8.2 Experiment 2

The second experiment was an extension of the first one. Its goal was to show
that PQE can generate invariants for realistic designs. For each clause Q of a
local invariant H generated by PQE we used IC3 to verify if Q was a global
invariant. If so, we checked if Pagg 	⇒ Q held. To make the experiment less time
consuming, in addition to the time limit of 10 s per PQE problem we imposed
a few more constraints. The PQE problem of taking a clause out of ∃Xk[Fk]
terminated as soon as H accumulated 5 clauses or more. Besides, processing
a benchmark aborted when the summary number of clauses of all formulas H
generated for this benchmark reached 100 or the total run time of all PQE
problems generated off ∃Xk[Fk] exceeded 2,000 s.

Table 2. Invariant generation

pqe #bench results

solver marks local glob not imp

invar. invar. by Pagg

ds-pqe 98 5,556 2,678 2,309

eg-pqe 98 9,498 4,839 4,009

eg-pqe+ 98 9,303 4,773 3,940

Table 2 shows the results of the exper-
iment. The third column gives the num-
ber of local single-clause invariants (i.e.,
the total number of clauses in all H over
all benchmarks). The fourth column shows
how many local single-clause invariants
turned out to be global. (Since global
invariants were extracted from H and the
summary size of all H could not exceed

100, the number of global invariants per benchmark could not exceed 100.) The
last column gives the number of global invariants not implied by Pagg . So, these
invariants are candidates for checking if they are unwanted. Table 2 shows that
EG-PQE and EG-PQE+ performed much better than DS -PQE .

8.3 Experiment 3

To prove an invariant P true, IC3 conjoins it with clauses Q1, . . . ,Qn to make
P ∧ Q1∧ · · · ∧ Qn inductive. If IC3 succeeds, every Qi is an invariant. More-
over, Qi may be an unwanted invariant. The goal of the third experiment was to
demonstrate that PQE and IC3 , in general, produce different invariant clauses.
The intuition here is twofold. First, IC3 generates clauses Qi to prove a prede-
fined invariant rather than find an unwanted one. Second, the closer P to being
inductive, the fewer new invariant clauses are generated by IC3 . Consider the
circuit Ntriv that simply stays in the initial state #»sini (Sect. 4). Any invariant
satisfied by #»sini is already inductive for Ntriv . So, IC3 will not generate a single
new invariant clause. On the other hand, if the correct circuit is supposed to
leave the initial state, Ntriv has unwanted invariants that our method will find.

In this experiment, we used IC3 to generate P ∗
agg , an inductive version of

Pagg . The experiment showed that in 88% cases, an invariant clause generated
by EG-PQE+ and not implied by Pagg was not implied by P ∗

agg either. (More
details about this experiment can be found in [5].)

Partial Quantifier Elimination and Property Generation 127

9 Properties Mimicking Symbolic Simulation

Let M(X,V,W) be a combinational circuit where X,V,W are internal, input
and output variables. In this section, we describe generation of properties of M
that mimic symbolic simulation [23]. Every such a property Q(V) specifies a
cube of tests that produce the same values for a given subset of variables of W .
We chose generation of such properties because deciding if Q is an unwanted
property is, in general, simple. The procedure for generation of these properties
is slightly different from the one presented in Sect. 3.

Let F (X,V,W) be a formula specifying M . Let B(W) be a clause. Let H(V)
be a solution to the PQE problem of taking a clause C ∈ F out of ∃X∃W [F ∧B].
That is, ∃X∃W [F ∧B] ≡ H∧ ∃X∃W [(F \{C})∧B]. Let Q(V) be a clause of H.
Then M has the property that for every full assignment #»v to V falsifying Q,
it produces an output #»w falsifying B (a proof of this fact can be found in [5]).
Suppose, for instance, Q=v1∨ v10∨v30 and B=w2∨ w40. Then for every #»v where
v1 =0, v10 =1,v30 =0, the circuit M produces an output where w2 = 0, w40 = 1.
Note that Q is implied by F ∧ B rather than F . So, it is a property of M under
constraint B rather than M alone. The property Q is unwanted if there is an
input falsifying Q that should not produce an output falsifying B.

To generate combinational circuits, we unfolded sequential circuits of the set
of 98 benchmarks used in Sect. 8 for invariant generation. Let N be a sequential
circuit. (We reuse the notation of Sect. 4). Let Mk(S0, V0, . . . , Sk−1, Vk−1, Sk)
denote the combinational circuit obtained by unfolding N for k time frames.
Here Sj , Vj are state and input variables of j-th time frame respectively. Let Fk

denote the formula I(S0)∧T (S0, V0, S1)∧ · · · ∧T (Sk−1, Vk−1, Sk) describing the
unfolding of N for k time frames. Note that Fk specifies the circuit Mk above
under the input constraint I(S0). Let B(Sk) be a clause. Let H(S0, V0, . . . , Vk−1)
be a solution to the PQE problem of taking a clause C ∈ Fk out of formula
∃S1,k[Fk ∧B]. Here S1,k = S1 ∪· · ·∪Sk. That is, ∃S1,k[Fk ∧B] ≡ H∧ ∃S1,k[(Fk \
{C})∧B]. Let Q be a clause of H. Then for every assignment (#»sini , #»v0,. . . , #»v k−1)
falsifying Q, the circuit Mk outputs #»sk falsifying B. (Here #»sini is the initial state
of N and #»sk is a state of the last time frame.)
Table 3. Property generation for combinational circuits

name lat- time size subc. M ′
k results

ches fra- of gates inp min max time 3-val

mes B vars (s.) sim.

6s326 3,342 20 15 348,479 1,774 27 28 2.9 no

6s40m 5,608 20 15 406,474 3,450 27 29 1.1 no

6s250 6,185 20 15 556,562 2,456 50 54 0.8 no

6s395 463 30 15 36,088 569 24 26 0.7 yes

6s339 1,594 30 15 179,543 3,978 70 71 3.1 no

6s292 3,190 30 15 154,014 978 86 89 1.1 no

6s143 260 40 15 551,019 16,689 526 530 2.5 yes

6s372 1,124 40 15 295,626 2,766 513 518 1.7 no

6s335 1,658 40 15 207,787 2,863 120 124 6.7 no

6s391 2,686 40 15 240,825 7,579 340 341 8.9 no

In the experiment, we
used DS -PQE ,EG-PQE
and EG-PQE+ to solve
1,586 PQE problems
described above. In Table 3,
we give a sample of
results by EG-PQE+.
(More details about this
experiment can be found
in [5].) Below, we use
the first line of Table 3
to explain its structure.
The first column gives the
benchmark name (6s326).

128 E. Goldberg

The next column shows that 6s326 has 3,342 latches. The third column gives
the number of time frames used to produce a combinational circuit Mk (here
k = 20). The next column shows that the clause B introduced above consisted of
15 literals of variables from Sk. (Here and below we still use the index k assum-
ing that k = 20.) The literals of B were generated randomly. When picking the
length of B we just tried to simulate the situation where one wants to set a
particular subset of output variables of Mk to specified values. The next two
columns give the size of the subcircuit M ′

k of Mk that feeds the output variables
present in B. When computing a property H we took a clause out of formula
∃S1,k[F ′

k ∧ B] where F ′
k specifies M ′

k instead of formula ∃S1,k[Fk ∧ B] where Fk

specifies Mk. (The logic of Mk not feeding a variable of B is irrelevant for com-
puting H.) The first column of the pair gives the number of gates in M ′

k (i.e.,
348,479). The second column provides the number of input variables feeding M ′

k

(i.e., 1,774). Here we count only variables of V0∪· · ·∪Vk−1 and ignore those of S0

since the latter are already assigned values specifying the initial state #»sini of N .
The next four columns show the results of taking a clause out of ∃S1,k[F ′

k∧
B]. For each PQE problem the time limit was set to 10 s. Besides, EG-PQE+

terminated as soon as 5 clauses of property H(S0, V0, . . . , Vk−1) were generated.
The first three columns out of four describe the minimum and maximum sizes
of clauses in H and the run time of EG-PQE+. So, it took for EG-PQE+ 2.9 s.
to produce a formula H containing clauses of sizes from 27 to 28 variables. A
clause Q of H with 27 variables, for instance, specifies 21747 tests falsifying Q that
produce the same output of M ′

k (falsifying the clause B). Here 1747 = 1774−27
is the number of input variables of M ′

k not present in Q. The last column shows
that at least one clause Q of H specifies a property that cannot be produced by
3-valued simulation (a version of symbolic simulation [23]). To prove this, one
just needs to set the input variables of M ′

k present in Q to the values falsifying Q
and run 3-valued simulation. (The remaining input variables of M ′

k are assigned
a don’t-care value.) If after 3-valued simulation some output variable of M ′

k is
assigned a don’t-care value, the property specified by Q cannot be produced by
3-valued simulation.

Running DS -PQE , EG-PQE and EG-PQE+ on the 1,586 PQE problems
mentioned above showed that a) EG-PQE performed poorly producing proper-
ties only for 28% of problems; b) DS -PQE and EG-PQE+ showed much better
results by generating properties for 62% and 66% of problems respectively. When
DS -PQE and EG-PQE+ succeeded in producing properties, the latter could not
be obtained by 3-valued simulation in 74% and 78% of cases respectively.

10 Some Background

In this section, we discuss some research relevant to PQE and property genera-
tion. Information on BDD based QE can be found in [24,25]. SAT based QE is
described in [12,21,26–32]. Our first PQE solver called DS -PQE was introduced
in [1]. It was based on redundancy based reasoning presented in [33] in terms of
variables and in [34] in terms of clauses. The main flaw of DS -PQE is as follows.

Partial Quantifier Elimination and Property Generation 129

Consider taking a clause C out of ∃X[F]. Suppose DS -PQE proved C redundant
in a subspace where F is satisfiable and some quantified variables are assigned.
The problem is that DS -PQE cannot simply assume that C is redundant every
time it re-enters this subspace [35]. The root of the problem is that redundancy
is a structural rather than semantic property. That is, redundancy of a clause in
a formula ξ (quantified or not) does not imply such redundancy in every formula
logically equivalent to ξ. Since our current implementation of EG-PQE+ uses
DS -PQE as a subroutine, it has the same learning problem. We showed in [36]
that this problem can be addressed by the machinery of certificate clauses. So,
the performance of PQE can be drastically improved via enhanced learning in
subspaces where F is satisfiable.

We are unaware of research on property generation for combinational cir-
cuits. As for invariants, the existing procedures typically generate some auxiliary
desired invariants to prove a predefined property (whereas our goal is to generate
invariants that are unwanted). For instance, they generate loop invariants [37]
or invariants relating internal points of circuits checked for equivalence [38].
Another example of auxiliary invariants are clauses generated by IC3 to make
an invariant inductive [17]. As we showed in Subsect. 8.3, the invariants produced
by PQE are, in general, different from those built by IC3 .

11 Conclusions and Directions for Future Research

We consider Partial Quantifier Elimination (PQE) on propositional CNF formu-
las with existential quantifiers. In contrast to complete quantifier elimination,
PQE allows to unquantify a part of the formula. We show that PQE can be
used to generate properties of combinational and sequential circuits. The goal of
property generation is to check if a design has an unwanted property and thus
is buggy. We used PQE to generate an unwanted invariant for a FIFO buffer
exposing a non-trivial bug. We also applied PQE to invariant generation for
HWMCC benchmarks. Finally, we used PQE to generate properties of combina-
tional circuits mimicking symbolic simulation. Our experiments show that PQE
can efficiently generate properties for realistic designs.

There are at least three directions for future research. The first direction
is to improve the performance of PQE solving. As we mentioned in Sect. 10,
the most promising idea here is to enhance the power of learning in subspaces
where the formula is satisfiable. The second direction is to use the improved
PQE solvers to design new, more efficient algorithms for well-known problems
like SAT, model checking and equivalence checking. The third direction is to
look for new problems that can be solved by PQE.

References

1. Goldberg, E., Manolios, P.: Partial quantifier elimination. In: Yahav, E. (ed.) HVC
2014. LNCS, vol. 8855, pp. 148–164. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13338-6 12

https://doi.org/10.1007/978-3-319-13338-6_12
https://doi.org/10.1007/978-3-319-13338-6_12

130 E. Goldberg

2. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(3), 269–285 (1957)

3. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6 1

4. Goldberg, E.: Property checking by logic relaxation, Technical report
arXiv:1601.02742 [cs.LO] (2016)

5. Goldberg, E.: Partial quantifier elimination and property generation, Technical
report arXiv:2303.13811 [cs.LO] (2023)

6. Goldberg, E., Manolios, P.: Software for quantifier elimination in propositional
logic. In: ICMS-2014, Seoul, South Korea, 5–9 August 2014, pp. 291–294 (2014)

7. Goldberg, E.: Equivalence checking by logic relaxation. In: FMCAD-2016, pp. 49–
56 (2016)

8. Goldberg, E.: Property checking without inductive invariant generation, Technical
report arXiv:1602.05829 [cs.LO] (2016)

9. B. L. Synthesis and V. Group: ABC: a system for sequential synthesis and verifi-
cation (2017). www.eecs.berkeley.edu/∼alanmi/abc

10. Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theor.
Comput. Sci. 223(1–2), 1–72 (1999)

11. Tseitin, G.: On the complexity of derivation in the propositional calculus. Zapiski
nauchnykh seminarov LOMI, vol. 8, pp. 234–259 (1968). English translation of this
volume: Consultants Bureau, N.Y., pp. 115–125 (1970)

12. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 19

13. The source of DS-PQE. http://eigold.tripod.com/software/ds-pqe.tar.gz
14. The source of EG-PQE. http://eigold.tripod.com/software/eg-pqe.1.0.tar.gz
15. The source of EG-PQE+. http://eigold.tripod.com/software/eg-pqe-pl.1.0.tar.gz
16. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT, Santa Margherita Lig-

ure, Italy, pp. 502–518 (2003)
17. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,

Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

18. An implementation of IC3 by A. Bradley. https://github.com/arbrad/IC3ref
19. Aniche, M.: Effective Software Testing: A Developer’s Guide. Manning Publications

(2022)
20. HardWare Model Checking Competition (HWMCC-2013) (2013). http://fmv.jku.

at/hwmcc13/
21. Rabe, M.N.: Incremental determinization for quantifier elimination and functional

synthesis. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 84–94.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5 6

22. CADET. http://github.com/MarkusRabe/cadet
23. Bryant, R.: Symbolic simulation–techniques and applications. In: DAC-1990, pp.

517–521 (1990)
24. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE

Trans. Comput. C-35(8), 677–691 (1986)
25. Chauhan, P., Clarke, E., Jha, S., Kukula, J., Veith, H., Wang, D.: Using com-

binatorial optimization methods for quantification scheduling. In: Margaria, T.,
Melham, T. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 293–309. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-44798-9 24

https://doi.org/10.1007/978-3-540-45069-6_1
http://arxiv.org/abs/1601.02742
http://arxiv.org/abs/2303.13811
http://arxiv.org/abs/1602.05829
www.eecs.berkeley.edu/~alanmi/abc
https://doi.org/10.1007/3-540-45657-0_19
http://eigold.tripod.com/software/ds-pqe.tar.gz
http://eigold.tripod.com/software/eg-pqe.1.0.tar.gz
http://eigold.tripod.com/software/eg-pqe-pl.1.0.tar.gz
https://doi.org/10.1007/978-3-642-18275-4_7
https://github.com/arbrad/IC3ref
http://fmv.jku.at/hwmcc13/
http://fmv.jku.at/hwmcc13/
https://doi.org/10.1007/978-3-030-25543-5_6
http://github.com/MarkusRabe/cadet
https://doi.org/10.1007/3-540-44798-9_24

Partial Quantifier Elimination and Property Generation 131

26. Jin, H., Somenzi, F.: Prime clauses for fast enumeration of satisfying assignments
to Boolean circuits. In: DAC 2005, pp. 750–753 (2005)

27. Ganai, M., Gupta, A., Ashar, P.: Efficient SAT-based unbounded symbolic model
checking using circuit cofactoring. In: ICCAD-2004, pp. 510–517 (2004)

28. Jiang, J.-H.R.: Quantifier elimination via functional composition. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 383–397. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02658-4 30

29. Brauer, J., King, A., Kriener, J.: Existential quantification as incremental SAT. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 17

30. Klieber, W., Janota, M., Marques-Silva, J., Clarke, E.: Solving QBF with free
variables. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 415–431. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0 33

31. Bjorner, N., Janota, M., Klieber, W.: On conflicts and strategies in QBF. In: LPAR
(2015)

32. Bjorner, N., Janota, M.: Playing with quantified satisfaction. In: LPAR (2015)
33. Goldberg, E., Manolios, P.: Quantifier elimination by dependency sequents. In:

FMCAD-2012, pp. 34–44 (2012)
34. Goldberg, E., Manolios, P.: Quantifier elimination via clause redundancy. In:

FMCAD 2013, pp. 85–92 (2013)
35. Goldberg, E.: Quantifier elimination with structural learning, Technical report

arXiv: 1810.00160 [cs.LO] (2018)
36. Goldberg, E.: Partial quantifier elimination by certificate clauses, Technical report

arXiv:2003.09667 [cs.LO] (2020)
37. Dillig, I., Dillig, T., Li, B., McMillan, K.: Inductive invariant generation via abduc-

tive inference, vol. 48, pp. 443–456, October 2013
38. Baumgartner, J., Mony, H., Case, M., Sawada, J., Yorav, K.: Scalable conditional

equivalence checking: an automated invariant-generation based approach. In: For-
mal Methods in Computer-Aided Design, pp. 120–127 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-02658-4_30
https://doi.org/10.1007/978-3-642-22110-1_17
https://doi.org/10.1007/978-3-642-40627-0_33
http://arxiv.org/abs/1810.00160
http://arxiv.org/abs/2003.09667
http://creativecommons.org/licenses/by/4.0/

Rounding Meets Approximate Model
Counting

Jiong Yang(B) and Kuldeep S. Meel

National University of Singapore, Singapore, Singapore
jiong@comp.nus.edu.sg

Abstract. The problem of model counting, also known as #SAT, is
to compute the number of models or satisfying assignments of a given
Boolean formula F . Model counting is a fundamental problem in com-
puter science with a wide range of applications. In recent years, there has
been a growing interest in using hashing-based techniques for approx-
imate model counting that provide (ε, δ)-guarantees: i.e., the count
returned is within a (1 + ε)-factor of the exact count with confidence
at least 1 − δ. While hashing-based techniques attain reasonable scala-
bility for large enough values of δ, their scalability is severely impacted
for smaller values of δ, thereby preventing their adoption in application
domains that require estimates with high confidence.

The primary contribution of this paper is to address the Achilles
heel of hashing-based techniques: we propose a novel approach
based on rounding that allows us to achieve a significant reduc-
tion in runtime for smaller values of δ. The resulting counter, called
ApproxMC6 (The resulting tool ApproxMC6 is available open-source at
https://github.com/meelgroup/approxmc), achieves a substantial run-
time performance improvement over the current state-of-the-art counter,
ApproxMC. In particular, our extensive evaluation over a benchmark suite
consisting of 1890 instances shows ApproxMC6 solves 204 more instances
than ApproxMC, and achieves a 4× speedup over ApproxMC.

1 Introduction

Given a Boolean formula F , the problem of model counting is to compute the
number of models of F . Model counting is a fundamental problem in computer
science with a wide range of applications, such as control improvisation [13],
network reliability [9,28], neural network verification [2], probabilistic reason-
ing [5,11,20,21], and the like. In addition to myriad applications, the problem of
model counting is a fundamental problem in theoretical computer science. In his
seminal paper, Valiant showed that #SAT is #P-complete, where #P is the set
of counting problems whose decision versions lie in NP [28]. Subsequently, Toda
demonstrated the theoretical hardness of the problem by showing that every
problem in the entire polynomial hierarchy can be solved by just one call to a
#P oracle; more formally, PH ⊆ P#P [27].

Given the computational intractability of #SAT, there has been sustained
interest in the development of approximate techniques from theoreticians and
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 132–162, 2023.
https://doi.org/10.1007/978-3-031-37703-7_7

https://doi.org/10.5281/zenodo.7931193
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_7&domain=pdf
https://github.com/meelgroup/approxmc
https://doi.org/10.1007/978-3-031-37703-7_7

Rounding Meets Approximate Model Counting 133

practitioners alike. Stockmeyer introduced a randomized hashing-based tech-
nique that provides (ε, δ)-guarantees (formally defined in Sect. 2) given access
to an NP oracle [25]. Given the lack of practical solvers that could handle
problems in NP satisfactorily, there were no practical implementations of Stock-
meyere’s hashing-based techniques until the 2000s [14]. Building on the unprece-
dented advancements in the development of SAT solvers, Chakraborty, Meel,
and Vardi extended Stockmeyer’s framework to a scalable (ε, δ)-counting algo-
rithm, ApproxMC [7]. The subsequent years have witnessed a sustained inter-
est in further optimizations of the hashing-based techniques for approximate
counting [5,6,10,11,17–19,23,29,30]. The current state-of-the-art technique for
approximate counting is a hashing-based framework called ApproxMC, which is
in its fourth version, called ApproxMC4 [22,24].

The core theoretical idea behind the hashing-based framework is to use 2-
universal hash functions to partition the solution space, denoted by sol(F) for a
formula F , into roughly equal small cells, wherein a cell is considered small if
it contains solutions less than or equal to a pre-computed threshold, thresh. An
NP oracle (in practice, a SAT solver) is employed to check if a cell is small by
enumerating solutions one-by-one until either there are no more solutions or we
have already enumerated thresh + 1 solutions. Then, we randomly pick a cell,
enumerate solutions within the cell (if the cell is small), and scale the obtained
count by the number of cells to obtain an estimate for |sol(F)|. To amplify the
confidence, we rely on the standard median technique: repeat the above process,
called ApproxMCCore, multiple times and return the median. Computing the
median amplifies the confidence as for the median of t repetitions to be outside
the desired range (i.e.,

[
|sol(F)|
1+ε , (1 + ε)|sol(F)|

]
), it should be the case that at

least half of the repetitions of ApproxMCCore returned a wrong estimate.
In practice, every subsequent repetition of ApproxMCCore takes a similar

time, and the overall runtime increases linearly with the number of invocations.
The number of repetitions depends logarithmically on δ−1. As a particular exam-
ple, for ε = 0.8, the number of repetitions of ApproxMCCore to attain δ = 0.1
is 21, which increases to 117 for δ = 0.001: a significant increase in the number
of repetitions (and accordingly, the time taken). Accordingly, it is no surprise
that empirical analysis of tools such as ApproxMC has been presented with a
high delta (such as δ = 0.1). On the other hand, for several applications, such as
network reliability, and quantitative verification, the end users desire estimates
with high confidence. Therefore, the design of efficient counting techniques for
small δ is a major challenge that one needs to address to enable the adoption of
approximate counting techniques in practice.

The primary contribution of our work is to address the above challenge.
We introduce a new technique called rounding that enables dramatic reduc-
tions in the number of repetitions required to attain a desired value of confi-
dence. The core technical idea behind the design of the rounding technique is
based on the following observation: Let L (resp. U) refer to the event that a
given invocation of ApproxMCCore under (resp. over)-estimates |sol(F)|. For a

134 J. Yang and K. S. Meel

median estimate to be wrong, either the event L happens in half of the invo-
cations of ApproxMCCore or the event U happens in half of the invocations
of ApproxMCCore. The number of repetitions depends on max(Pr[L],Pr[U]).
The current algorithmic design (and ensuing analysis) of ApproxMCCore pro-
vides a weak upper bound on max{Pr[L],Pr[U]}: in particular, the bounds on
max{Pr[L],Pr[U]} and Pr[L∪U] are almost identical. Our key technical contribu-
tion is to design a new procedure, ApproxMC6Core, based on the rounding tech-
nique that allows us to obtain significantly better bounds on max{Pr[L],Pr[U]}.

The resulting algorithm, called ApproxMC6, follows a similar structure
to that of ApproxMC: it repeatedly invokes the underlying core procedure
ApproxMC6Core and returns the median of the estimates. Since a single invo-
cation of ApproxMC6Core takes as much time as ApproxMCCore, the reduction in
the number of repetitions is primarily responsible for the ensuing speedup. As
an example, for ε = 0.8, the number of repetitions of ApproxMC6Core to attain
δ = 0.1 and δ = 0.001 is just 5 and 19, respectively; the corresponding num-
bers for ApproxMC were 21 and 117. An extensive experimental evaluation on
1890 benchmarks shows that the rounding technique provided 4× speedup than
the state-of-the-art approximate model counter, ApproxMC. Furthermore, for a
given timeout of 5000 s, ApproxMC6 solves 204 more instances than ApproxMC
and achieves a reduction of 1063 s in the PAR-2 score.

The rest of the paper is organized as follows. We introduce notation and
preliminaries in Sect. 2. To place our contribution in context, we review related
works in Sect. 3. We identify the weakness of the current technique in Sect. 4 and
present the rounding technique in Sect. 5 to address this issue. Then, we present
our experimental evaluation in Sect. 6. Finally, we conclude in Sect. 7.

2 Notation and Preliminaries

Let F be a Boolean formula in conjunctive normal form (CNF), and let Vars(F)
be the set of variables appearing in F . The set Vars(F) is also called the support
of F . An assignment σ of truth values to the variables in Vars(F) is called a
satisfying assignment or witness of F if it makes F evaluate to true. We denote
the set of all witnesses of F by sol(F). Throughout the paper, we will use n to
denote |Vars(F)|.

The propositional model counting problem is to compute |sol(F)| for a given
CNF formula F . A probably approximately correct (or PAC) counter is a proba-
bilistic algorithm ApproxCount(·, ·, ·) that takes as inputs a formula F , a tolerance
parameter ε > 0, and a confidence parameter δ ∈ (0, 1], and returns an (ε, δ)-
estimate c, i.e., Pr

[
|sol(F)|
1+ε ≤ c ≤ (1 + ε)|sol(F)|

]
≥ 1−δ. PAC guarantees are also

sometimes referred to as (ε, δ)-guarantees.
A closely related notion is projected model counting, where we are interested

in computing the cardinality of sol(F) projected on a subset of variables P ⊆
Vars(F). While for clarity of exposition, we describe our algorithm in the context
of model counting, the techniques developed in this paper are applicable to

Rounding Meets Approximate Model Counting 135

projected model counting as well. Our empirical evaluation indeed considers
such benchmarks.

2.1 Universal Hash Functions

Let n,m ∈ N and H(n,m)
�
= {h : {0, 1}n → {0, 1}m} be a family of hash func-

tions mapping {0, 1}n to {0, 1}m. We use h
R← H(n,m) to denote the probability

space obtained by choosing a function h uniformly at random from H(n,m). To
measure the quality of a hash function we are interested in the set of elements of
sol(F) mapped to α by h, denoted Cell〈F,h,α〉 and its cardinality, i.e., |Cell〈F,h,α〉|.
We write Pr[Z : Ω] to denote the probability of outcome Z when sampling from
a probability space Ω. For brevity, we omit Ω when it is clear from the context.
The expected value of Z is denoted E [Z] and its variance is denoted σ2[Z].

Definition 1. A family of hash functions H(n,m) is strongly 2-universal if
∀x, y ∈ {0, 1}n, α ∈ {0, 1}m, h

R← H(n,m),

Pr [h(x) = α] =
1
2m

= Pr [h(x) = h(y)]

For h
R← H(n, n) and ∀m ∈ {1, ..., n}, the mth prefix-slice of h, denoted h(m), is

a map from {0, 1}n to {0, 1}m, such that h(m)(y)[i] = h(y)[i], for all y ∈ {0, 1}n

and for all i ∈ {1, ...,m}. Similarly, the mth prefix-slice of α ∈ {0, 1}n, denoted
α(m), is an element of {0, 1}m such that α(m)[i] = α[i] for all i ∈ {1, ...,m}.
To avoid cumbersome terminology, we abuse notation and write Cell〈F,m〉(resp.
Cnt〈F,m〉) as a short-hand for Cell〈F,h(m),α(m)〉 (resp. |Cell〈F,h(m),α(m)〉|). The fol-
lowing proposition presents two results that are frequently used throughout this
paper. The proof is deferred to Appendix A.

Proposition 1. For every 1 ≤ m ≤ n, the following holds:

E
[
Cnt〈F,m〉

]
=

|sol(F)|
2m

(1)

σ2
[
Cnt〈F,m〉

] ≤ E
[
Cnt〈F,m〉

]
(2)

The usage of prefix-slice of h ensures monotonicity of the random variable,
Cnt〈F,m〉, since from the definition of prefix-slice, we have that for every 1 ≤
m < n, h(m+1)(y) = α(m+1) ⇒ h(m)(y) = α(m). Formally,

Proposition 2. For every 1 ≤ m < n, Cell〈F,m+1〉 ⊆ Cell〈F,m〉

2.2 Helpful Combinatorial Inequality

Lemma 1. Let η(t,m, p) =
∑t

k=m

(
t
k

)
pk(1 − p)t−k and p < 0.5, then

η(t, �t/2�, p) ∈ Θ

(
t−

1
2

(
2
√

p(1 − p)
)t

)

136 J. Yang and K. S. Meel

Proof. We will derive both an upper and a matching lower bound for
η(t, �t/2�, p). We begin by deriving an upper bound: η(t, �t/2�, p) =∑t

k=� t
2 �

(
t
k

)
pk(1−p)t−k ≤ (

t
�t/2�

)∑t
k=� t

2 � pk(1−p)t−k ≤ (
t

�t/2�
)·(p(1−p))�

t
2 �· 1

1−2p

≤ 1√
2π

· t√
(t

2−0.5)(t
2+0.5)

·
(

t
t−1

)t

· e
1

12t − 1
6t+6− 1

6t−6 · t−
1
2 2t · (p(1 − p))

t
2 · (p(1 −

p))
1
2 · 1

1−2p . The last inequality follows Stirling’s approximation. As a result,

η(t, �t/2�, p) ∈ O
(

t−
1
2

(
2
√

p(1 − p)
)t

)
. Afterwards; we move on to deriving a

matching lower bound: η(t, �t/2�, p) = ∑t
k=� t

2 �
(

t
k

)
pk(1−p)t−k ≥ (

t
�t/2�

)
p� t

2 �(1−
p)t−� t

2 � ≥ 1√
2π

· t√
(t

2−0.5)(t
2+0.5)

·
(

t
t+1

)t

· e
1

12t − 1
6t+6− 1

6t−6 · t−
1
2 2t · (p(1 − p))

t
2 ·

p
1
2 (1 − p)−

1
2 · 1

1−2p . The last inequality again follows Stirling’s approximation.

Hence, η(t, �t/2�, p) ∈ Ω

(
t−

1
2

(
2
√

p(1 − p)
)t

)
. Combining these two bounds,

we conclude that η(t, �t/2�, p) ∈ Θ

(
t−

1
2

(
2
√

p(1 − p)
)t

)
. �

3 Related Work

The seminal work of Valiant established that #SAT is #P-complete [28]. Toda
later showed that every problem in the polynomial hierarchy could be solved
by just a polynomial number of calls to a #P oracle [27]. Based on Carter and
Wegman’s seminal work on universal hash functions [4], Stockmeyer proposed a
probabilistic polynomial time procedure, with access to an NP oracle, to obtain
an (ε, δ)-approximation of F [25].

Built on top of Stockmeyer’s work, the core theoretical idea behind the
hashing-based approximate solution counting framework, as presented in Algo-
rithm 1 (ApproxMC [7]), is to use 2-universal hash functions to partition the
solution space (denoted by sol(F) for a given formula F) into small cells of
roughly equal size. A cell is considered small if the number of solutions it con-
tains is less than or equal to a pre-determined threshold, thresh. An NP oracle is
used to determine if a cell is small by iteratively enumerating its solutions until
either there are no more solutions or thresh + 1 solutions have been found. In
practice, an SAT solver is used to implement the NP oracle. To ensure a polyno-
mial number of calls to the oracle, the threshold, thresh, is set to be polynomial
in the input parameter ε at Line 1. The subroutine ApproxMCCore takes the
formula F and thresh as inputs and estimates the number of solutions at Line 7.
To determine the appropriate number of cells, i.e., the value of m for H(n,m),
ApproxMCCore uses a search procedure at Line 3 of Algorithm 2. The estimate
is calculated as the number of solutions in a randomly chosen cell, scaled by
the number of cells, i.e., 2m at Line 5. To improve confidence in the estimate,
ApproxMC performs multiple runs of the ApproxMCCore subroutine at Lines 5–
9 of Algorithm 1. The final count is computed as the median of the estimates
obtained at Line 10.

Rounding Meets Approximate Model Counting 137

Algorithm 1. ApproxMC(F, ε, δ)

1: thresh ← 9.84
(
1 + ε

1+ε

) (
1 + 1

ε

)2
;

2: Y ← BoundedSAT(F, thresh);
3: if (|Y | < thresh) then return |Y |;
4: t ← �17 log2(3/δ)� ; C ← emptyList; iter ← 0;
5: repeat
6: iter ← iter + 1;
7: nSols ← ApproxMCCore(F, thresh);
8: AddToList(C, nSols);
9: until (iter ≥ t);

10: finalEstimate ← FindMedian(C);
11: return finalEstimate;

Algorithm 2. ApproxMCCore(F, thresh)
1: Choose h at random from H(n, n);
2: Choose α at random from {0, 1}n;
3: m ← LogSATSearch(F, h, α, thresh);

4: Cnt〈F,m〉 ← BoundedSAT
(

F ∧
(
h(m)

)−1 (
α(m)

)
, thresh

)
;

5: return (2m × Cnt〈F,m〉);

In the second version of ApproxMC [8], two key algorithmic improvements
are proposed to improve the practical performance by reducing the number of
calls to the SAT solver. The first improvement is using galloping search to more
efficiently find the correct number of cells, i.e., LogSATSearch at Line 3 of Algo-
rithm 2. The second is using linear search over a small interval around the
previous value of m before resorting to the galloping search. Additionally, the
third and fourth versions [22,23] enhance the algorithm’s performance by effec-
tively dealing with CNF formulas conjuncted with XOR constraints, commonly
used in the hashing-based counting framework. Moreover, an effective prepro-
cessor named Arjun [24] is proposed to enhance ApproxMC’s performance by
constructing shorter XOR constraints. As a result, the combination of Arjun and
ApproxMC4 solved almost all existing benchmarks [24], making it the current
state of the art in this field.

In this work, we aim to address the main limitation of the ApproxMC algo-
rithm by focusing on an aspect that still needs to be improved upon by previous
developments. Specifically, we aim to improve the core algorithm of ApproxMC,
which has remained unchanged.

4 Weakness of ApproxMC

As noted above, the core algorithm of ApproxMC has not changed since 2016,
and in this work, we aim to address the core limitation of ApproxMC. To put our
contribution in context, we first review ApproxMC and its core algorithm, called

138 J. Yang and K. S. Meel

ApproxMCCore. We present the pseudocode of ApproxMC and ApproxMCCore in
Algorithms 1 and 2, respectively. ApproxMCCore may return an estimate that
falls outside the PAC range

[
|sol(F)|
1+ε , (1 + ε)|sol(F)|

]
with a certain probability of

error. Therefore, ApproxMC repeatedly invokes ApproxMCCore (Lines 5– 9) and
returns the median of the estimates returned by ApproxMCCore (Line 10), which
reduces the error probability to the user-provided parameter δ.

Let Errort denote the event that the median of t estimates falls out-
side

[
|sol(F)|
1+ε , (1 + ε)|sol(F)|

]
. Let L denote the event that an invocation

ApproxMCCore returns an estimate less than |sol(F)|
1+ε . Similarly, let U denote the

event that an individual estimate of |sol(F)| is greater than (1+ε)|sol(F)|. For sim-
plicity of exposition, we assume t is odd; the current implementation of t indeed
ensures that t is odd by choosing the smallest odd t for which Pr[Errort] ≤ δ.

In the remainder of the section, we will demonstrate that reducing
max {Pr [L] ,Pr [U]} can effectively reduce the number of repetitions t, mak-
ing the small-δ scenarios practical. To this end, we will first demonstrate the
existing analysis technique of ApproxMC leads to loose bounds on Pr[Errort]. We
then present a new analysis that leads to tighter bounds on Pr[Errort].

The existing combinatorial analysis in [7] derives the following proposition:

Proposition 3.

Pr [Errort] ≤ η(t, �t/2�,Pr [L ∪ U])

where η(t,m, p) =
∑t

k=m

(
t
k

)
pk(1 − p)t−k.

Proposition 3 follows from the observation that if the median falls outside
the PAC range, at least �t/2� of the results must also be outside the range. Let
η(t, �t/2�,Pr [L ∪ U]) ≤ δ, and we can compute a valid t at Line 4 of ApproxMC.

Proposition 3 raises a question: can we derive a tight upper bound for
Pr [Errort]? The following lemma provides an affirmative answer to this ques-
tion.

Lemma 2. Assuming t is odd, we have:

Pr [Errort] = η(t, �t/2�,Pr [L]) + η(t, �t/2�,Pr [U])

Proof. Let IL
i be an indicator variable that is 1 when ApproxMCCore returns a

nSols less than |sol(F)|
1+ ε , indicating the occurrence of event L in the i-th repetition.

Let IU
i be an indicator variable that is 1 when ApproxMCCore returns a nSols

greater than (1+ε)|sol(F)|, indicating the occurrence of event U in the i-th repeti-
tion. We aim first to prove that Errort ⇔

(∑t
i=1 IL

i ≥ ⌈
t
2

⌉)∨
(∑t

i=1 IU
i ≥ ⌈

t
2

⌉)
.

We will begin by proving the right (⇒) implication. If the median of t esti-
mates violates the PAC guarantee, the median is either less than |sol(F)|

1+ε or
greater than (1 + ε)|sol(F)|. In the first case, since half of the estimates are
less than the median, at least

⌈
t
2

⌉
estimates are less than |sol(F)|

1+ε . Formally, this

Rounding Meets Approximate Model Counting 139

implies
∑t

i=1 IL
i ≥ ⌈

t
2

⌉
. Similarly, in the case that the median is greater than

(1+ε)|sol(F)|, since half of the estimates are greater than the median, at least
⌈

t
2

⌉
estimates are greater than (1+ε)|sol(F)|, thus formally implying

∑t
i=1 IU

i ≥ ⌈
t
2

⌉
.

On the other hand, we prove the left (⇐) implication. Given
∑t

i=1 IL
i ≥ ⌈

t
2

⌉
,

more than half of the estimates are less than |sol(F)|
1+ε , and therefore the median is

less than |sol(F)|
1+ε , violating the PAC guarantee. Similarly, given

∑t
i=1 IU

i ≥ ⌈
t
2

⌉
,

more than half of the estimates are greater than (1 + ε)|sol(F)|, and therefore
the median is greater than (1 + ε)|sol(F)|, violating the PAC guarantee. This
concludes the proof of Errort ⇔

(∑t
i=1 IL

i ≥ ⌈
t
2

⌉)∨
(∑t

i=1 IU
i ≥ ⌈

t
2

⌉)
. Then we

obtain:

Pr [Errort] = Pr

[(
t∑

i=1

IL
i ≥ �t/2�

)
∨
(

t∑
i=1

IU
i ≥ �t/2�

)]

= Pr

[(
t∑

i=1

IL
i ≥ �t/2�

)]
+ Pr

[(
t∑

i=1

IU
i ≥ �t/2�

)]

− Pr

[(
t∑

i=1

IL
i ≥ �t/2�

)
∧
(

t∑
i=1

IU
i ≥ �t/2�

)]

Given IL
i + IU

i ≤ 1 for i = 1, 2, ..., t,
∑t

i=1(I
L
i + IU

i) ≤ t is there, but if(∑t
i=1 IL

i ≥ �t/2�
)

∧
(∑t

i=1 IU
i ≥ �t/2�

)
is also given, we obtain

∑t
i=1(I

L
i +

IU
i) ≥ t + 1 contradicting

∑t
i=1(I

L
i + IU

i) ≤ t; Hence, we can conclude that
Pr

[(∑t
i=1 IL

i ≥ �t/2�
)

∧
(∑t

i=1 IU
i ≥ �t/2�

)]
= 0. From this, we can deduce:

Pr [Errort] = Pr

[(
t∑

i=1

IL
i ≥ �t/2�

)]
+ Pr

[(
t∑

i=1

IU
i ≥ �t/2�

)]

= η(t, �t/2�,Pr [L]) + η(t, �t/2�,Pr [U])

�
Though Lemma 2 shows that reducing Pr [L] and Pr [U] can decrease the error

probability, it is still uncertain to what extent Pr [L] and Pr [U] affect the error
probability. To further understand this impact, the following lemma is presented
to establish a correlation between the error probability and t depending on Pr [L]
and Pr [U].

Lemma 3. Let pmax = max {Pr [L] ,Pr [U]} and pmax < 0.5, we have

Pr [Errort] ∈ Θ

(
t−

1
2

(
2
√

pmax(1 − pmax)
)t

)

140 J. Yang and K. S. Meel

Proof. Applying Lemmas 1 and 2, we have

Pr [Errort] ∈ Θ

(
t−

1
2

((
2
√

Pr [L] (1 − Pr [L])
)t

+
(
2
√

Pr [U] (1 − Pr [U])
)t

))

= Θ

(
t−

1
2

(
2
√

pmax(1 − pmax)
)t

)

�
In summary, Lemma 3 provides a way to tighten the bound on Pr[Errort]

by designing an algorithm such that we can obtain a tighter bound on pmax

in contrast to previous approaches that relied on obtaining a tighter bound on
Pr[L ∪ U].

5 Rounding Model Counting

In this section, we present a rounding-based technique that allows us to obtain
a tighter bound on pmax. On a high-level, instead of returning the estimate from
one iteration of the underlying core algorithm as the number of solutions in a
randomly chosen cell multiplied by the number of cells, we round each estimate of
the model count to a value that is more likely to be within (1+ ε)-bound. While
counter-intuitive at first glance, we show that rounding the estimate reduces
max {Pr [L] ,Pr [U]}, thereby resulting in a smaller number of repetitions of the
underlying algorithm.

We present ApproxMC6, a rounding-based approximate model counting algo-
rithm, in Sect. 5.1. Section 5.2 will demonstrate how ApproxMC6 decreases
max {Pr [L] ,Pr [U]} and the number of estimates. Lastly, in Sect. 5.3, we will
provide proof of the theoretical correctness of the algorithm.

5.1 Algorithm

Algorithm 3 presents the procedure of ApproxMC6. ApproxMC6 takes as
input a formula F , a tolerance parameter ε, and a confidence param-
eter δ. ApproxMC6 returns an (ε, δ)-estimate c of |sol(F)| such that
Pr

[
|sol(F)|
1+ε ≤ c ≤ (1 + ε)|sol(F)|

]
≥ 1− δ. ApproxMC6 is identical to ApproxMC in

its initialization of data structures and handling of base cases (Lines 1–4).
In Line 5, we pre-compute the rounding type and rounding value to be

used in ApproxMC6Core. configRound is implemented in Algorithm 5; the precise
choices arise due to technical analysis, as presented in Sect. 5.2. Note that, in
configRound, Cnt〈F,m〉 is rounded up to roundValue for ε < 3 (roundUp = 1) but
rounded to roundValue for ε ≥ 3 (roundUp = 0). Rounding up means we assign
roundValue to Cnt〈F,m〉 if Cnt〈F,m〉 is less than roundValue and, otherwise, keep
Cnt〈F,m〉 unchanged. Rounding means that we assign roundValue to Cnt〈F,m〉 in
all cases. ApproxMC6 computes the number of repetitions necessary to lower error
probability down to δ at Line 6. The implementation of computeIter is presented

Rounding Meets Approximate Model Counting 141

Algorithm 3. ApproxMC6(F, ε, δ)

1: thresh ← 9.84
(
1 + ε

1+ε

) (
1 + 1

ε

)2
;

2: Y ← BoundedSAT(F, thresh);
3: if (|Y | < thresh) then return |Y |;
4: C ← emptyList; iter ← 0;
5: (roundUp, roundValue) ← configRound(ε)
6: t ← computeIter(ε, δ)
7: repeat
8: iter ← iter + 1;
9: nSols ← ApproxMC6Core(F, thresh, roundUp, roundValue);

10: AddToList(C, nSols);
11: until (iter ≥ t);
12: finalEstimate ← FindMedian(C);
13: return finalEstimate ;

in Algorithm 6 following Lemma 2. The iterator keeps increasing until the tight
error bound is no more than δ. As we will show in Sect. 5.2, Pr [L] and Pr [U]
depend on ε. In the loop of Lines 7–11, ApproxMC6Core repeatedly estimates
|sol(F)|. Each estimate nSols is stored in List C, and the median of C serves as
the final estimate satisfying the (ε, δ)-guarantee.

Algorithm 4 shows the pseudo-code of ApproxMC6Core. A random hash func-
tion is chosen at Line 1 to partition sol(F) into roughly equal cells. A random
hash value is chosen at Line 2 to randomly pick a cell for estimation. In Line 3,
we search for a value m such that the cell picked from 2m available cells is small
enough to enumerate solutions one by one while providing a good estimate of
|sol(F)|. In Line 4, a bounded model counting is invoked to compute the size of the
picked cell, i.e., Cnt〈F,m〉. Finally, if roundUp equals 1, Cnt〈F,m〉 is rounded up to
roundValue at Line 6. Otherwise, roundUp equals 0, and Cnt〈F,m〉 is rounded to
roundValue at Line 8. Note that rounding up returns roundValue only if Cnt〈F,m〉
is less than roundValue. However, in the case of rounding, roundValue is always
returned no matter what value Cnt〈F,m〉 is.

For large ε (ε ≥ 3), ApproxMC6Core returns a value that is independent of
the value returned by BoundedSAT in line 4 of Algorithm 4. However, observe
the value depends on m returned by LogSATSearch [8], which in turn uses
BoundedSAT to find the value of m; therefore, the algorithm’s run is not indepen-
dent of all the calls to BoundedSAT. The technical reason for correctness stems
from the observation that for large values of ε, we can always find a value of m
such that 2m ×c (where c is a constant) is a (1+ε)-approximation of |sol(F)|. An
example, consider n = 7 and let c = 1, then a (1+3)-approximation of a number
between 1 and 128 belongs to [1, 2, 4, 8, 16, 32, 64, 128]; therefore, returning an
answer of the form c × 2m suffices as long as we are able to search for the right
value of m, which is accomplished by LogSATSearch. We could skip the final call
to BoundedSAT in line 4 of ApproxMC6Core for large values of ε, but the actual
computation of BoundedSAT comes with LogSATSearch.

142 J. Yang and K. S. Meel

Algorithm 4. ApproxMC6Core(F, thresh, roundUp, roundValue)
1: Choose h at random from H(n, n);
2: Choose α at random from {0, 1}n;
3: m ← LogSATSearch(F, h, α, thresh);

4: Cnt〈F,m〉 ← BoundedSAT
(

F ∧
(
h(m)

)−1 (
α(m)

)
, thresh

)
;

5: if roundUp = 1 then
6: return (2m × max{Cnt〈F,m〉, roundValue});
7: else
8: return (2m × roundValue);

Algorithm 5. configRound(ε)

1: if (ε <
√
2 − 1) then return (1,

√
1+2ε
2 pivot);

2: else if (ε < 1) then return (1, pivot√
2
);

3: else if (ε < 3) then return (1, pivot);
4: else if (ε < 4

√
2 − 1) then return (0, pivot);

5: else
6: return (0,

√
2pivot);

5.2 Repetition Reduction

We will now show that ApproxMC6Core allows us to obtain a smaller
max {Pr [L] ,Pr [U]}. Furthermore, we show the large gap between the error prob-
ability of ApproxMC6 and that of ApproxMC both analytically and visually.

The following lemma presents the upper bounds of Pr [L] and Pr [U] for
ApproxMC6Core. Let pivot = 9.84

(
1 + 1

ε

)2 for simplicity.

Lemma 4. The following bounds hold for ApproxMC6:

Pr [L] ≤

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.262 if ε <
√
2 − 1

0.157 if
√
2 − 1 ≤ ε < 1

0.085 if 1 ≤ ε < 3
0.055 if 3 ≤ ε < 4

√
2 − 1

0.023 if ε ≥ 4
√
2 − 1

Pr [U] ≤
{
0.169 if ε < 3
0.044 if ε ≥ 3

The proof of Lemma 4 is deferred to Sect. 5.3. Observe that Lemma 4 influ-
ences the choices in the design of configRound (Algorithm 5). Recall that
max {Pr [L] ,Pr [U]} ≤ 0.36 for ApproxMC (Appendix C), but Lemma 4 ensures
max {Pr [L] ,Pr [U]} ≤ 0.262 for ApproxMC6. For ε ≥ 4

√
2 − 1, Lemma 4 even

delivers max {Pr [L] ,Pr [U]} ≤ 0.044.

Rounding Meets Approximate Model Counting 143

Algorithm 6. computeIter(ε, δ)
1: iter ← 1;
2: while (η(iter, �iter/2�,Prε[L]) + η(iter, �iter/2�,Prε[U]) > δ) do
3: iter ← iter + 2;

4: return iter;

The following theorem analytically presents the gap between the error prob-
ability of ApproxMC6 and that of ApproxMC1.

Theorem 1. For
√
2 − 1 ≤ ε < 1,

Pr [Errort] ∈
⎧
⎨
⎩

O
(
t−

1
2 0.75t

)
for ApproxMC6

O
(
t−

1
2 0.96t

)
for ApproxMC

Proof. From Lemma 4, we obtain pmax ≤ 0.169 for ApproxMC6. Applying
Lemma 3, we have

Pr [Errort] ∈ O
(

t−
1
2

(
2
√

0.169(1 − 0.169)
)t

)
⊆ O

(
t−

1
2 0.75t

)

For ApproxMC, combining pmax ≤ 0.36 (Appendix C) and Lemma 3, we obtain

Pr [Errort] ∈ O
(

t−
1
2

(
2
√

0.36(1 − 0.36)
)t

)
= O

(
t−

1
2 0.96t

)

�
Figure 1 visualizes the large gap between the error probability of ApproxMC6
and that of ApproxMC. The x-axis represents the number of repetitions (t) in
ApproxMC6 or ApproxMC. The y-axis represents the upper bound of error proba-
bility in the log scale. For example, as t = 117, ApproxMC guarantees that with a
probability of 10−3, the median over 117 estimates violates the PAC guarantee.
However, ApproxMC6 allows a much smaller error probability that is at most
10−15 for

√
2 − 1 ≤ ε < 1. The smaller error probability enables ApproxMC6

to repeat fewer repetitions while providing the same level of theoretical guar-
antee. For example, given δ = 0.001 to ApproxMC, i.e., y = 0.001 in Fig. 1,
ApproxMC requests 117 repetitions to obtain the given error probability. How-
ever, ApproxMC6 claims that 37 repetitions for ε <

√
2 − 1, 19 repetitions for√

2 − 1 ≤ ε < 1, 17 repetitions for 1 ≤ ε < 3, 7 repetitions for 3 ≤ ε < 4
√
2 − 1,

and 5 repetitions for ε ≥ 4
√
2− 1 are sufficient to obtain the same level of error

probability. Consequently, ApproxMC6 can obtain 3×, 6×, 7×, 17×, and 23×
speedups, respectively, than ApproxMC.

1 We state the result for the case
√
2−1 ≤ ε < 1. A similar analysis can be applied to

other cases, which leads to an even bigger gap between ApproxMC6 and ApproxMC.

144 J. Yang and K. S. Meel

Fig. 1. Comparison of error bounds for ApproxMC6 and ApproxMC.

5.3 Proof of Lemma 4 for Case
√
2 − 1 ≤ ε < 1

We provide full proof of Lemma 4 for case
√
2 − 1 ≤ ε < 1. We defer the proof

of other cases to Appendix D.
Let Tm denote the event

(
Cnt〈F,m〉 < thresh

)
, and let Lm and Um denote the

events
(
Cnt〈F,m〉 <

E[Cnt〈F,m〉]
1+ε

)
and

(
Cnt〈F,m〉 > E

[
Cnt〈F,m〉

]
(1 + ε)

)
, respec-

tively. To ease the proof, let U ′
m denote

(
Cnt〈F,m〉 > E

[
Cnt〈F,m〉

]
(1 + ε

1+ε)
)
,

and thereby Um ⊆ U ′
m. Let m∗ = �log2 |sol(F)| − log2 (pivot) + 1� such that m∗

is the smallest m satisfying |sol(F)|
2m (1 + ε

1+ε) ≤ thresh − 1.
Let us first prove the lemmas used in the proof of Lemma 4.

Lemma 5. For every 0 < β < 1, γ > 1, and 1 ≤ m ≤ n, the following holds:

1. Pr
[
Cnt〈F,m〉 ≤ βE

[
Cnt〈F,m〉

]] ≤ 1

1+(1−β)2E[Cnt〈F,m〉]
2. Pr

[
Cnt〈F,m〉 ≥ γE

[
Cnt〈F,m〉

]] ≤ 1

1+(γ−1)2E[Cnt〈F,m〉]

Proof. Statement 1 can be proved following the proof of Lemma 1 in [8]. For
statement 2, we rewrite the left-hand side and apply Cantelli’s inequality:

Pr
[
Cnt〈F,m〉−E

[
Cnt〈F,m〉

]≥(γ−1)E
[
Cnt〈F,m〉

]]≤ σ2[Cnt〈F,m〉]
σ2[Cnt〈F,m〉]+((γ−1)E[Cnt〈F,m〉])2

.

Finally, applying Eq. 2 completes the proof. �

Lemma 6. Given
√
2 − 1 ≤ ε < 1, the following bounds hold:

1. Pr [Tm∗−3] ≤ 1
62.5

2. Pr [Lm∗−2] ≤ 1
20.68

3. Pr [Lm∗−1] ≤ 1
10.84

4. Pr [U ′
m∗] ≤ 1

5.92

Rounding Meets Approximate Model Counting 145

Proof. Following the proof of Lemma 2 in [8], we can prove statements 1, 2, and
3. To prove statement 4, replacing γ with (1 + ε

1+ε) in Lemma 5 and employing
E
[
Cnt〈F,m∗〉

] ≥ pivot/2, we obtain Pr [U ′
m∗] ≤ 1

1+(ε
1+ε)

2
pivot/2

≤ 1
5.92 . �

Now we prove the upper bounds of Pr [L] and Pr [U] in Lemma 4 for
√
2−1 ≤

ε < 1. The proof for other ε is deferred to Appendix D due to the page limit.
Lemma 4. The following bounds hold for ApproxMC6:

Pr [L] ≤

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.262 if ε <
√
2 − 1

0.157 if
√
2 − 1 ≤ ε < 1

0.085 if 1 ≤ ε < 3
0.055 if 3 ≤ ε < 4

√
2 − 1

0.023 if ε ≥ 4
√
2 − 1

Pr [U] ≤
{
0.169 if ε < 3
0.044 if ε ≥ 3

Proof. We prove the case of
√
2− 1 ≤ ε < 1. The proof for other ε is deferred to

Appendix D. Let us first bound Pr [L]. Following LogSATSearch in [8], we have

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3)

Equation 3 can be simplified by three observations labeled O1, O2 and O3 below.

O1 : ∀i ≤ m∗ − 3, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−3}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−3}

Ti ⊆ Tm∗−3

O2 :]For i ∈ {m∗ − 2,m∗ − 1}, we have
⋃

i∈{m∗−2,m∗−1}
(Ti−1 ∩ Ti ∩ Li) ⊆ Lm∗−2 ∪ Lm∗−1

O3 : ∀i ≥ m∗, since rounding Cnt〈F,i〉 up to pivot√
2

and m∗ ≥ log2 |sol(F)| −
log2 (pivot), we have 2i × Cnt〈F,i〉 ≥ 2m∗ × pivot√

2
≥ |sol(F)|√

2
≥ |sol(F)|

1+ε . The last

inequality follows from ε ≥ √
2 − 1. Then we have Cnt〈F,i〉 ≥ E[Cnt〈F,i〉]

1+ε .
Therefore, Li = ∅ for i ≥ m∗ and we have

⋃
i∈{m∗,...,n}

(Ti−1 ∩ Ti ∩ Li) = ∅

146 J. Yang and K. S. Meel

Following the observations O1, O2, and O3, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−3] + Pr [Lm∗−2] + Pr [Lm∗−1]

Employing Lemma 6 gives Pr [L] ≤ 0.157.
Now let us bound Pr [U]. Similarly, following LogSATSearch in [8], we have

Pr [U] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Ui

)
⎤
⎦ (4)

We derive the following observations O4 and O5.

O4 : ∀i ≤ m∗ − 1, since m∗ ≤ log2 |sol(F)| − log2 (pivot) + 1, we have 2i ×
Cnt〈F,i〉 ≤ 2m∗−1 × thresh ≤ |sol(F)|

(
1 + ε

1+ε

)
. Then we obtain Cnt〈F,i〉 ≤

E
[
Cnt〈F,i〉

] (
1 + ε

1+ε

)
. Therefore, Ti ∩ U ′

i = ∅ for i ≤ m∗ − 1 and we have

⋃
i∈{1,...,m∗−1}

(
Ti−1 ∩ Ti ∩ Ui

) ⊆
⋃

i∈{1,...,m∗−1}

(
Ti−1 ∩ Ti ∩ U ′

i

)
= ∅

O5 : ∀i ≥ m∗, Ti implies Cnt〈F,i〉 > thresh, and then we have 2i × Cnt〈F,i〉 >

2m∗ × thresh ≥ |sol(F)|
(
1 + ε

1+ε

)
. The second inequality follows from m∗ ≥

log2 |sol(F)| − log2 (pivot). Then we obtain Cnt〈F,i〉 > E
[
Cnt〈F,i〉

] (
1 + ε

1+ε

)
.

Therefore, Ti ⊆ U ′
i for i ≥ m∗. Since ∀i, Ti ⊆ Ti−1, we have

⋃
i∈{m∗,...,n}

(
Ti−1 ∩ Ti ∩ Ui

) ⊆
⋃

i∈{m∗+1,...,n}
Ti−1 ∪ (Tm∗−1 ∩ Tm∗ ∩ Um∗)

⊆ Tm∗ ∪ (Tm∗−1 ∩ Tm∗ ∩ Um∗)

⊆ Tm∗ ∪ Um∗

⊆ U ′
m∗ (5)

Remark that for
√
2 − 1 ≤ ε < 1, we round Cnt〈F,m∗〉 up to pivot√

2
, and we

have 2m∗ × pivot√
2

≤ |sol(F)|(1 + ε), which means rounding doesn’t affect the
event Um∗ ; therefore, Inequality 5 still holds.

Following the observations O4 and O5, we simplify Eq. 4 and obtain

Pr [U] ≤ Pr [U ′
m∗]

Employing Lemma 6 gives Pr [U] ≤ 0.169. �
The breakpoints in ε of Lemma 4 arise from how we use rounding to lower

the error probability for events L and U . Rounding up counts can lower Pr [L]
but may increase Pr [U]. Therefore, we want to round up counts to a value that
doesn’t affect the event U . Take

√
2−1 ≤ ε < 1 as an example; we round up the

Rounding Meets Approximate Model Counting 147

count to a value such that Lm∗ becomes an empty event with zero probability
while Um∗ remains unchanged. To make Lm∗ empty, we have

2m∗ × roundValue ≥ 2m∗ × 1
1 + ε

pivot ≥ 1
1 + ε

|sol(F)| (6)

where the last inequality follows from m∗ ≥ log2 |sol(F)| − log2 (pivot). To main-
tain Um∗ unchanged, we obtain

2m∗ × roundValue ≤ 2m∗ × 1 + ε

2
pivot ≤ (1 + ε)|sol(F)| (7)

where the last inequality follows from m∗ ≤ log2 |sol(F)| − log2 (pivot)+ 1. Com-
bining Eqs. 6 and 7 together, we obtain

2m∗ × 1
1 + ε

pivot ≤ 2m∗ × 1 + ε

2
pivot

which gives us ε ≥ √
2 − 1. Similarly, we can derive other breakpoints.

6 Experimental Evaluation

It is perhaps worth highlighting that both ApproxMCCore and ApproxMC6Core
invoke the underlying SAT solver on identical queries; the only difference between
ApproxMC6 and ApproxMC lies in what estimate to return and how often
ApproxMCCore and ApproxMC6Core are invoked. From this viewpoint, one would
expect that theoretical improvements would also lead to improved runtime per-
formance. To provide further evidence, we perform extensive empirical evalua-
tion and compare ApproxMC6’s performance against the current state-of-the-art
model counter, ApproxMC [22]. We use Arjun as a pre-processing tool. We used
the latest version of ApproxMC, called ApproxMC4; an entry based on ApproxMC4
won the Model Counting Competition 2022.

Previous comparisons of ApproxMC have been performed on a set of 1896
instances, but the latest version of ApproxMC is able to solve almost all the
instances when these instances are pre-processed by Arjun. Therefore, we sought
to construct a new comprehensive set of 1890 instances derived from various
sources, including Model Counting Competitions 2020–2022 [12,15,16], program
synthesis [1], quantitative control improvisation [13], quantification of software
properties [26], and adaptive chosen ciphertext attacks [3]. As noted earlier, our
technique extends to projected model counting, and our benchmark suite indeed
comprises 772 projected model counting instances.

Experiments were conducted on a high-performance computer cluster, with
each node consisting of 2xE5-2690v3 CPUs featuring 2 × 12 real cores and 96GB
of RAM. For each instance, a counter was run on a single core, with a time limit
of 5000 s and a memory limit of 4GB. To compare runtime performance, we use
the PAR-2 score, a standard metric in the SAT community. Each instance is
assigned a score that is the number of seconds it takes the corresponding tool to

148 J. Yang and K. S. Meel

complete execution successfully. In the event of a timeout or memory out, the
score is the doubled time limit in seconds. The PAR-2 score is then calculated as
the average of all the instance scores. We also report the speedup of ApproxMC6
over ApproxMC4, calculated as the ratio of the runtime of ApproxMC4 to that of
ApproxMC6 on instances solved by both counters. We set δ to 0.001 and ε to 0.8.

Specifically, we aim to address the following research questions:

RQ 1. How does the runtime performance of ApproxMC6 compare to that of
ApproxMC4?

RQ 2. How does the accuracy of the counts computed by ApproxMC6 compare
to that of the exact count?

Summary. In summary, ApproxMC6 consistently outperforms ApproxMC4.
Specifically, it solved 204 additional instances and reduced the PAR-2 score by
1063 s in comparison to ApproxMC4. The average speedup of ApproxMC6 over
ApproxMC4 was 4.68. In addition, ApproxMC6 provided a high-quality approxi-
mation with an average observed error of 0.1, much smaller than the theoretical
error tolerance of 0.8.

6.1 RQ1. Overall Performance

Figure 2 compares the counting time of ApproxMC6 and ApproxMC4. The x-axis
represents the index of the instances, sorted in ascending order of runtime, and
the y-axis represents the runtime for each instance. A point (x, y) indicates that
a counter can solve x instances within y seconds. Thus, for a given time limit y,
a counter whose curve is on the right has solved more instances than a counter
on the left. It can be seen in the figure that ApproxMC6 consistently outperforms
ApproxMC4. In total, ApproxMC6 solved 204 more instances than ApproxMC4.

Table 1 provides a detailed comparison between ApproxMC6 and ApproxMC4.
The first column lists three measures of interest: the number of solved instances,
the PAR-2 score, and the speedup of ApproxMC6 over ApproxMC4. The second
and third columns show the results for ApproxMC4 and ApproxMC6, respec-
tively. The second column indicates that ApproxMC4 solved 998 of the 1890
instances and achieved a PAR-2 score of 4934. The third column shows that
ApproxMC6 solved 1202 instances and achieved a PAR-2 score of 3871. In com-
parison, ApproxMC6 solved 204 more instances and reduced the PAR-2 score
by 1063 s in comparison to ApproxMC4. The geometric mean of the speedup
for ApproxMC6 over ApproxMC4 is 4.68. This speedup was calculated only for
instances solved by both counters.

6.2 RQ2. Approximation Quality

We used the state-of-the-art probabilistic exact model counter Ganak to compute
the exact model count and compare it to the results of ApproxMC6. We collected
statistics on instances solved by both Ganak and ApproxMC6. Figure 3 presents
results for a subset of instances. The x-axis represents the index of instances

Rounding Meets Approximate Model Counting 149

Table 1. The number of solved instances and PAR-2 score for ApproxMC6 versus
ApproxMC4 on 1890 instances. The geometric mean of the speedup of ApproxMC6 over
ApproxMC4 is also reported.

ApproxMC4 ApproxMC6

Solved 998 1202
PAR-2 score 4934 3871

Speedup — 4.68

0 200 400 600 800 1000 1200
Instance Index

0

1000

2000

3000

4000

5000

R
un

tim
e(
s)

ApproxMC6
ApproxMC4

Fig. 2. Comparison of counting times for ApproxMC6 and ApproxMC4.

Fig. 3. Comparison of approximate counts from ApproxMC6 to exact counts from
Ganak.

sorted in ascending order by the number of solutions, and the y-axis represents
the number of solutions in a log scale. Theoretically, the approximate count
from ApproxMC6 should be within the range of |sol(F)| ·1.8 and |sol(F)|/1.8 with
probability 0.999, where |sol(F)| denotes the exact count returned by Ganak.
The range is indicated by the upper and lower bounds, represented by the
curves y = |sol(F)| · 1.8 and y = |sol(F)|/1.8, respectively. Figure 3 shows

150 J. Yang and K. S. Meel

that the approximate counts from ApproxMC6 fall within the expected range
[|sol(F)|/1.8, |sol(F)| · 1.8] for all instances except for four points slightly above
the upper bound. These four outliers are due to a bug in the preprocessor Arjun
that probably depends on the version of the C++ compiler and will be fixed
in the future. We also calculated the observed error, which is the mean relative
difference between the approximate and exact counts in our experiments, i.e.,
max{finalEstimate/|sol(F)| − 1, |sol(F)|/finalEstimate − 1}. The overall observed
error was 0.1, which is significantly smaller than the theoretical error tolerance
of 0.8.

7 Conclusion

In this paper, we addressed the scalability challenges faced by ApproxMC in
the smaller δ range. To this end, we proposed a rounding-based algorithm,
ApproxMC6, which reduces the number of estimations required by 84% while
providing the same (ε, δ)-guarantees. Our empirical evaluation on 1890 instances
shows that ApproxMC6 solved 204 more instances and achieved a reduction in
PAR-2 score of 1063 s. Furthermore, ApproxMC6 achieved a 4× speedup over
ApproxMC on the instances both ApproxMC6 and ApproxMC could solve.

Acknowledgements. This work was supported in part by National Research Foun-
dation Singapore under its NRF Fellowship Programme [NRF-NRFFAI1-2019-0004],
Ministry of Education Singapore Tier 2 Grant [MOE-T2EP20121-0011], and Ministry
of Education Singapore Tier 1 Grant [R-252-000-B59-114]. The computational work
for this article was performed on resources of the National Supercomputing Centre,
Singapore https://www.nscc.sg. We are thankful to Yash Pote for the insightful early
discussions that helped shape the idea. We are grateful to Tim van Bremen for his
detailed feedback on the early drafts of the paper. We sincerely appreciate the anony-
mous reviewers for their constructive comments to enhance this paper.

A Proof of Proposition 1

Proof. For ∀y ∈ {0, 1}n, α(m) ∈ {0, 1}m, let γy,α(m) be an indicator variable that
is 1 when h(m)(y) = α(m). According to the definition of strongly 2-universal
function, we obtain ∀x, y ∈ {0, 1}n,E

[
γy,α(m)

]
= 1

2m and E
[
γx,α(m) · γy,α(m)

]
=

1
22m . To prove Eq. 1, we obtain

E
[
Cnt〈F,m〉

]
= E

⎡
⎣ ∑

y∈sol(F)

γy,α(m)

⎤
⎦ =

∑
y∈sol(F)

E
[
γy,α(m)

]
=

|sol(F)|
2m

https://www.nscc.sg

Rounding Meets Approximate Model Counting 151

To prove Eq. 2, we derive

E
[
Cnt2〈F,m〉

]
= E

⎡
⎣ ∑

y∈sol(F)

γ2
y,α(m) +

∑
x�=y∈sol(F)

γx,α(m) · γy,α(m)

⎤
⎦

= E

⎡
⎣ ∑

y∈sol(F)

γy,α(m)

⎤
⎦+

∑
x�=y∈sol(F)

E
[
γx,α(m) · γy,α(m)

]

= E
[
Cnt〈F,m〉

]
+

|sol(F)|(|sol(F)| − 1)
22m

Then, we obtain

σ2
[
Cnt〈F,m〉

]
= E

[
Cnt2〈F,m〉

]
− E

[
Cnt〈F,m〉

]2

= E
[
Cnt〈F,m〉

]
+

|sol(F)|(|sol(F)| − 1)
22m

−
(|sol(F)|

2m

)2

= E
[
Cnt〈F,m〉

] − |sol(F)|
22m

≤ E
[
Cnt〈F,m〉

]

�

B Weakness of Proposition 3

The following proposition states that Proposition 3 provides a loose upper bound
for Pr [Errort].

Proposition 4. Assuming t is odd, we have:

Pr [Errort] < η(t, �t/2�,Pr [L ∪ U])

Proof. We will now construct a case counted by η(t, �t/2�,Pr [L ∪ U]) but not
contained within the event Errort. Let IL

i be an indicator variable that is 1
when ApproxMCCore returns a nSols less than |sol(F)|

1+ε , indicating the occurrence
of event L in the i-th repetition. Let IU

i be an indicator variable that is 1
when ApproxMCCore returns a nSols greater than (1 + ε)|sol(F)|, indicating the
occurrence of event U in the i-th repetition. Consider a scenario where IL

i = 1
for i = 1, 2, ...,

⌈
t
4

⌉
, IU

j = 1 for j =
⌈

t
4

⌉
+ 1, ...,

⌈
t
2

⌉
, and IL

k = IU
k = 0

for k >
⌈

t
2

⌉
. η(t, �t/2�,Pr [L ∪ U]) represents

∑t
i=1(I

L
i ∨ IU

i) ≥ � t
2�. We can

see that this case is included in
∑t

i=1(I
L
i ∨ IU

i) ≥ � t
2� and therefore counted

by η(t, �t/2�,Pr [L ∪ U]) since there are
⌈

t
2

⌉
estimates outside the PAC range.

However, this case means that
⌈

t
4

⌉
estimates fall within the range less than |sol(F)|

1+ε

and
⌈

t
2

⌉−⌈
t
4

⌉
estimates fall within the range greater than (1+ε)|sol(F)|, while the

remaining
⌊

t
2

⌋
estimates correctly fall within the range

[
|sol(F)|
1+ε , (1 + ε)|sol(F)|

]
.

152 J. Yang and K. S. Meel

Therefore, after sorting all the estimates, ApproxMC6 returns a correct estimate
since the median falls within the PAC range

[
|sol(F)|
1+ε , (1 + ε)|sol(F)|

]
. In other

words, this case is out of the event Errort. In conclusion, there is a scenario that
is out of the event Errort, undesirably included in expression

∑t
i=1(I

L
i ∨IU

i) ≥ � t
2�

and counted by η(t, �t/2�,Pr [L ∪ U]), which means Pr [Errort] is strictly less than
η(t, �t/2�,Pr [L ∪ U]). �

C Proof of pmax ≤ 0.36 for ApproxMC

Proof. We prove the case of
√
2 − 1 ≤ ε < 1. Similarly to the proof in Sect. 5.3,

we aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by three observations labeled O1, O2 and O3 below.
O1 : ∀i ≤ m∗ − 3, Ti ⊆ Ti+1. Therefore,

⋃
i∈{1,...,m∗−3}

(Ti−1 ∩ Ti ∩ Li) ⊆
⋃

i∈{1,...,m∗−3}
Ti ⊆ Tm∗−3

O2 : For i ∈ {m∗ − 2,m∗ − 1}, we have
⋃

i∈{m∗−2,m∗−1}
(Ti−1 ∩ Ti ∩ Li) ⊆ Lm∗−2 ∪ Lm∗−1

O3 : ∀i ≥ m∗, Ti implies Cnt〈F,i〉 > thresh and then we have 2i ×
Cnt〈F,i〉 > 2m∗ × thresh ≥ |sol(F)|

(
1 + ε

1+ε

)
. The second inequal-

ity follows from m∗ ≥ log2 |sol(F)| − log2 (pivot). Then we obtain(
Cnt〈F,i〉 > E

[
Cnt〈F,i〉

] (
1 + ε

1+ε

))
. Therefore, Ti ⊆ U ′

i for i ≥ m∗. Since

∀i, Ti ⊆ Ti−1, we have
⋃

i∈{m∗,...,n}

(
Ti−1 ∩ Ti ∩ Li

) ⊆
⋃

i∈{m∗+1,...,n}
Ti−1 ∪ (Tm∗−1 ∩ Tm∗ ∩ Lm∗)

⊆ Tm∗ ∪ (Tm∗−1 ∩ Tm∗ ∩ Lm∗)

⊆ Tm∗ ∪ Lm∗

⊆ U ′
m∗ ∪ Lm∗

Following the observations O1, O2 and O3, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−3] + Pr [Lm∗−2] + Pr [Lm∗−1] + Pr [U ′
m∗ ∪ Lm∗]

Employing Lemma 2 in [8] gives Pr [L] ≤ 0.36. Note that U in [8] represents U ′

of our definition.
Then, following the O4 and O5 in Sect. 5.3, we obtain

Pr [U] ≤ Pr [U ′
m∗]

Employing Lemma 6 gives Pr [U] ≤ 0.169. As a result, pmax ≤ 0.36. �

Rounding Meets Approximate Model Counting 153

D Proof of Lemma 4

We restate the lemma below and prove the statements section by section. The
proof for

√
2 − 1 ≤ ε < 1 has been shown in Sect. 5.3.

Lemma 4. The following bounds hold for ApproxMC6:

Pr [L] ≤

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.262 if ε <
√
2 − 1

0.157 if
√
2 − 1 ≤ ε < 1

0.085 if 1 ≤ ε < 3
0.055 if 3 ≤ ε < 4

√
2 − 1

0.023 if ε ≥ 4
√
2 − 1

Pr [U] ≤
{
0.169 if ε < 3
0.044 if ε ≥ 3

D.1 Proof of Pr [L] ≤ 0.262 for ε <
√
2 − 1

We first consider two cases: E
[
Cnt〈F,m∗〉

]
< 1+ε

2 thresh and E
[
Cnt〈F,m∗〉

] ≥
1+ε
2 thresh, and then merge the results to complete the proof.

Case 1: E
[
Cnt〈F,m ∗〉

]
< 1+ε

2
thresh

Lemma 7. Given ε <
√
2 − 1, the following bounds hold:

1. Pr [Tm∗−2] ≤ 1
29.67

2. Pr [Lm∗−1] ≤ 1
10.84

Proof. Let’s first prove the statement 1. For ε <
√
2 − 1, we have

thresh < (2 −
√
2
2)pivot and E

[
Cnt〈F,m∗−2〉

] ≥ 2pivot. Therefore, Pr [Tm∗−2] ≤
Pr

[
Cnt〈F,m∗−2〉 ≤ (1 −

√
2
4)E

[
Cnt〈F,m∗−2〉

]]
. Finally, employing Lemma 5 with

β = 1 −
√
2
4 , we obtain Pr [Tm∗−2] ≤ 1

1+(
√

2
4)2·2pivot ≤ 1

1+(
√

2
4)2·2·9.84·(1+ 1√

2−1
)2

≤
1

29.67 . To prove the statement 2, we employ Lemma 5 with β = 1
1+ε and

E
[
Cnt〈F,m∗−1〉

] ≥ pivot to obtain Pr [Lm∗−1] ≤ 1

1+(1− 1
1+ε)

2·E[Cnt〈F,m∗−1〉]
≤

1
1+(1− 1

1+ε)
2·9.84·(1+ 1

ε)
2 = 1

10.84 . �

Then, we prove that Pr [L] ≤ 0.126 for E
[
Cnt〈F,m∗〉

]
< 1+ε

2 thresh.

Proof. We aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by the three observations labeled O1, O2 and O3 below.

154 J. Yang and K. S. Meel

O1 : ∀i ≤ m∗ − 2, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−2}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−2}

Ti ⊆ Tm∗−2

O2 : For i = m∗ − 1, we have

Tm∗−2 ∩ Tm∗−1 ∩ Lm∗−1 ⊆ Lm∗−1

O3 : ∀i ≥ m∗, since rounding Cnt〈F,i〉 up to
√
1+2ε
2 pivot, we have Cnt〈F,i〉 ≥

√
1+2ε
2 pivot ≥ thresh

2 >
E[Cnt〈F,m∗〉]

1+ε ≥ E[Cnt〈F,i〉]
1+ε . The second last inequality

follows from E
[
Cnt〈F,m∗〉

]
< 1+ε

2 thresh. Therefore, Li = ∅ for i ≥ m∗ and we
have

⋃
i∈{m∗,...,n}

(Ti−1 ∩ Ti ∩ Li) = ∅

Following the observations O1, O2 and O3, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−2] + Pr [Lm∗−1]

Employing Lemma 7 gives Pr [L] ≤ 0.126. �

Case 2: E
[
Cnt〈F,m ∗〉

] ≥ 1+ε
2

thresh

Lemma 8. Given E
[
Cnt〈F,m∗〉

] ≥ 1+ε
2 thresh, the following bounds hold:

1. Pr [Tm∗−1] ≤ 1
10.84

2. Pr [Lm∗] ≤ 1
5.92

Proof. Let’s first prove the statement 1. From E
[
Cnt〈F,m∗〉

] ≥ 1+ε
2 thresh,

we can derive E
[
Cnt〈F,m∗−1〉

] ≥ (1 + ε)thresh. Therefore, Pr [Tm∗−1] ≤
Pr

[
Cnt〈F,m∗−1〉 ≤ 1

1+εE
[
Cnt〈F,m∗−1〉

]]
. Finally, employing Lemma 5 with β =

1
1+ε , we obtain Pr [Tm∗−1] ≤ 1

1+(1− 1
1+ε)

2·E[Cnt〈F,m∗−1〉]
≤ 1

1+(1− 1
1+ε)

2·(1+ε)thresh
=

1
1+9.84(1+2ε) ≤ 1

10.84 . To prove the statement 2, we employ Lemma 5
with β = 1

1+ε and E
[
Cnt〈F,m∗〉

] ≥ 1+ε
2 thresh to obtain Pr [Lm∗] ≤

1

1+(1− 1
1+ε)

2·E[Cnt〈F,m∗〉]
≤ 1

1+(1− 1
1+ε)

2· 1+ε
2 thresh

= 1
1+4.92(1+2ε) ≤ 1

5.92 . �

Then, we prove that Pr [L] ≤ 0.262 for E
[
Cnt〈F,m∗〉

] ≥ 1+ε
2 thresh.

Proof. We aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by the three observations labeled O1, O2 and O3 below.

Rounding Meets Approximate Model Counting 155

O1 : ∀i ≤ m∗ − 1, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−1}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−1}

Ti ⊆ Tm∗−1

O2 : For i = m∗, we have

Tm∗−1 ∩ Tm∗ ∩ Lm∗ ⊆ Lm∗

O3 : ∀i ≥ m∗ + 1, since rounding Cnt〈F,i〉 up to
√
1+2ε
2 pivot and m∗ ≥

log2 |sol(F)| − log2 (pivot), we have 2i × Cnt〈F,i〉 ≥ 2m∗+1 ×
√
1+2ε
2 pivot ≥

√
1 + 2ε|sol(F)| ≥ |sol(F)|

1+ε . Then we have
(
Cnt〈F,i〉 ≥ E[Cnt〈F,i〉]

1+ε

)
. Therefore,

Li = ∅ for i ≥ m∗ + 1 and we have
⋃

i∈{m∗+1,...,n}
(Ti−1 ∩ Ti ∩ Li) = ∅

Following the observations O1, O2 and O3, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−1] + Pr [Lm∗]

Employing Lemma 8 gives Pr [L] ≤ 0.262. �
Combining the Case 1 and 2, we obtain Pr [L] ≤ max{0.126, 0.262} = 0.262.

Therefore, we prove the statement for ApproxMC6: Pr [L] ≤ 0.262 for ε <
√
2−1.

D.2 Proof of Pr [L] ≤ 0.085 for 1 ≤ ε < 3

Lemma 9. Given 1 ≤ ε < 3, the following bounds hold:

1. Pr [Tm∗−4] ≤ 1
86.41

2. Pr [Lm∗−3] ≤ 1
40.36

3. Pr [Lm∗−2] ≤ 1
20.68

Proof. Let’s first prove the statement 1. For ε < 3, we have
thresh < 7

4pivot and E
[
Cnt〈F,m∗−4〉

] ≥ 8pivot. Therefore, Pr [Tm∗−4] ≤
Pr

[
Cnt〈F,m∗−4〉 ≤ 7

32E
[
Cnt〈F,m∗−4〉

]]
. Finally, employing Lemma 5 with β =

7
32 , we obtain Pr [Tm∗−4] ≤ 1

1+(1− 7
32)

2·8pivot ≤ 1
1+(1− 7

32)
2·8·9.84·(1+ 1

3)
2 ≤

1
86.41 . To prove the statement 2, we employ Lemma 5 with β = 1

1+ε and
E
[
Cnt〈F,m∗−3〉

] ≥ 4pivot to obtain Pr [Lm∗−3] ≤ 1

1+(1− 1
1+ε)

2·E[Cnt〈F,m∗−3〉]
≤

1
1+(1− 1

1+ε)
2·4·9.84·(1+ 1

ε)
2 = 1

40.36 . Following the proof of Lemma 2 in [8] we can
prove the statement 3. �

Now let us prove the statement for ApproxMC6: Pr [L] ≤ 0.085 for 1 ≤ ε < 3.

156 J. Yang and K. S. Meel

Proof. We aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by the three observations labeled O1, O2 and O3 below.

O1 : ∀i ≤ m∗ − 4, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−4}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−4}

Ti ⊆ Tm∗−4

O2 : For i ∈ {m∗ − 3,m∗ − 2}, we have
⋃

i∈{m∗−3,m∗−2}
(Ti−1 ∩ Ti ∩ Li) ⊆ Lm∗−3 ∪ Lm∗−2

O3 : ∀i ≥ m∗ − 1, since rounding Cnt〈F,i〉 up to pivot and m∗ ≥ log2 |sol(F)| −
log2 (pivot), we have 2i × Cnt〈F,i〉 ≥ 2m∗−1 × pivot ≥ |sol(F)|

2 ≥ |sol(F)|
1+ε . The

last inequality follows from ε ≥ 1. Then we have
(
Cnt〈F,i〉 ≥ E[Cnt〈F,i〉]

1+ε

)
.

Therefore, Li = ∅ for i ≥ m∗ − 1 and we have
⋃

i∈{m∗−1,...,n}
(Ti−1 ∩ Ti ∩ Li) = ∅

Following the observations O1, O2 and O3, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−4] + Pr [Lm∗−3] + Pr [Lm∗−2]

Employing Lemma 9 gives Pr [L] ≤ 0.085. �

D.3 Proof of Pr [L] ≤ 0.055 for 3 ≤ ε < 4
√
2 − 1

Lemma 10. Given 3 ≤ ε < 4
√
2 − 1, the following bound hold:

Pr [Tm∗−3] ≤ 1
18.19

Proof. For ε < 4
√
2 − 1, we have thresh < (2 −

√
2
8)pivot and E

[
Cnt〈F,m∗−3〉

] ≥
4pivot. Therefore, Pr [Tm∗−3] ≤ Pr

[
Cnt〈F,m∗−3〉 ≤ (12 −

√
2

32)E
[
Cnt〈F,m∗−3〉

]]
.

Finally, employing Lemma 5 with β = 1
2 −

√
2

32 , we obtain Pr [Tm∗−3] ≤
1

1+(1−(1
2−

√
2

32))2·4pivot ≤ 1

1+(1−(1
2−

√
2

32))2·4·9.84·(1+ 1
4

√
2−1

)2
≤ 1

18.19 . �

Now let us prove the statement for ApproxMC6: Pr [L] ≤ 0.055 for 3 ≤ ε <
4
√
2 − 1.

Rounding Meets Approximate Model Counting 157

Proof. We aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by the two observations labeled O1 and O2 below.

O1 : ∀i ≤ m∗ − 3, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−3}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−3}

Ti ⊆ Tm∗−3

O2 : ∀i ≥ m∗ − 2, since rounding Cnt〈F,i〉 to pivot and m∗ ≥ log2 |sol(F)| −
log2 (pivot), we have 2i × Cnt〈F,i〉 ≥ 2m∗−2 × pivot ≥ |sol(F)|

4 ≥ |sol(F)|
1+ε . The

last inequality follows from ε ≥ 3. Then we have
(
Cnt〈F,i〉 ≥ E[Cnt〈F,i〉]

1+ε

)
.

Therefore, Li = ∅ for i ≥ m∗ − 2 and we have
⋃

i∈{m∗−2,...,n}
(Ti−1 ∩ Ti ∩ Li) = ∅

Following the observations O1 and O2, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−3]

Employing Lemma 10 gives Pr [L] ≤ 0.055. �

D.4 Proof of Pr [L] ≤ 0.023 for ε ≥ 4
√
2 − 1

Lemma 11. Given ε ≥ 4
√
2 − 1, the following bound hold:

Pr [Tm∗−4] ≤ 1
45.28

Proof. We have thresh < 2pivot and E
[
Cnt〈F,m∗−4〉

] ≥ 8pivot. Therefore,
Pr [Tm∗−4] ≤ Pr

[
Cnt〈F,m∗−4〉 ≤ 1

4E
[
Cnt〈F,m∗−4〉

]]
. Finally, employing Lemma 5

with β = 1
4 , we obtain Pr [Tm∗−4] ≤ 1

1+(1− 1
4)

2·8pivot ≤ 1
1+(1− 1

4)
2·8·9.84

≤ 1
45.28 . �

Now let us prove the statement for ApproxMC6: Pr [L] ≤ 0.023 for ε ≥ 4
√
2−1.

Proof. We aim to bound Pr [L] by the following equation:

Pr [L] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Li

)
⎤
⎦ (3 revisited)

which can be simplified by the two observations labeled O1 and O2 below.

158 J. Yang and K. S. Meel

O1 : ∀i ≤ m∗ − 4, Ti ⊆ Ti+1. Therefore,
⋃

i∈{1,...,m∗−4}
(Ti−1 ∩ Ti ∩ Li) ⊆

⋃
i∈{1,...,m∗−4}

Ti ⊆ Tm∗−4

O2 : ∀i ≥ m∗ − 3, since rounding Cnt〈F,i〉 to
√
2pivot and m∗ ≥ log2 |sol(F)| −

log2 (pivot), we have 2i × Cnt〈F,i〉 ≥ 2m∗−3 × √
2pivot ≥

√
2|sol(F)|

8 ≥
|sol(F)|
1+ε . The last inequality follows from ε ≥ 4

√
2 − 1. Then we have(

Cnt〈F,i〉 ≥ E[Cnt〈F,i〉]
1+ε

)
. Therefore, Li = ∅ for i ≥ m∗ − 3 and we have

⋃
i∈{m∗−3,...,n}

(Ti−1 ∩ Ti ∩ Li) = ∅

Following the observations O1 and O2, we simplify Eq. 3 and obtain

Pr [L] ≤ Pr [Tm∗−4]

Employing Lemma 11 gives Pr [L] ≤ 0.023. �

D.5 Proof of Pr [U] ≤ 0.169 for ε < 3

Lemma 12

Pr [U ′
m∗] ≤ 1

5.92

Proof. Employing Lemma 5 with γ = (1+ ε
1+ε) and E

[
Cnt〈F,m∗〉

] ≥ pivot/2, we
obtain Pr [U ′

m∗] ≤ 1

1+(ε
1+ε)

2
pivot/2

≤ 1
1+9.84/2 ≤ 1

5.92 . �

Now let us prove the statement for ApproxMC6: Pr [U] ≤ 0.169 for ε < 3.

Proof. We aim to bound Pr [U] by the following equation:

Pr [U] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Ui

)
⎤
⎦ (4 revisited)

We derive the following observations O1 and O2.

O1 : ∀i ≤ m∗ − 1, since m∗ ≤ log2 |sol(F)| − log2 (pivot) + 1, we have
2i × Cnt〈F,i〉 ≤ 2m∗−1 × thresh ≤ |sol(F)|

(
1 + ε

1+ε

)
. Then we obtain(

Cnt〈F,i〉 ≤ E
[
Cnt〈F,i〉

] (
1 + ε

1+ε

))
. Therefore, Ti ∩ U ′

i = ∅ for i ≤ m∗ − 1
and we have

⋃
i∈{1,...,m∗−1}

(
Ti−1 ∩ Ti ∩ Ui

) ⊆
⋃

i∈{1,...,m∗−1}

(
Ti−1 ∩ Ti ∩ U ′

i

)
= ∅

Rounding Meets Approximate Model Counting 159

O2 : ∀i ≥ m∗, Ti implies Cnt〈F,i〉 > thresh and then we have 2i ×
Cnt〈F,i〉 > 2m∗ × thresh ≥ |sol(F)|

(
1 + ε

1+ε

)
. The second inequal-

ity follows from m∗ ≥ log2 |sol(F)| − log2 (pivot). Then we obtain(
Cnt〈F,i〉 > E

[
Cnt〈F,i〉

] (
1 + ε

1+ε

))
. Therefore, Ti ⊆ U ′

i for i ≥ m∗. Since

∀i, Ti ⊆ Ti−1, we have
⋃

i∈{m∗,...,n}

(
Ti−1 ∩ Ti ∩ Ui

) ⊆
⋃

i∈{m∗+1,...,n}
Ti−1 ∪ (Tm∗−1 ∩ Tm∗ ∩ Um∗)

⊆ Tm∗ ∪ (Tm∗−1 ∩ Tm∗ ∩ Um∗)

⊆ Tm∗ ∪ Um∗

⊆ U ′
m∗ (8)

Remark that for ε <
√
2 − 1, we round Cnt〈F,m∗〉 up to

√
1+2ε
2 pivot and we

have 2m∗ ×
√
1+2ε
2 pivot ≤ |sol(F)|(1 + ε). For

√
2 − 1 ≤ ε < 1, we round

Cnt〈F,m∗〉 up to pivot√
2

and we have 2m∗ × pivot√
2

≤ |sol(F)|(1+ ε). For 1 ≤ ε < 3,
we round Cnt〈F,m∗〉 up to pivot and we have 2m∗ × pivot ≤ |sol(F)|(1 + ε).
The analysis means rounding doesn’t affect the event Um∗ and therefore
Inequality 8 still holds.

Following the observations O1 and O2, we simplify Eq. 4 and obtain

Pr [U] ≤ Pr [U ′
m∗]

Employing Lemma 12 gives Pr [U] ≤ 0.169. �

D.6 Proof of Pr [U] ≤ 0.044 for ε ≥ 3

Lemma 13

Pr
[
Tm∗+1

] ≤ 1
23.14

Proof. Since E
[
Cnt〈F,m∗+1〉

] ≤ pivot
2 , we have Pr

[
Tm∗+1

] ≤
Pr

[
Cnt〈F,m∗+1〉 > 2(1 + ε

1+ε)E
[
Cnt〈F,m∗+1〉

]]
. Employing Lemma 5 with γ =

2(1 + ε
1+ε) and E

[
Cnt〈F,m∗+1〉

] ≥ pivot
4 , we obtain Pr

[
Tm∗+1

] ≤
1

1+(1+ 2ε
1+ε)

2
pivot/4

= 1

1+2.46·(3+ 1
ε)

2 ≤ 1
1+2.46·32 ≤ 1

23.14 . �

Now let us prove the statement for ApproxMC6: Pr [U] ≤ 0.044 for ε ≥ 3.

Proof. We aim to bound Pr [U] by the following equation:

Pr [U] =

⎡
⎣ ⋃

i∈{1,...,n}

(
Ti−1 ∩ Ti ∩ Ui

)
⎤
⎦ (4 revisited)

We derive the following observations O1 and O2.

160 J. Yang and K. S. Meel

O1 : ∀i ≤ m∗+1, for 3 ≤ ε < 4
√
2−1, because we round Cnt〈F,i〉 to pivot and have

m∗ ≤ log2 |sol(F)|− log2 (pivot)+1, we obtain 2i ×Cnt〈F,i〉 ≤ 2m∗+1×pivot ≤
4 · |sol(F)| ≤ (1+ε)|sol(F)|. For ε ≥ 4

√
2−1, we round Cnt〈F,i〉 to

√
2pivot and

obtain 2i×Cnt〈F,i〉 ≤ 2m∗+1×√
2pivot ≤ 4

√
2·|sol(F)| ≤ (1+ε)|sol(F)|. Then,

we obtain Cnt〈F,i〉 ≤ E
[
Cnt〈F,i〉

]
(1 + ε). Therefore, Ui = ∅ for i ≤ m∗ + 1

and we have
⋃

i∈{1,...,m∗+1}

(
Ti−1 ∩ Ti ∩ Ui

)
= ∅

O2 : ∀i ≥ m∗ + 2, since ∀i, Ti ⊆ Ti−1, we have
⋃

i∈{m∗+2,...,n}

(
Ti−1 ∩ Ti ∩ Ui

) ⊆
⋃

i∈{m∗+2,...,n}
Ti−1 ⊆ Tm∗+1

Following the observations O1 and O2, we simplify Eq. 4 and obtain

Pr [U] ≤ Pr
[
Tm∗+1

]

Employing Lemma 13 gives Pr [U] ≤ 0.044. �

References

1. Alur, R., et al.: Syntax-guided synthesis. In: Proceedings of FMCAD (2013)
2. Baluta, T., Shen, S., Shine, S., Meel, K.S., Saxena, P.: Quantitative verification of

neural networks and its security applications. In: Proceedings of CCS (2019)
3. Beck, G., Zinkus, M., Green, M.: Automating the development of chosen ciphertext

attacks. In: Proceedings of USENIX Security (2020)
4. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.

Sci. (1977)
5. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-

aware sampling and weighted model counting for SAT. In: Proceedings of AAAI
(2014)

6. Chakraborty, S., Meel, K.S., Mistry, R., Vardi, M.Y.: Approximate probabilistic
inference via word-level counting. In: Proceedings of AAAI (2016)

7. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Proceedings of CP (2013)

8. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: from linear to logarithmic SAT calls. In:
Proceedings of IJCAI (2016)

9. Duenas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based reliability
estimation for power-transmission grids. In: Proceedings of AAAI (2017)

10. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Embed and project: discrete
sampling with universal hashing. In: Proceedings of NeurIPS (2013)

11. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B.: Taming the curse of dimension-
ality: discrete integration by hashing and optimization. In: Proceedings of ICML
(2013)

Rounding Meets Approximate Model Counting 161

12. Fichte, J.K., Hecher, M., Hamiti, F.: The model counting competition 2020. ACM
J. Exp. Algorithmics (2021)

13. Gittis, A., Vin, E., Fremont, D.J.: Randomized synthesis for diversity and cost
constraints with control improvisation. In: Proceedings of CAV (2022)

14. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: a new strategy for obtain-
ing good bounds. In: Proceedings of AAAI (2006)

15. Hecher, M., Fichte, J.K.: Model counting competition 2021 (2021). https://www.
mccompetition.org/2021/mc_description

16. Hecher, M., Fichte, J.K.: Model counting competition 2022 (2022). https://
mccompetition.org/2022/mc_description

17. Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.: On computing minimal independent
support and its applications to sampling and counting. Constraints (2016)

18. Meel, K.S., Akshay, S.: Sparse hashing for scalable approximate model counting:
theory and practice. In: Proceedings of LICS (2020)

19. Meel, K.S., et al.: Constrained sampling and counting: universal hashing meets sat
solving. In: Proceedings of Workshop on Beyond NP(BNP) (2016)

20. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. (1996)
21. Sang, T., Bearne, P., Kautz, H.: Performing Bayesian inference by weighted model

counting. In: Proceedings of AAAI (2005)
22. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving and

its applications to counting and sampling. In: Proceedings of CAV (2020)
23. Soos, M., Meel, K.S.: Bird: engineering an efficient CNF-XOR sat solver and its

applications to approximate model counting. In: Proceedings of AAAI (2019)
24. Soos, M., Meel, K.S.: Arjun: an efficient independent support computation tech-

nique and its applications to counting and sampling. In: Proceedings of ICCAD
(2022)

25. Stockmeyer, L.: The complexity of approximate counting. In: Proceedings of STOC
(1983)

26. Teuber, S., Weigl, A.: Quantifying software reliability via model-counting. In: Pro-
ceedings of QEST (2021)

27. Toda, S.: On the computational power of PP and (+)P. In: Proceedings of FOCS
(1989)

28. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J.
Comput. (1979)

29. Yang, J., Chakraborty, S., Meel, K.S.: Projected model counting: beyond indepen-
dent support. In: Proceedings of ATVA (2022)

30. Yang, J., Meel, K.S.: Engineering an efficient PB-XOR solver. In: Proceedings of
CP (2021)

https://www.mccompetition.org/2021/mc_description
https://www.mccompetition.org/2021/mc_description
https://mccompetition.org/2022/mc_description
https://mccompetition.org/2022/mc_description

162 J. Yang and K. S. Meel

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Satisfiability Modulo Finite Fields

Alex Ozdemir1(B), Gereon Kremer1,2, Cesare Tinelli3, and Clark Barrett1

1 Stanford University, Stanford, USA
aozdemir@stanford.edu

2 Certora, Tel Aviv-Yafo, Israel
3 University of Iowa, Iowa, USA

Abstract. We study satisfiability modulo the theory of finite fields and
give a decision procedure for this theory. We implement our procedure
for prime fields inside the cvc5 SMT solver. Using this theory, we con-
struct SMT queries that encode translation validation for various zero
knowledge proof compilers applied to Boolean computations. We evalu-
ate our procedure on these benchmarks. Our experiments show that our
implementation is superior to previous approaches (which encode field
arithmetic using integers or bit-vectors).

1 Introduction

Finite fields are critical to the design of recent cryptosystems. For instance,
elliptic curve operations are defined in terms of operations in a finite field. Also,
Zero-Knowledge Proofs (ZKPs) and Multi-Party Computations (MPCs), pow-
erful tools for building secure and private systems, often require key properties
of the system to be expressed as operations in a finite field.

Field-based cryptosystems already safeguard everything from our money
to our privacy. Over 80% of our TLS connections, for example, use elliptic
curves [4,66]. Private cryptocurrencies [32,59,89] built on ZKPs have billion-
dollar market capitalizations [44,45]. And MPC protocols have been used to
operate auctions [17], facilitate sensitive cross-agency collaboration in the US
federal government [5], and compute cross-company pay gaps [8]. These systems
safeguard our privacy, assets, and government data. Their importance justifies
spending considerable effort to ensure that the systems are free of bugs that
could compromise the resources they are trying to protect; thus, they are prime
targets for formal verification.

However, verifying field-based cryptosystems is challenging, in part because
current automated verification tools do not reason directly about finite fields.
Many tools use Satisfiability Modulo Theories (SMT) solvers as a back-end [9,
27,33,93,95]. SMT solvers [7,10,12,20,26,35,73,76,77] are automated reasoners
that determine the satisfiability of formulas in first-order logic with respect to one
or more background theories. They combine propositional search with specialized
reasoning procedures for these theories, which model common data types such
as Booleans, integers, reals, bit-vectors, arrays, algebraic datatypes, and more.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 163–186, 2023.
https://doi.org/10.1007/978-3-031-37703-7_8

https://doi.org/10.5281/zenodo.7865471
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_8&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_8

164 A. Ozdemir et al.

Since SMT solvers do not currently support a theory of finite fields, SMT-based
tools must encode field operations using another theory.

There are two natural ways to represent finite fields using commonly sup-
ported theories in SMT, but both are ultimately inefficient. Recall that a finite
field of prime order can be represented as the integers with addition and multi-
plication performed modulo a prime p. Thus, field operations can be represented
using integers or bit-vectors: both support addition, multiplication, and mod-
ular reduction. However, both approaches fall short. Non-linear integer reason-
ing is notoriously challenging for SMT solvers, and bit-vector solvers perform
abysmally on fields of cryptographic size (hundreds of bits).

In this paper, we develop for the first time a direct solver for finite fields
within an SMT solver. We use well-known ideas from computer algebra (specifi-
cally, Gröbner bases [21] and triangular decomposition [6,99]) to form the basis
of our decision procedure. However, we improve on this baseline in two impor-
tant ways. First, our decision procedure does not manipulate field polynomials
(i.e., those of form Xp − X). As expected, this results in a loss of completeness
at the Gröbner basis stage. However, surprisingly, this often does not matter.
Furthermore, completeness is recovered during the model construction algorithm
(albeit in a rather rudimentary way). This modification turns out to be crucial for
obtaining reasonable performance. Second, we implement a proof-tracing mech-
anism in the Gröbner basis engine, thereby enabling it to compute unsatisfiable
cores, which is also very beneficial in the context of SMT solving. Finally, we
implement all of this as a theory solver for prime-order fields inside the cvc5
SMT solver.

To guide research in this area, we also give a first set of QF_FF (quantifier-free,
finite field) benchmarks, obtained from the domain of ZKP compiler correctness.
ZKP compilers translate from high-level computations (e.g., over Booleans, bit-
vectors, arrays, etc.) to systems of finite field constraints that are usable by ZKPs.
We instrument existing ZKP compilers to produce translation validation [86] ver-
ification conditions, i.e. conditions that represent desirable correctness properties
of a specific compilation. We give these compilers concrete Boolean computa-
tions (which we sample at random), and construct SMT formulas capturing the
correctness of the ZKP compilers’ translations of those computations into field
constraints. We represent the formulas using both our new theory of finite fields
and also the alternative theory encodings mentioned above.

We evaluate our tool on these benchmarks and compare it to the approaches
based on bit-vectors, integers, and pure computer algebra (without SMT). We
find that our tool significantly outperforms the other solutions. Compared to the
best previous solution (we list prior alternatives in Sect. 7), it is 6× faster and
it solves 2× more benchmarks.

In sum, our contributions are:

1. a definition of the theory of finite fields in the context of SMT;
2. a decision procedure for this theory that avoids field polynomials and produces

unsatisfiable cores;
3. the first public theory solver for this theory (implemented in cvc5); and

Satisfiability Modulo Finite Fields 165

4. the first set of QF_FF benchmarks, which encode translation validation queries
for ZKP compilers on Boolean computations.

In the rest of the paper, we discuss related work (§1.1), cover background
and notation (§2), define the theory of finite fields (§3), give a decision procedure
(§4), describe our implementation (§5), explain the benchmarks (§6), and report
on experiments (§7).

1.1 Related Work

There is a large body of work on computer algebra, with many algorithms imple-
mented in various tools [1,18,31,37,49,52,58,72,100,101]. However, the focus
in this work is on quickly constructing useful algebraic objects (e.g., a Gröbner
basis), rather than on searching for a solution to a set of field constraints.

One line of recent work [54,55] by Hader and Kovács considers SMT-oriented
field reasoning. One difference with our work is that it scales poorly with field
size because it uses field polynomials to achieve completeness. Furthermore, their
solver is not public.

Others consider verifying field constraints used in ZKPs. One paper surveys
possible approaches [97], and another considers proof-producing ZKP compila-
tion [24]. However, neither develops automated, general-purpose tools.

Still other works study automated reasoning for non-linear arithmetic over
reals and integers [3,23,25,29,47,60–62,70,74,96,98]. A key challenge is reason-
ing about comparisons. We work over finite fields and do not consider compar-
isons because they are used for neither elliptic curves nor most ZKPs.

Further afield, researchers have developed techniques for verified algebraic
reasoning in proof assistants [15,64,75,79], with applications to mathemat-
ics [19,28,51,65] and cryptography [39,40,85,91]. In contrast, our focus is on
fully automated reasoning about finite fields.

2 Background

2.1 Algebra

Here, we summarize algebraic definitions and facts that we will use; see [71,
Chapters 1 through 8] or [34, Part IV] for a full presentation.

Finite Fields. A finite field is a finite set equipped with binary operations +
and × that have identities (0 and 1 respectively), have inverses (save that there
is no multiplicative inverse for 0), and satisfy associativity, commutativity, and
distributivity. The order of a finite field is the size of the set. All finite fields have
order q = pe for some prime p (called the characteristic) and positive integer e.
Such an integer q is called a prime power.

Up to isomorphism, the field of order q is unique and is denoted Fq, or F when
the order is clear from context. The fields Fqd for d > 1 are called extension fields
of Fq. In contrast, Fq may be called the base field. We write F ⊂ G to indicate

166 A. Ozdemir et al.

that F is a field that is isomorphic to the result of restricting field G to some
subset of its elements (but with the same operations). We note in particular that
Fq ⊂ Fqd . A field of prime order p is called a prime field.

Polynomials. For a finite field F and formal variables X1, . . . , Xk, F[X1, . . . , Xk]
denotes the set of polynomials in X1, . . . , Xk with coefficients in F. By taking
the variables to be in F, a polynomial f ∈ F[X1, . . . , Xk] can be viewed as a
function from F

k → F. However, by taking the variables to be in an extension
G of F, f can also be viewed as function from G

k → G.
For a set of polynomials S = {f1, . . . , fm} ⊂ Fq[X1, . . . , Xk], the set I =

{g1f1 + · · · + gmfm : gi ∈ Fq[X1, . . . , Xk]} is called the ideal generated by S and
is denoted 〈f1, . . . , fm〉 or 〈S〉. In turn, S is called a basis for the ideal I.

The variety of an ideal I in field G ⊃ F is denoted VG(I), and is the set
{x ∈ G

k : ∀f ∈ I, f(x) = 0}. That is, VG(I) contains the common zeros of
polynomials in I, viewed as functions over G. Note that for any set of polynomials
S that generates I, VG(I) contains exactly the common zeros of S in G. When
the space G is just F, we denote the variety as V(I). An ideal I that contains 1
contains all polynomials and is called trivial.

One can show that if I is trivial, then V(I) = ∅. However, the converse does
not hold. For instance, X2 + 1 ∈ F3[X] has no zeros in F3, but 1
∈ 〈X2 + 1〉.
But, one can also show that I is trivial iff for all extensions G of F, VG(I) = ∅.

The field polynomial for field Fq in variable X is Xq − X. Its zeros are all of
Fq and it has no additional zeros in any extension of Fq. Thus, for an ideal I of
polynomials in F[X1, . . . , Xk] that contains field polynomials for each variable
Xi, I is trivial iff V(I) = ∅. For this reason, field polynomials are a common tool
for ensuring the completeness of ideal-based reasoning techniques [48,54,97].

Representation. We represent Fp as the set of integers {0, 1, . . . , p − 1}, with
the operations + and × performed modulo p. The representation of Fpe with
e > 1 is more complex. Unfortunately, the set {0, 1, . . . , pe − 1} with + and ×
performed modulo pe is not a field because multiples of p do not have multi-
plicative inverses. Instead, we represent Fpe as the set of polynomials in F[X]
of degree less than e. The operations + and × are performed modulo q(X), an
irreducible polynomial1 of degree e [71, Chapter 6]. There are pe such polynomi-
als, and so long as q(X) is irreducible, all (save 0) have inverses. Note that this
definition of Fpe generalizes Fp, and captures the fact that Fp ⊂ Fpe .

2.2 Ideal Membership

The ideal membership problem is to determine whether a given polynomial p is
in the ideal generated by a given set of polynomials D. We summarize definitions
and facts relevant to algorithms for this problem; see [30] for a full presentation.

Monomial Ordering. In F[X1, . . . , Xk], a monomial is a polynomial of form
Xe1

1 · · · Xek

k with non-negative integers ei. A monomial ordering is a total order-
ing on monomials such that for all monomials p, q, r, if p < q, then pr < qr.
1 Recall that an irreducible polynomial cannot be factored into two or more non-

constant polynomials.

Satisfiability Modulo Finite Fields 167

The lexicographical ordering for monomials Xe1
1 · · · Xek

k orders them lexico-
graphically by the tuple (e1, . . . , ek). The graded-reverse lexicographical (grevlex)
ordering is lexicographical by the tuple (e1 + · · · + ek, e1, . . . , ek). With respect
to an ordering, lm(f) denotes the greatest monomial of a polynomial f .

Reduction. For polynomials p and d, if lm(d) divides a term t of p, then we say
that p reduces to r modulo d (written p →d r) for r = p − t

lm(d)d. For a set of
polynomials D, we write p →D r if p →d r for some d ∈ D. Let →∗

D be the
transitive closure of →D. We define p ⇒D r to hold when p →∗

D r and there is
no r′ such that r →D r′.

Reduction is a sound—but incomplete—algorithm for ideal membership.
That is, one can show that p ⇒D 0 implies p ∈ 〈D〉, but the converse does
not hold in general.

Gröbner Bases. Define the s-polynomial for polynomials p and q, by spoly(p, q) =
p · lm(q) − q · lm(p). A Gröbner basis (GB) [21] is a set of polynomials P char-
acterized by the following equivalent conditions:

1. ∀p, p′ ∈ P , spoly(p, p′) ⇒P 0 (closure under the reduction of s-polynomials)
2. ∀p ∈ 〈P 〉, p ⇒P 0 (reduction is a complete test for ideal membership)

Gröbner bases are useful for deciding ideal membership. From the first charac-
terization, one can build algorithms for constructing a Gröbner basis for any
ideal [21]. Then, the second characterization gives an ideal membership test.
When P is a GB, the relation ⇒P is a function (i.e., →P is confluent), and it
can be efficiently computed [1,21]; thus, this test is efficient.

A Gröbner basis engine takes a set of generators G for some ideal I and
computes a Gröbner basis for I. We describe the high-level design of such engines
here. An engine constructs a sequence of bases G0, G1, G2, . . . (with G0 = G)
until some Gi is a Gröbner basis. Each Gi is constructed from Gi−1 according to
one of three types of steps. First, for some p, q ∈ Gi−1 such that spoly(p, q) ⇒Gi−1

r
= 0, the engine can set Gi = Gi−1 ∪ {r}. Second, for some p ∈ Gi−1 such that
p ⇒Gi−1\{p} r
= p, the engine can set Gi = (Gi−1 \ {p}) ∪ {r}. Third, for some
p ∈ Gi−1 such that p ⇒Gi−1\{p} 0, the engine can set Gi = Gi−1 \ {p}. Notice
that all rules depend on the current basis; some add polynomials, and some
remove them. In general, it is unclear which sequence of steps will construct a
Gröbner basis most quickly: this is an active area of research [1,18,41,43].

2.3 Zero Knowledge Proofs

Zero-knowledge proofs allow one to prove that some secret data satisfies a public
property, without revealing the data itself. See [94] for a full presentation; we
give a brief overview here. There are two parties: a verifier V and a prover P. V
knows a public instance x and asks P to show that it has knowledge of a secret
witness w satisfying a public predicate φ(x,w). To do so, P runs an efficient
(i.e., polytime in a security parameter λ) proving algorithm Prove(φ, x,w) → π
and sends the resulting proof π to V. Then, V runs an efficient verification

168 A. Ozdemir et al.

algorithm Verify(φ, x, π) → {0, 1} that accepts or rejects the proof. A system for
Zero-Knowledge Proofs of knowledge (ZKPs) is a (Prove,Verify) pair with:

– completeness: If φ(x,w), then Pr[Verify(φ, x,Prove(φ, x,w)) = 0] ≤ negl(λ),2
– computational knowledge soundness [16]: (informal) a polytime adversary that

does not know w satisfying φ can produce an acceptable π with probability
at most negl(λ).

– zero-knowledge [50]: (informal) π reveals nothing about w, other than its
existence.

ZKP applications are manifold. ZKPs are the basis of private cryptocurren-
cies such as Zcash and Monero, which have a combined market capitalization
of $2.80B as of 30 June 2022 [44,45]. They’ve also been proposed for auditing
sealed court orders [46], operating private gun registries [63], designing privacy-
preserving middleboxes [53] and more [22,56].

This breadth of applications is possible because implemented ZKPs are very
general: they support any φ checkable in polytime. However, φ must be first
compiled to a cryptosystem-compatible computation language. The most com-
mon language is a rank-1 constraint system (R1CS). In an R1CS C, x and w are
together encoded as a vector z ∈ F

m. The system C is defined by three matrices
A,B,C ∈ F

n×m; it is satisfied when Az ◦ Bz = Cz, where ◦ is the element-
wise product. Thus, the predicate can be viewed as n distinct constraints, where
constraint i has form (

∑
j Aijzj)(

∑
j Bijzj) − (

∑
j Cijzj) = 0. Note that each

constraint is a degree ≤ 2 polynomial in m variables that z must be a zero of.
For security reasons, F must be large: its prime must have ≈255 bits.

Encoding. The efficiency of the ZKP scales quasi-linearly with n. Thus, it’s
useful to encode φ as an R1CS with a minimal number of constraints. Since
equisatifiability—not logical equivalence—is needed, encodings may introduce
new variables.

As an example, consider the Boolean computation a ← c1 ∨ · · · ∨ ck. Assume
that c′

1, . . . , c
′
k ∈ F are elements in z that are 0 or 1 such that ci ↔ (c′

i = 1).
How can one ensure that a′ ∈ F (also in z) is 0 or 1 and a ↔ (a′ = 1)?
Given that there are k − 1 ORs, natural approaches use Θ(k) constraints. One
clever approach is to introduce variable x′ and enforce constraints x′(

∑
i c′

i) = a′

and (1 − a′)(
∑

i c′
i) = 0. If any ci is true, a′ must be 1 to satisfy the second

constraint; setting x′ to the sum’s inverse satisfies the first. If all ci are false, the
first constraint ensures a′ is 0. This encoding is correct when the sum does not
overflow; thus, k must be smaller than F’s characteristic.

Optimizations like this can be quite complex. Thus, ZKP programmers use
constraint synthesis libraries [14,69] or compilers [13,24,80,81,84,92,102] to gen-
erate an R1CS from a high-level description. Such tools support objects like
Booleans, fixed-width integers, arrays, and user-defined data-types. The correct-
ness of these tools is critical to the correctness of any system built with them.

2 f(λ) ≤ negl(λ) if for all c ∈ N, f(λ) = o(λ−c).

Satisfiability Modulo Finite Fields 169

2.4 SMT

We assume usual terminology for many-sorted first order logic with equality
([38] gives a complete presentation). Let Σ be a many-sorted signature including
a sort Bool and symbol family ≈σ (abbreviated ≈) with sort σ × σ → Bool for
all σ in Σ. A theory is a pair T = (Σ, I), where Σ is a signature and I is a class
of Σ-interpretations. A Σ-formula φ is satisfiable (resp., unsatisfiable) in T if it
is satisfied by some (resp., no) interpretation in I. Given a (set of) formula(s) S,
we write S |=T φ if every interpretation M ∈ I that satisfies S also satisfies φ.

When using the CDCL(T) framework for SMT, the reasoning engine for each
theory is encapsulated inside a theory solver. Here, we mention the fragment of
CDCL(T) that is relevant for our purposes ([78] gives a complete presentation)).

The goal of CDCL(T) is to check a formula φ for satisfiability. A core mod-
ule manages a propositional search over the propositional abstraction of φ and
communicates with the theory solver. As the core constructs partial proposi-
tional assignments for the abstract formula, the theory solver is given the literals
that correspond to the current propositional assignment. When the propositional
assignment is completed (or, optionally, before), the theory solver must deter-
mine whether its literals are jointly satisfiable. If so, it must be able to provide
an interpretation in I (which includes an assignment to theory variables) that
satisfies them. If not, it may indicate a strict subset of the literals which are
unsatisfiable: an unsatisfiable core. Smaller unsatisfiable cores usually accelerate
the propositional search.

3 The Theory of Finite Fields

We define the theory TFq
of the finite field Fq, for any order q. Its sort and

symbols are indexed by the parameter q; we omit q when clear from context.
The signature of the theory is given in Fig. 1. It includes sort F, which intu-

itively denotes the sort of elements of Fq and is represented in our proposed
SMT-LIB format as (_ FiniteField q). There is a constant symbol for each
element of Fq, and function symbols for addition and multiplication. Other finite
field operations (e.g., negation, subtraction, and inverses) naturally reduce to this
signature.

An interpretation M of TFq
must interpret: F as Fq, n ∈ {0, . . . , q − 1}

as the nth element of Fq in lexicographical order,3 + as addition in Fq, × as
multiplication in Fq, and ≈ as equality in Fq.

Note that in order to avoid ambiguity, we require that the sort of any constant
ffn must be ascribed. For instance, the nth element of Fq would be (as ffn
(_ FiniteField q)). The sorts of non-nullary function symbols need not be
ascribed: they can be inferred from their arguments.

3 For non-prime Fpe , we use the lexicographical ordering of elements represented as
polynomials in Fp[X] modulo the Conway polynomial [83,90] Cp,e(X). This repre-
sentation is standard [57].

170 A. Ozdemir et al.

Symbol Arity SMT-LIB Description

n ∈ {0, . . . , q − 1} F ffn The nth element of Fq

+ F × F F ff.add Addition in Fq

F F F ff.mul Multiplication in Fq

Fig. 1. Signature of the theory of Fq

1 Function DecisionProcedure:
Input: A set of F-literals L in variables X
Output: UNSAT and a core C ⊆ L, or
Output: SAT and a model M : X F

2 P empty set; Wi fresh, ∀i;
3 for si i ti ∈ L do
4 if i = ≈ then P P ∪ {[[si]] − [[ti]]} ;
5 else if i = then P P ∪ {Wi([[si]] − [[ti]]) − 1} ;
6 B GB(P);
7 if 1 ⇒B 0 then return UNSAT, CoreFromTree() ;
8 m FindZero(P);
9 if m = ⊥ then return UNSAT, L ;

10 else return SAT, X z : (X z) m,X X ;

Fig. 2. The decision procedure for Fq.

4 Decision Procedure

Recall (§2.4) that a CDCL(T) theory solver for F must decide the satisfiability of
a set of F-literals. At a high level, our decision procedure comprises three steps.
First, we reduce to a problem concerning a single algebraic variety. Second, we
use a GB-based test for unsatisfiability that is fast and sound, but incomplete.
Third, we attempt model construction. Figure 2 shows pseudocode for the deci-
sion procedure; we will explain it incrementally.

4.1 Algebraic Reduction

Let L = {�1, . . . , �|L|} be a set of literals. Each F-literal has the form �i = si �� ti
where s and t are F-terms and �� ∈ {≈,
≈}. Let X = {X1, . . . , Xk} denote the
free variables in L. Let E,D ⊆ {1, . . . , |L|} be the sets of indices corresponding to
equalities and disequalities in L, respectively. Let [[t]] ∈ F[X] denote the natural
interpretation of F-terms as polynomials in F[X] (Fig. 3). Let PE ⊂ F[X] be the
set of interpretations of the equalities; i.e., PE = {[[si]] − [[ti]]}i∈E . Let PD ⊂
F[X] be the interpretations of the disequalities; i.e., PD = {[[si]] − [[ti]]}i∈D. The
satisfiability of L reduces to whether V(〈PE〉) \ [⋃

p∈PD
V(〈p〉)] is non-empty.

To simplify, we reduce disequalities to equalities using a classic technique [88]:
we introduce a fresh variable Wi for each i ∈ D and define P ′

D as

P ′
D = {Wi([[si]] − [[ti]]) − 1}i∈D

Satisfiability Modulo Finite Fields 171

Const t ∈ F

[[t]] = t
Var

[[Xi]] = Xi
Add

[[s]] = s [[t]] = t

[[s + t]] = s + t
Mul

[[s]] = s [[t]] = t

[[s t]] = s t

Fig. 3. Interpreting F-terms as polynomials

Note that each p ∈ P ′
D has zeros for exactly the values of X where its analog in

PD is not zero. Also note that P ′
D ⊂ Fq[X′], with X′ = X ∪ {Wi}i∈D.

We define P to be PE ∪P ′
D (constructed in lines 2 to 6, Fig. 2) and note three

useful properties of P . First, L is satisfiable if and only if V(〈P 〉) is non-empty.
Second, for any P ′ ⊂ P , if V(〈P ′〉) = ∅, then {π(p) : p ∈ P ′} is an unsatisfiable
core, where π maps a polynomial to the literal it is derived from. Third, from
any x ∈ V(〈P 〉) one can immediately construct a model. Thus, our theory solver
reduces to understanding properties of the variety V(〈P 〉).

4.2 Incomplete Unsatisfiability and Cores

Recall (§2.2) that if 1 ∈ 〈P 〉, then V(〈P 〉) is empty. We can answer this ideal
membership query using a Gröbner basis engine (line 7, Fig. 2). Let GB be a
subroutine that takes a list of polynomials and computes a Gröbner basis for the
ideal that they generate, according to some monomial ordering. We use grevlex:
the ordering for which GB engines are typically most efficient [42]. We compute
GB(P) and check whether 1 ⇒GB(P) 0. If so, we report that V(〈P 〉) is empty. If
not, recall (§2.2) that V(〈P 〉) may still be empty; we proceed to attempt model
construction (lines 9 to 11, Fig. 2, described in the next subsection).

If 1 does reduce by the Gröbner basis, then identifying a subset of P which
is sufficient to reduce 1 yields an unsatisfiable core. To construct such a subset,
we formalize the inferences performed by the Gröbner basis engine as a calculus
for proving ideal membership.

Figure 4 presents IdealCalc: our ideal membership calculus. IdealCalc proves
facts of the form p ∈ 〈P 〉, where p is a polynomial and P is the set of generators
for an ideal. The G rule states that the generators are in the ideal. The Z rule
states that 0 is in the ideal. The S rule states that for any two polynomials in
the ideal, their s-polynomial is in the ideal too. The R↑ and R↓ rules state that
if p →q r with q in the ideal, then p is in the ideal if and only if r is.

The soundness of IdealCalc follows immediately from the definition of an ideal.
Completeness relies on the existence of algorithms for computing Gröbner bases
using only s-polynomials and reduction [21,41,43]. We prove both properties in
Appendix A.

Theorem 1 (IdealCalcSoundness). If there exists an IdealCalc proof tree with
conclusion p ∈ 〈P 〉, then p ∈ 〈P 〉.
Theorem 2 (IdealCalcCompleteness). If p ∈ 〈P 〉, then there exists an
IdealCalc proof tree with conclusion p ∈ 〈P 〉.

172 A. Ozdemir et al.

Z
0 ∈ P

G
p ∈ P

p ∈ P
R

r P q P p q r

p ∈ P

S
p P q P

spoly(p, q) P
R

p P q P p q r

r P

Fig. 4. IdealCalc: a calculus for ideal membership

1 Function FindZero:
Input: A Gröbner basis B ⊂ F[X]
Input: A partial map M : X F (empty by default)
Output: A total map M : X F or ⊥

2 if 1 B then return ⊥ ;
3 if |M | = |X | then return M ;
4 for (Xi z) ∈ ApplyRule(B,M) do
5 r FindZero(GB(B ∪ {Xi − z}),M ∪ {Xi z});
6 if r = ⊥ then return r;
7 return

Fig. 5. Finding common zeros for a Gröbner basis. After handling trivial cases,
FindZero uses ApplyRule to apply the first applicable rule from Fig. 6.

By instrumenting a Gröbner basis engine and reduction engine, one can con-
struct IdealCalc proof trees. Then, for a conclusion 1 ∈ 〈P 〉, traversing the proof
tree to its leaves gives a subset P ′ ⊆ P such that 1 ∈ 〈P ′〉. The procedure
CoreFromTree (called in line 8, Fig. 2) performs this traversal, by accessing a
proof tree recorded by the GB procedure and the reductions. The proof of The-
orem 2 explains our instrumentation in more detail (Appendix A).

4.3 Completeness Through Model Construction

As discussed, we still need a complete decision procedure for determining if
V(〈P 〉) is empty. We call this procedure FindZero; it is a backtracking search
for an element of V(〈P 〉). It also serves as our model construction procedure.

Figure 5 presents FindZero as a recursive search. It maintains two data struc-
tures: a Gröbner basis B and partial map M : X′ → F from variables to field
elements. By applying a branching rule (which we will discuss in the next para-
graph), FindZero obtains a disjunction of single-variable assignments X ′

i �→ z,
which it branches on. FindZero branches on an assignment X ′

i �→ z by adding it
to M and updating B to GB(B ∪ {X ′

i − z}).
Figure 6 shows the branching rules of FindZero. Each rule comprises

antecedents (conditions that must be met for the rule to apply) and a conclusion
(a disjunction of single-variable assignments to branch on). The Univariate rule
applies when B contains a polynomial p that is univariate in some variable X ′

i

that M does not have a value for. The rule branches on the univariate roots
of p. The Triangular rule comes from work on triangular decomposition [68]. It

Satisfiability Modulo Finite Fields 173

Univariate
p ∈ B p ∈ F[Xi] Xi /∈ M Z UnivariateZeros(p)

z∈Z(Xi z)

Triangular
Dim(B) = 0 Xi /∈ M p MinPoly(B,Xi) Z UnivariateZeros(p)

z∈Z(Xi z)

Exhaust
z F Xi /M

(Xi z)

Fig. 6. Branching rules for FindZero.

applies when B is zero-dimensional.4 It computes a univariate minimal poly-
nomial p(X ′

i) in some unassigned variables X ′
i, and branches on the univariate

roots of p. The final rule Exhaust has no conditions and simply branches on all
possible values for all unassigned variables.

FindZero’s ApplyRule sub-routine applies the first rule in Fig. 6 whose condi-
tions are met. The other subroutines (GB [21,41,43], Dim [11], MinPoly [2], and
UnivariateZeros [87]) are commonly implemented in computer algebra libraries.
Dim, MinPoly , and UnivariateZeros run in (randomized) polytime.

Theorem 3 (FindZeroCorrectness). If V(〈B〉) = ∅ then FindZero returns ⊥;
otherwise, it returns a member of V(〈B〉). (Proof: Appendix B)

Correctness and Efficiency. The branching rules achieve a careful balance
between correctness and efficiency. The Exhaust rule is always applicable, but
a full exhaustive search over a large field is unreasonable (recall: ZKPs operate
of ≈255-bit fields). The Triangular and Univariate rules are important alternatives
to exhaustion. They create a far smaller set of branches, but apply only when
the variety has dimension zero or the basis has a univariate polynomial.

As an example of the importance of Univariate, consider the univariate system
X2 = 2, in a field where 2 is not a perfect square (e.g., F7). X2 − 2 is already a
(reduced) Gröbner basis, and it does not contain 1, so FindZero applies. With
the Univariate rule, FindZero computes the univariate zeros of X2 − 2 (there are
none) and exits. Without it, the Exhaust rule creates |F| branches.

As an example of when Triangular is critical, consider

X1 + X2 + X3 + X4 + X5 = 0
X1X2 + X2X3 + X3X4 + X4X5 + X5X1 = 0

X1X2X3 + X2X3X4 + X3X4X5 + X4X5X1 + X5X1X2 = 0
X1X2X3X4 + X2X3X4X5 + X3X4X5X1 + X4X5X1X2 + X5X1X2X3 = 0

X1X2X3X4X5 = 1

4 The dimension of an ideal is a natural number that can be efficiently computed from
a Gröbner basis. If the dimension is zero, then one can efficiently compute a minimal
polynomial in any variable X, given a Gröbner basis [2,68].

174 A. Ozdemir et al.

in F394357 [68]. The system is unsatisfiable, it has dimension 0, and its ideal
does not contain 1. Moreover, our solver computes a (reduced) Gröbner basis
for it that does not contain any univariate polynomials. Thus, Univariate does
not apply. However, Triangular does, and with it, FindZero quickly terminates.
Without Triangular, Exhaust would create at least |F| branches.

In the above examples, Exhaust performs very poorly. However, that is not
always the case. For example, in the system X1 +X2 = 0, using Exhaust to guess
X1, and then using the univariate rule to determine X2 is quite reasonable. In
general, Exhaust is a powerful tool for solving underconstrained systems. Our
experiments will show that despite including Exhaust, our procedure performs
quite well on our benchmarks. We reflect on its performance in Sect. 8.

Field Polynomials: A Road not Taken. By guaranteeing completeness through
(potential) exhaustion, we depart from prior work. Typically, one ensures com-
pleteness by including field polynomials in the ideal (§2.2). Indeed, this is the
approach suggested [97] and taken [55] by prior work. However, field polynomials
induce enormous overhead in the Gröbner basis engine because their degree is
so large. The result is a procedure that is only efficient for tiny fields [55]. In
our experiments, we compare our system’s performance to what it would be if
it used field polynomials.5 The results confirm that deferring completeness to
FindZero is far superior for our benchmarks.

5 Implementation

We have implemented our decision procedure for prime fields in the cvc5 SMT
solver [7] as a theory solver. It is exposed through cvc5’s SMT-LIB, C++, Java,
and Python interfaces. Our implementation comprises ≈2k lines of C++. For the
algebraic sub-routines of our decision procedure (§4), it uses CoCoALib [1]. To
compute unsatisfiable cores (§4.2), we inserted hooks into CoCoALib’s Gröbner
basis engine (17 lines of C++).

Our theory solver makes sparse use of the interface between it and the rest
of the SMT solver. It acts only once a full propositional assignment has been
constructed. It then runs the decision procedure, reporting either satisfiability
(with a model) or unsatisfiability (with an unsatisfiable core).

6 Benchmark Generation

Recall that one motivation for this work is to enable translation validation for
compilers to field constraint systems (R1CSs) used in zero-knowledge proofs
(ZKPs). Our benchmarks are SMT formulas that encode translation validation
queries for compilers from Boolean computations to R1CS. At a high level, each
benchmark is generated as follows.

5 We add field polynomials to our procedure on line 2, Fig. 2. This renders our ideal
triviality test (lines 7 and 8) complete, so we can eliminate the fallback to FindZero.

Satisfiability Modulo Finite Fields 175

1. Sample a Boolean formula Ψ in v variables with t non-variable terms.
2. Compile Ψ to R1CS using ZoKrates [36], CirC [81], or ZoK-CirC [81].
3. Optionally remove some constraints from the R1CS.
4. Construct a formula φ in QF_FF that tests the soundness (all assignments satis-

fying the R1CS agree with Ψ) or determinism (the inputs uniquely determine
the output) of the R1CS.

5. Optionally encode φ in QF_BV, in QF_NIA, or as (Boolean-free) F-equations.

Through step 3, we construct SMT queries that are satisfiable, unsatisfiable, and
of unknown status. Through step 5, we construct queries solvable using bit-vector
reasoning, integer reasoning, or a stand-alone computer algebra system.

6.1 Examples

We describe our benchmark generator in full and give the definitions of soundness
and determinism in Appendix C. Here, we give three example benchmarks. Our
examples are based on the Boolean formula Ψ(x1, x2, x3, x4) = x1 ∨ x2 ∨ x3 ∨
x4. Our convention is to mark field variables with a prime, but not Boolean
variables. Using the technique from Sect. 2.3, CirC compiles this formula to the
two-constraint system: i′s′ = r′∧(1−r′)s′ = 0 where s′ �

∑3
i=0 x′

i. Each Boolean
input xi corresponds to field element x′

i and r′ corresponds to the result of Ψ.

Soundness. An R1CS is sound if it ensures the output r′ corresponds to the value
of Ψ (when given valid inputs). Concretely, our system is sound if the following
formula is valid:

∀i.(x′
i = 0 ∨ x′

i = 1) ∧ (x′
i = 1 ⇐⇒ xi)

︸ ︷︷ ︸
inputs are correct

∧ i′s′ = r′ ∧ (1 − r′)s′ = 0
︸ ︷︷ ︸

constraints hold

=⇒
(r′

i = 0 ∨ r′
i = 1) ∧ (r′

i = 1 ⇐⇒ Ψ)
︸ ︷︷ ︸

output is correct

where Ψ and s′ are defined as above. This is an UNSAT benchmark, because the
formula is valid.

Determinism. An R1CS is deterministic if the values of the inputs uniquely
determine the value of the output. To represent this in a formula, we use two
copies of the constraint system: one with primed variables, and one with double-
primed variables. Our example is deterministic if the following formula is valid:

∀i.(x′
i = x′′

i)
︸ ︷︷ ︸
inputs agree

∧ i′s′ = r′ ∧ (1 − r′)s′ = 0 ∧ i′′s′′ = r′′ ∧ (1 − r′′)s′′ = 0
︸ ︷︷ ︸

constraints hold for both systems

=⇒
r′ = r′′
︸ ︷︷ ︸

outputs agree

176 A. Ozdemir et al.

Unsoundness. Removing constraints from the system can give a formula that is
not valid (a SAT benchmark). For example, if we remove (1−r′)s′ = 0, then the
soundness formula is falsified by {xi �→ �, x′

i �→ 1, r′ �→ 0, i′ �→ 0}.

7 Experiments

Our experiments show that our approach:

1. scales well with the size of F (unlike a BV-based approach),
2. would scale poorly with the size of F if field polynomials were used,
3. benefits from unsatisfiable cores, and
4. substantially outperforms all reasonable alternatives.

Our test bed is a cluster with Intel Xeon E5-2637 v4 CPUs. Each run is
limited to one physical core, 8GB memory, and 300s.

Throughout, we generate benchmarks for two correctness properties (sound-
ness and determinism), three different ZKP compilers, and three different sta-
tuses (sat, unsat, and unknown). We vary the field size, encoding, number of
inputs, and number of terms, depending on the experiment. We evaluate our
cvc5 extension, Bitwuzla (commit 27f6291), and z3 (version 4.11.2).

0

100

200

300

0 50 100 150 200
Solved instances

Ti
m

e
(s

)

System

bv−bitwuzla

bv−cvc5

bv−z3

ff−cvc5

(a) Instances solved

0

100

200

20 40 60
Bits

To
ta

l t
im

e
(s

)

System

bv−bitwuzla

ff−cvc5

(b) Total solve time for (field-based) cvc5
and (BV-based) Bitwuzla on commonly
solved instances at all bit-widths.

Fig. 7. The performance of field-based and BV-based approaches (with various BV
solvers) when the field size ranges from 5 to 60 bits.

7.1 Comparison with Bit-Vectors

Since bit-vector solvers scale poorly with bit-width, one would expect the effec-
tiveness of a BV encoding of our properties to degrade as the field size grows. To
validate this, we generate BV-encoded benchmarks for varying bit-widths and
evaluate state-of-the-art bit-vector solvers on them. Though our applications of
interest use b = 255, we will see that the BV-based approach does not scale to

Satisfiability Modulo Finite Fields 177

Table 1. Solved small-field benchmarks by tool, property, and status.

determinism soundness total
system unsat unk. sat unsat unk. sat timeout memout solved

bv-bitwuzla 4 16 29 28 32 36 71 0 145
bv-cvc5 5 11 36 25 25 29 78 7 131
bv-z3 5 9 14 25 25 29 100 9 107
ff-cvc5 36 36 36 36 36 36 0 0 216
all benchmarks 36 36 36 36 36 36 216

fields this large. Thus, for this set of experiments we use b ∈ {5, 10, . . . , 60}, and
we sample formulas with 4 inputs and 8 intermediate terms.

Figure 7a shows performance of three bit-vector solvers (cvc5 [7], Bitwu-
zla [76], and z3 [73]) and our F solver as a cactus plot; Table 1 splits the solved
instances by property and status. We see that even for these small bit-widths,
the field-based approach is already superior. The bit-vector solvers are more
competitive on the soundness benchmarks, since these benchmarks include only
half as many field operations as the determinism benchmarks.

For our benchmarks, Bitwuzla is the most efficient BV solver. We further
examine the time that it and our solver take to solve the 9 benchmarks they can
both solve at all bit-widths. Figure 7b plots the total solve time against b. While
the field-based solver’s runtime is nearly independent of field size, the bit-vector
solvers slow down substantially as the field grows.

In sum, the BV approach scales poorly with field size and is already inferior
on fields of size at least 240.

7.2 The Cost of Field Polynomials

Recall that our decision procedure does not use field polynomials (§4.3), but our
implementation optionally includes them (§5). In this experiment, we measure
the cost they incur. We use propositional formulas in 2 variables with 4 terms,
and we take b ∈ {4, . . . , 12}, and include SAT and unknown benchmarks.

Figure 8a compares the performance of our tool with and without field poly-
nomials. For many benchmarks, field polynomials cause a slowdown greater than
100×. To better show the effect of the field size, we consider the solve time
for the SAT benchmarks, at varying values of b. Figure 8b shows how solve
times change as b grows: using field polynomials causes exponential growth. For
UNSAT benchmarks, both configurations complete within 1s. This is because
(for these benchmarks) the GB is just {1} and CoCoA’s GB engine is good at
discovering that (and exiting) without considering the field polynomials.

This growth is predictable. GB engines can take time exponential (or worse)
in the degree of their inputs. A simple example illustrates this fact: consider
computing a Gröbner basis with X2b − X and X2 − X. The former reduces to
0 modulo the latter, but the reduction takes 2b − 1 steps.

178 A. Ozdemir et al.

10x

100x

10x100x

0.5

4.0

32.0

256.0

0.5 4.0 32.0 256.0
Time with field polynomials (s)

Ti
m

e
w

ith
ou

t f
ie

ld
 p

ol
yn

om
ia

ls
 (s

)

Property

deterministic

sound

(a) All benchmarks, both configurations.

0.5

4.0

32.0

256.0

4 6 8 10 12
Bits

S
ol

ve
 T

im
e Field Polynomials

no

yes

(b) Each series is one property at different
numbers of bits.

Fig. 8. Solve times, with and without field polynomials. The field size varies from 4 to
12 bits. The benchmarks are all SAT or unknown.

10x

100x

10x100x

4

32

256

4 32 256
Time without UNSAT cores (s)

Ti
m

e
w

ith
 U

N
S

AT
 c

or
es

 (s
)

Property

deterministic

sound

(a) Our SMT solver with and without
UNSAT cores.

10x

100x

10x100x

4

32

256

4 32 256
Time with pure FF (s)

Ti
m

e
w

ith
 S

M
T−

FF
 (s

)

Property

deterministic

sound

(b) Our SMT solver compared with a pure
computer algebra system.

Fig. 9. The performance of alternative algebra-based approaches.

7.3 The Benefit of UNSAT Cores

Section 4.2 describes how we compute unsatisfiable (UNSAT) cores in the F

solver by instrumenting our Gröbner basis engine. In this experiment, we mea-
sure the benefit of doing so. We generate Boolean formulas with 2, 4, 6, 8, 10,
and 12 variables; and 20, 21, 22, 23, 24, 25, 26, and 27 intermediate terms, for
a 255-bit field. We vary the number of intermediate terms widely in order to
generate benchmarks of widely variable difficulty. We configure our solver with
and without GB instrumentation.

Figure 9a shows the results. For many soundness benchmarks, the cores cause
a speedup of more than 10×. As expected, only the soundness benchmarks ben-
efit. Soundness benchmarks have non-trivial boolean structure, so the SMT core
makes many queries to the theory solver. Returning good UNSAT cores shrinks
the propositional search space, reduces the number of theory queries, and thus
reduces solve time. However, determinism benchmarks are just a conjunction

Satisfiability Modulo Finite Fields 179

0

100

200

300

0 200 400 600
Solved instances

Ti
m

e
(s

)

System

bv−bitwuzla

ff−cvc5

ff−cvc5−nocore

nia−cvc5

nia−z3

pureff−cvc5

Fig. 10. A comparison of all approaches.

of theory literals, so the SMT core makes only one theory query. For them,
returning a good UNSAT core has no benefit—but also induces little overhead.

7.4 Comparison to Pure Computer Algebra

In this experiment, we compare our SMT-based approach (which inte-
grates computer-algebra techniques into SMT) against a stand-alone use of
computer-algebra. We encode the Boolean structure of our formulas in Fp (see
Appendix C). When run on such an encoding, our SMT solver makes just one
query to its field solver, so it cannot benefit from the search optimizations present
in CDCL(T). For this experiment, we use the same benchmark set as the last.

Figure 9b compares the pure F approach with our SMT-based approach.
For benchmarks that encode soundness properties, the SMT-based approach is
clearly dominant. The intuition here is is that computer algebra systems are not
optimized for Boolean reasoning. If a problem has non-trivial Boolean structure,
a cooperative approach like SMT has clear advantages. SMT’s advantage is less
pronounced for determinism benchmarks, as these manifest as a single query to
the finite field solver; still, in this case, our encoding seems to have some benefit
much of the time.

7.5 Main Experiment

In our main experiment, we compare our approach against all reasonable alter-
natives: a pure computer-algebra approach (§7.4), a BV approach with Bitwuzla
(the best BV solver on our benchmarks, §7.1), an NIA approach with cvc5 and
z3, and our own tool without UNSAT cores (§7.3). We use the same benchmark
set as the last experiment; this uses a 255-bit field.

Figure 10 shows the results as a cactus plot. Table 2 shows the number of
solved instances for each system, split by property and status. Bitwuzla quickly
runs out of memory on most of the benchmarks. A pure computer-algebra app-
roach outperforms Bitwuzla and cvc5’s NIA solver. The NIA solver of z3 does a
bit better, but our field-aware SMT solver is the best by far. Moreover, its best
configuration uses UNSAT cores. Comparing the total solve time of ff-cvc5 and

180 A. Ozdemir et al.

Table 2. Solved benchmarks by tool, property, and status.

determinism soundness total
system unsat unk. sat unsat unk. sat timeout memout solved

bv-bitwuzla 7 8 16 34 52 52 127 568 169
ff-cvc5 94 78 78 135 137 137 168 37 659
ff-cvc5-nocore 94 78 78 123 125 136 193 37 634
nia-cvc5 1 29 41 8 25 46 714 0 150
nia-z3 2 30 55 66 70 73 568 0 296
pureff-cvc5 84 74 75 6 15 10 532 68 264
all benchmarks 144 144 144 144 144 144 864

nia-z3 on commonly solved benchmarks, we find that ff-cvc5 reduces total solve
time by 6×. In sum, the techniques we describe in this paper yield a tool that
substantially outperforms all alternatives on our benchmarks.

8 Discussion and Future Work

We’ve presented a basic study of the potential of an SMT theory solver for finite
fields based on computer algebra. Our experiments have focused on translation
validation for ZKP compilers, as applied to Boolean input computations. The
solver shows promise, but much work remains.

As discussed (Sect. 5), our implementation makes limited use of the interface
exposed to a theory solver for CDCL(T). It does no work until a full propositional
assignment is available. It also submits no lemmas to the core solver. Exploring
which lightweight reasoning should be performed during propositional search
and what kinds of lemmas are useful is a promising direction for future work.

Our model construction (Sect. 4.3) is another weakness. Without univariate
polynomials or a zero-dimensional ideal, it falls back to exhaustive search. If a
solution over an extension field is acceptable, then there are Θ(|F|d) solutions,
so an exhaustive search seems likely to quickly succeed. Of course, we need a
solution in the base field. If the base field is closed, then every solution is in the
base field. Our fields are finite (and thus, not closed), but for our benchmarks,
they seem to bear some empirical resemblance to closed fields (e.g., the GB-based
test for an empty variety never fails, even though it is theoretically incomplete).
For this reason, exhaustive search may not be completely unreasonable for our
benchmarks. Indeed, our experiments show that our procedure is effective on our
benchmarks, including for SAT instances. However, the worst-case performance
of this kind of model construction is clearly abysmal. We think that a more
intelligent search procedure and better use of ideas from computer algebra [6,67]
would both yield improvement.

Theory combination is also a promising direction for future work. The bench-
marks we present here are in the QF_FF logic: they involve only Booleans and finite

Satisfiability Modulo Finite Fields 181

fields. Reasoning about different fields in combination with one another would
have natural applications to the representation of elliptic curve operations inside
ZKPs. Reasoning about datatypes, arrays, and bit-vectors in combination with
fields would also have natural applications to the verification of ZKP compilers.

Acknowledgements. We appreciate the help and guidance of Andres Nötzli, Andy
Reynolds, Anna Bigatti, Dan Boneh, Erika Ábrahám, Fraser Brown, Gregory Sankaran,
Jacob Van Geffen, James Davenport, John Abbott, Leonardo Alt, Lucas Vella, Maya
Sankar, Riad Wahby, Shankara Pailoor, and Thomas Hader.

This material is in part based upon work supported by the DARPA SIEVE program
and the Simons foundation. Any opinions, findings, and conclusions or recommenda-
tions expressed in this report are those of the author(s) and do not necessarily reflect
the views of DARPA. It is also funded in part by NSF grant number 2110397.

A Proofs of IdealCalc Properties

This appendix is available in the full version of the paper [82].

B Proof of Correctness for FindZero

We prove that FindZero is correct (Theorem 3).

Proof. It suffices to show that for each branching rule that results in
∨

j(Xij −rj),

V(〈B〉) ⊂
⋃

j

V(〈B ∪ {Xij − rj}〉)

First, consider an application of Univariate with univariate p(Xi). Fix z ∈
V(〈B〉). z is a zero of p, so for some j, rj = z and z ∈ V(〈B ∪ {Xi − z}〉).

Next, consider an application of Triangular to variable Xi with minimal poly-
nomial p(Xi). By the definition of minimal polynomial, any zero z of 〈B〉 has a
value for Xi that is a root of p. Let that root be r. Then, z ∈ V(〈B ∪ {Xi − z}〉).

Finally, consider an application of Exhaust. The desired property is immedi-
ate.

C Benchmark Generation

This appendix is available in the full version of the paper [82].

References

1. Abbott, J., Bigatti, A.M.: CoCoALib: A C++ library for computations in commu-
tative algebra... and beyond. In: International Congress on Mathematical Software
(2010)

182 A. Ozdemir et al.

2. Abbott, J., Bigatti, A.M., Palezzato, E., Robbiano, L.: Computing and using
minimal polynomials. J. Symbolic Comput. 100 (2020)

3. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consis-
tency of non-linear real arithmetic constraints with a conflict driven search using
cylindrical algebraic coverings. J. Logical Algebraic Methods in Programm. 119
(2021)

4. Anderson, B., McGrew, D.: Tls beyond the browser: Combining end host and
network data to understand application behavior. In: IMC (2019)

5. Archer, D., O’Hara, A., Issa, R., Strauss, S.: Sharing sensitive department of edu-
cation data across organizational boundaries using secure multiparty computation
(2021)

6. Aubry, P., Lazard, D., Maza, M.M.: On the theories of triangular sets. J. Symbolic
Comput. 28(1) (1999)

7. Barbosa, H., et al.: cvc5: A versatile and industrial-strength SMT solver. In:
TACAS (2022)

8. Barlow, R.: Computational thinking breaks a logjam. https://www.bu.edu/cise/
computational-thinking-breaks-a-logjam/ (2015)

9. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: FMCO (2005)

10. Barrett, C., et al.: CVC4. In: CAV (2011)
11. Bayer, D., Stillman, M.: Computation of hilbert functions. J. Symb. Comput.

14(1), 31–50 (1992)
12. Bayless, S., Bayless, N., Hoos, H., Hu, A.: SAT modulo monotonic theories. In:

AAAI (2015)
13. Baylina, J.: Circom. https://github.com/iden3/circom
14. bellman. https://github.com/zkcrypto/bellman
15. Bertot, Y., Castéran, P.: Interactive theorem proving and program development:

Coq’Art: the calculus of inductive constructions. Springer Science & Business
Media (2013)

16. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, pp. 103–112 (1988)

17. Bogetoft, P., et al.: Secure multiparty computation goes live. In: FC (2009)
18. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system i: the user

language. J. Symb. Comput. 24(3–4), 235–265 (1997)
19. Braun, D., Magaud, N., Schreck, P.: Formalizing some "small" finite models of

projective geometry in coq. In: International Conference on Artificial Intelligence
and Symbolic Computation (2018)

20. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In:
TACAS (2010)

21. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bulletin (1976)

22. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge con-
tingent payments revisited: Attacks and payments for services. In: CCS (2017)

23. Caviness, B.F., Johnson, J.R.: Quantifier elimination and cylindrical algebraic
decomposition. Springer Science & Business Media (2012)

24. Chin, C., Wu, H., Chu, R., Coglio, A., McCarthy, E., Smith, E.: Leo: A pro-
gramming language for formally verified, zero-knowledge applications. Cryptology
ePrint Archive (2021)

https://www.bu.edu/cise/computational-thinking-breaks-a-logjam/
https://www.bu.edu/cise/computational-thinking-breaks-a-logjam/
https://github.com/iden3/circom
https://github.com/zkcrypto/bellman

Satisfiability Modulo Finite Fields 183

25. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. In: ACM TOCL 19(3) (2018)

26. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: TACAS (2013)

27. Cimatti, A., Mover, S., Tonetta, S.: Smt-based verification of hybrid systems. In:
AAAI (2012)

28. Cohen, C.: Pragmatic quotient types in coq. In: ITP (2013)
29. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an

open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M.,
Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24318-4_26

30. Cox, D., Little, J., OShea, D.: Ideals, varieties, and algorithms: an introduction
to computational algebraic geometry and commutative algebra. Springer Science
& Business Media (2013)

31. Davenport, J.: The axiom system (1992)
32. developers, M.: Monero technical specs. https://monerodocs.org/technical-specs/

(2022)
33. D’silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques

for formal software verification. IEEE Trans. Comput.-Aided Design Integr. Circ.
Syst. 27(7) (2008)

34. Dummit, D.S., Foote, R.M.: Abstract algebra, vol. 3. Wiley Hoboken (2004)
35. Dutertre, B.: Yices 2.2. In: CAV (2014)
36. Eberhardt, J., Tai, S.: ZoKrates–scalable privacy-preserving off-chain computa-

tions. In: IEEE Blockchain (2018)
37. Eisenbud, D., Grayson, D.R., Stillman, M., Sturmfels, B.: Computations in alge-

braic geometry with Macaulay 2, vol. 8. Springer Science & Business Media (2001)
38. Enderton, H.B.: A mathematical introduction to logic. Elsevier (2001)
39. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Systematic Gen-

eration Of Fast Elliptic Curve Cryptography Implementations. Tech. rep, MIT
(2018)

40. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level
code for cryptographic arithmetic: With proofs, without compromises. ACM
SIGOPS Oper. Syst. Rev. 54(1) (2020)

41. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: ISSAC. ACM (2002)

42. Faugere, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4) (1993)

43. Faugére, J.C.: A new efficient algorithm for computing gröbner bases (f4). J. Pure
Appl. Algebra 139(1), 61–88 (1999)

44. Finance, Y.: Monero quote. https://finance.yahoo.com/quote/XMR-USD/ (2022)
Accessed 30 June 2022

45. Finance, Y.: Zcash quote. https://finance.yahoo.com/quote/ZEC-USD/ (2022).
Accessed 30 June 2022

46. Frankle, J., Park, S., Shaar, D., Goldwasser, S., Weitzner, D.: Practical account-
ability of secret processes. In: USENIX Security (2018)

47. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure. J.
Satisfiability, Boolean Modeling and Comput. 1(3–4) (2006)

48. Gao, S.: Counting zeros over finite fields with Gröbner bases. Ph.D. thesis, Mas-
ter’s thesis, Carnegie Mellon University (2009)

https://doi.org/10.1007/978-3-319-24318-4_26
https://monerodocs.org/technical-specs/
https://finance.yahoo.com/quote/XMR-USD/
https://finance.yahoo.com/quote/ZEC-USD/

184 A. Ozdemir et al.

49. GAP – Groups, Algorithms, and Programming, Version 4.13dev. www.gap-
system.org (this year)

50. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: STOC (1985)

51. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: ITP,
pp. 163–179 (2013)

52. Greuel, G.M., Pfister, G., Schönemann, H.: Singular-a computer algebra system
for polynomial computations. In: Symbolic computation and automated reason-
ing, pp. 227–233. AK Peters/CRC Press (2001)

53. Grubbs, P., Arun, A., Zhang, Y., Bonneau, J., Walfish, M.: {Zero-Knowledge}
middleboxes. In: USENIX Security (2022)

54. Hader, T.: Non-Linear SMT-Reasoning over Finite Fields. Ph.D. thesis, TU Wien
(2022), mS Thesis

55. Hader, T., Kovács, L.: Non-linear SMT-reasoning over finite fields. In: SMT
(2022). http://ceur-ws.org/Vol-3185/extended3245.pdf extended Abstract

56. Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge proofs.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques (2020)

57. Heath, L.S., Loehr, N.A.: New algorithms for generating conway polynomials over
finite fields. J. Symb. Comput. (2004)

58. Heck, A., Koepf, W.: Introduction to MAPLE, vol. 1993 (1993)
59. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specifica-

tion. https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.
pdf (2016)

60. Jovanović, D.: Solving nonlinear integer arithmetic with MCSAT. In: VMCAI
(2017)

61. Jovanović, D., De Moura, L.: Solving non-linear arithmetic. ACM Commun. Com-
put. Algebra 46(3/4) (2013)

62. Jovanović, D., Moura, L.d.: Cutting to the chase solving linear integer arithmetic.
In: CADE (2011)

63. Kamara, S., Moataz, T., Park, A., Qin, L.: A decentralized and encrypted national
gun registry. In: IEEE S&P (2021)

64. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-aided reasoning: ACL2 case
studies, vol. 4. Springer Science & Business Media (2013)

65. Komendantsky, V., Konovalov, A., Linton, S.: View of computer algebra data from
coq. In: International Conference on Intelligent Computer Mathematics (2011)

66. Kotzias, P., Razaghpanah, A., Amann, J., Paterson, K.G., Vallina-Rodriguez, N.,
Caballero, J.: Coming of age: A longitudinal study of tls deployment. In: IMC
(2018)

67. Lazard, D.: A new method for solving algebraic systems of positive dimension.
Discr. Appl. Math. 33, 1–3 (1991)

68. Lazard, D.: Solving zero-dimensional algebraic systems. J. Symb. Comput. 13(2),
117–131 (1992)

69. libsnark. https://github.com/scipr-lab/libsnark
70. Maréchal, A., Fouilhé, A., King, T., Monniaux, D., Périn, M.: Polyhedral approx-

imation of multivariate polynomials using handelman’s theorem. In: VMCAI
(2016)

71. McEliece, R.J.: Finite fields for computer scientists and engineers, vol. 23. Springer
Science & Business Media (2012)

72. Meurer, A., et al.: Sympy: symbolic computing in python. PeerJ Comput. Sci. 3,
e103 (2017)

www.gap-system.org
www.gap-system.org
http://ceur-ws.org/Vol-3185/extended3245.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://github.com/scipr-lab/libsnark

Satisfiability Modulo Finite Fields 185

73. Moura, L.d., Bjørner, N.: Z3: An efficient smt solver. In: TACAS (2008)
74. Moura, L.d., Jovanović, D.: A model-constructing satisfiability calculus. In:

VMCAI (2013)
75. Moura, L.d., Kong, S., Avigad, J., Doorn, F.v., Raumer, J.v.: The lean theorem

prover (system description). In: CADE (2015)
76. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. arXiv:2006.01621

(2020)
77. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2, BtorMC and Boolector 3.0.

In: CAV (2018)
78. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:

From an abstract davis-putnam-logemann-loveland procedure to DPLL(T). J.
ACM (2006)

79. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

80. Noir. https://noir-lang.github.io/book/index.html
81. Ozdemir, A., Brown, F., Wahby, R.S.: Circ: Compiler infrastructure for proof

systems, software verification, and more. In: IEEE S&P (2022)
82. Ozdemir, A., Kremer, G., Tinelli, C., Barrett, C.: Satisfiability modulo finite fields

(2023), https://eprint.iacr.org/2023/091, (Full version)
83. Parker, R.: Finite fields and conway polynomials (1990), talk at the IBM Heidel-

berg Scientific Center. Cited by Scheerhorn
84. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical veri-

fiable computation. Commun. ACM 59(2), 103–112 (2016)
85. Philipoom, J.: Correct-by-construction finite field arithmetic in Coq. Ph.D. thesis,

Massachusetts Institute of Technology (2018)
86. Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In: TACAS (1998)
87. Rabin, M.O.: Probabilistic algorithms in finite fields. SIAM Journal on computing

9(2) (1980)
88. Rabinowitsch, J.L.: Zum hilbertschen nullstellensatz. Mathematische Annalen 102

(1930), https://doi.org/10.1007/BF01782361
89. Sasson, E.B., et al.: Zerocash: Decentralized anonymous payments from bitcoin.

In: IEEE S&P (2014)
90. Scheerhorn, A.: Trace-and Norm-compatible Extensions of Finite Fields. Appli-

cable Algebra in Engineering, Communication and Computing (1992)
91. Schwabe, P., Viguier, B., Weerwag, T., Wiedijk, F.: A coq proof of the correctness

of x25519 in tweetnacl. In: CSF (2021)
92. Setty, S., Braun, B., Vu, V., Blumberg, A.J., Parno, B., Walfish, M.: Resolving

the conflict between generality and plausibility in verified computation. In: Pro-
ceedings of the 8th ACM European Conference on Computer Systems, pp. 71–84
(2013)

93. Shankar, N.: Automated deduction for verification. CSUR 41(4) (2009)
94. Thaler, J.: Proofs, Arguments, and Zero-Knowledge (2022)
95. Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided

host languages. In: PLDI (2014)
96. Tung, V.X., Khanh, T.V., Ogawa, M.: raSAT: An smt solver for polynomial con-

straints. In: IJCAR (2016)
97. Vella, L., Alt, L.: On satisfiability of polynomial equations over large prime

field. In: SMT (2022). http://ceur-ws.org/Vol-3185/extended9913.pdf extended
Abstract

98. Weispfenning, V.: Quantifier elimination for real algebra-the quadratic case and
beyond. Appl. Algebra Eng., Commun. Comput. 8(2) (1997)

http://arxiv.org/abs/2006.01621
https://doi.org/10.1007/3-540-45949-9
https://noir-lang.github.io/book/index.html
https://eprint.iacr.org/2023/091,
https://doi.org/10.1007/BF01782361
http://ceur-ws.org/Vol-3185/extended9913.pdf

186 A. Ozdemir et al.

99. Wen-Tsún, W.: A zero structure theorem for polynomial-equations-solving and
its applications. In: European Conference on Computer Algebra (1987)

100. Wolfram, S.: Mathematica: a system for doing mathematics by computer. Addison
Wesley Longman Publishing Co., Inc. (1991)

101. Zimmermann, P., et al.: Computational mathematics with SageMath. SIAM
(2018)

102. Zinc. https://zinc.matterlabs.dev/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://zinc.matterlabs.dev/
http://creativecommons.org/licenses/by/4.0/

Solving String Constraints Using SAT

Kevin Lotz1(B) , Amit Goel2, Bruno Dutertre2 , Benjamin Kiesl-Reiter2 ,
Soonho Kong2 , Rupak Majumdar2 , and Dirk Nowotka1

1 Department of Computer Science, Kiel University, Kiel, Germany
{kel,dn}@informatik.uni-kiel.de

2 Amazon Web Services, Seattle, USA
{amgoel,dutebrun,benkiesl,soonho,rumajumd}@amazon.com

Abstract. String solvers are automated-reasoning tools that can solve
combinatorial problems over formal languages. They typically operate on
restricted first-order logic formulas that include operations such as string
concatenation, substring relationship, and regular expression matching.
String solving thus amounts to deciding the satisfiability of such formu-
las. While there exists a variety of different string solvers, many string
problems cannot be solved efficiently by any of them. We present a new
approach to string solving that encodes input problems into propositional
logic and leverages incremental SAT solving. We evaluate our approach
on a broad set of benchmarks. On the logical fragment that our tool
supports, it is competitive with state-of-the-art solvers. Our experiments
also demonstrate that an eager SAT-based approach complements exist-
ing approaches to string solving in this specific fragment.

1 Introduction

Many problems in software verification require reasoning about strings. To tackle
these problems, numerous string solvers—automated decision procedures for
quantifier-free first-order theories of strings and string operations—have been
developed over the last years. These solvers form the workhorse of automated-
reasoning tools in several domains, including web-application security [19,31,33],
software model checking [15], and conformance checking for cloud-access-control
policies [2,30].

The general theory of strings relies on deep results in combinatorics
on words [5,16,23,29]; unfortunately, the related decision procedures remain
intractable in practice. Practical string solvers achieve scalability through a judi-
cious mix of heuristics and restrictions on the language of constraints.

We present a new approach to string solving that relies on an eager reduc-
tion to the Boolean satisfiability problem (SAT), using incremental solving and
unsatisfiable-core analysis for completeness and scalability. Our approach sup-
ports a theory that contains Boolean combinations of regular membership con-
straints and equality constraints on string variables, and captures a large set of
practical queries [6].

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 187–208, 2023.
https://doi.org/10.1007/978-3-031-37703-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_9&domain=pdf
http://orcid.org/0000-0001-6759-3304
http://orcid.org/0000-0002-6284-380X
http://orcid.org/0000-0003-3522-3653
http://orcid.org/0000-0003-0984-8078
http://orcid.org/0000-0003-2136-0542
http://orcid.org/0000-0002-5422-2229
https://doi.org/10.1007/978-3-031-37703-7_9

188 K. Lotz et al.

Our solving method iteratively searches for satisfying assignments up to a
length bound on each string variable; it stops and reports unsatisfiability when
the search reaches computed upper bounds without finding a solution. Similar to
the solver Woorpje [12], we formulate regular membership constraints as reach-
ability problems in nondeterministic finite automata. By bounding the number
of transitions allowed by each automaton, we obtain a finite problem that we
encode into propositional logic. To cut down the search space of the under-
lying SAT problem, we perform an alphabet reduction step (SMT-LIB string
constraints are defined over an alphabet of 3 · 216 letters and a naive reduction
to SAT does not scale). Inspired by bounded model checking [8], we iteratively
increase bounds and utilize an incremental SAT solver to solve the resulting
series of propositional formulas. We perform an unsatisfiable-core analysis after
each unsatisfiable incremental call to increase only the bounds of a minimal
subset of variables until a theoretical upper bound is reached.

We have evaluated our solver on a large set of benchmarks. The results show
that our SAT-based approach is competitive with state-of-the-art SMT solvers
in the logical fragment that we support. It is particularly effective on satisfiable
instances.

Closest to our work is the Woorpje solver [12], which also employs an eager
reduction to SAT. Woorpje reduces systems of word equations with linear con-
straints to a single Boolean formula and calls a SAT solver. An extension can
also handle regular membership constraints [21]. However, Woorpje does not
handle the full language of constraints considered here and does not employ the
reduction and incremental solving techniques that make our tool scale in prac-
tice. More importantly, in contrast to our solver, Woorpje is not complete—it
does not terminate on unsatisfiable instances.

Other solvers such as Hampi [19] and Kaluza [31] encode string problems
into constraints on fixed-size bit-vector, which can be solved by reduction to
SAT. These tools support expressive constraints but they require a user-provided
bound on the length of string variables.

Further from our work are approaches based on the lazy SMT paradigm,
which tightly integrates dedicated, heuristic, theory solvers for strings using
the CDCL(T) architecture (also called DPLL(T) in early papers). Solvers that
follow this paradigm include Ostrich [11], Z3 [25], Z3str4 [24], cvc5 [3],
Z3str3RE [7], Trau [1], and CertiStr [17]. Our evaluation shows that our
eager approach is competitive with lazy solvers overall, but it also shows that
combining both types of solvers in a portfolio is most effective. Our eager app-
roach tends to perform best on satisfiable instances while lazy approaches work
better on unsatisfiable problems.

2 Preliminaries

We assume a fixed alphabet Σ and a fixed set of variables Γ . Words of Σ∗

are denoted by w, w′, w′′, etc. Variables are denoted by x, y, z. Our decision
procedure supports the theory described in Fig. 1.

Solving String Constraints Using SAT 189

F := F F F F F Atom

Atom := x
.

RE x .= y

RE := RE RE RE RE RE RE RE ? w

Fig. 1. Syntax: x and y denote string variables and w denotes a word of Σ∗. The symbol
? is the wildcard character.

Atoms in this theory include regular membership constraints (or regular con-
straints for short) of the form x

.∈ RE, where RE is a regular expression, and
variable equations of the form x

.= y. Concatenation is not allowed in equations.
Regular expressions are defined inductively using union, concatenation, inter-

section, and the Kleene star. Atomic regular expressions are constant words
w ∈ Σ∗ and the wildcard character ?, which is a placeholder for an arbitrary
symbol c ∈ Σ. All regular expressions are grounded, meaning that they do not
contain variables. We use the symbols � .∈ and � .= as a shorthand notation for
negations of atoms using the respective predicate symbols. The following is an
example formula in our language: ¬(x

.∈ a · ?∗ ∧ y
.∈ ?∗ · b) ∨ x � .= y ∨ x

.∈ a · b.
Using our basic syntax, we can define additional relations, such as constant

equations x
.= w, and prefix and suffix constraints, written w

.� x and w
.� x,

respectively. Even though these relations can be expressed as regular constraints
(e.g., the prefix constraint ab

.� x can be expressed as x
.∈ a · b · ?∗), we can

generate more efficient reductions to SAT by encoding them explicitly.
This string theory is not as expressive as others, since it does not include

string concatenation, but it still has important practical applications. It is used
in the Zelkova tool described by Backes, et al. [2] to support analysis of AWS
security policies. Zelkova is a major industrial application of SMT solvers [30].

Given a formula ψ, we denote by atoms(ψ) the set of atoms occurring in ψ,
by V (ψ) the set of variables occurring in ψ, and by Σ(ψ) the set of constant
symbols occurring in ψ. We call Σ(ψ) the alphabet of ψ. Similarly, given a
regular expression R, we denote by Σ(R) the set of characters occurring in R.
In particular, we have Σ(?) = ∅.

We call a formula conjunctive if it is a conjunction of literals and we call
it a clause if it is a disjunction of literals. We say that a formula is in nor-
mal form if it is a conjunctive formula without unnegated variable equations.
Every conjunctive formula can be turned into normal form by substitution, i.e.,
by repeatedly rewriting ψ ∧ x

.= y to ψ[x := y]. If ψ is in negation normal
form (NNF), meaning that the negation symbol occurs only directly in front of
atoms, we denote by lits(ψ) the set of literals occurring in ψ. We say that an
atom a occurs with positive polarity in ψ if a ∈ lits(ψ) and that it occurs with
negative polarity in ψ if ¬a ∈ lits(ψ); we denote the respective sets of atoms
of ψ by atoms+(ψ) and atoms−(ψ). The notion of polarity can be extended to
arbitrary formulas (not necessarily in NNF), intuitively by considering polarity
in a formula’s corresponding NNF (see [26] for details).

190 K. Lotz et al.

Boolean
Abstraction

Alphabet
Reduction

Bound
Initialization

ψ
Propositional
Encoding

Incremental
SAT Solving Return SAT

Bound
Refinement

Return UNSAT

Σ

SAT

UNSAT

Boolean Abstraction: ψ

Definitions: D

Bounds: b

D b, h b

b

Fig. 2. Overview of the solving process.

The semantics of our language is standard. A regular expression R defines a
regular language L(R) over Σ in the usual way. An interpretation is a mapping
(also called a substitution) h : Γ → Σ∗ from string variables to words. Atoms
are interpreted as usual, and a model (also called a solution) is an interpretation
that makes a formula evaluate to true under the usual semantics of the Boolean
connectives.

3 Overview

Our solving method is illustrated in Fig. 2. It first performs three preprocessing
steps that generate a Boolean abstraction of the input formula, reduce the size of
the input alphabet, and initialize bounds on the lengths of all string variables.
After preprocessing, we enter an encode-solve-and-refine loop that iteratively
queries a SAT solver with a problem encoding based on the current bounds
and refines the bounds after each unsatisfiable solver call. We repeat this loop
until either the propositional encoding is satisfiable, in which case we conclude
satisfiability of the input formula, or each bound has reached a theoretical upper
bound, in which case we conclude unsatisfiability.

Generating the Boolean Abstraction. We abstract the input formula ψ by replac-
ing each theory atom a ∈ atoms(ψ) with a new Boolean variable d(a), and keep
track of the mapping between a and d(a). This gives us a Boolean abstraction
ψA of ψ and a set D of definitions, where each definition expresses the rela-
tionship between an atom a and its corresponding Boolean variable d(a). If a
occurs with only one polarity in ψ, we encode the corresponding definition as an
implication, i.e., as d(a) → a or as ¬d(a) → ¬a, depending on the polarity of a.
Otherwise, if a occurs with both polarities, we encode it as an equivalence con-
sisting of both implications. This encoding, which is based on ideas behind the
well-known Plaisted-Greenbaum transformation [28], ensures that the formulas
ψ and ψA ∧ ∧

d∈D d are equisatisfiable. An example is shown in Fig. 3.

Reducing the Alphabet. In the SMT-LIB theory of strings [4], the alphabet Σ
comprises 3 · 216 letters, but we can typically use a much smaller alphabet with-
out affecting satisfiability. In Sect. 4, we show that using Σ(ψ) and one extra

Solving String Constraints Using SAT 191

x
.
R1 y

.
R2

z
.
= w y

.
R2 z

.
= w

(a) Input Formula ψ

p q

r q r

(b) Boolean Abstraction ψ

Fig. 3. Example of Boolean abstraction. The formula ψ, whose expression tree is shown
on the left, results in the Boolean abstraction illustrated on the right, where p, q, and r
are fresh Boolean variables. We additionally get the definitions p → x

.∈ R1, q ↔ y
.∈ R2,

and r ↔ z .
= w. We use an implication (instead of an equivalence) for atom x

.∈ R1

since it occurs only with positive polarity within ψ.

character per string variable is sufficient. Reducing the alphabet is critical for
our SAT encoding to be practical.

Initializing Bounds. A model for the original first-order formula ψ is a substi-
tution h : Γ → Σ∗ that maps each string variable to a word of arbitrary length
such that ψ evaluates to true. As we use a SAT solver to find such substitu-
tions, we need to bound the lengths of strings, which we do by defining a bound
function b : Γ → N that assigns an upper bound to each string variable. We
initialize a small upper bound for each variable, relying on simple heuristics. If
the bounds are too small, we increase them in a later refinement step.

Encoding, Solving, and Refining Bounds. Given a bound function b, we build a
propositional formula �ψ�

b that is satisfiable if and only if the original formula ψ

has a solution h such that |h(x)| ≤ b(x) for all x ∈ Γ . We encode �ψ�
b as the

conjunction ψA ∧ �D�
b ∧ �h�

b , where ψA is the Boolean abstraction of ψ, �D�
b

is an encoding of the definitions D, and �h�
b is an encoding of the set of possible

substitutions. We discuss details of the encoding in Sect. 5. A key property is
that it relies on incremental SAT solving under assumptions [13]. Increasing
bounds amounts to adding new clauses to the formula �ψ�

b and fixing a set of
assumptions, i.e., temporarily fixing the truth values of a set of Boolean variables.
If �ψ�

b is satisfiable, we can construct a substitution h from a Boolean model
ω of �ψ�

b . Otherwise, we examine an unsatisfiable core (i.e., an unsatisfiable
subformula) of �ψ�

b to determine whether increasing the bounds may give a
solution and, if so, to identify the variables whose bounds must be increased. In
Sect. 6, we explain in detail how we analyze unsatisfiable cores, increase bounds,
and conclude unsatisfiability.

192 K. Lotz et al.

4 Reducing the Alphabet

In many applications, the alphabet Σ is large—typically Unicode or an approxi-
mation of Unicode as defined in the SMT-LIB standard—but formulas use much
fewer symbols (less than 100 symbols is common in our experiments). In order
to check the satisfiability of a formula ψ, we can restrict the alphabet to the
symbols that occur in ψ and add one extra character per variable. This allows
us to produce compact propositional encodings that can be solved efficiently in
practice.

To prove that such a reduced alphabet A is sufficient, we show that a model
h : Γ → Σ∗ of ψ can be transformed into a model h′ : Γ → A∗ of ψ by replacing
characters of Σ that do not occur in ψ by new symbols—one new symbol per
variable of ψ. For example, suppose V (ψ) = {x1, x2}, Σ(ψ) = {a, c,d}, and h is
a model of ψ such that h(x1) = abcdef and h(x2) = abbd. We introduce two new
symbols α1, α2 ∈ Σ \ Σ(ψ) , define h′(x1) = aα1cdα1α1 and h′(x2) = aα2α2d ,
and argue that h′ is a model as well.

More generally, assume B is a subset of Σ and n is a positive integer such
that |B| ≤ |Σ| − n. We can then pick n distinct symbols α1, . . . , αn from Σ \ B.
Let A be the set B ∪ {α1, . . . , αn}. We construct n functions f1, . . . , fn from Σ
to A by setting fi(a) = a if a ∈ B, and fi(a) = αi otherwise. We extend fi to
words of Σ∗ in the natural way: fi(ε) = ε and fi(a · w) = fi(a) · fi(w). This
construction satisfies the following property:

Lemma 4.1. Let f1, . . . , fn be mappings as defined above, and let i, j ∈ 1, . . . , n
such that i �= j. Then, the following holds:

1. If a and b are distinct symbols of Σ, then fi(a) �= fj(b).
2. If w and w′ are distinct words of Σ∗, then fi(w) �= fj(w′).

Proof. The first part is an easy case analysis. For the second part, we have
that |fi(w)| = |w| and |fj(w′)| = |w′|, so the statement holds if w and w′ have
different lengths. Assume now that w and w′ have the same length and let v be
the longest common prefix of w and w′. Since w and w′ are distinct, we have
that w = v · a · u and w′ = v · b · u′, where a �= b are symbols of Σ and u and u′

are words of Σ∗. By the first part, we have fi(a) �= fj(b), so fi(w) and fj(w′)
must be distinct. �
The following lemma can be proved by induction on R.

Lemma 4.2. Let f1, . . . , fn be mappings as defined above and let R be a regular
expression with Σ(R) ⊆ B. Then, for all words w ∈ Σ∗ and all i ∈ 1, . . . , n,
w ∈ L(R) if and only if fi(w) ∈ L(R).

Given a subset A of Σ, we say that ψ is satisfiable in A if there is a model
h : V (ψ) → A∗ of ψ. We can now prove the main theorem of this section, which
shows how to reduce the alphabet while maintaining satisfiability.

Theorem 4.3. Let ψ be a formula with at most n string variables x1, . . . , xn

such that |Σ(ψ)| + n ≤ |Σ|. Then, ψ is satisfiable if and only if it is satisfiable
in an alphabet A ⊆ Σ of cardinality |A| = |Σ(ψ)| + n.

Solving String Constraints Using SAT 193

Proof. We set B = Σ(ψ) and use the previous construction. So the alphabet
A = B ∪ {α1, . . . , αn} has cardinality |Σ(ψ)| + n, where α1, . . . αn are distinct
symbols of Σ \B. We can assume that ψ is in disjunctive normal form, meaning
that it is a disjunction of the form ψ = ψ1 ∨ · · · ∨ ψm, where each ψt is a
conjunctive formula. If ψ is satisfiable, then one of the disjuncts ψk is satisfiable
and we have Σ(ψk) ⊆ B. We can turn ψk into normal form by eliminating all
variable equalities of the form xi

.= xj from ψk, resulting in a conjunction ϕk of
literals of the form xi

.∈ R, xi � .∈ R, or xi � .= xj . Clearly, for any A ⊆ Σ, ϕk is
satisfiable in A if and only if ψk is satisfiable in A.

Let h : V (ϕk) → Σ∗ be a model of ϕk and define the mapping h′ : V (ϕk) →
A∗ as h′(xi) = fi(h(xi)). We show that h′ is a model of ϕk. Consider a literal l
of ϕk. We have three cases:

– l is of the form xi

.∈ R where Σ(R) ⊆ Σ(ψ) = B. Since h satisfies ϕk, we
must have h(xi) ∈ L(R) so h′(xi) = fi(h(xi)) is also in L(R) by Lemma 4.2.

– l is of the form xi � .∈ R with Σ(R) ⊆ B. Then, h′(xi) �∈ L(R) and we can
conclude h′(xi) �∈ L(R) again by Lemma 4.2.

– l is of the form xi � .= xj . Since h satisfies ϕk, we must have i �= j and h(xi) �=
h(xj), which implies h′(xi) = fi(h(xi)) �= fj(h(xj)) = h′(xj) by Lemma 4.1.

All literals of ϕk are then satisfied by h′, hence ϕk is satisfiable in A and thus
so is ψk. It follows that ψ is satisfiable in A. �
The reduction presented here can be improved and generalized. For example, it
can be worthwhile to use different alphabets for different variables or to reduce
large character intervals to smaller sets.

5 Propositional Encodings

Our algorithm performs a series of calls to a SAT solver. Each call determines the
satisfiability of the propositional encoding �ψ�

b of ψ for some upper bounds b.
Recall that �ψ�

b = ψA ∧ �h�
b ∧ �D�

b , where ψA is the Boolean abstraction of ψ,
�h�

b is an encoding of the set of possible substitutions, and �D�
b is an encoding

of the theory-literal definitions, both bounded by b. Intuitively, �h�
b tells the

SAT solver to “guess” a substitution, �D�
b makes sure that all theory literals

are assigned proper truth values according to the substitution, and ψA forces
the evaluation of the whole formula under these truth values.

Suppose the algorithm performs n calls and let bk : Γ → N for k ∈ 1, . . . , n
denote the upper bounds used in the k-th call to the SAT solver. For conve-
nience, we additionally define b0(x) = 0 for all x ∈ Γ . In the k-th call, the SAT
solver decides whether �ψ�

bk is satisfiable. The Boolean abstraction ψA, which
we already discussed in Sect. 3, stays the same for each call. In the following,
we thus discuss the encodings of the substitutions �h�

bk and of the various the-
ory literals �a�

bk and �¬a�
bk that are part of �D�

bk . Even though SAT solvers
expect their input in CNF, we do not present the encodings in CNF to simplify

194 K. Lotz et al.

the presentation, but they can be converted to CNF using simple equivalence
transformations.

Most of our encodings are incremental in the sense that the formula for call
k is constructed by only adding clauses to the formula for call k − 1. In other
words, for substitution encodings we have �h�

bk = �h�
bk−1 ∧ �h�bk

bk−1
and for

literals we have �l�
bk = �l�

bk−1 ∧ �l�bk

bk−1
, with the base case �h�

b0 = �l�
b0 = �.

In these cases, it is thus enough to encode the incremental additions �l�bk

bk−1

and �h�bk

bk−1
for each call to the SAT solver. Some of our encodings, however,

introduce clauses that are valid only for a specific bound bk and thus become
invalid for larger bounds. We handle the deactivation of these encodings with
selector variables as is common in incremental SAT solving.

Our encodings are correct in the following sense.1

Theorem 5.1. Let l be a literal and let b : Γ → N be a bound function. Then,
l has a model that is bounded by b if and only if �h�

b ∧ �l�
b is satisfiable.

5.1 Substitutions

We encode substitutions by defining for each variable x ∈ Γ the characters to
which each of x’s positions is mapped. Specifically, given x and its corresponding
upper bound b(x), we represent the substitution h(x) by introducing new vari-
ables x[1], . . . , x[b(x)], one for each symbol h(x)[i] of the word h(x). We call these
variables filler variables and we denote the set of all filler variables by Γ̌ . By
introducing a new symbol λ �∈ Σ, which stands for an unused filler variable, we
can define h based on a substitution ȟ : Γ̌ → Σλ over the filler variables, where
Σλ = Σ ∪ {λ}:

h(x)[i] =

{
ε if ȟ(x[i]) = λ

ȟ(x[i]) otherwise

We use this representation of substitutions (known as “filling the positions” [18])
because it has a straightforward propositional encoding: For each variable x ∈ Γ
and each position i ∈ 1, . . . ,b(x), we create a set {ha

x[i] | a ∈ Σλ} of Boolean
variables, where ha

x[i] is true if ȟ(x[i]) = a. We then use a propositional encoding
of an exactly-one (EO) constraint (e.g., [20]) to assert that exactly one variable
in this set must be true:

�h�bk

bk−1
=

∧

x∈Γ

bk(x)∧

i=bk−1(x)+1

EO({ha
x[i] | a ∈ Σλ}) (1)

∧
∧

x∈Γ

bk(x)−1∧

i=bk−1(x)

hλ
x[i] → hλ

x[i+1] (2)

1 Proof is omitted due to space constraints but made available for review purposes.

Solving String Constraints Using SAT 195

Constraint (2) prevents the SAT solver from considering filled substitutions that
are equivalent modulo λ-substitutions—it enforces that if a position i is mapped
to λ, all following positions are mapped to λ too. For instance, abλλ, aλbλ,
and λλab all correspond to the same word ab, but our encoding allows only
abλλ. Thus, every Boolean assignment ω that satisfies �h�b encodes exactly one
substitution hω, and for every substitution h (bounded by b) there exists a
corresponding assignment ωh that satisfies �h�b.

5.2 Theory Literals

The only theory literals of our core language are regular constraints (x
.∈ R) and

variable equations (x .= y) with their negations. Constant equations (x .= w) as
well as prefix and suffix constraints (w

.� x and w
.� x) could be expressed as

regular constraints, but we encode them explicitly to improve performance.

Regular Constraints. We encode a regular constraint x
.∈ R by constructing

a propositional formula that is true if and only if the word h(x) is accepted by a
specific nondeterministic finite automaton that accepts the language L(R). Let
x

.∈ R be a regular constraint and let M = (Q,Σ, δ, q0, F) be a nondeterministic
finite automaton (with states Q, alphabet Σ, transition relation δ, initial state
q0, and accepting states F) that accepts L(R) and that additionally allows λ-self-
transitions on every state. Given that λ is a placeholder for the empty symbol,
λ-transitions do not change the language accepted by M . We allow them so
that M performs exactly b(x) transitions, even for substitutions of length less
than b(x). This reduces checking whether the automaton accepts a word to only
evaluating the states reached after exactly b(x) transitions.

Given a model ω |= �h�
b , we express the semantics of M in propositional logic

by encoding which states are reachable after reading hω(x). To this end, we assign
b(x) + 1 Boolean variables {S0

q , S1
q , . . . , S

b(x)
q } to each state q ∈ Q and assert

that ωh(Si
q) = 1 if and only if q can be reached by reading prefix hω(x)[1..i]. We

encode this as a conjunction �(M ; x)� = �I(M ;x)� ∧ �T(M ;x)� ∧ �P(M ;x)� of three
formulas, modelling the semantics of the initial state, the transition relation,
and the predecessor relation of M . We assert that the initial state q0 is the
only state reachable after reading the prefix of length 0, i.e., �I(M ;x)�

b1 = S0
q0 ∧∧

q∈Q\{q0} ¬S0
q . The condition is independent of the bound on x, thus we set

�I(M ;x)�
bk

bk−1
= � for all k > 1.

We encode the transition relation of M by stating that if M is in some state
q after reading hω(x)[1..i], and if there exists a transition from q to q′ labelled
with an a, then M can reach state q′ after i + 1 transitions if hω(x)[i + 1] = a.
This is expressed in the following formula:

�T(M ;x)�
bk

bk−1
=

bk(x)−1∧

i=bk−1(x)

∧

(q,a)∈dom(δ)

∧

q′∈δ(q,a)

(Si
q ∧ ha

x[i+1]) → Si+1
q′

196 K. Lotz et al.

The formula captures all possible forward moves from each state. We must also
ensure that a state is reachable only if it has a reachable predecessor, which we
encode with the following formula, where pred(q′) = {(q, a) | q′ ∈ δ(q, a)}:

�P(M ;x)�
bk

bk−1
=

bk(x)∧

i=bk−1(x)+1

∧

q′∈Q

(Si
q′ →

∨

(q,a)∈pred(q′)

(Si−1
q ∧ ha

x[i]))

The formula states that if state q′ is reachable after i ≥ 1 transitions, then
there must be a reachable predecessor state q ∈ δ̂({q0}, hω(x)[1..i−1]) such that
q′ ∈ δ(q, hω(x)[i]).

To decide whether the automaton accepts hω(x), we encode that it must
reach an accepting state after bk(x) transitions. Our corresponding encoding
is only valid for the particular bound bk(x). To account for this, we introduce
a fresh selector variable sk and define �accept

x
.∈M

�bk

bk−1
= sk → ∨

qf ∈F S
bk(x)
qf .

Analogously, we define �reject
x

.∈M
�bk

bk−1
= sk → ∧

qf ∈F ¬S
bk(x)
qf . In the k-th call

to the SAT solver and all following calls with the same bound on x, we solve
under the assumption that sk is true. In the first call k′ with bk(x) < bk′(x),
we re-encode the condition using a new selector variable sk′ and solve under
the assumption that sk is false and s′

k is true. The full encoding of the regular
constraint x

.∈ R is thus given by

�x
.∈ R�bk

bk−1
= �(M ; x)�bk

bk−1
∧ �accept

x
.∈M

�bk

bk−1

and its negation x � .∈ R is encoded as

�x � .∈ R�bk

bk−1
= �(M ; x)�bk

bk−1
∧ �reject

x
.∈M

�bk

bk−1
.

Variable Equations. Let x, y ∈ Γ be two string variables, let l =
min(bk−1(x),bk−1(y)), and let u = min(bk(x),bk(y)). We encode equality
between x and y with respect to bk position-wise up to u:

�x
.= y�bk

bk−1
=

u∧

i=l+1

∧

a∈Σλ

(ha
x[i] → ha

y[i]).

The formula asserts that for each position i ∈ l + 1, . . . , u, if x[i] is mapped to a
symbol, then y[i] is mapped to the same symbol (including λ). Since our encoding
of substitutions ensures that every position in a string variable is mapped to
exactly one character, �x

.= y�bk

bk−1
ensures x[i] = y[i] for i ∈ l + 1, . . . , u. In

conjunction with �x
.= y�

bk−1 , which encodes equality up to the l-th position, we
have symbol-wise equality of x and y up to bound u. Thus, if bk(x) = bk(y),
then the formula ensures the equality of both variables. If bk(x) > bk(y), we add
hλ
x[u+1] as an assumption to the solver to ensure x[i] = λ for i ∈ u + 1, . . . ,bk(x)

and, symmetrically, we add the assumption hλ
y[u+1] if bk(y) > bk(x).

Solving String Constraints Using SAT 197

For the negation x � .= y, we encode that h(x) and h(y) must disagree on at least
one position, which can happen either because they map to different symbols
or because the variable with the higher bound is mapped to a longer word. As
for the regular constraints, we again use selector variable sk to deactivate the
encoding for all later bounds, for which it will be re-encoded:

�x � .= y�bk

bk−1
=

⎧
⎪⎨

⎪⎩

sk → (
∨u

i=1

∨
a∈Σλ

(¬ha
x[i] ∧ ha

y[i])) if bk(x) = bk(y)
sk → (

∨u
i=1

∨
a∈Σλ

(¬ha
x[i] ∧ ha

y[i])) ∨ ¬hλ
y[u+1] if bk(x) < bk(y)

sk → (
∨u

i=1

∨
a∈Σλ

(¬ha
x[i] ∧ ha

y[i])) ∨ ¬hλ
x[u+1] if bk(x) > bk(y)

Constant Equations. Given a constant equation x
.= w, if the upper bound

of x is less than |w|, the atom is trivially unsatisfiable. Thus, for all i such that
bi(x) < |w|, we encode x

.= w with a simple literal ¬sx,w and add sx,w to the
assumptions. For bk(x) ≥ |w|, the encoding is based on the value of bk−1(x):

�x
.= w�bk

bk−1
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∧|w|
i=1 h

w[i]
x[i] if bk−1(x) < |w| = bk(x)

∧|w|
i=1 h

w[i]
x[i] ∧ hλ

x[|w|+1] if bk−1(x) < |w| < bk(x)

hλ
x[|w|+1] if bk−1(x) = |w| < bk(x)

� if |w| < bk−1(x)

If bk−1(x) < |w|, then equality is encoded for all positions 1, . . . , |w|. Addition-
ally, if bk(x) > |w|, we ensure that the suffix of x is empty starting from position
|w| + 1. If bk−1(x) = |w| < bk(x), then only the empty suffix has to be ensured.
Lastly, if |w| < bk−1(x), then �x

.= w�
bk−1 ⇔ �x

.= w�
bk .

Conversely, for an inequality x � .= w, if bk(x) < |w|, then any substitution
trivially is a solution, which we simply encode with �. Otherwise, we introduce
a selector variable s′

x,w and define

�x � .= w�bk

bk−1
=

⎧
⎪⎨

⎪⎩

s′
x,w → ∨|w|

i=1 ¬h
w[i]
x[i] if bk−1(x) < |w| = bk(x)

∨|w|
i=1 ¬h

w[i]
x[i] ∨ ¬hλ

x[|w|+1] if bk−1(x) < |w| < bk(x)

� if |w| < bk−1(x) ≤ bk(x)

If bk(x) = |w|, then a substitution h satisfies the constraint if and only if
h(x)[i] �= w[i] for some i ∈ 1, . . . , |w|. If bk(x) > |w|, in addition, h satisfies the
constraint if |h(x)| > |w|. Thus, if bk(x) = |w|, we perform solver call k under
the assumption s′

x,w, and if bk(x) > |w|, we perform it under the assumption
¬s′

x,w. Again, if |w| < bk−1(x), then �x � .= w�
bk−1 ⇔ �x � .= w�

bk .

Prefix and Suffix Constraints. A prefix constraint w
.� x expresses that

the first |w| positions of x must be mapped exactly onto w. As with equations
between a variable x and a constant word w, we could express this as a regular

198 K. Lotz et al.

constraint of the form x
.∈ w·?∗. However, we achieve a more efficient encoding

simply by dropping from the encoding of �x
.= w� the assertion that the suffix

of x starting at |w +1| be empty. Accordingly, a negated prefix constraint w � .� x
expresses that there is an index i ∈ 1, . . . , |w| such that the i-th position of x
is mapped onto a symbol different from w[i], which we encode by repurposing
�x � .= w� in a similar manner. Suffix constraints w

.� x and w � .� x can be encoded
by analogous modifications to the encodings of x .= w and x � .= w.

6 Refining Upper Bounds

Our procedure solves a series of SAT problems where the length bounds on string
variables increase after each unsatisfiable solver call. The procedure terminates
once the bounds are large enough so that further increasing them would be futile.
To determine when this is the case, we rely on the upper bounds of a shortest
solution to a formula ψ. We call a model h of ψ a shortest solution of ψ if ψ has
no model h′ such that

∑
x∈Γ |h′(x)| <

∑
x∈Γ |h(x)|. We first establish this bound

for conjunctive formulas in normal form, where all literals are of the form x � .= y,
x

.∈ R, or x � .∈ R. Once established, we show how the bound can be generalized
to arbitrary formulas.

Let ϕ be a formula in normal form and let x1, . . . , xn be the variables of ϕ.
For each variable xi, we can collect all the regular constraints on xi, that is, all
the literals of the form xi

.∈ R or xi � .∈ R that occur in ϕ. We can characterize
the solutions to all these constraints by a single nondeterministic finite automa-
ton Mi. If the constraints on xi are xi

.∈ R1, . . . , xi

.∈ Rk, xi � .∈ R′
1. . . . , xi � .∈ R′

l,

then Mi is an NFA that accepts the regular language
⋂k

t=1 L(Rt) ∩ ⋂l
t=1 L(R′

t),
where L(R) denotes the complement of L(R). We say that Mi accepts the regu-
lar constraints on xi in ϕ. If there are no such constraints on xi, then Mi is the
one-state NFA that accepts the full language Σ∗. Let Qi denote the set of states
of Mi. If we do not take inequalities into account and if the regular constraints
on xi are satisfiable, then a shortest solution h has length |h(xi)| ≤ |Qi|.

Theorem 6.1 gives a bound for the general case with variable inequalities.
Intuitively, we prove the theorem by constructing a single automaton P that
takes as input a vector of words W = (w1, ..., wn)T and accepts W iff the sub-
stitution hW with hW (xi) = wi satisfies ϕ. To construct P, we introduce one
two-state NFA for each inequality and we then form the product of these NFAs
with (slightly modified versions of) the NFAs M1, . . . , Mn. We can then derive
the bound of a shortest solution from the number of states of P.

Theorem 6.1. Let ϕ be a conjunctive formula in normal form over variables
x1, . . . , xn. Let Mi = (Qi, Σ, δi, q0,i, Fi) be an NFA that accepts the regular con-
straints on xi in ϕ and let k be the number of inequalities occurring in ϕ. If ϕ
is satisfiable, then it has a model h such that

|h(xi)| ≤ 2k × |Q1| × . . . × |Qn|.

Solving String Constraints Using SAT 199

Proof. Let λ be a symbol that does not belong to Σ and define Σλ = Σ∪{λ}. As
previously, we use λ to extend words of Σ∗ by padding. Given a word w ∈ Σ∗

λ, we
denote by ŵ the word of Σ∗ obtained by removing all occurrences of λ from w.
We say that w is well-formed if it can be written as w = v · λt with v ∈ Σ∗ and
t ≥ 0. In this case, we have ŵ = v. Thus a well-formed word w consists of a
prefix in Σ∗ followed by a sequence of λs.

Let Δ be the alphabet Σn
λ , i.e., the letters of Δ are the n-letter words over

Σλ. We can then represent a letter u of Δ as an n-element vector (u1, . . . , un),
and a word W of Δt can be written as an n × t matrix

W =

⎛

⎜
⎝

u11 . . . ut1

...
...

u1n . . . utn

⎞

⎟
⎠

where uij ∈ Σλ. Each column of this matrix is a letter in Δ and each row is a word
in Σt

λ. We denote by pi(W) the i-th row of this matrix and by p̂i(W) = p̂i(W)
the word pi(W) with all occurrences of λ removed. We say that W is well-formed
if the words p1(W), . . . , pn(W) are all well-formed. Given a well-formed word W ,
we can construct a mapping hW : {x1, . . . , xn} → Σ∗ by setting hW (xi) = p̂i(W)
and we have |hW (xi)| ≤ |W | = t.

To prove the theorem, we build an NFA P with alphabet Δ such that a well-
formed word W is accepted by P iff hW satisfies ϕ. The shortest well-formed
W accepted by P has length no more than the number of states of P and the
bound will follow.

We first extend the NFA Mi = (Qi, Σ, δi, q0,i, Fi) to an automaton M ′
i with

alphabet Δ. M ′
i has the same set of states, initial state, and final states as Mi.

Its transition relation δ′
i is defined by

δ′
i(q, u) =

{
δi(q, ui) if ui ∈ Σ
{q} if ui = λ

One can easily check that M ′
i accepts a word W iff Mi accepts p̂i(W).

For an inequality xi � .= xj , we construct an NFA Di,j = ({e, d},Δ, δ, e, {d})
with transition function defined as follows:

δ(e, u) = {e} if ui = uj

δ(e, u) = {d} if ui �= uj

δ(d, u) = {d}.

This NFA has two states. It starts in state e (for “equal”) and stays in e as long
as the characters ui and uj are equal. It transitions to state d (for “different”)
on the first u where ui �= uj and stays in state d from that point. Since d is the
final state, a word W is accepted by Di,j iff pi(W) �= pj(W). If W is well-formed,
we also have that W is accepted by Di,j iff p̂i(W) �= p̂j(W).

Let xi1 � .= xj1 , . . . , xik
� .= xjk

denote the k inequalities of ϕ. We define P to be
the product of the NFAs M ′

1, . . . , M
′
n and Di1,j1 , . . . , Dik,jk

. A well-formed word

200 K. Lotz et al.

W is accepted by P if it is accepted by all M ′
i and all Dit,jt

, which means that
P accepts a well-formed word W iff hW satisfies ϕ.

Let P be the set of states of P. We then have |P | ≤ 2k × |Q1| × . . . × |Qn|.
Assume ϕ is satisfiable, so P accepts a well-formed word W . The shortest well-
formed word accepted by P has an accepting run that does not visit the same
state twice. So the length of this well-formed word W is no more than |P |. The
mapping hW satisfies ϕ and for every xi, it satisfies |hW (xi)| = |p̂i(W)| ≤ |W | ≤
|P | ≤ 2k × |Q1| × . . . × |Qn|. �
The bound given by Theorem 6.1 holds if ϕ is in normal form but it also holds
for a general conjunctive formula ψ. This follows from the observation that
converting conjunctive formulas to normal form preserves the length of solutions.
In particular, we convert ψ ∧x

.= y to formula ψ′ = ψ[x := y] so x does not occur
in ψ′, but clearly, a bound for y in ψ′ gives us the same bound for x in ψ.

In practice, before we apply the theorem we decompose the conjunctive for-
mula ϕ into subformulas that have disjoint sets of variables. We write ϕ as
ϕ1 ∧ . . . ∧ ϕm where the conjuncts have no common variables. Then, ϕ is satisfi-
able if each conjunct ϕt is satisfiable and we derive upper bounds on the shortest
solution for the variables of ϕt, which gives more precise bounds than deriving
bounds from ϕ directly. In particular, if a variable xi of ψ does not occur in any
inequality, then the bound on |h(xi)| is |Qi|.

Theorem 6.1 only holds for conjunctive formulas. For an arbitrary (non-
conjunctive) formula ψ, a generalization is to convert ψ into disjunctive normal
form. Alternatively, it is sufficient to enumerate the subsets of lits(ψ). Given a
subset A of lits(ψ), let us denote by dA a mapping that bounds the length of
solutions to A, i.e., any solution h to A satisfies |h(x)| ≤ dA(x). This mapping
dA can be computed from Theorem 6.1. The following property gives a bound
for ψ.

Proposition 6.2. If ψ is satisfiable, then it has a model h such that for all
x ∈ Γ , it holds that |h(x)| ≤ max{dA(x) | A ⊆ lits(ψ)}.
Proof. We can assume that ψ is in negation normal form. We can then convert ψ
to disjunctive normal form ψ ⇔ ψ1∨· · ·∨ψn and we have lits(ψi) ⊆ lits(ψ). Also,
ψ is satisfiable if and only if at least one ψi is satisfiable and the proposition
follows. �
Since there are 2|lits(ψ)| subsets of lits(ψ), a direct application of Proposition 6.2
is rarely feasible in practice. Fortunately, we can use unsatisfiable cores to reduce
the number of subsets to consider.

6.1 Unsatisfiable-Core Analysis

Instead of calculating the bounds upfront, we use the unsatisfiable core produced
by the SAT solver after each incremental call to evaluate whether the upper

Solving String Constraints Using SAT 201

bounds on the variables exceed the upper bounds of the shortest solution. If
�ψ�

b is unsatisfiable for bounds b, then it has an unsatisfiable core

C = CA ∧ Ch ∧
∧

a∈atoms+(ψ)

Ca ∧
∧

a∈atoms−(ψ)

Cā

with (possibly empty) subsets of clauses CA ⊆ ψA, Ch ⊆ �h�
b , Ca ⊆ (d(a) →

�a�
b), and Cā ⊆ (¬d(a) → �¬a�

b). Here we implicitly assume ψA, d(a) → �a�
b ,

and ¬d(a) → �¬a�
b to be in CNF. Let C+ = {a | Ca �= ∅} and C− = {¬a | Cā �=

∅} be the sets of literals whose encodings contain at least one clause of the core
C. Using these sets, we construct the formula

ψC = ψA ∧
∧

a∈C+

d(a) → a ∧
∧

¬a∈C−
¬d(a) → ¬a,

which consists of the conjunction of the abstraction and the definitions of the
literals that are contained in C+, respectively C−. Recall that ψ is equisatisfiable
to the conjunction ψA ∧ ∧

d∈D d of the abstraction and all definitions in D. Let
ψ′ denote this formula, i.e.,

ψ′ = ψA ∧
∧

a∈atoms+(ψ)

d(a) → a ∧
∧

¬a∈atoms−(ψ)

¬d(a) → ¬a.

The following proposition shows that it suffices to refine the bounds according
to ψC .

Proposition 6.3. Let ψ be unsatisfiable with respect to b and let C be an unsat-
isfiable core of �ψ�

b . Then, ψC is unsatisfiable with respect to b and ψ′ |= ψC.

Proof. By definition, we have �ψC�
b = ψA ∧ �h�

b ∧ ∧
a∈C+ d(a) → �a�

b ∧
∧

¬a∈C− ¬d(a) → ¬�¬a�
b . This implies C ⊆ �ψC�

b and, since C is an unsat-

isfiable core, �ψC�
b is unsatisfiable. That is, ψC is unsatisfiable with respect

to b. We also have ψ′ |= ψC since C+ ⊆ atoms+(ψ) and C− ⊆ atoms−(ψ). �
Applying Proposition 6.2 to ψC results in the upper bounds of the shortest
solution hC for ψC . If |hC(x)| ≤ b(x) holds for all x ∈ Γ , then ψC has no solution
and unsatisfiability of ψ′ follows from Proposition 6.3. Because ψ and ψ′ are
equisatisfiable, we can conclude that ψ is unsatisfiable.

Otherwise, we increase the bounds on the variables that occur in ψC while
keeping bounds on the other variables unchanged: We construct bk+1 with
bk(x) ≤ bk+1(x) ≤ |hC(x)| for all x ∈ Γ , such that bk(y) < bk+1(y) holds for
at least one y ∈ V (ψC). By strictly increasing at least one variable’s bound, we
eventually either reach the upper bounds of ψC and return unsatisfiability, or we
eliminate it as an unsatisfiable implication of ψ. As there are only finitely many
possibilities for C and thus for ψC , our procedure is guaranteed to terminate.

202 K. Lotz et al.

We do not explicitly construct formula ψC to compute bounds on hC as we
know the set lits(ψC) = C+ ∪ C−. Finding upper bounds still requires enumerat-
ing all subsets of lits(ψC), but we have |lits(ψC)| ≤ |lits(ψ)| and usually lits(ψC)
is much smaller than lits(ψ). For example, consider the formula

ψ = z � .= abd ∧ (x .= a ∨ x
.∈ ab∗) ∧ x

.= y ∧ (y .= bbc ∨ z ∈ a(b|c)∗d) ∧ y
.∈ ab·?∗

which is unsatisfiable for the bounds b(x) = b(y) = 1 and b(z) = 4.
The unsatisfiable core C returned after solving �ψ�

b results in the for-
mula ψC = (x .= a ∨ x

.∈ ab∗) ∧ x
.= y ∧ y

.∈ ab·?∗ containing four literals. Finding
upper bounds for ψC thus amounts to enumerating just 24 subsets, which is sub-
stantially less than considering all 27 subsets of lits(ψ) upfront. The conjunction
of a subset of lits(ψC) yielding the largest upper bounds is x

.∈ ab∗ ∧ x
.= y ∧ y

.∈
ab·?∗, which simplifies to x

.∈ ab∗ ∩ ab·?∗ and has a solution of length at most 2
for x and y. With bounds b(x) = b(y) = 2 and b(z) = 4, the formula is satisfiable.

7 Implementation

We have implemented our approach in a solver called nfa2sat. nfa2sat is
written in Rust and uses CaDiCaL [9] as the backend SAT solver. We use the
incremental API provided by CaDiCaL to solve problems under assumptions.
Soundness of nfa2sat follows from Theorem 5.1. For completeness, we rely
on CaDiCaL’s failed function to efficiently determine failed assumptions, i.e.,
assumption literals that were used to conclude unsatisfiability.

The procedure works as follows. Given a formula ψ, we first introduce one
fresh Boolean selector variable sl for each theory literal l ∈ lits(ψ). Then, instead
of adding the encoded definitions of the theory literals directly to the SAT
solver, we precede them with their corresponding selector variables: for a pos-
itive literal a, we add sa → (d(a) → �a�), and for a negative literal ¬a, we
add s¬a → (¬d(a) → �¬a�) (considering assumptions introduced by �a� as unit
clauses). In the resulting CNF formula, the new selector variables are present
in all clauses that encode their corresponding definition, and we use them as
assumptions for every incremental call to the SAT solver, which does not affect
satisfiability. If such an assumption failed, then we know that at least one of the
corresponding clauses in the propositional formula was part of an unsatisfiable
core, which enables us to efficiently construct the sets C+ and C− of positive and
negative atoms present in the unsatisfiable core. As noted previously, we have
lits(ψC) = C+ ∪C− and hence the sets are sufficient to find bounds on a shortest
model for ψC .

This approach is efficient for obtaining lits(ψC) but since CaDiCaL does not
guarantee that the set of failed assumptions is minimal, lits(ψC) is not minimal
in general. Moreover, even a minimal lits(ψC) can contain too many elements
for processing all subsets. To address this issue, we enumerate the subsets only
if lits(ψC) is small (by default, we use a limit of ten literals). In this case, we
construct the automata Mi used in Theorem 6.1 for each subset, facilitating the
techniques described in [7] for quickly ruling out unsatisfiable ones. Otherwise,

Solving String Constraints Using SAT 203

instead of enumerating the subsets, we resort to sound approximations of upper
bounds, which amounts to over-approximating the number of states without
explicitly constructing the automata (c.f. [14]).

Once we have obtained upper bounds on the length of the solution of ψC , we
increment bounds on all variables involved, except those that have reached their
maximum. Our default heuristics computes a new bound that is either double
the current bound of a variable or its maximum, whichever is smaller.

8 Experimental Evaluation

We have evaluated our solver on a large set of benchmarks from the ZaligVin-
der [22] repository2. The repository contains 120,287 benchmarks stemming
from both academic and industrial applications. In particular, all the string prob-
lems from the SMT-LIB repository,3 are included in the ZaligVinder reposi-
tory. We converted the ZaligVinder problems to the SMT-LIB 2.6 syntax and
removed duplicates. This resulted in 82,632 unique problems out of which 29,599
are in the logical fragment we support.

We compare nfa2sat with the state-of-the-art solvers cvc5 (version 1.0.3)
and Z3 (version 4.12.0). The comparison is limited to these two solvers because
they are widely adopted and because they had the best performance in our evalu-
ation. Other string solvers either don’t support our logical fragment (CertiStr,
Woorpje) or gave incorrect answers on the benchmark problems considered
here. Older, no-longer maintained, solvers have known soundness problems, as
reported in [7] and [27].

We ran our experiment on a Linux server, with a timeout of 1200 s seconds
CPU time and a memory limit of 16 GB. Table 1 shows the results. As a single
tool, nfa2sat solves more problems than cvc5 but not as many as Z3. All three
tools solve more than 98% of the problems.

The table also shows results of portfolios that combine two solvers. In a port-
folio configuration, the best setting is to use both Z3 and nfa2sat. This com-
bination solves all but 20 problems within the timeout. It also reduces the total
run-time from 283,942 s for Z3 (about 79 h) to 28,914 s for the portfolio (about
8 h), that is, a 90% reduction in total solve time. The other two portfolios—
namely, Z3 with cvc5 and nfa2sat with cvc5—also have better performance
than a single solver, but the improvement in runtime and number of timeouts is
not as large.

Figure 4a illustrates why nfa2sat and Z3 complement each other well. The
figure shows three scatter plots that compare the runtime of nfa2sat and Z3 on
our problems. The plot on the left compares the two solvers on all problems, the
one in the middle compares them on satisfiable problems, and the one on the right
compares them on unsatisfiable problems. Points in the left plot are concentrated
close to the axes, with a smaller number of points near the diagonal, meaning
that Z3 and nfa2sat have different runtime on most problems. The other two
2 https://github.com/zaligvinder/zaligvinder.
3 https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF S.

https://github.com/zaligvinder/zaligvinder
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_S

204 K. Lotz et al.

Table 1. Evaluation on ZaligVinder benchmarks. The three left columns show results
of individual solvers. The other three columns show results of portfolios combining two
solvers.

cvc5 Z3 nfa2sat cvc5
Z3

nfa2sat
cvc5

nfa2sat
Z3

SAT 22895 22927 22922 22934 22934 22934

UNSAT 6259 6486 6405 6526 6598 6645

Timeout 445 185 206 139 67 20

Out-of-memory 0 1 66 n/a n/a n/a

Total Solved 29154 29413 29327 29460 29532 29579

Total Runtime (s) 655877 283942 275420 169553 126655 28914

Fig. 4. Comparison of runtime (in seconds) with Z3 and cvc5. The left plots include
all problems, the middle plots include only satisfiable problems, and the right plots
include only unsatisfiable problems. The lines marked “failed” correspond to problems
that are not solved because a solver ran out of memory. The lines marked “timeout”
correspond to problems not solved because of a timeout (1200 s).

plots show this even more clearly: nfa2sat is faster on satisfiable problems while
Z3 is faster on unsatisfiable problems. Figure 4b shows analogous scatter plots
comparing nfa2sat and cvc5. The two solvers show similar performance on
a large set of easy benchmarks although cvc5 is faster on problems that both

Solving String Constraints Using SAT 205

solvers can solve in less than 1 s. However, cvc5 times out on 38 problems that
nfa2sat solves in less than 2 s. On unsatisfiable problems, cvc5 tends to be
faster than nfa2sat, but there is a class of problems for which nfa2sat takes
between 10 and 100 s whereas cvc5 is slower.

Overall, the comparison shows that nfa2sat is competitive with cvc5 and
Z3 on these benchmarks. We also observe that nfa2sat tends to work better on
satisfiable problems. For best overall performance, our experiments show that a
portfolio of Z3 and nfa2sat would solve all but 20 problems within the timeout,
and reduce the total solve time by 90%.

9 Conclusion

We have presented the first eager SAT-based approach to string solving that is
both sound and complete for a reasonably expressive fragment of string theory.
Our experimental evaluation shows that our approach is competitive with the
state-of-the-art lazy SMT solvers Z3 and cvc5, outperforming them on satisfi-
able problems but falling behind on unsatisfiable ones. A portfolio that combines
our approach with these solvers—particularly with Z3—would thus yield strong
performance across both types of problems.

In future work, we plan to extend our approach to a more expressive logi-
cal fragment, including more general word equations. Other avenues of research
include the adaption of model checking techniques such as IC3 [10] to string
problems, which we hope would lead to better performance on unsatisfiable
instances. A particular benefit of the eager approach is that it enables the use
of mature techniques from the SAT world, especially for proof generation and
parallel solving. Producing proofs of unsatisfiability is complex for traditional
CDCL(T) solvers because of the complex rewriting and deduction rules they
employ. In contrast, efficiently generating and checking proofs produced by SAT
solvers (using the DRAT format [32]) is well-established and practicable. A chal-
lenge in this respect would be to combine unsatisfiability proofs from a SAT
solver with proof that our reduction to SAT is sound. For parallel solving, we
plan to explore the use of a parallel incremental solver (such as iLingeling [9])
as well as other possible ways to solve multiple bounds in parallel.

References

1. Abdulla, P.A., et al.: Trau: SMT solver for string constraints. In: 2018 Formal
Methods in Computer Aided Design (FMCAD), pp. 1–5 (2018). https://doi.org/
10.23919/FMCAD.2018.8602997

2. Backes, J., et al.: Semantic-based automated reasoning for AWS access policies
using SMT. In: 2018 Formal Methods in Computer Aided Design (FMCAD), pp.
1–9 (2018). https://doi.org/10.23919/FMCAD.2018.8602994

https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602997
https://doi.org/10.23919/FMCAD.2018.8602994

206 K. Lotz et al.

3. Barbosa, H., et al.: cvc5: A versatile and industrial-strength SMT solver. In: Fis-
man, D., Rosu, G. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems - 28th International Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 13243, pp. 415–442. Springer (2022). https://doi.org/10.1007/
978-3-030-99524-9 24

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017). www.smt-
lib.org

5. Berzish, M., et al.: String theories involving regular membership predicates: From
practice to theory and back. In: Lecroq, T., Puzynina, S. (eds.) Combinatorics on
Words, pp. 50–64. Springer International Publishing, Cham (2021)

6. Berzish, M., et al.: Towards more efficient methods for solving regular-expression
heavy string constraints. Theoretical Computer Science 943, 50–72 (2023). https://
doi.org/10.1016/j.tcs.2022.12.009, https://www.sciencedirect.com/science/article/
pii/S030439752200723X

7. Berzish, M., et al.: An SMT solver for regular expressions and linear arithmetic
over string length. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification,
pp. 289–312. Springer International Publishing, Cham (2021)

8. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H.,
Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 457–481. IOS Press (2009). https://doi.org/10.3233/
978-1-58603-929-5-457

9. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 - Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

10. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

11. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for
path feasibility of string-manipulating programs with complex operations. Proc.
ACM Program. Lang. 3(POPL) (jan 2019). https://doi.org/10.1145/3290362

12. Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.:
On solving word equations using SAT. In: Filiot, E., Jungers, R., Potapov, I.
(eds.) Reachability Problems, pp. 93–106. Springer International Publishing, Cham
(2019)

13. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science 89(4), 543–560 (2003). https://doi.org/10.
1016/S1571-0661(05)82542-3, https://www.sciencedirect.com/science/article/pii/
S1571066105825423, bMC’2003, First International Workshop on Bounded Model
Checking

14. Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity.
CoRR abs/1509.03254 (2015), http://arxiv.org/abs/1509.03254

15. Hojjat, H., Rümmer, P., Shamakhi, A.: On strings in software model checking.
In: Lin, A.W. (ed.) Programming Languages and Systems, pp. 19–30. Springer
International Publishing, Cham (2019)

https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
www.smt-lib.org
www.smt-lib.org
https://doi.org/10.1016/j.tcs.2022.12.009
https://doi.org/10.1016/j.tcs.2022.12.009
https://www.sciencedirect.com/science/article/pii/S030439752200723X
https://www.sciencedirect.com/science/article/pii/S030439752200723X
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1145/3290362
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://www.sciencedirect.com/science/article/pii/S1571066105825423
https://www.sciencedirect.com/science/article/pii/S1571066105825423
http://arxiv.org/abs/1509.03254

Solving String Constraints Using SAT 207

16. Jez, A.: Word Equations in Nondeterministic Linear Space. In: Chatzigiannakis,
I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th International Colloquium on
Automata, Languages, and Programming (ICALP 2017). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 80, pp. 95:1–95:13. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). https://doi.org/10.
4230/LIPIcs.ICALP.2017.95, http://drops.dagstuhl.de/opus/volltexte/2017/7408

17. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: Certistr: A certified string solver.
In: Proceedings of the 11th ACM SIGPLAN International Conference on Certi-
fied Programs and Proofs, pp. 210–224. CPP 2022, Association for Computing
Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3497775.3503691

18. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and
relations by word equations. J. ACM 47(3), 483–505 (may 2000). https://doi.org/
10.1145/337244.337255

19. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi: A solver for
string constraints. In: Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, pp. 105–116. ISSTA ’09, Association for Computing
Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1572272.1572286

20. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from N objects. In:
Fourth Workshop on Constraints in Formal Verification (CFV) (2007)

21. Kulczynski, M., Lotz, K., Nowotka, D., Poulsen, D.B.: Solving string theories
involving regular membership predicates using SAT. In: Legunsen, O., Rosu, G.
(eds.) Model Checking Software, pp. 134–151. Springer International Publishing,
Cham (2022)

22. Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: Zaligvinder: A
generic test framework for string solvers. J. Softw.: Evolution and Process
n/a(n/a), e2400. https://doi.org/10.1002/smr.2400, https://onlinelibrary.wiley.
com/doi/abs/10.1002/smr.2400

23. Makanin, G.S.: The problem of solvability of equations in a free semi-
group. Math. USSR, Sb. 32, 129–198 (1977). https://doi.org/10.1070/
SM1977v032n02ABEH002376

24. Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4: A multi-
armed string solver. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) Formal Meth-
ods, pp. 389–406. Springer International Publishing, Cham (2021)

25. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pp. 337–340.
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008)

26. Murray, N.V.: Completely non-clausal theorem proving. Artificial Intelligence
18(1), 67–85 (1982). https://doi.org/10.1016/0004-3702(82)90011-X, https://
www.sciencedirect.com/science/article/pii/000437028290011X

27. Nötzli, A., Reynolds, A., Barbosa, H., Barrett, C.W., Tinelli, C.: Even faster
conflicts and lazier reductions for string solvers. In: Shoham, S., Vizel, Y. (eds.)
Computer Aided Verification - 34th International Conference, CAV 2022, Haifa,
Israel, August 7-10, 2022, Proceedings, Part II. Lecture Notes in Computer Sci-
ence, vol. 13372, pp. 205–226. Springer (2022). https://doi.org/10.1007/978-3-031-
13188-2 11, https://doi.org/10.1007/978-3-031-13188-2 11

28. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation.
Journal of Symbolic Computation 2(3), 293–304 (1986). https://doi.org/10.
1016/S0747-7171(86)80028-1, https://www.sciencedirect.com/science/article/pii/
S0747717186800281

https://doi.org/10.4230/LIPIcs.ICALP.2017.95
https://doi.org/10.4230/LIPIcs.ICALP.2017.95
http://drops.dagstuhl.de/opus/volltexte/2017/7408
https://doi.org/10.1145/3497775.3503691
https://doi.org/10.1145/337244.337255
https://doi.org/10.1145/337244.337255
https://doi.org/10.1145/1572272.1572286
https://doi.org/10.1002/smr.2400
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2400
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2400
https://doi.org/10.1070/SM1977v032n02ABEH002376
https://doi.org/10.1070/SM1977v032n02ABEH002376
https://doi.org/10.1016/0004-3702(82)90011-X
https://www.sciencedirect.com/science/article/pii/000437028290011X
https://www.sciencedirect.com/science/article/pii/000437028290011X
https://doi.org/10.1007/978-3-031-13188-2_11
https://doi.org/10.1007/978-3-031-13188-2_11
https://doi.org/10.1007/978-3-031-13188-2_11
https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1016/S0747-7171(86)80028-1
https://www.sciencedirect.com/science/article/pii/S0747717186800281
https://www.sciencedirect.com/science/article/pii/S0747717186800281

208 K. Lotz et al.

29. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE.
In: 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039), pp. 495–500 (1999). https://doi.org/10.1109/SFFCS.1999.814622

30. Rungta, N.: A billion SMT queries a day (invited paper). In: Shoham, S., Vizel, Y.
(eds.) Computer Aided Verification. pp. 3–18. Springer International Publishing,
Cham (2022). https://doi.org/10.1007/978-3-031-13185-1 1

31. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: 2010 IEEE Symposium on Security and
Privacy, pp. 513–528 (2010). https://doi.org/10.1109/SP.2010.38

32. Wetzler, N., Heule, M., Jr., W.A.H.: Drat-trim: Efficient checking and trimming
using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) Theory and Applica-
tions of Satisfiability Testing - SAT 2014 - 17th International Conference, Held
as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8561, pp. 422–429.
Springer (2014). https://doi.org/10.1007/978-3-319-09284-3 31, https://doi.org/
10.1007/978-3-319-09284-3 31

33. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. Formal Methods Syst. Design 44(1), 44–
70 (2014). https://doi.org/10.1007/s10703-013-0189-1, https://doi.org/10.1007/
s10703-013-0189-1

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/SFFCS.1999.814622
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1109/SP.2010.38
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/978-3-319-09284-3_31
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/s10703-013-0189-1
https://doi.org/10.1007/s10703-013-0189-1
http://creativecommons.org/licenses/by/4.0/

The GOLEM Horn Solver

Martin Blicha1,2(B) , Konstantin Britikov1 , and Natasha Sharygina1

1 Università della Svizzera Italiana, Lugano, Switzerland
{blichm,britik,sharygin}@usi.ch

2 Charles University, Prague, Czech Republic

Abstract. The logical framework of Constrained Horn Clauses (CHC)
models verification tasks from a variety of domains, ranging from verifi-
cation of safety properties in transition systems to modular verification
of programs with procedures. In this work we present Golem, a flexible
and efficient solver for satisfiability of CHC over linear real and integer
arithmetic. Golem provides flexibility with modular architecture and
multiple back-end model-checking algorithms, as well as efficiency with
tight integration with the underlying SMT solver. This paper describes
the architecture of Golem and its back-end engines, which include our
recently introduced model-checking algorithm TPA for deep exploration.
The description is complemented by extensive evaluation, demonstrating
the competitive nature of the solver.

Keywords: Constrained Horn Clauses · Model Checking

1 Introduction

The framework of Constrained Horn Clauses (CHC) has been proposed as a uni-
fied, purely logic-based, intermediate format for software verification tasks [33].
CHC provides a powerful way to model various verification problems, such as
safety, termination, and loop invariant computation, across different domains like
transition systems, functional programs, procedural programs, concurrent sys-
tems, and more [33–35,41]. The key advantage of CHC is the separation of mod-
elling from solving, which aligns with the important software design principle—
separation of concerns. This makes CHCs highly reusable, allowing a specialized
CHC solver to be used for different verification tasks across domains and pro-
gramming languages. The main focus of the front end is then to translate the
source code into the language of constraints, while the back end can focus solely
on the well-defined formal problem of deciding satisfiability of a CHC system.

CHC-based verification is becoming increasingly popular, with several frame-
works developed in recent years, including SeaHorn, Korn and TriCera for
C [27,28,36], JayHorn for Java [44], RustHorn for Rust [48], HornDroid for
Android [18], SolCMC and SmartACE for Solidity [2,57]. A novel CHC-based
approach for testing also shows promising results [58]. The growing demand from
verifiers drives the development of specialized Horn solvers. Different solvers
implement different techniques based on, e.g., model-checking approaches (such
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 209–223, 2023.
https://doi.org/10.1007/978-3-031-37703-7_10

https://doi.org/10.5281/zenodo.7864687
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_10&domain=pdf
http://orcid.org/0000-0001-8140-4098
http://orcid.org/0009-0005-7843-7290
http://orcid.org/0000-0002-8872-4913
https://doi.org/10.1007/978-3-031-37703-7_10

210 M. Blicha et al.

as predicate abstraction [32], CEGAR [22] and IC3/PDR [16,26]), machine learn-
ing, automata, or CHC transformations. Eldarica [40] uses predicate abstrac-
tion and CEGAR as the core solving algorithm. It leverages Craig interpo-
lation [23] not only to guide the predicate abstraction but also for accelera-
tion [39]. Additionally, it controls the form of the interpolants with interpolation
abstraction [46,53]. Spacer [45] is the default algorithm for solving CHCs in
Z3 [51]. It extends PDR-style algorithm for nonlinear CHC [38] with under-
approximations and leverages model-based projection for predecessor computa-
tion. Recently it was enriched with global guidance [37]. Ultimate TreeAu-
tomizer [25] implements automata-based approaches to CHC solving [43,56].
HoIce [20] implements a machine-learning-based technique adapted from the
ICE framework developed for discovering inductive invariants of transition sys-
tems [19]. FreqHorn [29,30] combines syntax-guided synthesis [4] with data
derived from unrollings of the CHC system.

According to the results of the international competition on CHC solving
CHC-COMP [24,31,54], solvers applying model-checking techniques, namely
Spacer and Eldarica, are regularly outperforming the competitors. These
are the solvers most often used as the back ends in CHC-based verification
projects. However, only specific algorithms have been explored in these tools
for CHC solving, limiting their application for diverse verification tasks. Experi-
ence from software verification and model checking of transition systems shows
that in contrast to the state of affairs in CHC solving, it is possible to build a
flexible infrastructure with a unified environment for multiple back-end solving
algorithms. CPAchecker [6–11], and Pono [47] are examples of such tools.

This work aims to bring this flexibility to the general domain-independent
framework of constrained Horn clauses. We present Golem, a new solver
for CHC satisfiability, that provides a unique combination of flexibility and
efficiency.1 Golem implements several SMT-based model-checking algorithms:
our recent model-checking algorithm based on Transition Power Abstraction
(TPA) [13,14], and state-of-the-art model-checking algorithms Bounded Model
Checking (BMC) [12], k-induction [55], Interpolation-based Model Checking
(IMC) [49], Lazy Abstractions with Interpolants (LAWI) [50] and Spacer [45].
Golem achieves efficiency through tight integration with the underlying interpo-
lating SMT solver OpenSMT [17,42] and preprocessing transformations based
on predicate elimination, clause merging and redundant clause elimination. The
flexible and modular framework of OpenSMT enables customization for differ-
ent algorithms; its powerful interpolation modules, particularly, offer fine con-
trol (in size and strength) with multiple interpolant generation procedures. We
report experimentation that confirms the advantage of multiple diverse solving
techniques and shows that Golem is competitive with state-of-the-art Horn
solvers on large sets of problems.2 Overall, Golem can serve as an efficient back

1 Golem is available at https://github.com/usi-verification-and-security/golem.
2 This is in line with results from CHC-COMP 2021 and 2022 [24,31]. In 2022, Golem

beat other solvers except Z3-Spacer in the LRA-TS, LIA-Lin and LIA-Nonlin
tracks.

https://github.com/usi-verification-and-security/golem

The Golem Horn Solver 211

end for domain-specific verification tools and as a research tool for prototyping
and evaluating SMT- and interpolation-based verification techniques in a unified
setting.

2 Tool Overview

In this section, we describe the main components and features of the tool together
with the details of its usage. For completeness, we recall the terminology related
to CHCs first.

Constrained Horn Clauses. A constrained Horn clause is formula ϕ∧B1∧B2∧
. . . ∧ Bn =⇒ H, where ϕ is the constraint, a formula in the background theory,
B1, . . . , Bn are uninterpreted predicates, and H is an uninterpreted predicate or
false. The antecedent of the implication is commonly denoted as the body and
the consequent as the head. A clause with more than one predicate in the body is
called nonlinear. A nonlinear system of CHCs has at least one nonlinear clause;
otherwise, the system is linear.

Interpreter Preprocessor BMC KIND

LAWI IMC

SpacerTPA

Engines

.smt2

SAT
+

model

UNSAT
+

proof Interpolator

Core solver

OpenSMT

Interpolation
customization

Fig. 1. High-level architecture of Golem

Architecture. The flow of data inside Golem is depicted in Fig. 1. The system
of CHCs is read from .smt2 file, a script in an extension of the language of SMT-
LIB.3 Interpreter interprets the SMT-LIB script and builds the internal rep-
resentation of the system of CHCs. In Golem, CHCs are first normalized, then
the system is translated into an internal graph representation. Normalization
rewrites clauses to ensure that each predicate has only variables as arguments.
The graph representation of the system is then passed to the Preprocessor,
which applies various transformations to simplify the input graph. Preprocessor
then hands the transformed graph to the chosen back-end engine. Engines in
3 https://chc-comp.github.io/format.html.

https://chc-comp.github.io/format.html

212 M. Blicha et al.

Golem implement various SMT-based model-checking algorithms for solving
the CHC satisfiability problem. There are currently six engines in Golem: TPA,
BMC, KIND, IMC, LAWI, and Spacer (see details in Sect. 3). User selects the
engine to run using a command-line option --engine. Golem relies on the inter-
polating SMT solver OpenSMT [42] not only for answering SMT queries but
also for interpolant computation required by most of the engines. Interpolating
procedures in OpenSMT can be customized on demand for the specific needs of
each engine [1]. Additionally, Golem re-uses the data structures of OpenSMT
for representing and manipulating terms.

Models and Proofs. Besides solving the CHC satisfiability problem, a witness
for the answer is often required by the domain-specific application. Satisfiabil-
ity witness is a model, an interpretation of the CHC predicates that makes all
clauses valid. Unsatisfiability witness is a proof, a derivation of the empty clause
from the input clauses. In software verification these witnesses correspond to pro-
gram invariants and counterexample paths, respectively. All engines in Golem
produce witnesses for their answer. Witnesses from engines are translated back
through the applied preprocessing transformations. Only after this backtransla-
tion, the witness matches the original input system and is reported to the user.
Witnesses must be explicitly requested with the option --print-witness.

Models are internally stored as formulas in the background theory, using only
the variables of the (normalized) uninterpreted predicates. They are presented
to the user in the format defined by SMT-LIB [5]: a sequence of SMT-LIB’s
define-fun commands, one for each uninterpreted predicate.

For the proofs, Golem follows the trace format proposed by Eldarica.
Internally, proofs are stored as a sequence of derivation steps. Every derivation
step represents a ground instance of some clause from the system. The ground
instances of predicates from the body form the premises of the step, and the
ground instance of the head’s predicate forms the conclusion of the step. For
the derivation to be valid, the premises of each step must have been derived
earlier, i.e., each premise must be a conclusion of some derivation step earlier in
the sequence. To the user, the proof is presented as a sequence of derivations of
ground instances of the predicates, where each step is annotated with the indices
of its premises. See Example 1 below for the illustration of the proof trace.

Golem also implements an internal validator that checks the correctness
of the witnesses. It validates a model by substituting the interpretations for the
predicates and checking the validity of all the clauses with OpenSMT. Proofs are
validated by checking all conditions listed above for each derivation step. Valida-
tion is enabled with an option --validate and serves primarily as a debugging
tool for the developers of witness production.

The Golem Horn Solver 213

Example 1. Consider the following CHC system and the proof of its
unsatisfiability.

x > 0 =⇒ L1(x)
x′ = x + 1 =⇒ D(x, x′)

L1(x) ∧ D(x, x′) =⇒ L2(x′)
L2(x) ∧ x ≤ 2 =⇒ false

1. L1(1)
2. D(1, 2)
3. L2(2) ; 1, 2
4. false ; 3

The derivation of false consists of four derivation steps. Step 1 instantiates
the first clause for x := 1. Step 2 instantiates the second clause for x := 1 and
x′ := 2. Step 3 applies resolution to the instance of the third clause for x := 1
and x′ := 2 and facts derived in steps 1 and 2. Finally, step 4 applies resolution
to the instance of the fourth clause for x := 2 and the fact derived in step 3.

Preprocessing Transformations. Preprocessing can significantly improve
performance by transforming the input CHC system into one more suitable for
the back-end engine. The most important transformation in Golem is predicate
elimination. Given a predicate not present in both the body and the head of the
same clause, the predicate can be eliminated by exhaustive application of the
resolution rule. This transformation is most beneficial when it also decreases the
number of clauses. Clause merging is a transformation that merges all clauses
with the same uninterpreted predicates in the body and the head to a single
clause by disjoining their constraints. This effectively pushes work from the level
of the model-checking algorithm to the level of the SMT solver. Additionally,
Golem detects and deletes redundant clauses, i.e., clauses that cannot partici-
pate in the proof of unsatisfiability.

An important feature of Golem is that all applied transformations are
reversible in the sense that any model or proof for the transformed system can
be translated back to a model or proof of the original system.

3 Back-end Engines of GOLEM

The core components of Golem that solve the problem of satisfiability of a CHC
system are referred to as back-end engines, or just engines. Golem implements
several popular state-of-the-art algorithms from model checking and software
verification: BMC, k-induction, IMC, LAWI and Spacer. These algorithms treat
the problem of solving a CHC system as a reachability problem in the graph
representation.

The unique feature of Golem is the implementation of the new model-
checking algorithm based on the concept of Transition Power Abstraction (TPA).
It is capable of much deeper analysis than other algorithms when searching for
counterexamples [14], and it discovers transition invariants [13], as opposed to
the usual (state) invariants.

214 M. Blicha et al.

3.1 Transition Power Abstraction

The TPA engine in Golem implements the model-checking algorithm based
on the concept of Transition Power Abstraction. It can work in two modes:
The first mode implements the basic TPA algorithm, which uses a single TPA
sequence [14]. The second mode implements the more advanced version, split-
TPA, which relies on two TPA sequences obtained by splitting the single TPA
sequence of the basic version [13]. In Golem, both variants use the under-
approximating model-based projection for propagating truly reachable states,
avoiding full quantifier elimination. Moreover, they benefit from incremental
solving available in OpenSMT, which speeds up the satisfiability queries.

The TPA algorithms, as described in the publications, operate on transition
systems [13,14]. However, the engine in Golem is not limited to a single tran-
sition system. It can analyze a connected chain of transition systems. In the
software domain, this model represents programs with a sequence of consecutive
loops. The extension to the chain of transition systems works by maintaining a
separate TPA sequence for each node on the chain, where each node has its own
transition relation. The reachable states are propagated forwards on the chain,
while safe states—from which final error states are unreachable—are propagated
backwards. In this scenario, transition systems on the chain are queried for reach-
ability between various initial and error states. Since the transition relations
remain the same, the summarized information stored in the TPA sequences can
be re-used across multiple reachability queries. The learnt information summa-
rizing multiple steps of the transition relation is not invalidated when the initial
or error states change.

Golem’s TPA engine discovers counterexample paths in unsafe transition
systems, which readily translate to unsatisfiability proofs for the corresponding
CHC systems. For safe transition systems, it discovers safe k-inductive transi-
tion invariants. If a model for the corresponding CHC system is required, the
engine first computes a quantified inductive invariant and then applies quantifier
elimination to produce a quantifier-free inductive invariant, which is output as
the corresponding model.4

The TPA engine’s ability to discover deep counterexamples and transition
invariants gives Golem a unique edge for systems requiring deep exploration.
We provide an example of this capability as part of the evaluation in Sect. 4.

3.2 Engines for State-of-the-Art Model-Checking Algorithms

Besides TPA, Golem implements several popular state-of-the-art model-
checking algorithms. Among them are bounded model checking [12], k-
induction [55] and McMillan’s interpolation-based model checking [49], which
operate on transition systems. Golem faithfully follows the description of the
algorithms in the respective publications.
4 The generation of unsatisfiability proofs also works for the extension to chains of

transition systems, while the generation of models for this case is still under devel-
opment.

The Golem Horn Solver 215

Additionally, Golem implements Lazy Abstractions with Interpolants
(LAWI), an algorithm introduced by McMillan for verification of software [50].5
In the original description, the algorithm operates on programs represented with
abstract reachability graphs, which map straightforwardly to linear CHC systems.
This is the input supported by our implementation of the algorithm in Golem.

The last engine in Golem implements the IC3-based algorithm Spacer [45]
for solving general, even nonlinear, CHC systems. Nonlinear CHC systems can
model programs with summaries, and in this setting, Spacer computes both
under-approximating and over-approximating summaries of the procedures to
achieve modular analysis of programs. Spacer is currently the only engine in
Golem capable of solving nonlinear CHC systems.

All engines in Golem rely on OpenSMT for answering SMT queries, often
leveraging the incremental capabilities of OpenSMT to implement the corre-
sponding model-checking algorithm efficiently. Additionally, the engines IMC,
LAWI, Spacer and TPA heavily use the flexible and controllable interpolation
framework in OpenSMT [1,52], especially multiple interpolation procedures for
linear-arithmetic conflicts [3,15].

4 Experiments

In this section, we evaluate the performance of individual Golem’s engines on
the benchmarks from the latest edition of CHC-COMP. The goal of these experi-
ments is to 1) demonstrate the usefulness of multiple back-end engines and their
potential combined use for solving various problems, and 2) compare Golem
against state-of-the-art Horn solvers.

The benchmark collections of CHC-COMP represent a rich source of prob-
lems from various domains.6 Version 0.3.2 of Golem was used for these exper-
iments. Z3-Spacer (Z3 4.11.2) and Eldarica 2.0.8 were run (with default
options) for comparison as the best Horn solvers available. All experiments
were conducted on a machine with an AMD EPYC 7452 32-core processor and
8× 32 GiB of memory; the timeout was set to 300 s. No conflicting answers were
observed in any of the experiments. The results are in line with the results of
the last editions of CHC-COMP where Golem participated [24,31]. Our artifact
for reproducing the experiments is available at https://doi.org/10.5281/zenodo.
7973428.

4.1 Category LRA-TS

We ran all engines of Golem on all 498 benchmarks from the LRA-TS (transition
systems over linear real arithmetic) category of CHC-COMP.

Table 1 shows the number of benchmarks solved per engine, together with a
virtual best (VB) engine.7 On unsatisfiable problems, the differences between the
5 It is also known as Impact, which was the first tool that implemented the algorithm.
6 https://github.com/orgs/chc-comp/repositories.
7 Virtual best engine picks the best performance from all engines for each benchmark.

https://doi.org/10.5281/zenodo.7973428
https://doi.org/10.5281/zenodo.7973428
https://github.com/orgs/chc-comp/repositories

216 M. Blicha et al.

Table 1. Number of solved benchmarks from LRA-TS category.

BMC KIND IMC LAWI Spacer split-TPA VB

SAT 0 260 145 279 195 128 360
UNSAT 86 84 70 76 69 72 86

engines’ performance are not substantial, but the BMC engine firmly dominates
the others. On satisfiable problems, we see significant differences. Figure 2 plots,
for each engine, the number of solved satisfiable benchmarks (x-axis) within the
given time limit (y-axis, log scale).

0.01

0.1

1

10

100

0 50 100 150 200 250 300 350

ru
nt

im
e
(s
)

solved problems

IMC

KIND

LAWI

VB

Fig. 2. Performance of Golem’s engines on SAT problems of LRA-TS category.

The large lead of VB suggests that the solving abilities of the engines are
widely complementary. No single engine dominates the others on satisfiable
instances. The portfolio of techniques available in Golem is much stronger than
any single one of them.

Moreover, the unified setting enables direct comparison of the algorithms.
For example, we can conclude from these experiments that the extra check for
k-inductive invariants on top of the BMC-style search for counterexamples, as
implemented in the KIND engine, incurs only a small overhead on unsatisfi-
able problems, but makes the KIND engine very successful in solving satisfiable
problems.

4.2 Category LIA-Lin

Next, we considered the LIA-Lin category of CHC-COMP. These are linear sys-
tems of CHCs with linear integer arithmetic as the background theory. There

The Golem Horn Solver 217

are many benchmarks in this category, and for the evaluation at the competition,
a subset of benchmarks is selected (see [24,31]). We evaluated the LAWI and
Spacer engines of Golem (the engines capable of solving general linear CHC
systems) on the benchmarks selected at CHC-COMP 2022 and compared their
performance to Z3-Spacer and Eldarica. Notably, we also examined a spe-
cific subcategory of LIA-lin, namely extra-small-lia8 with benchmarks that
fall into the fragment accepted by Golem’s TPA engine.

There are 55 benchmarks in extra-small-lia subcategory, all satisfiable,
but known to be highly challenging for all tools. The results, given in Table 2,
show that split-TPA outperforms not only LAWI and Spacer engines in
Golem, but also Z3-Spacer. Only Eldarica solves more benchmars. We
ascribe this to split-TPA’s capability to perform deep analysis and discover
transition invariants.

Table 2. Number of solved benchmarks from extra-small-lia subcategory.

Golem

split-TPA LAWI Spacer Z3-Spacer Eldarica

22 12 18 18 36

For the whole LIA-Lin category, 499 benchmarks were selected in the 2022
edition of CHC-COMP [24]. The performance of the LAWI and Spacer engines
of Golem, Z3-Spacer and Eldarica on this selection is summarized in Table 3.
Here, the Spacer engine of Golem significantly outperforms the LAWI engine.
Moreover, even though Golem loses to Z3-Spacer, it beats Eldarica. Given
that Golem is a prototype, and Z3-Spacer and Eldarica have been developed
and optimized for several years, this demonstrates the great potential of Golem.

Table 3. Number of solved benchmarks from LIA-Lin category.

Golem

LAWI Spacer Z3-Spacer Eldarica

SAT 131 184 211 183
UNSAT 77 82 96 60

4.3 Category LIA-Nonlin

Finally, we considered the LIA-Nonlin category of benchmarks of CHC-COMP,
which consists of nonlinear systems of CHCs with linear integer arithmetic as the
background theory. For the experiments, we used the 456 benchmarks selected for
the 2022 edition of CHC-COMP. Spacer is the only engine in Golem capable
of solving nonlinear CHC systems; thus, we focused on a more detailed compar-
ison of its performance against Z3-Spacer and Eldarica. The results of the
experiments are summarized in Fig. 3 and Table 4.

218 M. Blicha et al.

0.01

0.1

1

10

100

0.01 0.1 1 10 100
t/o
m/o

Z
3-
Sp

ac
er

Golem-Spacer

(a) Golem vs Z3-Spacer

0.01

0.1

1

10

100

0.01 0.1 1 10 100
t/o
m/o

E
ld

a
r
ic
a

Golem-Spacer

(b) Golem vs Eldarica

Fig. 3. Comparison on LIA-Nonlin category (× - SAT, � - UNSAT). (Color figure
online)

Table 4. Number of solved benchmarks from LIA-Nonlin category. The number of
uniquely solved benchmarks is in parentheses.

Golem-Spacer Z3-Spacer Eldarica

SAT 239 (4) 248 (13) 221 (6)
UNSAT 124 (2) 139 (5) 122 (0)

Overall, Golem solved fewer problems than Z3-Spacer but more than
Eldarica; however, all tools solved some instances uniquely. A detailed compar-
ison is depicted in Fig. 3. For each benchmark, its data point in the plot reflects
the runtime of Golem (x-axis) and the runtime of the competitor (y-axis). The
plots suggest that the performance of Golem is often orthogonal to Eldarica,
but highly correlated with the performance of Z3-Spacer. This is not surpris-
ing as the Spacer engine in Golem is built on the same core algorithm. Even
though Golem is often slower than Z3-Spacer, there is a non-trivial amount
of benchmarks on which Z3-Spacer times out, but which Golem solves fairly
quickly. Thus, Golem, while being a newcomer, already complements existing
state-of-the-art tools, and more improvements are expected in the near future.

To summarise, the overall experimentation with different engines of Golem
demonstrates the advantages of the multi-engine general framework and illus-
trates the competitiveness of its analysis. It provides a lot of flexibility in address-
ing various verification problems while being easily customizable with respect to
the analysis demands.

8 https://github.com/chc-comp/extra-small-lia.

https://github.com/chc-comp/extra-small-lia

The Golem Horn Solver 219

5 Conclusion

In this work, we presented Golem, a flexible and effective Horn solver with mul-
tiple back-end engines, including recently-introduced TPA-based model-checking
algorithms. Golem is a suitable research tool for prototyping new SMT-based
model-checking algorithms and comparing algorithms in a unified framework.
Additionally, the effective implementation of the algorithm achieved with tight
coupling with the underlying SMT solver makes it an efficient back end for
domain-specific verification tools. Future directions for Golem include support
for VMT input format [21] and analysis of liveness properties, extension of TPA
to nonlinear CHC systems, and support for SMT theories of arrays, bit-vectors
and algebraic datatypes.

Acknowledgement. This work was partially supported by Swiss National Science
Foundation grant 200021_185031 and by Czech Science Foundation Grant 23-06506 S.

References

1. Alt, L.: Controlled and Effective Interpolation. Ph.D. thesis, Università della
Svizzera italiana (2016). https://susi.usi.ch/usi/documents/318933

2. Alt, L., Blicha, M., Hyvärinen, A.E.J., Sharygina, N.: SolCMC: Solidity compiler’s
model checker. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification, pp.
325–338. Springer International Publishing, Cham (2022)

3. Alt, L., Hyvärinen, A.E.J., Sharygina, N.: LRA interpolants from no man’s land.
In: Strichman, O., Tzoref-Brill, R. (eds.) Hardware and Software: Verification and
Testing, pp. 195–210. Springer International Publishing, Cham (2017)

4. Alur, R., et al.: Syntax-guided synthesis. In: 2013 Formal Methods in Computer-
Aided Design, pp. 1–8 (2013)

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017). https://
www.SMT-LIB.org

6. Beyer, D., Wendler, P.: Algorithms for software model checking: Predicate abstrac-
tion vs. Impact. In: 2012 Formal Methods in Computer-Aided Design (FMCAD),
pp. 106–113 (Oct 2012)

7. Beyer, D., Dangl, M.: Software verification with PDR: an implementation of the
state of the art. In: Biere, A., Parker, D. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems, pp. 3–21. Springer International Publishing,
Cham (2020)

8. Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided Verification,
pp. 622–640. Springer International Publishing, Cham (2015)

9. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifi-
cation. J. Autom. Reason. 60(3), 299–335 (2018)

10. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifica-
tion. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification, pp.
184–190. Springer, Berlin Heidelberg, Berlin, Heidelberg (2011)

https://susi.usi.ch/usi/documents/318933
https://www.SMT-LIB.org
https://www.SMT-LIB.org

220 M. Blicha et al.

11. Beyer, D., Lee, N.Z., Wendler, P.: Interpolation and SAT-based model check-
ing revisited: Adoption to software verification. Tech. Rep. arXiv/CoRR
arXiv:2208.05046 (August 2022)

12. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) Tools and Algorithms for the Construction and Analysis
of Systems, pp. 193–207. Springer, Berlin Heidelberg, Berlin, Heidelberg (1999)

13. Blicha, M., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: Split transition
power abstractions for unbounded safety. In: Griggio, A., Rungta, N. (eds.) Pro-
ceedings of the 22nd Conference on Formal Methods in Computer-Aided Design -
FMCAD 2022. pp. 349–358. TU Wien Academic Press (2022). https://doi.org/10.
34727/2022/isbn.978-3-85448-053-2_42

14. Blicha, M., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: Transition power
abstractions for deep counterexample detection. In: Fisman, D., Rosu, G. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems, pp. 524–542.
Springer International Publishing, Cham (2022)

15. Blicha, M., Hyvärinen, A.E.J., Kofroň, J., Sharygina, N.: Using linear algebra in
decomposition of Farkas interpolants. Int. J. Softw. Tools Technol. Transfer 24(1),
111–125 (2022)

16. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) Verification, Model Checking, and Abstract Interpretation, pp. 70–87.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2011)

17. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In:
Esparza, J., Majumdar, R. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, pp. 150–153. Springer, Berlin Heidelberg, Berlin, Heidelberg
(2010)

18. Calzavara, S., Grishchenko, I., Maffei, M.: HornDroid: Practical and sound static
analysis of android applications by SMT solving. In: 2016 IEEE European Sympo-
sium on Security and Privacy, pp. 47–62 (2016)

19. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. In: Beyer, D., Huisman, M. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems, pp. 365–384.
Springer International Publishing, Cham (2018)

20. Champion, A., Kobayashi, N., Sato, R.: HoIce: an ICE-based non-linear Horn
clause solver. In: Ryu, S. (ed.) Programming Languages and Systems, pp. 146–
156. Springer International Publishing, Cham (2018)

21. Cimatti, A., Griggio, A., Tonetta, S.: The VMT-LIB language and tools (2021)
22. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided

abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided
Verification, pp. 154–169. Springer, Berlin Heidelberg, Berlin, Heidelberg (2000)

23. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symbolic Logic 22(3), 269–285 (1957)

24. De Angelis, E., Vediramana Krishnan, H.G.: CHC-COMP 2022: Competition
report. Electron. Proc. Theor. Comput. Sci. 373, 44–62 (nov 2022)

25. Dietsch, D., Heizmann, M., Hoenicke, J., Nutz, A., Podelski, A.: Ultimate
TreeAutomizer (CHC-COMP tool description). In: Angelis, E.D., Fedyukovich, G.,
Tzevelekos, N., Ulbrich, M. (eds.) Proceedings of the Sixth Workshop on Horn
Clauses for Verification and Synthesis and Third Workshop on Program Equiv-
alence and Relational Reasoning, HCVS/PERR@ETAPS 2019, Prague, Czech
Republic, 6–7th April 2019. EPTCS, vol. 296, pp. 42–47 (2019)

http://arxiv.org/abs/2208.05046
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_42

The Golem Horn Solver 221

26. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property
directed reachability. In: Proceedings of the International Conference on Formal
Methods in Computer-Aided Design, pp. 125–134. FMCAD ’11, FMCAD Inc,
Austin, TX (2011)

27. Ernst, G.: Korn–software verification with Horn clauses (competition contribu-
tion). In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems, pp. 559–564. Springer Nature Switzerland,
Cham (2023)

28. Esen, Z., Rümmer, P.: TriCera: Verifying C programs using the theory of heaps. In:
Griggio, A., Rungta, N. (eds.) Proceedings of the 22nd Conference on Formal Meth-
ods in Computer-Aided Design - FMCAD 2022, pp. 360–391. TU Wien Academic
Press (2022)

29. Fedyukovich, G., Kaufman, S.J., Bodík, R.: Sampling invariants from frequency
distributions. In: 2017 Formal Methods in Computer Aided Design (FMCAD), pp.
100–107 (2017)

30. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Solving constrained Horn
clauses using syntax and data. In: 2018 Formal Methods in Computer Aided Design
(FMCAD), pp. 1–9 (2018)

31. Fedyukovich, G., Rümmer, P.: Competition report: CHC-COMP-21. In: Hojjat, H.,
Kafle, B. (eds.) Proceedings 8th Workshop on Horn Clauses for Verification and
Synthesis, HCVS@ETAPS 2021, Virtual, 28th March 2021. EPTCS, vol. 344, pp.
91–108 (2021)

32. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grum-
berg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63166-6_10

33. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Proceedings of the 33rd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pp. 405–416. PLDI
’12, Association for Computing Machinery, New York, NY, USA (2012)

34. Gurfinkel, A., Bjørner, N.: The science, art, and magic of constrained Horn clauses.
In: 2019 21st International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), pp. 6–10 (2019)

35. Gurfinkel, A.: Program verification with constrained Horn clauses (invited paper).
In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification, pp. 19–29. Springer
International Publishing, Cham (2022)

36. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) Computer Aided Verification,
pp. 343–361. Springer International Publishing, Cham (2015)

37. Hari Govind, V.K., Chen, Y., Shoham, S., Gurfinkel, A.: Global guidance for local
generalization in model checking. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided
Verification, pp. 101–125. Springer International Publishing, Cham (2020)

38. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8_13

39. Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating inter-
polants. In: Chakraborty, S., Mukund, M. (eds.) Automated Technology for Verifi-
cation and Analysis, pp. 187–202. Springer, Berlin Heidelberg, Berlin, Heidelberg
(2012)

40. Hojjat, H., Rümmer, P.: The Eldarica Horn solver. In: FMCAD, pp. 158–164. IEEE
(10 2018)

https://doi.org/10.1007/3-540-63166-6_10
https://doi.org/10.1007/978-3-642-31612-8_13

222 M. Blicha et al.

41. Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn clauses for communicating timed
systems. Electronic Proceedings in Theoretical Computer Science 169, 39–52 (dec
2014)

42. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: An SMT
Solver for Multi-core and Cloud Computing. In: Creignou, N., Le Berre, D. (eds.)
SAT 2016. LNCS, vol. 9710, pp. 547–553. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-40970-2_35

43. Kafle, B., Gallagher, J.P.: Tree automata-based refinement with application to
Horn clause verification. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) Verifica-
tion, Model Checking, and Abstract Interpretation, pp. 209–226. Springer, Berlin
Heidelberg, Berlin, Heidelberg (2015)

44. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: Jayhorn: a framework for verifying
Java programs. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification,
pp. 352–358. Springer International Publishing, Cham (2016)

45. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods in System Design 48(3), 175–205 (2016)

46. Leroux, J., Rümmer, P., Subotić, P.: Guiding Craig interpolation with domain-
specific abstractions. Acta Informatica 53(4), 387–424 (2016)

47. Mann, M., et al.: Pono: a flexible and extensible SMT-based model checker. In:
Silva, A., Leino, K.R.M. (eds.) Computer Aided Verification, pp. 461–474. Springer
International Publishing, Cham (2021)

48. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification for
Rust programs. ACM Trans. Program. Lang. Syst. 43(4) (oct 2021)

49. McMillan, K.L.: Interpolation and SAT-Based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6_1

50. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
Computer Aided Verification, pp. 123–136. Springer, Berlin Heidelberg, Berlin,
Heidelberg (2006)

51. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Systems,
pp. 337–340. Springer, Berlin Heidelberg, Berlin, Heidelberg (2008)

52. Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO:
a framework for producing effective interpolants in SAT-based software verification.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) Logic for Programming,
Artificial Intelligence, and Reasoning, pp. 683–693. Springer, Berlin Heidelberg,
Berlin, Heidelberg (2013)

53. Rümmer, P., Subotić, P.: Exploring interpolants. In: 2013 Formal Methods in
Computer-Aided Design, pp. 69–76 (Oct 2013)

54. Rümmer, P.: Competition report: CHC-COMP-20. Electron. Proc. Theor. Comput.
Sci. 320, 197–219 (2020)

55. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induc-
tion and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) Formal Methods in
Computer-Aided Design, pp. 127–144. Springer, Berlin Heidelberg, Berlin, Heidel-
berg (2000)

56. Wang, W., Jiao, L.: Trace Abstraction Refinement for Solving Horn Clauses. Com-
put. J.59(8), 1236–1251 (08 2016)

57. Wesley, S., Christakis, M., Navas, J.A., Trefler, R., Wüstholz, V., Gurfinkel, A.:
Verifying solidity smart contracts via communication abstraction in smartace. In:
Finkbeiner, B., Wies, T. (eds.) Verification, Model Checking, and Abstract Inter-
pretation, pp. 425–449. Springer International Publishing, Cham (2022)

https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/978-3-319-40970-2_35
https://doi.org/10.1007/978-3-540-45069-6_1

The Golem Horn Solver 223

58. Zlatkin, I., Fedyukovich, G.: Maximizing branch coverage with constrained Horn
clauses. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems, pp. 254–272. Springer International Publishing, Cham
(2022)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Model Checking

CoqCryptoLine: A Verified Model
Checker with Certified Results

Ming-Hsien Tsai4(B), Yu-Fu Fu2, Jiaxiang Liu5, Xiaomu Shi3,
Bow-Yaw Wang1, and Bo-Yin Yang1

1 Academia Sinica, Taipei, Taiwan
{bywang,byyang}@iis.sinica.edu.tw

2 Georgia Institute of Technology, Atlanta, USA
yufu@gatech.edu

3 Institute of Software, Chinese Academy of Sciences, Beijing, China
xshi0811@gmail.com

4 National Institute of Cyber Security, Taipei, Taiwan
mhtsai208@gmail.com

5 Shenzhen University, Shenzhen, China
jiaxiang0924@gmail.com

Abstract. We present the verified model checker CoqCryptoLine
for cryptographic programs with certified verification results. The
CoqCryptoLine verification algorithm consists of two reductions. The
algebraic reduction transforms into a root entailment problem; and the
bit-vector reduction transforms into an SMT QF_BV problem. We
specify and verify both reductions formally using Coq with MathComp.
The CoqCryptoLine tool is built on the OCaml programs extracted
from verified reductions. CoqCryptoLine moreover employs certified
techniques for solving the algebraic and logic problems. We evaluate
CoqCryptoLine on cryptographic programs from industrial security
libraries.

1 Introduction

CoqCryptoLine [1] is a verified model checker with certified verification
results. It is designed for verifying complex non-linear integer computations
commonly found in cryptographic programs. The verification algorithms of
CoqCryptoLine consist of two reductions. The algebraic reduction transforms
polynomial equality checking into a root entailment problem in commutative
algebra; the bit-vector reduction reduces range properties to satisfiability of
queries in the Quantifier-Free Bit-Vector (QF_BV) logic from Satisfiability
Modulo Theories (SMT) [6]. Both verification algorithms are formally specified
and verified by the proof assistant Coq with MathComp [7,17]. CoqCryp-
toLine verification programs are extracted from the formal specification and
therefore verified by the proof assistant automatically.

The original version of this chapter was revised: The mistakes in authors affiliation
information and typographical errors have been corrected. The correction to this
chapter is available at https://doi.org/10.1007/978-3-031-37703-7_22
c© The Author(s) 2023, corrected publication 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 227–240, 2023.
https://doi.org/10.1007/978-3-031-37703-7_11

https://zenodo.org/record/7881403
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_11&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_22
https://doi.org/10.1007/978-3-031-37703-7_11

228 M.-H. Tsai et al.

To minimize errors from external tools, recent developments in certified verifi-
cation are employed by CoqCryptoLine. The root entailment problem is solved
by the computer algebra system (CAS) Singular [19]. CoqCryptoLine asks
the external algebraic tool to provide certificates and validates certificates with
the formal polynomial theory in Coq. SMT QF_BV queries on the other hand
are answered by the verified SMT QF_BV solver CoqQFBV [33]. Answers to
SMT QF_BV queries are therefore all certified as well. With formally verified
algorithms and certified answers from external tools, CoqCryptoLine gives
verification results with much better guarantees than average automatic verifi-
cation tools.

Reliable verification tools would not be very useful if they could not check
real-world programs effectively. In our experiments, CoqCryptoLine verifies
54 real-world cryptographic programs. 52 of them are from well-known security
libraries such as Bitcoin [35] and OpenSSL [30]. They are implementations
of field and group operations in elliptic curve cryptography. The remaining two
are the Number-Theoretic Transform (NTT) programs from the post-quantum
cryptosystem Kyber [10]. All field operations are implemented in a few hundred
lines and verified in 6 minutes. The most complicated generic group operation
in the elliptic curve Curve25519 consists of about 4000 lines and is verified by
CoqCryptoLine in 1.5 h.

Related Work. There are numerous model checkers in the community, e.g. [8,
13,21–23]. Nevertheless, few of them are formally verified. To our knowl-
edge, the first verification of a model checker was performed in Coq for
the modal μ-calculus [34]. The LTL model checker CAVA [15,27] and the
model checker Munta [38,39] for timed automata were developed and verified
using Isabelle/HOL [29], which can be considered as verified counterparts
of SPIN [21] and Uppaal [23], respectively. CoqCryptoLine instead checks
CryptoLine models [16,31] that are for the correctness of cryptographic pro-
grams. It can be seen as a verified version of CryptoLine. A large body of work
studies the correctness of cryptographic programs, e.g. [2–4,9,12,14,24,26,40],
cf. [5] for a survey. They either require human intervention or are unverified, while
our work is fully automatic and verified. The most relevant work is bvCryp-
toLine [37], which is the first automated and partly verified model checker
for a very limited subset of CryptoLine. We will compare our work with it
comprehensively in Sect. 2.3.

2 CoqCryptoLine

CoqCryptoLine is an automatic verification tool that takes a CryptoLine
specification as input and returns certified results indicating the validity of the
specification. We briefly describe the CryptoLine language [16] followed by the
modules, features, and optimizations of CoqCryptoLine in this section.

2.1 CryptoLine Language

A CryptoLine specification contains a CryptoLine program with pre-
and post-conditions, where the CryptoLine program usually models some

CoqCryptoLine: A Verified Model Checker with Certified Results 229

cryptographic program [16,31]. Both the pre- and post-conditions consist of an
algebraic part, which is formulated as a conjunction of (modular) equations, and
a range part as an SMT QF_BV predicate. A CryptoLine specification is
valid if every program execution starting from a program state satisfying the
pre-condition ends in a state satisfying the post-condition.

CryptoLine is designed for modeling cryptographic assembly programs.
Besides the assignment (mov) and conditional assignment (cmov) statements,
CryptoLine provides arithmetic statements such as addition (add), addition
with carry (adc), subtraction (sub), subtraction with borrow (sbb), half multi-
plication (mul) and full multiplication (mull). Most of them have versions that
model the carry/borrow flags explicitly (like adds, adcs, subs, sbbs). It also
allows bitwise statements, for instance, bitwise AND (and), OR (or) and left-
shift (shl). To deal with multi-word arithmetic, CryptoLine further includes
multi-word constructs, for example, those that split (split) or join (join) words,
as well as multi-word shifts (cshl). CryptoLine is strongly typed, admitting
both signed and unsigned interpretations for bit-vector variables and constants.
The cast statement converts types explicitly. Finally, CryptoLine also sup-
ports special statements (assert and assume) for verification purposes.

2.2 The Architecture of CoqCryptoLine

CoqCryptoLine reduces the verification problem of a CryptoLine specifi-
cation to instances of root entailment problems and SMT problems over the
QF_BV logic. These instances are then solved by respective certified techniques.
Moreover, the components in CoqCryptoLine are also specified and verified
by the proof assistant Coq with MathComp [7,17]. Figure 1 gives an overview
of CoqCryptoLine. In the figure, dashed components represent external tools.
Rectangular boxes are verified components and rounded boxes are unverified.
Note that all our proof efforts using Coq are transparent to users. No Coq
proof is required from users during verification of cryptographic programs with
CoqCryptoLine. Details can be found in [36].

Starting from a CryptoLine specification text, the CoqCryptoLine parser
translates the text into an abstract syntax tree defined in the Coq module DSL.
The module gives formal semantics for the typed CryptoLine language [16].
The validity of CryptoLine specifications is also formalized. Similar to most
program verification tools, CoqCryptoLine transforms CryptoLine specifi-
cations to the static single assignment (SSA) form. The SSA module gives our
transformation algorithm. It moreover shows that validity of CryptoLine speci-
fications is preserved by the SSA transformation. CoqCryptoLine then reduces
the verification problem via two Coq modules.

The SSA2ZSSA module contains our algebraic reduction to the root entail-
ment problem. Concretely, a system of (modular) equations is constructed from
the given program so that program executions correspond to the roots of the
system of (modular) equations. To verify algebraic post-conditions, it suffices to
check if the roots for executions are also roots of (modular) equations in the
post-condition. However, program executions can deviate from roots of (modu-
lar) equations when over- or under-flow occurs. CoqCryptoLine will generate

230 M.-H. Tsai et al.

COQCRYPTOLINE parser

DSL

SSASSA2ZSSA SSA2QFBV

Validator

computer algebra system

SMT QF BV solver

solve
solve

solve
validate

trusted
verified

untrusted

verified module

verified external solver
unverified module

unverified external solver

Fig. 1. Overview of CoqCryptoLine

soundness conditions to ensure the executions conform to our (modular) equa-
tions. The algebraic verification problem is thus reduced to the root entailment
problem provided that soundness conditions hold.

The SSA2QFBV module gives our bit-vector reduction to the SMT QF_BV
problem. It constructs an SMT query to check the validity of the given Crypto-
Line range specification. Concretely, an SMT QF_BV query is built such that
all program executions correspond to satisfying assignments to the query and
vice versa. To verify the range post-conditions, it suffices to check if satisfying
assignments for the query also satisfy the post-conditions. The range verifica-
tion problem is thus reduced to the SMT QF_BV problem. On the other hand,
additional SMT queries are constructed to check soundness conditions for the
algebraic reduction. We formally prove the equivalence between soundness con-
ditions and corresponding queries.

With the two formally verified reduction algorithms, it remains to solve the
root entailment problems and the SMTQF_BV problems with external solvers.
CoqCryptoLine invokes an external computer algebra system (CAS) to solve
the root entailment problems, and improves the techniques in [20,37] to validate
the (untrusted) returned answers. Currently, the CAS Singular [19] is sup-
ported. To solve the SMT QF_BV problems, CoqCryptoLine employs the
certified SMT QF_BV solver CoqQFBV [33]. In all cases, instances of the two
kinds of problems are solved with certificates. And CoqCryptoLine employs
verified certificate checkers to validate the answers to further improve assurance.

Note that the algebraic reduction in SSA2ZSSA is sound but not complete due
to the abstraction of bit-accurate semantics into (modular) polynomial equations
over integers. Thus a failure in solving the root entailment problem by CAS does
not mean that the algebraic post-conditions are violated. On the other hand, the
bit-vector reduction in SSA2QFBV is both sound and complete.

The CoqCryptoLine tool is built on OCaml programs extracted from
verified algorithms in Coq with MathComp. We moreover integrate the OCaml

CoqCryptoLine: A Verified Model Checker with Certified Results 231

programs from the certified SMT QF_BV solver CoqQFBV. Our trusted
computing base consists of (1) CoqCryptoLine parser, (2) text interface with
external SAT solvers (from CoqQFBV), (3) the proof assistant Isabelle [29]
(from the SAT solver certificate validator Grat used by CoqQFBV) and (4) the
Coq proof assistant. Particularly, sophisticated decision procedures in external
CASs and SAT solvers used in CoqQFBV need not be trusted.

2.3 Features and Optimizations

CoqCryptoLine comes with the following features and optimizations imple-
mented in its modules.

Type System. CoqCryptoLine fully supports the type system of the Cryp-
toLine language. The type system is used to model bit-vectors of arbitrary
bit-widths with unsigned or signed interpretation. Such a type system allows
CoqCryptoLine to model more industrial examples translated from C pro-
grams via GCC [16] or LLVM [24] compared to bvCryptoLine [37], which only
allows unsigned bit-vectors, all of the same bit-width.

Mixed Theories. With the assert and assume statements supported by
CoqCryptoLine, it is possible to make an assertion on the range side (or
on the algebraic side) and then make an equivalent assumption on the alge-
braic side (or resp. on the range side). With this feature, a predicate can be
asserted on one side where the predicate is easier to prove, and then assumed
on the other side to ease the verification of other predicates. The equivalence
between the asserted predicate and the assumed predicate is currently not ver-
ified by CoqCryptoLine, though it is achievable. Both assert and assume
statements are not available in bvCryptoLine.

Multi-threading. All extracted OCaml code from the verified algorithms in Coq
runs sequentially. To speed up, SMT QF_BV problems, as well as root entail-
ment problems, are solved parallelly.

Efficient Root Entailment Problem Solving. CoqCryptoLine can be used as
a solver for root entailment problems with certificates validated by a verified
validator. A root entailment problem is reduced to an ideal membership problem,
which is then solved by computing Gröbner basis [20]. To solve a root entailment
problem with a certificate, we need to find a witness of polynomials c0, . . . , cn
such that

q = Σn
i=0cipi (1)

where q and pi’s are given polynomials. To compute the witness, bvCryptoLine
relies on gbarith [32], where new variables are introduced. CoqCryptoLine
utilizes the lift command in Singular instead without adding fresh variables.
We show in the evaluation section that using lift is more efficient than using
gbarith. The witness found is further validated by CoqCryptoLine, which

232 M.-H. Tsai et al.

relies on the polynomial normalization procedure norm_subst in Coq to check
if Eq. 1 holds. bvCryptoLine on the other hand uses the ring tactic in Coq,
where extra type checking is performed. Elimination of ideal generators through
variable substitution is an efficient approach to simplify an ideal membership
problem [37]. The elimination procedure implemented in CoqCryptoLine can
identify much more variable substitution patterns than those found by bvCryp-
toLine.

Multi-moduli. Modular equations with multi-moduli are common in post-
quantum cryptography. For example, the post-quantum cryptosystem Kyber
uses the polynomial ring Z3329[X]/〈X256 + 1〉 containing two moduli 3329 and
X256+1. To support multi-moduli in CoqCryptoLine, in the proof of our alge-
braic reduction, we have to find integers c0, . . . , cn such that e1 − e2 = Σn

i=0cimi

given the proof of e1 = e2 (mod m0, . . . ,mn) where e1, e2, and mi’s are inte-
gers. Instead of implementing a complicated procedure to find the exact ci’s, we
simply invoke the xchoose function provided by MathComp to find ci’s based
on the proof of e1 = e2 (mod m0, . . . ,mn). Multi-moduli is not supported by
bvCryptoLine.

Tight Integration with CoqQFBV. CoqCryptoLine verifies every atomic
range predicate separately using the certified SMT QF_BV solver CoqQFBV.
Constructing a text file as the input to CoqQFBV for every atomic range
predicate is not a good idea because the bit-blasting procedure in CoqQFBV
is performed several times for the identical program. CoqCryptoLine thus is
tightly integrated with CoqQFBV to speed up bit-blasting of the same program
using the cache provided by CoqQFBV. bvCryptoLine uses the SMT solver
Boolector to prove range predicates without certificates.

Slicing. During the reductions from the verification problem of a Crypto-
Line specification to instances of root entailment problems and SMT QF_BV
problems, a verified static slicing is performed in CoqCryptoLine to produce
smaller problems. Unlike the work in [11], which sets all assume statements as
additional slicing criteria, the slicing in CoqCryptoLine is capable of pruning
unrelated predicates in assume statements. The slicing procedure implemented
in CoqCryptoLine is much more complicated than the one in bvCryptoLine
due to the presence of assume statements. This feature is provided as command-
line option because it makes the verification incomplete. With slicing, the time
in verifying industrial examples is reduced dramatically.

3 Walkthrough

We illustrate how CoqCryptoLine is used in this section. The x86_64 assembly
subroutine ecp_nistz256_mul_montx from OpenSSL [30] shown in Fig. 2 is
verified as an example.

An input for CoqCryptoLine contains a CryptoLine specification for the
assembly subroutine. The original subroutine is marked between the comments

CoqCryptoLine: A Verified Model Checker with Certified Results 233

PROGNAME STARTS and PROGNAME ENDS, which is obtained automatically from
the Python script provided by CryptoLine [31].

Prior to the “START” comment are the parameter declaration, pre-condition,
and variable initialization. After the “END” comment is the post-condition of
the subroutine. After the subroutine ends, the result is moved to the output
variables.

The assembly subroutine ecp_nistz256_mul_montx takes two 256-bit
unsigned integers a and b and the modulus m as inputs. The 256-bit integer
m is the prime p256 = 2256 − 2224 + 2192 + 296 − 1 from the NIST curve. The
256-bit integers a and b (less than the prime) are the multiplicands. Each 256-bit
input integer d ∈ {a, b,m} is denoted by four 64-bit unsigned integer variables
di (for 0 ≤ i < 4) in little-endian representation. The expression limbs n [d0,
d1, ..., di] is short for d0 + d1*2**n + ... +di*2**(i *n)1. The inputs and
constants are then put in the variables for memory cells with the mov state-
ments. There are two parts to a pre-condition. The first part is for the algebraic
reduction; the second part is for the bit-vector reduction:

and [m0=0xffffffffffffffff, m1=0x00000000ffffffff,
m2=0x0000000000000000, m3=0xffffffff00000001]

&&
and [m0=0xffffffffffffffff@64, m1=0x00000000ffffffff@64,

m2=0x0000000000000000@64, m3=0xffffffff00000001@64,
limbs 64 [a0,a1,a2,a3] <u limbs 64 [m0,m1,m2,m3],
limbs 64 [b0,b1,b2,b3] <u limbs 64 [m0,m1,m2,m3]]

The output 256-bit integer represented by the four variables ci (for 0 ≤ i < 4)
has two requirements. Firstly, the output integer times 2256 equals the product
of the input integers modulo p256. Secondly, the output integer is less than p256.
Formally, we have this post-condition:

eqmod limbs 64 [0, 0, 0, 0, c0, c1, c2, c3]
limbs 64 [a0, a1, a2, a3] * limbs 64 [b0, b1, b2, b3]
limbs 64 [m0, m1, m2, m3]

&&
limbs 64 [c0, c1, c2, c3] <u limbs 64 [m0, m1, m2, m3]

Here, we employ the algebraic reduction to verify the non-linear modular
equality, and the bit-vector reduction to verify the proper range of the output
integer.

However, verifying ecp_nistz256_mul_montx takes extra annotations to hint
CoqCryptoLine how to verify the post-condition. E.g., in adding two 256-
bit integers represented by 64-bit variables, a chain of four 64-bit additions is
performed and carries are propagated. The last carry as the chain ends must be
zero or the 256-bit sum is incorrect. In ecp_nistz256_mul_montx two interleaved
addition chains use the carry and the overflow flags for carries respectively, so
we annotate as follows at the end of two interleaving addition chains to tell
CoqCryptoLine about the final carries:
1 ** is the exponentiation operator in CryptoLine.

234 M.-H. Tsai et al.

proc main
(uint64 a0, uint64 a1, uint64 a2, uint64 a3,
uint64 b0, uint64 b1, uint64 b2, uint64 b3,
uint64 m0, uint64 m1, uint64 m2, uint64 m3) =

{ and [m0 = 0xffffffffffffffff,
m1 = 0x00000000ffffffff,
m2 = 0x0000000000000000,
m3 = 0xffffffff00000001]

&&
and [m0 = 0xffffffffffffffff@64,

m1 = 0x00000000ffffffff@64,
m2 = 0x0000000000000000@64,
m3 = 0xffffffff00000001@64,
limbs 64 [a0, a1, a2, a3] <u

limbs 64 [m0, m1, m2, m3],
limbs 64 [b0, b1, b2, b3] <u

limbs 64 [m0, m1, m2, m3]] }

mov L0x7fffffffd9b0 a0; mov L0x7fffffffd9b8 a1;
mov L0x7fffffffd9c0 a2; mov L0x7fffffffd9c8 a3;
mov L0x7fffffffd9d0 b0; mov L0x7fffffffd9d8 b1;
mov L0x7fffffffd9e0 b2; mov L0x7fffffffd9e8 b3;

mov L0x55555557c000 0xffffffffffffffff@uint64;
mov L0x55555557c008 0x00000000ffffffff@uint64;
mov L0x55555557c010 0x0000000000000000@uint64;
mov L0x55555557c018 0xffffffff00000001@uint64;

(* ecp_nistz256_mul_montx STARTS *)
mov rdx L0x7fffffffd9d0;
mov r9 L0x7fffffffd9b0;
mov r10 L0x7fffffffd9b8;
mov r11 L0x7fffffffd9c0;
mov r12 L0x7fffffffd9c8;
mull r9 r8 rdx r9;
mull r10 rcx rdx r10;
mov r14 0x20@uint64;
mov r13 0@uint64;

...

mov r8 0@uint64;
clear carry;
clear overflow;
mull rbp rcx rdx L0x7fffffffd9b0;

adcs carry r9 r9 rcx carry;
adcs overflow r10 r10 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9b8;
adcs carry r10 r10 rcx carry;
adcs overflow r11 r11 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9c0;
adcs carry r11 r11 rcx carry;
adcs overflow r12 r12 rbp overflow;
mull rbp rcx rdx L0x7fffffffd9c8;
mov rdx r9;

adcs carry r12 r12 rcx carry;
split ddc rcx r9 32;
shl rcx rcx 32;
adcs overflow r13 r13 rbp overflow;
split rbp dc r9 32;

assert true && rbp=ddc;
assume rbp=ddc && true;

adcs carry r13 r13 r8 carry;
adcs overflow r8 r8 r8 overflow;

assert true && and [carry=0@1,overflow=0@1];
assume and [carry=0,overflow=0] && true;

...

mov L0x7fffffffda00 r8;
mov L0x7fffffffda08 r9;
(* ecp_nistz256_mul_montx ENDS *)

mov c0 L0x7fffffffd9f0;
mov c1 L0x7fffffffd9f8;
mov c2 L0x7fffffffda00;
mov c3 L0x7fffffffda08;

{ eqmod limbs 64 [0, 0, 0, 0, c0, c1, c2, c3]
limbs 64 [a0, a1, a2, a3] *
limbs 64 [b0, b1, b2, b3]
limbs 64 [m0, m1, m2, m3]

&&
limbs 64 [c0, c1, c2, c3] <u

limbs 64 [m0, m1, m2, m3] }

Fig. 2. CryptoLine Model for ecp_nistz256_mul_montx

assert true && and [carry=0@1, overflow=0@1];
assume and [carry=0, overflow=0] && true;

The assert statement verifies that both the carry and overflow flags are
zeroes through the bit-vector reduction. The assume statement then passes this
information to the algebraic reduction. Effectively, CoqCryptoLine checks that
both flags are zero for all inputs satisfying the pre-condition, then uses those facts
as lemmas to verify the post-condition with the algebraic reduction.

The full specification for ecp_nistz256_mul_montx has 230 lines, including
50 lines of manual annotations. 20 are straightforward annotations for variable
declaration and initialization. The remaining 30 lines of annotations are hints to
CoqCryptoLine, which then verifies the post-condition in 30 s with 24 threads.

The illustration of the typical verification flow shows how a user constructs
a CryptoLine specification. The pre-condition for program inputs, the post-
condition for outputs, and variable initialization must be specified manually.
Additional annotations may be added as hints. Notice that hints only tell
CoqCryptoLine what, not why properties should hold. Proofs of annotated
hints and the post-condition are found by CoqCryptoLine automatically. Con-
sequently, manual annotations are minimized and verification efforts are reduced
significantly.

CoqCryptoLine: A Verified Model Checker with Certified Results 235

4 Evaluation

We evaluate CoqCryptoLine on 52 benchmarks from four industrial security
libraries Bitcoin [35], boringSSL [14,18], nss [25], and OpenSSL [30]. The C
reference and optimized avx2 implementations of the Number-Theoretic Trans-
form (NTT) from the post-quantum key encapsulation mechanism Kyber [10]
are also evaluated. Among the total 54 benchmarks, 43 benchmarks contain fea-
tures not supported by bvCryptoLine such as signed variables. All experiments
are performed on an Ubuntu 22.04.1 machine with a 3.20GHz Intel Xeon Gold
6134M CPU and 1TB RAM.

Benchmarks from security libraries are various field and group operations
from elliptic curve cryptography (ECC). In ECC, rational points on curves are
represented by elements in large finite fields. In Bitcoin, the finite field is the
residue system modulo the prime p256k1 = 2256 −232 −29−28−27−26 −24−1.
For other security libraries (boringSSL, nss, and OpenSSL), we verify the
operations in Curve25519 using the residue system modulo the prime p25519 =
2255 −19 as the underlying field. Rational points on elliptic curves form a group.
The group operation in turn is implemented by a number of field operations.

In lattice-based post-quantum cryptosystems, polynomial rings are used.
Specifically, the polynomial ring Z3329[X]/〈X256 + 1〉 is used in Kyber. To
speed up multiplication in the polynomial ring, Kyber requires the multiplica-
tion to be implemented by NTT. NTT is a discrete Fast Fourier Transform over
finite fields. Instead of complex roots of unity, NTT uses the principal roots of
unity in fields. Mathematically, the Kyber NTT computes the following ring
isomorphism

Z3329[X]/〈X256 + 1〉 ∼= Z3329[X]/〈X2 − ζ0〉 × · · · × Z3329[X]/〈X2 − ζ127〉
where ζi’s are the principal roots of unity.

We first compare CoqCryptoLine with all optimizations described in this
paper against the unverified model checker CryptoLine [16]. Both tools invoke
the computer algebra system Singular [19], but CryptoLine neither lets Sin-
gular produce certificates nor certifies answers from Singular. CoqCrypto-
Line moreover uses the certified SMT QF_BV solver CoqQFBV [33]; Cryp-
toLine uses the uncertified but very efficient Boolector [28].

For the ECC experiments, CoqCryptoLine verifies all field operations in
6 minutes. It takes a few thousand seconds to verify group operations. The
most complex implementation (x25519_scalar_mult_generic) from boringSSL
(4274 statements) takes about 1.5 hours.2 For Kyber, CoqCryptoLine verifies
in 2642 and 1048 seconds, respectively, that the reference and avx2 NTT imple-
mentations indeed compute the isomorphism. The unverified CryptoLine in
comparison finishes verification in about 95 seconds. A summary of the compar-
ison between CoqCryptoLine and CryptoLine is shown in Fig. 3a. Though
CoqCryptoLine is much slower than CryptoLine, the running time (1.5
hours) for the most complex implementation is still acceptable.
2 Two (out of three) modular polynomial equations in the post-condition are certified.

236 M.-H. Tsai et al.

10−1 101 103

10−1

101

103

(a) COQCRYPTOLINE versus CRYPTO-
LINE

0

50

100

2.09

93.38

4.63

(b) Percentages of average running time
for COQCRYPTOLINE internal OCAML
code (INT), external SMT QF BV solver
(SMT), and external computer algebra sys-
tem (CAS)

10−1 101 103

10−1

101

103

gbarith

l
i
f
t

(c) gbarith versus lift

10−1 101 103 105

10−1

101

103

105

(d) COQCRYPTOLINE− versus COQCRYP-
TOLINE

Fig. 3. Running time (in seconds) comparisons

Figure 3b shows the percentages of average running time for CoqCrypto-
Line internal OCaml code (INT), external SMT QF_BV solver (SMT), and
external computer algebra system (CAS). External solvers take much more time
than the internal OCaml program does. Between external solvers, the exter-
nal computer algebra system takes 4.63% of the time and the external SMT
QF_BV solver spends 93.28% of the time.

To show the performance of the lift optimization, we run CoqCryptoLine
and bvCryptoLine on root entailment problems generated from the bench-
marks. Here we only consider 12 root entailment problems that trigger gbarith
in bvCryptoLine. Figure 3c shows the running time of Singular in solving

CoqCryptoLine: A Verified Model Checker with Certified Results 237

root entailment problems based on gbarith in bvCryptoLine and lift in
CoqCryptoLine. bvCryptoLine fails to solve 3 root entailment problems in
one hour. For the other 9 root entailment problems, lift outperforms gbarith.

We also compare CoqCryptoLine with and without slicing. The version of
CoqCryptoLine without slicing is denoted by CoqCryptoLine−. The run-
ning time comparison between CoqCryptoLine and CoqCryptoLine− in
Fig. 3d shows that slicing reduces the running time obviously.

5 Conclusion

CoqCryptoLine is a verified model checker for cryptographic programs with
certified results. Its modules are formally verified in Coq with MathComp.
CoqCryptoLine moreover employs external tools and validates their answers
with certificates. We evaluate CoqCryptoLine on benchmarks from indus-
trial security libraries (Bitcoin, boringSSL, nss and OpenSSL) and a
post-quantum cryptography standard candidate (Kyber). In our experiments,
CoqCryptoLine verifies most cryptographic programs with certificates in a
reasonable time (6min). Benchmarks with thousands of lines are verified in
1.5 h. To our knowledge, this is the first certified verification on operations of
the elliptic curve secp256k1 used in Bitcoin, and the avx2 and reference imple-
mentations of Kyber number-theoretic transform.

Acknowledgments. The authors in Academia Sinica are partially funded by National
Science and Technology Council grants NSTC110-2221-E-001-008-MY3, NSTC111-
2221-E-001-014-MY3, NSTC111-2634-F-002-019, the Sinica Investigator Award AS-
IA-109-M01, the Data Safety and Talent Cultivation Project AS-KPQ-109-DSTCP,
and the Intel Fast Verified Postquantum Software Project. The authors in Shenzhen
University and ISCAS are partially funded by Shenzhen Science and Technology Inno-
vation Commission (JCYJ20210324094202008), the National Natural Science Founda-
tion of China (62002228, 61836005), and the Natural Science Foundation of Guangdong
Province (2022A1515011458, 2022A1515010880).

References

1. CoqCryptoLine GitHub repository (2023). https://github.com/fmlab-iis/coq-
cryptoline

2. Affeldt, R.: On construction of a library of formally verified low-level arithmetic
functions. Innov. Syst. Softw. Eng. 9(2), 59–77 (2013)

3. Almeida, J.B., et al.: Jasmin: High-assurance and high-speed cryptography. In:
ACM SIGSAC Conference on Computer and Communications Security, pp. 1807–
1823. ACM (2017)

4. Appel, A.W.: Verification of a cryptographic primitive: SHA-256. ACM Trans.
Programm. Lang. Syst. 37(2), 7:1–7:31 (2015)

5. Barbosa, M., et al.: Sok: Computer-aided cryptography. In: 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pp.
777–795. IEEE (2021). https://doi.org/10.1109/SP40001.2021.00008

https://github.com/fmlab-iis/coq-cryptoline
https://github.com/fmlab-iis/coq-cryptoline
https://doi.org/10.1109/SP40001.2021.00008

238 M.-H. Tsai et al.

6. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

7. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science, Springer (2004). https://doi.org/10.1007/978-3-662-07964-5

8. Beyer, D., Keremoglu, M.E.: Cpachecker: A tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 184–190. Springer
(2011). https://doi.org/10.1007/978-3-642-22110-1_16

9. Bond, B., et al.: Vale: Verifying high-performance cryptographic assembly code.
In: USENIX Security Symposium, pp. 917–934. USENIX Association (2017)

10. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In:
Smith, M., Piessens, F. (eds.) IEEE European Symposium on Security and Privacy,
pp. 353–367. IEEE (2018)

11. Chalupa, M., Strejcek, J.: Evaluation of program slicing in software verification. In:
Ahrendt, W., Tarifa, S.L.T. (eds.) Integrated Formal Methods - 15th International
Conference, IFM 2019, Bergen, Norway, December 2-6, 2019, Proceedings. Lecture
Notes in Computer Science, vol. 11918, pp. 101–119. Springer (2019). https://doi.
org/10.1007/978-3-030-34968-4_6

12. Chen, Y.F., et al.: Verifying Curve25519 software. In: Ahn, G.J., Yung, M., Li, N.
(eds.) ACM SIGSAC Conference on Computer and Communications Security, pp.
299–309. ACM (2014)

13. Cimatti, A., et al.: NuSMV 2: An opensource tool for symbolic model checking. In:
Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification, 14th International
Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings. Lec-
ture Notes in Computer Science, vol. 2404, pp. 359–364. Springer (2002). https://
doi.org/10.1007/3-540-45657-0_29

14. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level
code for cryptographic arithmetic - with proofs, without compromises. In: IEEE
Symposium on Security and Privacy, pp. 1202–1219. IEEE (2019)

15. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.: A
fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
Computer Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 8044, pp. 463–478. Springer (2013). https://doi.org/10.1007/978-3-
642-39799-8_31

16. Fu, Y.F., Liu, J., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Signed cryptographic
program verification with typed cryptoline. In: Cavallaro, L., Kinder, J., Wang,
X., Katz, J. (eds.) ACM SIGSAC Conference on Computer and Communications
Security, pp. 1591–1606. ACM (2019)

17. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J.
Formalized Reason. 3(2), 95–152 (2010)

18. Google: Boringssl (2021). https://boringssl.googlesource.com/boringssl/
19. Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra.

Springer-Verlag (2002)
20. Harrison, J.: Automating elementary number-theoretic proofs using Gröbner bases.

In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 51–66. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_5

21. Holzmann, G.J.: The SPIN Model Checker - primer and reference manual. Addison-
Wesley (2004)

www.SMT-LIB.org
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/978-3-030-34968-4_6
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31
https://boringssl.googlesource.com/boringssl/
https://doi.org/10.1007/978-3-540-73595-3_5

CoqCryptoLine: A Verified Model Checker with Certified Results 239

22. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002). http://research.microsoft.com/
users/lamport/tla/book.html

23. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1-2), 134–152 (1997). https://doi.org/10.1007/s100090050010

24. Liu, J., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic in cryp-
tographic C programs. In: Lawall, J., Marinov, D. (eds.) IEEE/ACM International
Conference on Automated Software Engineering, pp. 552–564. IEEE (2019)

25. Mozilla: Network security services (2021). https://developer.mozilla.org/en-US/
docs/Mozilla/Projects/NSS

26. Myreen, M.O., Curello, G.: Proof Pearl: a verified bignum implementation in x86-
64 machine code. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 66–81. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1_5

27. Neumann, R.: Using promela in a fully verified executable LTL model checker.
In: Giannakopoulou, D., Kroening, D. (eds.) Verified Software: Theories, Tools
and Experiments - 6th International Conference, VSTTE 2014, Vienna, Austria,
July 17-18, 2014, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 8471, pp. 105–114. Springer (2014). https://doi.org/10.1007/978-3-319-12154-
3_7

28. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisfiability, Boolean Mod-
eling Comput. 9(1), 53–58 (2014)

29. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

30. OpenSSL: OpenSSL library. https://github.com/openssl/openssl (2021)
31. Polyakov, A., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic assembly

programs in cryptographic primitives. In: Schewe, S., Zhang, L. (eds.) Interna-
tional Conference on Concurrency Theory, pp. 4:1–4:16. LIPIcs, Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2018)

32. Pottier, L.: Connecting Gröbner bases programs with Coq to do proofs in algebra,
geometry and arithmetics. In: Rudnicki, P., Sutcliffe, G., Konev, B., Schmidt, R.A.,
Schulz, S. (eds.) Proceedings of the LPAR 2008 Workshops, Knowledge Exchange:
Automated Provers and Proof Assistants, and the 7th International Workshop on
the Implementation of Logics, Doha, Qatar, November 22, 2008. CEUR Workshop
Proceedings, vol. 418. CEUR-WS.org (2008). http://ceur-ws.org/Vol-418/paper5.
pdf

33. Shi, X., Fu, Y.F., Liu, J., Tsai, M.H., Wang, B.Y., Yang, B.Y.: CoqQFBV: a
scalable certified SMT quantifier-free bit-vector solver. In: Leino, R., Silva, A.
(eds.) International Conference on Computer Aided Verification. Springer, Lecture
Notes in Computer Science (2021)

34. Sprenger, C.: A verified model checker for the modal µ-calculus in Coq. In: Steffen,
B. (ed.) Tools and Algorithms for Construction and Analysis of Systems, 4th Inter-
national Conference, TACAS ’98, Held as Part of the European Joint Conferences
on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28
- April 4, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1384, pp.
167–183. Springer (1998). https://doi.org/10.1007/BFb0054171

35. The Bitcoin Developers: Bitcoin source code (2021). https://github.com/bitcoin/
bitcoin

36. Tsai, M.H., Fu, Y.F., Shi, X., Liu, J., Wang, B.Y., Yang, B.Y.: Automatic certified
verification of cryptographic programs with COQCRYPTOLINE. IACR Cryptol.
ePrint Arch. p. 1116 (2022)

http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
https://doi.org/10.1007/s100090050010
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://doi.org/10.1007/978-3-319-03545-1_5
https://doi.org/10.1007/978-3-319-12154-3_7
https://doi.org/10.1007/978-3-319-12154-3_7
https://doi.org/10.1007/3-540-45949-9
https://github.com/openssl/openssl
http://ceur-ws.org/Vol-418/paper5.pdf
http://ceur-ws.org/Vol-418/paper5.pdf
https://doi.org/10.1007/BFb0054171
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin

240 M.-H. Tsai et al.

37. Tsai, M.H., Wang, B.Y., Yang, B.Y.: Certified verification of algebraic properties
on low-level mathematical constructs in cryptographic programs. In: Evans, D.,
Malkin, T., Xu, D. (eds.) ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1973–1987. ACM (2017)

38. Wimmer, S.: Munta: A verified model checker for timed automata. In: André,
É., Stoelinga, M. (eds.) Formal Modeling and Analysis of Timed Systems - 17th
International Conference, FORMATS 2019, Amsterdam, The Netherlands, August
27-29, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11750, pp. 236–
243. Springer (2019). https://doi.org/10.1007/978-3-030-29662-9_14

39. Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: Beyer,
D., Huisman, M. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems - 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 10805, pp. 61–78. Springer (2018). https://doi.org/10.1007/
978-3-319-89960-2_4

40. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL*: A
verified modern cryptographic library. In: ACM SIGSAC Conference on Computer
and Communications Security, pp. 1789–1806. ACM (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-29662-9_14
https://doi.org/10.1007/978-3-319-89960-2_4
https://doi.org/10.1007/978-3-319-89960-2_4
http://creativecommons.org/licenses/by/4.0/

Incremental Dead State Detection
in Logarithmic Time

Caleb Stanford1(B) and Margus Veanes2

1 University of California, Davis, USA
cdstanford@ucdavis.edu

2 Microsoft Research, Redmond, USA

margus@microsoft.com

Abstract. Identifying live and dead states in an abstract transition sys-
tem is a recurring problem in formal verification; for example, it arises in
our recent work on efficiently deciding regex constraints in SMT. How-
ever, state-of-the-art graph algorithms for maintaining reachability infor-
mation incrementally (that is, as states are visited and before the entire
state space is explored) assume that new edges can be added from any
state at any time, whereas in many applications, outgoing edges are
added from each state as it is explored. To formalize the latter situa-
tion, we propose guided incremental digraphs (GIDs), incremental graphs
which support labeling closed states (states which will not receive further
outgoing edges). Our main result is that dead state detection in GIDs
is solvable in O(log m) amortized time per edge for m edges, improv-
ing upon O(

√
m) per edge due to Bender, Fineman, Gilbert, and Tarjan

(BFGT) for general incremental directed graphs.
We introduce two algorithms for GIDs: one establishing the logarith-

mic time bound, and a second algorithm to explore a lazy heuristics-
based approach. To enable an apples-to-apples experimental compari-
son, we implemented both algorithms, two simpler baselines, and the
state-of-the-art BFGT baseline using a common directed graph interface
in Rust. Our evaluation shows 110-530x speedups over BFGT for the
largest input graphs over a range of graph classes, random graphs, and
graphs arising from regex benchmarks.

Keywords: Dead State Detection · Graph Algorithms · Online
Algorithms · SMT

1 Introduction

Classifying states in a transition system as live or dead is a recurring problem in
formal verification. For example, given an expression, can it be simplified to the
identity? Given an input to a nondeterministic program, can it reach a terminal
state, or can it reach an infinitely looping state? Given a state in an automaton,
can it reach an accepting state? State classification is relevant to satisfiability
modulo theories (SMT) solvers [8,9,24,51], where theory-specific partial decision
procedures often work by exploring the state space to find a reachable path that
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 241–264, 2023.
https://doi.org/10.1007/978-3-031-37703-7_12

https://doi.org/10.5281/zenodo.7885130
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_12&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_12

242 C. Stanford and M. Veanes

corresponds to a satisfying string or, more generally, a sequence of constructors.
To a first approximation, the core problem in all of these cases amounts to
classifying each state u in a directed graph as live, meaning that a feasible,
accepting, or satisfiable state is reachable from u; or dead, meaning that all
states reachable from u are infeasible, rejecting, or unsatisfiable.

Motivating Applications. We originally encountered the problem of incremen-
tal state classification during our prior work while building Z3’s regex solver [61]
for the SMT theory of string and regex constraints [4,13,15]. Our solver lever-
aged derivatives (in the sense of Brzozowski [18] and Antimirov [5]) to explore
the states of the finite state machine corresponding to the regex incrementally
(as the graph is built), to avoid the prohibitive cost of expanding all states ini-
tially. This turns out to require solving the live and dead state detection problem
in the finite state machine presented as an incremental directed graph.1 Con-
cretely, consider the regex (�*α�100)C ∩ (�α), where � matches any character, ∩
is regex intersection, C is regex complement, and α matches any digit (0-9). A
traditional solver would expand the left and right operands as state machines,
but the left operand (�*α�100)C is astronomically large as a DFA, causing the
solver to hang. The derivative-based technique instead constructs the derivative
regex: (�*α�100)C ∩ (�100)C ∩ α. At this stage we have a graph of two states and
one edge, where the states are the two regexes just described, and the edge is
the derivative relation. After one more derivative operation, the regex is reduced
to one that is clearly nonempty as it accepts the empty string.

It is important that a derivative-based solver identify nonempty (live) and
empty (dead) regexes incrementally because it does not generally construct the
entire state space before terminating (see the graph update rule Upd, p. 626 [61]).
Moreover, the nonemptiness problem for extended regexes is non-elementary [62]
— and still PSPACE-complete for more restricted fragments — which strongly
favors a lazy approach over brute-force search.

Regexes are just one possible application; the algorithms we will present here
are broadly applicable to any context where the states have a bounded (per-
node) out-degree. For example, they could be applied in LTL model checking
when lazily exploring the state space of a nondeterministic Büchi automaton
(NBA), where the NBA is too expensive to construct up front. The important
fact is that each state of the automaton has only finitely many outgoing edges,
and when all these are added, we can hope to check for dead states incrementally.

Prior Work. Traditionally, while live state detection can be done incremen-
tally, dead state detection is often done exhaustively (i.e., after the entire state
space is explored). For example, bounded and finite-state model checkers based
on translations to automata [20,43,58], as well as classical dead-state elimina-
tion algorithms [12,16,37], typically work on a fixed state space after it has
been fully enumerated. However, we reiterate that exhaustive exploration is pro-
hibitive for large (e.g., exponential or infinite) state spaces which arise in an SMT

1 The specific setting is regexes with intersection and complement (extended [31,44]
or generalized [26] regexes), which are found natively in security applications [6,61].
Other solvers have also leveraged derivatives [45] and laziness in general [36].

Incremental Dead State Detection in Logarithmic Time 243

1

2 3

Fig. 1. GID consisting of the sequence of updates E(1, 2), E(1, 3), T(2). Terminal states
are drawn as double circles. After the update T(2), states 1 and 2 are known to be live.
State 3 is not dead in this GID, as a future update may cause it to be live.

1

2 3

4

5

Fig. 2. GID extending Fig. 1 with additional updates E(4, 3), E(4, 5), C(4), C(5). Closed
states are drawn as solid circles. After the update C(5) (but not earlier), state 5 is dead.
State 4 is not dead because it can still reach state 3.

verification context. We also have good evidence that incremental feedback
can improve SMT solver performance: a representative success story is the e-
graph data structure [23,67], which maintains an equivalence relation among
expressions incrementally; because it applies to general expressions, it is theory-
independent and re-usable. Incremental state space exploration could lead to
similar benefits if applied to SMT procedures which still rely on exhaustive
search.

However, in order to perform incremental dead state detection, we cur-
rently lack algorithms which match offline performance. As we discuss in Sect. 2,
the best-known existing solutions would require maintaining strong connected
components (SCCs) incrementally. For SCC maintenance and the related sim-
pler problem of cycle detection, amortized algorithms are known with O(m3/2)
total time for m edge additions [10,33], with some recently announced improve-
ments [11,14]. Note that this is in sharp contrast to O(m) for the offline variants
of these problems, which can be solved by breadth-first or depth-first search.
More generally, research suggests there are computational barriers to solving
unconstrained reachability problems in incremental and dynamic graphs [1,29].

This Paper. To improve on prior algorithms, our key observation is that in
many applications (including our motivating applications above), edges are not
added adversarially, but from one state at a time as the states are explored. As
a result, we know when a state will have no further outgoing edges. This enables
us to (i) identify dead states incrementally, rather than only after the whole
state space is explored; and (ii) obtain more efficient algorithms than currently
exist for general graph reachability.

We introduce guided incremental digraphs (GIDs), a variation on incremental
graphs. Like an incremental directed graph, a guided incremental digraph may be
updated by adding new edges between states, or a state may be labeled as closed,
meaning it will receive no further outgoing edges. Some states are designated as

244 C. Stanford and M. Veanes

terminal, and we say that a state is live if it can reach a terminal state and
dead if it will never reach a terminal state in any extension – i.e. if all reachable
states from it are closed (see Figs. 1 and 2). To our knowledge, the problem of
detecting dead states in such a system has not been studied by existing work in
graph algorithms. Our problem can be solved through solving SCC maintenance,
but not necessarily the other way around (Sect. 2, Proposition 1). We provide
two new algorithms for dead-state detection in GIDs.

First, we show that the dead-state detection problem for GIDs can be solved
in time O(m · log m) for m edge additions, within a logarithmic factor of the
O(m) cost for offline search. The worst-case performance of our algorithm thus
strictly improves on the O(m3/2) upper bound for SCC maintenance in gen-
eral incremental graphs. Our algorithm is technically sophisticated, and utilizes
several data structures and existing results in online algorithms: in particular,
Union-Find [63] and Henzinger and King’s Euler Tour Trees [35]. The main idea
is that, rather than explicitly computing the set of SCCs, for closed states we
maintain a single path to a non-closed (open) state. This turns out to reduce the
problem to quickly determining whether two states are currently assigned a path
to the same open state. On the other hand, Euler Tour Trees can solve undirected
reachability for graphs that are forests in logarithmic time.2 The challenge then
lies in figuring out how to reduce directed connectivity in the graph of paths to
an undirected forest connectivity problem. At the same time, we must maintain
this reduction under Union-Find state merges, in order to deal with cycles that
are found in the graph along the way.

While as theorists we would like to believe that asymptotic complexity is
enough, the truth is that the use of complex data structures (1) can be pro-
hibitively expensive in practice due to constant-factor overheads, and (2) can
make algorithms substantially more difficult to implement, leading practition-
ers to prefer simpler approaches. To address these needs, in addition to the
logarithmic-time algorithm, we provide a second lazy algorithm which avoids
the user of Euler Tour Trees, and only uses union-find. This algorithm is based
on an optimization of adding shortcut jump edges for long paths in the graph to
quickly determine reachability. This approach aims to perform well in practice
on typical graphs, and is evaluated in our evaluation along with the logarithmic
time algorithm, though we do not prove its asymptotic complexity.

Finally, we implement and empirically evaluate both of our algorithms for
GIDs against several baselines in 5.5k lines of code in Rust [47]. Our evaluation
focuses on the performance of the GID data structure itself, rather than its end-
to-end performance in applications. To ensure an apples-to-apples comparison
with existing approaches, we put particular focus on providing a directed graph
data structure backend shared by all algorithms, so that the cost of graph search
as well as state and edge merges is identical across algorithms. We implement
two näıve baselines, as well as an implementation of the state-of-the-art solution

2 Reachability in dynamic forests can also be solved by Sleator-Tarjan trees [59],
Frederickson’s Topology Trees [30], or Top Trees [3]. Of these, we found Euler Tour
Trees the easiest to work with in our implementation. See also [64].

Incremental Dead State Detection in Logarithmic Time 245

based on maintaining SCCs, BFGT [10] in our framework. To our knowledge,
the latter is the first implementation of BFGT specifically for SCC maintenance.
On a collection of generated benchmark GIDs, random GIDs, and GIDs directly
pulled from the regex application, we demonstrate a substantial improvement
over BFGT for both of our algorithms. For example, for larger GIDs (those with
over 100K updates), we observe a 110-530x speedup over BFGT.

Contributions. Our primary contributions are:

– Guided incremental digraphs (GIDs), a formalization of incremental live and
dead state detection which supports labeling closed states. (Section 2)

– Two algorithms for the state classification problem in GIDs: first, an algo-
rithm that works in amortized O(log m) time per update, improving upon
the state-of-the-art amortized O(

√
m) per update for incremental graphs;

and second, a simpler algorithm based on lazy heuristics. (Section 3)
– An open-source implementation3 of GIDs in Rust, and an evaluation which

demonstrates up to two orders of magnitude speedup over BFGT. (Section 4)

Following the above, we expand on the application of GIDs to regex solving
in SMT (Sect. 5) and survey related work (Sect. 6).

2 Guided Incremental Digraphs

2.1 Problem Statement

An incremental digraph is a sequence of edge updates E(u, v), where the algo-
rithmic challenge in this context is to produce some output after each edge is
received (e.g., whether or not a cycle exists). If the graph also contains updates
T(u) labeling a state as terminal, then we say that a state is live if it can reach
a terminal state in the current graph. In a guided incremental digraph, we also
include updates C(u) labeling a state as closed, meaning that will not receive
any further outgoing edges.

Definition 1. Define a guided incremental digraph (GID) to be a sequence of
updates, where each update is one of the following:

(i) a new directed edge E(u, v);
(ii) a label T(u) which indicates that u is terminal ; or
(iii) a label C(u) which indicates that u is closed, i.e. no further edges will be

added going out from u (or labels to u).

The GID is valid if the closed labels are correct: there are no instances of
E(u, v) or T(u) after an update C(u). The denotation of G is the directed graph
(V,E) where V is the set of all states u which have occurred in any update in
the sequence, and E is the set of all (u, v) such that E(u, v) occurs in G. An
extension of a valid GID G is a valid GID G′ such that G is a prefix of G′.

3 https://github.com/cdstanford/gid.

https://github.com/cdstanford/gid
https://github.com/cdstanford/gid

246 C. Stanford and M. Veanes

In a valid GID G, we say that a state u is live if there is a path from u to a
terminal state in the denotation of G; and a state u is dead if it is not live in
any extension of G. Notice that in a GID without any C(u) updates, no states
are dead as an edge may be added in an extension which makes them live.

We provide an example of a valid GID in Figs. 1 and 2 consisting of the
following sequence of updates: E(1, 2), E(1, 3), T(2), E(4, 3), E(4, 5), C(4), C(5).
Terminal states T(u) are drawn as double circles; closed states, as single circles
C(u); and states that are not closed, as dashed circles.

Definition 2. Given as input a valid GID, the GID state classification problem
is to output, in an online fashion after each update, the set of new live and new
dead states. That is, output Live(u) or Dead(u) on the smallest prefix of updates
such that u is live or dead on that prefix, respectively.

2.2 Existing Approaches

In many applications, one might choose to classify dead states offline, after the
entire state space is enumerated. This leads to a linear-time algorithm via either
DFS or BFS, but it does not solve our problem (Definition 2) because it is
not incremental. Näıve application of this idea leads to O(m) per update for m
updates (O(m2) total), as we may redo the entire search after each update.

For acyclic graphs, there exists an amortized O(1)-time per update algorithm
for the problem (Definition 2): maintain the graph as a list of forward- and
backward-edges at each state. When a state v is marked terminal, do a DFS
along backward-edges to determine all states u that can reach v not already
marked as live, and mark them live. When a state v is marked closed, visit
all forward-edges from v; if all are dead, mark v as dead and recurse along all
backward-edges from v. As each edge is visited only when marking a state live
or dead, it is only visited a constant number of times overall (though we may
use more than O(1) time on some particular update pass). Additionally, the live
state detection part of this procedure still works for graphs containing cycles.

The challenge, therefore, lies primarily in detecting dead states in graphs
which may contain cycles. For this, the breakthrough approach from [10] main-
tains a condensed graph which is acyclic, where the vertices in the condensed
graph represent strongly connected components (SCCs) of states. The mapping
from states to SCCs is maintained using a Union-Find [63] data structure. Main-
taining the condensed graph requires O(

√
m) time per update. To avoid confus-

ing closed and non-closed states, we also have to make sure that they are not
merged into the same SCC; the easiest solution to this is to withhold all edges
from each state u in the graph until u are closed, which ensures that u must be in
a SCC on its own. Once we have the condensed graph with these modifications,
the same algorithm as in the previous paragraph works to identify live and dead
states. Since each edge is only visited when a state is marked closed or live, each
edge is visited only once throughout the algorithm, we use only amortized O(1)
additional time to calculate live and dead states. While this SCC maintenance
algorithm ignores the fact that edges do not occur from closed states C(u), this
still proves the following result:

Incremental Dead State Detection in Logarithmic Time 247

Live Some reachable state from u is terminal.
Dead All reachable states from u (including u) are closed and not terminal.
Unknown u is closed, but not live or dead.
Open u is not live and not closed.

Terminal A state u labeled by T(u).
Closed A state u labeled by C(u).
Canonical A state x such that UF.find(x) = x.
u, v, w States (may or may not be canonical).
x, y, z Canonical states (i.e., states in the condensed graph).
Successor
succ(x)

For an unknown, canonical state x, a uniquely chosen v such that (x, v)
is an edge, and following the path of successors leads to an open state.

Fig. 3. Top: Basic classification of GID states into four disjoint categories. Bottom:
Additional terminology used in this paper.

Proposition 1. GID state classification reduces to SCC maintenance. That is,
suppose we have an algorithm over incremental graphs that maintains the set of
SCCs in O(f(m,n)) total time given n states and m edge additions.4 Then there
exists an algorithm to solve GID state classification in O(f(m,n)) total time.

Despite this reduction one way, there is no obvious reduction the other way –
from cycle detection or SCCs to Definition 2. This is because, while the existence
of a cycle of non-live states implies bi-reachability between all states in the cycle,
it does not necessarily imply that all of the bi-reachable states are dead.

3 Algorithms

This section presents Algorithm 2, which solves the state classification problem
in logarithmic time (Theorem 3); and Algorithm 3, an alternative lazy solution.
Both algorithms are optimized versions of Algorithm 1, a first-cut algorithm
which establishes the structure of our approach. We begin by establishing some
basic terminology shared by all of the algorithms (see Fig. 3).

States in a GID can be usefully classified as exactly one of four statuses:
live, dead, unknown, or open, where unknown means “closed but not yet live or
dead”, and open means “not closed and not live”. Note that a state may be live
and neither open nor closed; this terminology keeps the classification disjoint.
Pragmatically, for live states it does not matter if they are classified as open or
closed, since edges from those states no longer have any effect. However, all dead
and unknown states are closed, and no states are both open and closed.

Given this classification, the intuition is that for each unknown state u, we
only need one path from u to an open state to prove that it is not dead; we want
to maintain one such path for all unknown states. To maintain all of these paths

4 To be precise, “maintains” means that (i) we can check whether two states are in
the same SCC in O(1) time; and (ii) we can iterate over all the states, edges from,
or edges into a SCC in O(1) time per state or edge.

248 C. Stanford and M. Veanes

simultaneously, we maintain an acyclic directed forest structure on unknown and
open states where the roots are open states, and all non-root states have a single
edge to another state, called its successor. Edges other than successor edges can
be temporarily ignored, except for when marking live states; these are kept as
reserve edges. Specifically, we add every edge (u, v) as a backward-edge from v
(to allow propagating live states), but for edges not in the forest we keep (u, v)
in a reserve list from u. We store all edges, including backward-edges, in the
original order (u, v). The reserve list edge becomes relevant only when either (i)
u is marked as closed, or (ii) u’s successor is marked as dead.

In order to deal with cycles, we need to maintain the forest of unknown states
not on the original graph, but on a union-find condensed graph, similar to [63].
When we find a cycle of unknown states, we merge all states in the cycle by
calling the union method in the union-find. We refer to a state as canonical if
it is the canonical representative of its equivalence class in the union find; the
condensed graph is a forest on canonical states. We use x, y, z to denote canonical
states (states in the condensed graph), and u, v, w to denote the original states
(not known to be canonical). Following [63], we maintain edges as linked lists
rather than sets, and using the original states instead of canonical states; this is
important as it allows combining edge lists in O(1) time when merging states.

3.1 First-Cut Algorithm

Algorithm 1 is a first cut based on these ideas. The procedures OnEdge and
OnTerminal contain all the logic to identify live states, using bck to look up
backward-edges; OnTerminal doubles as a “mark live” function when it is
called by OnEdge. The procedure OnClosed tries to assign a successor edge
to a newly closed state, to prove that it is not dead. In case we run out of
reserve edges, the state is marked dead and we recursively call OnClosed along
backward-edges, which will either set a new successor or mark them dead.

The union-find data structure UF provides UF.union(v1, v2), UF.find(v), and
UF.iter(v): UF.union merges v1 and v2 to refer to the same canonical state,
UF.find returns the canonical state for v, and UF.iter iterates over states equiv-
alent to v. These use amortized α(n) for n updates, where α(n) ∈ o(log n) is the
inverse Ackermann function. We only merge states if they are bi-reachable from
each other, and both unknown; this implies that all states equivalent to a state
x have the same status. Each edge (u, v) is always stored in the maps res and
bck using its original states (i.e., edge labels are not updated when states are
merged); but we can quickly obtain the corresponding edge on canonical states
via (UF.find(u), UF.find(v)). Once a state is marked Live or Dead, its edge
maps are no longer used.

Invariants. Altogether, we respect the following invariants. Successor and no
cycles describe the forest structure, and, edge representation ensures that all
edges in the input GID are represented somehow in the current graph.

– Merge equivalence: For all states u and v, if UF.find(u) = UF.find(v), then
u and v are bi-reachable and both closed. (This implies that u and v are both
live, both dead, or both unknown.)

Incremental Dead State Detection in Logarithmic Time 249

Algorithm 1. First-cut algorithm.
1: V: a type for states (integers) (variables u, v, . . .)
2: E: the type of edges, equal to (V, V)
3: UF: a union-find data structure over V

4: X: the set of canonical states in UF (variables x, y, z, . . .)
5: status: a map from X to Live, Dead, Unknown, or Open

6: succ: a map from X to V

7: res and bck: maps from X to linked lists of E

8: procedure OnEdge(E(u, v))
9: x ← UF.find(u); y ← UF.find(v)

10: if status(y) = Live then
11: OnTerminal(T(x)) � mark x and its ancestors live
12: else if status(x) �= Live then � status(x) must be Open

13: append (u, v) to res(x)
14: append (u, v) to bck(y)

15: procedure OnTerminal(T(v))
16: y ← UF.find(v)
17: for all x in DFS backwards (along bck) from y not already Live do
18: status(x) ← Live

19: output Live(x′) for all x′ in UF.iter(x)

20: procedure OnClosed(C(v))
21: y ← UF.find(v)
22: if status(y) �= Open then return � y is already live or closed

23: while res(y) is nonempty do
24: pop (v, w) from res(y); z ← UF.find(w)
25: if status(z) = Dead then continue
26: else if CheckCycle(y, z) then
27: for all z′ in cycle from z to y do z ← Merge(z, z′)

28: else
29: status(y) ← Unknown; succ(y) ← z;
30: return
31: status(y) ← Dead; output Dead(y′) for all y′ in UF.iter(y)
32: ToRecurse ← ∅

33: for all (u, v) in bck(y) do
34: x ← UF.find(u)
35: if status(x) = Unknown and UF.find(succ(x)) = y then
36: status(x) ← Open � temporary – marked closed on recursive call
37: add x to ToRecurse

38: for all x in ToRecurse do OnClosed(C(x))

39: procedure CheckCycle(y, z) returning bool

40: while status(z) = Unknown do z ← UF.find(succ(z)) � get root state from z

41: return y = z

42: procedure Merge(x, y) returning V

43: z ← UF.union(x, y)
44: bck(z) ← bck(x) + bck(y) � O(1) linked list append
45: res(z) ← res(x) + res(y) � O(1) linked list append
46: return z

250 C. Stanford and M. Veanes

– Status correctness: For all u, status(UF.find(u)) equals the status of u.
– Successor edges: If x is unknown, then succ(x) is defined and is an unknown

or open state. If x is open, then succ(x) is not defined.
– No cycles: There are no cycles among the set of edges (x, UF.find(succ(x))),

over all unknown and open canonical states x.
– Edge representation: For all edges (u, v) in the input GID, at least one of the

following holds: (i) (u, v) ∈ res(UF.find(v)); (ii) v = succ(UF.find(u)); (iii)
UF.find(u) = UF.find(v); (iv) u is live; or (v) v is dead.

Theorem 1. Algorithm 1 is correct.

Proof (Summary). The full proof can be found in the arXiv version [60]. The
status correctness invariant implies correct output at each step, so it suffices to
argue that all of the invariants above are preserved. Upon receiving E(u, v) or
T(u), some dead, unknown, or open states may become live, but this does not
change the status of any other states. The main challenge of the proof is the
recursive procedure OnClosedC(u). On recursive calls, some states are tem-
porarily marked Open, meaning they are roots in the forest structure. During
recursive calls, we need a slightly generalized invariant: each forest root corre-
sponds to a pending call to OnClosedC(u) (i.e., an element of ToRecurse for
some call on the stack) and is a state that is dead iff all of its reserve edges are
dead. After we prove this (generalized) invariant, when OnClosedC(u) termi-
nates, we know that there are no more temporary open states, and the forest
structure implies that all closed states are correctly marked as unknown.

Complexity. The core inefficiency in Algorithm 1 — what we need to improve
— lies in CheckCycle. The procedure repeatedly sets z ← succ(z) to find
the tree root, which in general could be linear time in the number of edges.
For example, this inefficiency results in O(m2) work for a linear graph read in
backwards order: E(2, 1), C(2), E(3, 2), C(3), . . . , E(n, n-1), C(n).

All other procedures use amortized α(m) time per update for m updates,
using array lists to represent the maps fwd, bck, and succ for O(1) lookups. To
do the amortized analysis, the cost of each call to OnClosed can be assigned
either to the target of an edge being marked dead, or to an edge being merged
as part of a cycle, and both of these events can only happen once per edge added
to the GID. And the OnTerminal calls and loop iterations only run once per
edge in the graph when the target of that edge is marked live or terminal.

3.2 Logarithmic Algorithm

At its core, CheckCycle requires solving an undirected reachability problem on
a graph that is restricted to a forest. However, the forest is changed not just by
edge additions, but edge additions and deletions. While undirected reachability
and reachability in directed graphs are both difficult to solve incrementally,
reachability in dynamic forests can be solved in O(log m) time per operation.
This is the main intuition for our solution, using an Euler Tour Trees data
structure EF of Henzinger and King [35], shown in Algorithm 2.

Incremental Dead State Detection in Logarithmic Time 251

Algorithm 2. Logarithmic time algorithm.
1: All data from Algorithm 1; succ: a map from X to E (instead of to V)
2: EF: Euler Tour Trees data structure providing: EF.add, EF.remove, EF.connected
3: procedure OnEdge, Merge as in Algorithm 1

4: procedure OnTerminal(T(v))
5: y ← UF.find(v)
6: for all x in DFS backwards (along bck) from y not already Live do
7: if status(x) = Unknown then
8: � The following line is not strictly necessary, but simplifies the analysis
9: (u, v) ← succ(x); delete succ(x); EF.remove(u, v)

10: status(x) ← Live; output Live(x′) for all x′ in UF.iter(x)

11: procedure OnClosed(C(v))
12: y ← UF.find(v)
13: if status(y) �= Open then return

14: while res(y) is nonempty do
15: pop (v, w) from res(y); z ← UF.find(w)
16: if status(z) = Dead then continue
17: else if CheckCycle(y, z) then
18: for all z′ in cycle from z to y do z ← Merge(z, z′)

19: else
20: status(x) ← Unknown; succ(x) ← (v, w)
21: EF.add(v, w); return � undirected edge; use original labels (not (x, y))

22: status(y) ← Dead; ToRec ← ∅; output Dead(y′) for all y′ in UF.iter(y)
23: for all (u, v) in bck(y) do
24: x ← UF.find(u)
25: if status(x) = Unknown then
26: (u′, v′) ← succ(x)
27: if UF.find(v′) = y then
28: EF.remove(u′, v′); status(x) ← Open; delete succ(x); add x to ToRec

29: for all x in ToRec do OnClosed(C(x))

30: procedure CheckCycle(y, z) returning bool

31: return EF.connected(y, z)

Unfortunately, this idea does not work straightforwardly – once again because
of the presence of cycles in the original graph. We cannot simply store the forest
as a condensed graph with edges on condensed states. As we saw in Algorithm
1, it was important to store successor edges as edges into V, rather than edges
into X – this is the only way that we can merge states in O(1), without actually
inspecting the edge lists. If we needed to update the forest edges to be in X, this
could require O(m) work to merge two O(m)-sized edge lists as each edge might
need to be relabeled in the EF graph.

To solve this challenge, we instead store the EF data structure on the original
states, rather than the condensed graph; but we ensure that each canonical state
is represented by a tree of original states. When adding edges between canonical
states, we need to make sure to remember the original label (u, v), so that we can
later remove it using the original labels (this happens when its target becomes

252 C. Stanford and M. Veanes

dead). When an edge would create a cycle, we instead simply ignore it in the EF
graph, because a line of connected trees forms a tree.

Summary and Invariants. In summary, the algorithm reuses the data, proce-
dures, and invariants from Algorithm 1, with the following important changes:
(1) We maintain the EF data structure EF, a forest on V. (2) The successor edges
are stored as their original edge labels (u, v), rather than just as a target state.
(3) The procedure OnClosed is rewritten to maintain the graph EF. (4) The
successor edges and no cycles invariants use the new succ representation: that
is, they are constraints on the edges (x, UF.find(v)), where succ(x) = (u, v).
(5) We add the following two constraints on edges in EF, depending on whether
those states are equivalent in the union-find structure.

– EF inter-edges: For all inequivalent u, v, (u, v) is in the EF if and only if
(u, v) = succ(UF.find(u)) or (v, u) = succ(UF.find(v)).

– EF intra-edges: For all unknown canonical states x, the set of edges (u, v) in
the EF between states belonging to x forms a tree.

Theorem 2. Algorithm 2 is correct.

Proof. Observe that the EF inter-edges constraint implies that EF only contains
edges between unknown and open states, together with isolated trees. In the
modified OnTerminal procedure, when marking states as live we remove inter-
edges, so we preserve this invariant.

Next we argue that given the invariants about EF, for an open state y the
CheckCycle procedure returns true if and only if (y, z) would create a directed
cycle. If there is a cycle of canonical states, then because canonical states are
connected trees in EF, the cycle can be lifted to a cycle on original states, so y and
z must already be connected in this cycle without the edge (y, z). Conversely, if
y and z are connected in EF, then there is a path from y to z, and this can be
projected to a path on canonical states. However, because y is open, it is a root
in the successor forest, so any path from y along successor edges travels only
on backward-edges; hence z is an ancestor of y in the directed graph, and thus
(y, z) creates a directed cycle.

This leaves the OnClosed procedure. Other than the EF lines, the structure
is the same as in Algorithm 1, so the previous invariants are still preserved,
and it remains to check the EF invariants. When we delete the successor edge
and temporarily mark status(x) = Open for recursive calls, we also remove it
from EF, preserving the inter-edge invariant. Similarly, when we add a successor
edge to x, we add it to EF, preserving the inter-edge invariant. So it remains to
consider when the set of canonical states changes, which is when merging states
in a cycle. Here, a line of canonical states is merged into a single state, and a
line of connected trees is still a tree, so the intra-edge invariant still holds for
the new canonical state, and we are done. ��
Theorem 3. Algorithm 2 uses amortized logarithmic time per edge update.

Proof. By the analysis of Algorithm 1, each line of the algorithm is executed
O(m) times and there are O(m) calls to CheckCycle. Each line of code is

Incremental Dead State Detection in Logarithmic Time 253

Algorithm 3. Lazy algorithm.
1: All data from Algorithm 1; jumps: a map from X to lists of V

2: procedure OnEdge, OnTerminal OnClosed as in Algorithm 1

3: procedure CheckCycle(y, z) returning bool

4: return y = GetRoot(z)

5: procedure GetRoot(z) returning V

6: if status(z) = Open then return z

7: if jumps(z) is empty then push succ(z) to jumps(z) � set 0th jump

8: repeat pop w from jumps(z); z′ = UF.find(w) � remove dead jumps
9: until status(z′) �= Dead

10: push z′ to jumps(z); result ← GetRoot(z′)
11: n ← length(jumps(z)); n′ ← length(jumps(z′))
12: if n ≤ n′ then push jumps(z′)[n − 1] to jumps(z) � set nth jump

13: return result
14: procedure Merge(x, y) returning V

15: z ← UF.union(x, y)
16: bck(z) ← bck(x) + bck(y); res(z) ← res(x) + res(y)
17: jumps(z) ← empty; return z

either constant-time, α(m) = o(log m) time for the UF calls, or O(log m) time for
the EF calls, so in total the algorithm takes O(m log m) time total, or amortized
O(log m) time per edge. ��

3.3 Lazy Algorithm

While the asymptotic complexity of log m could be the end of the story, in
practice, we found the cost of the EF calls to be a significant overhead. The
technical details of Euler Tour Trees include building an AVL-tree cycle for each
tree, where the cycle contains each state of the graph once and each edge in the
graph twice. While this is elegant, it turns out that adding one edge to EF results
in no less than seven modifications to the AVL tree: a split at the source, then
a split at the target, then an edge addition in both directions (u, v) and (v, u)
to the cycle, and finally the four resulting trees need to be glued together (using
three merge operations).5 Each one of these operations comes with a rebalancing
operation which could do Ω(log m) tree rotations and pointer dereferences to visit
the nodes in the AVL tree. Some optimizations may be possible – including,
e.g., combining rebalancing operations or considering variants of AVL trees with
better cache locality. Nonetheless, these constant-factor overheads constitute a
serious practical drawback for Algorithm 2.

To address this, in this section, we investigate a simpler, lazy algorithm which
avoids EF and directly optimizes Algorithm 1. For this, one idea in the right
direction is to store for each state a direct pointer to the root which results from
5 Our implementation actually uses nine modifications, as the splits at the source and

target also disconnect the source and target states.

254 C. Stanford and M. Veanes

repeatedly calling succ. But there are two issues with this. First, maintaining this
may be difficult (when the root changes, potentially updating a linear number
of root pointers). Second, the root may be marked dead, in which case we have
to re-compute all pointers to that root.

Instead, we introduce a jump list from each state: intuitively, it will contain
states after calling successor once, twice, four times, eight times, and so on at
powers of two; and it will be updated lazily, at most once for every visit to
the state. When a jump becomes obsolete (the target dead), we just pop off
the largest jump, so we do not lose all of our work in building the list. We
maintain the following additional information: for each unknown canonical state
x, a nonempty list of jumps [v0, v1, v2, . . . , vk], such that v0 is reachable from x,
v1 is reachable from v0, v2 is reachable from v1, and so on, and v1 = succ(x).

The resulting algorithm is shown in Algorithm 3. The key procedure is Get-
Rootz, which is called when adding a reserve edge (y, z) to the graph. In
addition to all invariants from Algorithm 1, we maintain the following invari-
ants for every unknown canonical state x, where jumps(x) is a list of states
v0, v1, v2, . . . , vk. First jump: if the jump list is nonempty, then v0 = succ(v).
Reachability: vi+1 is reachable from vi for all i. The jump list also satisfies the
following powers of two invariant: on the path of canonical states from v0 to vi,
the total number of states (including all states in each equivalence class) is at
least 2i. While this invariant is not necessary for correctness, it is the key to the
algorithm’s practical efficiency: it follows from this that if the jump list is fully
saturated for every state, querying GetRootz will take only logarithmic time.
However, since jump lists are updated lazily, the jump list may not be saturated,
so this does not establish a true asymptotic complexity for the algorithm.

Theorem 4. Algorithm 3 is correct.

Proof. The first jump and reachability invariants imply that v1, v2, . . . is some
sublist of the states along the path from an unknown state to its root, potentially
followed by some dead states. We need to argue that the subprocedure GetRoot
(i) receives the same verdict as repeatedly calling succ to find a cycle in the first-
cut algorithm and (ii) preserve both invariants. For first jump, if the jump list is
empty, then GetRoot ensures that the first jump is set to the successor state.
For reachability, popping dead states from the jump list clearly preserves the
invariant, as does adding on a state along the path to the root, which is done
when k′ ≥ k. Merging states preserves both invariants trivially because we throw
the jump list away, and marking states live preserves both invariants trivially
since the jump list is only maintained and used for unknown states. ��

4 Experimental Evaluation

The primary goal of our evaluation has been to experimentally validate the
performance of GIDs as a data structure in isolation, rather than their use in a
particular application. Our evaluation seeks to answer the following questions:

Incremental Dead State Detection in Logarithmic Time 255

Q1 How does our approach (Algorithms 2 and 3) compare to the state-of-the-art
approach based on maintaining SCCs?

Q2 How does the performance of the studied algorithms vary when the class of
input graphs changes (e.g., sparse vs. dense, structured vs. random)?

Q3 Finally, how do the studied algorithms perform on GIDs taken from the
example application to regexes described in Sect. 5?

To answer Q1, we put substantial implementation effort into a com-
mon framework on which a fair comparison could be made between different
approaches. To this end, we implemented GIDs as a data structure in Rust
which includes a graph data structure on top of which all algorithms are built. In
particular, this equalizes performance across algorithms for the following base-
line operations: state and edge addition and retrieval, DFS and BFS search,
edge iteration, and state merging. We chose Rust for our implementation for
its performance, and because there does not appear to be an existing publicly
available implementation of BFGT in any other language.6 The number of lines
of code used to implement these various structures is summarized in Fig. 4. We
implement Algorithms 2 and 3 and compare them with the following baselines:

BFGT The state-of-the-art approach based on SCC maintenance, using worst-
case amortized O(

√
m) time per update [10].

Simple A simpler version of BFGT that uses a forward-DFS to search for cycles.
Like Algorithm 1, it can take Θ(m2) in the worst case.

Näıve A greedy upper bound for all approaches which re-computes the entire
set of dead states using a linear-time DFS after each update.

To answer Q2, first, we compiled a range of basic graph classes which are
designed to expose edge case behavior in the algorithms, as well as randomly
generated graphs. We focus on graphs with no live states, as live states are
treated similarly by all algorithms. Most of the generated graphs come in 2×2 =
4 variants: (i) the states are either read in a forwards- or backwards- order; and
(ii) they are either dead graphs, where there are no open states at the end and so
everything gets marked dead; or unknown graphs, where there is a single open
state at the end, so most states are unknown. In the unknown case, it is sufficient
to have one open state at the end, as many open states can be reduced to the
case of a single open state where all edges point to that one. We include GIDs
from line graphs and cycle graphs (up to 100K states in multiples of 3); complete
and complete acyclic graphs (up to 1K states); and bipartite graphs (up to 1K
states). These are important cases, for example, because the reverse-order line
and cycle graphs are a potential worst case for Simple and BFGT.

Second, to exhibit more dynamic behavior, we generated random graphs:
sparse graphs with a fixed out-degree from each state, chosen from 1, 2, 3, or
10 (up to 100K states); and dense graphs with a fixed probability of each edge,
chosen from .01, .02, or .03 (up to 10K states). Each case uses 10 different random
seeds. As with the basic graphs, states are read in some order and marked closed.

6 That is, BFGT for SCC maintenance. BFGT for cycle detection has been imple-
mented before, for instance, in [28] and formally verified in [32].

256 C. Stanford and M. Veanes

Implementation
Component LoC

Common Framework 1197
Naïve Algorithm 78
Simple Algorithm 98
BFGT Algorithm 265
Algorithm 2 (Ours) 253
Algorithm 3 (Ours) 283
Euler Tour Trees 1510
Experimental Scripts 556
Separated Unit Tests 800
Utility 217
Other 69
Total 5326

Category Benchmark Source Qty

Basic Line 24
Cycle 24
Complete 18
Bipartite 14
Total 80

Random Sparse 260
Dense 130
Total 390

Regex RegExLib [15] 2061 37
Handwritten [61] 70 26
Additional 11
Total 74

Fig. 4. Left: Lines of code for each algorithm and other implementation components.
Right: Benchmark GIDs used in our evaluation. Where present, the source column
indicates the quantity prior to filtering out trivially small graphs.

To answer Q3, we wrote a backend to extract a GID at runtime from
Z3’s regex solver [61]. While the backend of the solver is precisely a GID —
and so could be passed to our GID implementation dynamically — this setup
includes many extraneous overheads, including rewriting expressions and com-
puting derivatives when adding nodes to the graph. While some of these over-
heads may be possible to eliminate, and we are fairly confident that GIDs would
be a bottleneck for sufficiently large input examples, this makes it difficult to
isolate the performance impact of the GID data structure itself, which is the
sole focus of this paper. We therefore instrumented the Z3 solver code to export
the (incremental) sequence of graph updates that would be performed during a
run of Z3 on existing regex benchmarks. For each benchmark, this instrumented
code produces a faithful representation of the sequence of graph updates that
actually occur in a run of the SMT solver on this particular benchmark. For
each regex benchmark, we thus get a GID benchmark for the present paper.
The benchmarks focus on extended regexes, rather than plain classical regexes
as these are the ones for which dead state detection is relevant (see Sect. 5). We
include GIDs for the RegExLib benchmarks [15] and the handcrafted Boolean
benchmarks reported in [61]. We add to these 11 additional examples designed
to be difficult GID cases. The collection of regex benchmarks we used (just
described) is available on GitHub.7

From both the Q2 and Q3 benchmarks, we filter out any benchmark which
takes under 10 milliseconds for all of the algorithms to solve (including Näıve),
and we use a 60 second timeout. The evaluation was run on a 2020 MacBook
Air (MacOS Monterey) with an Apple M1 processor and 8GB of memory.

7 https://github.com/cdstanford/regex-smt-benchmarks.

https://github.com/cdstanford/regex-smt-benchmarks
https://github.com/cdstanford/regex-smt-benchmarks

Incremental Dead State Detection in Logarithmic Time 257

Time (ms)

B
en

ch
m

ar
ks

 S
ol

ve
d

0

30

60

90

1 10 100 1000 10000

Naive Simple BFGT Alg 2 Alg 3

Time (ms)

B
en

ch
m

ar
ks

 S
ol

ve
d

0

100

200

300

400

1 10 100 1000 10000

Naive Simple BFGT Alg 2 Alg 3

Time (ms)

B
en

ch
m

ar
ks

 S
ol

ve
d

0

20

40

60

80

1 10 100 1000 10000

Naive Simple BFGT Alg 2 Alg 3

Benchmark Size

Ti
m

e
(m

s)

1

10

100

1000

10000

100 1000 10000 100000 1000000

Naive Simple BFGT Alg 2 Alg 3

Benchmark Size

A
ve

ra
ge

 T
im

e
(m

s)

1

10

100

1000

10000

100 1000 10000 100000 1000000

Naive Simple BFGT Alg 2 Alg 3

Fig. 5. Evaluation results. Left: Cumulative plot showing the number of benchmarks
solved in time t or less for basic GID classes (top), randomly generated GIDs (middle),
and regex-derived GIDs (bottom). Top right: Scatter plot showing the size of each
benchmark vs time to solve. Bottom right: Average time to solve benchmarks of size
closest to s, where values of s are chosen in increments of 1/3 on a log scale.

Correctness. To ensure that all of our implementations our correct, we invested
time into unit testing and checked output correctness on all of our collected
benchmarks, including several cases which exposed bugs in previous versions
of one or more algorithms. In total, all algorithms are vetted against 25 unit
tests from handwritten edge cases that exposed prior bugs, 373 unit tests from
benchmarks, and 30 module-level unit tests for specific functions.

Results. Figure 5 shows the results. Algorithm 3 shows significant improve-
ments over the state-of-the-art, solving more benchmarks in a smaller amount
of time across basic GIDs, random GIDs, and regex GIDs. Algorithm 2 also
shows state-of-the-art performance, similar to BFGT on basic and regex GIDs
and significantly better on random GIDs. On the bottom right, since looking at
average time is not meaningful for benchmarks of widely varying size, we strat-
ify the size of benchmarks into buckets, and plot time-to-solve as a function of
size. Both x-axis and y-axis are on a log scale. The plot shows that Algorithm
3 exhibits up to two orders of magnitude speedup over BFGT for larger GIDs –
we see speedups of 110x to 530x for GIDs in the top five size buckets (GIDs of
size nearest to 100K, ∼200K, ∼500K, 1M, and ∼2M).

258 C. Stanford and M. Veanes

New Implementations of Existing Work. Our implementation contributes,
to our knowledge, the first implementation of BFGT specifically for SCC main-
tenance. In addition, it is one of the first implementations of Euler Tour Trees
(see [7] for another), including the AVL tree backing for tours, and likely the
first implementation in Rust.

5 Application to Extended Regular Expressions

In this section, we explain how precisely the GID state classification problem
arises in the context of derivative-based solvers [45,61]. We first define extended
regexes [31] (regexes extended with intersection & and complement ~) modulo a
symbolic alphabet A of predicates that represent sets of characters. We explain
the main idea behind symbolic derivatives, as found in [61]; these generalize Brzo-
zowski [18] and Antimirov derivatives [5] (see also [19,42] for other proposals).
Symbolic derivatives provide the foundation for incrementally creating a GID.
Then we show, through an example, how a solver can incrementally expand
derivatives to reduce the satisfiability problem to the GID state classification
problem (Definition 2).

Define a regex by the following grammar, where ϕ ∈ A denotes a predicate:

RE ::= ϕ | ε | RE1 · RE2 | RE* | RE1 |RE2 | RE1 &RE2 | ~RE

Let Rk represent the concatenation of R k times. The symbolic derivative of a
regex R, denoted δ(R), is a regex which describes the set of suffixes of strings in
R after the first character is removed. The formal definition can be found in [61]
and in the arXiv version of the present paper [60].

To apply Definition 1 to regexes: states are regexes; edges are transitions
from a regex to its derivatives; and terminal states are the so-called nullable
regexes, where a regex is nullable if it matches the empty string. Nullability can
be computed inductively over the structure of regexes: for example, ε and R*

are nullable, and R1 &R2 is nullable iff both R1 and R2 are nullable. A live
state here is thus a regex that reaches a nullable regex via 0 or more edges.
This implies that there exists a concrete string matching it. Conversely, dead
states are always empty, i.e. they match no strings, but can reach other dead
states, creating strongly connected components of closed states none of which
are live. For example, the false predicate ⊥ of A serves as the regex that matches
nothing and is trivially a dead state. Thus ~⊥ is equivalent to �*, where � is the
true predicate and is trivially a live state.

5.1 Reduction from Incremental Regex Emptiness to GIDs

For simplicity, suppose we want to determine the satisfiability of a single regex
constraint s ∈ R, where s is a string variable and R is a concrete regex. (This is
not overly restrictive – any number of simultaneous regex constraints for a string
s can be combined into single regex constraint by using the Boolean operations
of regexes.) For example, let L = ~(�*α�100) and R = L & (�α), where α is the

Incremental Dead State Detection in Logarithmic Time 259

“is digit” predicate that is true of characters that are digits (often denoted \d).
The solver manipulates regex membership constraints on strings by unfolding
them [61]. The constraint s ∈ R, that essentially tests nonemptiness of R with
s as a witness, becomes

(s = ε ∧ Nullable(R)) ∨ (s = ε ∧ s1.. ∈ δs0(R))

where, s = ε since R is not nullable, si.. is the suffix of s from index i, and

δ(R) = δ(L) ©& δ(�α) = (α ?L & ~(�100) :L) ©& α = (α ?L & ~(�100) &α :L &α)

Let R1 = L & ~(�100) &α and R2 = L &α. So R has two outgoing transitions
R

α−→R1 and R
¬α−−→R2 that contribute the edges (R,R1) and (R,R2) into the

GID. Note that these edges depend only on R and not on s0.
We continue the search incrementally by checking the two branches of the

if-then-else constraint, where R1 and R2 are again not nullable (so s1.. = ε):

s0 ∈ α ∧ s2.. ∈ δs1(R1) ∨ s0 ∈ ¬α ∧ s2.. ∈ δs1(R2)
δ(R1) = (α ?L & ~(�100) & ~(�99) :L & ~(�99)) ©& (α ? ε :⊥) = (α ? ε :⊥)
δ(R2) = (α ?L & ~(�100) :L) ©& (α ? ε :⊥) = (α ? ε :⊥)

It follows that R1
α−→ε and R2

α−→ε, so the edges (R1, ε) and (R2, ε) are added to
the GID where ε is a trivial terminal state. In fact, after R1 the search already
terminates because we then have the path (R,R1)(R1, ε) that implies that R is
live. The associated constraints s0 ∈ α and s1 ∈ α and the final constraint that
s2.. = ε can be used to extract a concrete witness, e.g., s = ‘‘42".

Soundness of the algorithm follows from that if R is nonempty (s ∈ R is
satisfiable), then we eventually arrive at a nullable (terminal) regex, as in the
example run above. To achieve completeness – and to eliminate dead states as
early as possible – we incrementally construct a GID corresponding to the set
of regexes seen so far (as above). After all the feasible transitions from R to
its derivatives in δ(R) are added to the GID as edges (WLOG in one batch),
the state R becomes closed. Crucially, due to the symbolic form of δ(R), no
derivative is missing. Therefore R is known to be empty precisely as soon as R is
detected as a dead state in the GID. An additional benefit is that the algorithm
is independent of the size of the universe of A, that may be very large (e.g. the
Unicode character set), or even infinite. We get the following theorem that uses
finiteness of the closure of symbolic derivatives [61, Theorem 7.1]:

Theorem 5. For any regex R, (1) If R is nonempty, then the decision procedure
eventually marks R live. (2) If R is empty, then the decision procedure marks R
dead at the earliest stage that it is know to be dead, and terminates.

6 Related Work

Online Graph Algorithms. Online graph algorithms are typically divided into
problems over incremental graphs (where edges are added), decremental graphs

260 C. Stanford and M. Veanes

(where edges are deleted), and dynamic graphs (where edges are both added
and deleted), with core data structures discussed in [27,49]. Important prob-
lems include transitive closure, cycle detection, topological ordering, and strongly
connected component (SCC) maintenance.

For incremental topological ordering, [46] is an early work, and [33] presents
two different algorithms, one for sparse graphs and one for dense graphs – the
algorithms are also extended to work with SCCs. The sparse algorithm was sub-
sequently simplified in [10] and is the basis of our implementation named BFGT
in Sect. 4. A unified approach of several algorithms based on [10] is presented
in [21] that uses a notion of weak topological order and a labeling technique that
estimates transitive closure size. Further extensions of [10] are studied in [11,14]
based on randomization.

For dynamic directed graphs, a topological sorting algorithm that is experi-
mentally preferable for sparse graphs is discussed in [56], and a related article [55]
discusses strongly connected components maintenance. Transitive closure for
dynamic graphs is studied in [57], improving upon some algorithms presented
earlier in [34]. One major application for these algorithms is in pointer analy-
sis [54].

For undirected forests, fully dynamic reachability is solvable in amortized
logarithmic time per edge via multiple possible approaches [3,30,35,59,64]; our
implementation uses Euler Tour Trees [35].

Data Structures for SMT. UnionFind [63] is a foundational data structure
used in SMT. E-graphs [23,67] are used to ensure functional extensionality, where
two expressions are equivalent if their subexpressions are equivalent [25,52]. In
both UnionFind and E-graphs, the maintained relation is an equivalence rela-
tion. In contrast, maintaining live and dead states involves tracking reachability
rather than equivalence. To the best of our knowledge, the specific formulation
of incremental reachability we consider here is new.

Dead State Elimination in Automata. A DFA or NFA may be viewed as a
GID, so state classification in GIDs solves dead state elimination in DFAs and
NFAs, while additionally working in an incremental fashion. Dead state elimi-
nation is also known as trimming [37] and plays an important role in automata
minimization [12,38,48]. The literature on minimization is vast, and goes back
to the 1950s [16,17,39–41,50,53]; see [65] for a taxonomy, [2] for an experimen-
tal comparison, and [22] for the symbolic case. Watson et. al. [66] propose an
incremental minimization algorithm, in the sense that it can be halted at any
point to produce a partially minimized, equivalent DFA; unlike in our setting,
the DFA’s states and transitions are fixed and read in a predetermined order.

Acknowledgments. We thank the anonymous reviewers of CAV 2021, TACAS 2022,
and CAV 2023 for feedback leading to substantial improvements to both our paper and
our results. Special thanks to Nikolaj Bjørner, for his collaboration and involvement
with Z3, and Yu Chen, for helpful discussions in which he proposed the idea for the
first-cut algorithm.

Incremental Dead State Detection in Logarithmic Time 261

References

1. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. In: 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pp. 434–443. IEEE (2014)

2. Almeida, M., Moreira, N., Reis, R.: On the performance of automata minimization
algorithms. Tech. Rep. DCC-2007-03, University of Porto (2007)

3. Alstrup, S., Holm, J., Lichtenberg, K.D., Thorup, M.: Maintaining information in
fully dynamic trees with top trees. Acm Trans. Algorithms (talg) 1(2), 243–264
(2005)

4. Amadini, R.: A survey on string constraint solving. ACM Comput. Surv. (CSUR)
55(1), 1–38 (2021)

5. Antimirov, V.: Partial derivatives of regular expressions and finite automata con-
structions. Theoret. Comput. Sci. 155, 291–319 (1995)

6. Backes, J., et al.: Semantic-based automated reasoning for AWS access policies
using SMT. In: 2018 Formal Methods in Computer Aided Design, FMCAD 2018,
Austin, TX, USA, 30 October - 2 November 2018, pp. 1–9. IEEE (2018). https://
doi.org/10.23919/FMCAD.2018.8602994

7. Bakaric, R.: Euler tour tree representation (GitHub repository) (2019). https://
github.com/RobertBakaric/EulerTour

8. Barbosa, H., et al.: cvc5: A Versatile and Industrial-Strength SMT Solver. In:
Fisman, D., Rosu, G. (eds.) TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 24

9. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

10. Bender, M.A., Fineman, J.T., Gilbert, S., Tarjan, R.E.: A new approach to incre-
mental cycle detection and related problems. ACM Trans. Algorithms 12(2), 14:1–
14:22 (2015). https://doi.org/10.1145/2756553, https://arxiv.org/abs/1112.0784

11. Bernstein, A., Chechik, S.: Incremental topological sort and cycle detection in
o(m sqrt(n)) expected total time. In: Proceedings of the 29th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, pp. 21–34. Society for Industrial
and Applied Mathematics (2018)

12. Berstel, J., Boasson, L., Carton, O., Fagnot, I.: Minimization of automata. Hand-
book of Automata (2011)

13. Berzish, M., et al.: An SMT solver for regular expressions and linear arithmetic over
string length. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp.
289–312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 14

14. Bhattacharya, S., Kulkarni, J.: An improved algorithm for incremental cycle detec-
tion and topological ordering in sparse graphs. In: Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2509–2521. SIAM
(2020)

15. Bjørner, N., Ganesh, V., Michel, R., Veanes, M.: An SMT-LIB format for sequences
and regular expressions. In: SMT workshop, pp. 76–86 (2012), RegExLib bench-
marks can be found at https://github.com/cdstanford/regex-smt-benchmarks/,
originally downloaded from https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/nbjorner-microsoft.automata.smtbenchmarks.zip

16. Blum, N.: An O(n log n) implementation of the standard method for minimizing
n-state finite automata. Inf. Process. Lett. 57, 65–69 (1996)

https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://github.com/RobertBakaric/EulerTour
https://github.com/RobertBakaric/EulerTour
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/2756553
https://arxiv.org/abs/1112.0784
https://doi.org/10.1007/978-3-030-81688-9_14
https://github.com/cdstanford/regex-smt-benchmarks/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/nbjorner-microsoft.automata.smtbenchmarks.zip
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/nbjorner-microsoft.automata.smtbenchmarks.zip

262 C. Stanford and M. Veanes

17. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for def-
inite events. In: Proceedings of the Symposium on Mathematical Theory ofAu-
tomata, New York, pp. 529–561 (1963)

18. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM (JACM) 11(4), 481–
494 (1964)

19. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended
regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21254-3 13

20. Clarke, E., Grumberg, O., Hamaguchi, K.: Another look at LTL model checking.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 415–427. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58179-0 72

21. Cohen, E., Fiat, A., Kaplan, H., Roditty, L.: A Labeling Approach to Incremental
Cycle Detection. arXiv preprint arXiv:1310.8381 (Oct 2013). https://arxiv.org/
abs/1310.8381

22. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: ACM SIGPLAN
Notices - POPL 2014, vol. 49(1), pp. 541–553 (2014). https://doi.org/10.1145/
2535838.2535849

23. de Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73595-3 13

24. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

25. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM (JACM) 27(4), 758–771 (1980)

26. Ellul, K., Krawetz, B., Shallit, J., Wang, M.W.: Regular expressions: New results
and open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005)

27. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. Algorithms The-
ory Comput. Handbook 1, 1–9 (1999)

28. Fairbanks, J., Besançon, M., Simon, S., Hoffiman, J., Eubank, N., Karpinski, S.:
An optimized graphs package for the Julia programming language (2021). https://
github.com/JuliaGraphs/Graphs.jl/, commit 075a01eb6a

29. Fan, W., Hu, C., Tian, C.: Incremental graph computations: Doable and undoable.
In: Proceedings of the 2017 ACM International Conference on Management of
Data, pp. 155–169 (2017)

30. Frederickson, G.N.: A data structure for dynamically maintaining rooted trees. J.
Algorithms 24(1), 37–65 (1997). https://arxiv.org/pdf/cs/0310065.pdf

31. Gelade, W., Neven, F.: Succinctness of the complement and intersection of regular
expressions. arXiv preprint arXiv:0802.2869 (2008)

32. Guéneau, A., Jourdan, J.H., Charguéraud, A., Pottier, F.: Formal proof and anal-
ysis of an incremental cycle detection algorithm. In: Interactive Theorem Proving.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

33. Haeupler, B., Kavitha, T., Mathew, R., Sen, S., Tarjan, R.E.: Incremental cycle
detection, topological ordering, and strong component maintenance. ACM Trans.
Algorithms 8(1.3), 1–33 (2012). https://doi.org/10.1145/2071379.2071382

34. Henzinger, M., King, V.: Fully dynamic biconnectivity and transitive closure. In:
Proceedings of the 36th Annual Symposium on Foundations of Computer Science,
pp. 664–672, Milwaukee, WI (1995)

35. Henzinger, M.R., King, V.: Randomized fully dynamic graph algorithms with poly-
logarithmic time per operation. J. ACM (JACM) 46(4), 502–516 (1999)

https://doi.org/10.1007/978-3-642-21254-3_13
https://doi.org/10.1007/978-3-642-21254-3_13
https://doi.org/10.1007/3-540-58179-0_72
http://arxiv.org/abs/1310.8381
https://arxiv.org/abs/1310.8381
https://arxiv.org/abs/1310.8381
https://doi.org/10.1145/2535838.2535849
https://doi.org/10.1145/2535838.2535849
https://doi.org/10.1007/978-3-540-73595-3_13
https://github.com/JuliaGraphs/Graphs.jl/
https://github.com/JuliaGraphs/Graphs.jl/
https://arxiv.org/pdf/cs/0310065.pdf
http://arxiv.org/abs/0802.2869
https://doi.org/10.1145/2071379.2071382

Incremental Dead State Detection in Logarithmic Time 263

36. Hooimeijer, P., Weimer, W.: Solving string constraints lazily. In: Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering, pp.
377–386 (2010)

37. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison Wesley (1979)

38. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In:
Theory of Machines and Computations: Proceedings of an International Sympo-
sium on the Theory of Machines and Computations Held at Technion in Haifa, pp.
189–196. Academic Press, New York (1971)

39. Hopcroft, J.E., Ullman, J.D.: Formal languages and their relation to automata.
Addison-Wesley Longman Publishing Co., Inc., Boston (1969)

40. Huffman, D.: The synthesis of sequential switching circuits. J. Franklin Inst. 257(3–
4), 161–190, 275–303 (1954)

41. Kameda, T., Weiner, P.: On the state minimization of nondeterministic finite
automata. IEEE Trans. Comput. C-19(7), 617–627 (1970)

42. Keil, M., Thiemann, P.: Symbolic solving of extended regular expression inequali-
ties. In: FSTTCS 2014, pp. 175–186. LIPIcs (2014)

43. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
Syst. Design 19(3), 291–314 (2001)

44. Kupferman, O., Zuhovitzky, S.: An improved algorithm for the membership prob-
lem for extended regular expressions. In: Diks, K., Rytter, W. (eds.) MFCS 2002.
LNCS, vol. 2420, pp. 446–458. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45687-2 37

45. Liang, T., Tsiskaridze, N., Reynolds, A., Tinelli, C., Barrett, C.: A decision pro-
cedure for regular membership and length constraints over unbounded strings. In:
Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 135–150.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24246-0 9

46. Marchetti-Spaccamela, A., Nanni, U., Rohnert, H.: Maintaining a topological order
under edge insertions. Inf. Process. Lett. 59(1), 53–58 (1996). https://doi.org/10.
1016/0020-0190(96)00075-0

47. Matsakis, N.D., Klock, F.S.: The Rust language. ACM SIGAda Ada Letters 34(3),
103–104 (2014). https://www.rust-lang.org/

48. Mayr, R., Clemente, L.: Advanced automata minimization. In: POPL 2013, pp.
63–74 (2013)

49. Mehlhorn, K.: Data Structures and Algorithms, Graph Algorithms and NP-
Completeness, vol. 2. Springer (1984). https://doi.org/10.1007/978-3-642-69897-
2

50. Moore, E.F.: Gedanken-experiments on sequential machines, pp. 129–153.
Automata studies, Annals of mathematics studies (1956)

51. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

52. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM (JACM) 27(2), 356–364 (1980)

53. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

54. Pearce, D.J.: Some directed graph algorithms and their application to pointer
analysis. Ph.D. thesis, Imperial College, London (2005)

https://doi.org/10.1007/3-540-45687-2_37
https://doi.org/10.1007/3-540-45687-2_37
https://doi.org/10.1007/978-3-319-24246-0_9
https://doi.org/10.1016/0020-0190(96)00075-0
https://doi.org/10.1016/0020-0190(96)00075-0
https://www.rust-lang.org/
https://doi.org/10.1007/978-3-642-69897-2
https://doi.org/10.1007/978-3-642-69897-2
https://doi.org/10.1007/978-3-540-78800-3_24

264 C. Stanford and M. Veanes

55. Pearce, D.J., Kelly, P.H.J.: A dynamic algorithm for topologically sorting directed
acyclic graphs. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol.
3059, pp. 383–398. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24838-5 29

56. Pearce, D.J., Kelly, P.H.J.: A dynamic topological sort algorithm for directed
acyclic graphs. ACM J. Experimental Algorithmics 11(1.7), 1–24 (2006)

57. Roditty, L., Zwick, U.: Improved dynamic reachability algorithms for directed
graphs. SIAM J. Comput. 37(5), 1455–1471 (2008). https://doi.org/10.1137/
060650271

58. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73370-6 11

59. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983)

60. Stanford, C., Veanes, M.: Incremental dead state detection in logarithmic time
(extended version for arxiv). arXiv preprint arXiv:2301.05308 (2023)

61. Stanford, C., Veanes, M., Bjørner, N.: Symbolic Boolean derivatives for efficiently
solving extended regular expression constraints. In: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation (PLDI), pp. 620–635 (2021)

62. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (pre-
liminary report). In: Proceedings of the Fifth Annual ACM Symposium on Theory
of Computing, pp. 1–9 (1973)

63. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. JACM 22,
215–225 (1975)

64. Tarjan, R.E., Werneck, R.F.: Dynamic trees in practice. J. Exp. Algorithmics
(JEA) 14, 4–5 (2010)

65. Watson, B.W.: A taxonomy of finite automata minimization algorithms. Comput-
ing Science Report 93/44, Eindhoven University of Technology (January 1995)

66. Watson, B.W., Daciuk, J.: An efficient incremental DFA minimization algorithm.
Nat. Lang. Eng. 9(1), 49–64 (2003). https://doi.org/10.1017/S1351324903003127

67. Willsey, M., Nandi, C., Wang, Y.R., Flatt, O., Tatlock, Z., Panchekha, P.: egg: fast
and extensible equality saturation. In: Proceedings of the ACM on Programming
Languages 5(POPL), pp. 1–29 (2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-24838-5_29
https://doi.org/10.1007/978-3-540-24838-5_29
https://doi.org/10.1137/060650271
https://doi.org/10.1137/060650271
https://doi.org/10.1007/978-3-540-73370-6_11
http://arxiv.org/abs/2301.05308
https://doi.org/10.1017/S1351324903003127
http://creativecommons.org/licenses/by/4.0/

Model Checking Race-Freedom When
“Sequential Consistency

for Data-Race-Free Programs” is
Guaranteed

Wenhao Wu1(B) , Jan Hückelheim2 , Paul D. Hovland2 , Ziqing Luo1 ,
and Stephen F. Siegel1

1 University of Delaware, Newark, DE 19716, USA
{wuwenhao,ziqing,siegel}@udel.edu

2 Argonne National Laboratory, Lemont, IL 60439, USA
{jhueckelheim,hovland}@anl.gov

Abstract. Many parallel programming models guarantee that if all
sequentially consistent (SC) executions of a program are free of data
races, then all executions of the program will appear to be sequen-
tially consistent. This greatly simplifies reasoning about the program,
but leaves open the question of how to verify that all SC executions
are race-free. In this paper, we show that with a few simple modifica-
tions, model checking can be an effective tool for verifying race-freedom.
We explore this technique on a suite of C programs parallelized with
OpenMP.

Keywords: data race · model checking · OpenMP

1 Introduction

Every multithreaded programming language requires a memory model to specify
the values a thread may obtain when reading a variable. The simplest such
model is sequential consistency [22]. In this model, an execution is an interleaved
sequence of the execution steps from each thread. The value read at any point
is the last value that was written to the variable in this sequence.

There is no known efficient way to implement a full sequentially consistent
model. One reason for this is that many standard compiler optimizations are
invalid under this model. Because of this, most multithreaded programming lan-
guages (including language extensions) impose a requirement that programs do
not have data races. A data race occurs when two threads access the same vari-
able without appropriate synchronization, and at least one access is a write.
(The notion of appropriate synchronization depends on the specific language.)
For data race-free programs, most standard compiler optimizations remain valid.
The Pthreads library is a typical example, in that programs with data races
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright
protection may apply 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 265–287, 2023.
https://doi.org/10.1007/978-3-031-37703-7_13

https://doi.org/10.5281/zenodo.7978348
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_13&domain=pdf
http://orcid.org/0000-0002-9087-4240
http://orcid.org/0000-0003-3479-6361
http://orcid.org/0000-0002-0907-2567
http://orcid.org/0000-0001-6557-3692
http://orcid.org/0000-0001-9359-3332
https://doi.org/10.1007/978-3-031-37703-7_13

266 W. Wu et al.

have no defined behavior, but race-free programs are guaranteed to behave in a
sequentially consistent manner [25].

Modern languages use more complex “relaxed” memory models. In this model,
an execution is not a single sequence, but a set of events together with various
relations on those events. These relations—e.g., sequenced before, modification
order, synchronizes with, dependency-ordered before, happens before [21]—must
satisfy a set of complex constraints spelled out in the language specification. The
complexity of these models is such that only the most sophisticated users can
be expected to understand and apply them correctly. Fortunately, these models
usually provide an escape, in the form of a substantial and useful language subset
which is guaranteed to behave sequentially consistently, as long as the program
is race-free. Examples include Java [23], C and C++ since their 2011 versions
(see [8] and [21, §5.1.2.4 Note 19]), and OpenMP [26, §1.4.6].

The “guarantee” mentioned above actually consists of two parts: (1) all exe-
cutions of data race-free programs in the language subset are sequentially con-
sistent, and (2) if a program in the language subset has a data race, then it has
a sequentially consistent execution with a data race [8]. Putting these together,
we have, for any program P in the language subset:

(SC4DRF) If all sequentially consistent executions of P are data
race-free, then all executions of P are sequentially consistent.

The consequence of this is that the programmer need only understand sequen-
tially consistent semantics, both when trying to ensure P is race-free, and when
reasoning about other aspects of the correctness of P . This approach provides
an effective compromise between usability and efficient implementation.

Still, it is the programmer’s responsibility to ensure that all sequentially
consistent executions of the program are race-free. Unfortunately, this problem
is undecidable [4], so no completely algorithmic solution exists. As a practical
matter, detecting and eliminating races is considered one of the most challeng-
ing aspects of parallel program development. One source of difficulty is that
compilers may “miscompile” racy programs, i.e., translate them in unintuitive,
non-semantics-preserving ways [7]. After all, if the source program has a race,
the language standard imposes no constraints, so any output from the compiler
is technically correct.

Researchers have explored various techniques for race checking. Dynamic
analysis tools (e.g., [18]) have experienced the most uptake. These techniques
can analyze a single execution precisely, and report whether a race occurred,
and sometimes can draw conclusions about closely related executions. But the
behavior of many concurrent programs depends on the program input, or on
specific thread interleavings, and dynamic techniques cannot explore all possible
behaviors. Moreover, dynamic techniques necessarily analyze the behavior of
the executable code that results from compilation. As explained above, racy
programs may be miscompiled, even possibly removing the race, in which case
a dynamic analysis is of limited use.

Approaches based on static analysis, in contrast, have the potential to verify
race-freedom. This is extremely challenging, though some promising research

Model Checking and Sequential Consistency for Data-Race-Free Programs 267

prototypes have been developed (e.g., [10]). The most significant limitation is
imprecision: a tool may report that race-free code has a possible race— a “false
alarm”. Some static approaches are also not sound, i.e., they may fail to detect
a race in a racy program; like dynamic tools, these approaches are used more as
bug hunters than verifiers.

Finite-state model checking [15] offers an interesting compromise. This app-
roach requires a finite-state model of the program, which is usually achieved
by placing small bounds on the number of threads, the size of inputs, or other
program parameters. The reachable states of the model can be explored through
explicit enumeration or other means. This can be used to implement a sound and
precise race analysis of the model. If a race is found, detailed information can
be produced, such as a program trace highlighting the two conflicting memory
accesses. Of course, if the analysis concludes the model is race-free, it is still pos-
sible that a race exists for larger parameter values. In this case, one can increase
those values and re-run the analysis until time or computational resources are
exhausted. If one accepts the “small scope hypothesis”—the claim that most
defects manifest in small configurations of a system—then model checking can
at least provide strong evidence for the absence of data races. In any case, the
results provide specific information on the scope that is guaranteed to be race-
free, which can be used to guide testing or further analysis.

The main limitation of model checking is state explosion, and one of the
most effective techniques for limiting state explosion is partial order reduction
(POR) [17]. A typical POR technique is based on the following observation:
from a state s at which a thread t is at a “local” statement—i.e., one which
commutes with all statements from other threads—then it is often not necessary
to explore all enabled transitions from s; instead, the search can explore only
the enabled transitions from t. Usually local statements are those that access
only thread-local variables. But if the program is known to be race-free, shared
variable accesses can also be considered “local” for POR. This is the essential
observation at the heart of recent work on POR in the verification of Pthreads
programs [29].

In this paper, we explore a new model checking technique that can be used
to verify race-freedom, as well as other correctness properties, for programs in
which threads synchronize through locks and barriers. The approach requires
two simple modifications to the standard state reachability algorithm. First,
each thread maintains a history of the memory locations accessed since its last
synchronization operation. These sets are examined for races and emptied at
specific synchronization points. Second, a novel POR is used in which only lock
(release and acquire) operations are considered non-local. In Sect. 2, we present
a precise mathematical formulation of the technique and a theorem that it has
the claimed properties, including that it is sound and precise for verification of
race-freedom of finite-state models.

Using the CIVL symbolic execution and model checking platform [31], we
have implemented a prototype tool, based on the new technique, for verify-
ing race-freedom in C/OpenMP programs. OpenMP is an increasingly popular

268 W. Wu et al.

directive-based language for writing multithreaded programs in C, C++, or For-
tran. A large sub-language of OpenMP has the SC4DRF guarantee.1 While
the theoretical model deals with locks and barriers, it can be applied to many
OpenMP constructs that can be modeled using those primitives, such as atomic
operations and critical sections. This is explained in Sect. 3, along with the results
of some experiments applying our tool to a suite of C/OpenMP programs. In
Sect. 4, we discuss related work and Sect. 5 concludes.

2 Theory

We begin with a simple mathematical model of a multithreaded program that
uses locks and barriers for synchronization.

Definition 1. Let TID be a finite set of positive integers. A multithreaded pro-
gram with thread ID set TID comprises

1. a set Lock of locks
2. a set Shared of shared states
3. for each i ∈ TID:

(a) a set Locali, the local states of thread i, which is the union of five disjoint
subsets, Acquirei, Releasei, Barrieri, Nsynci, and Termi

(b) a set Stmti of statements, which includes the lock statements acquirei(l)
and releasei(l) (for l ∈ Lock), and the barrier-exit statement exiti; all
others statements are known as nsync (non-synchronization) statements

(c) for each σ ∈ Acquirei ∪ Releasei ∪ Barrieri, a local state next(σ) ∈ Locali
(d) for each σ ∈ Acquirei ∪ Releasei, a lock lock(σ) ∈ Lock
(e) for each σ ∈ Nsynci, a nonempty set stmts(σ) ⊆ Stmti of nsync statements

and function

update(σ) : stmts(σ) × Shared → Locali × Shared.

All of the sets Locali and Stmti (i ∈ TID) are pairwise disjoint. ��
Each thread has a unique thread ID number, an element of TID. A local state

for thread i encodes the values of all thread-local variables, including the program
counter. A shared state encodes the values of all shared variables. (Locks are not
considered shared variables.) A thread at an acquire state σ is attempting to
acquire the lock lock(σ). At a release state, the thread is about to release a lock.
At a barrier state, a thread is waiting inside a barrier. After executing one of
the three operations, each thread moves to a unique next local state. A thread
that reaches a terminal state has terminated. From an nsync state, any positive
number of statements are enabled, and each of these statements may read and
update the local state of the thread and/or the shared state.

1 Any OpenMP program that does not use non-sequentially consistent atomic direc-
tives, omp_test_lock, or omp_test_nest_lock [26, §1.4.6].

Model Checking and Sequential Consistency for Data-Race-Free Programs 269

For i ∈ TID, the local graph of thread i is the directed graph with nodes
Locali and an edge σ → σ′ if either (i) σ ∈ Acquirei ∪ Releasei ∪ Barrieri and
σ′ = next(σ), or (ii) σ ∈ Nsynci and there is some ζ ′ ∈ Shared such that (σ′, ζ ′)
is in the image of update(σ).

Fix a multithreaded program P and let

LockState = (Lock → {0} ∪ TID)

State =

(∏
i∈TID

Locali

)
× Shared × LockState × 2TID.

A lock state specifies the owner of each lock. The owner is a thread ID, or 0 if the
lock is free. The elements of State are the (global) states of P . A state specifies
a local state for each thread, a shared state, a lock state, and the set of threads
that are currently blocked at a barrier.

Let i ∈ TID and Li = Locali × Shared × LockState × 2TID. Define

enabledi : Li → 2Stmti

λ �→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{acquirei(l)} if σ ∈ Acquirei ∧ l = lock(σ) ∧ θ(l) = 0
{releasei(l)} if sigma ∈ Releasei ∧ l = lock(σ) ∧ θ(l) = i

{exiti} if σ ∈ Barrieri ∧ i
∈ w

stmts(σ) if σ ∈ Nsynci
∅ otherwise.

where λ = (σ, ζ, θ, w) ∈ Li. This function returns the set of statements that are
enabled in thread i at a given state. This function does not depend on the local
states of threads other than i, which is why those are excluded from Li. An
acquire statement is enabled if the lock is free; a release is enabled if the calling
thread owns the lock. A barrier exit is enabled if the thread is not currently in
the barrier blocked set.

Execution of an enabled statement in thread i updates the state as follows:

executei : {(λ, t) ∈ Li × Stmti | t ∈ enabledi(λ)} → Li

(λ, t) �→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(σ′, ζ, θ[l �→ i], w′) if σ ∈ Acquirei ∧ t = acquirei(l) ∧ σ′ = next(σ)
(σ′, ζ, θ[l �→ 0], w′) if σ ∈ Releasei ∧ t = releasei(l) ∧ σ′ = next(σ)
(σ′, ζ, θ, w′) if σ ∈ Barrieri ∧ t = exiti ∧ σ′ = next(σ)
(σ′, ζ ′, θ, w′) if σ ∈ Nsynci ∧ t ∈ stmts(σ) ∧

update(σ)(t, ζ) = (σ′, ζ ′)

where λ = (σ, ζ, θ, w) and in each case above

w′ =

⎧⎪⎨
⎪⎩

w ∪ {i} if σ′ ∈ Barrieri ∧ w ∪ {i}
= TID
∅ if σ′ ∈ Barrieri ∧ w ∪ {i} = TID
w otherwise.

270 W. Wu et al.

Note a thread arriving at a barrier will have its ID added to the barrier blocked
set, unless it is the last thread to arrive, in which case all threads are released
from the barrier.

At a given state, the set of enabled statements is the union over all threads
of the enabled statements in that thread. Execution of a statement updates the
state as above, leaving the local states of other threads untouched:

enabled : State → 2Stmt

s �→
⋃

j∈TID

enabledj(ξj , ζ, θ, w)

execute : {(s, t) ∈ State × Stmt | t ∈ enabled(s)} → State
(s, t) �→ 〈ξ[i �→ σ], ζ ′, θ′, w′〉,

where s = 〈ξ, ζ, θ, w〉 ∈ State, t ∈ enabled(s), i = tid(t), and
executei(ξi, ζ, θ, w, t) = 〈σ, ζ ′, θ′, w′〉.

Definition 2. A transition is a triple s
t→ s′, where s ∈ State, t ∈ enabled(s),

and s′ = execute(s, t). An execution α of P is a (finite or infinite) chain of
transitions s0

t1→ s1
t2→ · · ·. The length of α, denoted |α|, is the number of

transitions in α. ��
Note that an execution is completely determined by its initial state s0 and its
statement sequence t1t2 · · · .

Having specified the semantics of the computational model, we now turn to
the concept of the data race. The traditional definition requires the notion of
“conflicting” accesses: two accesses to the same memory location conflict when
at least one is a write. The following abstracts this notion:

Definition 3. A symmetric binary relation conflict on Stmt is a conflict relation
for P if the following hold for all t1, t2 ∈ Stmt:

1. if (t1, t2) ∈ conflict then t1 and t2 are nsync statements from different threads
2. if t1 and t2 are nsync statements from different threads and (t1, t2)
∈ conflict,

then for all s ∈ State, if t1, t2 ∈ enabled(s) then
execute(execute(s, t1), t2) = execute(execute(s, t2), t1). ��

Fix a conflict relation for P for the remainder of this section.
The next ingredient in the definition of data race is the happens-before rela-

tion. This is a relation on the set of events generated by an execution. An event
is an element of Event = Stmt × N.

Definition 4. Let α = (s0
t1→ s1

t2→ · · ·) be an execution. The trace of α is
the sequence of events tr(α) = 〈t1, n1〉〈t2, n2〉 · · · , of length |α|, where ni is the
number of j ∈ [1, i] for which tid(tj) = tid(ti). We write [α] for the set of events
occurring in tr(α). ��

Model Checking and Sequential Consistency for Data-Race-Free Programs 271

A trace labels the statements executed by a thread with consecutive integers
starting from 1. Note the cardinality of [α] is |α|, as no two events in tr(α)
are equal. Also, [α] is invariant under transposition of two adjacent commuting
transitions from different threads.

Given an execution α, the happens-before relation of α, denoted HB(α), is a
binary relation on [α]. It is the transitive closure of the union of three relations:

1. the intra-thread order relation

{(〈t1, n1〉, 〈t2, n2〉) ∈ [α] × [α] | tid(t1) = tid(t2) ∧ n1 < n2}.

2. the release-acquire relation. Say tr(α) = e1e2 . . . and ei = 〈ti, ni〉. Then (ei, ej)
is in the release-acquire relation if there is some l ∈ Lock such that all of the
following hold: (i) 1 ≤ i < j ≤ |α|, (ii) ti is a release statement on l, (iii) tj is
an acquire statement on l, and (iv) whenever i < k < j, tk is not an acquire
statement on l.

3. the barrier relation. For any e = 〈t, n〉 ∈ [α], let i = tid(t) and define

epoch(e) = |{e′ ∈ [α] | e′ = 〈exiti, j〉 for some j ∈ [1, n]}|,

the number of barrier exit events in thread i preceding or including e. The
barrier relation is

{(e, e′) ∈ [α] × [α] | epoch(e) < epoch(e′)}.

Two events “race” when they conflict but are not ordered by happens-before:

Definition 5. Let α be an execution and e, e′ ∈ [α]. Say e = 〈t, n〉 and e′ =
〈t′, n′〉. We say e and e′ race in α if (t, t′) ∈ conflict and neither (e, e′) nor (e′, e)
is in HB(α). The data race relation of α is the symmetric binary relation on [α]

DR(α) = {(e, e′) ∈ [α] × [α] | e and e′ race in α}. ��
Now we turn to the problem of detecting data races. Our approach is to

explore a modified state space. The usual state space is a directed graph with
node set State and transitions for edges. We make two modifications. First,
we add some “history” to the state. Specifically, each thread records the nsync
statements it has executed since its last lock event or barrier exit. This set is
checked against those of other threads for conflicts, just before it is emptied after
its next lock event or barrier exit. The second change is a reduction: any state
that has an enabled statement that is not a lock statement will have outgoing
edges from only one thread in the modified graph.

A well-known technical challenge with partial order reduction concerns cycles
in the reduced state space. We deal with this challenge by assuming that P comes
with some additional information. Specifically, for each i, we are given a set Ri,
with Releasei ∪ Acquirei ⊆ Ri ⊆ Locali, satisfying: any cycle in the local graph
of thread i has at least one node in Ri. In general, the smaller Ri, the more
effective the reduction. In many application domains, there are no cycles in the
local graphs, so one can take Ri = Releasei ∪Acquirei. For example, standard for

272 W. Wu et al.

loops in C, in which the loop variable is incremented by a fixed amount at each
iteration, do not introduce cycles, because the loop variable will take on a new
value at each iteration. For while loops, one may choose one node from the loop
body to be in Ri. Goto statements may also introduce cycles and could require
additions to Ri.

Definition 6. The race-detecting state graph for P is the pair G = (V,E), where

V = State ×
(∏
i∈TID

2Stmti
)

and E ⊆ V × Stmt × V consists of all (〈s,a〉, t, 〈s′,a′〉) such that, letting σi be
the local state of thread i in s,

1. s
t→ s′ is a transition in P

2. ∀i ∈ TID, a′
i =

⎧⎪⎨
⎪⎩
ai ∪ {t} if t is an nsync statement in thread i

∅ if t = exit0 or i = tid(t) ∧ σi ∈ Ri

otherwise
3. if there is some i ∈ TID such that σi
∈ Ri and thread i has an enabled

statement at s, then tid(t) is the minimal such i. ��
The race-detecting state graph may be thought of as a directed graph in which
the nodes are V and edges are labeled by statements. Note that at a state where
all threads are in the barrier, exit0 is the only enabled statement in the race-
detecting state graph, and its execution results in emptying all the ai. A lock
event in thread i results in emptying ai only.

Definition 7. Let P be a multithreaded program and G = (V,E) the race-
detecting state graph for P .

1. Let u = 〈s,a〉 ∈ V and i ∈ TID. We say thread i detects a race in u if there
exist j ∈ TID \ {i}, t1 ∈ ai, and t2 ∈ aj such that (t1, t2) ∈ conflict.

2. Let e = v
t→ v′ ∈ E, i = tid(t), σ the local state of thread i at v, and σ′ the

local state of thread i at v′. We say e detects a race if either (i) σ ∈ Ri\Acquirei
and thread i detects a race in v, (ii) σ′ ∈ Acquirei and thread i detects a race
in v′, or (ii) t = exit0 and any thread detects a race in v.

3. We say G detects a race from u if E contains an edge that is reachable from
u and detects a race, or there is some v = 〈s,a〉 ∈ V that is reachable from
u, and i ∈ TID, such that enabled(s) = ∅ and thread i detects a race in v. ��
Definition 7 suggests a method for detecting data races in a multithreaded

program. The nodes and edges of the race-detecting state graph reachable from
an initial node are explored. (The order in which they are explored is irrelevant.)
When an edge from a thread at an Ri \ Acquirei state is executed, the elements
of ai are compared with those in aj for all j ∈ TID\{i} to see if a conflict exists,
and if so, a data race is reported. When an edge in thread i terminates at an
Acquirei state, a similar race check takes place. When an exit0 occurs, or a node
with no outgoing edges is reached, ai and aj are compared for all i, j ∈ TID with
i
= j. This approach is sound and precise in the following sense:

Model Checking and Sequential Consistency for Data-Race-Free Programs 273

Theorem 1. Let P be a multithreaded program, and G = (V,E) the race-
detecting state graph for P . Let s0 ∈ State and let u0 = 〈s0, ∅TID〉 ∈ V . Assume
the set of nodes reachable from u0 is finite. Then

1. P has an execution from s0 with a data race if, and only if, G detects a race
from u0.

2. If there is a data race-free execution of P from s0 to some state sf with
enabled(sf) = ∅ then there is a path in G from u0 to a node with state com-
ponent sf .

A proof of Theorem 1 is given in https://arxiv.org/abs/2305.18198.

Example 1. Consider the 2-threaded program represented in pseudocode:

t1 : acquire(l1); x=1; release(l1);
t2 : acquire(l2); x=2; release(l2);

where l1 and l2 are distinct locks. Let Ri = Releasei ∪ Acquirei (i = 1, 2). One
path in the race-detecting state graph G executes as follows:

acquire(l1); x=1; release(l1); acquire(l2); x=2; release(l2);.

A data race occurs on this path since the two assignments conflict but are not
ordered by happens-before. The race is not detected, since at each lock operation,
the statement set in the other thread is empty. However, there is another path

acquire(l1); x=1; acquire(l2); x=2; release(l1);

in G, and on this path the race is detected at the release.

3 Implementation and Evaluation

We implemented a verification tool for C/OpenMP programs using the CIVL
symbolic execution and model checking framework. This tool can be used to ver-
ify absence of data races within bounds on certain program parameters, such as
input sizes and the number of threads. (Bounds are necessary so that the num-
ber of states is finite.) The tool accepts a C/OpenMP program and transforms
it into CIVL-C, the intermediate verification language of CIVL. The CIVL-C
program has a state space similar to the race-detecting state graph described
in Sect. 2. The standard CIVL verifier, which uses model checking and symbolic
execution techniques, is applied to the transformed code and reports whether
the given program has a data race, and, if so, provides precise information on
the variable involved in the race and an execution leading to the race.

The approach is based on the theory of Sect. 2, but differs in some implemen-
tation details. For example, in the theoretical approach, a thread records the set
of non-synchronization statements executed since the thread’s last synchroniza-
tion operation. This data is used only to determine whether a conflict took place

https://arxiv.org/abs/2305.18198

274 W. Wu et al.

between two threads. Any type of data that can answer this question would
work equally well. In our implementation, each thread instead records the set of
memory locations read, and the set of memory locations modified, since the last
synchronization. A conflict occurs if the read or write set of one thread intersects
the write set of another read. As CIVL-C provides robust support for tracking
memory accesses, this approach is relatively straightforward to implement by a
program transformation.

In Sect. 3.1, we summarize the basics of OpenMP. In Sect. 3.2, we provide the
necessary background on CIVL-C and the primitives used in the transformation.
In Sect. 3.3, we describe the transformation itself. In Sect. 3.4, we report the
results of experiments using this tool.

All software and other artifacts necessary to reproduce the experiments, as
well as the full results, are included in a VirtualBox virtual machine available at
https://doi.org/10.5281/zenodo.7978348.

3.1 Background on OpenMP

OpenMP is a pragma-based language for parallelizing programs written in C,
C++ and Fortran [13]. OpenMP was originally designed and is still most com-
monly used for shared-memory parallelization on CPUs, although the language
is evolving and supports an increasing number of parallelization styles and hard-
ware targets. We introduce here the OpenMP features that are currently sup-
ported by our implementation in CIVL. An example that uses many of these
features is shown in Fig. 1.

The parallel construct declares the following structured block as a parallel
region, which will be executed by all threads concurrently. Within such a parallel
region, programmers can use worksharing constructs that cause certain parts of
the code to be executed only by a subset of threads. Perhaps most importantly,
the loop worksharing construct can be used inside a parallel region to declare
a omp for loop whose iterations are mapped to different threads. The mapping
of iterations to threads can be controlled through the schedule clause, which
can take values including static, dynamic, guided along with an integer that
defines the chunk size. If no schedule is explicitly specified, the OpenMP run time
is allowed to use an arbitrary mapping. Furthermore, a structured block within
a worksharing loop may be declared as ordered, which will cause this block
to be executed sequentially in order of the iterations of the worksharing loop.
Worksharing for non-iterative workloads is supported through the sections con-
struct, which allows the programmer to define a number of different structured
blocks of code that will be executed in parallel by different threads.

Programmers may use pragmas and clauses for barriers, atomic updates,
and locks. OpenMP supports named critical sections, allowing no more than
one thread at a time to enter a critical section with that name, and unnamed
critical sections that are associated with the same global mutex. OpenMP also
offers master and single constructs that are executed only by the master thread
or one arbitrary thread.

https://doi.org/10.5281/zenodo.7978348

Model Checking and Sequential Consistency for Data-Race-Free Programs 275

1 #pragma omp parallel shared(b) private(i) shared(u,v)
2 { // parallel region: all threads will execute this
3 #pragma omp sections // sections worksharing construct
4 {
5 #pragma omp section // one thread will do this...
6 { b = 0; v = 0; }
7 #pragma omp section // while another thread does this...
8 u = rand();
9 }

10 // loop worksharing construct partitions iterations by schedule. Each thread has a
11 // private copy of b; these are added back to original shared b at end of loop...
12 #pragma omp for reduction(+:b) schedule(dynamic,1)
13 for (i=0; i<10; i++) {
14 b = b + i;
15 #pragma omp atomic seq_cst // atomic update to v
16 v+=i;
17 #pragma omp critical (collatz) // one thread at a time enters critical section
18 u = (u%2==0) ? u/2 : 3*u+1;
19 }
20 }

Fig. 1. OpenMP Example

Variables are shared by all threads by default. Programmers may change
the default, as well as the scope of individual variables, for each parallel region
using the following clauses: private causes each thread to have its own vari-
able instance, which is uninitialized at the start of the parallel region and sep-
arate from the original variable that is visible outside the parallel region. The
firstprivate scope declares a private variable that is initialized with the value
of the original variable, whereas the lastprivate scope declares a private vari-
able that is uninitialized, but whose final value is that of the logically last work-
sharing loop iteration or lexically last section. The reduction clause initializes
each instance to the neutral element, for example 0 for reduction(+). Instances
are combined into the original variable in an implementation-defined order.

CIVL can model OpenMP types and routines to query and control the num-
ber of threads (omp_set_num_threads, omp_get_num_threads), get the cur-
rent thread ID (omp_get_thread_num), interact with locks (omp_init_lock,
omp_destroy_lock, omp_set_lock, omp_unset_lock, and obtain the current
wall clock time (omp_get_wtime).

3.2 Background on CIVL-C

The CIVL framework includes a front-end for preprocessing, parsing, and build-
ing an AST for a C program. It also provides an API for transforming the AST.
We used this API to build a tool which consumes a C/OpenMP program and pro-
duces a CIVL-C “model” of the program. The CIVL-C language includes most
of sequential C, including functions, recursion, pointers, structs, and dynami-
cally allocated memory. It adds nested function definitions and primitives for
concurrency and verification.

In CIVL-C, a thread is created by spawning a function: $spawn f(...);.
There is no special syntax for shared or thread-local variables; any variable that

276 W. Wu et al.

is in scope for two threads is shared. CIVL-C uses an interleaving model of
concurrency similar to the formal model of Sect. 2. Simple statements, such as
assignments, execute in one atomic step.

Threads can synchronize using guarded commands, which have the form
$when (e)S. The first atomic substatement of S is guaranteed to execute only
from a state in which e evaluates to true. For example, assume thread IDs are
numbered from 0, and a lock value of −1 indicates the lock is free. The acquire
lock operation may be implemented as $when (l<0) l=tid;, where l is an inte-
ger shared variable and tid is the thread ID. A release is simply l=-1;.

A convenient way to spawn a set of threads is $parfor (int i:d)S. This
spawns one thread for each element of the 1d-domain d; each thread executes S
with i bound to one element of the domain. A 1d-domain is just a set of integers;
e.g., if a and b are integer expressions, the domain expression a..b represents
the set {a, a + 1, . . . , b}. The thread that invokes the $parfor is blocked until
all of the spawned threads terminate, at which point the spawned threads are
destroyed and the original thread proceeds.

CIVL-C provides primitives to constrain the interleaving semantics of a pro-
gram. The program state has a single atomic lock, initially free. At any state,
if there is a thread t that owns the atomic lock, only t is enabled. When the
atomic lock is free, if there is some thread at a $local_start statement, and
the first statement following $local_start is enabled, then among such threads,
the thread with lowest ID is the only enabled thread; that thread executes
$local_start and obtains the lock. When t invokes $local_end, t relinquishes
the atomic lock. Intuitively, this specifies a block of code to be executed atomi-
cally by one thread, and also declares that the block should be treated as a local
statement, in the sense that it is not necessary to explore all interleavings from
the state where the local is enabled.

Local blocks can also be broken up at specified points using function $yield.
If t owns the atomic lock and calls $yield, then t relinquishes the lock and does
not immediately return from the call. When the atomic lock is free, there is no
thread at a $local_start, a thread t is in a $yield, and the first statement
following the $yield is enabled, then t may return from the $yield call and
re-obtain the atomic lock. This mechanism can be used to implement the race-
detecting state graph: thread i begins with $local_start, yields at each Ri

node, and ends with $local_end.
CIVL’s standard library provides a number of additional primitives. For

example, the concurrency library provides a barrier implementation through a
type $barrier, and functions to initialize, destroy, and invoke the barrier.

The mem library provides primitives for tracking the sets of memory locations
(a variable, an element of an array, field of a struct, etc.) read or modified
through a region of code. The type $mem is an abstraction representing a set
of memory locations, or mem-set. The state of a CIVL-C thread includes a
stack of mem-sets for writes and a stack for reads. Both stacks are initially
empty. The function $write_set_push pushes a new empty mem-set onto the
write stack. At any point when a memory location is modified, the location is

Model Checking and Sequential Consistency for Data-Race-Free Programs 277

1 int nthreads = ...;
2 $mem reads[nthreads], writes[nthreads];
3 void check_conflict(int i, int j) {
4 $assert($mem_disjoint(reads[i], writes[j]) && $mem_disjoint(writes[i], reads[j]) &&
5 $mem_disjoint(writes[i], writes[j]));
6 }
7 void check_and_clear_all() {
8 for (int i=0; i<nthreads; i++)
9 for (int j=i+1; j<nthreads; j++) check_conflict(i, j);

10 for (int i=0; i<nthreads; i++) reads[i] = writes[i] = $mem_empty();
11 }
12 void run(int tid) {
13 void pop() { reads[tid]=$read_set_pop(); writes[tid]=$write_set_pop(); }
14 void push() { $read_set_push(); $write_set_push(); }
15 void check() {
16 for (int i=0; i<nthreads; i++) { if (i==tid) continue; check_conflict(tid, i); }
17 }
18 // local variable declarations
19 $local_start(); push(); S pop(); $local_end();
20 }
21 for (int i=0; i<nthreads; i++) reads[i] = writes[i] = $mem_empty();
22 $parfor (int tid:0..nthreads-1) run(tid);
23 check_and_clear_all();

Fig. 2. Translation of #pragma omp parallel S

added to the top entry on the write stack. Function $write_set_pop pops the
write stack, returning the top mem-set. The corresponding functions for the
read stack are $read_set_push and $read_set_pop. The library also provides
various operations on mem-sets, such as $mem_disjoint, which consumes two
mem-sets and returns true if the intersection of the two mem-sets is empty.

3.3 Transformation for Data Race Detection

The basic structure for the transformation of a parallel construct is shown in
Fig. 2. The user specifies on the command line the default number of threads to
use in a parallel region. After this, two shared arrays are allocated, one to record
the read set for each thread, and the other the write set. Rather than updating
these arrays immediately with each read and write event, a thread updates them
only at specific points, in such a way that the shared sets are current whenever
a data race check is performed.

The auxiliary function check_conflict asserts no read-write or write-write
conflict exists between threads i and j. Function check_and_clear_all checks
that no conflict exists between any two threads and clears the shared mem-sets.

Each thread executes function run. A local copy of each private variable is
declared (and, for firstprivate variables, initialized) here. The body of this
function is enclosed in a local region. The thread begins by pushing new entries
onto its read and write stacks. As explained in Sect. 3.2, this turns on memory
access tracking. The body S is transformed in several ways. First, references to
the private variable are replaced by references to the local copy. Other OpenMP
constructs are translated as follows.

278 W. Wu et al.

Lock operations. Several OpenMP operations are modeled using locks. The
omp_set_lock and omp_unset_lock functions are the obvious examples, but we
also use locks to model the behavior of atomic and critical section constructs. In
any case, a lock acquire operation is translated to

pop(); check(); $yield(); acquire(l); push();

The thread first pops its stacks, updating its shared mem-sets. At this point, the
shared structures are up-to-date, and the thread uses them to check for conflicts
with other threads. This conforms with Definition 7(2), that a race check occur
upon arrival at an acquire location. It then yields to other threads as it attempts
to acquire lock l. Once acquired, it pushes new empty entries onto its stack and
resumes tracking. A release statement becomes

pop(); $yield(); check(); release(l); push();

It is similar to the acquire case, except that the check occurs upon leaving the
release location, i.e., after the yield. A similar sequence is inserted in any loop
(e.g., a while loop or a for loop not in standard form) that may create a cycle
in the local space, only without the release statement.

Barriers. An explicit or implicit barrier in S becomes

pop(); $local_end(); $barrier_call(); if (tid==0) check_and_clear_all();
$barrier_call(); $local_start(); push();.

The CIVL-C $barrier_call function must be invoked outside of a local region,
as it may block. Once all threads are in the barrier, a single thread (0) checks
for conflicts and clears all the shared mem-sets. A second barrier call is used
to prevent other threads from racing ahead before this check and clear is com-
plete. This protocol mimics the events that take place atomically with an exit0
transition in Sect. 2.

Atomic and Critical Sections. An OpenMP atomic construct is modeled by
introducing a global “atomic lock” which is acquired before executing the atomic
statement and then released. The acquire and release actions are then trans-
formed as described above. Similarly, a lock is introduced for each critical section
name (and the anonymous critical section); this lock is acquired before entering
a critical section with that name and released when departing.

Worksharing Constructs. Upon arriving at a for construct, a thread invokes a
function that returns the set of iterations for which the thread is responsible.
The partitioning of the iteration space among the threads is controlled by the
construct clauses and various command line options. If the construct specifies
the distribution strategy precisely, then the model uses only that distribution. If
the construct does not specify the distribution, then the decisions are based on
command line options. One option is to explore all possible distributions. In this
case, when the first thread arrives, a series of nondeterministic choices is made

Model Checking and Sequential Consistency for Data-Race-Free Programs 279

to construct an arbitrary distribution. The verifier explores all possible choices,
and therefore all possible distributions. This enables a complete analysis of the
loop’s execution space, but at the expense of a combinatorial explosion with
the number of threads or iterations. A different command line option allows the
user to specify a particular default distribution strategy, such as cyclic. These
options give the user some control over the completeness-tractability tradeoff.
For sections, only cyclic distribution is currently supported, and a single
construct is executed by the first thread to arrive at the construct.

3.4 Evaluation

We applied our verifier to a suite comprised of benchmarks from DataRaceBench
(DRB) version 1.3.2 [35] and some examples written by us that use different
concurrency patterns. As a basis for comparison, we applied a state-of-the-art
static analyzer for OpenMP race detection, LLOV v.0.3 [10], to the same suite.2

LLOV v.0.3 implements two static analyses. The first uses polyhedral anal-
ysis to identify data races due to loop-carried dependencies within OpenMP
parallel loops [9]. It is unable to identify data races involving critical sections,
atomic operations, master or single directives, or barriers. The second is a phase
interval analysis to identify statements or basic blocks (and consequently mem-
ory accesses within those blocks) that may happen in parallel [10]. Phases are
separated by explicit or implicit barriers and the minimum and maximum phase
in which a statement or basic block may execute define the phase interval. The
phase interval analysis errs in favor of reporting accesses as potentially happen-
ing in parallel whenever it cannot prove that they do not; consequently, it may
produce false alarms.

The DRB suite exercises a wide array of OpenMP language features. Of the
172 benchmarks, 88 use only the language primitives supported by our CIVL
OpenMP transformer (see Sect. 3.1). Some of the main reasons benchmarks were
excluded include: use of C++, simd and task directives, and directives for GPU
programming. All 88 programs also use only features supported by LLOV. Of
the 88, 47 have data races and 41 are labeled race-free.

We executed CIVL on the 88 programs, with the default number of OpenMP
threads for a parallel region bounded by 8 (with a few exceptions, described
below). We chose cyclic distribution as the default for OpenMP for loops. Many
of the programs consume positive integer inputs or have clear hard-coded inte-
ger parameters. We manually instrumented 68 of the 88, inserting a few lines of
CIVL-C code, protected by a preprocessor macro that is defined only when the
program is verified by CIVL. This code allows each parameter to be specified on
the CIVL command line, either as a single value or by specifying a range. In a few
cases (e.g., DRB055), “magic numbers” such as 500 appear in multiple places,

2 While there are a number of effective dynamic race detectors, the goal of those tools
is to detect races on a particular execution. Our goal is more aligned with that
of static analyzers: to cover as many executions as possible, including for different
inputs, number of threads, and thread interleavings.

280 W. Wu et al.

// DRB140 (race)
int a, i;
#pragma omp parallel private(i)
{
#pragma omp master
a = 0;
#pragma omp for reduction(+:a)
for (i=0; i<10; i++)
a = a + i;

}

// DRB014 (race)
int n=100, m=100;
double b[n][m];
#pragma omp parallel for \

private(j)
for (i=1;i<n;i++)
for (j=0;j<m;j++)
// out of bound access
b[i][j]=b[i][j-1];

// diffusion1 (race)
double *u, *v;
// alloc + init u, v
for (t=0; t<steps; t++) {
#pragma omp parallel for
for (i=1; i<n-1; i++) {
u[i]=v[i]+c*(v[i-1]+v[i]);

}
u=v; v=u; // incorrect swap

}

Fig. 3. Excerpts from three benchmarks with data races: two from DataRaceBench
(left and middle) and erroneous 1d-diffusion (right).

which we replaced with an input parameter controlled by CIVL. These modi-
fications are consistent with the “small scope” approach to verification, which
requires some manual effort to properly parameterize the program so that the
“scope” can be controlled.

We used the range 1..10 for inputs, again with a few exceptions. In three
cases, verification did not complete within 3min and we lowered these bounds as
follows: for DRB043, thread bound 8 and input bound 4; for the Jacobi iteration
kernel DRB058, thread bound 4 and bound of 5 on both the matrix size and
number of iterations; for DRB062, thread bound 4 and input bound 5.

CIVL correctly identified 40 of the 41 data-race-free programs, failing only
on DRB139 due to nested parallel regions. It correctly reported a data race for
45 of the 47 programs with data races, missing only DRB014 (Fig. 3, middle) and
DRB015. In both cases, CIVL reports a bound issue for an access to b[i][j-1]
when i > 0 and j = 0, but fails to report a data race, even when bound checking
is disabled.

LLOV correctly identified 46 of the 47 programs with data races, failing to
report a data race for DRB140 (Fig. 3, left). The semantics for reduction specify
that the loop behaves as if each thread creates a private copy, initially 0, of
the shared variable a, and updates this private copy in the loop body. At the
end of the loop, the thread adds its local copy onto the original shared variable.
These final additions are guaranteed to not race with each other. In CIVL, this is
modeled using a lock. However, there is no guarantee that these updates do not
race with other code. In this example, thread 0 could be executing the assignment
a=0 while another thread is adding its local result to a—a data race. This race
issue can be resolved by isolating the reduction loop with barriers.

LLOV correctly identified 38 out of 41 data-race-free programs. It reported
false alarms for DRB052 (no support for indirect addressing), DRB054 (failure
to propagate array dimensions and loop bounds from a variable assignment),
and DRB069 (failure to properly model OpenMP lock behavior).

The DRB suite contains few examples with interesting interleaving depen-
dencies or pointer alias issues. To complement the suite, we wrote 10 additional
C/OpenMP programs based on widely-used concurrency patterns (cf. [1]):

– 3 implementations of a synchronization signal sent from one thread to
another, using locks or busy-wait loops with critical sections or atomics;

Model Checking and Sequential Consistency for Data-Race-Free Programs 281

// atomic3 (no race)
int x=0, s=0;
#pragma omp parallel sections \

shared(x,s) num_threads(2)
{
#pragma omp section
{
x=1;
#pragma omp atomic write seq_cst
s=1;

}
#pragma omp section
{
int done = 0;
while (!done) {
#pragma omp atomic read seq_cst
done = s;

}
x=2;

}
}

// bar2 (no race)
// ...create/initialize locks l0, l1;
#pragma omp parallel num_threads(2)
{

int tid = omp_get_thread_num();
if (tid == 0) omp_set_lock(&l0);
else if (tid == 1) omp_set_lock(&l1);
#pragma omp barrier
if (tid == 0) x=0;
if (tid == 0) {

omp_unset_lock(&l0);
omp_set_lock(&l1);

} else if (tid == 1) {
omp_set_lock(&l0);
omp_unset_lock(&l1);

}
if (tid == 1) x=1;
#pragma omp barrier
if (tid == 0) omp_unset_lock(&l1);
else if (tid == 1) omp_unset_lock(&l0);

}

Fig. 4. Code for synchronization using an atomic variable (left) and a 2-thread barrier
using locks (right).

– 3 implementations of a 2-thread barrier, using busy-wait loops or locks;
– 2 implementations of a 1d-diffusion simulation, one in which two copies of the

main array are created by two separate malloc calls; one in which they are
inside a single malloced object; and

– an instance of a single-producer, single-consumer pattern; and a multiple-
producer, multiple-consumer version, both using critical sections.

For each program, we created an erroneous version with a data race, for a total
of 20 tests. These codes are included in the experimental archive, and two are
excerpted in Fig. 4.

CIVL obtains the expected result in all 20. While we wrote these additional
examples to verify that CIVL can reason correctly about programs with complex
interleaving semantics or alias issues, for completeness we also evaluated them
with LLOV. It should be noted, however, that the authors of LLOV warn that it
“. . . does not provide support for the OpenMP constructs for synchronization. . . ”
and “. . . can produce False Positives for programs with explicit synchronizations
with barriers and locks.” [9] It is therefore unsurprising that the results were
somewhat mixed: LLOV produced no output for 6 of our examples (the racy
and race-free versions of diffusion2 and the two producer-consumer codes) and
produced the correct answer on 7 of the remaning 14. On these problems, LLOV
reported a race for both the racy and race-free version, with the exception of
diffusion1 (Fig. 3, right), where a failure to detect the alias between u and v leads
it to report both versions as race-free.

CIVL’s verification time is significantly longer than LLOV’s. On the DRB
benchmarks, total CIVL time for the 88 tests was 27min. Individual times ranged
from 1 to 150 seconds: 66 took less than 5s, 80 took less than 30s, and 82 took
less than 1min. (All CIVL runs used an M1 MacBook Pro with 16GB memory.)

282 W. Wu et al.

Total CIVL runtime on the 20 extra tests was 210s. LLOV analyzes all 88 DRB
problems in less than 15 s (on a standard Linux machine).

4 Related Work

By Theorem 1, if barriers are the only form of synchronization used in a program,
only a single interleaving will be explored, and this suffices to verify race-freedom
or to find all states at the end of each barrier epoch. This is well known in other
contexts, such as GPU kernel verification (cf. [5]).

Prior work involving model checking and data races for unstructured con-
currency includes Schemmel et al. [29]. This work describes a technique, using
symbolic execution and POR, to detect defects in Pthreads programs. The app-
roach involves intricate algorithms for enumerating configurations of prime event
structures, each representing a set of executions. The completeness results deal
with the detection of defects under the assumption that the program is race-
free. While the implementation does check for data races, it is not clear that the
theoretical results guarantee a race will be found if one exists.

Earlier work of Elmas et al. describes a sound and precise technique for
verifying race-freedom in finite-state lock-based programs [16]. It uses a bespoke
POR-based model checking algorithm that associates significant and complex
information with the state, including, for each shared memory location, a set of
locks a thread should hold when accessing that location, and a reference to the
node in the depth first search stack from which the last access to that location
was performed.

Both of these model checking approaches are considerably more complex than
the approach of this paper. We have defined a simple state-transition system and
shown that a program has a data race if and only if a state or edge satisfying
a certain condition is reachable in that system. Our approach is agnostic to the
choice of algorithm used to check reachability. The earlier approaches are also
path-precise for race detection, i.e., for each execution path, a race is detected if
and only if one exists on that path. As we saw in the example following Theorem
1, our approach is not path-precise, nor does it have to be: to verify race-freedom,
it is only necessary to find one race in one execution, if one exists. This partly
explains the relative simplicity of our approach.

A common approach for verifying race-freedom is to establish consistent
correlation: for each shared memory location, there is some lock that is held
whenever that location is accessed. Locksmith [27] is a static analysis tool for
multithreaded C programs that takes this approach. The approach should never
report that a racy program is race-free, but can generate false alarms, since there
are race-free programs that are not consistently correlated. False alarms can also
arise from imprecise approximations of the set of shared variables, alias analysis,
and so on. Nevertheless, the technique appears very effective in practice.

Static analysis-based race-detection tools for OpenMP include OMPRacer
[33]. OMPRacer constructs a static graph representation of the happens-before
relation of a program and analyzes this graph, together with a novel whole-
program pointer analysis and a lockset analysis, to detect races. It may miss

Model Checking and Sequential Consistency for Data-Race-Free Programs 283

violations as a consequence of unsound decisions that aim to improve perfor-
mance on real applications. The tool is not open source. The authors subse-
quently released OpenRace [34], designed to be extensible to other parallelism
dialects; similar to OMPRacer, OpenRace may miss violations. Prior papers by
the authors present details of static methods for race detection, without a tool
that implements these methods [32].

PolyOMP [12] is a static tool that uses a polyhedral model adapted for a
subset of OpenMP. Like most polyhedral approaches, it works best for affine
loops and is precise in such cases. The tool additionally supports may-write
access relations for non-affine loops, but may report false alarms in that case.
DRACO [36] also uses a polyhedral model and has similar drawbacks.

Hybrid static and dynamic tools include Dynamatic [14], which is based on
LLVM. It combines a static tool that finds candidate races, which are subse-
quently confirmed with a dynamic tool. Dynamatic may report false alarms and
miss violations.

ARCHER [2] is a tool that statically determines many sequential or prov-
ably non-racy code sections and excludes them from dynamic analysis, then
uses TSan [30] for dynamic race detection. To avoid false alarms, ARCHER
also encodes information about OpenMP barriers that are otherwise not under-
stood by TSan. A follow-up paper discusses the use of the OMPT interface
to aid dynamic race detection tools in correctly identifying issues in OpenMP
programs [28], as well as SWORD [3], a dynamic tool that can stay within user-
defined memory bounds when tracking races, by capturing a summary on disk
for later analysis.

ROMP [18] is a dynamic/static tool that instruments executables using the
DynInst library to add checks for each memory access and uses the OMPT inter-
face at runtime. It claims to support all of OpenMP except target and simd con-
structs, and models “logical” races even if they are not triggered because the con-
flicting accesses happen to be scheduled on the same thread. Other approaches
for dynamic race detection and tricks for memory and run-time efficient race
bookkeeping during execution are described in [11,19,20,24].

Deductive verification approaches have also been applied to OpenMP pro-
grams. An example is [6], which introduces an intermediate parallel language and
a specification language based on permission-based separation logic. C programs
that use a subset of OpenMP are manually annotated with “iteration contracts”
and then automatically translated into the intermediate form and verified using
VerCors and Viper. Successfully verified programs are guaranteed to be race-free.
While these approaches require more work from the user, they do not require
bounding the number of threads or other parameters.

5 Conclusion

In this paper, we introduced a simple model-checking technique to verify that a
program is free from data races. The essential ideas are (1) each thread “remem-
bers” the accesses it performed since its last synchronization operation, (2) a

284 W. Wu et al.

partial order reduction scheme is used that treats all memory accesses as local,
and (3) checks for conflicting accesses are performed around synchronizations.
We proved our technique is sound and precise for finite-state models, using a
simple mathematical model for multithreaded programs with locks and barriers.
We implemented our technique in a prototype tool based on the CIVL symbolic
execution and model checking platform and applied it to a suite of C/OpenMP
programs from DataRaceBench. Although based on completely different tech-
niques, our tool achieved performance comparable to that of the state-of-the-art
static analysis tool, LLOV v.0.3.

Limitations of our tool include incomplete coverage of the OpenMP speci-
fication (e.g., target, simd, and task directives are not supported); the need
for some manual instrumentation; the potential for state explosion necessitat-
ing small scopes; and a combinatorial explosion in the mappings of threads to
loop iterations, OpenMP sections, or single constructs. In the last case, we have
compromised soundness by selecting one mapping, but in future work we will
explore ways to efficiently cover this space. On the other hand, in contrast to
LLOV and because of the reliance on model checking and symbolic execution,
we were able to verify the presence or absence of data races even for programs
using unstructured synchronization with locks, critical sections, and atomics,
including barrier algorithms and producer-consumer code.

Acknowledgements. This material is based upon work by the RAPIDS Institute,
supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Scientific Discovery through Advanced Computing (Sci-
DAC) program, under contract DE-AC02-06CH11357 and award DE-SC0021162. Sup-
port was also provided by U.S. National Science Foundation awards CCF-1955852 and
CCF-2019309.

References

1. Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming. Addison-Wesley (2000). https://www.pearson.ch/HigherEducation/
Pearson/EAN/9780201357523/Foundations-of-Multithreaded-Parallel-and-
Distributed-Programming

2. Atzeni, S., et al.: ARCHER: Effectively spotting data races in large OpenMP appli-
cations. In: 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 53–62 (2016). https://doi.org/10.1109/IPDPS.2016.68

3. Atzeni, S., Gopalakrishnan, G., Rakamaric, Z., Laguna, I., Lee, G.L., Ahn, D.H.:
SWORD: A bounded memory-overhead detector of OpenMP data races in pro-
duction runs. In: 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 845–854 (2018). https://doi.org/10.1109/IPDPS.2018.
00094

4. Bernstein, A.J.: Analysis of programs for parallel processing. IEEE Trans. Elec-
tronic Comput. EC 15(5), 757–763 (1966). https://doi.org/10.1109/PGEC.1966.
264565

5. Betts, A., et al.: The design and implementation of a verification technique for
GPU kernels. ACM Trans. Program. Lang. Syst. 37(3) (2015). https://doi.org/10.
1145/2743017

https://www.pearson.ch/HigherEducation/Pearson/EAN/9780201357523/Foundations-of-Multithreaded-Parallel-and-Distributed-Programming
https://www.pearson.ch/HigherEducation/Pearson/EAN/9780201357523/Foundations-of-Multithreaded-Parallel-and-Distributed-Programming
https://www.pearson.ch/HigherEducation/Pearson/EAN/9780201357523/Foundations-of-Multithreaded-Parallel-and-Distributed-Programming
https://doi.org/10.1109/IPDPS.2016.68
https://doi.org/10.1109/IPDPS.2018.00094
https://doi.org/10.1109/IPDPS.2018.00094
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1145/2743017
https://doi.org/10.1145/2743017

Model Checking and Sequential Consistency for Data-Race-Free Programs 285

6. Blom, S., Darabi, S., Huisman, M., Safari, M.: Correct program parallelisations.
Int. J. Softw. Tools Technol. Trans. 23(5), 741–763 (2021). https://doi.org/10.
1007/s10009-020-00601-z

7. Boehm, H.J.: How to miscompile programs with "benign" data races. In: Proceed-
ings of the 3rd USENIX Conference on Hot Topic in Parallelism, HotPar 2011, pp.
1–6. USENIX Association, Berkeley, CA, USA (2011). http://dl.acm.org/citation.
cfm?id=2001252.2001255

8. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.
In: Proceedings of the 29th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp. 68–78. PLDI ’08, Association for Comput-
ing Machinery, New York (2008). https://doi.org/10.1145/1375581.1375591

9. Bora, U., Das, S., Kukreja, P., Joshi, S., Upadrasta, R., Rajopadhye, S.: LLOV:
A fast static data-race checker for OpenMP programs. ACM Trans. Archit. Code
Optimiz. (TACO) 17(4), 1–26 (2020). https://doi.org/10.1145/3418597

10. Bora, U., Vaishay, S., Joshi, S., Upadrasta, R.: OpenMP aware MHP analysis for
improved static data-race detection. In: 2021 IEEE/ACM 7th Workshop on the
LLVM Compiler Infrastructure in HPC (LLVM-HPC). pp. 1–11 (2021). https://
doi.org/10.1109/LLVMHPC54804.2021.00006

11. Boushehrinejadmoradi, N., Yoga, A., Nagarakatte, S.: On-the-fly data race detec-
tion with the enhanced openmp series-parallel graph. In: Milfeld, K., de Supinski,
B.R., Koesterke, L., Klinkenberg, J. (eds.) IWOMP 2020. LNCS, vol. 12295, pp.
149–164. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58144-2_10

12. Chatarasi, P., Shirako, J., Kong, M., Sarkar, V.: An extended polyhedral model for
spmd programs and its use in static data race detection. In: Ding, C., Criswell, J.,
Wu, P. (eds.) LCPC 2016. LNCS, vol. 10136, pp. 106–120. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52709-3_10

13. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998). https://doi.org/10.
1109/99.660313

14. Davis, M.J.: Dynamatic: An OpenMP Race Detection Tool Combining Static and
Dynamic Analysis. Undergraduate research scholars thesis, Texas A&M University
(2021). https://oaktrust.library.tamu.edu/handle/1969.1/194411

15. Edmund M. Clarke, J., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model
Checking, 2 edn. MIT press, Cambridge, MA, USA (2018). https://mitpress.mit.
edu/books/model-checking-second-edition

16. Elmas, T., Qadeer, S., Tasiran, S.: Precise race detection and efficient
model checking using locksets. Tech. Rep. MSR-TR-2005-118, Microsoft
Research (2006). https://www.microsoft.com/en-us/research/publication/precise-
race-detection-and-efficient-model-checking-using-locksets/

17. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60761-7

18. Gu, Y., Mellor-Crummey, J.: Dynamic data race detection for OpenMP programs.
In: SC18: International Conference for High Performance Computing, Networking,
Storage and Analysis (2018). https://doi.org/10.1109/SC.2018.00064

19. Ha, O.-K., Jun, Y.-K.: Efficient thread labeling for on-the-fly race detection of
programs with nested parallelism. In: Kim, T., Adeli, H., Kim, H., Kang, H., Kim,
K.J., Kiumi, A., Kang, B.-H. (eds.) ASEA 2011. CCIS, vol. 257, pp. 424–436.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27207-3_47

https://doi.org/10.1007/s10009-020-00601-z
https://doi.org/10.1007/s10009-020-00601-z
http://dl.acm.org/citation.cfm?id=2001252.2001255
http://dl.acm.org/citation.cfm?id=2001252.2001255
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/3418597
https://doi.org/10.1109/LLVMHPC54804.2021.00006
https://doi.org/10.1109/LLVMHPC54804.2021.00006
https://doi.org/10.1007/978-3-030-58144-2_10
https://doi.org/10.1007/978-3-319-52709-3_10
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://oaktrust.library.tamu.edu/handle/1969.1/194411
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
https://www.microsoft.com/en-us/research/publication/precise-race-detection-and-efficient-model-checking-using-locksets/
https://www.microsoft.com/en-us/research/publication/precise-race-detection-and-efficient-model-checking-using-locksets/
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1109/SC.2018.00064
https://doi.org/10.1007/978-3-642-27207-3_47

286 W. Wu et al.

20. Ha, O.K., Kuh, I.B., Tchamgoue, G.M., Jun, Y.K.: On-the-fly detection of data
races in OpenMP programs. In: Proceedings of the 2012 Workshop on Parallel and
Distributed Systems: Testing, Analysis, and Debugging, pp. 1–10. PADTAD 2012,
Association for Computing Machinery, New York (2012). https://doi.org/10.1145/
2338967.2336808

21. International Organization for Standardization: ISO/IEC 9899:2018. Information
technology – Programming languages – C (2018). https://www.iso.org/standard/
74528.html

22. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. C-28(9), 690–691 (1979). https://doi.
org/10.1109/TC.1979.1675439

23. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 378–391. POPL ’05, Association for Computing Machinery, New
York (2005). https://doi.org/10.1145/1040305.1040336

24. Mellor-Crummey, J.: On-the-fly detection of data races for programs with
nested fork-join parallelism. In: Supercomputing 1991: Proceedings of the 1991
ACM/IEEE Conference On Supercomputing, pp. 24–33. IEEE (1991). https://
doi.org/10.1145/125826.125861

25. Open Group: IEEE Std 1003.1: Standard for information technology–Portable
Operating System Interface (POSIX(R)) base specifications, issue 7: General con-
cepts: Memory synchronization (2018). https://pubs.opengroup.org/onlinepubs/
9699919799/basedefs/V1_chap04.html#tag_04_12

26. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face (Nov 2021). https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5-2.pdf, version 5.2

27. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: Practical static race detection
for C. ACM Trans. Program. Lang. Syst. 33, 3:1–3:55 (2011). https://doi.org/10.
1145/1889997.1890000

28. Protze, J., Hahnfeld, J., Ahn, D.H., Schulz, M., Müller, M.S.: OpenMP tools inter-
face: synchronization information for data race detection. In: de Supinski, B.R.,
Olivier, S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017.
LNCS, vol. 10468, pp. 249–265. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-65578-9_17

29. Schemmel, D., Büning, J., Rodríguez, C., Laprell, D., Wehrle, K.: Symbolic partial-
order execution for testing multi-threaded programs. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12224, pp. 376–400. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53288-8_18

30. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: Data race detection in practice.
In: Proceedings of the Workshop on Binary Instrumentation and Applications,
pp. 62–71. WBIA 2009. Association for Computing Machinery, New York (2009).
https://doi.org/10.1145/1791194.1791203

31. Siegel, S.F., et al.: CIVL: The concurrency intermediate verification language. In:
SC15: Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. ACM, New York (Nov 2015). https://doi.
org/10.1145/2807591.2807635, article no. 61, pages 1-12

32. Swain, B., Huang, J.: Towards incremental static race detection in OpenMP pro-
grams. In: 2018 IEEE/ACM 2nd International Workshop on Software Correctness
for HPC Applications (Correctness), pp. 33–41. IEEE (2018). https://doi.org/10.
1109/Correctness.2018.00009

https://doi.org/10.1145/2338967.2336808
https://doi.org/10.1145/2338967.2336808
https://www.iso.org/standard/74528.html
https://www.iso.org/standard/74528.html
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/125826.125861
https://doi.org/10.1145/125826.125861
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_12
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_12
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf,
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf,
https://doi.org/10.1145/1889997.1890000
https://doi.org/10.1145/1889997.1890000
https://doi.org/10.1007/978-3-319-65578-9_17
https://doi.org/10.1007/978-3-319-65578-9_17
https://doi.org/10.1007/978-3-030-53288-8_18
https://doi.org/10.1007/978-3-030-53288-8_18
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/2807591.2807635
https://doi.org/10.1145/2807591.2807635
https://doi.org/10.1109/Correctness.2018.00009
https://doi.org/10.1109/Correctness.2018.00009

Model Checking and Sequential Consistency for Data-Race-Free Programs 287

33. Swain, B., Li, Y., Liu, P., Laguna, I., Georgakoudis, G., Huang, J.: OMPRacer: A
scalable and precise static race detector for OpenMP programs. In: SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14. IEEE (2020). https://doi.org/10.1109/SC41405.2020.00058

34. Swain, B., Liu, B., Liu, P., Li, Y., Crump, A., Khera, R., Huang, J.: OpenRace: An
open source framework for statically detecting data races. In: 2021 IEEE/ACM 5th
International Workshop on Software Correctness for HPC Applications (Correct-
ness), pp. 25–32. IEEE (2021). https://doi.org/10.1109/Correctness54621.2021.
00009

35. Verma, G., Shi, Y., Liao, C., Chapman, B., Yan, Y.: Enhancing DataRaceBench
for evaluating data race detection tools. In: 2020 IEEE/ACM 4th International
Workshop on Software Correctness for HPC Applications (Correctness), pp. 20–30
(2020). https://doi.org/10.1109/Correctness51934.2020.00008

36. Ye, F., Schordan, M., Liao, C., Lin, P.H., Karlin, I., Sarkar, V.: Using polyhedral
analysis to verify OpenMP applications are data race free. In: 2018 IEEE/ACM 2nd
International Workshop on Software Correctness for HPC Applications (Correct-
ness), pp. 42–50. IEEE (2018). https://doi.org/10.1109/Correctness.2018.00010

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1109/SC41405.2020.00058
https://doi.org/10.1109/Correctness54621.2021.00009
https://doi.org/10.1109/Correctness54621.2021.00009
https://doi.org/10.1109/Correctness51934.2020.00008
https://doi.org/10.1109/Correctness.2018.00010
http://creativecommons.org/licenses/by/4.0/

Searching for i-Good Lemmas
to Accelerate Safety Model Checking

Yechuan Xia1, Anna Becchi2, Alessandro Cimatti2, Alberto Griggio2,
Jianwen Li1(B), and Geguang Pu1,3(B)

1 East China Normal University, Shanghai, China
{jwli,ggpu}@sei.ecnu.edu.cn

2 Fondazione Bruno Kessler, Trento, Italy
{abecchi,cimatti,griggio}@fbk.eu

3 Shanghai Trusted Industrial Control Platform Co., Ltd., Shanghai, China

Abstract. IC3/PDR and its variants have been the prominent
approaches to safety model checking in recent years. Compared to the
previous model-checking algorithms like BMC (Bounded Model Check-
ing) and IMC (Interpolation Model Checking), IC3/PDR is attractive due
to its completeness (vs. BMC) and scalability (vs. IMC). IC3/PDR main-
tains an over-approximate state sequence for proving the correctness.
Although the sequence refinement methodology is known to be crucial
for performance, the literature lacks a systematic analysis of the prob-
lem. We propose an approach based on the definition of i- good lemmas,
and the introduction of two kinds of heuristics, i.e., branching and refer-
skipping, to steer the search towards the construction of i-good lemmas.
The approach is applicable to IC3 and its variant CAR (Complementary
Approximate Reachability), and it is very easy to integrate within exist-
ing systems. We implemented the heuristics into two open-source model
checkers, IC3Ref and SimpleCAR, as well as into the mature nuXmv plat-
form, and carried out an extensive experimental evaluation on HWMCC
benchmarks. The results show that the proposed heuristics can effec-
tively compute more i-good lemmas, and thus improve the performance
of all the above checkers.

1 Introduction

Safety model checking is a fundamental problem in verification. The goal is to
prove that all the reachable states of the transition system 〈I, T 〉 satisfy a prop-
erty P. The field has been dominated by SAT-based techniques since the intro-
duction of Bounded Model Checking (BMC) [9]. The first wave of SAT-based
model-checking algorithms, including BMC, k-induction [31] and Interpolation-
based Model Checking [25] have been superseded by the research deriving
from the seminal work of Bradley [11]. The IC3 algorithm maintains an over-
approximate state sequence for proving the correctness; it avoids unrolling the
transition relation by localizing reasoning to frames, used to incrementally build
an inductive invariant by discovering inductive clauses.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 288–308, 2023.
https://doi.org/10.1007/978-3-031-37703-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_14&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_14

Searching for i-Good Lemmas to Accelerate Safety Model Checking 289

IC3 (also known as PDR [17]) has spawned several variants, including those
that attempt to combine forward and backward search [29]. Particularly relevant
in this paper is CAR (Complementary Approximate Reachability), which com-
bines the forward overapproximation with a backward underapproximation [23].

It has been noted that different ways to refine the over-approximating sequence
can impact the performance of the algorithm. For example, [21] attempts to dis-
cover good lemmas, that can be “pushed to the top” since they are inductive. In
this paper, we propose an alternative way to drive the refinement of the over-
approximating sequence. We identify i- good lemmas, i.e. lemmas that are induc-
tive with respect to the i-th overapproximating level. The intuition is that such
i-good lemmas are useful in the search since they are fundamental to reach a fix
point in the safe case. In order to guide the search towards the discovery of i-good
lemmas, we propose a heuristic approach based on two key insights, i.e., branching
and refer-skipping. First, with branching we try to control the way the SAT solver
extracts unsatisfiable cores by privileging variables occurring in i-good lemmas.
Second, we control lemma generalization by avoiding dropping literals occurring
in a subsuming lemma in the previous layer (refer-skipping).

The proposed approach is applicable both to IC3/PDR and CAR, and it is
very simple to implement. Yet, it appears to be quite effective in practice. We
implemented the i-good lemma heuristics in two open-source implementations
of IC3 and CAR, and also in the mature, state-of-the-art IC3 implementation
available inside the nuXmv model checker [12], and we carried out an extensive
experimental evaluation on Hardware Model Checking Competition (HWMCC)
benchmarks. Analysis of the results suggests that increasing the ratio of i-good
lemmas leads to an increase in performance, and the heuristics appear to be quite
effective in driving the search towards i-good lemmas. In terms of performance,
this results in significant improvements for all the tools when equipped with the
proposed approach.

This paper is structured as follows. In Sect. 2 we present the problem and the
IC3/PDR and CAR algorithms. In Sect. 3 we present the intuition underlying i-
good lemmas and the algorithms to find them. In Sect. 4 we overview the related
work. In Sect. 5 we present the experimental evaluation. In Sect. 6 we draw some
conclusions and present directions for future work.

2 Preliminaries

2.1 Boolean Transition System

A Boolean transition system Sys is a tuple 〈X,Y, I, T 〉, where X and X ′ denote
the set of state variables in the present state and the next state, respectively,
and Y denotes the set of input variables. The state space of Sys is the set of
possible assignments to X. I(X) is a Boolean formula corresponding to the set
of initial states, and T (X,Y,X ′) is a Boolean formula representing the transition
relation. State s2 is a successor of state s1 with input y iff s1 ∧y ∧s′

2 |= T, which
is also denoted by (s1, y, s2) ∈ T . In the following, we will also write (s1, s2) ∈ T
meaning that (s1, y, s2) ∈ T for some assignment y to the input variables. A path

290 Y. Xia et al.

of length k is a finite state sequence s1, s2, . . . , sk, where (si, si+1) ∈ T holds for
(1 ≤ i ≤ k−1). A state t is reachable from s in k steps if there is a path of length
k from s to t. Let S be a set of states in Sys. We overload T and denote the
set of successors of states in S as T (S) = {t | (s, t) ∈ T, s ∈ S}. Conversely, we
define the set of predecessors of states in S as T−1(S) = {s | (s, t) ∈ T, t ∈ S}.
Recursively, we define T 0(S) = S and T i+1(S) = T (T i(S)) where i ≥ 0; the
notation T−i(S) is defined analogously. In short, T i(S) denotes the states that
are reachable from S in i steps, and T−i(S) denotes the states that can reach S
in i steps.

2.2 Safety Checking and Reachability Analysis

Given a transition system Sys = 〈X,Y, I, T 〉 and a safety property P , which
is a Boolean formula over X, a model checker either proves that P holds for
any state reachable from an initial state in I, or disproves P by producing a
counterexample. In the former case, we say that the system is safe, while in the
latter case, it is unsafe. A counterexample is a finite path from an initial state
s to a state t violating P , i.e., t ∈ ¬P , and such a state is called a bad state.
In symbolic model checking, safety checking is reduced to symbolic reachabil-
ity analysis. Reachability analysis can be performed in a forward or backward
search. Forward search starts from initial states I and searches for bad states
by computing T i(I) with increasing values of i, while backward search begins
with states in ¬P and searches for initial states by computing T−i(¬P) with
increasing values of i. Table 1 gives the corresponding formal definitions.

Table 1. Exact reachability analysis.

Forward Backward

Base F0 = I B0 = ¬P
Induction Fi+1 = T (Fi) Bi+1 = T−1(Bi)

Safe Check Fi+1 ⊆ ⋃
0≤j≤i Fj Bi+1 ⊆ ⋃

0≤j≤i Bj

Unsafe Check Fi ∩ ¬P �= ∅ Bi ∩ I �= ∅

For forward search, Fi denotes the set of states that are reachable from I
within i steps, which is computed by iteratively applying T . At each iteration,
we first compute a new Fi, and then perform safe checking and unsafe checking. If
the safe/unsafe checking hits, the search terminates. Intuitively, unsafe checking
Fi ∩ ¬P 	= ∅ indicates some bad states are within Fi and safe checking Fi+1 ⊆⋃

0≤j≤i Fj indicates that all reachable states from I have been checked and none
of them violate P . For backward search, Bi is the set of states that can reach
¬P in i steps, and the search procedure is analogous to the forward one.

Notations. A literal is an atomic variable or its negation. If l is a literal, we
denote its corresponding variable with var(l). A cube (resp. clause) is a conjunc-
tion (resp. disjunction) of literals. The negation of a clause is a cube and vice

Searching for i-Good Lemmas to Accelerate Safety Model Checking 291

versa. A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses.
For simplicity, we also treat a CNF formula φ as a set of clauses and make no
difference between the formula and its set representation. Similarly, a cube or a
clause c can be treated as a set of literals or a Boolean formula, depending on
the context.

We say a CNF formula φ is satisfiable if there exists an assignment of its
Boolean variables, called a model, that makes φ true; otherwise, φ is unsatisfiable.
A SAT solver is a tool that can decide the satisfiability of a CNF formula φ. In
addition to providing a yes/no answer, modern SAT solvers can also produce
models for satisfiable formulas, and unsatisfiable cores (UC), i.e. a reason for
unsatisfiability, for unsatisfiable ones. More precisely, in the following we shall
assume to have a SAT solver that supports the following API (which is standard
in state-of-the-art SAT solvers based on the CDCL algorithm [24]):

– is SAT(φ,A) checks the satisfiability of φ under the given assumptions A,
which is a list of literals. This is logically equivalent to checking the satisfia-
bility of φ ∧ ∧ A, but is typically more efficient;

– get UC() retrieves an UC of the assumption literals of the previous SAT call
when the formula φ ∧ ∧ A is unsatisfiable. That is, the result is a set uc ⊆ A
such that φ ∧ ∧

uc is unsatisfiable;
– get model() retrieves the model of the formula φ∧∧A of the previous SAT

call, if the formula is satisfiable.

2.3 Overview of IC3 and CAR

IC3 is a SAT-based and complete safety model checking algorithm proposed
in [11], which only needs to unroll the system at most once. PDR [17] is a re-
implementation of IC3 which optimizes the original version in different aspects.
To prove the correctness of a given system Sys = 〈X,Y, I, T 〉 w.r.t. the safety
property P , IC3/PDR maintains a monotone over-approximate state sequence O
such that (1) O0 = I and (2) Oi+1 ⊇ Oi ∪T (Oi) for i ≥ 0. From the perspective
of reachability analysis, IC3 performs as shown in the left part of Table 2. Since
O is monotone, the states search can converge as soon as Oi+1 = Oi holds for
some i ≥ 0. Otherwise, a state path (counterexample) starting from I to some
state in ¬P can be detected (T−i(¬P) ∩ I 	= ∅).

Table 2. A high-level description of IC3 (left) and (Forward) CAR (right).

Over-approximate Under-approximate

Base O0 = I -

Induction Oi+1 ⊇ Oi ∪ T (Oi) -

Safe Check ∃i · Oi+1 = Oi -

Unsafe Check - ∃i · T−i(¬P) ∩ I �= ∅

Over-approximate Under-approximate

Base O0 = I U0 = ¬P
Induction Oi+1 ⊇ T (Oi) Ui+1 ⊆ T−1(Ui)

Safe Check ∃i · Oi+1 ⊆ ⋃
0≤j≤i Oj -

Unsafe Check - ∃i · Ui ∩ I �= ∅

CAR [23] is a recently proposed algorithm, which can be considered as a
general version of IC3. The main points CAR differs from IC3 are as follows:

292 Y. Xia et al.

Algorithm 1. Overview of IC3
1: procedure IC3(I, T , P)
2: if is SAT(I ∧ ¬P) then // unsafe check of initial state
3: return unsafe
4: O0 := I, k := 1, Ok := �
5: while true do
6: while is SAT(Ok ∧ ¬P) do
7: s := get model() // s |= Ok ∧ ¬P
8: if UnsafeCheck(s, k − 1) then
9: return unsafe // counterexample found

10: k := k + 1, Ok := �
11: if SafeCheck(k) then
12: return safe // property proved

13:
14: function Unsafecheck(s, i)
15: while is SAT(Oi ∧ ¬s ∧ T , s′) do
16: if i = 0 then
17: return true
18: t :=get predecessor(s, i) // (t, s) ∈ T , see Algorithm 4
19: if UnsafeCheck(t, i − 1) then
20: return true
21: c := generalize({l|l′ ∈ get UC()}, i) // c ⊆ s, see Algorithm 3
22: Oj := Oj ∩ ¬c, 1 ≤ j ≤ i + 1
23: return false
24:
25: function Safecheck(k)
26: propagation(k) // see Algorithm 4
27: i := 0
28: while i < k do
29: if Oi = Oi+1 then
30: return true
31: return false

– The over-approximate state sequence O in CAR is not necessarily monotone.
Therefore, CAR has to apply the standard invariant-checking approach, i.e.,
finding a position i ≥ 0 such that Oi+1 ⊆ ⋃

0≤j≤i Oj holds, as shown in the
right part of Table 2.

– Besides the O sequence, CAR also maintains an under-approximate state
sequence U that stores reachable (real) states from ¬P , see Table 2. The
motivation to introduce the U sequence is to re-use the intermediate states
that are computed during proving. Although it is straightforward for IC3 to
introduce such a sequence, the effect on the performance remains unknown.

– CAR can be performed in both forward, i.e., proving from I while search-
ing states back from ¬P , and backward, i.e., proving back from ¬P while
searching states from I. Although Backward CAR is not good at proving, it is
advantageous in finding bugs, i.e., checking unsafety [16,22]. Relevant work on
reverse IC3/PDR [28], which corresponds to Backward CAR, has been studied
but the results did not clearly support its advantage on bug-finding.

An overview of IC3 and (forward) CAR is shown in Algorithm 1 and Algo-
rithm 2 respectively. At a high level, both algorithms have a similar structure,
consisting of an alternation of two phases: unsafe check and safe check. The
unsafe check (line 14 of Algorithm 1, line 14 of Algorithm 2) tries to find a state
sequence that is a path between I and ¬P ; if such a sequence can be found,
then it is a counterexample witnessing the violation of P ; otherwise, the Oi are

Searching for i-Good Lemmas to Accelerate Safety Model Checking 293

Algorithm 2. Overview of CAR
1: procedure CAR forward(I, T , P)
2: if is SAT(I ∧ ¬P) then // unsafe check of initial state
3: return unsafe
4: O0 := I, U := {¬P}, k := 0
5: while true do
6: while is SAT(U) do
7: s := get model() // s ∈ U
8: if UnsafeCheck(s, k) then
9: return unsafe // counterexample found

10: if SafeCheck(k) then
11: return safe // property proved

12: k := k + 1, Ok := �
13:
14: function Unsafecheck(s, i)
15: while is SAT(Oi ∧ T , s′) do
16: if i = 0 then
17: return true
18: t := get predecessor(s, i) // (t, s) ∈ T , see Algorithm 5
19: U := U ∪ {t}
20: if UnsafeCheck(t, i − 1) then
21: return true
22: c := generalize({l|l′ ∈ get UC()}, i) // c ⊆ s, see Algorithm 3
23: Oi+1 := Oi+1 ∩ ¬c
24: return false
25:
26: function Safecheck(k)
27: propagation(k) // see Algorithm 5
28: i := 0
29: while i < k do
30: if not is SAT(Oi+1 ∧ ¬(

∨
0≤j≤i Oj)) then

31: return true
32: return false

strengthened with additional clauses until Ok is strong enough to imply P .1 The
safe check (line 25 of Algorithm 1, line 26 of Algorithm 2) tries to propagate the
clauses in Oi to Oi+1 and check if a fixpoint is reached. If so then the algorithm
terminates. Both algorithms make use of similar additional procedures, which
will be detailed in the following section, when we introduce our novel heuristics.

3 Finding i-Good Lemmas

In this section, we introduce the concept of i-good lemmas, define the heuristics to
steer the search towards i-good lemmas and describe the IC3 and CAR algorithms
enhanced with i-good lemmas. For the sake of convenient description, we fix the
input system Sys = 〈X,Y, I, T 〉 and the property P to be verified. In describing
the implementation of our heuristics, we shall necessarily assume that the reader
has some familiarity with the low-level details of IC3 and CAR, for which we
refer to [11,17,23]. Specifically, we shall use pseudo-code descriptions of the main
components of the algorithms (Algorithm 3, 4, and 5), in which the modifications
required to implement our heuristics are highlighted in blue.
1 Note that in the unsafe check, the meaning of the SAT query is SAT(Oi ∧ T , s′) is

different between CAR and IC3 (line 15 Algorithm 2) so that when it is unsatisfiable
the obtained clauses have different semantics.

294 Y. Xia et al.

3.1 What Are i-good Lemmas

The over-approximate state sequence O in IC3 (resp. CAR) is a finite sequence, in
which every element Oi (0 ≤ i < |O|), namely frame i, is an over-approximation
of the states of the system that are reachable in up to (resp. exactly) i steps
from I, and which is strong enough to imply P . Such sequence O has the form
of P ∧ C, where C is a CNF, and each clause in C is called a lemma. For both
algorithms, the goal is that of transforming the sequence O to construct an
over-approximation of all the reachable states of the system (over an unbounded
horizon) that still implies P . When this happens, such over-approximation is an
inductive invariant that proves P . The key idea, common to both IC3 and to
CAR, is to construct the invariant incrementally and by reasoning in a localized
manner, by (i) considering increasingly-long sequences of overapproximations,
and by (ii) trying to propagate forward individual lemmas from a frame Oi to
its successor Oi+1, until a fixpoint is reached2. The forward propagation proce-
dure is crucial for ensuring the convergence of the algorithm in practice: for IC3
(resp. CAR), it checks whether a lemma c at frame i represents also an overap-
proximation of all the states reachable in up to (resp. exactly) i + 1 steps, and
therefore can be added to frame i + 1. It is immediate to see that the successful
propagation of all lemmas from i to i+1, for some i, is a sufficient condition for
the termination of both IC3 and CAR with a safe result. In fact, for IC3, this is
also a necessary condition.

We now introduce the notion of i-good lemma.

Definition 1 (i-Good Lemma). Let c be a lemma that was added at frame
i by IC3/CAR (at some previous step in the execution of the algorithm), i.e.
Oi |= c. We say that c is i-good if c now holds also at frame i+1, i.e. Oi+1 |= c.

The following theorems are then consequences of the definition.

Theorem 1. IC3 terminates with safe at frame i (i > 0), if and only if every
lemma at frame i is i-good.

Theorem 2. CAR terminates with safe at frame i (i > 0), if every lemma at
frame i is i-good.

Such theorems provide the theoretical foundation on which we base our main
conjecture: the computation of i-good lemmas can be helpful for both IC3 and
CAR to accelerate the convergence in proving properties. Intuitively, an i-good
lemma shows the promise of being independent of the reachability layer, and
hence holds in general.

2 The algorithms differ in the way they check reaching the fixpoint, but this difference
will be ignored unless otherwise stated.

Searching for i-Good Lemmas to Accelerate Safety Model Checking 295

3.2 Searching for i-good Lemmas

Our conjecture is that there exists, on average, a positive correlation between
the ratio of i-good lemmas vs the total amount of lemmas computed by IC3/CAR
during generalization and the efficiency of the algorithm.

Ensuring that only i-good lemmas are produced is as hard as solving the
verification problem itself, since this is essentially equivalent to synthesizing an
inductive invariant which implies P . However, there are two situations in which
it is easy to identify i-good lemmas, for both IC3 and CAR:

1. In the propagation procedure, if a lemma c can be successfully pushed from
frame i to frame i + 1, then c is i-good;

2. In the generalize procedure, if the current lemma c at frame i is generalized
to a lemma p ⊆ c such that p ∈ Oi−1, then p is (i − 1)-good; additionally,
if we can guide the generalization of c so that it produces p, then p becomes
(i − 1)-good.

Therefore, we do not attempt to compute only i-good lemmas, but rather,
our main idea is to use some (cheap) heuristics to increase the probability of
producing i-good lemmas during the normal execution of IC3 and CAR.

We exploit the above observations to design two heuristics that try to bias
the search for lemmas towards those that are more likely to be i-good, which we
call respectively branching and refer-skipping.

Branching. The branching strategy [26] is an important feature of modern
CDCL (Conflict-Driven Clause Learning) SAT solvers [7]. Traditional scoring
schemes for branching such as VSIDS and EVSIDS have been extensively evalu-
ated in [10]. In CDCL SAT solvers, decision variables are selected according to
their priority. Whenever a conflict occurs, the priority of each variable in the
clause is increased. To this end, variables that have recently been involved in
conflicts are more likely to be selected as decision variables.

We adopt a similar idea in our branching heuristic for IC3/CAR to bias the
unsatisfiable cores produced by the SAT solver, by ordering the assumptions in
SAT queries according to their score. This is based on the fact that modern SAT
solvers based on CDCL apply the assumption literals in the order given by the
user, and (as a consequence of how CDCL works) the unsatisfiable core produced
when the formula is unsatisfiable depends on such order, with literals occurring
earlier in the assumption list being more likely to be included in the core. For
example, assume the SAT query is is SAT(¬1 ∧ (2 ∨ ¬3), 1 ∧ ¬2 ∧ 3), which is
unsatisfiable, then the returned UC from the SAT solver, e.g., Minisat [5,18], will
be {1}. If the order of assumptions is changed to 3 ∧ ¬2 ∧ 1, then the UC will be
{3,¬2}.

Since UCs are the source for lemmas in both IC3 and CAR, the first idea of
our branching heuristic is that of sorting the assumption literals in SAT queries
according to how often they occur in recent i- good lemmas. Concretely, this is
implemented as follows:

– We introduce a mapping S[v] : v → scorev, v ∈ X from each variable to its
score (priority). Initially, all variables have the same score of 0.

296 Y. Xia et al.

– Before each SAT query in which a (negated) lemma c (or its next-state version
c′) is part of the assumptions, c is sorted in descending order of S[var(l)], where
l ∈ c, to give higher priority to assumption literals with higher scores. This
corresponds to the calls to the function sort(c) in the pseudo-code description
of the main components of IC3 and CAR: at the beginning of Unsafecheck
(Algorithm 1 and 2), in Get predecessor (line 6 of Algorithm 4, line 6 of
Algorithm 5), and in Generalization (line 25 of Algorithm 4, line 23 of
Algorithm 5).

– Whenever IC3 or CAR discovers an i-good lemma c, all the variables in c are
rewarded by increasing their score. A lemma c is determined to be i-good
either when it is propagated forward from frame i to frame i + 1 (function
propagation of Algorithm 4 and 5) or when c is the result of a generaliza-
tion from d ⊇ c at frame i + 1 such that c is already in frame i (function
generalize, Algorithm 3). In the pseudo-code, the reward steps correspond
to the calls to the function reward(c) at line 12 of Algorithm 3, line 42 of
Algorithm 4, and line 37 of Algorithm 5. The reward function first decays
the scores of all the variables in S[v] by a small amount (we multiply by 0.99
in our implementation), and then increments the score of all the variables in
c (by 1 in our implementation).
In order to determine whether generalize produced an i-good lemma, we
also use the function get parentnode(c) (line 3 of Algorithm 3), which
returns a cube p in frame i − 1 such that p ⊆ c when c belongs to frame i. (If
multiple such p exist, the one with the highest score is returned).

– When performing inductive generalization of a lemma c at frame i (Algo-
rithm 3), in which c is strengthened by trying to drop literals from it as long
as the result is still a valid lemma for frame i, the literals of c are sorted in
increasing order of S[var(l)], with l ∈ c. This corresponds to the call to the
function reverse sort(c) at line 2 of Algorithm 3 in the pseudo-code.

Algorithm 3. Lemma Generalization of IC3/CAR
1: function generalize(c, i, rec lvl = 1)
2: reversed sort(c) // sort literals in c in increasing order of priority
3: ¬p :=get parentnode(¬c) // ¬p ∈ Fi−1(Oi−1) and p ⊆ c
4: req := p // skip literals in p
5: for each l ∈ c and l �∈ req do
6: cm := c \ {l}
7: if down(cm, i, rec lvl, req) then // CTG-based dropping, see Algorithm 4 and 5
8: c := cm
9: else

10: req := req ∪ {l} // failed to drop l

11: if c \ p = ∅ then // whether c is a good lemma
12: reward(c) // raise priority of variables in c

13: return c

Skipping Literals by Reference. Lemma generalization is a crucial process
in IC3/CAR that affects performance significantly. Given the original lemma c

Searching for i-Good Lemmas to Accelerate Safety Model Checking 297

Algorithm 4. Auxiliary functions for IC3
1: function get predecessor(s, i) // generalization of predecessors
2: assert(is SAT(Oi ∧ ¬s ∧ T , s′)) // precondition: ∃t that (t, s) ∈ T
3: µ := get model()
4: in := {l ∈ µ|var(l) ∈ Y }
5: t := {l ∈ µ|var(l) ∈ X}
6: sort(t) // sort literals in s in descending order of priority
7: while not is SAT(Oi ∧ in ∧ ¬s′, t) do
8: if t =get UC() then
9: break

10: t :=get UC()

11: return t
12:
13: function down(c, i, rec lvl, req) // CTG-based dropping literals
14: cex num := 0
15: while true do
16: if is SAT(I ∧ c) then
17: return false
18: if not is SAT(Oi ∧ ¬c ∧ T , c′) then
19: c :={l|l′ ∈ get UC()}
20: return true
21: else if rec lvl > MAX REC LVL then // MAX REC LVL = 3
22: return false
23: else
24: cex := get predecessor(c, i) // cex as a counter-example of generalization
25: sort(cex) // sort literals in s in descending order of priority
26: if cex num < MAX CEX NUM and i > 0 and not is SAT(Oi−1 ∧ ¬cex ∧ T , cex′)

and not is SAT(I ∧ cex) then // MAX CEX NUM = 3
27: ccex :=generalize({l|l′ ∈ get UC()}, i − 1, rec lvl + 1)
28: Ok := Ok ∩ ¬ccex, 1 ≤ k ≤ i − 1
29: cex num + +
30: else
31: cex num := 0
32: if (c \ cex) ∩ req �= ∅ then
33: return false
34: c := c ∩ cex
35:
36: function propagation(k)
37: i := 1
38: for i < k do
39: for ¬c ∈ Oi do
40: if not SAT(Oi ∧ ¬c ∧ T, c′) then
41: Oi+1 := Oi+1 ∩ ¬c
42: reward(c) // raise priority of variables in c

to be added into frame i (i > 0), the generalize procedure tries to compute a
new lemma g such that g ⊆ c and g is also valid to be added to frame i (Oi).
The main idea of generalization is to try to drop literals in the original lemma
one by one, to see whether the left part can still be a valid lemma.

There are several generalization algorithms with different trade-offs between
efficiency (in terms of the number of SAT queries) and effectiveness (in terms
of the potential reduction in the size of the generalized lemma), e.g. [11,17,20].
More in general, there might be multiple different ways in which a lemma c can
be generalized, with results of uncomparable strength (i.e. there might be both
g1 ⊆ c and g2 ⊆ c such that g1 	⊆ g2 and g2 	⊆ g1).

The main idea of the refer-skipping heuristic is to bias the generalization to
increase the likelihood that the result g is a (i − 1)-good lemma. Consider the
generalization of lemma c = ¬1 ∨ 2 ∨ ¬3 at frame i (i > 1). If there is already a

298 Y. Xia et al.

Algorithm 5. Auxiliary functions for CAR
1: function get predecessor(s, i) // generalization of predecessors
2: assert(is SAT(Oi ∧ T , s′)) // precondition: ∃t that (t, s) ∈ T
3: µ := get model()
4: in := {l ∈ µ|var(l) ∈ Y }
5: t := {l ∈ µ|var(l) ∈ X}
6: sort(t) // sort literals in s in descending order of priority
7: while not is SAT(Oi ∧ in ∧ ¬s′, t) do
8: if t =get UC() then
9: break

10: t :=get UC()

11: return t
12:
13: function down(c, i, rec lvl) // CTG-based dropping literals
14: cex num := 0
15: while true do
16: if not is SAT(Oi ∧ T , c′) then
17: c :={l|l′ ∈ get UC()}
18: return true
19: else if rec lvl > MAX REC LVL then // MAX REC LVL = 3
20: return false
21: else
22: cex := get predecessor(c, i)
23: sort(cex) // sort literals in s in descending order of priority
24: if cex num < MAX CEX NUM and i > 0

and not is SAT(Oi−1 ∧ T , cex) then // MAX CEX NUM = 3
25: ccex :=generalize({l|l′ ∈ get UC()}, i − 1, rec lvl + 1)
26: Oi−1 := Oi−1 ∩ ¬ccex
27: cex num + +
28: else
29: return false
30:
31: function propagation(k)
32: i := 1
33: for i < k do
34: for ¬c ∈ Oi do
35: if not SAT(Oi ∧ T, c′) then
36: Oi+1 := Oi+1 ∩ ¬c
37: reward(c) // raise priority of variables in c

lemma g = ¬1∨¬3 at frame i−1, we say that g is a candidate (i−1)-good lemma
for the generalization of c. In order to drive the generalization of c towards g, we
blacklist the literals of g, so that generalize will never attempt to drop them
from c. As such, we call g a reference for skipping generalization. In general,
there might be multiple references for a given lemma. Currently, our strategy in
refer-skipping is to just pick the one first found.

The implementation of refer-skipping is based on existing generalization algo-
rithms and only needs to add less than 10 lines in the pseudo-code (see line 4-10
of Algorithm 3). As shown in the algorithm, a variable set req is maintained to
store variables that fail to be dropped so that they are not tried to be removed
again later. In order to use refer-skipping, we simply initialize req with the vari-
ables occurring in the candidate (i − 1)-good lemma that is returned by the
get parentnode procedure (line 3 of Algorithm 3).

Finally, note that although in our pseudo-code (and in our implementation)
we use the CTG algorithm of [20], the idea discussed here can be applied also
to the other variants of generalization just as easily.

Searching for i-Good Lemmas to Accelerate Safety Model Checking 299

4 Related Work

In the field of safety model checking, after the introduction of IC3 [11], several
variants have been presented: [20] presents the counterexample-guided general-
ization (CTG) of a lemma by blocking states that interfere with it, which sig-
nificantly improves the performance of IC3; AVY [33] introduces the ideas of IC3
into IMC (Interpolant Model Checking) [25] to induce a better model checking
algorithm; its upgrade version kAVY [32] uses k-induction to guide the interpola-
tion and IC3/PDR generalization inside; [28] proposes to combine IC3/PDR with
reverse IC3/PDR; the subsequent work [29] interleaves a forward and a back-
ward execution of IC3 and strengthens one frame sequence by leveraging the
proof-obligations from the other; IC3-INN [15] enables IC3 to leverage the inter-
nal signal information of the system to induce a variant of IC3 that can perform
better on certain industrial benchmarks; [30] introduces under-approximation in
PDR to improve the performance of bug-finding.

The importance of discovering inductive lemmas for improving convergence is
first noted in [17]. In PDR terminology, inductive lemmas are the ones belonging
to frame O∞, as they represent an over-approximation of all the reachable states.

The most relevant related work is [21], where a variant of IC3 named QUIP
is proposed for implementing the pushing of the discovered lemmas to O∞. At
its essence, QUIP adds the negation of a discovered lemma c as a may-proof-
obligation, hence trying to push c to the next frame. Counterexamples of may-
proof-obligations represent an under-approximation of the reachable states and
are stored to disprove the inductiveness of other lemmas. In QUIP terminology,
such lemmas are classified as bad lemmas, as they have no chance of being part
of the inductive invariant. Since the pushing is not limited to the current number
of frames, inductive lemmas are discovered when all the clauses of a frame can
be pushed (Ok \ Ok+1 = ∅ for a level k), and then added in O∞. In QUIP
terminology, lemmas belonging to O∞ are classified as good lemmas, and are
always kept during the algorithm. Observe that the concept of good lemma in
[21] is a stronger version of Definition 1, which instead is local to a frame i and
characterizes lemmas that can be propagated one frame ahead.

Both QUIP and our heuristic try to accomplish a similar task, which is prior-
itizing the use of already discovered lemmas during the generalization. There
are however several differences: QUIP proceeds by adding additional proof-
obligations to the queue and by progressively proving the inductiveness of a
lemma relative to any frame. Our approach, on the other hand, is based on a
cheap heuristic strategy that locally guides the generalization prioritizing the
locally good lemmas. Some i-good lemmas computed may not be part of the
final invariant and can not be pushed later; in QUIP, such lemmas would not be
considered good. In our view, pushing them is not necessarily a waste of effort,
because they still strengthen the frames and their presence might be necessary
to deduce the final invariant. Finally, it is worth mentioning that our heuristic
is much simpler to implement and integrate into different PDR-based engines.

The idea of ordering literals when performing inductive generalization is
already proposed in [11] and adopted, as a default strategy, in several imple-

300 Y. Xia et al.

mentations of IC3 [3,17,19], yielding modest improvements on HWMCC bench-
marks, however without clear trends identified (see [17,19]). Compared to such
works, our approach has two main differences. First, these heuristics favor literals
occurring more frequently in all previous frames, whereas our approach is driven
by the role of lemmas and prefers the variables occurring only in those are i-
good. Second, our use of ordering heuristics is more pervasive: unlike in previous
works, where variable ordering heuristics are only used during the lemma gen-
eralization, we use ordering everywhere the SAT results affect search direction,
which makes it more effective to bias the search.

5 Evaluation

5.1 Experimental Setup

We integrated the branching and refer-skipping heuristics into three systems: the
IC3Ref [3] and SimpleCAR [6] (open-source) model checkers, which implement
the IC3 and (Forward and Backward3) CAR algorithms respectively, and the
mature, state-of-the-art implementation of IC3 available inside the nuXmv model
checker [12]. We make our implementations and data for reproducing the exper-
iments available at https://github.com/youyusama/i-Good Lemmas MC.

Since our approach is related to QUIP [21], we include the evaluation of
QUIP, and IC3 (mainly as the baseline for QUIP), as implemented4 in IIMC [4].
We also consider the PDR implementation in the ABC model checker [1], which
is state-of-the-art in hardware model checking.

Table 3. Tools and algorithms evaluated in the experiments.

Tools Algorithms Available Flags

IC3Ref [3] IC3 (ic3) -br | -rs | -sh

SimpleCAR [6] Forward CAR (fcar) -br | -rs | -sh

nuXmv [12] IC3 (nuXmv) -br | -rs | -sh

IIMC [4] QUIP (iimc-quip) –

IIMC [4] IC3 (iimc-ic3) –

ABC [1] PDR (abc-pdr) –

Table 3 summarizes the tested tools, algorithms, and their flags. We use the
flag “-br” to enable the branching heuristic and “-rs” to enable refer-skipping.
Furthermore, we evaluate also another configuration (denoted as “-sh”), in which
the calls to sort() functions in Algorithms 4 and 5 are replaced by random
3 Although there is an implementation of Backward CAR in SimpleCAR, this method-

ology corresponds to reverse IC3. As a result, we did not include Backward CAR in
this paper and left the evaluation in future work.

4 As far as we know, this is the only publicly available QUIP implementation.

https://github.com/youyusama/i-Good_Lemmas_MC

Searching for i-Good Lemmas to Accelerate Safety Model Checking 301

shuffles, thus simulating a strategy that orders variables randomly. When no flag
is active, IC3Ref runs the instances with its own strategy of sorting variables,
present in the original implementation.

We evaluate all the tools on 749 benchmarks, in aiger format, of the SINGLE
safety property track of the 2015 and 2017 editions of HWMCC [8]5. We ran the
experiments on a cluster, which consists of 2304 2.5GHz CPUs in 240 nodes
running RedHat 4.8.5 with a total of 96GB RAM. For each test, we set the
memory limit to 8GB and the time limit to 5 h. During the experiments, each
model-checking run has exclusive access to a dedicated node.

To increase our confidence in the correctness of the results, we compare the
results of the solvers to make sure they are all consistent (modulo timeouts).
For the cases with unsafe results, we also check the provided counterexample
with the aigsim tool from the Aiger package [2]. We have no discrepancies in the
results, and all unsafe cases successfully pass the aigsim check.

5.2 Experimental Results

Overview. The results of the experimental evaluation are discussed below. We
first consider the aggregated results, as reported in Table 4. For each tool, we
group the results obtained with the various configurations; we report the total
number of benchmarks solved, distinguishing between safe and unsafe bench-
marks; we also report the benchmarks gained and lost by the configurations with
branching and/or refer-skipping active, relative to the baseline where branching
and refer-skipping are not active. We can draw the following conclusions.

– The proposed heuristics are in general effective in improving performance.
Each of the model checkers, with at least one of branching and refer-skipping
active, consistently outperforms the respective baseline in terms of the number
of benchmarks solved.

– The same holds within the safe instances, with the exception of refer-skipping
in nuXmv that solves two safe benchmarks less than the baseline.

– The heuristics also yield a uniform improvement over the baseline in the
unsafe instances.

– The combination of branching and refer-skipping gives further improvements
over a single technique, with the exception of nuXmv with branching, which
cumulatively solves 5 more benchmarks than nuXmv with branching and refer-
skipping.

– The gain is not uniform across the instances. For example, nuXmv with branch-
ing gains 52 benchmarks (44 safe and 8 unsafe) that are not solved by nuXmv
baseline, while losing 13 (safe) benchmarks. This level of variability can be
expected, given a heuristic approach, but further investigation is needed to
assess the underlying phenomena.

5 From HWMCC 2019, the official format used in the competition is switched from
Aiger to Btor2 [27], a format for word-level model checking. As a result, we did not
include those instances in our experiments.

302 Y. Xia et al.

– The performance of using the heuristics guided by random variable ordering
does not differ significantly from the baseline in terms of aggregate results.
There are some differences (as expected) at the level of individual instances,
especially for CAR, but no clear trend emerges overall.

– The comparison also shows that the considered systems compare well against
the state-of-the-art system ABC, and QUIP; QUIP turns out to be quite inef-
ficient and is disregarded in the following. Note that the original implemen-
tation of QUIP is not available; the fact that the available version of QUIP
implemented on top of IIMC does not seem to achieve the same improvements
reported in the original paper [21] (the code for which is unfortunately not
available) suggests that the QUIP is far from trivial to implement. As the
reference, QUIP performs even worse than the IC3 implementation in IIMC,
whose performance is similar to the IC3Ref baseline, see Table 4.

Table 4. Summary of overall results among different configurations.

Configuration #Solved #Safe #Unsafe Gained(safe/unsafe) Lost(safe/unsafe)

ic3 -br -rs 439 313 126 25(18/7) 6(4/2)

ic3 -br 428 302 126 22(15/7) 14(12/2)

ic3 -rs 430 308 122 21(17/4) 11(8/3)

ic3 -sh 420 299 121 – –

ic3 417 297 120 9(7/2) 12(9/3)

fcar -br -rs 444 319 125 54(43/11) 1(0/1)

fcar -br 429 308 121 43(33/10) 5(1/4)

fcar -rs 410 295 115 23(22/1) 4(3/1)

fcar -sh 394 277 117 31(22/9) 28(21/7)

fcar 391 276 115 – –

nuXmv -br -rs 497 353 144 49(39/10) 15(15/0)

nuXmv -br 502 360 142 52(44/8) 13(13/0)

nuXmv -rs 473 333 140 26(19/7) 16(15/1)

nuXmv -sh 464 327 137 7(4/3) 6(6/0)

nuXmv 463 329 134 – –

abc-pdr 430 315 115 – –

iimc-ic3 418 307 111 – –

iimc-quip 377 281 96 – –

Similar insights can be obtained from Fig. 1, which clearly shows the positive
effect of improvements in performance.

Detailed Statistics. As shown in Table 4 and Fig. 1, nuXmv is highly optimized
and has a much better performance than other open-source IC3 implementa-
tions, but enabling both heuristics is still useful to improve its overall perfor-
mance by solving 34 more instances. For IC3Ref and SimpleCAR, the increased
numbers of solved cases are 19 and 53, respectively. Moreover, from Table 4,
nuXmv/IC3Ref/SimpleCAR is able to solve 24/14/43 more safe and 10/5/10 more
unsafe instances with both heuristics.

Searching for i-Good Lemmas to Accelerate Safety Model Checking 303

A comparison of the performance of the tools with and without the heuristics
is shown in Fig. 2. All three solvers are able to reduce their time cost when equip-
ping with branching and refer-skipping (see the last row of the figure). Explicitly,
67.8% of the instances cost less or equal to check by ‘nuXmv -br -rs’, and the
corresponding portions for ‘ic3 -br -rs’ and ‘fcar -br -rs’ are 77.9% and 87.0%.
The variability occurs when considering only a single heuristic, which needs to
be explored in the future. For example, ‘fcar -br’ and ‘nuXmv -rs’ generally cost
slightly more time than ‘fcar’ and ‘nuXmv’, respectively.

Fig. 1. Comparisons among the implementations of IC3, PDR and CAR under different
configurations. (To make the figure more readable, we skip the results with a single
heuristic, which are still shown in Table 4.)

According to Table 4, either branching or refer-skipping is effective for improv-
ing nuXmv, IC3Ref, and SimpleCAR. For nuXmv and SimpleCAR, branching is
more useful, considering that ‘nuXmv -br’ (resp. ‘fcar -br’) solves 39 (resp. 38)
more instances than ‘nuXmv’ (resp. ‘fcar’), with 31 (resp. 32) safe and 8 (resp.
6) unsafe. For IC3Ref, the improvement with either heuristic seems relatively
modest, i.e., ‘ic3 -br’ solves 8 more instances than ‘ic3’, with 3 safe and 5 unsafe,
while ‘ic3 -rs’ solves 10 more instances than ‘ic3’, with 9 safe and 1 unsafe.

As listed above, ‘ic3 -br -rs’ loses only 6 instances that are solved by ‘ic3’,
while ‘fcar -br -rs’ even loses only 1 instance that is solved by ‘fcar’, which
indicates the performance domination of ‘fcar -br -rs’ over ‘fcar’. For ‘nuXmv -br
-rs’, the number of lost cases is 15, which is still modest when compared to the
gain of 49. So enabling branching and refer-skipping together makes the checkers
pay a limited cost. The same applies to the situations when equipping with only
one single heuristic for the checkers, see Table 4.

5.3 Why Do branching and refer-skipping Work?

To measure why branching and refer-skipping work, we introduce sr, i.e. the
success rate in computing i-good lemmas. Formally, sr = Ng/N where Ng is

304 Y. Xia et al.

Fig. 2. Time comparison between IC3/CAR with and without two heuristics on safe-
unsafe cases. The baseline is always on the y-axis. Points above the diagonal indicate
better performance with the heuristics active. Points on the borders indicate timeouts
(18000 s).

Fig. 3. Comparison on the success rate (sr) to compute i-good lemmas between
IC3/CAR with and without branching and refer-skipping.

Searching for i-Good Lemmas to Accelerate Safety Model Checking 305

the number of generalizations that successfully return i-good lemmas, while N
is the total number of generalization calls. We instrumented the two open-source
checkers IC3Ref and SimpleCAR in order to compute sr for each terminating run
(including each run with/without a returned result at timeout).

– Consider the results presented in Fig. 3. The figure shows the comparison
of the success rate in computing i-good lemmas between IC3/CAR with and
without the heuristics. ‘ic3 -br -rs’ computes more i-good lemmas than ‘ic3’
on 54% tested instances, while ‘fcar -br -rs’ computes more i-good lemmas
than ‘fcar’ on 67% tested instances, the portion of which is even higher.
This supports the conjecture that enabling branching and refer-skipping makes
IC3/CAR compute more i-good lemmas.

– Now consider Fig. 4. The figure shows the comparison between the deviation
of success rate to compute i-good lemmas (Y axis) and the deviation of check-
ing (CPU) time (X axis) for IC3/CAR with and without the heuristics. The
meaning of each point in the plot is explained in the title of the figure. In
general, the more points located in the first quadrant, the better our claim
can be supported.
Clearly, the plot for both IC3 and CAR in Fig. 4 supports the conjecture
that searching more i-good lemmas can help achieve better model-checking
performance (time cost).

Fig. 4. Comparison between the deviation of the success rate (sr) to compute i-good
lemmas (Y axis) and the deviation of checking (CPU) time (X axis) for IC3/CAR with
and without the heuristics. For each instance, let the checking time of ‘ic3’/‘fcar’ be
t and that of ‘ic3 -br -rs’/‘fcar -br -rs’ be t′. Each point has t − t′ as the x value and
sr′ − sr as the y value.

Finally, we argue that computing as many i-good lemmas as possible is the
direction to take to improve the performance of IC3 and its variants. branching
and refer-skipping are two heuristics that can enable IC3/CAR to compute more
i-good lemmas. However, there can be more efficient ways to compute i-good
lemmas, which is left for our future work.

306 Y. Xia et al.

6 Conclusions and Future Work

In this paper, we proposed a heuristic-based approach to improve the perfor-
mance of IC3-based safety model checking. The idea is to steer the search of the
over-approximation sequence towards i-good lemmas, i.e. lemmas that can be
pushed from frame i to frame i + 1. On the one side, we attempt to control the
way the SAT solver extracts the unsat cores, by privileging variables occurring
in i-good lemmas (branching); on the other, we control lemma generalization
by avoiding dropping literals that occur in a subsuming lemma in the previ-
ous layer (refer-skipping). The approach is very simple to implement and has
been integrated into two open-source model checkers and an industrial-strength,
closed-source model checker. The experimental evaluation, carried out on a wide
set of benchmarks, shows that the approach yields computational benefits on all
the implementations. Further analysis shows a correlation between i-good lem-
mas and performance improvements and suggests that the proposed heuristics
are effective in finding more i-good lemmas.

In the future, we plan to investigate the reasons for performance improve-
ment/degradation at the level of the single benchmarks. We will also attempt
to integrate the proposed ideas with the ideas in QUIP, explore different kinds
of heuristics, and lift this approach to the safety checking of infinite-state sys-
tems [13,14].

Acknowledgment. We thank anonymous reviewers for their helpful comments.
This work is supported by National Natural Science Foundation of China (Grant
#U21B2015 and #62002118) and Shanghai Collaborative Innovation Center of Trusted
Industry Internet Software. This work has been partly supported by the project
“AI@TN” funded by the Autonomous Province of Trento and by the PNRR project
FAIR - Future AI Research (PE00000013), under the NRRP MUR program funded by
the NextGenerationEU.

References

1. ABC. https://github.com/berkeley-abc/abc
2. AIGER Tools. http://fmv.jku.at/aiger/aiger-1.9.9.tar.gz
3. IC3Ref. https://github.com/arbrad/IC3ref
4. IIMC-QUIP. https://github.com/ryanberryhill/iimc
5. Minisat 2.2.0. https://github.com/niklasso/minisat
6. SimpleCAR. https://github.com/lijwen2748/simplecar/releases/tag/v0.1
7. Balyo, T., Heule, M., Iser, M., Järvisalo, M., Suda, M.: Proceedings of sat compe-

tition 2022: Solver and benchmark descriptions. Department of Computer Science
Series of Publications B, vol. B-2022-1. http://hdl.handle.net/10138/347211

8. Biere, A.: AIGER Format. http://fmv.jku.at/aiger/FORMAT
9. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without

BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

10. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Heule, M.,
Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 405–422. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24318-4 29

https://github.com/berkeley-abc/abc
http://fmv.jku.at/aiger/aiger-1.9.9.tar.gz
https://github.com/arbrad/IC3ref
https://github.com/ryanberryhill/iimc
https://github.com/niklasso/minisat
https://github.com/lijwen2748/simplecar/releases/tag/v0.1
http://hdl.handle.net/10138/347211
http://fmv.jku.at/aiger/FORMAT
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-319-24318-4_29

Searching for i-Good Lemmas to Accelerate Safety Model Checking 307

11. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

12. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

13. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 46–61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 4

14. Cimatti, A., Griggio, A., Tonetta, S.: The VMT-LIB language and tools. CoRR
abs/ arXiv: 2109.12821 (2021)

15. Dureja, R., Gurfinkel, A., Ivrii, A., Vizel, Y.: Ic3 with internal signals. In: 2021
Formal Methods in Computer Aided Design (FMCAD), pp. 63–71 (2021)

16. Dureja, R., Li, J., Pu, G., Vardi, M.Y., Rozier, K.Y.: Intersection and rotation
of assumption literals boosts bug-finding. In: Chakraborty, S., Navas, J.A. (eds.)
VSTTE 2019. LNCS, vol. 12031, pp. 180–192. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-41600-3 12

17. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property
directed reachability. In: Proceedings of the International Conference on Formal
Methods in Computer-Aided Design, FMCAD 2011, pp. 125–134. FMCAD Inc.,
Austin, Texas (2011)

18. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

19. Griggio, A., Roveri, M.: Comparing different variants of the ic3 algorithm for
hardware model checking. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
35(6), 1026–1039 (2015)

20. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in ic3. In: 2013 Formal
Methods in Computer-Aided Design, pp. 157–164. IEEE (2013)

21. Ivrii, A., Gurfinkel, A.: Pushing to the top. In: Proceedings of the 15th Conference
on Formal Methods in Computer-Aided Design, FMCAD 2015, pp. 65–72. FMCAD
Inc., Austin, Texas (2015)

22. Li, J., Dureja, R., Pu, G., Rozier, K.Y., Vardi, M.Y.: SimpleCAR: an efficient bug-
finding tool based on approximate reachability. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 37–44. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96142-2 5

23. Li, J., Zhu, S., Zhang, Y., Pu, G., Vardi, M.Y.: Safety model checking with com-
plementary approximations. In: Proceedings of the 36th International Conference
on Computer-Aided Design, ICCAD 2017, pp. 95–100. IEEE Press (2017)

24. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning sat solvers.
In: Handbook of satisfiability, vol. 185 (2009)

25. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45069-6 1

26. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient sat solver. In: Proceedings of the 38th annual Design Automation
Conference, pp. 530–535 (2001)

27. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , BtorMC and Boolector 3.0.
In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 587–
595. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 32

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-642-54862-8_4
http://arxiv.org/abs/2109.12821
https://doi.org/10.1007/978-3-030-41600-3_12
https://doi.org/10.1007/978-3-030-41600-3_12
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-319-96142-2_5
https://doi.org/10.1007/978-3-319-96142-2_5
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-319-96145-3_32

308 Y. Xia et al.

28. Seufert, T., Scholl, C.: Combining pdr and reverse pdr for hardware model check-
ing. In: 2018 Design, Automation and Test in Europe Conference and Exhibition
(DATE), pp. 49–54 (2018)

29. Seufert, T., Scholl, C.: fbpdr: In-depth combination of forward and backward
analysis in property directed reachability. In: Teich, J., Fummi, F. (eds.) Design,
Automation & Test in Europe Conference & Exhibition, DATE 2019, Florence,
Italy, 25–29 March 2019, pp. 456–461. IEEE (2019)

30. Seufert, T., Scholl, C., Chandrasekharan, A., Reimer, S., Welp, T.: Making progress
in property directed reachability. In: Finkbeiner, B., Wies, T. (eds.) VMCAI 2022.
LNCS, vol. 13182, pp. 355–377. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-94583-1 18

31. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 127–144. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40922-X 8

32. Vediramana Krishnan, H.G., Vizel, Y., Ganesh, V., Gurfinkel, A.: Interpolating
strong induction. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp.
367–385. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5 21

33. Vizel, Y., Gurfinkel, A.: Interpolating property directed reachability. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 260–276. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9 17

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-94583-1_18
https://doi.org/10.1007/978-3-030-94583-1_18
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/978-3-030-25543-5_21
https://doi.org/10.1007/978-3-319-08867-9_17
http://creativecommons.org/licenses/by/4.0/

Second-Order Hyperproperties

Raven Beutner , Bernd Finkbeiner , Hadar Frenkel(B) ,
and Niklas Metzger

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

{raven.beutner,finkbeiner,hadar.frenkel,
niklas.metzger}@cispa.de

Abstract. We introduce Hyper2LTL, a temporal logic for the speci-
fication of hyperproperties that allows for second-order quantification
over sets of traces. Unlike first-order temporal logics for hyperproperties,
such as HyperLTL, Hyper2LTL can express complex epistemic prop-
erties like common knowledge, Mazurkiewicz trace theory, and asyn-
chronous hyperproperties. The model checking problem of Hyper2LTL
is, in general, undecidable. For the expressive fragment where second-
order quantification is restricted to smallest and largest sets, we present
an approximate model-checking algorithm that computes increasingly
precise under- and overapproximations of the quantified sets, based on
fixpoint iteration and automata learning. We report on encouraging
experimental results with our model-checking algorithm, which we imple-
mented in the tool HySO.

1 Introduction

About a decade ago, Clarkson and Schneider coined the term hyperproperties [21]
for the rich class of system requirements that relate multiple computations. In
their definition, hyperproperties generalize trace properties, which are sets of
traces, to sets of sets of traces. This covers a wide range of requirements, from
information-flow security policies to epistemic properties describing the knowl-
edge of agents in a distributed system. Missing from Clarkson and Schneider’s
original theory was, however, a concrete specification language that could express
customized hyperproperties for specific applications and serve as the common
semantic foundation for different verification methods.

A first milestone towards such a language was the introduction of the tem-
poral logic HyperLTL [20]. HyperLTL extends linear-time temporal logic (LTL)
with quantification over traces. Suppose, for example, that an agent i in a dis-
tributed system observes only a subset of the system variables. The agent knows
that some LTL formula ϕ is true on some trace π iff ϕ holds on all traces π′

that agent i cannot distinguish from π. If we denote the indistinguishability of
π and π′ by π ∼i π′, then the property that there exists a trace π where agent i
knows ϕ can be expressed as the HyperLTL formula

∃π.∀π′. π ∼i π′ → ϕ(π′),

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 309–332, 2023.
https://doi.org/10.1007/978-3-031-37703-7_15

https://doi.org/10.5281/zenodo.7877144
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_15&domain=pdf
http://orcid.org/0000-0001-6234-5651
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0002-3566-0338
http://orcid.org/0000-0003-3184-6335
https://doi.org/10.1007/978-3-031-37703-7_15

310 R. Beutner et al.

where we write ϕ(π′) to denote that the trace property ϕ holds on trace π′.
While HyperLTL and its variations have found many applications [28,32,44],

the expressiveness of these logics is limited, leaving many widely used hyperprop-
erties out of reach. A prominent example is common knowledge, which is used in
distributed applications to ensure simultaneous action [30,40]. Common knowl-
edge in a group of agents means that the agents not only know individually that
some condition ϕ is true, but that this knowledge is “common” to the group in
the sense that each agent knows that every agent knows that ϕ is true; on top
of that, each agent in the group knows that every agent knows that every agent
knows that ϕ is true; and so on, forming an infinite chain of knowledge.

The fundamental limitation of HyperLTL that makes it impossible to express
properties like common knowledge is that the logic is restricted to first-order
quantification. HyperLTL, then, cannot reason about sets of traces directly, but
must always do so by referring to individual traces that are chosen existentially
or universally from the full set of traces. For the specification of an agent’s indi-
vidual knowledge, where we are only interested in the (non-)existence of a single
trace that is indistinguishable and that violates ϕ, this is sufficient; however,
expressing an infinite chain, as needed for common knowledge, is impossible.

In this paper, we introduce Hyper2LTL, a temporal logic for hyperproperties
with second-order quantification over traces. In Hyper2LTL, the existence of a
trace π where the condition ϕ is common knowledge can be expressed as the
following formula (using slightly simplified syntax):

∃π.∃X. π ∈ X ∧
(
∀π′ ∈ X.∀π′′.

(n∨
i=1

π′ ∼i π′′) → π′′ ∈ X
)

∧ ∀π′ ∈ X.ϕ(π′).

The second-order quantifier ∃X postulates the existence of a set X of traces
that (1) contains π; that (2) is closed under the observations of each agent, i.e.,
for every trace π′ already in X, all other traces π′′ that some agent i cannot
distinguish from π′ are also in X; and that (3) only contains traces that satisfy
ϕ. The existence of X is a necessary and sufficient condition for ϕ being common
knowledge on π. In the paper, we show that Hyper2LTL is an elegant specifi-
cation language for many hyperproperties of interest that cannot be expressed
in HyperLTL, including, in addition to epistemic properties like common knowl-
edge, also Mazurkiewicz trace theory and asynchronous hyperproperties.

The model checking problem for Hyper2LTL is much more difficult than for
HyperLTL. A HyperLTL formula can be checked by translating the LTL subfor-
mula into an automaton and then applying a series of automata transformations,
such as self-composition to generate multiple traces, projection for existential
quantification, and complementation for negation [8,32]. For Hyper2LTL, the
model checking problem is, in general, undecidable. We introduce a method that
nevertheless obtains sound results by over- and underapproximating the quan-
tified sets of traces. For this purpose, we study Hyper2LTLfp, a fragment of
Hyper2LTL, in which we restrict second-order quantification to the smallest or
largest set satisfying some property. For example, to check common knowledge,
it suffices to consider the smallest set X that is closed under the observations

Second-Order Hyperproperties 311

of all agents. This smallest set X is defined by the (monotone) fixpoint opera-
tion that adds, in each step, all traces that are indistinguishable to some trace
already in X.

We develop an approximate model checking algorithm for Hyper2LTLfp that
uses bidirectional inference to deduce lower and upper bounds on second-order
variables, interposed with first-order model checking in the style of HyperLTL.
Our procedure is parametric in an oracle that provides (increasingly precise)
lower and upper bounds. In the paper, we realize the oracles with fixpoint itera-
tion for underapproximations of the sets of traces assigned to the second-order
variables, and automata learning for overapproximations. We report on encour-
aging experimental results with our model-checking algorithm, which has been
implemented in a tool called HySO.

2 Preliminaries

For n ∈ N we define [n] := {1, . . . , n}. We assume that AP is a finite set of
atomic propositions and define Σ := 2AP. For t ∈ Σω and i ∈ N define t(i) ∈ Σ
as the ith element in t (starting with the 0th); and t[i,∞] for the infinite suffix
starting at position i. For traces t1, . . . , tn ∈ Σω we write zip(t1, . . . , tn) ∈ (Σn)ω

for the pointwise zipping of the traces, i.e., zip(t1, . . . , tn)(i) := (t1(i), . . . , tn(i)).

Transition Systems. A transition system is a tuple T = (S, S0, κ, L) where S is
a set of states, S0 ⊆ S is a set of initial states, κ ⊆ S ×S is a transition relation,
and L : S → Σ is a labeling function. A path in T is an infinite state sequence
s0s1s2 · · · ∈ Sω, s.t., s0 ∈ S0, and (si, si+1) ∈ κ for all i. The associated trace is
given by L(s0)L(s1)L(s2) · · · ∈ Σω and Traces(T) ⊆ Σω denotes all traces of T .

Automata. A non-deterministic Büchi automaton (NBA) [18] is a tuple A =
(Σ,Q, q0, δ, F) where Σ is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is
the set of initial states, F ⊆ Q is a set of accepting states, and δ : Q × Σ → 2Q

is the transition function. A run on a word u ∈ Σω is an infinite sequence of
states q0q1q2 · · · ∈ Qω such that q0 ∈ Q0 and for every i ∈ N, qi+1 ∈ δ(qi, u(i)).
The run is accepting if it visits states in F infinitely many times, and we define
the language of A, denoted L(A) ⊆ Σω, as all infinite words on which A has an
accepting run.

HyperLTL. HyperLTL [20] is one of the most studied temporal logics for the
specification of hyperproperties. We assume that V is a fixed set of trace vari-
ables. For the most part, we use variations of π (e.g., π, π′, π1, . . .) to denote
trace variables. HyperLTL formulas are then generated by the grammar

ϕ := Qπ. ϕ | ψ

ψ := aπ | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

where a ∈ AP is an atomic proposition, π ∈ V is a trace variable, Q ∈ {∀,∃} is
a quantifier, and and U are the temporal operators next and until.

312 R. Beutner et al.

The semantics of HyperLTL is given with respect to a trace assignment Π,
which is a partial mapping Π : V ⇀ Σω that maps trace variables to traces.
Given π ∈ V and t ∈ Σω we define Π[π
→ t] as the updated assignment that
maps π to t. For i ∈ N we define Π[i,∞] as the trace assignment defined by
Π[i,∞](π) := Π(π)[i,∞], i.e., we (synchronously) progress all traces by i steps.
For quantifier-free formulas ψ we follow the LTL semantics and define

Π � aπ iff a ∈ Π(π)(0)
Π � ¬ψ iff Π �� ψ

Π � ψ1 ∧ ψ2 iff Π � ψ1 and Π � ψ2

Π � ψ iff Π[1,∞] � ψ

Π � ψ1 U ψ2 iff ∃i ∈ N.Π[i,∞] � ψ2 and ∀j < i.Π[j,∞] � ψ1 .

The indexed atomic propositions refer to a specific path in Π, i.e., aπ holds iff
a holds on the trace bound to π. Quantifiers range over system traces:

Π �T ψ iff Π � ψ and Π �T Qπ. ϕ iff Qt ∈ Traces(T).Π[π
→ t] � ϕ .

We write T � ϕ if ∅ �T ϕ where ∅ denotes the empty trace assignment.

HyperQPTL. HyperQPTL [45] adds – on top of the trace quantification of
HyperLTL – also propositional quantification (analogous to the propositional
quantification that QPTL [46] adds on top of LTL). For example, HyperQPTL
can express a promptness property which states that there must exist a bound
(which is common among all traces), up to which an event must have happened.
We can express this as ∃q.∀π. q ∧ (¬q)U aπ which states that there exists an
evaluation of proposition q such that (1) q holds at least once, and (2) for all
traces π, a holds on π before the first occurrence of q. See [8] for details.

3 Second-Order HyperLTL

The (first-order) trace quantification in HyperLTL ranges over the set of all sys-
tem traces; we thus cannot reason about arbitrary sets of traces as required for,
e.g., common knowledge. We introduce a second-order extension of HyperLTL
by introducing second-order variables (ranging over sets of traces) and allowing
quantification over traces from any such set. We present two variants of our logic
that differ in the way quantification is resolved. In Hyper2LTL, we quantify over
arbitrary sets of traces. While this yields a powerful and intuitive logic, second-
order quantification is inherently non-constructive. During model checking, there
thus does not exist an efficient way to even approximate possible witnesses for the
sets of traces. To solve this quandary, we restrict Hyper2LTL to Hyper2LTLfp,
where we instead quantify over sets of traces that satisfy some minimality or
maximality constraint. This allows for large fragments of Hyper2LTLfp that
admit algorithmic approximations to its model checking (by, e.g., using known
techniques from fixpoint computations [47,48]).

Second-Order Hyperproperties 313

3.1 Hyper2LTL

Alongside the set V of trace variables, we use a set V of second-order variables
(which we, for the most part, denote with capital letters X,Y, ...). We assume
that there is a special variable S ∈ V that refers to the set of traces of the given
system at hand, and a variable A ∈ V that refers to the set of all traces. We
define the Hyper2LTL syntax by the following grammar:

ϕ := Qπ ∈ X.ϕ | QX.ϕ | ψ

ψ := aπ | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

where a ∈ AP is an atomic proposition, π ∈ V is a trace variable, X ∈ V is a
second-order variable, and Q ∈ {∀,∃} is a quantifier. We also consider the usual
derived Boolean constants (true, false) and connectives (∨, →, ↔) as well as the
temporal operators eventually (ψ := true U ψ) and globally (ψ := ¬ ¬ψ).
Given a set of atomic propositions P ⊆ AP and two trace variables π, π′, we
abbreviate π =P π′ :=

∧
a∈P (aπ ↔ aπ′).

Semantics. Apart from a trace assignment Π (as in the semantics of Hyper-
LTL), we maintain a second-order assignment Δ : V ⇀ 2Σω

mapping second-
order variables to sets of traces. Given X ∈ V and A ⊆ Σω we define the updated
assignment Δ[X
→ A] as expected. Quantifier-free formulas ψ are then evalu-
ated in a fixed trace assignment as for HyperLTL (cf. Sect. 2). For the quantifier
prefix we define:

Π,Δ � ψ iff Π � ψ

Π,Δ � Qπ ∈ X.ϕ iff Qt ∈ Δ(X).Π[π
→ t],Δ � ϕ

Π,Δ � QX.ϕ iff QA ⊆ Σω.Π,Δ[X
→ A] � ϕ

Second-order quantification updates Δ with a set of traces, and first-order quan-
tification updates Π by quantifying over traces within the set defined by Δ.

Initially, we evaluate a formula in the empty trace assignment and fix the
valuation of the special second-order variable S to be the set of all system traces
and A to be the set of all traces. That is, given a system T and Hyper2LTL
formula ϕ, we say that T satisfies ϕ, written T � ϕ, if ∅, [S
→ Traces(T),A
→
Σω] � ϕ, where we write ∅ for the empty trace assignment. The model-checking
problem for Hyper2LTL is checking whether T � ϕ holds.

Hyper2LTL naturally generalizes HyperLTL by adding second-order quantifi-
cation. As sets range over arbitrary traces, Hyper2LTL also subsumes the more
powerful logic HyperQPTL. The proof of Lemma 1 is given in the full version of
this paper [11].

Lemma 1. Hyper2LTL subsumes HyperQPTL (and thus also HyperLTL).

314 R. Beutner et al.

Syntactic Sugar. In Hyper2LTL, we can quantify over traces within a second-
order variable, but we cannot state, within the body of the formula, that some
path is a member of some second-order variable. For that, we define π � X (as
an atom within the body) as syntactic sugar for ∃π′ ∈ X. (π′ =AP π), i.e., π
is in X if there exists some trace in X that agrees with π on all propositions.
Note that we can only use π �X outside of the scope of any temporal operators;
this ensures that we can bring the resulting formula into a form that conforms
to the Hyper2LTL syntax.

3.2 Hyper2LTLf p

The semantics of Hyper2LTL quantifies over arbitrary sets of traces, making
even approximations to its semantics challenging. We propose Hyper2LTLfp as
a restriction that only quantifies over sets that are subject to an additional
minimality or maximality constraint. For large classes of formulas, we show that
this admits effective model-checking approximations. We define Hyper2LTLfp by
the following grammar:

ϕ := Q π ∈ X.ϕ | Q (X,��, ϕ). ϕ | ψ

ψ := aπ | ¬ψ | ψ ∧ ψ | ψ | ψ U ψ

where a ∈ AP, π ∈ V, X ∈ V, Q ∈ {∀,∃}, and �� ∈ {�,�} determines if we con-
sider smallest (�) or largest (�) sets. For example, the formula ∃ (X,�, ϕ1). ϕ2

holds if there exists some set of traces X, that satisfies both ϕ1 and ϕ2, and
is a smallest set that satisfies ϕ1. Such minimality and maximality constraints
with respect to a (hyper)property arise naturally in many properties. Exam-
ples include common knowledge (cf. Sect. 3.3), asynchronous hyperproperties
(cf. Sect. 4.2), and causality in reactive systems [22,23].

Semantics. For path formulas, the semantics of Hyper2LTLfp is defined analo-
gously to that of Hyper2LTL and HyperLTL. For the quantifier prefix we define:

Π,Δ � ψ iff Π � ψ

Π,Δ � Qπ ∈ X.ϕ iff Qt ∈ Δ(X).Π[π
→ t],Δ � ϕ

Π,Δ � Q(X,��, ϕ1). ϕ2 iff QA ∈ sol(Π,Δ, (X,��, ϕ1)).Π,Δ[X
→ A] � ϕ2

where sol(Π,Δ, (X,��, ϕ1)) denotes all solutions to the minimality/maximality
condition given by ϕ1, which we define by mutual recursion as follows:

sol(Π,Δ, (X,�, ϕ)) := {A ⊆ Σω | Π,Δ[X
→ A] � ϕ ∧ ∀A′
� A.Π,Δ[X
→ A′] �� ϕ}

sol(Π,Δ, (X,�, ϕ)) := {A ⊆ Σω | Π,Δ[X
→ A] � ϕ ∧ ∀A′
� A.Π,Δ[X
→ A′] �� ϕ}

A set A satisfies the minimality/maximality constraint if it satisfies ϕ and
is a least (in case �� = �) or greatest (in case �� = �) set that satisfies ϕ.

Second-Order Hyperproperties 315

b

a d

c

π = andω

K2(π) = an−1bdω

K1K2(π) = an−1cdω

K2K1K2(π) = an−2bcdω

. . .

K1K2 . . . K2(π) = acn−1dω

Fig. 1. Left: An example for a multi-agent system with two agents, where agent 1
observes a and d, and agent 2 observes c and d. Right: The iterative construction of
the traces to be considered for common knowledge starting with andω.

Note that sol(Π,Δ, (X,��, ϕ)) can contain multiple sets or no set at all,
i.e., there may not exists a unique least or greatest set that satisfies ϕ. In
Hyper2LTLfp, we therefore add an additional quantification over the set of all
solutions to the minimality/maximality constraint. When discussing our model
checking approximation algorithm, we present a (syntactic) restriction on ϕ
which guarantees that sol(Π,Δ, (X,��, ϕ)) contains a unique element (i.e., is a
singleton set). Moreover, our restriction allows us to employ fixpoint techniques
to find approximations to this unique solution. In case the solution for (X,��, ϕ)
is unique, we often omit the leading quantifier and simply write (X,��, ϕ) instead
of Q(X,��, ϕ).

As we can encode the minimality/maximality constraints of Hyper2LTLfp in
Hyper2LTL (see full version [11]), we have the following:

Proposition 1. Any Hyper2LTLfp formula ϕ can be effectively translated into
an Hyper2LTL formula ϕ′ such that for all transition systems T we have T � ϕ
iff T � ϕ′.

3.3 Common Knowledge in Multi-agent Systems

To explain common knowledge, we use a variation of an example from [43], and
encode it in Hyper2LTLfp. Fig. 1(left) shows a transition system of a distributed
system with two agents, agent 1 and agent 2. Agent 1 observes variables a and
d, whereas agent 2 observes c and d. The property of interest is starting from the
trace π = andω for some fixed n > 1, is it common knowledge for the two agents
that a holds in the second step. It is trivial to see that a holds on π. However, for
common knowledge, we consider the (possibly) infinite chain of observationally
equivalent traces. For example, agent 2 cannot distinguish the traces andω and
an−1bdω. Therefore, agent 2 only knows that a holds on π if it also holds on
π′ = an−1bdω. For common knowledge, agent 1 also has to know that agent 2
knows a, which means that for all traces that are indistinguishable from π
or π′ for agent 1, a has to hold. This adds π′′ = an−1cdω to the set of traces to
verify a against. This chain of reasoning continues as shown in Fig. 1(right). In

316 R. Beutner et al.

the last step we add acn−1dω to the set of indistinguishable traces, concluding
that a is not common knowledge.

The following Hyper2LTLfp formula specifies the property stated above. The
abbreviation obs(π1, π2) := (π1 ={a,d} π2) ∨ (π1 ={c,d} π2) denotes that π1

and π2 are observationally equivalent for either agent 1 or agent 2.

∀π ∈ S.
(n−1∧

i=0

i aπ ∧ n dπ

)
→

(
X,�, π � X ∧

(
∀π1 ∈ X.∀π2 ∈ S. obs(π1, π2) → π2 � X

))
.∀π′ ∈ X. aπ′

For a trace π of the form π = andω, the set X represents the common
knowledge set on π. This set X is the smallest set that (1) contains π (expressed
using our syntactic sugar �); and (2) is closed under observations by either agent,
i.e., if we find some π1 ∈ X and some system trace π2 that are observationally
equivalent, π2 should also be in X. Note that this set is unique (due to the
minimality restriction), so we do not quantify it explicitly. Lastly, we require
that all traces in X satisfy the property a. All sets that satisfy this formula
would also include the trace acn−1dω, and therefore no such X exists; thus, we
can conclude that starting from trace andω, it is not common knowledge that

a holds. On the other hand, it is common knowledge that a holds in the first
step (cf. Sect. 6).

3.4 Hyper2LTL Model Checking

As Hyper2LTL and Hyper2LTLfp allow quantification over arbitrary sets of
traces, we can encode the satisfiability of HyperQPTL (i.e., the question of
whether some set of traces satisfies a formula) within their model-checking prob-
lem; rendering the model-checking problem highly undecidable [34], even for very
simple formulas [4].

Proposition 2. For any HyperQPTL formula ϕ there exists a Hyper2LTL for-
mula ϕ′ such that ϕ is satisfiable iff ϕ′ holds on some arbitrary transition system.
The model-checking problem of Hyper2LTL is thus highly undecidable (Σ1

1 -hard).

Proof. Let ϕ′ be the Hyper2LTL formula obtained from ϕ by replacing each
HyperQPTL trace quantifier Qπ with the Hyper2LTL quantifier Qπ ∈ X, and
each propositional quantifier Qq with Qπq ∈ A for some fresh trace variable πq.
In the body, we replace each propositional variable q with aπq

for some fixed
proposition a ∈ AP. Then, ϕ is satisfiable iff the Hyper2LTL formula ∃X.ϕ′

holds in some arbitrary system. ��

Hyper2LTLfp cannot express HyperQPTL satisfiability directly. If there
exists a model of a HyperQPTL formula, there may not exist a least one. How-
ever, model checking of Hyper2LTLfp is also highly undecidable.

Proposition 3. The model-checking problem of Hyper2LTLfp is Σ1
1 -hard.

Second-Order Hyperproperties 317

Proof (Sketch). We can encode the existence of a recurrent computation of a
Turing machine, which is known to be Σ1

1 -hard [1]. ��

Conversely, the existential fragment of Hyper2LTL can be encoded back into
HyperQPTL satisfiability:

Proposition 4. Let ϕ be a Hyper2LTL formula that uses only existential
second-order quantification and T be any system. We can effectively construct a
formula ϕ′ in HyperQPTL such that T � ϕ iff ϕ′ is satisfiable.

Lastly, we present some easy fragments of Hyper2LTL for which the model-
checking problem is decidable. Here we write ∃∗X (resp. ∀∗X) for some sequence
of existentially (resp. universally) quantified second-order variables and ∃∗π
(resp. ∀∗π) for some sequence of existentially (resp. universally) quantified
first-order variables. For example, ∃∗X∀∗π captures all formulas of the form
∃X1, . . . Xn.∀π1, . . . , πm.ψ where ψ is quantifier-free.

Proposition 5. The model-checking problem of Hyper2LTL is decidable for the
fragments: ∃∗X∀∗π, ∀∗X∀∗π, ∃∗X∃∗π, ∀∗X∃∗π, ∃X.∃∗π ∈ X∀∗π′ ∈ X.

We refer the reader to the full version [11] for detailed proofs.

4 Expressiveness of Hyper2LTL

In this section, we point to existing logics that can naturally be encoded within
our second-order hyperlogics Hyper2LTL and Hyper2LTLfp.

4.1 Hyper2LTL and LTLK,C

LTLK extends LTL with the knowledge operator K. For some subset of agents
A, the formula KAψ holds in timestep i, if ψ holds on all traces equivalent to
some agent in A up to timestep i. See full version [11] for detailed semantics.
LTLK and HyperCTL∗ have incomparable expressiveness [16] but the knowledge
operator K can be encoded by either adding a linear past operator [16] or by
adding propositional quantification (as in HyperQPTL) [45].

Using Hyper2LTLfp we can encode LTLK,C, featuring the knowledge operator
K and the common knowledge operator C (which requires that ψ holds on the
closure set of equivalent traces, up to the current timepoint) [41]. Note that
LTLK,C is not encodable by only adding propositional quantification or the linear
past operator.

Proposition 6. For every LTLK,C formula ϕ there exists an Hyper2LTLfp for-
mula ϕ′ such that for any system T we have T �LTLK,C

ϕ iff T � ϕ′.

318 R. Beutner et al.

Proof (Sketch). We follow the intuition discussed in Sect. 3.3. For each occur-
rence of a knowledge operator in {K,C}, we use a fresh trace variable to keep
track on the points in time with respect to which we need to compare traces.
We then use this trace variable to introduce a second-order set that collects all
equivalent traces (by the observations of one agent, or the closure of all agents’
observations). We then inductively construct a Hyper2LTLfp formula that cap-
tures all the knowledge and common-knowledge sets, over which we check the
properties at hand. See full version for more details [11]. ��

4.2 Hyper2LTL and Asynchronous Hyperproperties

Most existing hyperlogics (including Hyper2LTL) traverse the traces of a sys-
tem synchronously. However, in many cases such a synchronous traversal is too
restricting and we need to compare traces asynchronously. As an example, con-
sider observational determinism (OD), which we can express in HyperLTL as
ϕOD := ∀π1.∀π2. (oπ1 ↔ oπ2). The formula states that the output of a system
is identical across all traces and so (trivially) no information about high-security
inputs is leaked. In most systems encountered in practice, this synchronous for-
mula is violated, as the exact timing between updates to o might differ by a
few steps (we provide some examples in the full version [11]). However, assum-
ing that an attacker only has access to the memory footprint and not a timing
channel, we would only like to check that all traces are stutter equivalent (with
respect to o).

A range of extensions to existing hyperlogics has been proposed to reason
about such asynchronous hyperproperties [3,5,9,17,39]. We consider AHLTL [3].
An AHLTL formula has the form Q1π1, . . . , Qnπm.E. ψ where ψ is a qunatifier-
free HyperLTL formula. The initial trace quantifier prefix is handled as in Hyper-
LTL. However, different from HyperLTL, a trace assignment [π1
→ t1, . . . , πn
→
tn] satisfies E. ψ if there exist stuttered traces t′1, . . . , t

′
n of t1, . . . , tn such that

[π1
→ t′1, . . . , πn
→ t′n] � ψ. We write T �AHLTL ϕ if a system T satis-
fies the AHLTL formula ϕ. Using this quantification over stutterings we can,
for example, express an asynchronous version of observational determinism as
∀π1.∀π2.E. (oπ1 ↔ oπ2) stating that every two traces can be aligned such
that they (globally) agree on o. Despite the fact that Hyper2LTLfp is itself
synchronous, we can use second-order quantification to encode asynchronous
hyperproperties, as we state in the following proposition.

Proposition 7. For any AHLTL formula ϕ there exists a Hyper2LTLfp formula
ϕ′ such that for any system T we have T �AHLTL ϕ iff T � ϕ′.

Proof. Assume that ϕ = Q1π1, . . . , Qnπn.E. ψ is the given AHLTL formula. For
each i ∈ [n] we define a formula ϕi as follows

∀π1 ∈ Xi.∀π2 ∈ A.((
π1 =AP π2

)
U

(
(π1 =AP π2) ∧

∧
a∈AP

aπ1 ↔ aπ2

))
→ π2 � Xi

Second-Order Hyperproperties 319

The formula asserts that the set of traces bound to Xi is closed under stuttering,
i.e., if we start from any trace in Xi and stutter it once (at some arbitrary
position) we again end up in Xi. Using the formulas ϕi, we then construct a
Hyper2LTLfp formula that is equivalent to ϕ as follows

ϕ′ := Q1π1 ∈ S, . . . , Qnπn ∈ S.(X1,�, π1 � X1 ∧ ϕ1) · · · (Xn,�, πn � Xn ∧ ϕn)
∃π′

1 ∈ X1, . . . ,∃π′
n ∈ Xn.ψ[π′

1/π1, . . . , π
′
n/πn]

We first mimic the quantification in ϕ and, for each trace πi, construct a least
set Xi that contains πi and is closed under stuttering (thus describing exactly
the set of all stuttering of πi). Finally, we assert that there are traces π′

1, . . . , π
′
n

with π′
i ∈ Xi (so π′

i is a stuttering of πi) such that π′
1, . . . , π

′
n satisfy ψ. It is easy

to see that T �AHLTL ϕ iff T � ϕ′ holds for all systems. ��

Hyper2LTLfp captures all properties expressible in AHLTL. In particular, our
approximate model-checking algorithm for Hyper2LTLfp (cf. Sect. 5) is applica-
ble to AHLTL; even for instances where no approximate solutions were previously
known. In Sect. 6, we show that our prototype model checker for Hyper2LTLfp

can verify asynchronous properties in practice.

5 Model-Checking Hyper2LTLfp

In general, finite-state model checking of Hyper2LTLfp is highly undecidable
(cf. Proposition 2). In this section, we outline a partial algorithm that com-
putes approximations on the concrete values of second-order variables for a frag-
ment of Hyper2LTLfp. At a very high-level, our algorithm (Algorithm 1) iter-
atively computes under- and overapproximations for second-order variables. It
then turns to resolve first-order quantification, using techniques from HyperLTL
model checking [8,32], and resolves existential and universal trace quantification
on the under- and overapproximation of the second-order variables, respectively.
If the verification fails, it goes back to refine second-order approximations.

In this section, we focus on the setting where we are interested in the least
sets (using �), and use techniques to approximate the least fixpoint. A similar
(dual) treatment is possible for Hyper2LTLfp formulas that use the largest set.
Every Hyper2LTLfp which uses only minimal sets has the following form:

ϕ = γ1.(Y1,�, ϕcon
1).γ2(Yk,�, ϕcon

k). γk+1. ψ (1)

We quantify second-order variables Y1, . . . , Yk, where, for each j ∈ [k], Yj is the
least set that satisfies ϕcon

j . Finally, for each j ∈ [k + 1],

γj = Qlj+1πlj+1 ∈ Xlj+1 . . . Qlj+1πlj+1 ∈ Xlj+1

is the block of first-order quantifiers that sits between the quantification of Yj−1

and Yj . Here Xlj+1, . . . , Xlj+1 ∈ {S,A, Y1, . . . , Yj−1} are second-order variables
that are quantified before γj . In particular, π1, . . . , πlj are the first-order variables
quantified before Yj .

320 R. Beutner et al.

5.1 Fixpoints in Hyper2LTLf p

We consider a fragment of Hyper2LTLfp which we call the least fixpoint frag-
ment. Within this fragment, we restrict the formulas ϕcon

1 , . . . , ϕcon
k such that

Y1, . . . , Yk can be approximated as (least) fixpoints. Concretely, we say that ϕ
is in the least fixpoint fragment of Hyper2LTLfp if for all j ∈ [k], ϕcon

j is a
conjunction of formulas of the form

∀π̇1 ∈ X1. . . . ∀π̇n ∈ Xn. ψstep → π̇M � Yj (2)

where each Xi ∈ {S,A, Y1, . . . , Yj}, ψstep is quantifier-free formula over trace
variables π̇1, . . . , π̇n, π1, . . . , πlj , and M ∈ [n]. Intuitively, Eq. (2) states a require-
ment on traces that should be included in Yj . If we find traces ṫ1 ∈ X1, . . . , ṫn ∈
Xn that, together with the traces t1, . . . , tlj quantified before Yj , satisfy ψstep ,
then ṫM should be included in Yj .

Together with the minimality constraint on Yj (stemming from the semantics
of Hyper2LTLfp), this effectively defines a (monotone) least fixpoint computa-
tion, as ψstep defines exactly the traces to be added to the set. This will allow us
to use results from fixpoint theory to compute approximations for the sets Yj .

Our least fixpoint fragment captures most properties of interest, in particular,
common knowledge (Sect. 3.3) and asynchronous hyperproperties (Sect. 4.2). We
observe that formulas of the above form ensure that the solution Yj is unique,
i.e., for any trace assignment Π to π1, . . . , πlj and second-order assignment Δ
to S,A, Y1, . . . , Yj−1, there is only one element in sol(Π,Δ, (Yj ,�, ϕcon

j)).

5.2 Functions as Automata

In our (approximate) model-checking algorithm, we represent a concrete assign-
ment to the second-order variables Y1, . . . , Yk using automata BY1 , . . . ,BYk

. The
concrete assignment of Yj can depend on traces assigned to π1, . . . , πlj , i.e.,
the first-order variables quantified before Yj . To capture these dependencies,
we view each Yj not as a set of traces but as a function mapping traces of all
preceding first-order variables to a set of traces. We represent such a function
f : (Σω)lj → 2(Σ

ω) mapping the lj traces to a set of traces as an automaton
A over Σlj+1. For traces t1, . . . , tlj , the set f(t1, . . . , tlj) is represented in the
automaton by the set {t ∈ Σω | zip(t1, . . . , tlj , t) ∈ L(A)}. For example, the
function f(t1) := {t1} can be defined by the automaton that accepts the zipping
of a pair of traces exactly if both traces agree on all propositions. This repre-
sentation of functions as automata allows us to maintain an assignment to Yj

that is parametric in π1, . . . , πlj and still allows first-order model checking on
Y1, . . . , Yk.

5.3 Model Checking for First-Order Quantification

First, we focus on first-order quantification, and assume that we are given a con-
crete assignment for each second-order variable as fixed automata BY1 , . . . ,BYk

Second-Order Hyperproperties 321

(where BYj
is an automaton over Σlj+1). Our construction for resolving first-

order quantification is based on HyperLTL model checking [32], but needs to
work on sets of traces that, themselves, are based on traces quantified before
(cf. Sect. 5.2). Recall that the first-order quantifier prefix is γ1 · · · γk+1 = Q1π1 ∈
X1 · · · Qlk+1πlk+1 ∈ Xlk+1 . For each 1 ≤ i ≤ lk+1 we inductively construct an
automaton Ai over Σi−1 that summarizes all trace assignments to π1, . . . , πi−1

that satisfy the subformula starting with the quantification of πi. That is, for all
traces t1, . . . , ti−1 we have

[π1
→ t1, . . . , πi−1
→ ti−1] � Qiπi ∈ Xi · · · Qlk+1πlk+1 ∈ Xlk+1 . ψ

(under the fixed second-order assignment for Y1, . . . , Yk given by BY1 , . . . ,BYk
) if

and only if zip(t1, . . . , ti−1) ∈ L(Ai). In the context of HyperLTL model check-
ing we say Ai is equivalent to Qiπi ∈ Xi · · · Qlk+1πlk+1 ∈ Xlk+1 . ψ [8,32]. In
particular, A1 is an automaton over singleton alphabet Σ0.

We construct A1, . . . ,Alk+1+1 inductively, starting with Alk+1+1. Initially, we
construct Alk+1+1 (over Σlk+1) using a standard LTL-to-NBA construction on
the (quantifier-free) body ψ (see [32] for details). Now assume that we are given
an (inductively constructed) automaton Ai+1 over Σi and want to construct Ai.
We first consider the case where Qi = ∃, i.e., the ith trace quantification is
existential. Now Xi (the set where πi is resolved on) either equals S, A or Yj

for some j ∈ [k]. In either case, we represent the current assignment to Xi as
an automaton C over ΣT+1 for some T < i that defines the model of Xi based
on traces π1, . . . , πT : In case Xi = S, we set C to be the automaton over Σ0+1

that accepts exactly the traces in the given system T ; in case Xi = A, we set
C to be the automaton over Σ0+1 that accepts all traces; If Xi = Yj for some
j ∈ [k] we set C to be BYj

(which is an automaton over Σlj+1).1 Given C, we can
now modify the construction from [32], to resolve first-order quantification: The
desired automaton Ai should accept the zipping of traces t1, . . . , ti−1 if there
exists a trace t such that (1) zip(t1, . . . , ti−1, t) ∈ L(Ai+1), and (2) the trace t is
contained in the set of traces assigned to Xi as given by C, i.e., zip(t1, . . . , tT , t) ∈
L(C). The construction of this automaton is straightforward by taking a product
of Ai+1 and C. We denote this automaton with eProduct(Ai+1,C). In case Qi = ∀
we exploit the duality that ∀π.ψ = ¬∃π.¬ψ, combining the above construction
with automata complementation. We denote this universal product of Ai+1 and
C with uProduct(Ai+1,C).

The final automaton A1 is an automaton over singleton alphabet Σ0 that is
equivalent to γ1 · · · γk+1.ψ, i.e., the entire first-order quantifier prefix. Automaton
A1 thus satisfies L(A1) �= ∅ (which we can decide) iff the empty trace assignment
satisfies the first-order formula γ1 · · · γk+1. ψ, iff ϕ (of Eq. (1)) holds within the
fixed model for Y1, . . . , Yk. For a given fixed second-order assignment (given as
automata BY1 , . . . ,BYk

), we can thus decide if the system satisfies the first-order
part.

1 Note that in this case lj < i: if trace πi is resolved on Yj (i.e., Xi = Yj), then Yj

must be quantified before πi so there are at most i − 1 traces quantified before Yj .

322 R. Beutner et al.

Algorithm 1

1 verify(ϕ, T) =

2 let ϕ =
[
γj (Yj , �, ϕcon

j)
]k

j=1
γk+1. ψ where γi =

[
Qmπm ∈ Xm

]li+1

m=li+1

3 let N = 0
4 let AT = systemToNBA(T)
5 repeat
6 // Start outside-in traversal on second-order variables

7 let � =
[
S �→ (AT , AT),A �→ (A�, A�)

]

8 for j from 1 to k do

9 Bl
j := underApprox((Yj , �, ϕcon

j),�,N)

10 Bu
j := overApprox((Yj , �, ϕcon

j),�,N)

11 �(Yj) := (Bl
j , Bu

j)

12 // Start inside-out traversal on first-order variables
13 let Alk+1+1 = LTLtoNBA(ψ)

14 for i from lk+1 to 1 do

15 let (Cl, Cu) = �(Xi)
16 if Qi = ∃ then

17 Ai := eProduct(Ai+1, Cl)
18 else
19 Ai := uProduct(Ai+1, Cu)
20 if L(A1) �= ∅ then
21 return SAT
22 else
23 N = N + 1

During the first-order model-checking phase, each quantifier alternations in
the formula require complex automata complementation. For the first-order
phase, we could also use cheaper approximate methods by, e.g., instantiating
the existential trace using a strategy [6,7,25].

5.4 Bidirectional Model Checking

So far, we have discussed the verification of the first-order quantifiers assuming
we have a fixed model for all second-order variables Y1, . . . , Yk. In our actual
model-checking algorithm, we instead maintain under- and overapproximations
on each of the Y1, . . . , Yk.

In each iteration, we first traverse the second-order quantifiers in an outside-
in direction and compute lower- and upper-bounds on each Yj . Given the bounds,
we then traverse the first-order prefix in an inside-out direction using the cur-
rent approximations to Y1, . . . , Yk. If the current approximations are not precise
enough to witness the satisfaction (or violation) of a property, we repeat and
try to compute better bounds on Y1, . . . , Yk. Due to the different directions of
traversal, we refer to our model-checking approach as bidirectional. Algorithm 1
provides an overview. Initially, we convert the system T to an NBA AT accept-
ing exactly the traces of the system. In each round, we compute under- and

Second-Order Hyperproperties 323

overapproximations for each Yj in a mapping . We initialize by mapping S to
(AT ,AT) (i.e., the value assigned to the system variable is precisely AT for both
under- and overapproximation), and A to (A�,A�) where A� is an automa-
ton over Σ1 accepting all traces. We then traverse the second-order quantifiers
outside-in (from Y1 to Yk) and for each Yj compute a pair (Bl

j ,Bu
j) of automata

over Σlj+1 that under- and overapproximate the actual (unique) model of Yj .
We compute these approximations using functions underApprox and overApprox,
which can be instantiated with any procedure that computes sound lower and
upper bounds (see Sect. 5.5). During verification, we further maintain a precision
bound N (initially set to 0) that tracks the current precision of the second-order
approximations.

When contains an under- and overapproximation for each second-order vari-
able, we traverse the first-order variables in an inside-out direction (from πlk+1

to π1) and, following the construction outlined in Sect. 5.3, construct automata
Alk+1, . . . ,A1. Different from the simplified setting in Sect. 5.3 (where we assume
a fixed automaton BYj

providing a model for each Yj), the mapping contains
only approximations of the concrete solution. We choose which approximation
to use according to the corresponding set quantification: In case we construct
Ai and Qi = ∃, we use the underapproximation (thus making sure that any wit-
ness trace we pick is indeed contained in the actual model of the second-order
variable); and if Qi = ∀, we use the overapproximation (making sure that we
consider at least those traces that are in the actual solution). If L(A1) is non-
empty, i.e., accepts the empty trace assignment, the formula holds (assuming
the approximations returned by underApprox and overApprox are sound). If not,
we increase the precision bound N and repeat.

In Algorithm 1, we only check for the satisfaction of a formula (to keep the
notation succinct). Using the second-order approximations in we can also check
the negation of a formula (by considering the negated body and dualizing all
trace quantifiers). Our tool (Sect. 6) makes use of this and thus simultaneously
tries to show satisfaction and violation of a formula.

5.5 Computing Under- and Overapproximations

In this section we provide concrete instantiations for underApprox and overApprox.

Computing Underapproximations. As we consider the fixpoint fragment,
each formula ϕcon

j (defining Yj) is a conjunction of formulas of the form in Eq.
(2), thus defining Yj via a least fixpoint computation. For simplicity, we assume
that Yj is defined by the single conjunct, given by Eq. (2) (our construction
generalizes easily to a conjunction of such formulas). Assuming fixed models for
S, A and Y1, . . . , Yj−1, the fixpoint operation defining Yj is monotone, i.e., the
larger the current model for Yj is, the more traces we need to add according to
Eq. (2). Monotonicity allows us to apply the Knaster-Tarski theorem [47] and
compute underapproximations to the fixpoint by iteration.

324 R. Beutner et al.

In our construction of an approximation for Yj , we are given a mapping
that fixes a pair of automata for S, A, and Y1, . . . , Yj−1 (due to the outside-
in traversal in Algorithm 1). As we are computing an underapproximation,
we use the underapproximation for each of the second-order variables in .
So (S) and (A) are automata over Σ1 and for each j′ ∈ [j − 1], (Yj′)
is an automaton over Σlj′+1. Given this fixed mapping , we iteratively con-
struct automata Ĉ0, Ĉ1, . . . over Σlj+1 that capture (increasingly precise) under-
approximations on the solution for Yj . We set Ĉ0 to be the automaton with
the empty language. We then recursively define ĈN+1 based on ĈN as fol-
lows: For each second-order variable Xi for i ∈ [n] used in Eq. (2) we can
assume a concrete assignment in the form of an automaton Di over ΣTi+1

for some Ti ≤ lj : In case Xi �= Yj (so Xi ∈ {S,A, Y1, . . . , Yj−1}), we set
Di := (Xi). In case Xi = Yj , we set Di := ĈN , i.e., we use the current
approximation of Yj in iteration N . After we have set D1, . . . ,Dn, we com-
pute an automaton Ċ over Σlj+1 that accepts zip(t1, . . . , tlj , t) iff there exists
traces ṫ1, . . . , ṫn such that (1) zip(t1, . . . , tTi

, ṫi) ∈ L(Di) for all i ∈ [n], (2)
[π1
→ t1, . . . , πlj
→ tlj , π̇1
→ ṫ1, . . . , π̇n
→ ṫn] � ψstep , and (3) trace t equals
ṫM (of Eq. (2)). The intuition is that Ċ captures all traces that should be added
to Yj : Given t1, . . . , tlj we check if there are traces ṫ1, . . . , ṫn for trace variables
π̇1, . . . , π̇n in Eq. (2) where (1) each ṫi is in the assignment for Xi, which is
captured by the automaton Di over ΣTi+1, and (2) the traces ṫ1, . . . , ṫn satisfy
ϕstep . If this is the case, we want to add ṫM (as stated in Eq. (2)). We then
define ĈN+1 as the union of ĈN and Ċ, i.e. extend the previous model with all
(potentially new) traces that need to be added.

Computing Overapproximations. As we noted above, conditions of the form
of Eq. (2) always define fixpoint constraints. To compute upper bounds on such
fixpoint constructions we make use of Park’s theorem, [48] stating that if we
find some set (or automaton) B that is inductive (i.e., when computing all traces
that we would need to add assuming the current model of Yj is B, we end up
with traces that are already in B), then B overapproximates the unique solu-
tion (aka. least fixpoint) of Yj . To derive such an inductive invariant, we employ
techniques developed in the context of regular model checking [15] (see Sect. 7).
Concretely, we employ the approach from [19] that uses automata learning [2] to
find suitable invariants. While the approach from [19] is limited to finite words,
we extend it to an ω-setting by interpreting an automaton accepting finite words
as one that accepts an ω-word u iff every prefix of u is accepted.2 As soon as
the learner provides a candidate for an equivalence check, we check that it is
inductive and, if not, provide some finite counterexample (see [19] for details).
If the automaton is inductive, we return it as a potential overapproximation.

2 This effectively poses the assumption that the step formula specifies a safety prop-
erty, which seems to be the case for almost all examples. As an example, common
knowledge infers a safety property: In each step, we add all traces for which there
exists some trace that agrees on all propositions observed by that agent.

Second-Order Hyperproperties 325

Should this approximation not be precise enough, the first-order model checking
(Sect. 5.3) returns some concrete counterexample, i.e., some trace contained in
the invariant but violating the property, which we use to provide more coun-
terexamples to the learner.

6 Implementation and Experiments

We have implemented our model-checking algorithm in a prototype tool we call
HySO (Hyperproperties with Second Order).3 Our tool uses spot [29] for basic
automata operations (such as LTL-to-NBA translations and complementations).
To compute under- and overapproximations, we use the techniques described in
Sect. 5.5. We evaluate the algorithm on the following benchmarks.

Muddy Children. The muddy children puzzle [30] is one of the classic exam-
ples in common knowledge literature. The puzzle consists of n children standing
such that each child can see all other children’s faces. From the n children, an
unknown number k ≥ 1 have a muddy forehead, and in incremental rounds, the
children should step forward if they know if their face is muddy or not. Consider
the scenario of n = 2 and k = 1, so child a sees that child b has a muddy forehead
and child b sees that a is clean. In this case, b immediately steps forward, as it
knows that its forehead is muddy since k ≥ 1. In the next step, a knows that its
face is clean since b stepped forward in round 1. In general, one can prove that
all children step forward in round k, deriving common knowledge.

For each n we construct a transition system Tn that encodes the muddy chil-
dren scenario with n children. For every m we design a Hyper2LTLfp formula
ϕm that adds to the common knowledge set X all traces that appear indistin-
guishable in the first m steps for some child. We then specify that all traces in
X should agree on all inputs, asserting that all inputs are common knowledge.4

We used HySO to fully automatically check Tn against ϕm for varying values of n
and m, i.e., we checked if, after the first m steps, the inputs of all children are
common knowledge. As expected, the above property holds only if m ≥ n (in the
worst case, where all children are dirty (k = n), the inputs of all children only
become common knowledge after n steps). We depict the results in Table 1a.

Asynchronous Hyperproperties. As we have shown in Sect. 4.2, we can
encode arbitrary AHLTL properties into Hyper2LTLfp. We verified synchronous
and asynchronous version of observational determinism (cf. Sect. 4.2) on pro-
grams taken from [3,5,9]. We depict the verification results in Table 1b. Recall
that Hyper2LTLfp properties without any second-order variables correspond to

3 Our tool is publicly available at https://doi.org/10.5281/zenodo.7877144.
4 This property is not expressible in non-hyper logics such as LTLK,C, where we

can only check trace properties on the common knowledge set X. In contrast,
Hyper2LTLfp allows us to check hyperproperties on X. That way, we can express
that some value is common knowledge (i.e., equal across all traces in the set) and
not only that a property is common knowledge (i.e., holds on all traces in the set).

https://doi.org/10.5281/zenodo.7877144

326 R. Beutner et al.

Table 1. In Table 1a, we check common knowledge in the muddy children puzzle for
n children and m rounds. We give the result (✓ if common knowledge holds and ✗ if it
does not), and the running time. In Table 1a, we check synchronous and asynchronous
versions of observational determinism. We depict the number of iterations needed and
running time. Times are given in seconds.

m
1 2 3 4

n

2 0.64 0.59

3 0.79 0.75 0.54

4 2.72 2.21 1.67 1.19

(a)

Instance Method Res t

Tsyn , ϕOD - 0.26

Tasyn , ϕOD - 0.31

Tsyn , ϕasyn
OD Iter (0) 0.50

Tasyn,ϕasyn
OD Iter (1) 0.78

Q1, ϕOD - 0.34

Q1, ϕasyn
OD Iter (1) 0.86

(b)

HyperQPTL formulas. HySO can check such properties precisely, i.e., it consti-
tutes a sound-and-complete model checker for HyperQPTL properties with an
arbitrary quantifier prefix. The synchronous version of observational determin-
ism is a HyperLTL property and thus needs no second-order approximation (we
set the method column to “-” in these cases).

Common Knowledge in Multi-agent Systems. We used HySO for an auto-
matic analysis of the system in Fig. 1. Here, we verify that on initial trace
{a}n{d}ω it is CK that a holds in the first step. We use a similar formula as
the one of Sect. 3.3, with the change that we are interested in whether a is CK
(whereas we used a in Sect. 3.3). As expected, HySO requires 2n − 1 iterations
to converge. We depict the results in Table 2a.

Mazurkiewicz Traces. Mazurkiewicz traces are an important concept in the
theory of distributed computing [27]. Let I ⊆ Σ × Σ be an independence rela-
tion that determines when two consecutive letters can be switched (think of two
actions in disjoint processes in a distributed system). Any t ∈ Σω then defines
the set of all traces that are equivalent to t by flipping consecutive independent
actions an arbitrary number of times (the equivalence class of all these traces
is called the Mazurkiewicz Trace). See [27] for details. The verification prob-
lem for Mazurkiewicz traces now asks if, given some t ∈ Σω, all traces in the
Mazurkiewicz trace of t satisfy some property ψ. Using Hyper2LTLfp we can
directly reason about the Mazurkiewicz Trace of any given trace, by requiring
that all traces that are equal up to one swap of independent letters are also in
a given set (which is easily expressed in Hyper2LTLfp).

Second-Order Hyperproperties 327

Table 2. In Table 1a, we check common knowledge in the example from Fig. 1 when
starting with andω for varying values of n. We depict the number of refinement iter-
ations, the result, and the running time. In Table 2b, we verify various properties on
Mazurkiewicz traces. We depict whether the property could be verified or refuted by
iteration or automata learning, the result, and the time. Times are given in seconds.

n Method Res t

1 Iter (1) 0.51

2 Iter (3) 0.83

3 Iter (5) 1.20

10 Iter (19) 3.81

100 Iter (199) 102.8

(a)

Instance Method Res t

SwapA Learn 1.07

SwapATwice Learn 2.13

SwapA5 Iter (5) 1.15

SwapA15 Iter (15) 3.04

SwapAViolation5 Iter (5) 2.35

SwapAViolation15 Iter (15) 4.21

(b)

Using HySO we verify a selection of such trace properties that often require
non-trivial reasoning by coming up with a suitable invariant. We depict the
results in Table 2b. In our preliminary experiments, we model a situation where
we start with {a}1{}ω and can swap letters {a} and {}. We then, e.g., ask if
on any trace in the resulting Mazurkiewicz trace, a holds at most once, which
requires inductive invariants and cannot be established by iteration.

7 Related Work

In recent years, many logics for the formal specification of hyperproperties
have been developed, extending temporal logics with explicit path quantification
(examples include HyperLTL, HyperCTL∗ [20], HyperQPTL [10,45], HyperPDL
[38], and HyperATL∗ [5,9]); or extending first and second-order logics with an
equal level predicate [25,33]. Others study (ω)-regular [14,37] and context-free
hyperproperties [35]; or discuss hyperproperties over data and modulo theo-
ries [24,31]. Hyper2LTL is the first temporal logic that reasons about second-
order hyperproperties which allows is to capture many existing (epistemic, asyn-
chronous, etc.) hyperlogics while at the same time taking advantage of model-
checking solutions that have been proven successful in first-order settings.

Asynchronous Hyperproperties. For asynchronous hyperproperties, Gutfeld et
al. [39] present an asynchronous extension of the polyadic μ-calculus. Bozelli
et al. [17] extend HyperLTL with temporal operators that are only evaluated
if the truth value of some temporal formula changes. Baumeister et al. present
AHLTL [3], that extends HyperLTL with a explicit quantification over trajecto-
ries and can be directly encoded within Hyper2LTLfp.

328 R. Beutner et al.

Regular Model Checking. Regular model checking [15] is a general verification
method for (possibly infinite state) systems, in which each state of the system
is interpreted as a finite word. The transitions of the system are given as a
finite-state (regular) transducer, and the model checking problem asks if, from
some initial set of states (given as a regular language), some bad state is eventu-
ally reachable. Many methods for automated regular model checking have been
developed [12,13,19,26]. Hyper2LTL can be seen as a logical foundation for ω-
regular model checking: Assume the set of initial states is given as a QPTL
formula ϕinit , the set of bad states is given as a QPTL formula ϕbad , and the
transition relation is given as a QPTL formula ϕstep over trace variables π and
π′. The set of bad states is reachable from a trace (state) in ϕinit iff the following
Hyper2LTLfp formula holds on the system that generates all traces:

(
X,�,∀π ∈ S. ϕinit (π) → π � X∧

∀π ∈ X.∀π′ ∈ S. ϕstep(π, π′) → π′ � X
)
.∀π ∈ X.¬ϕbad (π)

Conversely, Hyper2LTLfp can express more complex properties, beyond the
reachability checks possible in the framework of (ω-)regular model checking.

Model Checking Knowledge. Model checking of knowledge properties in multi-
agent systems was developed in the tools MCK [36] and MCMAS [42], which can
exactly express LTLK. Bozzelli et al. [16] have shown that HyperCTL∗ and LTLK

have incomparable expressiveness, and present HyperCTL∗
lp – an extension of

HyperCTL∗ that can reason about past – to unify HyperCTL∗ and LTLK. While
HyperCTL∗

lp can express the knowledge operator, it cannot capture common
knowledge. LTLK,C [41] captures both knowledge and common knowledge, but
the suggested model-checking algorithm only handles a decidable fragment that
is reducible to LTL model checking.

8 Conclusion

Hyperproperties play an increasingly important role in many areas of computer
science. There is a strong need for specification languages and verification meth-
ods that reason about hyperproperties in a uniform and general manner, similar
to what is standard for more traditional notions of safety and reliability. In
this paper, we have ventured forward from the first-order reasoning of logics
like HyperLTL into the realm of second-order hyperproperties, i.e., properties
that not only compare individual traces but reason comprehensively about sets
of such traces. With Hyper2LTL, we have introduced a natural specification
language and a general model-checking approach for second-order hyperprop-
erties. Hyper2LTL provides a general framework for a wide range of relevant
hyperproperties, including common knowledge and asynchronous hyperproper-
ties, which could previously only be studied with specialized logics and algo-
rithms. Hyper2LTL also provides a starting point for future work on second-
order hyperproperties in areas such as cyber-physical [44] and probabilistic sys-
tems [28].

Second-Order Hyperproperties 329

Acknowledgements. We thank Jana Hofmann for the fruitful discussions. This
work was supported by the European Research Council (ERC) Grant HYPER (No.
101055412), by DFG grant 389792660 as part of TRR 248 – CPEC, and by the Ger-
man Israeli Foundation (GIF) Grant No. I-1513-407.2019.

References

1. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1) (1994). https://
doi.org/10.1145/174644.174651

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2) (1987). https://doi.org/10.1016/0890-5401(87)90052-6

3. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. In: Silva, A., Leino, K.R.M. (eds.)
CAV 2021. LNCS, vol. 12759, pp. 694–717. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8 33

4. Beutner, R., Carral, D., Finkbeiner, B., Hofmann, J., Krötzsch, M.: Deciding
hyperproperties combined with functional specifications. In: Annual ACM/IEEE
Symposium on Logic in Computer, LICS 2022. ACM (2022). https://doi.org/10.
1145/3531130.3533369

5. Beutner, R., Finkbeiner, B.: A temporal logic for strategic hyperproperties. In:
International Conference on Concurrency Theory, CONCUR 2021. LIPIcs, vol.
203. Schloss Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.CONCUR.2021.24

6. Beutner, R., Finkbeiner, B.: Prophecy variables for hyperproperty verification.
In: IEEE Computer Security Foundations Symposium, CSF 2022. IEEE (2022).
https://doi.org/10.1109/CSF54842.2022.9919658

7. Beutner, R., Finkbeiner, B.: Software verification of hyperproperties beyond k-
safety. In: International Conference on Computer Aided Verification, CAV 2022.
LNCS, vol. 13371. Springer (2022). https://doi.org/10.1007/978-3-031-13185-1 17

8. Beutner, R., Finkbeiner, B.: AutoHyper: Explicit-state model checking for Hyper-
LTL. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 2023, vol. 13993. Springer (2023). https://doi.
org/10.1007/978-3-031-30823-9 8

9. Beutner, R., Finkbeiner, B.: HyperATL∗: A logic for hyperproperties in multi-agent
systems. Log. Methods Comput, Sci (2023)

10. Beutner, R., Finkbeiner, B.: Model checking omega-regular hyperproperties with
AutoHyperQ. In: International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, LPAR 2023. EPiC Series in Computing, EasyChair
(2023)

11. Beutner, R., Finkbeiner, B., Frenkel, H., Metzger, N.: Second-order hyperprop-
erties. CoRR abs/2305.17935 (2023). https://doi.org/10.48550/arXiv.2305.17935,
https://doi.org/10.48550/arXiv.2305.17935

12. Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt,
W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45069-6 24

13. Boigelot, B., Legay, A., Wolper, P.: Omega-regular model checking. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 561–575. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 41

14. Bonakdarpour, B., Sheinvald, S.: Finite-word hyperlanguages. In: Leporati, A.,
Mart́ın-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2021. LNCS, vol. 12638, pp.
173–186. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68195-1 17

https://doi.org/10.1145/174644.174651
https://doi.org/10.1145/174644.174651
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1145/3531130.3533369
https://doi.org/10.1145/3531130.3533369
https://doi.org/10.4230/LIPIcs.CONCUR.2021.24
https://doi.org/10.1109/CSF54842.2022.9919658
https://doi.org/10.1007/978-3-031-13185-1_17
https://doi.org/10.1007/978-3-031-30823-9_8
https://doi.org/10.1007/978-3-031-30823-9_8
https://doi.org/10.48550/arXiv.2305.17935
https://doi.org/10.48550/arXiv.2305.17935
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/978-3-540-24730-2_41
https://doi.org/10.1007/978-3-030-68195-1_17

330 R. Beutner et al.

15. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 31

16. Bozzelli, L., Maubert, B., Pinchinat, S.: Unifying hyper and epistemic temporal
logics. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 167–182. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46678-0 11

17. Bozzelli, L., Peron, A., Sánchez, C.: Asynchronous extensions of HyperLTL. In:
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021. IEEE
(2021). https://doi.org/10.1109/LICS52264.2021.9470583

18. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Studies
in Logic and the Foundations of Mathematics, vol. 44. Elsevier (1966)

19. Chen, Y., Hong, C., Lin, A.W., Rümmer, P.: Learning to prove safety over param-
eterised concurrent systems. In: Formal Methods in Computer Aided Design,
FMCAD 2017. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102244

20. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8 15

21. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6) (2010).
https://doi.org/10.3233/JCS-2009-0393

22. Coenen, N., et al.: Explaining hyperproperty violations. In: International Con-
ference on Computer Aided Verification, CAV 2022. LNCS, vol. 13371. Springer
(2022). https://doi.org/10.1007/978-3-031-13185-1 20

23. Coenen, N., Finkbeiner, B., Frenkel, H., Hahn, C., Metzger, N., Siber, J.: Tem-
poral causality in reactive systems. In: International Symposium on Automated
Technology for Verification and Analysis, ATVA 2022. LNCS, vol. 13505. Springer
(2022). https://doi.org/10.1007/978-3-031-19992-9 13

24. Coenen, N., Finkbeiner, B., Hofmann, J., Tillman, J.: Smart contract synthesis
modulo hyperproperties. To appear at the 36th IEEE Computer Security Founda-
tions Symposium (CSF 2023) (2023)

25. Coenen, N., Finkbeiner, B., Sánchez, C., Tentrup, L.: Verifying hyperliveness. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 121–139. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 7

26. Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. In: Berry, G., Comon,
H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 286–297. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44585-4 27

27. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific (1995).
https://doi.org/10.1142/2563

28. Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of markov
decision processes. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol.
12302, pp. 484–500. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59152-6 27

29. Duret-Lutz, A., et al.: From spot 2.0 to spot 2.10: What’s new? In: International
Conference on Computer Aided Verification, CAV 2022. LNCS, vol. 13372. Springer
(2022). https://doi.org/10.1007/978-3-031-13188-2 9

30. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995). https://doi.org/10.7551/mitpress/5803.001.0001

31. Finkbeiner, B., Frenkel, H., Hofmann, J., Lohse, J.: Automata-based software
model checking of hyperproperties. In: Rozier, K.Y., Chaudhuri, S. (eds.) NASA
Formal Methods, 15th International Symposium, NFM 2023, Houston, TX, USA,

https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-031-13185-1_20
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/3-540-44585-4_27
https://doi.org/10.1142/2563
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-031-13188-2_9
https://doi.org/10.7551/mitpress/5803.001.0001

Second-Order Hyperproperties 331

16–18 May 2023, Proceedings. LNCS, vol. 13903. Springer (2023). https://doi.org/
10.1007/978-3-031-33170-1 22

32. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

33. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproperties. In: Sym-
posium on Theoretical Aspects of Computer Science, STACS 2017. LIPIcs, vol. 66.
Schloss Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.30

34. Fortin, M., Kuijer, L.B., Totzke, P., Zimmermann, M.: HyperLTL satisfiability is
Σ1

1 -complete, HyperCTL* satisfiability is Σ2
1 -complete. In: International Sympo-

sium on Mathematical Foundations of Computer Science, MFCS 2021. LIPIcs, vol.
202. Schloss Dagstuhl (2021). https://doi.org/10.4230/LIPIcs.MFCS.2021.47

35. Frenkel, H., Sheinvald, S.: Realizable and context-free hyperlanguages. In: Ganty,
P., Monica, D.D. (eds.) Proceedings of the 13th International Symposium on
Games, Automata, Logics and Formal Verification, GandALF 2022, Madrid, Spain,
21–23 September 2022. EPTCS, vol. 370, pp. 114–130 (2022). https://doi.org/10.
4204/EPTCS.370.8, https://doi.org/10.4204/EPTCS.370.8

36. Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 41

37. Goudsmid, O., Grumberg, O., Sheinvald, S.: Compositional model checking for
multi-properties. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021.
LNCS, vol. 12597, pp. 55–80. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-67067-2 4

38. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Propositional dynamic logic for
hyperproperties. In: International Conference on Concurrency Theory, CONCUR
2020. LIPIcs, vol. 171. Schloss Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.
CONCUR.2020.50

39. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Automata and fixpoints for asyn-
chronous hyperproperties. Proc. ACM Program. Lang. 5(POPL) (2021). https://
doi.org/10.1145/3434319

40. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37(3), 549–587 (1990)

41. van der Hoek, W., Wooldridge, M.: Model checking knowledge and time. In:
Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 95–111. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46017-9 9

42. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transfer 19(1),
9–30 (2015). https://doi.org/10.1007/s10009-015-0378-x

43. van der Meyden, R.: Common knowledge and update in finite environments. Inf.
Comput. 140(2) (1998). https://doi.org/10.1006/inco.1997.2679

44. Nguyen, L.V., Kapinski, J., Jin, X., Deshmukh, J.V., Johnson, T.T.: Hyperprop-
erties of real-valued signals. In: ACM-IEEE International Conference on For-
mal Methods and Models for System Design, MEMOCODE 2017. ACM (2017).
https://doi.org/10.1145/3127041.3127058

45. Rabe, M.N.: A temporal logic approach to information-flow control. Ph.D. thesis,
Saarland University (2016)

46. Sistla, A.P.: Theoretical issues in the design and verification of distributed systems.
Ph.D. thesis, Harvard University (1983)

https://doi.org/10.1007/978-3-031-33170-1_22
https://doi.org/10.1007/978-3-031-33170-1_22
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.4230/LIPIcs.MFCS.2021.47
https://doi.org/10.4204/EPTCS.370.8
https://doi.org/10.4204/EPTCS.370.8
https://doi.org/10.4204/EPTCS.370.8
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.1007/978-3-030-67067-2_4
https://doi.org/10.1007/978-3-030-67067-2_4
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.1145/3434319
https://doi.org/10.1145/3434319
https://doi.org/10.1007/3-540-46017-9_9
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1006/inco.1997.2679
https://doi.org/10.1145/3127041.3127058

332 R. Beutner et al.

47. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications (1955)
48. Winskel, G.: The formal semantics of programming languages - an introduction.

MIT Press, Foundation of computing series (1993)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Neural Networks and Machine Learning

Certifying the Fairness of KNN
in the Presence of Dataset Bias

Yannan Li(B), Jingbo Wang, and Chao Wang

University of Southern California, Los Angeles, CA 90089, USA
{yannanli,jingbow,wang626}@usc.edu

Abstract. We propose a method for certifying the fairness of the clas-
sification result of a widely used supervised learning algorithm, the k-
nearest neighbors (KNN), under the assumption that the training data
may have historical bias caused by systematic mislabeling of samples
from a protected minority group. To the best of our knowledge, this is
the first certification method for KNN based on three variants of the
fairness definition: individual fairness, ε-fairness, and label-flipping fair-
ness. We first define the fairness certification problem for KNN and then
propose sound approximations of the complex arithmetic computations
used in the state-of-the-art KNN algorithm. This is meant to lift the
computation results from the concrete domain to an abstract domain,
to reduce the computational cost. We show effectiveness of this abstract
interpretation based technique through experimental evaluation on six
datasets widely used in the fairness research literature. We also show
that the method is accurate enough to obtain fairness certifications for
a large number of test inputs, despite the presence of historical bias in
the datasets.

1 Introduction

Certifying the fairness of the classification output of a machine learning model
has become an important problem. This is in part due to a growing interest in
using machine learning techniques to make socially sensitive decisions in areas
such as education, healthcare, finance, and criminal justice systems. One rea-
son why the classification output may be biased against an individual from a
protected minority group is because the dataset used to train the model may
have historical bias; that is, there is systematic mislabeling of samples from the
protected minority group. Thus, we must be extremely careful while considering
the possibility of using the classification output of a machine learning model, to
avoid perpetuating or even amplifying historical bias.

One solution to this problem is to have the ability to certify, with certainty,
that the classification output y = M(x) for an individual input x is fair, despite
that the model M is learned from a dataset T with historical bias. This is a

This work was partially funded by the U.S. National Science Foundation grants CNS-
1702824, CNS-1813117 and CCF-2220345.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 335–357, 2023.
https://doi.org/10.1007/978-3-031-37703-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_16&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_16

336 Y. Li et al.

Fig. 1. FairKNN: our method for certifying fairness of KNNs with label bias.

form of individual fairness that has been studied in the fairness literature [14];
it requires that the classification output remains the same for input x even if
historical bias were not in the training dataset T . However, this is a challenging
problem and, to the best of our knowledge, techniques for solving it efficiently
are still severely lacking. Our work aims to fill the gap.

Specifically, we are concerned with three variants of the fairness definition.
Let the input x = 〈x1, . . . , xD〉 be a D-dimensional input vector, and P be the
subset of vector indices corresponding to the protected attributes (e.g., race,
gender, etc.). The first variant of the fairness definition is individual fairness,
which requires that similar individuals are treated similarly by the machine
learning model. For example, if two individual inputs x and x′ differ only in some
protected attribute xi, where i ∈ P, but agree on all the other attributes, the
classification output must be the same. The second variant is ε-fairness, which
extends the notion of individual fairness to include inputs whose un-protected
attributes differ and yet the difference is bounded by a small constant (ε). In
other words, if two individual inputs are almost the same in all unprotected
attributes, they should also have the same classification output. The third variant
is label-flipping fairness, which requires the aforementioned fairness requirements
to be satisfied even if a biased dataset T has been used to train the model in
the first place. That is, as long as the number of mislabeled elements in T is
bounded by n, the classification output must be the same.

We want to certify the fairness of the classification output for a popular
supervised learning technique called the k-nearest neighbors (KNN) algorithm.
Our interest in KNN comes from the fact that, unlike many other machine
learning techniques, KNN is a model-less technique and thus does not have
the high cost associated with training the model. Because of this reason, KNN
has been widely adopted in real-world applications [1,4,16,18,23,29,36,45,46].
However, obtaining a fairness certification for KNN is still challenging and, in
practice, the most straightforward approach of enumerating all possible scenarios
and then checking if the classification outputs obtained in these scenarios agree
would have been prohibitively expensive.

To overcome the challenge, we propose an efficient method based on the idea
of abstract interpretation [10]. Our method relies on sound approximations to
analyze the arithmetic computations used by the state-of-the-art KNN algorithm

Certifying the Fairness of KNN in the Presence of Dataset Bias 337

both accurately and efficiently. Figure 1 shows an overview of our method in the
lower half of this figure, which conducts the analysis in an abstract domain, and
the default KNN algorithm in the upper half, which operates in the concrete
domain. The main difference is that, by staying in the abstract domain, our
method is able to analyze a large set of possible training datasets (derived from
T due to n label-flips) and a potentially-infinite set of inputs (derived from x due
to ε perturbation) symbolically, as opposed to analyze a single training dataset
and a single input concretely.

To the best of our knowledge, this is the first method for KNN fairness
certification in the presence of dataset bias. While Meyer et al. [26,27] and
Drews et al. [12] have investigated robustness certification techniques, their
methods target decision trees and linear regression, which are different types
of machine learning models from KNN. Our method also differs from the KNN
data-poisoning robustness verification techniques developed by Jia et al. [20] and
Li et al. [24], which do not focus on fairness at all; for example, they do not
distinguish protected attributes from unprotected attributes. Furthermore, Jia et
al. [20] consider the prediction step only while ignoring the learning step, and
Li et al. [24] do not consider label flipping. Our method, in contrast, considers
all of these cases.

We have implemented our method and demonstrated the effectiveness
through experimental evaluation. We used all of the six popular datasets in
the fairness research literature as benchmarks. Our evaluation results show that
the proposed method is efficient in analyzing complex arithmetic computations
used in the state-of-the-art KNN algorithm, and is accurate enough to obtain
fairness certifications for a large number of test inputs. To better understand
the impact of historical bias, we also compared the fairness certification success
rates across different demographic groups.

To summarize, this paper makes the following contributions:

– We propose an abstract interpretation based method for efficiently certifying
the fairness of KNN classification results in the presence of dataset bias. The
method relies on sound approximations to speed up the analysis of both the
learning and the prediction steps of the state-of-the-art KNN algorithm, and
is able to handle three variants of the fairness definition.

– We implement the method and evaluate it on six datasets that are widely
used in the fairness literature, to demonstrate the efficiency of our approx-
imation techniques as well as the effectiveness of our method in obtaining
sound fairness certifications for a large number of test inputs.

The remainder of this paper is organized as follows. We first present the tech-
nical background in Sect. 2 and then give an overview of our method in Sect. 3.
Next, we present our detailed algorithms for certifying the KNN prediction step
in Sect. 4 and certifying the KNN learning step in Sect. 5. This is followed by
our experimental results in Sect. 6. We review the related work in Sect. 7 and,
finally, give our conclusion in Sect. 8.

338 Y. Li et al.

2 Background

Let L be a supervised learning algorithm that takes the training dataset T
as input and returns a learned model M = L(T) as output. The training set
T = {(x, y)} is a set of labeled samples, where each x ∈ X ⊆ R

D has D
real-valued attributes, and the y ∈ Y ⊆ N is a class label. The learned model
M : X → Y is a function that returns the classification output y′ ∈ Y for any
input x′ ∈ X .

2.1 Fairness of the Learned Model

We are concerned with fairness of the classification output M(x) for an individ-
ual input x. Let P be the set of vector indices corresponding to the protected
attributes in x ∈ X . We say that xi is a protected attribute (e.g., race, gender,
etc.) if and only if i ∈ P.

Definition 1 (Individual Fairness). For an input x, the classification output
M(x) is fair if, for any input x′ such that (1) xj �= x′

j for some j ∈ P and (2)
xi = x′

i for all i �∈ P, we have M(x) = M(x′).

It means two individuals (x and x′) differing only in some protected attribute
(e.g., gender) but agreeing on all other attributes must be treated equally. While
being intuitive and useful, this notion of fairness may be too narrow. For example,
if two individuals differ in some unprotected attributes and yet the difference is
considered immaterial, they must still be treated equally. This can be captured
by ε−fairness.

Definition 2 (ε-Fairness). For an input x, the classification output M(x) is
fair if, for any input x′ such that (1) xj �= x′

j for some j ∈ P and (2) |xi−x′
i| ≤ ε

for all i �∈ P, we have M(x) = M(x′).

In this case, such inputs x′ form a set. Let Δε(x) be the set of all inputs x′ con-
sidered in the ε−fairness definition. That is, Δε(x) := {x′ | xj �= x′

j for some j ∈
P, |xi − x′

i| ≤ ε for all i �∈ P}. By requiring M(x) = M(x′) for all x′ ∈ Δε(x),
ε-fairness guarantees that a larger set of individuals similar to x are treated
equally.

Individual fairness can be viewed as a special case of ε-fairness, where ε = 0.
In contrast, when ε > 0, the number of elements in Δε(x) is often large and
sometimes infinite. Therefore, the most straightforward approach of certifying
fairness by enumerating all possible elements in Δε(x) would not work. Instead,
any practical solution would have to rely on abstraction.

2.2 Fairness in the Presence of Dataset Bias

Due to historical bias, the training dataset T may have contained samples whose
output are unfairly labeled. Let the number of such samples be bounded by n.

Certifying the Fairness of KNN in the Presence of Dataset Bias 339

We assume that there are no additional clues available to help identify the mis-
labeled samples. Without knowing which these samples are, fairness certification
must consider all of the possible scenarios. Each scenario corresponds to a de-
biased dataset, T ′, constructed by flipping back the incorrect labels in T . Let
dBiasn(T) = {T ′} be the set of these possible de-biased (clean) datasets. Ideally,
we want all of them to lead to the same classification output.

Definition 3 (Label-flipping Fairness). For an input x, the classification
output M(x) is fair against label-flipping bias of at most n elements in the dataset
T if, for all T ′ ∈ dBiasn(T), we have M ′(x) = M(x) where M ′ = L(T ′).

Label-flipping fairness differs from and yet complements individual and ε-
fairness in the following sense. While individual and ε-fairness guarantee equal
output for similar inputs, label-flipping fairness guarantees equal output for sim-
ilar datasets. Both aspects of fairness are practically important. By combining
them, we are able to define the entire problem of certifying fairness in the pres-
ence of historical bias.

To understand the complexity of the fairness certification problem, we need
to look at the size of the set dBiasn(T), similar to how we have analyzed the size
of Δε(x). While the size of dBiasn(T) is always finite, it can be astronomically
large in practice. Let q is the number of unique class labels and m be the actual
number of flipped elements in T . Assuming that each flipped label may take
any of the other q − 1 possible labels, the total number of possible clean sets is(|T |

m

) · (q − 1)m for each m. Since m ≤ n, |dBiasn(T)| =
∑n

m=1

(|T |
m

) · (q − 1)m.
Again, the number of elements in dBiasn(T) is too large to enumerate, which
means any practical solution would have to rely on abstraction.

3 Overview of Our Method

Given the tuple 〈T,P, n, ε, x〉, where T is the training set, P represents the
protected attributes, n bounds the number of biased elements in T , and ε bounds
the perturbation of x, our method checks if the KNN classification output for x
is fair.

3.1 The KNN Algorithm

Since our method relies on an abstract interpretation of the KNN algorithm,
we first explain how the KNN algorithm operates in the concrete domain (this
subsection), and then lift it to the abstract domain in the next subsection.

As shown in Fig. 2, KNN has a prediction step where KNN predict computes
the output label for an input x using T and a given parameter K, and a learning
step where KNN learn computes the K value from the training set T .

Unlike many other machine learning techniques, KNN does not have an
explicit model M ; instead, M can be regarded as the combination of T and
K.

340 Y. Li et al.

1 func KNN_predict(T,K, x) {

2 Let TK
x = the K nearest neighbors of x in T;

3 Let Freq(TK
x) = the most frequent label in TK

x ;

4 return Freq(TK
x);

5 }
6
7 func KNN_learn(T) {
8 for (each candidate k value) { // conducting p-fold cross validation
9 Let {Gi} = a partition of T into p groups of roughly equal size;

10 Let errki = {(x, y) ∈ Gi | y = KNN_predict(T \ Gi, k, x)} for each Gi;
11 }

12 Let K = argmin
k

1
p

p
i=1

|errki |
|Gi| ;

13 return K;
14 }

Fig. 2. The KNN algorithm, consisting of the prediction and learning steps.

Inside KNN predict, the set TK
x represents the K-nearest neighbors of x in

the dataset T , where distance is measured by Euclidean (or Manhattan) distance
in the input vector space. Freq(TK

x) is the most frequent label in TK
x .

Inside KNN learn, a technique called p-fold cross validation is used to select
the optimal value for K, e.g., from a set of candidate k values in the range
[1, |T |× (p−1)/p] by minimizing classification error, as shown in Line 12. This is
accomplished by first partitioning T into p groups of roughly equal size (Line 9),
and then computing errk

i (a set of misclassified samples from Gi) by treating Gi

as the evaluation set, and T \ Gi as the training set. Here, an input (x, y) ∈ Gi

is “misclassified” if the expected output label, y, differs from the output of
KNN predict using the candidate k value.

3.2 Certifying the KNN Algorithm

Algorithm 1 shows the top-level procedure of our fairness certification method,
which first executes the KNN algorithm in the concrete domain (Lines 1–2), to
obtain the default K and y, and then starts our analysis in the abstract domain.

Algorithm 1: Our method for certifying fairness of KNN for input x.
1 K = KNN learn(T);
2 y = KNN predict(T, K, x);
3 KSet = abs KNN learn (T, n);
4 for each K ∈ KSet do
5 if abs KNN predict same(T, n, K, x, y) = False then
6 return unknown;
7 end if

8 end for
9 return certified;

Certifying the Fairness of KNN in the Presence of Dataset Bias 341

In the abstract learning step (Line 3), instead of considering T , our method
considers the set of all clean datasets in dBiasn(T) symbolically, to compute the
set of possible optimal K values, denoted KSet.

In the abstract prediction step (Lines 4–8), for each K, instead of consider-
ing input x, our method considers all perturbed inputs in Δε(x) and all clean
datasets in dBiasn(T) symbolically, to check if the classification output always
stays the same. Our method returns “certified” only when the classification out-
put always stays the same (Line 9); otherwise, it returns “unknown” (Line 6).

We only perturb numerical attributes in the input x since perturbing cate-
gorical or binary attributes often does not make sense in practice.

In the next two sections, we present our detailed algorithms for abstracting
the prediction step and the learning step, respectively.

4 Abstracting the KNN Prediction Step

We start with abstract KNN prediction, which is captured by the subroutine
abs KNN predict same used in Line 5 of Algorithm 1. It consists of two parts.
The first part (to be presented in Sect. 4.1) computes a superset of TK

x , denoted
overNN , while considering the impact of ε perturbation of the input x. The
second part (to be presented in Sect. 4.2) leverages overNN to decide if the
classification output always stays the same, while considering the impact of
label-flipping bias in the dataset T .

4.1 Finding the K -Nearest Neighbors

To compute overNN , which is a set of samples in T that may be the K nearest
neighbors of the test input x, we must be able to compute the distance between
x and each sample in T .

This is not a problem at all in the concrete domain, since the K nearest neigh-
bors of x in T , denoted TK

x , is fixed and is determined solely by the Euclidean
distance between x and each sample in T in the attribute space. However, when ε
perturbation is applied to x, the distance changes and, as a result, the K nearest
neighbors of x may also change.

Fortunately, the distance in the attribute space is not affected by label-
flipping bias in the dataset T , since label-flipping only impacts sample labels,
not sample attributes. Thus, in this subsection, we only need to consider the
impact of ε perturbation of the input x.

The Challenge. Due to ε perturbation, a single test input x becomes a
potentially-infinite set of inputs Δε(x). Since our goal is to over-approximate
the K nearest neighbors of Δε(x), the expectation is that, as long as there exists
some x′ ∈ Δε(x) such that a sample input t in T is one of the K nearest neighbors
of x′, denoted t ∈ TK

x′ , we must include t in the set overNN . That is,
⋃

x′∈Δε(x)

TK
x′ ⊆ overNN ⊆ T.

342 Y. Li et al.

However, finding an efficient way of computing overNN is a challenging task. As
explained before, the naive approach of enumerating x′ ∈ Δε(x), computing the
K nearest neighbors, TK

x′ , and unionizing all of them would not work. Instead,
we need abstraction that is both efficient and accurate enough in practice.

Our solution is that, for each sample t in T , we first analyze the distances
between t and all inputs in Δε(x) symbolically, to compute a lower bound and an
upper bound of the distances. Then, we leverage these lower and upper bounds to
compute the set overNN , which is a superset of samples in T that may become
the K nearest neighbors of Δε(x).
Bounding Distance Between Δε(x) and t. Assume that x = (x1, x2, ..., xD)
and t = (t1, t2, ..., tD) are two real-valued vectors in the D-dimensional attribute
space. Let ε = (ε1, ε2, ..., εD), where εi ≥ 0, be the small perturbation. Thus, the
perturbed input is x′ = (x′

1, x
′
2, ..., x

′
D) = (x1 + δ1, x2 + δ2, ..., xD + δD), where

δi ∈ [−εi, εi] for all i = 1, ...,D.

The distance between x and t is a fixed value d(x, t) =
√∑D

i=1(xi − ti)2, since
both x and the samples t in T are fixed, but the distance between x′ ∈ Δε(x) and

t is a function of δi ∈ [−εi, εi], since
√∑D

i=1(x
′
i − ti)2 =

√∑D
i=1(xi − ti + δi)2.

For ease of presentation, we define the distance as dε =
√∑D

i=1 dε
i , where dε

i =
(xi − ti + δi)2 is the (squared) distance function in the i-th dimension. Then,
our goal becomes computing the lower bound, LB(dε), and the upper bound,
UB(dε), in the domain δi ∈ [−εi, εi] for all i = 1, ...,D.

Distance Bounds Are Compositional. Our first observation is that bounds
on the distance dε as a whole can be computed using bounds in the individual
dimensions. To see why this is the case, consider the (square) distance in the i-th
dimension, dε

i = (xi − ti + δi)2, where δi ∈ [−εi, εi], and the (square) distance in
the j-th dimension, dε

j = (xj − tj + δj)2, where δj ∈ [−εj , εj]. By definition, dε
i

is completely independent of dε
j when i �= j.

Thus, the lower bound of dε, denoted LB(dε), can be calculated by finding
the lower bound of each dε

i in the i-th dimension. Similarly, the upper bound of
dε, denoted UB(dε), can also be calculated by finding the upper bound of each
dε

i in the i-the dimension. That is,

LB(dε) =
√∑D

i=1 LB(dε
i) and UB(dε) =

√∑D
i=1 UB(dε

i).

Four Cases in Each Dimension. Our second observation is that, by utilizing
the mathematical nature of the (square) distance function, we can calculate the
minimum and maximum values of dε

i , which can then be used as the lower bound
LB(dε

i) and upper bound UB(dε
i), respectively.

Specifically, in the i-th dimension, the (square) distance function dε
i = ((xi −

ti) + δi)2 may be rewritten to (δi + A)2, where A = (xi − ti) is a constant and
δi ∈ [−ε,+ε] is a variable. The function can be plotted in two dimensional space,
using δi as x-axis and the output of the function as y-axis; thus, it is a quadratic
function Y = (X + A)2.

Certifying the Fairness of KNN in the Presence of Dataset Bias 343

Fig. 3. Four cases for computing the upper and lower bounds of the distance function
dε

i(δi) = (δi +A)2 for δi ∈ [−εi, εi]. In these figures, δi is the x-axis, and dε
i is the y-axis,

LB denotes LB(dε
i), and UB denotes UB(dε

i).

Figure 3 shows the plot, which reminds us of where the minimum and maxi-
mum values of a quadratic function is. There are two versions of the quadratic
function, depending on whether A > 0 (corresponding to the two subfigures at
the top) or A < 0 (corresponding to the two subfigures at the bottom). Each ver-
sion also has two cases, depending on whether the perturbation interval [−εi, εi]
falls inside the constant interval [−|A|, |A|] (corresponding to the two subfigures
on the left) or falls outside (corresponding to the two subfigures on the right).
Thus, there are four cases in total.

In each case, the maximal and minimal values of the quadratic function are
different, as shown by the LB and UB marks in Fig. 3.

Case (a). This is when (xi − ti) > 0 and −εi > −(xi − ti), which is the same
as saying A > 0 and −εi > −A. In this case, function di(εi) = (δi + A)2 is
monotonically increasing w.r.t. variable δi ∈ [−εi,+εi].

Thus, LB(dε
i) = (−εi + (xi − ti))2 and UB(dε

i) = (+εi + (xi − ti))2.

Case (b). This is when (xi − ti) > 0 and −εi < −(xi − ti), which is the same
as saying A > 0 and −εi < −A. In this case, the function is not monotonic.
The minimal value is 0, obtained when δi = −A. The maximal value is obtained
when δi = +εi.

Thus, LB(dε
i) = 0 and UB(dε

i) = (+εi + (xi − ti))2.

344 Y. Li et al.

Case (c). This is when (xi − ti) < 0 and εi < −(xi − ti), which is the same as
saying A < 0 and εi < −A. In this case, the function is monotonically decreasing
w.r.t. variable δi ∈ [−εi, εi].

Thus, LB(dε
i) = (εi + (xi − ti))2 and UB(dε

i) = (−εi + (xi − ti))2.

Case (d). This is when (xi − ti) < 0 and εi > −(xi − ti), which is the same
as saying A < 0 and εi > −A. In this case, the function is not monotonic. The
minimal value is 0, obtained when δi = −A. The maximal value is obtained
when δi = −εi.

Thus, LB(dε
i) = 0 and UB(dε

i) = (−εi + (xi − ti))2.

Summary. By combining the above four cases, we compute the bounds of the
entire distance function dε as follows:

⎡

⎣

√√
√
√

D∑

i=1

max(|xi − ti| − εi, 0)2,

√√
√
√

D∑

i=1

(|xi − ti| + εi)2

⎤

⎦

Here, the take-away message is that, since xi, ti and εi are all fixed values, the
upper and lower bounds can be computed in constant time, despite that there
is a potentially-infinite number of inputs in Δε(x).
Computing overNN Using Bounds. With the upper and lower bounds of the
distance between Δε(x) and sample t in the dataset T , denoted [LB(dε(x, t)),
UB(dε(x, t))], we are ready to compute overNN such that every t ∈ overNN
may be among the K nearest neighbors of Δε(x).

Let UBKmin denote the K-th minimum value of UB(dε(x, t)) for all t ∈ T .
Then, we define overNN as the set of samples in T whose LB(dε(x, t)) is not
greater than UBKmin. In other words,

overNN = {t ∈ T | LB(dε(x, t)) ≤ UBKmin}.

Example. Given a dataset T = {t1, t2, t3, t4, t5}, a test input x, perturba-
tion ε, and K = 3. Assume that the lower and upper bounds of the dis-
tance between Δε(x) and samples in T are [25.4, 29.4], [30.1, 34.1], [35.3, 39.3],
[37.2, 41.2], [85.5, 90.5]. Since K = 3, we find the 3rd minimum upper bound,
UB3min = 39.3. By comparing UB3min with the lower bounds, we compute
overNN3 = {t1, t2, t3, t4}, since t5 is the only sample in T whose lower bound
is greater than 39.3. All the other four samples may be among the 3 nearest
neighbors of Δε(x).

Due to ε perturbation, the set overNN3 for K = 3 is expected to contain
3 or more samples. That is, since different inputs in Δε(x) may have different
samples as their 3-nearest neighbors, to be conservative, we have to take the
union of all possible sets of 3-nearest neighbors.

Certifying the Fairness of KNN in the Presence of Dataset Bias 345

Algorithm 2: Subroutine abs same label(overNN,K, y).
1 Let S be a subset of overNN obtained by removing all y-labeled elements;
2 Let y′ = Freq(S), and #y′ be the count of y′-labeled elements in S;
3 if #y′ < K − |S| − 2 ∗ n then
4 return True;
5 end if
6 return False;

Soundness Proof. Here we prove that any t′ /∈ overNNK cannot be among
the K nearest neighbors of any x′ ∈ Δε(x). Since UBKmin is the K-th min-
imum UB(dε(x, t)) for all t ∈ T , there must be samples t1, t2, ...tK such that
UB(dε(x, ti)) ≤ UBKmin for all i = 1, 2, ...K. For any t′ /∈ overNN , we have
LB(dε(x, t′)) > UBKmin.

Combining the above conditions, we have LB(dε(x, t′)) > UB(dε(x, ti)) for
i = 1, 2, ...K. It means at least K other samples are closer to x than t′. Thus, t′

cannot be among the K-nearest neighbors of x′.

4.2 Checking the Classification Result

Next, we try to certify that, regardless of which of the K elements are selected
from overNN , the prediction result obtained using them is always the same.

The prediction label is affected by both ε perturbation of the input x and
label-flipping bias in the dataset T . Since ε perturbation affects which points are
identified as the K nearest neighbors, and its impact has been accounted for by
overNN , from now on, we focus only on label-flipping bias in T .

Our method is shown in Algorithm 2, which takes the set overNN , the
parameter K, and the expected label y as input, and checks if it is possible to
find a subset of overNN with size K, whose most frequent label differs from
y. If such a “bad” subset cannot be found, we say that KNN prediction always
returns the same label.

To try to find such a “bad” subset of overNN , we first remove all elements
labeled with y from overNN , to obtain the set S (Line 1). After that, there are
two cases to consider.

1. If the size of S is equal to or greater than K, then any subset of S with
size K must have a different label because it will not contain any element
labeled with y. Thus, the condition in Line 3 of Algorithm 2 is not satisfied
(#y′ is a positive number, and right-hand side is a negative number), and the
procedure returns False.

2. If the size of S, denoted |S|, is smaller than K, the most likely “bad” subset
will be SK = S ∪ { any (K − |S|) y-labeled elements from overNN}. In this
case, we need to check if the most frequent label in SK is y or not.

In SK , the most frequent label must be either y (whose count is K − |S|) or
y′ (which is the most frequent label in S, with the count #y′). Moreover, since
we can flip up to n labels, we can flip n elements from label y to label y′.

346 Y. Li et al.

Algorithm 3: Subroutine abs KNN learn(T, n)
1 for each candidate k value do
2 Let {Gi} = a partition of T into p groups of roughly equal size;

3 errUBk
i = {(x, y) ∈ Gi | abs may err (T \Gi, n, k, x, y) = true} for each Gi;

4 errLBk
i = {(x, y) ∈ Gi | abs must err(T \ Gi, n, k, x, y) = true} for each Gi;

5 UBk = 1
p

∑p
i=1 |errUBk

i |/|Gi|;
6 LBk = 1

p

∑p
i=1 |errLBk

i |/|Gi|;
7 end for
8 Let minUB = min({UB1, ..., UBp});
9 return KSet = {k | LBk ≤ minUB};

Therefore, to check if our method should return True, meaning the prediction
result is guaranteed to be the same as label y, we only need to compare K − |S|
with #y′ + 2 ∗ n. This is checked using the condition in Line 3 of Algorithm 2.

5 Abstracting the KNN Learning Step

In this section, we present our method for abstracting the learning step, which
computes the optimal K value based on T and the impact of flipping at most n
labels. The output is a super set of possible optimal K values, denoted KSet.

Algorithm 3 shows our method, which takes the training set T and parameter
n as input, and returns KSet as output. To be sound, we require the KSet to
include any candidate k value that may become the optimal K for some clean
set T ′ ∈ dBiasn(T).

In Algorithm 3, our method first computes the lower and upper bounds of
the classification error for each k value, denoted LBk and UBk, as shown in
Lines 5–6. Next, it computes minUB, which is the minimal upper bound for all
candidate k values (Line 8). Finally, by comparing minUB with LBk for each
candidate k value, our method decides whether this candidate k value should be
put into KSet (Line 9).

We will explain the steps needed to compute LBk and UBk in the remainder
of this section. For now, assuming that they are available, we explain how they
are used to compute KSet.

Example. Given the candidate k values, k1, k2, k3, k4, and their error bounds
[0.1, 0.2], [0.1, 0.3], [0.3, 0.4], [0.3, 0.5]. The smallest upper bound is minUB =
0.2. By comparing minUB with the lower bounds, we compute KSet = {k1, k2},
since only LBk1 and LBk2 are lower than or equal to minUB.

Soundness Proof. Here we prove that any k′ /∈ KSet cannot result in the smallest
classification error. Assume that ks is the candidate k value that has the minimal
upper bound (minUB), and errks

is the actual classification error. By definition,
we have errks

≤ minUB. Meanwhile, for any k′ /∈ KSet, we have LBk′ >

Certifying the Fairness of KNN in the Presence of Dataset Bias 347

Algorithm 4: Subroutine abs may err(T, n,K, x, y).
1 Let y′ be, among the non-y labels, the label with the highest count in T K

x ;

2 Let #y be the number of elements in T K
x with the y label;

3 Let n′ be min(n, #y ∈ T K
x);

4 Changing n′ elements in T K
x from y label to y′ label;

5 return Freq(T K
x) �= y;

minUB. Combining the two cases, we have errk′ > minUB ≥ errks
. Here,

errk′ > errks
means that k′ cannot result in the smallest classification error.

5.1 Overapproximating the Classification Error

To compute the upper bound errUBk
i defined in Line 3 of Algorithm 3, we use

the subroutine abs may err to check if (x, y) ∈ Gi may be misclassified when
using T \ Gi as the training set.

Algorithm 4 shows the implementation of the subroutine, which checks, for
a sample (x, y), whether it is possible to obtain a set S by flipping at most n
labels in TK

x such that the most frequent label in S is not y. If it is possible to
obtain such a set S, we conclude that the prediction label for x may be an error.

The condition Freq(TK
x) �= y, computed on TK

x after the y label of n′ ele-
ments is changed to y′ label, is a sufficient condition under which the prediction
label for x may be an error. The rationale is as follows.

In order to make the most frequent label in the set TK
x different from y, we

need to focus on the label most likely to become the new most frequent label. It
is the label y′(�= y) with the highest count in the current TK

x .
Therefore, Algorithm 4 checks whether y′ can become the most frequent label

by changing at most n elements in TK
x from y label to y′ label (Lines 3–5).

5.2 Underapproximating the Classification Error

To compute the lower bound errLBk
i defined in Line 4 of Algorithm 3, we use

the subroutine abs must err to check if (x, y) ∈ Gi must be misclassified when
using T \ Gi as the training set.

Algorithm 5 shows the implementation of the subroutine, which checks, for
a sample (x, y), whether it is impossible to obtain a set S by flipping at most
n labels in TK

x such that the most frequent label in S is y. In other words, is
it impossible to avoid the classification error? If it is impossible to avoid the
classification error, we conclude that the prediction label must be an error, and
thus the procedure returns True

In this sense, all samples in errLBk
i (computed in Line 4 of Algorithm 3 are

guaranteed to be misclassified.

348 Y. Li et al.

Algorithm 5: Subroutine abs must err(T, n,K, x, y).
1 if ∃S obtained from T K

x by flipping up to n labels such that Freq(S) = y then
2 return False;
3 end if
4 return True;

The challenge in Algorithm 5 is to check if such a set S can be constructed
from TK

x . The intuition is that, to make y the most frequent label, we should
flip the labels of non-y elements to label y. Let us consider two examples first.

Example 1. Given the label counts of TK
x , denoted {l1 * 4, l4 * 4, l3 * 2},

meaning that 4 elements are labeled l1, 4 elements are labeled l4, and 2 elements
are labeled l3. Assume that n = 2 and y = l3. Since we can flip at most 2
elements, we choose to flip one l1 → l3 and one l4 → l3, to get a set S = {l1 *
3, l4 * 3, l3 * 4}.

Example 2. Given the label counts of TK
x , denoted {l1 * 5, l4 * 3, l3 * 2}, n = 2,

and y = l3. We can flip two l1 → l3 to get a set S = {l1 * 3, l4 * 3, l3 * 4}.

The LP Problem. The question is how to decide whether the set S (defined
in Line 1 of Algorithm 5) exists. We can formulate it as a linear programming
(LP) problem. The LP problem has two constraints. The first one is defined as
follows: Let y be the expected label, li �= y be another label, where i = 1, ..., q
and q is the total number of class labels (e.g., in the above two examples, the
number q = 3). Let #y be the number of elements in TK

x that have the y label.
Similarly, let #li be the number of elements with li label. Assume that a set S
as defined in Algorithm 5 exists, then all of the labels li �= y must satisfy

#li − #flipi < #y +
q∑

i=1

#flipi , (1)

where #flipi is a variable representing the number of li–to–y flips. Thus, in the
above formula, the left-hand side is the count of li after flipping, the right-hand
side is the count of y after flipping. Since y is the most frequent label in S, y
should have a higher count than any other label.

The second constraint is
q∑

i=1

#flipi ≤ n , (2)

which says that the total number of label flips is bounded by the parameter n.
Since the number of class labels (q) is often small (from 2 to 10), this LP

problem can be solved quickly. However, the LP problem must be solved |T |
times, where |T | may be as large as 50,000. To avoid invoking the LP solver

Certifying the Fairness of KNN in the Presence of Dataset Bias 349

unnecessarily, we propose two easy-to-check conditions. They are necessary con-
dition in that, if either of them is violated, the set S does not exist. Thus, we
invoke the LP solver only if both conditions are satisfied.

Necessary Conditions. The first condition is derived from Formula (1a), by
adding up the two sides of the inequality constraint for all labels li �= y. The
resulting condition is

⎛

⎝
∑

li �=y

#li −
q∑

i=1

#flipi

⎞

⎠ <

(

(q − 1)#y + (q − 1)
q∑

i=1

#flipi

)

.

The second condition requires that, in S, label y has a higher count (after flip-
ping) than any other label, including the label lp �= y with the highest count in
the current TK

x . The resulting condition is

(#lp − #y)/2 < n,

since only when this condition is satisfied, it is possible to allow y to have a
higher count than lp, by flipping at most n of the label lp to y.

These are necessary conditions (but may not be sufficient conditions) because,
whenever the first condition does not hold, Eq. (1) does not hold either. Similarly,
whenever the second condition does not hold, Eq. (1) does not hold either. In this
sense, these two conditions are easy-to-check over-approximations of Eq. (1).

6 Experiments

We have implemented our method as a software tool written in Python using
the scikit-learn machine learning library. We evaluated our tool on six datasets
that are widely used in the fairness research literature.

Datasets. Table 1 shows the statistics of each dataset, including the name,
a short description, the size (|T |), the number of attributes, the protected
attributes, and the parameters ε and n. The value of ε is set to 1% of the attribute
range. The bias parameter n is set to 1 for small datasets, 10 for medium datasets,
and 50 for large datasets. The protected attributes include Gender for all six
datasets, and Race for two datasets, Compas and Adult, which are consistent
with known biases in these datasets.

In preparation for the experimental evaluation, we have employed state-of-
the-art techniques in the machine learning literature to preprocess and balance
the datasets for KNN, including encoding, standard scaling, k-bins-discretizer,
downsampling and upweighting.

350 Y. Li et al.

Table 1. Statistics of all of the datasets used during our experimental evaluation.

Dataset Description Size |T | # Attr. Protected Attr. Parameters ε and n

Salary salary level [42] 52 4 Gender ε = 1% attribute range, n = 1

Student academic performance [9] 649 30 Gender ε = 1% attribute range, n = 1

German credit risk [13] 1,000 20 Gender ε = 1% attribute range, n = 10

Compas recidivism risk [11] 10,500 16 Race+Gender ε = 1% attribute range, n = 10

Default loan default risk [47] 30,000 36 Gender ε = 1% attribute range, n = 50

Adult earning power [13] 48,842 14 Race+Gender ε = 1% attribute range, n = 50

Table 2. Results for certifying label-flipping and individual fairness (gender) on small
datasets, for which ground truth can still be obtained by naive enumeration, and com-
pared with our method.

Certifying label-flipping fairness Certifying label-flipping + individual fairness

Ground Our Ground Our

Name truth Time method Time Accuracy Speedup truth Time method Time Accuracy Speedup

Salary 50.0% 1.7s 33.3% 0.2s 66.7% 8.5X 33.3% 1.5s 33.3% 0.2s 100% 7.5X

Student 70.8% 23.0s 60.0% 0.2s 84.7% 115X 58.5% 25.2s 44.6% 0.2s 76.2% 116X

Methods. For comparison purposes, we implemented six variants of our
method, by enabling or disabling the ability to certify label-flipping fairness,
the ability to certify individual fairness, and the ability to certify ε-fairness.

Except for ε-fairness, we also implemented the naive approach of enumerating
all T ′ ∈ dBiasn(T). Since the naive approach does not rely on approximation,
its result can be regarded as the ground truth (i.e., whether the classification
output for an input x is truly fair). Our goal is to obtain the ground truth on
small datasets, and use it to evaluate the accuracy of our abstract interpretation
based method. However, as explained before, enumeration does not work for
ε-fairness, since the number of inputs in Δε(x) is infinite.

Our experiments were conducted on a computer with 2 GHz Quad-Core Intel
Core i5 CPU and 16 GB of memory. The experiments were designed to answer
two questions. First, is our method efficient and accurate enough in handling
popular datasets in the fairness literature? Second, does our method help us
gain insights? For example, it would be interesting to know whether decision
made on an individuals from a protected minority group is more (or less) likely
to be certified as fair.

Results on Efficiency and Accuracy. We first evaluate the efficiency and
accuracy of our method. For the two small datasets, Salary and Student, we are
able to obtain the ground truth using the naive enumeration approach, and then
compare it with the result of our abstract interpretation based method. We want
to know how much our results deviate from the ground truth.

Table 2 shows the results obtained by treating Gender as the protected
attribute. Column 1 shows the name of the dataset. Columns 2–7 compare the
naive approach (ground truth) and our method in certifying label-flipping fair-
ness. Columns 8–13 compare the naive approach (ground truth) and our method
in certifying label-flipping plus individual fairness.

Certifying the Fairness of KNN in the Presence of Dataset Bias 351

Table 3. Results for certifying label-flipping, individual, and ε-fairness by our method.

Name Label-flipping fairness Time + Individual fairness Time + ε-fairness Time

Salary (gender) 33.3% 0.2s 33.3% 0.2s 33.3% 0.2s

Student (gender) 60.0% 0.2s 44.6% 0.2s 32.3% 0.2s

German (gender) 48.0% 0.2s 44.0% 0.3s 43.0% 0.2s

Compas (race) 95.0% 0.3s 62.4% 1.4s 56.4% 1.1s

Compas (gender) 95.0% 0.3s 65.3% 1.3s 59.4% 1.0s

Default (gender) 83.2% 2.3s 73.3% 4.4s 64.4% 3.5s

Adult (race) 76.2% 2.2s 65.3% 4.5s 53.5% 5.3s

Adult (gender) 76.2% 2.2s 52.5% 3.5s 43.6% 3.3s

Based on the results in Table 2, we conclude that the accuracy of our method
is high (81.9% on average) despite its aggressive use of abstraction to reduce
the computational cost. Our method is also 7.5X to 126X faster than the naive
approach. Furthermore, the larger the dataset, the higher the speedup.

For medium and large datasets, it is infeasible for the naive enumeration
approach to compute and show the ground truth in Table 2. However, the fairness
scores of our method shown in Table 3 provide “lower bounds” for the ground
truth since our method is sound for certification. For example, when our method
reports 95% for Compas (race) in Table 3, it means the ground truth must be
≥95% (and thus the gap must be ≤5%). However, there does not seem to be
obvious relationship between the gap and the dataset size – the gap may be due
to some unique characterristics of each dataset.

Results on the Certification Rates. We now present the success rates of
our certification method for the three variants of fairness. Table 3 shows the
results for label-flipping fairness in Columns 2–3, label-flipping plus individual
fairness (denoted + Individual fairness) in Columns 4–5, and label-flipping plus
ε-fairness (denoted + ε-fairness) in Columns 6–7. For each variant of fairness,
we show the percentage of test inputs that are certified to be fair, together with
the average certification time (per test input). In all six datasets, Gender was
treated as the protected attribute. In addition, Race was treated as the protected
attribute for Compas and Adult.

From the results in Table 3, we see that as more stringent fairness standard
is used, the certified percentage either stays the same (as in Salary) or decreases
(as in Student). This is consistent with what we expect, since the classification
output is required to stay the same for an increasingly larger number of scenar-
ios. For Compas (race), in particular, adding ε-fairness on top of label-flipping
fairness causes the certified percentage to drop from 62.4% to 56.4%.

Nevertheless, our method still maintains a high certification percentage.
Recall that, for Salary, the 33.3% certification rate (for +Individual fairness)
is actually 100% accurate according to comparison with the ground truth in
Table 2, while the 44.6% certification rate (for +Individual fairness) is actually

352 Y. Li et al.

76.2% accurate. Furthermore, the efficiency of our method is high: for Adult,
which has 50,000 samples in the training set, the average certification time of
our method remains within a few seconds.

Table 4. Results for certifying label-flipping + ε-fairness with both Race and Gender
as protected attributes.

(a) Compas

White Other Wt. Avg

Male 61.9% 52.2% 52.8%

Female 100% 60.0% 63.7%

Wt. Avg 63.7% 53.7% 54.4%

(b) Adult

White Other Wt. Avg

Male 35.3% 33.3% 35.1%

Female 33.3% 66.7% 37.0%

Wt. Avg 34.7% 44.4% 35.6%

Results on Demographic Groups. Table 4 shows the certified percentage of
each demographic group, when both label-flipping and ε-fairness are considered,
and both Race and Gender are treated as protected attributes. The four demo-
graphic groups are (1) White Male, (2) White Female, (3) Other Male, and (4)
Other Female. For each group, we show the certified percentage obtained by our
method. In addition, we show the weighted averages for White and Other, as
well as the weighted averages for Male and Female.

For Compas, White Female has the highest certified percentage (100%) while
Other Female has the lowest certified percentage (52.2%); here, the classification
output represents the recidivism risk.

For Adult, Other Female has the highest certified percentage (66.7%) while
the other three groups have certified percentages in the range of 33.3%-35.3%.

The differences may be attributed to two sources, one of which is technical
and the other is social. The social reason is related to historical bias, which is
well documented for these datasets. If the actual percentages (ground truth) is
different, the percentages reported by our method will also be different. The
technical reason is related to the nature of the KNN algorithm itself, which we
explain as follows.

In these datasets, some demographic groups have significantly more samples
than others. In KNN, the lowest occurring group may have a limited number
of close neighbors. Thus, for each test input x from this group, its K nearest
neighbors tend to have a larger radius in the input vector space. As a result,
the impact of ε perturbation on x will be smaller, resulting in fewer changes to
its K nearest neighbors. That may be one of the reasons why, in Table 4, the
lowest occurring groups, White Female in Compas and Other Female in Adult,
have significantly higher certified percentage than other groups.

Results in Table 4 show that, even if a machine learning technique discrim-
inates against certain demographic groups, for an individual, the prediction
result produced by the machine learning technique may still be fair. This is
closely related to differences (and sometimes conflicts) between group fairness
and individual fairness: while group fairness focuses on statistical parity, individ-
ual fairness focuses on similar outcomes for similar individuals. Both are useful
notions and in many cases they are complementary.

Certifying the Fairness of KNN in the Presence of Dataset Bias 353

Caveat. Our work should not be construed as an endorsement nor criticism of
the use of machine learning techniques in socially sensitive applications. Instead,
it should be viewed as an effort on developing new methods and tools to help
improve our understanding of these techniques.

7 Related Work

For fairness certification, as explained earlier in this paper, our method is the
first method for certifying KNN in the presence of historical (dataset) bias.
While there are other KNN certification and falsification techniques, including
Jia et al. [20] and Li et al. [24,25], they focus solely on robustness against data
poisoning attacks as opposed to individual and ε-fairness against historical bias.
Meyer et al. [26,27] and Drews et al. [12] propose certification techniques that
handle dataset bias, but target different machine learning techniques (decision
tree or linear regression); furthermore, they do not handle ε-fairness.

Throughout this paper, we have assumed that the KNN learning (parameter-
tuning) step is not tampered with or subjected to fairness violation. However,
since the only impact of tampering with the KNN learning step will be changing
the optimal value of the parameter K, the biased KNN learning step can be
modeled using a properly over-approximated KSet. With this new KSet, our
method for certifying fairness of the prediction result (as presented in Sect. 4)
will work AS IS.

Our method aims to certify fairness with certainty. In contrast, there are
statistical techniques that can be used to prove that a system is fair or robust
with a high probability. Such techniques have been applied to various machine
learning models, for example, in VeriFair [6] and FairSquare [2]. However, they
are typically applied to the prediction step while ignoring the learning step,
although the learning step may be affected by dataset bias.

There are also techniques for mitigating bias in machine learning systems.
Some focus on improving the learning algorithms using random smoothing [33],
better embedding [7] or fair representation [34], while others rely on formal
methods such as iterative constraint solving [38]. There are also techniques for
repairing models to improve fairness [3]. Except for Ruoss et al. [34], most of
them focus on group fairness such as demographic parity and equal opportunity;
they are significantly different from our focus on certifying individual and ε-
fairness of the classification results in the presence of dataset bias.

At a high level, our method that leverages a sound over-approximate analysis
to certify fairness can be viewed as an instance of the abstract interpretation
paradigm [10]. Abstract interpretation based techniques have been successfully
used in many other settings, including verification of deep neural networks [17,
30], concurrent software [21,22,37], and cryptographic software [43,44].

Since fairness is a type of non-functional property, the verifica-
tion/certification techniques are often significantly different from techniques used
to verify/certify functional correctness. Instead, they are more closely related to
techniques for verifying/certifying robustness [8], noninterference [5], and side-
channel security [19,39,40,48], where a program is executed multiple times, each

354 Y. Li et al.

time for a different input drawn from a large (and sometimes infinite) set, to see
if they all agree on the output. At a high level, this is closely related to differen-
tial verification [28,31,32], synthesis of relational invariants [41] and verification
of hyper-properties [15,35].

8 Conclusions

We have presented a method for certifying the individual and ε-fairness of the
classification output of the KNN algorithm, under the assumption that the train-
ing dataset may have historical bias. Our method relies on abstract interpreta-
tion to soundly approximate the arithmetic computations in the learning and
prediction steps. Our experimental evaluation shows that the method is efficient
in handling popular datasets from the fairness research literature and accurate
enough in obtaining certifications for a large amount of test data. While this
paper focuses on KNN only, as a future work, we plan to extend our method to
other machine learning models.

References

1. Adeniyi, D.A., Wei, Z., Yongquan, Y.: Automated web usage data mining and
recommendation system using k-nearest neighbor (KNN) classification method.
Appl. Comput. Inf. 12(1), 90–108 (2016)

2. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: FairSquare: probabilistic
verification of program fairness. Proc. ACM Programm. Lang. 1(OOPSLA), 1–30
(2017)

3. Albarghouthi, A., D’Antoni, L., Drews, S.: Repairing decision-making programs
under uncertainty. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol.
10426, pp. 181–200. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63387-9 9

4. Andersson, M., Tran, L.: Predicting movie ratings using KNN (2020)
5. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.

In: IEEE Computer Security Foundations Workshop, pp. 100–114 (2004)
6. Bastani, O., Zhang, X., Solar-Lezama, A.: Probabilistic verification of fairness

properties via concentration. Proc. ACM Programm. Lang. 1(OOPSLA), 1–27
(2019)

7. Bolukbasi, T., Chang, K.W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to
computer programmer as woman is to homemaker? Debiasing word embeddings.
In: Annual Conference on Neural Information Processing Systems, vol. 29 (2016)

8. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of pro-
grams. Commun. ACM 55(8), 107–115 (2012)

9. Cortez, P., Silva, A.M.G.: Using data mining to predict secondary school student
performance. EUROSIS-ETI (2008)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: ACM Sym-
posium on Principles of Programming Languages, pp. 238–252 (1977)

11. Dieterich, W., Mendoza, C., Brennan, T.: COMPAS risk scales: demonstrating
accuracy equity and predictive parity. Northpointe Inc (2016)

https://doi.org/10.1007/978-3-319-63387-9_9
https://doi.org/10.1007/978-3-319-63387-9_9

Certifying the Fairness of KNN in the Presence of Dataset Bias 355

12. Drews, S., Albarghouthi, A., D’Antoni, L.: Proving data-poisoning robustness in
decision trees. In: ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation, pp. 1083–1097 (2020)

13. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

14. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.S.: Fairness through
awareness. In: Innovations in Theoretical Computer Science, pp. 214–226 (2012)

15. Finkbeiner, B., Haas, L., Torfah, H.: Canonical representations of k-safety hyper-
properties. In: IEEE Computer Security Foundations Symposium, pp. 17–31 (2019)

16. Firdausi, I., Erwin, A., Nugroho, A.S., et al.: Analysis of machine learning tech-
niques used in behavior-based malware detection. In: 2010 Second International
Conference on Advances in Computing, Control, and Telecommunication Tech-
nologies, pp. 201–203. IEEE (2010)

17. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: IEEE Symposium on Security and Privacy, pp. 3–18 (2018)

18. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in
classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS,
vol. 2888, pp. 986–996. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-39964-3 62

19. Guo, S., Wu, M., Wang, C.: Adversarial symbolic execution for detecting
concurrency-related cache timing leaks. In: ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engi-
neering, pp. 377–388 (2018)

20. Jia, J., Liu, Y., Cao, X., Gong, N.Z.: Certified robustness of nearest neighbors
against data poisoning and backdoor attacks. In: The AAAI Conference on Artifi-
cial Intelligence (2022)

21. Kusano, M., Wang, C.: Flow-sensitive composition of thread-modular abstract
interpretation. In: ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp. 799–809 (2016)

22. Kusano, M., Wang, C.: Thread-modular static analysis for relaxed memory mod-
els. In: ACM Joint Meeting on European Software Engineering Conference and
Symposium on Foundations of Software Engineering, pp. 337–348 (2017)

23. Li, Y., Fang, B., Guo, L., Chen, Y.: Network anomaly detection based on TCM-
KNN algorithm. In: ACM Symposium on Information, Computer and Communi-
cations Security, pp. 13–19 (2007)

24. Li, Y., Wang, J., Wang, C.: Proving robustness of KNN against adversarial data
poisoning. In: International Conference on Formal Methods in Computer-Aided
Design, pp. 7–16 (2022)

25. Li, Y., Wang, J., Wang, C.: Systematic testing of the data-poisoning robustness
of KNN. In: ACM SIGSOFT International Symposium on Software Testing and
Analysis (2023)

26. Meyer, A.P., Albarghouthi, A., D’Antoni, L.: Certifying robustness to pro-
grammable data bias in decision trees. In: Annual Conference on Neural Infor-
mation Processing Systems, pp. 26276–26288 (2021)

27. Meyer, A.P., Albarghouthi, A., D’Antoni, L.: Certifying data-bias robustness in
linear regression. CoRR abs/2206.03575 (2022)

28. Mohammadinejad, S., Paulsen, B., Deshmukh, J.V., Wang, C.: DiffRNN: differ-
ential verification of recurrent neural networks. In: International Conference on
Formal Modeling and Analysis of Timed Systems, pp. 117–134 (2021)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-540-39964-3_62
https://doi.org/10.1007/978-3-540-39964-3_62

356 Y. Li et al.

29. Narudin, F.A., Feizollah, A., Anuar, N.B., Gani, A.: Evaluation of machine learning
classifiers for mobile malware detection. Soft. Comput. 20(1), 343–357 (2016)

30. Paulsen, B., Wang, C.: Example guided synthesis of linear approximations for
neural network verification. In: International Conference on Computer Aided Ver-
ification, pp. 149–170 (2022)

31. Paulsen, B., Wang, J., Wang, C.: ReluDiff: differential verification of deep neu-
ral networks. In: International Conference on Software Engineering, pp. 714–726
(2020)

32. Paulsen, B., Wang, J., Wang, J., Wang, C.: NEURODIFF: scalable differential
verification of neural networks using fine-grained approximation. In: International
Conference on Automated Software Engineering, pp. 784–796 (2020)

33. Rosenfeld, E., Winston, E., Ravikumar, P., Kolter, J.Z.: Certified robustness to
label-flipping attacks via randomized smoothing. In: International Conference on
Machine Learning, vol. 119, pp. 8230–8241 (2020)

34. Ruoss, A., Balunovic, M., Fischer, M., Vechev, M.T.: Learning certified individu-
ally fair representations. In: Annual Conference on Neural Information Processing
Systems (2020)

35. Sousa, M., Dillig, I.: Cartesian hoare logic for verifying k-safety properties. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
57–69 (2016)

36. Su, M.Y.: Real-time anomaly detection systems for denial-of-service attacks by
weighted k-nearest-neighbor classifiers. Expert Syst. Appl. 38(4), 3492–3498 (2011)

37. Sung, C., Kusano, M., Wang, C.: Modular verification of interrupt-driven software.
In: International Conference on Automated Software Engineering, pp. 206–216
(2017)

38. Wang, J., Li, Y., Wang, C.: Synthesizing fair decision trees via iterative constraint
solving. In: Shoham, S., Vizel, Y. (eds.) International Conference on Computer
Aided Verification, pp. 364–385. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-13188-2 18

39. Wang, J., Sung, C., Raghothaman, M., Wang, C.: Data-driven synthesis of provably
sound side channel analyses. In: International Conference on Software Engineering,
pp. 810–822 (2021)

40. Wang, J., Sung, C., Wang, C.: Mitigating power side channels during compila-
tion. In: ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 590–601 (2019)

41. Wang, J., Wang, C.: Learning to synthesize relational invariants. In: International
Conference on Automated Software Engineering, pp. 65:1–65:12 (2022)

42. Weisberg, S.: Applied Linear Regression, p. 194. Wiley (1985)
43. Wu, M., Guo, S., Schaumont, P., Wang, C.: Eliminating timing side-channel leaks

using program repair. In: ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 15–26 (2018)

44. Wu, M., Wang, C.: Abstract interpretation under speculative execution. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
802–815 (2019)

45. Wu, W., Zhang, W., Yang, Y., Wang, Q.: DREX: developer recommendation with
k-nearest-neighbor search and expertise ranking. In: Asia-Pacific Software Engi-
neering Conference, pp. 389–396 (2011)

46. Xie, M., Hu, J., Han, S., Chen, H.H.: Scalable hypergrid K-NN-based online
anomaly detection in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst.
24(8), 1661–1670 (2012)

https://doi.org/10.1007/978-3-031-13188-2_18
https://doi.org/10.1007/978-3-031-13188-2_18

Certifying the Fairness of KNN in the Presence of Dataset Bias 357

47. Yeh, I.C., Lien, C.h.: The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Exp. Syst. Appl. 36(2),
2473–2480 (2009)

48. Zhang, J., Gao, P., Song, F., Wang, C.: SCInfer: refinement-based verification of
software countermeasures against side-channel attacks. In: International Confer-
ence on Computer Aided Verification, pp. 157–177 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Monitoring Algorithmic Fairness

Thomas A. Henzinger , Mahyar Karimi , Konstantin Kueffner ,
and Kaushik Mallik(B)

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
{tah,mahyar.karimi,konstantin.kueffner,kaushik.mallik}@ist.ac.at

Abstract. Machine-learned systems are in widespread use for making
decisions about humans, and it is important that they are fair, i.e., not
biased against individuals based on sensitive attributes. We present run-
time verification of algorithmic fairness for systems whose models are
unknown, but are assumed to have a Markov chain structure. We intro-
duce a specification language that can model many common algorithmic
fairness properties, such as demographic parity, equal opportunity, and
social burden. We build monitors that observe a long sequence of events
as generated by a given system, and output, after each observation, a
quantitative estimate of how fair or biased the system was on that run
until that point in time. The estimate is proven to be correct modulo a
variable error bound and a given confidence level, where the error bound
gets tighter as the observed sequence gets longer. Our monitors are of two
types, and use, respectively, frequentist and Bayesian statistical inference
techniques. While the frequentist monitors compute estimates that are
objectively correct with respect to the ground truth, the Bayesian mon-
itors compute estimates that are correct subject to a given prior belief
about the system’s model. Using a prototype implementation, we show
how we can monitor if a bank is fair in giving loans to applicants from
different social backgrounds, and if a college is fair in admitting stu-
dents while maintaining a reasonable financial burden on the society.
Although they exhibit different theoretical complexities in certain cases,
in our experiments, both frequentist and Bayesian monitors took less
than a millisecond to update their verdicts after each observation.

1 Introduction

Runtime verification complements traditional static verification techniques, by
offering lightweight solutions for checking properties based on a single, possibly
long execution trace of a given system [8]. We present new runtime verification
techniques for the problem of bias detection in decision-making software. The use
of software for making critical decisions about humans is a growing trend; exam-
ple areas include judiciary [13,20], policing [23,49], banking [48], etc. It is impor-
tant that these software systems are unbiased towards the protected attributes

This work is supported by the European Research Council under Grant No.:
ERC-2020-AdG101020093.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 358–382, 2023.
https://doi.org/10.1007/978-3-031-37703-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_17&domain=pdf
http://orcid.org/0000-0002-2985-7724
http://orcid.org/0009-0005-0820-1696
http://orcid.org/0000-0001-8974-2542
http://orcid.org/0000-0001-9864-7475
https://doi.org/10.1007/978-3-031-37703-7_17

Monitoring Algorithmic Fairness 359

of humans, like gender, ethnicity, etc. However, they have often shown biases in
their decisions in the past [20,47,55,57,58]. While there are many approaches
for mitigating biases before deployment [20,47,55,57,58], recent runtime verifi-
cation approaches [3,34] offer a new complementary tool to oversee algorithmic
fairness in AI and machine-learned decision makers during deployment.

To verify algorithmic fairness at runtime, the given decision-maker is treated
as a generator of events with an unknown model. The goal is to algorithmically
design lightweight but rigorous runtime monitors against quantitative formal
specifications. The monitors observe a long stream of events and, after each
observation, output a quantitative, statistically sound estimate of how fair or
biased the generator was until that point in time. While the existing approaches
[3,34] considered only sequential decision making models and built monitors
from the frequentist viewpoint in statistics, we allow the richer class of Markov
chain models and present monitors from both the frequentist and the Bayesian
statistical viewpoints.

Monitoring algorithmic fairness involves on-the-fly statistical estimations, a
feature that has not been well-explored in the traditional runtime verification
literature. As far as the algorithmic fairness literature is concerned, the existing
works are mostly model-based, and either minimize decision biases of machine-
learned systems at design-time (i.e., pre-processing) [11,41,65,66], or verify their
absence at inspection-time (i.e., post-processing) [32]. In contrast, we verify algo-
rithmic fairness at runtime, and do not require an explicit model of the gener-
ator. On one hand, the model-independence makes the monitors trustworthy,
and on the other hand, it complements the existing model-based static analyses
and design techniques, which are often insufficient due to partially unknown or
imprecise models of systems in real-world environments.

We assume that the sequences of events generated by the generator can
be modeled as sequences of states visited by a finite unknown Markov chain.
This implies that the generator is well-behaved and the events follow each other
according to some fixed probability distributions. Not only is this assumption
satisfied by many machine-learned systems (see Sect. 1.1 for examples), it also
provides just enough structure to lay the bare-bones foundations for runtime
verification of algorithmic fairness properties. We emphasize that we do not
require knowledge of the transition probabilities of the underlying Markov chain.

We propose a new specification language, called the Probabilistic Specifica-
tion Expressions (PSEs), which can formalize a majority of the existing algo-
rithmic fairness properties in the literature, including demographic parity [21],
equal opportunity [32], disparate impact [25], etc. Let Q be the set of events.
Syntactically, a PSE is a restricted arithmetic expression over the (unknown)
transition probabilities of a Markov chain with the state space Q. Semantically,
a PSE ϕ over Q is a function that maps every Markov chain M with the state
space Q to a real number, and the value ϕ(M) represents the degree of fairness
or bias (with respect to ϕ) in the generator M . Our monitors observe a long
sequence of events from Q, and after each observation, compute a statistically
rigorous estimate of ϕ(M) with a PAC-style error bound for a given confidence
level. As the observed sequence gets longer, the error bound gets tighter.

360 T. A. Henzinger et al.

Algorithmic fairness properties that are expressible using PSEs are quan-
titative refinements of the traditional qualitative fairness properties studied in
formal methods. For example, a qualitative fairness property may require that
if a certain event A occurs infinitely often, then another event B should follow
infinitely often. In particular, a coin is qualitatively fair if infinitely many coin
tosses contain both infinitely many heads and infinitely many tails. In contrast,
the coin will be algorithmically fair (i.e., unbiased) if approximately half of the
tosses come up heads. Technically, while qualitative weak and strong fairness
properties are ω-regular, the algorithmic fairness properties are statistical and
require counting. Moreover, for a qualitative fairness property, the satisfaction or
violation cannot be established based on a finite prefix of the observed sequence.
In contrast, for any given finite prefix of observations, the value of an algorith-
mic fairness property can be estimated using statistical techniques, assuming the
future behaves statistically like the past (the Markov assumption).

As our main contribution, we present two different monitoring algorithms,
using tools from frequentist and Bayesian statistics, respectively. The central
idea of the frequentist monitor is that the probability of every transition of the
monitored Markov chain M can be estimated using the fraction of times the
transition is taken per visit to its source vertex. Building on this, we present a
practical implementation of the frequentist monitor that can estimate the value
of a given PSE from an observed finite sequence of states. For the coin example,
after every new toss, the frequentist monitor will update its estimate of proba-
bility of seeing heads by computing the fraction of times the coin came up heads
so far, and then by using concentration bounds to find a tight error bound for
a given confidence level. On the other hand, the central idea of the Bayesian
monitor is that we begin with a prior belief about the transition probabilities of
M , and having seen a finite sequence of observations, we can obtain an updated
posterior belief about M . For a given confidence level, the output of the monitor
is computed by applying concentration inequalities to find a tight error bound
around the mean of the posterior belief. For the coin example, the Bayesian
monitor will begin with a prior belief about the degree of fairness, and, after
observing the outcome of each new toss, will compute a new posterior belief.
If the prior belief agrees with the true model with a high probability, then the
Bayesian monitor’s output converges to the true value of the PSE more quickly
than the frequentist monitor. In general, both monitors can efficiently estimate
more complicated PSEs, such as the ratio and the squared difference of the
probabilities of heads of two different coins. The choice of the monitor for a par-
ticular application depends on whether an objective or a subjective evaluation,
with respect to a given prior, is desired.

Both frequentist and Bayesian monitors use registers (and counters as a
restricted class of registers) to keep counts of the relevant events and store the
intermediate results. If the size of the given PSE is n, then, in theory, the fre-
quentist monitor uses O(n42n) registers and computes its output in O(n42n)
time after each new observation, whereas the Bayesian monitor uses O(n22n)
registers and computes its output in O(n22n) time after each new observation.

Monitoring Algorithmic Fairness 361

The computation time and the required number of registers get drastically
reduced to O(n2) for the frequentist monitor with PSEs that contain up to one
division operator, and for the Bayesian monitor with polynomial PSEs (possibly
having negative exponents in the monomials). This shows that under given cir-
cumstances, one or the other type of the monitor can be favorable computation-
wise. These special, efficient cases cover many algorithmic fairness properties of
interest, such as demographic parity and equal opportunity.

Our experiments confirm that our monitors are fast in practice. Using a
prototype implementation in Rust, we monitored a couple of decision-making
systems adapted from the literature. In particular, we monitor if a bank is fair
in lending money to applicants from different demographic groups [48], and if
a college is fair in admitting students without creating an unreasonable finan-
cial burden on the society [54]. In our experiments, both monitors took, on an
average, less than a millisecond to update their verdicts after each observation,
and only used tens of internal registers to operate, thereby demonstrating their
practical usability at runtime.

In short, we advocate that runtime verification introduces a new set of tools in
the area of algorithmic fairness, using which we can monitor biases of deployed AI
and machine-learned systems in real-time. While existing monitoring approaches
only support sequential decision making problems and use only the frequentist
statistical viewpoint, we present monitors for the more general class of Markov
chain system models using both frequentist and Bayesian statistical viewpoints.

All proofs can be found in the longer version of the paper [33].

1.1 Motivating Examples

We first present two real-world examples from the algorithmic fairness literature
to motivate the problem; these examples will later be used to illustrate the
technical developments.

The Lending Problem [48]: Suppose a bank lends money to individuals based
on certain attributes, like credit score, age group, etc. The bank wants to max-
imize profit by lending money to only those who will repay the loan in time—
called the “true individuals.” There is a sensitive attribute (e.g., ethnicity) clas-
sifying the population into two groups g and g. The bank will be considered fair
(in lending money) if its lending policy is independent of an individual’s mem-
bership in g or g. Several group fairness metrics from the literature are relevant
in this context. Disparate impact [25] quantifies the ratio of the probability of
an individual from g getting the loan to the probability of an individual from g
getting the loan, which should be close to 1 for the bank to be considered fair.
Demographic parity [21] quantifies the difference between the probability of an
individual from g getting the loan and the probability of an individual from g
getting the loan, which should be close to 0 for the bank to be considered fair.
Equal opportunity [32] quantifies the difference between the probability of a true
individual from g getting the loan and the probability of a true individual from
g getting the loan, which should be close to 0 for the bank to be considered fair.

362 T. A. Henzinger et al.

A discussion on the relative merit of various different algorithmic fairness notions
is out of scope of this paper, but can be found in the literature [15,22,43,62].
We show how we can monitor whether a given group fairness criteria is fulfilled
by the bank, by observing a sequence of lending decisions.

The College Admission Problem [54]: Consider a college that announces a
cutoff of grades for admitting students through an entrance examination. Based
on the merit, every truly qualified student belongs to group g, and the rest
to group g. Knowing the cutoff, every student can choose to invest a sum of
money—proportional to the gap between the cutoff and their true merit—to be
able to reach the cutoff, e.g., by taking private tuition classes. On the other hand,
the college’s utility is in minimizing admission of students from g, which can be
accomplished by raising the cutoff to a level that is too expensive to be achieved
by the students from g and yet easy to be achieved by the students from g. The
social burden associated to the college’s cutoff choice is the expected expense of
every student from g, which should be close to 0 for the college to be considered
fair (towards the society). We show how we can monitor the social burden, by
observing a sequence of investment decisions made by the students from g.

1.2 Related Work

There has been a plethora of work on algorithmic fairness from the machine
learning standpoint [10,12,21,32,38,42,45,46,52,59,63,66]. In general, these
works improve algorithmic fairness through de-biasing the training dataset (pre-
processing), or through incentivizing the learning algorithm to make fair deci-
sions (in-processing), or through eliminating biases from the output of the
machine-learned model (post-processing). All of these are interventions in the
design of the system, whereas our monitors treat the system as already deployed.

Recently, formal methods-inspired techniques have been used to guarantee
algorithmic fairness through the verification of a learned model [2,9,29,53,61],
and enforcement of robustness [6,30,39]. All of these works verify or enforce
algorithmic fairness statically on all runs of the system with high probability.
This requires certain knowledge about the system model, which may not be
always available. Our runtime monitor dynamically verifies whether the current
run of an opaque system is fair.

Our frequentist monitor is closely related to the novel work of Albarghouthi
et al. [3], where the authors build a programming framework that allows run-
time monitoring of algorithmic fairness properties on programs. Their monitor
evaluates the algorithmic fairness of repeated “single-shot” decisions made by
machine-learned functions on a sequence of samples drawn from an underly-
ing unknown but fixed distribution, which is a special case of our more general
Markov chain model of the generator. They do not consider the Bayesian point
of view. Moreover, we argue and empirically show in Sect. 4 that our frequentist
approach produces significantly tighter statistical estimates than their approach
on most PSEs. On the flip side, their specification language is more expressive,
in that they allow atomic variables for expected values of events, which is useful

Monitoring Algorithmic Fairness 363

for specifying individual fairness criteria [21]. We only consider group fairness,
and leave individual fairness as part of future research. Also, they allow logical
operators (like boolean connectives) in their specification language. However, we
obtain tighter statistical estimates for the core arithmetic part of algorithmic
fairness properties (through PSEs), and point out that we can deal with logical
operators just like they do in a straightforward manner.

Shortly after the first manuscript of this paper was written, we published
a separate work for monitoring long-run fairness in sequential decision making
problems, where the feature distribution of the population may dynamically
change due to the actions of the individuals [34]. Although this other work
generalizes our current paper in some aspects (support for dynamic changes in
the model), it only allows sequential decision making models (instead of Markov
chains) and does not consider the Bayesian monitoring perspective.

There is a large body of research on monitoring, though the considered prop-
erties are mainly temporal [5,7,19,24,40,50,60]. Unfortunately, these techniques
do not directly extend to monitoring algorithmic fairness, since checking algo-
rithmic fairness requires statistical methods, which is beyond the limit of finite
automata-based monitors used by the classical techniques. Although there are
works on quantitative monitoring that use richer types of monitors (with coun-
ters/registers like us) [28,35,36,56], the considered specifications do not easily
extend to statistical properties like algorithmic fairness. One exception is the
work by Ferrère et al. [26], which monitors certain statistical properties, like
mode and median of a given sequence of events. Firstly, they do not consider
algorithmic fairness properties. Secondly, their monitors’ outputs are correct only
as the length of the observed sequence approaches infinity (asymptotic guaran-
tee), whereas our monitors’ outputs are always correct with high confidence
(finite-sample guarantee), and the precision gets better for longer sequences.

Although our work uses similar tools as used in statistical verification [1,
4,14,17,64], the goals are different. In traditional statistical verification, the
system’s runs are chosen probabilistically, and it is verified if any run of the
system satisfies a boolean property with a certain probability. For us, the run
is given as input to the monitor, and it is this run that is verified against a
quantitative algorithmic fairness property with statistical error bounds. To the
best of our knowledge, existing works on statistical verification do not consider
algorithmic fairness properties.

2 Preliminaries

For any alphabet Σ, the notation Σ∗ represents the set of all finite words over
Σ. We write R, N, and N

+ to denote the sets of real numbers, natural numbers
(including zero), and positive integers, respectively. For a pair of real (natural)
numbers a, b with a < b, we write [a, b] ([a . . b]) to denote the set of all real
(natural) numbers between and including a and b. For a given c, r ∈ R, we write
[c ± r] to denote the set [c − r, c + r]. For simpler notation, we will use | · | to
denote both the cardinality of a set and the absolute value of a real number,
whenever the intended use is clear.

364 T. A. Henzinger et al.

For a given vector v ∈ R
n and a given m × n real matrix M , for some m,n,

we write vi to denote the i-th element of v and write Mij to denote the element
at the i-th row and the j-th column of M . For a given n ∈ N

+, a simplex
is the set of vectors Δ(n) := {x ∈ [0, 1]n+1 | ∑n+1

i=1 xi = 1}. Notice that the
dimension of Δ(n) is n + 1 (and not n), a convention that is standard due to
the interpretation of Δ(n) as the n + 1 vertices of an n-dimensional polytope.
A stochastic matrix of dimension m × m is a matrix whose every row is in
Δ(m−1), i.e. M ∈ Δ(m−1)m. Random variables will be denoted using uppercase
symbols from the Latin alphabet (e.g. X), while the associated outcomes will
be denoted using lowercase font of the same symbol (x is an outcome of X). We
will interchangeably use the expected value E(X) and the mean μX of X. For a
given set S, define D(S) as the set of every random variable—called a probability
distribution1—with set of outcomes being 2S . A Bernoulli random variable that
produces “1” (the alternative is “0”) with probability p is written as Bernoulli(p).

2.1 Markov Chains as Randomized Generators of Events

We use finite Markov chains as sequential randomized generators of events. A
(finite) Markov chain M is a triple (Q,M, π), where Q = [1 . . N] is a set of
states for a finite N , M ∈ Δ(N −1)N is a stochastic matrix called the transition
probability matrix, and π ∈ D(Q) is the distribution over initial states. We often
refer to a pair of states (i, j) ∈ Q×Q as an edge. The Markov chain M generates
an infinite sequence of random variables X0 = π,X1, . . ., with Xi ∈ D(Q) for
every i, such that the Markov property is satisfied: P(Xn+1 = in+1 | X0 =
i0, . . . , Xn = in) = P(Xn+1 = in+1 | Xn = in), which is Minin+1 in our case.
A finite path #„x = x0, . . . , xn of M is a finite word over Q such that for every
t ∈ [0;n], P(Xt = xt) > 0. Let Paths(M) be the set of every finite path of M.

We use Markov chains to model the probabilistic interaction between a
machine-learned decision maker with its environment. Intuitively, the Markov
assumption on the model puts the restriction that the decision maker does not
change over time, e.g., due to retraining.

In Fig. 1 we show the Markov chains for the lending and the college admission
examples from Sect. 1.1. The Markov chain for the lending example captures
the sequence of loan-related probabilistic events, namely, that a loan applicant is
randomly sampled and the group information (g or g) is revealed, a probabilistic
decision is made by the decision-maker and either the loan was granted (gy or
gy, depending on the group) or refused (y), and if the loan is granted then with
some probabilities it either gets repaid (z) or defaulted (z). The Markov chain
for the college admission example captures the sequence of admission events,
namely, that a candidate is randomly sampled and the group is revealed (g, g),
and when the candidate is from group g (truly qualified) then the amount of
money invested for admission is also revealed.

1 An alternate commonly used definition of probability distribution is directly in terms
of the probability measure induced over S, instead of through the random variable.

Monitoring Algorithmic Fairness 365

init y

gy

gy

z

z

g

g

init

g

g

0

1

...

N

Fig. 1. Markov chains for the lending and the college-admission examples. (left) The
lending example: The state init denotes the initiation of the sampling, and the rest
represent the selected individual, namely, g and g denote the two groups, (gy) and (gy)
denote that the individual is respectively from group g and group g and the loan was
granted, y denotes that the loan was refused, and z and z denote whether the loan
was repaid or not. (right) The college admission example: The state init denotes the
initiation of the sampling, the states g, g represent the group identity of the selected
candidate, and the states {0, . . . , N} represent the amount of money invested by a truly
eligible candidate.

2.2 Randomized Register Monitors

Randomized register monitors, or simply monitors, are adapted from the (deter-
ministic) polynomial monitors of Ferrère et al. [27]. Let R be a finite set of integer
variables called registers. A function v : R → N assigning concrete value to every
register in R is called a valuation of R. Let N

R denote the set of all valuations
of R. Registers can be read and written according to relations in the signature
S = 〈0, 1,+,−,×,÷,≤〉. We consider two basic operations on registers:

– A test is a conjunction of atomic formulas over S and their negation;
– An update is a mapping from variables to terms over S.

We use Φ(R) and Γ (R) to respectively denote the set of tests and updates over
R. Counters are special registers with a restricted signature S = 〈0, 1,+,−,≤〉.
Definition 1 (Randomized register monitor). A randomized register mon-
itor is a tuple (Σ,Λ,R, λ, T) where Σ is a finite input alphabet, Λ is an output
alphabet, R is a finite set of registers, λ : N

R → Λ is an output function, and
T : Σ × Φ(R) → D(Γ (R)) is the randomized transition function such that for
every σ ∈ Σ and for every valuation v ∈ N

R, there exists a unique φ ∈ Φ(R)
with v |= φ and T (σ, φ) ∈ D(Γ (R)). A deterministic register monitor is a ran-
domized register monitor for which T (σ, φ) is a Dirac delta distribution, if it is
defined.

A state of a monitor A is a valuation of its registers v ∈ N
R. The monitor

A transitions from state v to a distribution over states given by the random
variable Y = T (σ, φ) on input σ ∈ Σ if there exists φ such that v |= φ. Let γ
be an outcome of Y with P(Y = γ) > 0, in which case the registers are updated
as v′(x) = v(γ(x)) for every x ∈ R, and the respective concrete transition is

366 T. A. Henzinger et al.

written as v
σ−→ v′. A run of A on a word w0 . . . wn ∈ Σ∗ is a sequence of concrete

transitions v0
w0−−→ v1

w1−−→ . . .
wn−−→ vn+1. The probabilistic transitions of A induce

a probability distribution over the sample space of finite runs of the monitor,
denoted P̂(·). For a given finite word w ∈ Σ∗, the semantics of the monitor A
is given by a random variable [[A]](w) := λ(Y) inducing the probability measure
PA, where Y is the random variable representing the distribution over the final
state in a run of A on the word w, i.e., PA(Y = v) := P̂({r = r0 . . . rm ∈ Σ∗ |
r is a run of A on w and rm = v}).
Example: A Monitor for Detecting the (Unknown) Bias of a Coin. We
present a simple deterministic monitor that computes a PAC estimate of the bias
of an unknown coin from a sequence of toss outcomes, where the outcomes are
denoted as “h” for heads and “t” for tails. The input alphabet is the set of toss
outcomes, i.e., Σ = {h, t}, the output alphabet is the set of every bias intervals,
i.e., Γ = {[a, b] | 0 ≤ a < b ≤ 1}, the set of registers is R = {rn, rh}, where
rn and rh are counters counting the total number of tosses and the number of
heads, respectively, and the output function λ maps every valuation of rn, rh

to an interval estimate of the bias that has the form λ ≡ v(rh)/v(rn) ± ε(rn, δ),
where δ ∈ [0, 1] is a given upper bound on the probability of an incorrect estimate
and ε(rn, δ) is the estimation error computed using PAC analysis. For instance,
after observing a sequence of 67 tosses with 36 heads, the values of the registers
will be v(rn) = 67 and v(rh) = 36, and the output of the monitor will be
λ(67, 36) = 36/67 ± ε(n, δ) for some appropriate ε(·). Now, suppose the next
input to the monitor is h, in which case the monitor’s transition is given as
T (h, ·) = (rn +1, rh +1), which updates the registers to the new values v′(rn) =
67 + 1 = 68 and v′(rh) = 36 + 1 = 37. For this example, the tests Φ(R) over the
registers are redundant, but they can be used to construct monitors for more
complex properties.

3 Algorithmic Fairness Specifications and Problem
Formulation

3.1 Probabilistic Specification Expressions

To formalize algorithmic fairness properties, like the ones in Sect. 1.1, we intro-
duce probabilistic specification expressions (PSE). A PSE ϕ over a given finite
set Q is an algebraic expression with some restricted set of operations that uses
variables labeled vij with i, j ∈ Q and whose domains are the real interval [0, 1].
The syntax of ϕ is:

ξ ::= v ∈ {vij}i,j∈Q | ξ · ξ | 1 ÷ ξ, (1a)
ϕ ::= κ ∈ R | ξ | ϕ + ϕ | ϕ − ϕ | ϕ · ϕ | (ϕ), (1b)

where {vij}i,j∈Q are the variables with domain [0, 1] and κ is a constant. The
expression ξ in (1a) is called a monomial and is simply a product of powers of
variables with integer exponents. A polynomial is a weighted sum of monomials

Monitoring Algorithmic Fairness 367

with constant weights.2 Syntactically, polynomials form a strict subclass of the
expressions definable using (1b), because the product of two polynomials is not a
polynomial, but is a valid expression according to (1b). A PSE ϕ is division-free
if there is no division operator involved in ϕ. The size of an expression ϕ is the
total number of arithmatic operators (i.e. +,−, ·,÷) in ϕ. We use Vϕ to denote
the set of variables appearing in the expression ϕ, and for every V ⊆ Vϕ we
define Dom(V) := {i ∈ Q | ∃vij ∈ V ∨ ∃vki ∈ V } as the set containing any state
of the Markov chain that is involved in some variable in V .

The semantics of a PSE ϕ is interpreted statically on the unknown Markov
chain M : we write ϕ(M) to denote the evaluation or the value of ϕ by substitut-
ing every variable vij in ϕ with Mij . E.g., for a Markov chain with state space
{1, 2} and transition probabilities M11 = 0.2, M12 = 0.8, M21 = 0.4, and M22 =
0.6, the expression ϕ = v11 − v21 has the evaluation ϕ(M) = 0.2 − 0.4 = −0.2.
We will assume that for every expression (1 ÷ ξ), ξ(M) �= 0.

Example: Group Fairness. Using PSEs, we can express the group fairness
properties for the lending example described in Sect. 1.1, with the help of the
Markov chain in the left subfigure of Fig. 1:

Disparate impact [25]: vgy ÷ vgy

Demographic parity [21]: vgy − vgy

The equal opportunity criterion requires the following probability to be close
to zero: p = P(y | g, z) − P(y | g, z), which is tricky to monitor as p contains
the counter-factual probabilities representing “the probability that an individual
from a group would repay had the loan been granted.” We apply Bayes’ rule,
and turn p into the following equivalent form: p′ = P(z|g,y)·P(y|g)

P(z|g) − P(z|g,y)·P(y|g)
P(z|g) .

Assuming P(z | g) = c1 and P(z | g) = c2, where c1 and c2 are known constants,
the property p′ can be encoded as a PSE as below:

Equal opportunity [32]: (v(gy)z ·vgy)÷c1−(v(gy)z ·vgy)÷c2.

Example: Social Burden. Using PSEs, we can express the social burden of
the college admission example described in Sect. 1.1, with the help of the Markov
chain depicted in the right subfigure of Fig. 1:

Social burden [54]: 1 · vg1 + . . . + N · vgN .

3.2 The Monitoring Problem

Informally, our goal is to build monitors that observe a single long path of a
Markov chain and, after each observation, output a new estimate for the value
of the PSE. Since the monitor’s estimate is based on statistics collected from

2 Although monomials and polynomials usually only have positive exponents, we take
the liberty to use the terminologies even when negative exponents are present.

368 T. A. Henzinger et al.

a finite path, the output may be incorrect with some probability, where the
source of this probability is different between the frequentist and the Bayesian
approaches. In the frequentist approach, the underlying Markov chain is fixed
(but unknown), and the randomness stems from the sampling of the observed
path. In the Bayesian approach, the observed path is fixed, and the randomness
stems from the uncertainty about a prior specifying the Markov chain’s param-
eters. The commonality is that, in both cases, we want our monitors to estimate
the value of the PSE up to an error with a fixed probabilistic confidence.

We formalize the monitoring problem separately for the two approaches. A
problem instance is a triple (Q,ϕ, δ), where Q = [1 . . N] is a set of states, ϕ is
a PSE over Q, and δ ∈ [0, 1] is a constant. In the frequentist approach, we use
Ps to denote the probability measure induced by sampling of paths, and in the
Bayesian approach we use Pθ to denote the probability measure induced by the
prior probability density function pθ : Δ(n − 1)n → R ∪ {∞} over the transition
matrix of the Markov chain. In both cases, the output alphabets of the monitors
contain every real interval.

Problem 1 (Frequentist monitor). Suppose (Q,ϕ, δ) is a problem instance
given as input. Design a monitor A such that for every Markov chain M with
transition probability matrix M and for every finite path #„x ∈ Paths(M):

Ps,A (ϕ(M) ∈ [[A]](#„x)) ≥ 1 − δ, (2)

where Ps,A is the joint probability measure of Ps and PA.

Problem 2 (Bayesian monitor). Suppose (Q,ϕ, δ) is a problem instance and
pθ is a prior density function, both given as inputs. Design a monitor A such
that for every Markov chain M with transition probability matrix M and for
every finite path #„x ∈ Paths(M):

Pθ,A (ϕ(M) ∈ [[A]](#„x) | #„x) ≥ 1 − δ, (3)

where Pθ,A is the joint probability measure of Pθ and PA.

Notice that the state space of the Markov chain and the input alphabet of the
monitor are the same, and so, many times, we refer to observed states as (input)
symbols, and vice versa. The estimate [l, u] = [[A]](#„x) is called the (1− δ) · 100%
confidence interval for ϕ(M).3 The radius, given by ε = 0.5 · (u− l), is called the
estimation error, and the quantity 1 − δ is called the confidence. The estimate
gets more precise as the error gets smaller and the confidence gets higher.

In many situations, we are interested in a qualitative question of the form
“is ϕ(M) ≤ c?” for some constant c. We point out that, once the quantitative
problem is solved, the qualitative questions can be answered using standard
procedures by setting up a hypothesis test [44, p. 380].
3 While in the Bayesian setting credible intervals would be more appropriate, we

use confidence intervals due to uniformity and the relative ease of computation. To
relate the two, our confidence intervals are over-approximations of credible intervals
(non-unique) that are centered around the posterior mean.

Monitoring Algorithmic Fairness 369

4 Frequentist Monitoring

Suppose the given PSE is only a single variable ϕ = vij , i.e., we are monitoring
the probability of going from state i to another state j. The frequentist monitor
A for ϕ can be constructed in two steps: (1) empirically compute the average
number of times the edge (i, j) was taken per visit to the state i on the observed
path of the Markov chain, and (2) compute the (1−δ) ·100% confidence interval
using statistical concentration inequalities.

Fig. 2. Variation of ratio
of the est. error using the
existing approach [3] to
est. error using our app-
roach, w.r.t. the size of the
chosen PSE.

Now consider a slightly more complex PSE ϕ′ =
vij + vik. One approach to monitor ϕ′, proposed by
Albarghouthi et al. [3], would be to first compute the
(1 − δ) · 100% confidence intervals [l1, u1] and [l2, u2]
separately for the two constituent variables vij and
vik, respectively. Then, the (1− 2δ) · 100% confidence
interval for ϕ′ would be given by the sum of the two
intervals [l1, u1] and [l2, u2], i.e., [l1+l2, u1+u2]; notice
the drop in overall confidence due to the union bound.
The drop in the confidence level and the additional
error introduced by the interval arithmetic accumulate
quickly for larger PSEs, making the estimate unus-
able. Furthermore, we lose all the advantages of hav-
ing any dependence between the terms in the PSE. For
instance, by observing that vij and vik correspond to
the mutually exclusive transitions i to j and i to k, we know that ϕ′(M) is
always less than 1, a feature that will be lost if we use plain merging of individ-
ual confidence intervals for vij and vik. We overcome these issues by estimating
the value of the PSE as a whole as much as possible. In Fig. 2, we demonstrate
how the ratio between the estimation errors from the two approaches vary as
the number of summands (i.e., n) in the PSE ϕ =

∑n
i=1 v1n changes; in both

cases we fixed the overall δ to 0.05 (95% confidence). The ratio remains the same
for different observation lengths. Our approach is always at least as accurate as
their approach [3], and is significantly better for larger PSEs.

4.1 The Main Principle

We first explain the idea for division-free PSEs, i.e., PSEs that do not involve
any division operator; later we extend our approach to the general case.

Divison-Free PSEs: In our algorithm, for every variable vij ∈ Vϕ, we introduce
a Bernoulli(Mij) random variable Y ij with the mean Mij unknown to us. We
make an observation yij

p for every p-th visit to the state i on a run, and if j follows
immediately afterwards then record yij

p = 1 else record yij
p = 0. This gives us

a sequence of observations #„y ij = yij
1 , yij

2 , . . . corresponding to the sequence of
i.i.d. random variables

#„

Y ij = Y ij
1 , Y ij

2 , For instance, for the run 121123 we
obtain #„y 12 = 1, 0, 1 for the variable v12.

370 T. A. Henzinger et al.

The heart of our algorithm is an aggregation procedure of every sequence of
random variable { #„

Y ij}vij∈Vϕ
to a single i.i.d. sequence

„

W of an auxiliary random
variable W , such that the mean of W is μW = E(W) = ϕ(M). We can then use
known concentration inequalities on the sequence

„

W to estimate μW . Since μW

exactly equals ϕ(M) by design, we obtain a tight concentration bound on ϕ(M).
We informally explain the main idea of constructing

„

W using simple examples;
the details can be found in Algorithm 2.

Sum and Difference: Let ϕ = vij + vkl. We simply combine
#„

Y ij and
#„

Y kl

as Wp = Y ij
p + Y kl

p , so that wp = yij
p + ykl

p is the corresponding observation
of Wp. Then μWp

= ϕ(M) holds, because μWp
= E(Wp) = E(Y ij

p + Y kl
p) =

E(Y ij
p) + E(Y kl

p) = Mij + Mkl. Similar approach works for ϕ = vij − vkl.

Multiplication: For multiplications, the same linearity principle will not always
work, since for random variables A and B, E(A ·B) = E(A) ·E(B) only if A and
B are statistically independent, which will not be true for specifications of the
form ϕ = vij ·vik. In this case, the respective Bernoulli random variables Y ij

p and
Y ik

p are dependent: P(Y ij
p = 1)·P(Y ik

p = 1) = Mij ·Mik, but P(Y ij
p = 1∧Y ik

p = 1)
is always 0 (since both j and k cannot be visited following the p-th visit to i).

To benefit from independence once again, we temporally shift one of the
random variables by defining Wp = Y ij

2p · Y ik
2p+1, with wp = yij

2p · yik
2p+1. Since the

random variables Y ij
2p and Y ik

2p+1 are independent, as they use separate visits of
state i, hence we obtain μWp

= Mij · Mik. For independent multiplications of
the form ϕ = vij · vkl with i �= k, we can simply use Wp = Y ij

p · Y ik
p .

In general, we use the ideas of aggregation and temporal shift on the syntax
tree of the PSE ϕ, inductively. With an aggregated sequence of observations
for the auxiliary variable W for ϕ, we can find an estimate for ϕ(M) using the
Hoeffding’s inequality. We present the detailed algorithm of this monitor, namely
FreqMonitorDivFree, in Algorithm 1.

The General Case (PSEs With Division Operators): We observe that
every arbitrary PSE ϕ of size n can be transformed into a semantically equivalent
PSE of the form ϕa + ϕb

ϕc
of size O(n22n), where ϕa, ϕb, and ϕc are all division-

free. Once in this form, we can employ three different FreqMonitorDivFree
monitors from Algorithm 1 to obtain separate interval estimates for ϕa, ϕb, and
ϕc, which are then combined using standard interval arithmetic and the resulting
confidence of the estimate is obtained through the union bound. The steps for
constructing the (general-case) FrequentistMonitor are shown in Algorithm 2,
and the detailed analysis can be found in the proof of Theorem 1.

Bounding Memory: Consider a PSE ϕ = vij + vkl. The outcome wp for ϕ can
only be computed when both the Bernoulli outcomes yij

p and ykl
p are available. If

at any point only one of the two is available, then we need to store the available
one so that it can be used later when the other one gets available. It can be
shown that the storage of “unmatched” outcomes may need unbounded memory.

To bound the memory, we use the insight that a random reshuffling of the
i.i.d. sequence yij

p would still be i.i.d. with the same distribution, so that we do

Monitoring Algorithmic Fairness 371

not need to store the exact order in which the outcomes appeared. Instead, for
every vij ∈ Vϕ, we only store the number of times we have seen the state i and
the edge (i, j) in counters ci and cij , respectively. Observe that ci ≥ ∑

vik∈Vϕ
cik,

where the possible difference accounts for the visits to irrelevant states, denoted
as a dummy state �. Given {cik}k, whenever needed, we generate in xi a random
reshuffling of the sequence of states, together with �, seen after the past visits
to i. From the sequence stored in xi, for every vik ∈ Vϕ, we can consistently
determine the value of yik

p (consistency dictates yik
p = 1 ⇒ yij

p = 0). Moreover,
we reuse space by resetting xi whenever the sequence stored in xi is no longer
needed. It can be shown that the size of every xi can be at most the size of
the expression [33, Proof of Thm. 2]. This random reshuffling of the observation
sequences is the cause of the probabilistic transitions of the frequenitst monitor.

4.2 Implementation of the Frequentist Monitor

Fix a problem instance (Q,ϕ, δ), with size of ϕ being n. Let ϕ be transformed
into ϕl by relabeling duplicate occurrences of vij using distinct labels v1

ij , v
2
ij ,

The set of labeled variables in ϕl is V l
ϕ, and |V l

ϕ| = O(n). Let SubExpr(ϕ) denote
the set of every subexpression in the expression ϕ, and use [lϕ, uϕ] to denote the
range of values the expression ϕ can take for every valuation of every variable
as per the domain [0, 1]. Let Dep(ϕ) = {i | ∃vij ∈ Vϕ}, and every subexpression
ϕ1 · ϕ2 with Dep(ϕ1) ∩ Dep(ϕ2) �= ∅ is called a dependent multiplication.

Implementation of FreqMonitorDivFree in Algorithm 1 has two main func-
tions. Init initializes the registers. Next implements the transition function of
the monitor, which attempts to compute a new observation w for

„

W (Line 4)
after observing a new input σ′, and if successful it updates the output of the
monitor by invoking the UpdateEst function. In addition to the registers in Init
and Next labeled in the pseudocode, following registers are used internally:

– xi, i ∈ Dom(Vϕ): reshuffled sequence of states that followed i.
– tlij : the index of xi that was used to obtain the latest outcome of vl

ij .

Now, we summarize the main results for the frequentist monitor.

Theorem 1 (Correctness). Let (Q,ϕ, δ) be a problem instance. Algorithm 2
implements a monitor for (Q,ϕ, δ) that solves Problem 1.

Theorem 2 (Computational resources). Let (Q,ϕ, δ) be a problem instance
and A be the monitor implemented using the FrequentistMonitor routine of
Algorithm 2. Suppose the size of ϕ is n. The monitor A requires O(n422n) reg-
isters, and takes O(n422n) time to update its output after receiving a new input

372 T. A. Henzinger et al.

Algorithm 1. FreqMonitorDivFree
Parameters: Q, ϕ, δ

Output: Λ

1: function Init(σ)

2: ϕl unique labeling←−−−−−−−−−− ϕ

3: for all vij ∈ Vϕ do
4: cij ← 0 �# of (i, j)

5: ci ← 0 �# of i

6: n ← 0 �length of #„w

7: σ ← σ �prev. symbol
8: μΛ ← ⊥ �est. mean
9: εΛ ← ⊥ �est. error
10: ResetX () �reset xi-s
11: Compute lϕ, uϕ �int. arith.

1: function Next(σ′)
2: cσ ← cσ + 1 �update counters
3: cσσ′ ← cσσ′ + 1

4: w ← Eval(ϕl)

5: if w �= ⊥ then
6: n ← n + 1

7: Λ ← UpdateEst(w, n)

8: ResetX ()

9: σ ← σ′

10: return Λ

1: function Eval(ϕl)
2: if r

ϕl = ⊥ then
3: if ϕl ≡ ϕl

1 + ϕl
2 then

4: r
ϕl ← Eval(ϕl

1) + Eval(ϕl
2)

5: else if ϕl ≡ ϕl
1 − ϕl

2 then
6: r

ϕl ← Eval(ϕl
1) − Eval(ϕl

2)

7: else if ϕl ≡ ϕl
1 · ϕl

2 then
8: if Dep(V l

ϕ1
) ∩ Dep(V l

ϕ2
) = ∅ then

9: r
ϕl ← Eval(ϕl

1) · Eval(ϕl
2)

10: else �dep. mult.
11: for vl

ij ∈ V l
ϕ2

∩ Dep(V l
ϕ1

) do
12: tl

ij ← max({tm
ik | vm

ik ∈ V l
ϕ1

})
13: tl

ij ← tl
ij + 1 �make indep.

14: r
ϕl ← Eval(ϕl

1) · Eval(ϕl
2)

15: else if ϕl ≡ vl
ij then

16: if xi[t
l
ij + 1] = ⊥ then

17: ExtractOutcome(xi, tl
ij + 1)

18: if xi[t
l
ij + 1] = j �= ⊥ then

19: r
ϕl ← 1

20: else
21: r

ϕl ← 0

22: else if ϕl ≡ c then
23: r

ϕl ← c

24: return r
ϕl

1: function UpdateEst(w, n)
2: μΛ ← μΛ·(n−1)+w

n

3: εΛ ←
√

− (uϕ−lϕ)2

2n · ln (
δ
2

)
4: return [μΛ ± εΛ]

1: function ExtractOutcome(xi, t)
�generate a shuffled sequence of symbols
seen after i so that |xi| = t

2: Let U ← {j ∈ Q | vij ∈ Vϕ}
3: for p = |xi| + 1, . . . , t do

4: q ← ∀u ∈ U .

pick u w/ prob. ciu
ci

,

pick � w/ prob.
(ci−∑

j cij)
ci

5: ci ← ci − 1
6: if q �= � then

7: ciq ← ciq − 1

8: xi[|xi| + 1] ← q

1: function ResetX ()
2: for all i ∈ Dom(Vϕ) do
3: xi ← ∅
4: for all vl

ij ∈ V l
ϕ do

5: tlij ← 0

Algorithm 2. FrequentistMonitor
Parameters: Q, ϕ, δ

Output: Λ

1: function Init(σ)

2: ϕa +
ϕb
ϕc

change form←−−−−−−−−− ϕl labeling←−−−−−− ϕ

3: Aa ← FreqMonitorDivFree(Q, ϕa, δ/3)
4: Ab ← FreqMonitorDivFree(Q, ϕb, δ/3)
5: Ac ← FreqMonitorDivFree(Q, ϕc, δ/3)
6: Aa.Init(σ)
7: Ab.Init(σ)
8: Ac.Init(σ)

1: function Next(σ′)
2: [μa ± εa] ← Aa.Next(σ′)
3: [μb ± εb] ← Ab.Next(σ′)
4: [μc ± εc] ← Ac.Next(σ′)
5: if μa �= ⊥ ∧ μb �= ⊥ ∧ μc �= ⊥ then

6: [μΛ ± εΛ] ← [μa ± εa] +
[μb±εb]
[μc±εc]

7: return [μΛ ± εΛ]

Monitoring Algorithmic Fairness 373

symbol. For the special case of ϕ containing at most one division operator (divi-
sion by constant does not count), A requires only O(n2) registers, and takes only
O(n2) time to update its output after receiving a new input symbol.

There is a tradeoff between the estimation error, the confidence, and the
length of the observed sequence of input symbols. For instance, for a fixed con-
fidence, the longer the observed sequence is, the smaller is the estimation error.
The following theorem establishes a lower bound on the length of the sequence
for a given upper bound on the estimation error and a fixed confidence.

Theorem 3 (Convergence speed). Let (Q,ϕ, δ) be a problem instance where
ϕ does not contain any division operator, and let A be the monitor computed
using Algorithm 2. Suppose the size of ϕ is n. For a given upper bound on
estimation error ε ∈ R, the minimum number of visits to every state in Dom(Vϕ)
for obtaining an output with error at most ε and confidence at least 1− δ on any
path is given by:

− (uϕ − lϕ)2 ln
(

δ
2

)
n

2ε2
, (4)

where [lϕ, uϕ] is the set of possible values of ϕ for every valuation of every vari-
able (having domain [0, 1]) in ϕ.

The bound follows from the Hoeffding’s inequality, together with the fact
that every dependent multiplication increments the required number of samples
by 1. A similar bound for the general case with division is left open.

5 Bayesian Monitoring

Fix a problem instance (Q = [1 . . N], ϕ, δ). Let M = Δ(N−1)N be the shorthand
notation for the set of transition probability matrices of the Markov chains with
state space Q. Let pθ : M → [0, 1] be the prior probability density function
over M, which is assumed to be specified using the matrix beta distribution
(the definition can be found in standard textbooks on Bayesian statistics [37,
pp. 280]). Let � be a matrix, with its size dependent on the context, whose every
element is 1. We make the following common assumption [31,37, p. 50]:

Assumption 1 (Prior). We are given a parameter matrix θ ≥ �, and pθ is
specified using the matrix beta distribution with parameter θ. Moreover, the initial
state of the Markov chain is fixed.

374 T. A. Henzinger et al.

When θ = �, then pθ is the uniform density function over M. After observing
a path #„x , using Bayes’ rule we obtain the posterior density function pθ(· |
#„x), which is known to be efficiently computable due to the so-called conjugacy
property that holds due to Assumption 1. From the posterior density, we obtain
the expected posterior semantic value of ϕ as: Eθ(ϕ(M) | #„x) :=

∫
M

ϕ(M) ·
pθ(M | #„x)dM . The heart of our Bayesian monitor is an efficient incremental
computation of Eθ(ϕ(M) | #„x)—free from numerical integration. Once we can
compute Eθ(ϕ(M) | #„x), we can also compute the posterior variance S2 of ϕ(M)
using the known expression S2 = Eθ(ϕ2(M) | #„x)−Eθ(ϕ(M) | #„x), which enables
us to compute a confidence interval for ϕ(M) using the Chebyshev’s inequality.
In the following, we summarize our procedure for estimating Eθ(ϕ(M) | #„x).

5.1 The Main Principle

The incremental computation of Eθ(ϕ(M) | #„x) is implemented in
BayesExpMonitor. We first transform the expression ϕ into the polynomial form
ϕ′ =

∑
l κlξl, where {κl}l are the weights and {ξl}l are monomials. If the size of

ϕ is n then the size of ϕ′ is O(n2
n
2). Then we can use linearity to compute the

overall expectation as the weighted sum of expectations of the individual mono-
mials: Eθ(ϕ(M) | #„x) = Eθ(ϕ′(M) | #„x) =

∑
l κlEθ(ξl(M) | #„x). In the following,

we summarize the procedure for estimating Eθ(ξ(M) | #„x) for every monomial ξ.
Let ξ be a monomial, and let #„xab ∈ Q∗ be a sequence of states. We use

dij to store the exponent of the variable vij in the monomial ξ, and define
da :=

∑
j∈[1..N] daj . Also, we record the sets of (i, j)-s and i-s with positive

and negative dij and di entries: D+
i := {j | dij > 0}, D−

i := {j | dij < 0},
D+ := {i | di > 0}, and D− := {i | di < 0}.

For any given word #„w ∈ Q∗, let cij(#„w) denote the number of ij-s in #„w and
let ci(#„w) :=

∑
j∈Q cij(#„w). Define ci(#„w) := ci(#„w) +

∑
j∈[1..N] θij and cij(#„w) :=

cij(#„w) + θij . Let H : Q∗ → R be defined as:

H(#„w) :=

∏N
i=1

∏
j∈D+

i

n

P (cij(
#„w)−1)+|dij ||dij |

∏
i∈D+

n

P (ci(
#„w)−1)+|di||di|

·
∏

i∈D−
n

P (ci(
#„w)−1)|di|

∏N
i=1

∏
j∈D−

i

n

P (cij(
#„w)−1)|dij |

,

(5)

where
n

Pnk := n!
(n−k)! is the number of permutations of k > 0 items from n > 0

objects, for k ≤ n, and we use the convention that for S = ∅,
∏

s∈S . . . = 1.
Below, in Lemma 1, we establish that Eθ(ξ(M) | #„w) = H(#„w), and present an
efficient incremental scheme to compute Eθ(ξ(M) | #„xab) from Eθ(ξ(M) | #„xa).

Lemma 1 (Incremental computation of E(· | ·)). If the following consis-
tency condition

∀i, j ∈ [1 . . N] . cij(#„w) + dij > 0 (6)
is met, then the following holds:

E(ξ(M) | #„xab) = H(#„xab) = H(#„xa) · cab(#„x) + dab

cab(#„x)
· ca(#„x)
ca(#„x) + da

. (7)

Monitoring Algorithmic Fairness 375

Algorithm 3. BayesExpMonitor

Parameters: Q, ϕ =
∑p

l=1 κlξl, θ

Output: E

1: function Init(σ = 1)

2: for vij ∈ Vϕ do
3: cij ← θij

4: ci ← ∑
j∈[1..N] θij

5: mij ← minl∈[1..p] dl
ij �cache

6: active ← false �Eq. 6 not true
7: σ ← σ �prev. state
8: E ← ⊥ �expect. val.

1: function Next(σ′)
2: cσ ← cσ + 1 �update counters
3: cσσ′ ← cσσ′ + 1

4: if active = false then
5: if (∀vij ∈ Vϕ . cij + mij > 0) then
6: active ← true �Eq. 6 is true
7: for l ∈ [1 . . p] do �Eq. 5
8: hl ← Hl ({cij}i,j , {ci}i)

9: else
10: for l ∈ [1 . . p] do �Eq. 7

11: hl ← hl · c
σσ′ −1+dl

σσ′
c
σσ′ −1 · cσ−1

cσ−1+dl
σ

12: if active = true then
13: E ← ∑p

l=1 κl · hl �overall expect.

14: σ ← σ′

15: return E

Condition (6) guarantees that the permutations in (5) are well-defined. The
first equality in (7) follows from Marchal et al. [51], and the rest uses the conju-
gacy of the prior. Lemma 1 forms the basis of the efficient update of our Bayesian
monitor. Observe that on any given path, once (6) holds, it continues to hold for-
ever. Thus, initially the monitor keeps updating H internally without outputting
anything. Once (6) holds, it keeps outputting H from then on.

5.2 Implementation of the Bayesian Monitor

We present the Bayesian monitor implementation in BayesConfIntMonitor
(Algorithm 4), which invokes BayesExpMonitor (Algorithm 3) as subroutine.
BayesExpMonitor computes the expected semantic value of an expression ϕ in
polynomial form, by computing the individual expected value of each monomial
using Propostion 1, and combining them using the linearity property. We drop
the arguments from ci(·) and cij(·) and simply write ci and cij as constants asso-
ciated to appropriate words. The symbol mij in Line 5 of Init is used as a book-
keeping variable for quickly checking the consistency condition (Eq. 6) in Line 5
of Next . In BayesConfIntMonitor, we compute the expected value and the vari-
ance of ϕ, by invoking BayesExpMonitor on ϕ and ϕ2 respectively, and then com-
pute the confidence interval using the Chebyshev’s inequality. It can be observed
in the Next subroutines of BayesConfIntMonitor and BayesExpMonitor that a
deterministic transition function suffices for the Bayesian monitors.

Theorem 4 (Correctness). Let (Q,ϕ, δ) be a problem instance, and pθ be
given as the prior distribution which satisfies Assumption 1. Algorithm 4 pro-
duces a monitor for (Q,ϕ, δ) that solves Problem 2.

Theorem 5 Computational resources). Let (Q,ϕ, δ) be a problem instance
and A be the monitor computed using the BayesConfIntMonitor routine of

376 T. A. Henzinger et al.

Algorithm 4. BayesConfIntMonitor
Parameters: Q, ϕ, θ

Output: Λ

1: function Init(σ = 1)

2: ϕ
polyn.←−−−− ϕ, ϕ2 polyn.←−−−− ϕ2 �polyn. form

3: EXP ← BayesExpMonitor(Q, ϕ, θ)

4: EXP2 ← BayesExpMonitor(Q, ϕ2, θ)

5: EXP.Init(σ)

6: EXP2 .Init(σ)

7: Λ ← ⊥

1: function Next(σ′)
2: E ← EXP.Next(σ′)
3: E2 ← EXP2 .Next(σ′)
4: if E �= ⊥ and E2 �= ⊥ then
5: S ← E2 − E2 �variance

6: Λ ←
[
E ±

√
S
δ

]
�Chebysh.

7: return Λ

Algorithm 4. Suppose the size of ϕ is n. The monitor A requires O(n22n) reg-
isters, and takes O(n22n) time to update its output after receiving a new input
symbol. For the special case of ϕ being in polynomial form, A requires only O(n2)
registers, and takes only O(n2) time to update its output after receiving a new
input symbol.

A bound on the convergence speed of the Bayesian monitor is left open. This
would require a bound on the change in variance with respect to the length
of the observed path, which is not known for the general case of PSEs. Note
that the efficient (quadratic) cases are different for the frequentist and Bayesian
monitors, suggesting the use of different monitors for different specifications.

6 Experiments

We implemented our frequentist and Bayesian monitors in a tool written in Rust,
and used the tool to design monitors for the lending and the college admission
examples taken from the literature [48,54] (described in Sect. 1.1). The gener-
ators are modeled as Markov chains (see Fig. 1)—unknown to the monitors—
capturing the sequential interactions between the decision-makers (i.e., the bank
or the college) and their respective environments (i.e., the loan applicants or the
students), as described by D’Amour et al. [16]. The setup of the experiments is as
follows: We created a multi-threaded wrapper program, where one thread simu-
lates one long run of the Markov chain, and a different thread executes the moni-
tor. Every time a new state is visited by the Markov chain on the first thread, the
information gets transmitted to the monitor on the second thread, which then
updates the output. The experiments were run on a Macbook Pro 2017 equipped
with a 2,3GHz Dual-Core Intel Core i5 processor and 8GB RAM. The tool can
be downloaded from the following url, where we have also included the scripts to
reproduce our experiments: https://github.com/ista-fairness-monitoring/fmlib.

We summarize the experimental results in Fig. 3, and, from the table, observe
that both monitors are extremely lightweight: they take less than a millisecond
per update and small numbers of registers to operate. From the plots, we observe
that the frequentist monitors’ outputs are always centered around the ground

https://github.com/ista-fairness-monitoring/fmlib

Monitoring Algorithmic Fairness 377

truth values of the properties, empirically showing that they are always objec-
tively correct. On the other hand, the Bayesian monitors’ outputs can vary dras-
tically for different choices of the prior, empirically showing that the correctness
of outputs is subjective. It may be misleading that the outputs of the Bayesian
monitors are wrong as they often do not contain the ground truth values. We
reiterate that from the Bayesian perspective, the ground truth does not exist.
Instead, we only have a probability distribution over the true values that gets
updated after observing the generated sequence of events. The choice of the type
of monitor ultimately depends on the application requirements.

Scenario Size of
expression

Av. comp. time/step # registers
Freq. Bayes. Freq. Bayes.

Lending (bias) + dem. par. 1 13.0 s 29.3 s 15 17
Lending (fair) + eq. opp. 5 21.6 s 31.0 s 29 27
Admission + soc. burden 19 53.8 s 184.6 s 46 102

Fig. 3. The plots show the 95% confidence intervals estimated by the monitors over
time, averaged over 10 different sample paths, for the lending with demographic parity
(left), lending with equalized opportunity (middle), and the college admission with
social burden (right) problems. The horizontal dotted lines are the ground truth values
of the properties, obtained by analyzing the Markov chains used to model the systems
(unknown to the monitors). The table summarizes various performance metrics.

7 Conclusion

We showed how to monitor algorithmic fairness properties on a Markov chain
with unknown transition probabilities. Two separate algorithms are presented,
using the frequentist and the Bayesian approaches to statistics. The perfor-
mances of both approaches are demonstrated, both theoretically and empirically.

Several future directions exist. Firstly, more expressive classes of properties
need to be investigated to cover a broader range of algorithmic fairness criteria.
We believe that boolean logical connectives, as well as min and max operators
can be incorporated straightforwardly using ideas from the related literature [3].
This also adds support for absolute values, since |x| = max{x,−x}. On the other
hand, properties that require estimating how often a state is visited would require
more information about the dynamics of the Markov chain, including its mixing
time. Monitoring statistical hyperproperties [18] is another important direction,

378 T. A. Henzinger et al.

which will allow us to encode individual fairness properties [21]. Secondly, more
liberal assumptions on the system model will be crucial for certain practical
applications. In particular, hidden Markov models, time-inhomogeneous Markov
models, Markov decision processes, etc., are examples of system models with
widespread use in real-world applications. Finally, better error bounds tailored
for specific algorithmic fairness properties can be developed through a deeper
mathematical analysis of the underlying statistics, which will sharpen the con-
servative bounds obtained through off-the-shelf concentration inequalities.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. (TOMACS) 28(1), 1–39 (2018)

2. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: Fairsquare: probabilistic
verification of program fairness. Proc. ACM Program. Lang. 1(OOPSLA), 1–30
(2017)

3. Albarghouthi, A., Vinitsky, S.: Fairness-aware programming. In: Proceedings of
the Conference on Fairness, Accountability, and Transparency, pp. 211–219 (2019)

4. Ashok, P., Křetínský, J., Weininger, M.: PAC statistical model checking for Markov
decision processes and stochastic games. In: Dillig, I., Tasiran, S. (eds.) CAV 2019.
LNCS, vol. 11561, pp. 497–519. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25540-4_29

5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541
(2003). https://doi.org/10.1109/TSE.2003.1205180

6. Balunovic, M., Ruoss, A., Vechev, M.: Fair normalizing flows. In: International
Conference on Learning Representations (2021)

7. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5_5

8. Bartocci, E., Falcone, Y.: Lectures on Runtime Verification. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-319-75632-5

9. Bastani, O., Zhang, X., Solar-Lezama, A.: Probabilistic verification of fairness prop-
erties via concentration. Proc. ACM Program. Lang. 3(OOPSLA), 1–27 (2019)

10. Bellamy, R.K., et al.: Ai fairness 360: an extensible toolkit for detecting and miti-
gating algorithmic bias. IBM J. Res. Dev. 63(4/5), 4–1 (2019)

11. Berk, R., et al.: A convex framework for fair regression. arXiv preprint
arXiv:1706.02409 (2017)

12. Bird, S., et al.: Fairlearn: a toolkit for assessing and improving fairness in ai.
Microsoft, Technical Report. MSR-TR-2020-32 (2020)

13. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidi-
vism prediction instruments. Big Data 5(2), 153–163 (2017)

14. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_1

15. Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A.: Algorithmic deci-
sion making and the cost of fairness. In: Proceedings of the 23rd ACM Sigkdd
International Conference on Knowledge Discovery and Data Mining, pp. 797–806
(2017)

https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1007/978-3-030-25540-4_29
https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5
http://arxiv.org/abs/1706.02409
https://doi.org/10.1007/978-3-642-24372-1_1

Monitoring Algorithmic Fairness 379

16. D’Amour, A., Srinivasan, H., Atwood, J., Baljekar, P., Sculley, D., Halpern, Y.:
Fairness is not static: deeper understanding of long term fairness via simulation
studies. In: Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency, FAT* 2020, pp. 525–534 (2020)

17. David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.: Optimizing
control strategy using statistical model checking. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352–367. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38088-4_24

18. Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of markov
decision processes (2020). https://doi.org/10.48550/ARXIV.2005.03362, https://
arxiv.org/abs/2005.03362

19. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued sig-
nals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol.
6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15297-9_9

20. Dressel, J., Farid, H.: The accuracy, fairness, and limits of predicting recidivism.
Sci. Adv. 4(1), eaao5580 (2018)

21. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 214–226 (2012)

22. Dwork, C., Ilvento, C.: Individual fairness under composition. In: Proceedings of
Fairness, Accountability, Transparency in Machine Learning (2018)

23. Ensign, D., Friedler, S.A., Neville, S., Scheidegger, C., Venkatasubramanian,
S.: Runaway feedback loops in predictive policing. In: Conference on Fairness,
Accountability and Transparency, pp. 160–171. PMLR (2018)

24. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring. arXiv preprint arXiv:1711.03829 (2017)

25. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian,
S.: Certifying and removing disparate impact. In: proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
259–268 (2015)

26. Ferrère, T., Henzinger, T.A., Kragl, B.: Monitoring event frequencies. In: Fernán-
dez, M., Muscholl, A. (eds.) 28th EACSL Annual Conference on Computer Science
Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol.
152, pp. 20:1–20:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl
(2020). https://doi.org/10.4230/LIPIcs.CSL.2020.20, https://drops.dagstuhl.de/
opus/volltexte/2020/11663

27. Ferrère, T., Henzinger, T.A., Saraç, N.E.: A theory of register monitors. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, pp. 394–403 (2018)

28. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime
executions. Electron. Notes Theor. Comput. Sci. 70(4), 36–54 (2002)

29. Ghosh, B., Basu, D., Meel, K.S.: Justicia: a stochastic sat approach to formally
verify fairness. arXiv preprint arXiv:2009.06516 (2020)

30. Ghosh, B., Basu, D., Meel, K.S.: Algorithmic fairness verification with graphical
models. arXiv preprint arXiv:2109.09447 (2021)

31. Gómez-Corral, A., Insua, D.R., Ruggeri, F., Wiper, M.: Bayesian inference of
markov processes. In: Wiley StatsRef: Statistics Reference Online, pp. 1–15 (2014)

32. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
Adv. Neural Inf. Process. Syst. 29 (2016)

https://doi.org/10.1007/978-3-642-38088-4_24
https://doi.org/10.48550/ARXIV.2005.03362
https://arxiv.org/abs/2005.03362
https://arxiv.org/abs/2005.03362
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-642-15297-9_9
http://arxiv.org/abs/1711.03829
https://doi.org/10.4230/LIPIcs.CSL.2020.20
https://drops.dagstuhl.de/opus/volltexte/2020/11663
https://drops.dagstuhl.de/opus/volltexte/2020/11663
http://arxiv.org/abs/2009.06516
http://arxiv.org/abs/2109.09447

380 T. A. Henzinger et al.

33. Henzinger, T.A., Karimi, M., Kueffner, K., Mallik, K.: Monitoring algorithmic
fairness. arXiv preprint arXiv:2305.15979 (2023)

34. Henzinger, T.A., Karimi, M., Kueffner, K., Mallik, K.: Runtime monitoring of
dynamic fairness properties. arXiv preprint arXiv:2305.04699 (2023). to appear in
FAccT ’23

35. Henzinger, T.A., Saraç, N.E.: Monitorability under assumptions. In: Deshmukh, J.,
Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 3–18. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60508-7_1

36. Henzinger, T.A., Saraç, N.E.: Quantitative and approximate monitoring. In: 2021
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp.
1–14. IEEE (2021)

37. Insua, D., Ruggeri, F., Wiper, M.: Bayesian Analysis of Stochastic Process Models.
John Wiley & Sons, Hoboken (2012)

38. Jagielski, M., et al.: Differentially private fair learning. In: International Conference
on Machine Learning, pp. 3000–3008. PMLR (2019)

39. John, P.G., Vijaykeerthy, D., Saha, D.: Verifying individual fairness in machine
learning models. In: Conference on Uncertainty in Artificial Intelligence, pp. 749–
758. PMLR (2020)

40. Junges, S., Torfah, H., Seshia, S.A.: Runtime monitors for markov decision pro-
cesses. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp. 553–
576. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9_26

41. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without
discrimination. Knowl. Inf. Syst. 33(1), 1–33 (2012)

42. Kearns, M., Neel, S., Roth, A., Wu, Z.S.: Preventing fairness gerrymandering:
auditing and learning for subgroup fairness. In: International Conference on
Machine Learning, pp. 2564–2572. PMLR (2018)

43. Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair deter-
mination of risk scores. In: Papadimitriou, C.H. (ed.) 8th Innovations in Theoretical
Computer Science Conference (ITCS 2017). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 67, pp. 43:1–43:23. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.ITCS.2017.43,
http://drops.dagstuhl.de/opus/volltexte/2017/8156

44. Knight, K.: Mathematical Statistics. CRC Press, Boca Raton (1999)
45. Konstantinov, N.H., Lampert, C.: Fairness-aware pac learning from corrupted data.

J. Mach. Learn. Res. 23 (2022)
46. Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. Adv. Neural

Inf. Process. Syst. 30 (2017)
47. Lahoti, P., Gummadi, K.P., Weikum, G.: ifair: learning individually fair data rep-

resentations for algorithmic decision making. In: 2019 IEEE 35th International
Conference on Data Engineering (icde), pp. 1334–1345. IEEE (2019)

48. Liu, L.T., Dean, S., Rolf, E., Simchowitz, M., Hardt, M.: Delayed impact of fair
machine learning. In: International Conference on Machine Learning, pp. 3150–
3158. PMLR (2018)

49. Lum, K., Isaac, W.: To predict and serve? Significance 13(5), 14–19 (2016)
50. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:

Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3_12

51. Marchal, O., Arbel, J.: On the sub-gaussianity of the beta and dirichlet distribu-
tions. Electron. Commun. Probabil. 22, 1–14 (2017)

http://arxiv.org/abs/2305.15979
http://arxiv.org/abs/2305.04699
https://doi.org/10.1007/978-3-030-60508-7_1
https://doi.org/10.1007/978-3-030-81688-9_26
https://doi.org/10.4230/LIPIcs.ITCS.2017.43
http://drops.dagstuhl.de/opus/volltexte/2017/8156
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

Monitoring Algorithmic Fairness 381

52. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. ACM Comput. Surv. (CSUR) 54(6), 1–35
(2021)

53. Meyer, A., Albarghouthi, A., D’Antoni, L.: Certifying robustness to programmable
data bias in decision trees. Adv. Neural Inf. Process. Syst. 34, 26276–26288 (2021)

54. Milli, S., Miller, J., Dragan, A.D., Hardt, M.: The social cost of strategic classifi-
cation. In: Proceedings of the Conference on Fairness, Accountability, and Trans-
parency, pp. 230–239 (2019)

55. Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an
algorithm used to manage the health of populations. Science 366(6464), 447–453
(2019)

56. Otop, J., Henzinger, T.A., Chatterjee, K.: Quantitative automata under proba-
bilistic semantics. Logical Methods Comput. Sci. 15 (2019)

57. Scheuerman, M.K., Paul, J.M., Brubaker, J.R.: How computers see gender: an
evaluation of gender classification in commercial facial analysis services. In: Pro-
ceedings of the ACM on Human-Computer Interaction, vol. 3, no. CSCW, pp. 1–33
(2019)

58. Seyyed-Kalantari, L., Liu, G., McDermott, M., Chen, I.Y., Ghassemi, M.: Chex-
clusion: fairness gaps in deep chest x-ray classifiers. In: BIOCOMPUTING 2021:
Proceedings of the Pacific Symposium, pp. 232–243. World Scientific (2020)

59. Sharifi-Malvajerdi, S., Kearns, M., Roth, A.: Average individual fairness: algo-
rithms, generalization and experiments. Adv. Neural Inf. Process. Syst. 32 (2019)

60. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Khurshid, S., Sen, K.
(eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29860-8_15

61. Sun, B., Sun, J., Dai, T., Zhang, L.: Probabilistic verification of neural networks
against group fairness. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 83–102. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6_5

62. Wachter, S., Mittelstadt, B., Russell, C.: Bias preservation in machine learning:
the legality of fairness metrics under eu non-discrimination law. W. Va. L. Rev.
123, 735 (2020)

63. Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., Wilson, J.:
The what-if tool: Interactive probing of machine learning models. IEEE Trans. Vis.
Comput. Graph. 26(1), 56–65 (2019)

64. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0_17

65. Zafar, M.B., Valera, I., Gomez-Rodriguez, M., Gummadi, K.P.: Fairness con-
straints: a flexible approach for fair classification. J. Mach. Learn. Res. 20(1),
2737–2778 (2019)

66. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair represen-
tations. In: International Conference on Machine Learning, pp. 325–333. PMLR
(2013)

https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-030-90870-6_5
https://doi.org/10.1007/978-3-030-90870-6_5
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

382 T. A. Henzinger et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

nl2spec: Interactively Translating
Unstructured Natural Language

to Temporal Logics with Large Language
Models

Matthias Cosler2, Christopher Hahn1(B), Daniel Mendoza1(B),
Frederik Schmitt2, and Caroline Trippel1

1 Stanford University, Stanford, CA, USA
hahn@cs.stanford.edu, {dmendo,trippel}@stanford.edu

2 CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

{matthias.cosler,frederik.schmitt}@cispa.de

Abstract. A rigorous formalization of desired system requirements is
indispensable when performing any verification task. This often limits
the application of verification techniques, as writing formal specifications
is an error-prone and time-consuming manual task. To facilitate this,
we present nl2spec, a framework for applying Large Language Models
(LLMs) to derive formal specifications (in temporal logics) from unstruc-
tured natural language. In particular, we introduce a new methodology
to detect and resolve the inherent ambiguity of system requirements in
natural language: we utilize LLMs to map subformulas of the formaliza-
tion back to the corresponding natural language fragments of the input.
Users iteratively add, delete, and edit these sub-translations to amend
erroneous formalizations, which is easier than manually redrafting the
entire formalization. The framework is agnostic to specific application
domains and can be extended to similar specification languages and new
neural models. We perform a user study to obtain a challenging dataset,
which we use to run experiments on the quality of translations. We pro-
vide an open-source implementation, including a web-based frontend.

1 Introduction

A rigorous formalization of desired system requirements is indispensable when
performing any verification-related task, such as model checking [7], synthesis [6],
or runtime verification [20]. Writing formal specifications, however, is an error-
prone and time-consuming manual task typically reserved for experts in the field.
This paper presents nl2spec, a framework, accompanied by a web-based tool,
to facilitate and automate writing formal specifications (in LTL [34] and similar
temporal logics). The core contribution is a new methodology to decompose
the natural language input into sub-translations by utilizing Large Language
Models (LLMs). The nl2spec framework provides an interface to interactively
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 383–396, 2023.
https://doi.org/10.1007/978-3-031-37703-7_18

https://doi.org/10.6084/m9.figshare.22721161.v2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_18&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_18

384 M. Cosler et al.

Fig. 1. A screenshot of the web-interface for nl2spec.

add, edit, and delete these sub-translations instead of attempting to grapple with
the entire formalization at once (a feature that is sorely missing in similar work,
e.g., [13,30]).

Figure 1 shows the web-based frontend of nl2spec. As an example, we con-
sider the following system requirement given in natural language: “Globally,
grant 0 and grant 1 do not hold at the same time until it is allowed”. The tool
automatically translates the natural language specification correctly into the
LTL formula G((!((g0 & g1)) U a)). Additionally, the tool generates sub-
translations, such as the pair (“do not hold at the same time”, !(g0 & g1)),
which help in verifying the correctness of the translation.

Consider, however, the following ambiguous example: “a holds until b holds
or always a holds”. Human supervision is needed to resolve the ambiguity on
the operator precedence. This can be easily achieved with nl2spec by adding or
editing a sub-translation using explicit parenthesis (see Sect. 4 for more details
and examples). To capture such (and other types of) ambiguity in a benchmark
data set, we conducted an expert user study specifically asking for challenging
translations of natural language sentences to LTL formulas.

The key insight in the design of nl2spec is that the process of translation
can be decomposed into many sub-translations automatically via LLMs, and
the decomposition into sub-translations allows users to easily resolve ambigu-
ous natural language and erroneous translations through interactively modifying
sub-translations. The central goal of nl2spec is to keep the human supervision

nl2spec 385

minimal and efficient. To this end, all translations are accompanied by a con-
fidence score. Alternative suggestions for sub-translations can be chosen via a
drop-down menu and misleading sub-translations can be deleted before the next
loop of the translation. We evaluate the end-to-end translation accuracy of our
proposed methodology on the benchmark data set obtained from our expert
user study. Note that nl2spec can be applied to the user’s respective appli-
cation domain to increase the quality of translation. As proof of concept, we
provide additional examples, including an example for STL [31] in the GitHub
repository1.

nl2spec is agnostic to machine learning models and specific application
domains. We will discuss possible parameterizations and inputs of the tool in
Sect. 3. We discuss our sub-translation methodology in more detail in Sect. 3.2
and introduce an interactive few-shot prompting scheme for LLMs to generate
them. We evaluate the effectiveness of the tool to resolve erroneous formaliza-
tions in Sect. 4 on a data set obtained from conducting an expert user study.
We discuss limitations of the framework and conclude in Sect. 5. For additional
details, please refer to the complete version [8].

2 Background and Related Work

2.1 Natural Language to Linear-Time Temporal Logic

Linear-time Temporal Logic (LTL) [34] is a temporal logic that forms the basis
of many practical specification languages, such as the IEEE property specifica-
tion language (PSL) [22], Signal Temporal Logic (STL) [31], or System Verilog
Assertions (SVA) [43]. By focusing on the prototype temporal logic LTL, we
keep the nl2spec framework extendable to specification languages in specific
application domains. LTL extends propositional logic with temporal modalities
U (until) and X (next). There are several derived operators, such as Fϕ ≡ trueUϕ
and Gϕ ≡ ¬F¬ϕ. Fϕ states that ϕ will eventually hold in the future and
Gϕ states that ϕ holds globally. Operators can be nested: GFϕ, for example,
states that ϕ has to occur infinitely often. LTL specifications describe a sys-
tems behavior and its interaction with an environment over time. For exam-
ple given a process 0 and a process 1 and a shared resource, the formula
G(r0 → Fg0) ∧ G(r1 → Fg1) ∧ G¬(g0 ∧ g1) describes that whenever a process
requests (ri) access to a shared resource it will eventually be granted (gi). The
subformula G¬(g0 ∧ g1) ensures that grants given are mutually exclusive.

Early work in translating natural language to temporal logics focused on
grammar-based approaches that could handle structured natural language [17,
24]. A survey of earlier research before the advent of deep learning is provided
in [4]. Other approaches include an interactive method using SMT solving and
semantic parsing [15], or structured temporal aspects in grounded robotics [45]
and planning [32]. Neural networks have only recently been used to translate

1 The tool is available at GitHub: https://github.com/realChrisHahn2/nl2spec.

https://github.com/realChrisHahn2/nl2spec

386 M. Cosler et al.

into temporal logics, e.g., by training a model for STL from scratch [21], fine-
tuning language models [19], or an approach to apply GPT-3 [13,30] in a one-
shot fashion, where [13] output a restricted set of declare templates [33] that
can be translated to a fragment of LTLf [10]. Translating natural langauge to
LTL has especially been of interest to the robotics community (see [16] for an
overview), where datasets and application domains are, in contrast to our setting,
based on structured natural language. Independent of relying on structured data,
all previous tools lack a detection and interactive resolving of the inerherent
ambiguity of natural language, which is the main contribution of our framework.
Related to our approach is recent work [26], where generated code is iteratively
refined to match desired outcomes based on human feedback.

2.2 Large Language Models

LLMs are large neural networks typically consisting of up to 176 billion parame-
ters. They are pre-trained on massive amounts of data, such as “The Pile” [14].
Examples of LLMs include the GPT [36] and BERT [11] model families, open-
source models, such as T5 [38] and Bloom [39], or commercial models, such as
Codex [5]. LLMs are Transformers [42], which is the state of the art neural archi-
tecture for natural language proccessing. Additionally, Transformers have shown
remarkable performance when being applied to classical problems in verification
(e.g., [9,18,25,40]), reasoning (e.g., [28,50]), as well as the auto-formalization [35]
of mathematics and formal specifications (e.g., [19,21,49]).

In language modelling, we model the probability of a sequence of tokens in a
text [41]. The joint probability of tokens in a text is generally expressed as [39]:

p(x) = p(x1, . . . , xT) =
T∏

t=1

p(xt|x<t) ,

where x is the sequence of tokens, xt represents the t-th token, and x<t is the
sequence of tokens preceding xt. We refer to this as an autoregressive language
model that iteratively predicts the probability of the next token. Neural network
approaches to language modelling have superseded classical approaches, such as
n-grams [41]. Especially Transformers [42] were shown to be the most effective
architecture at the time of writing [1,23,36].

While fine-tuning neural models on a specific translation task remains a valid
approach showing also initial success in generalizing to unstructured natural lan-
guage when translating to LTL [19], a common technique to obtain high perfor-
mance with limited amount of labeled data is so-called “few-shot prompting” [3].
The language model is presented a natural language description of the task usu-
ally accompanied with a few examples that demonstrate the input-output behav-
ior. The framework presented in this paper relies on this technique. We describe
the proposed few-shot prompting scheme in detail in Sect. 3.2.

Currently implemented in the framework and used in the expert-user study
are Codex and Bloom, which showed the best performance during testing.

nl2spec 387

Codex and GPT-3.5-turbo. Codex [5] is a GPT-3 variant that was initially of
up to 12B parameters in size and fine-tuned on code. The initial version of
GPT-3 itself was trained on variations of Common Crawl,2 Webtext-2 [37], two
internet-based book corpora and Wikipedia [3]. The fine-tuning dataset for the
vanilla version Codex was collected in May 2020 from 54 million public software
repositories hosted on GitHub, using 159GB of training data for fine-tuning. For
our experiments, we used the commercial 2022 version of code-davinci-002,
which is likely larger (in the 176B range3) than the vanilla codex models. GPT-
3.5-turbo is the currently available follow-up model of GPT-3.

Bloom. Bloom [39] is an open-source LLM family available in different sizes of
up to 176B parameters trained on 46 natural languages and 13 programming
languages. It was trained on the ROOTS corpus [27], a collection of 498 hugging-
face [29,48] datasets consisting of 1.61 terabytes of text. For our experiments,
we used the 176B version running on the huggingface inference API4.

3 The nl2spec Framework

3.1 Overview

The framework follows a standard frontend-backend implementation. Figure 2
shows an overview of the implementation of nl2spec. Parts of the framework
that can be extended for further research or usage in practice are highlighted. The
framework is implemented in Python 3 and flask [44], a lightweight WSGI web
application framework. For the experiments in this paper, we use the OpenAI
library and huggingface (transformer) library [47]. We parse the LTL output
formulas with a standard LTL parser [12]. The tool can either be run as a
command line tool, or with the web-based frontend.

The frontend handles the interaction with a human-in-the-loop. The inter-
face is structured in three views: the “Prompt”, “Sub-translations”, and “Final
Result” view (see Fig. 1). The tool takes a natural language sentence, optional
sub-translations, the model temperature, and number of runs as input. It pro-
vides sub-translations, a confidence score, alternative sub-translations and the
final formalization as output. The frontend then allows for interactively select-
ing, editing, deleting, or adding sub-translations. The backend implements the
handling of the underlying neural models, the generation of the prompt, and
the ambiguity resolving, i.e., computing the confidence score including alter-
native sub-translations and the interactive few-shot prompting algorithm (cf.
Sect. 3.2). The framework is designed to have an easy interface to implement
new models and write domain-specific prompts. The prompt is a .txt file that
can be adjusted to specific domains to increase the quality of translations. To
apply the sub-translation refinement methodology, however, the prompt needs to
follow our interactive prompting scheme, which we introduce in the next section.
2 https://commoncrawl.org/.
3 https://blog.eleuther.ai/gpt3-model-sizes/.
4 https://huggingface.co/inference-api.

https://commoncrawl.org/
https://blog.eleuther.ai/gpt3-model-sizes/
https://huggingface.co/inference-api

388 M. Cosler et al.

Frontend

Sub-translations
Sub-translations

scores

Prompts

Neural Models

Backend

Ambiguity
Detection

Natural Language

Sub-translations

Sub-translations

scores

Temperature

Number of runs
Formal LTL spec

Natural Language

Temperature

Number of runs

Formal LTL spec

Fig. 2. Overview of the nl2spec framework with a human-in-the-loop: highlighted
areas indicate parts of the framework that are effortlessly extendable.

3.2 Interactive Few-Shot Prompting

The core of the methodology is the decomposition of the natural language input
into sub-translations. We introduce an interactive prompting scheme that gener-
ates sub-translations using the underlying neural model and leverages the sub-
translations to produce the final translation. Algorithm 1 depicts a high-level
overview of the interactive loop. The main idea is to give a human-in-the-loop
the options to add, edit, or delete sub-translations and feed them back into
the language models as “Given translations” in the prompt (see Fig. 3). After
querying a language model M with this prompt F , model specific parameters P
and the interactive prompt that is computed in the loop, the model generates
a natural language explanation, a dictionary of sub-translations, and the final
translation. Notably, the model M can be queried multiple times as specified
by the number of runs r, thereby generating multiple possible sub-translations.
The confidence score of each sub-translation is computed as votes over multiple
queries and by default the sub-translation with the highest confidence score is
selected to be used as a given sub-translation in the next iteration. In the fron-
tend, the user may view and select alternative generated sub-translations for
each sub-translation via a drop-down menu (see Fig. 1).

Figure 3 shows a generic prompt, that illustrates our methodology. The
prompting scheme consists of three parts. The specification language specific
part (lines 1–4), the fewshot examples (lines 5–19), and the interactive prompt

nl2spec 389

minimal.txt

1 Translate the following natural language sentences into an LTL formula and explain your
2 translation step by step. Remember that X means "next", U means "until", G means
3 "globally", F means "finally", which means GF means "infinitely often". The formula
4 should only contain atomic propositions or operators &, , ->, <->, X, U, G, F.
5 Natural Language: Globally if a holds then c is true until b. Given translations: {}
6 Explanation: "a holds" from the input translates to the atomic proposition a.
7 "c is true until b" from the input translates to the subformula c U b. "if x then y"
8 translates to an implication x -> y, so "if a holds then c is true until b" translates
9 to an implication a -> c U b. "Globally" from the input translates to the temporal

10 operator G. Explanation dictionary: {"a holds" : "a", "c is true until b" : "c U b",
11 "if a holds then c is true until b" : "a -> c U b", "Globally" : "G"} So the final
12 LTL translation is G a -> c U b.FINISH Natural Language: Every request r is
13 eventually followed by a grant g. Given translations: {} Explanation: "Request r"
14 from the input translates to the atomic proposition r and "grant g" translates to the
15 atomic proposition g. "every" means at every point in time, i.e., globally, "never"
16 means at no point in time, and "eventually" translates to the temporal operator F.
17 "followed by" is the natural language representation of an implication. Explanation
18 dictionary: {"Request r" : "r", "grant g" : "g", "every" : "G", "eventually": "F",
19 "followed by" : "->"} So the final LTL translation is G r -> F g.FINISH

Fig. 3. Prompt with minimal domain knowledge of LTL.

including the natural language and sub-translation inputs (not displayed, given
as input). The specification language specific part leverages “chain-of-thought”
prompt-engineering to elicit reasoning from large language models [46]. The key
of nl2spec, however, is the setup of the few-shot examples. This minimal prompt
consists of two few-shot examples (lines 5–12 and 12–19). The end of an exam-
ple is indicated by the “FINISH” token, which is the stop token for the machine
learning models. A few-shot example in nl2spec consists of the natural language
input (line 5), a dictionary of given translations, i.e., the sub-translations (line
5), an explanation of the translation in natural language (line 6–10), an expla-
nation dictionary, summarizing the sub-translations, and finally, the final LTL
formula.

This prompting scheme elicits sub-translations from the model, which serve
as a fine-grained explanation of the formalization. Note that sub-translations
provided in the prompt are neither unique nor exhaustive, but provide the con-
text for the language model to generate the correct formalization.

4 Evaluation

In this section, we evaluate our framework and prompting methodology on a data
set obtained by conducting an expert user study. To show the general applica-
bility of this framework, we use the minimal prompt that includes only minimal
domain knowledge of the specification language (see Fig. 3). This prompt has
intentionally been written before conducting the expert user study. We lim-
ited the few-shot examples to two and even provided no few-shot example that
includes “given translations”. We use the minimal prompt to focus the evaluation
on the effectiveness of our interactive sub-translation refinement methodology in

390 M. Cosler et al.

Algorithm 1: Interactive Few-shot Prompting Algorithm
1 Input: Natural language S, Few-shot prompt F , set of given sub-translations

(s, ϕ), and language model M
2 Interactions: set of sub-translations (s, ϕ), confidence scores C
3 Set of Model specific parameter P : e.g., model-temperature t, number of

runs r
4 Output: LTL formula ψ that formalizes S

1: ψ, (s, ϕ) , C = empty
2: while user not approves LTL formula ψ do
3: interactive prompt = compute prompt(S, F, (s, ϕ))
4: ψ, (s, ϕ) , C = query(M, P, interactive prompt)
5: (s, ϕ) = user interaction((s, ϕ) , C)
6: end while
7: return ψ

resolving ambiguity and fixing erroneous translations. In practice, one would like
to replace this minimal prompt with domain-specific examples that capture the
underlying distribution as closely as possible. As a proof of concept, we elaborate
on this in the full version [8].

4.1 Study Setup

To obtain a benchmark dataset of unstructured natural language and their for-
malizations into LTL, we asked five experts in the field to provide examples that
the experts thought are challenging for a neural translation approach. Unlike
existing datasets that follow strict grammatical and syntatical structure, we
posed no such restrictions on the study participants. Each natural language
specification was restricted to one sentence and to five atomic propositions
a, b, c, d, e. Note that nl2spec is not restricted to a specific set of atomic propo-
sitions (cf. Fig. 1). Which variable scheme to use can be specified as an initial
sub-translation. We elaborate on this in the full version [8]. To ensure unique
instances, the experts worked in a shared document, resulting in 36 benchmark
instances. We provide three randomly drawn examples for the interested reader:

natural language S LTL specification ψ

If b holds then, in the next step, c holds until a holds or always c holds b -> X ((c U a) || G c)

If b holds at some point, a has to hold somewhere beforehand (F b) -> (!b U (a & !b))

One of the following aps will hold at all instances: a,b,c G(a | b | c)

The poor performance of existing methods (cf. Table 1) exemplify the diffi-
culty of this data set.

4.2 Results

We evaluated our approach using the minimal prompt (if not otherwise stated),
with number of runs set to three and with a temperature of 0.2.

nl2spec 391

Quality of Initial Translation. We analyze the quality of initial translations, i.e.,
translations obtained before any human interaction. This experiment demon-
strates that the initial translations are of high quality, which is important to
ensure an efficient workflow. We compared our approach to fine-tuning language
models on structured data [19] and to an approach using GPT-3 or Rasa [2] to
translate natural language into a restricted set of declare patterns [13] (which
could not handle most of the instances in the benchmark data set, even when
replacing the atomic propositions with their used entities). The results of eval-
uating the accuracy of the initial translations on our benchmark expert set is
shown in Table 1.

At the time of writing, using Codex in the backend outperforms GPT-3.5-
turbo and Bloom on this task, by correctly translating 44.4% of the instances
using the minimal prompt. We only count an instance as correctly translated
if it matches the intended meaning of the expert, no alternative translation
to ambiguous input was accepted. Additionally to the experiments using the
minimal prompt, we conducted experiments on an augmented prompt with in-
distribution examples after the user study was conducted by randomly drawing
four examples from the expert data set (3 of the examples haven’t been solved
before, see the GitHub repository or full version for more details). With this in-
distribution prompt (ID), the tool translates 21 instances (with the four drawn
examples remaining in the set), i.e., 58.3% correctly.

This experiment shows 1) that the initial translation quality is high and
can handle unstructured natural language better than previous approaches and
2) that drawing the few-shot examples in distribution only slightly increased
translation quality for this data set; making the key contributions of nl2spec,
i.e., ambiguity detection and effortless debugging of erroneous formalizations,
valuable. Since nl2spec is agnostic to the underlying machine learning models,
we expect an even better performance in the future with more fine-tuned models.

Teacher-Student Experiment. In this experiment, we generate an initial set of
sub-translations with Codex as the underlying neural model. We then ran the
tool with Bloom as a backend, taking these sub-translations as input. There were
11 instances that Codex could solve initially that Bloom was unable to solve. On
these instances, Bloom was able to solve 4 more instances, i.e., 36.4% with sub-
translations provided by Codex. The four instances that Bloom was able to solve

Table 1. Translation accuracy on the benchmark data set, where B stands for Bloom
and C stands for Codex and G for GPT-3.5-Turbo.

nl2ltl [13] T-5 [19] nl2spec+B nl2spec+C nl2spec+C nl2spec+C

rasa fine-tuned initial initial initial+ID interactive

1/36 (2.7%) 2/36 (5.5%) 5/36 (13.8%) 16/36 (44.4%) 21/36 (58.3%) 31/36 (86.1%)

– – – nl2spec+G nl2spec+G nl2spec+G

initial initial+ID interactive

– – – 12/36 (33.3%) 17/36 (47.2%) 21/36 (58.3%)

392 M. Cosler et al.

with the help of Codex were: “It is never the case that a and b hold at the same
time.”, “Whenever a is enabled, b is enabled three steps later.”, “If it is the case
that every a is eventually followed by a b, then c needs to holds infinitely often.”,
and “One of the following aps will hold at all instances: a,b,c”. This demonstrates
that our sub-translation methodology is a valid appraoch: improving the quality
of the sub-translations indeed has a positive effect on the quality of the final
formalization. This even holds true when using underperforming neural network
models. Note that no supervision by a human was needed in this experiment to
improve the formalization quality.

Ambiguity Detection. Out of the 36 instances in the benchmark set, at least 9 of
the instances contain ambiguous natural language. We especially observed two
classes of ambiguity: 1) ambiguity due to the limits of natural language, e.g.,
operator precedence, and 2) ambiguity in the semantics of natural language;
nl2spec can help in resolving both types of ambiguity. Details for the following
examples can be found in the full version [8].

An example for the first type of ambiguity from our dataset is the example
mentioned in the introduction: “a holds until b holds or always a holds”, which
the expert translated into (a U b) | G a. Running the tool, however, trans-
lated this example into (a U (b | G(a))). By editting the sub-translation of
“a holds until b holds” to (a U b) through adding explicit parenthesis, the tool
translates as intended. An example for the second type of ambiguity is the follow-
ing instance from our data set: “Whenever a holds, b must hold in the next two
steps.” The intended meaning of the expert was G (a -> (b | X b)), whereas
the tool translated this sentence into G((a -> X(X(b)))). After changing the
sub-translation of “b must hold in the next two steps” to b | X b, the tool
translates the input as intended.

Fixing Erroneous Translation. With the inherent ambiguity of natural lan-
guage and the unstructured nature of the input, the tool’s translation cannot
be expected to be always correct in the first try. Verifying and debugging sub-
translations, however, is significantly easier than redrafting the complete for-
mula from scratch. Twenty instances of the data set were not correctly trans-
lated in an initial attempt using Codex and the minimal prompt in the backend
(see Table 1). We were able to extract correct translations for 15 instances by
performing at most three translation loops (i.e., adding, editing, and removing
sub-translations), We were able to get correct results by performing 1.86 trans-
lation loops on average. For example, consider the instance, “whenever a holds,
b holds as well”, which the tool mistakenly translated to G(a & b). By fixing
the sub-translation “b holds as well” to the formula fragment -> b, the sentence
is translated as intended. Only the remaining five instances that contain highly
complex natural language requirements, such as, “once a happened, b won’t
happen again” were need to be translated by hand.

In total, we correctly translated 31 out of 36 instances, i.e., 86.11% using the
nl2spec sub-translation methodology by performing only 1.4 translation loops
on average (see Table 1).

nl2spec 393

5 Conclusion

We presented nl2spec, a framework for translating unstructured natural lan-
guage to temporal logics. A limitation of this approach is its reliance on compu-
tational resources at inference time. This is a general limitation when applying
deep learning techniques. Both, commercial and open-source models, however,
provide easily accessible APIs to their models. Additionally, the quality of initial
translations might be influenced by the amount of training data on logics, code,
or math that the underlying neural models have seen during pre-training.

At the core of nl2spec lies a methodology to decompose the natural language
input into sub-translations, which are mappings of formula fragments to relevant
parts of the natural language input. We introduced an interactive prompting
scheme that queries LLMs for sub-translations, and implemented an interface
for users to interactively add, edit, and delete the sub-translations, which avoids
users from manually redrafting the entire formalization to fix erroneous transla-
tions. We conducted a user study, showing that nl2spec can be efficiently used
to interactively formalize unstructured and ambigous natural language.

Acknowledgements. We thank OpenAI for providing academic access to Codex and
Clark Barrett for helpful feedback on an earlier version of the tool.

References

1. Al-Rfou, R., Choe, D., Constant, N., Guo, M., Jones, L.: Character-level language
modeling with deeper self-attention. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 3159–3166 (2019)

2. Bocklisch, T., Faulkner, J., Pawlowski, N., Nichol, A.: Rasa: open source language
understanding and dialogue management. arXiv preprint arXiv:1712.05181 (2017)

3. Brown, T., et al.: Language models are few-shot learners. Adv. Neural Inf. Process.
Syst. 33, 1877–1901 (2020)

4. Brunello, A., Montanari, A., Reynolds, M.: Synthesis of ltl formulas from natural
language texts: state of the art and research directions. In: 26th International
Symposium on Temporal Representation and Reasoning (TIME 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

5. Chen, M., et al.: Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021)

6. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis.
J. Symb. Logic 28(4) (1963)

7. Clarke, E.M.: Model checking. In: Ramesh, S., Sivakumar, G. (eds.) FSTTCS 1997.
LNCS, vol. 1346, pp. 54–56. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0058022

8. Cosler, M., Hahn, C., Mendoza, D., Schmitt, F., Trippel, C.: nl2spec: interactively
translating unstructured natural language to temporal logics with large language
models. arXiv preprint arXiv:2303.04864 (2023)

9. Cosler, M., Schmitt, F., Hahn, C., Finkbeiner, B.: Iterative circuit repair against
formal specifications. In: International Conference on Learning Representations (to
appear) (2023)

http://arxiv.org/abs/1712.05181
http://arxiv.org/abs/2107.03374
https://doi.org/10.1007/BFb0058022
https://doi.org/10.1007/BFb0058022
http://arxiv.org/abs/2303.04864

394 M. Cosler et al.

10. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: IJCAI 2013 Proceedings of the Twenty-Third international
joint conference on Artificial Intelligence, pp. 854–860. Association for Computing
Machinery (2013)

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

12. Fuggitti, F.: LTLf2DFA. Zenodo (2019). https://doi.org/10.5281/ZENODO.
3888410, https://zenodo.org/record/3888410

13. Fuggitti, F., Chakraborti, T.: Nl2ltl-a python package for converting natural lan-
guage (nl) instructions to linear temporal logic (ltl) formulas (2023)

14. Gao, L., et al.: The pile: an 800 gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027 (2020)

15. Gavran, I., Darulova, E., Majumdar, R.: Interactive synthesis of temporal spec-
ifications from examples and natural language. Proc. ACM Program. Lang.
4(OOPSLA), 1–26 (2020)

16. Gopalan, N., Arumugam, D., Wong, L.L., Tellex, S.: Sequence-to-sequence lan-
guage grounding of non-markovian task specifications. In: Robotics: Science and
Systems, vol. 2018 (2018)

17. Grunske, L.: Specification patterns for probabilistic quality properties. In: 2008
ACM/IEEE 30th International Conference on Software Engineering, pp. 31–40.
IEEE (2008)

18. Hahn, C., Schmitt, F., Kreber, J.U., Rabe, M.N., Finkbeiner, B.: Teaching tempo-
ral logics to neural networks. In: International Conference on Learning Represen-
tations (2021)

19. Hahn, C., Schmitt, F., Tillman, J.J., Metzger, N., Siber, J., Finkbeiner, B.: Formal
specifications from natural language. arXiv preprint arXiv:2206.01962 (2022)

20. Havelund, K., Roşu, G.: Monitoring java programs with java pathexplorer. Elec-
tron. Notes Theor. Comput. Sci. 55(2), 200–217 (2001)

21. He, J., Bartocci, E., Ničković, D., Isakovic, H., Grosu, R.: Deepstl: from english
requirements to signal temporal logic. In: Proceedings of the 44th International
Conference on Software Engineering, pp. 610–622 (2022)

22. IEEE-Commission, et al.: IEEE standard for property specification language
(PSL). IEEE Std 1850–2005 (2005)

23. Kaplan, J., et al.: Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361 (2020)

24. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th International Conference on Software Engineering, pp. 372–381 (2005)

25. Kreber, J.U., Hahn, C.: Generating symbolic reasoning problems with transformer
gans. arXiv preprint arXiv:2110.10054 (2021)

26. Lahiri, S.K., et al.: Interactive code generation via test-driven user-intent formal-
ization. arXiv preprint arXiv:2208.05950 (2022)

27. Laurençon, H., et al.: The bigscience roots corpus: a 1.6 tb composite multilingual
dataset. In: Thirty-sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (2022)

28. Lewkowycz, A., et al.: Solving quantitative reasoning problems with language mod-
els. arXiv preprint arXiv:2206.14858 (2022)

29. Lhoest, Q., et al.: Datasets: a community library for natural language processing.
arXiv preprint arXiv:2109.02846 (2021)

http://arxiv.org/abs/1810.04805
https://doi.org/10.5281/ZENODO.3888410
https://doi.org/10.5281/ZENODO.3888410
https://zenodo.org/record/3888410
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2206.01962
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2110.10054
http://arxiv.org/abs/2208.05950
http://arxiv.org/abs/2206.14858
http://arxiv.org/abs/2109.02846

nl2spec 395

30. Liu, J.X., et al.: Lang2ltl: translating natural language commands to temporal
specification with large language models. In: Workshop on Language and Robotics
at CoRL 2022

31. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

32. Patel, R., Pavlick, R., Tellex, S.: Learning to ground language to temporal logical
form. In: NAACL (2019)

33. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103,
pp. 169–180. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862 18

34. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977), pp. 46–57. IEEE (1977)

35. Rabe, M.N., Szegedy, C.: Towards the automatic mathematician. In: Platzer, A.,
Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 25–37. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-79876-5 2

36. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving lan-
guage understanding by generative pre-training (2018)

37. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

38. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21(140), 1–67 (2020). http://jmlr.org/papers/
v21/20-074.html

39. Scao, T.L., et al.: Bloom: a 176b-parameter open-access multilingual language
model. arXiv preprint arXiv:2211.05100 (2022)

40. Schmitt, F., Hahn, C., Rabe, M.N., Finkbeiner, B.: Neural circuit synthesis from
specification patterns. Adv. Neural Inf. Process. Syst. 34, 15408–15420 (2021)

41. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

42. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30
(2017)

43. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Asser-
tions. Springer, Heidelberg (2005). https://doi.org/10.1007/b137011

44. Vyshnavi, V.R., Malik, A.: Efficient way of web development using python and
flask. Int. J. Recent Res. Asp 6(2), 16–19 (2019)

45. Wang, C., Ross, C., Kuo, Y.L., Katz, B., Barbu, A.: Learning a natural-
language to ltl executable semantic parser for grounded robotics. arXiv preprint
arXiv:2008.03277 (2020)

46. Wei, J., et al.: Chain of thought prompting elicits reasoning in large language
models. arXiv preprint arXiv:2201.11903 (2022)

47. Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771 (2019)

48. Wolf, T., et al.: Transformers: State-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45 (2020)

49. Wu, Y., et al.: Autoformalization with large language models. arXiv preprint
arXiv:2205.12615 (2022)

50. Zelikman, E., Wu, Y., Goodman, N.D.: Star: bootstrapping reasoning with reason-
ing. arXiv preprint arXiv:2203.14465 (2022)

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/11837862_18
https://doi.org/10.1007/978-3-030-79876-5_2
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2211.05100
https://doi.org/10.1007/b137011
http://arxiv.org/abs/2008.03277
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2205.12615
http://arxiv.org/abs/2203.14465

396 M. Cosler et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

NNV 2.0: The Neural Network
Verification Tool

Diego Manzanas Lopez1(B), Sung Woo Choi2,
Hoang-Dung Tran2, and Taylor T. Johnson1

1 Vanderbilt University, Nashville, USA
diego.manzanas.lopez@vanderbilt.edu
2 University of Nebraska, Lincoln, USA

Abstract. This manuscript presents the updated version of the Neural
Network Verification (NNV) tool. NNV is a formal verification software
tool for deep learning models and cyber-physical systems with neural net-
work components. NNV was first introduced as a verification framework
for feedforward and convolutional neural networks, as well as for neural
network control systems. Since then, numerous works have made signif-
icant improvements in the verification of new deep learning models, as
well as tackling some of the scalability issues that may arise when veri-
fying complex models. In this new version of NNV, we introduce verifica-
tion support for multiple deep learning models, including neural ordinary
differential equations, semantic segmentation networks and recurrent neu-
ral networks, as well as a collection of reachability methods that aim to
reduce the computation cost of reachability analysis of complex neural net-
works. We have also added direct support for standard input verification
formats in the community such as VNNLIB (verification properties), and
ONNX (neural networks) formats. We present a collection of experiments
in whichNNVverifies safety and robustness properties of feedforward, con-
volutional, semantic segmentation and recurrent neural networks, as well
as neural ordinary differential equations and neural network control sys-
tems. Furthermore, we demonstrate the capabilities of NNV against a com-
mercially available product in a collection of benchmarks from control sys-
tems, semantic segmentation, image classification, and time-series data.

Keywords: neural networks · cyber-physical systems · verification ·
tool

1 Introduction

Deep Learning (DL) models have achieved impressive performance on a wide
range of tasks, including image classification [13,24,44], natural language pro-
cessing [15,25], and robotics [47]. Recently, the usage of these models has
expanded into many other areas, including safety-critical domains, such as
autonomous vehicles [9,10,85]. However, deep learning models are opaque sys-
tems, and it has been demonstrated that their behavior can be unpredictable
when small changes are applied to their inputs (i.e., adversarial attacks) [67].
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 397–412, 2023.
https://doi.org/10.1007/978-3-031-37703-7_19

https://doi.org/10.24433/CO.0803700.v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_19&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_19

398 D. M. Lopez et al.

Therefore, for safety-critical applications, it is often necessary to comprehend
and analyze the behavior of the whole system, including reasoning about the
safety guarantees of the system. To address this challenge, many researches have
been developing techniques and tools to verify Deep Neural Networks (DNN)
[4,6,22,39,40,48,55,64,65,77,83,84,86,87], as well as learning-enabled Cyber-
Physical Systems (CPS) [3,8,12,23,26,34,35,38,50,51]. It is worth noting that
despite the growing research interest, the verification of deep learning models still
remains a challenging task, as the complexity and non-linearity of these models
make them difficult to analyze. Moreover, some verification methods suffer from
scalability issues, which limits the applicability of some existing techniques to
large-scale and complex models. Another remaining challenge is the extension of
existing or new methods for the verification of the extensive collection of layers
and architectures existing in the DL area, such as Recurrent Neural Networks
(RNN) [37], Semantic Segmentation Neural Networks (SSNN) [58] or Neural
Ordinary Differential Equations (ODE) [11].

This work contributes to addressing the latter challenge by introducing ver-
sion 2.0 of NNV1 (Neural Network V erification)2, which is a software tool that
supports the verification of multiple DL models as well as learning-enabled CPS,
also known as Neural Network Control Systems (NNCS) [80]. NNV is a software
verification tool with the ability to compute exact and over-approximate reach-
able sets of feedforward neural networks (FFNN) [75,77,80], Convolutional Neu-
ral Networks (CNN) [78], and NNCS [73,80]. In NNV 2.0, we add verification
support of 3 main DL models: 1) RNNs [74], 2) SSNNs (encoder-decoder archi-
tectures) [79], and 3) neural ODEs [52], as well as several other improvements
introduced in Sect. 3, including support for The Verification of Neural Networks
Library (VNNLIB) [29] and reachability methods for MaxUnpool and Leaky
ReLU layers. Once the reachability computation is completed, NNV is capable of
verifying a variety of specifications such as safety or robustness, very commonly
used in learning-enabled CPS and classification domains, respectively [50,55].
We demonstrate NNV capabilities through a collection of safety and robustness
verification properties, which involve the reachable set computation of feedfor-
ward, convolutional, semantic segmentation and recurrent neural networks, as
well as neural ordinary differential equations and neural network control systems.
Throughout these experiments, we showcase the range of the existing methods,
executing up to 6 different star-based reachability methods that we compare
against MATLAB’s commercially available verification tool [69].

2 Related Work

The area of DNN verification has increasingly grown in recent years, leading
to the development of standard input formats [29] as well as friendly com-
petitions [50,55], that help compare and evaluate all the recent methods and
tools proposed in the community [4,6,19,22,31,39–41,48,55,59,64,65,77,83,84,
1 Code available at: https://github.com/verivital/nnv/releases/tag/cav2023.
2 Archival version: https://doi.org/10.24433/CO.0803700.v1.

https://github.com/verivital/nnv/releases/tag/cav2023
https://doi.org/10.24433/CO.0803700.v1

NNV 2.0 399

86,87]. However, the majority of these methods focus on regression and classifica-
tion tasks performed by FFNN and CNN. In addition to FFNN and CNN verifi-
cation, Tran et al. [79] introduced a collection of star-based reachability analysis
that also verify SSNNs. Fischer et al. [21] proposed a probabilistic method for the
robustness verification of SSNNs based on randomize smoothing [14]. Since then,
some of the other recent tools, including Verinet [31], α,β-Crown [84,87], and
MN-BaB [20] are also able to verify image segmentation properties as demon-
strated in [55]. A less explored area is the verification of RNN. These models have
unique “memory units” that enable them to store information for a period of
time and learn complex patterns of time-series or sequential data. However, due
to their memory units, verifying the robustness of RNNs is challenging. Recent
notable state-of-the-art methodologies for verifying RNNs include unrolling the
network into an FFNN and then verify it [2], invariant inference [36,62,90], and
star-based reachability [74]. Similar to RNNs, neural ODEs are also deep learning
models with “memory”, which makes them suitable to learn time-series data, but
are also applicable to other tasks such as continuous normalizing flows (CNF)
and image classification [11,61]. However, existing work is limited to a stochastic
reachability approach [27,28], reachability approaches using star and zonotope
reachability methods for a general class of neural ODEs (GNODE) with contin-
uous and discrete time layers [52], and GAINS [89], which leverages ODE-solver
information to discretize the models using a computation graph that represent
all possible trajectories from a given input to accelerate their bound propaga-
tion method. However, one of the main challenges is to find a framework that is
able to verify several of these models successfully. For example, α,β-Crown was
the top performer on last year’s NN verification competition [55], able to verify
FFNN, CNN and SSNNs, but it lacks support for neural ODEs or NNCS. There
exist other tools that focus more on the verification of NNCS such as Verisig
[34,35], Juliareach [63], ReachNN [17,33], Sherlock [16], RINO [26], VenMas [1],
POLAR [32], and CORA [3,42]. However, their support is limited to NNCS
with a linear, nonlinear ODE or hybrid automata as the plant model, and a
FFNN as the controller.

Finally, for a more detailed comparison to state-of-the-art methods for the
novel features of NNV 2.0, we refer to the comparison and discussion about
neural ODEs in [52]. For SSNNs [79], there is a discussion on scalability and
conservativeness of methods presented (approx and relax star) for the different
layers that may be part of a SSNN [79]. For RNNs, the approach details and
a state-of-the-art comparison can be found in [74]. We also refer the reader to
two verification competitions, namely VNN-COMP [6,55] and AINNCS ARCH-
COMP [38,50], for a comparison on state-of-the-art methods for neural network
verification and neural network control system verification, respectively.

3 Overview and Features

NNV is an object-oriented toolbox developed in MATLAB [53] and built on top
of several open-source software, including CORA [3] for reachability analysis of

400 D. M. Lopez et al.

nonlinear ordinary differential equations (ODE) [73] and hybrid automata, MPT
toolbox [45] for polytope-based operations [76], YALMIP [49] for some optimiza-
tion problems in addition to MATLAB’s Optimization Toolbox [53] and GLPK
[56], and MatConvNet [82] for some convolution and pooling operations. NNV
also makes use of MATLAB’s deep learning toolbox to load the Open Neu-
ral Network Exchange (ONNX) format [57,68], and the Hybrid Systems Model
Transformation and Translation tool (HyST) [5] for NNCS plant configuration.

NNV consists of two main modules: a computation engine and an analyzer,
as illustrated in Fig. 1. The computation engine module consists of four com-
ponents: 1) NN constructor, 2) NNCS constructor, 3) reachability solvers, and
4) evaluator. The NN constructor takes as an input a neural network, either
as a DAGNetwork, dlnetwork, SeriesNetwork (MATLAB built-in formats) [69],
or as an ONNX file [57], and generates a NN object suitable for verification.
The NNCS constructor takes as inputs the NN object and an ODE or Hybrid
Automata (HA) file describing the dynamics of a system, and then creates an
NNCS object. Depending on the task to solve, either the NN (or NNCS) object
is passed into the reachability solver to compute the reachable set of the system
from a given set of initial conditions. Then, the computed set is sent to the ana-
lyzer module to verify/falsify a given property, and/or visualize the reachable
sets. Given a specification, the verifier can formally reason whether the spec-
ification is met by computing the intersection of the define property and the
reachable sets. If an exact (sound and complete) method is used, (e.g., exact-
star), the analyzer can determine if the property is satisfied or unsatisfied. If an
over-approximate (sound and incomplete) method is used, the verifier may also
return “uncertain” (unknown), in addition to satisfied or unsatisfied.

NN
Constructor

NNCS
Constructor

Reachability
solvers

Evaluator
Falsifier

Verifier

Visualizer
Computation Engine

Analyzer

Network
Configuration

Plant
Configuration

Reachable
Sets

Evaluation
Traces

Set of counter
inputs or

unsafe traces

Safe/
Unsafe/
Robust

Plot of reachable
sets/traces

Unsafe/
Uncertain?

Initial Condition

Fig. 1. An overview of NNV and its major modules and components.

3.1 NNV 2.0 vs NNV

Since the introduction of NNV [80], we have added to NNV support for the
verification of a larger subset of deep learning models. We have added reacha-
bility methods to verify SSNNs [79], and a collection of relax-star reachability
methods [79], reachability techniques for Neural ODEs [52] and RNNs [74]. In
addition, there have been changes that include the creation of a common NN
class that encapsulates previously supported neural network classes (FFNN and
CNN) as well as Neural ODEs, SSNNs, and RNNs, which significantly reduces
the software complexity and simplifies user experience. We have also added direct
support for ONNX [57], as well as a parser for VNN-LIB [29], which describes

NNV 2.0 401

properties to verify of any class of neural networks. We have also added flexibility
to use one of the many solvers supported by YALMIP [49], GLPK [56] or lin-
prog [70]. Table 1 shows a summary of the major features of NNV, highlighting
the novel features.

Table 1. Overview of major features available in NNV. Links refer to relevant
files/classes in the NNV codebase. BN refers to batch normalization layers, FC to
fully-connected layers, AvgPool to average pooling layers, Conv to convolutional lay-
ers, and MaxPool to max pooling layers.

Feature Supported (NNV 2.0 additions in blue)

Neural Network Type FFNN, CNN, NeuralODE, SSNN, RNN

Layers MaxPool, Conv, BN, AvgPool, FC, MaxUnpool, TC, DC, NODE

Activation functions ReLU, Satlin, Sigmoid, Tanh, Leaky ReLU, Satlins

Plant dynamics (NNCS) Linear ODE, Nonlinear ODE, HA, Continuous & Discrete Time

Set Representation Polyhedron, Zonotope, Star, ImageStar

Star Reach methods exact, approx, abs-dom, relax-range, relax-area, relax-random, relax-bound

Reachable set visualization Yes, exact and over-approximation

Verification Safety, Robustness, VNNLIB

Miscellaneous Parallel computing, counterexample generation, ONNX*

*ONNX was partially supported for feedforward neural networks through
NNVMT. Support has been extended to other NN types without the need
for external libraries.

Semantic Segmentation [79]. Semantic segmentation consists on classifying
image pixels into one or more classes which are semantically interpretable, like
the different objects in an image. This task is common in areas like perception
for autonomous vehicles, and medical imaging [71], which is typically accom-
plished by neural networks, referred to as semantic segmentation neural net-
works (SSNNs). These are characterized by two major portions, the encoder, or
sequence of down-sampling layers to extract important features in the input, and
the decoder, or sequence of up-sampling layers, to scale back the data informa-
tion and classify each pixel into its corresponding class. Thus, the verification of
these models is rather challenging, due to the complexity of the layers, and the
output space dimensionality. We implement in NNV the collection of reachabil-
ity methods introduced by Tran et al. [79], that are able to verify the robustness
of a SSNNs. This means that we can formally guarantee the robustness value for
each pixel, and determine the percentage of pixels that are correctly classified
despite the adversarial attack. This was demonstrated using several architectures
on two datasets: MNIST and M2NIST [46]. To achieve this, additional support
for transposed and dilated convolutional layers was added [79].

Neural Ordinary Differential Equations [52]. Continuous deep learning
models, referred to as Neural ODEs, have received a growing consideration over
the last few years [11]. One of the main reasons for their popularity is due to
their memory efficiency and their ability to learn from irregularly sampled data
[61]. Similarly to SSNNs, despite their recent popularity, there is very limited
work on the formal verification of these models [52]. For this reason, we imple-
mented in NNV the first deterministic verification approach for a general class

402 D. M. Lopez et al.

of neural ODEs (GNODE), which supports GNODEs to be constructed with
multiple continuous layers (neural ODEs), linear or nonlinear, as well as any
discrete-time layer already supported in NNV, such as ReLU, fully-connected
or convolutional layers [52]. NNV demonstrates its capabilities in a series of
time-series, control systems and image classification benchmarks, where it sig-
nificantly outperforms any of the compared tools in the number of benchmarks
and architectures supported [52].

Recurrent Neural Networks [74]. We implement star-based verification
methods for RNNs introduced in [74]. These are able to verify RNNs without
unrolling, reducing accumulated over-approximation error by optimized relax-
ation in the case of approximate reachability. The star set is an efficient technique
in the computation of RNN reachable sets due to its advantages in computing
affine mapping, the intersection of half-spaces, and Minkowski summation [74].
A new star set representing the reachable set of the current hidden state can
be directly and efficiently constructed based on the reachable sets of the pre-
vious hidden state and the current input set. As proposed in verifying FFNNs
[7,77,78], CNNs [72], and SSNNs [79], tight and efficient over-approximation
reachability can be applied to the verification of ReLU RNNs. The triangular
over-approximation of ReLU enables a tight over-approximation of the exact
reachable set, preventing exponentially increasing the number of star sets dur-
ing splitting. Estimation of the state bound required for over-approximation can
compute state bounds without solving LPs. Furthermore, the relaxed approx-
imate reachability estimates the triangle over-approximation areas to optimize
the ranges of state by solving LP optimization. Consequently, the extended exact
reachability method is 10× faster, and the over-approximation method is 100×
to 5000× faster than existing state-of-the-art methods [74].

Zonotope Pre-filtering Star Set Reachability [78]. The star-based reacha-
bility methods are improved by using the zonotope pre-filtering approach [7,78].
This improvement consists on equipping the star set with an outer-zonotope,
on the reachability analysis of a ReLU layer, to estimate quickly the lower and
upper bounds of the star set at each specific neuron to establish if splitting may
occur at this neuron without the need to solve any LP problems. The reduction
of LP optimizations to solve is critical for the scalability of star-set reachability
methods [77]. For the exact analysis, we are able to avoid the use of the zonotope
pre-filtering, since we can efficiently construct the new output set with one star,
if the zero point is not within the set range, or the union of 2 stars, if the zero
point is contained [78]. In the over-approximation star, the range information is
required to construct the output set at a specific neuron if and only if the range
contains the zero point.

Relax-Star Reachability [79]. To tackle some of the scalability problems that
may arise when computing the reachable set of complex neural networks such as
SSNNs, a collection of four relaxed reachability methods were introduced [79].
The main goal of these methods is to reduce the number of Linear Programming
(LP) problems to solve by quickly estimating the bounds or the reachable set,

NNV 2.0 403

and only solving a fraction of the LP problems, while over-approximating the
others. The LPs to solve are determined by the heuristics chosen, which can be
random, area-based, bound-based, or range-based. The number of LPs is also
determined by the user, who can choose from 0% to 100%. The closer to 100%,
the larger number of LPs are skipped and over-approximated, thus the reachable
set tends to be a larger over-approximation of the output, which significantly
reduces the computation time [79].

Other Updates. In addition to the previous features described, there is a set
of changes and additions included in the latest NNV version:

- Activation Functions. The star set method is extended to other classes of
piecewise activation functions such as saturating linear layer (satlin), saturating
linear symmetric layer (satlins), and leaky ReLU. The reachability analysis of
each of these functions can be performed similarly to ReLU layers using the
zonotope pre-filtering method to find where splits happen.

- LP solver. We generalize the use of LP solvers across all methods and
optimizations. We allow the user to select the solver to use, which can choose
between GLPK [56], linprog [70] (MATLAB’s Optimization Toolbox) or any of
the solvers supported by YALMIP [49]. We select linprog as the default solver,
while keeping GLPK as a backup. However, if a different solver is selected that
is supported by YALMIP, our implementation of the LP solver abstraction also
supports this selection for any reachability method.

- Standard Input Formats. In the past few years, the verification community
has been working to standardize formats across all tools to facilitate comparison
among them. We have improved NNV by replacing the NNVMT tool [81] with a
module to load ONNX [57] networks directly from MATLAB, as well as adding
support for VNNLIB [29] files to define NN properties.

4 Evaluation

The evaluation is divided into 4 sections: 1) Comparison of FFNN and CNN
to MATLAB’s commercial toolbox [53,69], 2) Reachability analysis of Neural
ODEs [52], 3) Robustness Verification of RNNs [74], and 4) Robustness Verifica-
tion of SSNNs [79]. The results presented were all performed on a desktop with
the following configuration: AMD Ryzen 9 5900X @3.7GHz 12-Core Processor,
64 GB Memory, and 64-bit Microsoft Windows 10 Pro.

4.1 Comparison to MATLAB’s Deep Learning Verification Toolbox

In this comparison, we make use of a subset of the benchmarks and properties
evaluated in last year’s Verification of Neural Network (VNN) [55] competition,
in which we demonstrate the capabilities of NNV with respect to the latest
commercial product from MATLAB for the verification of neural networks [69].

We compared them on a subset of benchmarks from VNN-COMP’22 [55]:
ACAS Xu, Tllverify, Oval21 (CIFAR10 [43]), and RL benchmarks, which con-
sists on verifying 90 out of 145 properties of the ACAS Xu, where we compare

404 D. M. Lopez et al.

Table 2. Verification of ACAS Xu properties 3 and 4.

matlab approx relax 25% relax 50% relax 75% relax 100% exact (8)

prop 3 (45) SAT 3 3 3 2 0 0 3

UNSAT 10 29 8 2 1 0 42

time (s) 0.1383 0.6368 0.6192 0.5714 0.3843 0.0276 521.9

prop 4 (45) SAT 1 3 3 2 0 0 3

UNSAT 2 32 6 1 1 0 42

time (s) 0.1387 0.6492 0.6420 0.5682 0.3568 0.0261 89.85

Table 3. Verification results of the RL, tllverify and oval21 benchmarks. We selected
50 random specifications from the RL benchmarks, 10 from tllverify and all 30 from
oval21. - means that the benchmark is not supported.

RL (50) Tllverify (10) Oval21 (30)

SAT UNSAT time (s) SAT UNSAT time (s) SAT UNSAT time (s)

matlab 20 11 0.0504 0 0 0.1947 – – –

NNV 32 14 0.0822 0 0 13.57 0 11 136.5

MATLAB’s methods, approx-star, exact (parallel, 8 cores) and 4 relax-star meth-
ods. From the other 3 benchmarks, we select a total of 90 properties to verify,
from which we limit the comparison to the approx-star and MATLAB’s method.
In this section, we demonstrate NNV is able to verify fully-connected layers,
ReLU layers, flatten layers, and convolutional layers. The results of this compar-
ison are described in Table 2. We can observe that MATLAB’s computation time
is faster than NNV star methods, except for the relax star with 100% relaxation.
However, NNV’s exact and approx methods significantly outperform MATLAB’s
framework by verifying 100% and 74% of the properties respectively, compared to
18% from MATLAB’s. The remainder of the comparison is described in Table 3,
which shows a similar trend: MATLAB’s computation is faster, while NNV is
able to verify a larger fraction of the properties.

4.2 Neural Ordinary Differential Equations

We exhibit the reachability analysis of GNODEs with three tasks: dynamical
system modeling of a Fixed Point Attractor (FPA) [52,54], image classification
of MNIST [46], and an adaptive cruise control (ACC) system [73].

Dynamical Systems. For the FPA, we compute the reachable set for a time
horizon of 10 s, given a perturbation of ± 0.01 on all 5 input dimensions. The
results of this example are illustrated in Fig. 2c, with a computation time of
3.01 s. The FPA model consists of one nonlinear neural ODE, no discrete-time
layers are part of this model [52].

Classification. For the MNIST benchmark, we evaluate the robustness of two
GNODEs with convolutional, fully-connected, ReLU and neural ODE layers,
corresponding to CNODES and CNODEM models introduced in [52]. We verify
the robustness of 5 random images under an L∞ attack with a perturbation

NNV 2.0 405

5 10 15 20
T steps

0.01

0.1

1

10

100
C

om
pu

ta
tio

n
Ti

m
e

(s
) N2,0

N4,4
N8,0

(a) RNN
Computation Times

0 1 2 3 4 5
Time (s)

40

50

60

70

80

90

100

110

D
is

ta
nc

e
(m

)

rel dist
safe dist

(b) Neural ODE, NNCS
Nonlinear ACC

-1.5 -1 -0.5 0 0.5
x1

-2.5

-2

-1.5

-1

-0.5

0

x 2

NNV

(c) Neural ODE
FPA

Fig. 2. Verification of RNN and neural ODE results. Figure 2a shows the verification
time of the 3 RNNs evaluated. Figure 2b depicts the safety verification of the ACC,
and Fig. 2c shows the reachability results of the FPA benchmark.

value of ± 0.5 on all the pixels. We are able to prove the robustness of both
models on 100% of images, with an average computation time of 16.3 s for the
CNODES , and 119.9 s for the CNODEM .

Control Systems. We verify an NNCS of an adaptive cruise control (ACC)
system, where the controller is a FFNN with 5 ReLU layers with 20 neurons
each, and one output linear layer, and the plant is a nonlinear neural ODE [52].
The verification results are illustrated in Fig. 2b, showing the current distance
between the ego and lead cars and the safety distance allowed. We can observe
that there is no intersection between the two, guaranteeing its safety.

4.3 Recurrent Neural Networks

For the RNN evaluation, we evaluate of three RNNs trained on the speaker
recognition VCTK dataset [88]. Each network has an input layer of 40 neurons,
two hidden layers with 2,4, or 8 memory units, followed by 5 ReLU layers with
32 neurons, and an output layer of 20 neurons. For each of the networks, we
use the same 5 input points (40-dimensional time-independent vectors) for com-
parison. The robustness verification consists on proving that the output label
after T ∈ {5, 10, 15, 20} steps in the sequence is still the same, given an adver-
sarial attack perturbation of ε = ± 0.01. We compute the reachable sets of all
reachability instances using the approx-star method, which was able to prove
the robustness of 19 out of 20 on N2,0, and N4,4 networks, and 18 for the N8,0

network. We show the average reachability time per T value in Fig. 2a.

4.4 Semantic Segmentation

We demonstrate the robustness verification of two SSNNs, one with dilated con-
volutional layers and the other one with transposed convolutional layers, in addi-
tion to average pooling, convolutional and ReLU layers, which correspond to N4

and N5 introduced in Table 1 by Tran et al. [79]. We evaluate them on one

406 D. M. Lopez et al.

random image of M2NIST [18] by attacking each image using an UBAA bright-
ening attack [79]. One of the main differences of this evaluation with respect
to the robustness analysis of other classification is the evaluation metrics used.
For these networks, we evaluate the average robustness values (percentage of
pixels correctly classified), sensitivity (number of not robust pixels over number
of attacked pixels), and IoU (intersection over union) of the SSNNs. The compu-
tation time for the dilated example, shown in Fig. 3, is 54.52 s, with a robustness
value of 97.2%, a sensitivity of 3.04, and a IoU of 57.8%. For the equivalent exam-
ple with the transposed network, the robustness value is 98.14%, sensitivity of
2, IoU of 72.8%, and a computation time of 7.15 s.

zero

two

six

nine

ten

(a) Target Image

zero

two

six

nine

ten

misclass

(b) Transposed SSNN

zero

six

ten

misclass

(c) Dilated SSNN

Fig. 3. Robustness verification of the dilated and transposed SSNN under a UBAA
brightening attack to 150 random pixels in the input image.

5 Conclusions

We presented version 2.0 of NNV, the updated version of the Neural Network
Verification (NNV) tool [80], a software tool for the verification of deep learning
models and learning-enabled CPS. To the best of our knowledge, NNV is the
most comprehensive verification tool in terms of the number of tasks and neural
networks architectures supported, including the verification of feedforward, con-
volutional, semantic segmentation, and recurrent neural networks, neural ODEs
and NNCS. With the recent additions to NNV, we have demonstrated that NNV
can be a one-stop verification tool for users with a diverse problem set, where ver-
ification of multiple neural network types is needed. In addition, NNV supports
zonotope, polyhedron based methods, and up to 6 different star-based reachabil-
ity methods to handle verification tradeoffs for the verification problem of neural
networks, ranging from the exact-star, which is sound and complete, but com-
putationally expensive, to the relax-star methods, which are significantly faster
but more conservative. We have also shown that NNV outperforms a commer-
cially available product from MATLAB, which computes the reachable sets of
feedforward neural networks using the zonotope reachability method presented
in [66]. In the future, we plan to ensure support for other deep learning models
such as ResNets [30] and UNets [60].

NNV 2.0 407

Acknowledgments. The material presented in this paper is based upon work sup-
ported by the National Science Foundation (NSF) through grant numbers 1910017,
2028001, 2220418, 2220426 and 2220401, and the NSF Nebraska EPSCoR under grant
OIA-2044049, the Defense Advanced Research Projects Agency (DARPA) under con-
tract number FA8750-18-C-0089 and FA8750-23-C-0518, and the Air Force Office of
Scientific Research (AFOSR) under contract number FA9550-22-1-0019 and FA9550-
23-1-0135. Any opinions, findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect the views of AFOSR,
DARPA, or NSF.

References

1. Akintunde, M.E., Botoeva, E., Kouvaros, P., Lomuscio, A.: Formal verification of
neural agents in non-deterministic environments. In: Proceedings of the 19th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS
2020), IFAAMAS 2020, . ACM, Auckland (2020)

2. Akintunde, M.E., Kevorchian, A., Lomuscio, A., Pirovano, E.: Verification of rnn-
based neural agent-environment systems. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, pp. 6006–6013 (2019)

3. Althoff, M.: An introduction to cora 2015. In: Proceedings of the Workshop on
Applied Verification for Continuous and Hybrid Systems (2015)

4. Bak, S.: nnenum: verification of ReLU neural networks with optimized abstraction
refinement. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds.)
NFM 2021. LNCS, vol. 12673, pp. 19–36. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-76384-8 2

5. Bak, S., Bogomolov, S., Johnson, T.T.: Hyst: a source transformation and transla-
tion tool for hybrid automaton models. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, pp. 128–133. ACM
(2015)

6. Bak, S., Liu, C., Johnson, T.T.: The second international verification of neu-
ral networks competition (VNN-COMP 2021): Summary and results. CoRR
abs/2109.00498 (2021)

7. Bak, S., Tran, H.-D., Hobbs, K., Johnson, T.T.: Improved geometric path enumer-
ation for verifying ReLU neural networks. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12224, pp. 66–96. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53288-8 4

8. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: Juliareach: a
toolbox for set-based reachability. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pp. 39–44 (2019)

9. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316 (2016)

10. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for
direct perception in autonomous driving. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 2722–2730 (2015)

11. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary dif-
ferential equations. Adv. Neural Inf. Process. Syst. (2018)

12. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-76384-8_2
https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18

408 D. M. Lopez et al.

13. Cireşan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. arXiv preprint arXiv:1202.2745 (2012)

14. Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via ran-
domized smoothing. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of
the 36th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 97, pp. 1310–1320. PMLR (2019)

15. Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: Proceedings of the 25th Inter-
national Conference on Machine Learning, pp. 160–167. ACM (2008)

16. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks, pp. 121–138 (2018)

17. Fan, J., Huang, C., Chen, X., Li, W., Zhu, Q.: ReachNN*: a tool for reachability
analysis of neural-network controlled systems. In: Hung, D.V., Sokolsky, O. (eds.)
ATVA 2020. LNCS, vol. 12302, pp. 537–542. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-59152-6 30

18. (farhanhubble), F.A.: M2NIST, MNIST of semantic segmentation. https://www.
kaggle.com/datasets/farhanhubble/multimnistm2nist

19. Ferlez, J., Khedr, H., Shoukry, Y.: Fast BATLLNN: fast box analysis of two-level
lattice neural networks. In: Bartocci, E., Putot, S. (eds.) HSCC ’22: 25th ACM
International Conference on Hybrid Systems: Computation and Control, Milan,
Italy, 4–6 May 2022. pp. 23:1–23:11. ACM (2022)

20. Ferrari, C., Müller, M.N., Jovanovic, N., Vechev, M.T.: Complete verification via
multi-neuron relaxation guided branch-and-bound. In: The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April
2022. OpenReview.net (2022)

21. Fischer, M., Baader, M., Vechev, M.: Scalable certified segmentation via ran-
domized smoothing. In: Meila, M., Zhang, T. (eds.) Proceedings of the 38th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 139, pp. 3340–3351. PMLR (2021)

22. Fischer, M., Sprecher, C., Dimitrov, D.I., Singh, G., Vechev, M.: Shared certificates
for neural network verification. In: Shoham, S., Vizel, Y. (eds.) Computer Aided
Verification, pp. 127–148. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-13185-1 7

23. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

24. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2414–2423 (2016)

25. Goldberg, Y.: A primer on neural network models for natural language processing.
J. Artif. Intell. Res. 57, 345–420 (2016)

26. Goubault, E., Putot, S.: Rino: Robust inner and outer approximated reachability
of neural networks controlled systems. In: Shoham, S., Vizel, Y. (eds.) Computer
Aided Verification, pp. 511–523. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-13185-1 25

27. Gruenbacher, S., Hasani, R.M., Lechner, M., Cyranka, J., Smolka, S.A., Grosu, R.:
On the verification of neural odes with stochastic guarantees. In: AAAI (2021)

28. Gruenbacher, S., et al.: Gotube: scalable stochastic verification of continuous-depth
models (2021)

29. Guidotti, D., Demarchi, S., Tacchella, A., Pulina, L.: The Verification of Neural
Networks Library (VNN-LIB) (2022). https://www.vnnlib.org

http://arxiv.org/abs/1202.2745
https://doi.org/10.1007/978-3-030-59152-6_30
https://doi.org/10.1007/978-3-030-59152-6_30
https://www.kaggle.com/datasets/farhanhubble/multimnistm2nist
https://www.kaggle.com/datasets/farhanhubble/multimnistm2nist
https://doi.org/10.1007/978-3-031-13185-1_7
https://doi.org/10.1007/978-3-031-13185-1_7
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-031-13185-1_25
https://doi.org/10.1007/978-3-031-13185-1_25
https://www.vnnlib.org

NNV 2.0 409

30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

31. Henriksen, P., Hammernik, K., Rueckert, D., Lomuscio, A.: Bias field robustness
verification of large neural image classifiers. In: Proceedings of the 32nd British
Machine Vision Conference (BMVC21). BMVA Press (2021)

32. Huang, C., Fan, J., Chen, X., Li, W., Zhu, Q.: Polar: a polynomial arithmetic
framework for verifying neural-network controlled systems (2021). https://doi.org/
10.48550/ARXIV.2106.13867

33. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: reachability analysis of
neural-network controlled systems. arXiv preprint arXiv:1906.10654 (2019)

34. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verisig 2.0:
verification of neural network controllers using taylor model preconditioning. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 249–262. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 11

35. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Hybrid Systems:
Computation and Control (HSCC) (2019)

36. Jacoby, Y., Barrett, C., Katz, G.: Verifying recurrent neural networks using invari-
ant inference. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302,
pp. 57–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 3

37. Jain, L.C., Medsker, L.R.: Recurrent neural networks: design and applications
(1999)

38. Johnson, T.T., et al.: Arch-comp21 category report: artificial intelligence and neu-
ral network control systems (ainncs) for continuous and hybrid systems plants. In:
Frehse, G., Althoff, M. (eds.) 8th International Workshop on Applied Verification
of Continuous and Hybrid Systems (ARCH21). EPiC Series in Computing, vol. 80,
pp. 90–119. EasyChair (2021). https://doi.org/10.29007/kfk9

39. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

40. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

41. Khedr, H., Ferlez, J., Shoukry, Y.: PEREGRiNN: penalized-relaxation greedy neu-
ral network verifier. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol.
12759, pp. 287–300. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
81685-8 13

42. Kochdumper, N., Schilling, C., Althoff, M., Bak, S.: Open- and closed-loop neural
network verification using polynomial zonotopes (2022)

43. Krizhevsky, A.: Learning multiple layers of features from tiny images, pp. 32–33
(2009)

44. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

45. Kvasnica, M., Grieder, P., Baotić, M., Morari, M.: Multi-parametric toolbox
(MPT). In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 448–
462. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 30

46. LeCun, Y.: The mnist database of handwritten digits (1998). http://yann.lecun.
com/exdb/mnist/

https://doi.org/10.48550/ARXIV.2106.13867
https://doi.org/10.48550/ARXIV.2106.13867
http://arxiv.org/abs/1906.10654
https://doi.org/10.1007/978-3-030-81685-8_11
https://doi.org/10.1007/978-3-030-59152-6_3
https://doi.org/10.29007/kfk9
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.1007/978-3-030-81685-8_13
https://doi.org/10.1007/978-3-540-24743-2_30
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

410 D. M. Lopez et al.

47. Lenz, I.: Deep learning for robotics. Ph.D. thesis, Cornell University (2016)
48. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J.: Algo-

rithms for verifying deep neural networks. Found. Trends Optim. 4(3–4), 244–404
(2021). https://doi.org/10.1561/2400000035

49. Löfberg, J.: Yalmip : A toolbox for modeling and optimization in MATLAB. In:
Proceedings of the CACSD Conference, Taipei, Taiwan (2004). http://users.isy.liu.
se/johanl/yalmip

50. Lopez, D.M., et al.: Arch-comp22 category report: artificial intelligence and neu-
ral network control systems (ainncs) for continuous and hybrid systems plants.
In: Frehse, G., Althoff, M., Schoitsch, E., Guiochet, J. (eds.) Proceedings of 9th
International Workshop on Applied Verification of Continuous and Hybrid Systems
(ARCH22). EPiC Series in Computing, vol. 90, pp. 142–184. EasyChair (2022)

51. Lopez, D.M., Johnson, T.T., Bak, S., Tran, H.D., Hobbs, K.: Evaluation of neural
network verification methods for air to air collision avoidance. AIAA J. Air Transp.
(JAT) (2022)

52. Manzanas Lopez, D., Musau, P., Hamilton, N., Johnson, T.: Reachability analysis
of a general class of neural ordinary differential equation. In: Proceedings of the
20th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS 2022), Co-Located with CONCUR, FMICS, and QEST as part of
CONFEST 2022, Warsaw, Poland (2022)

53. MATLAB: Update 3, (R2022b). The MathWorks Inc., Natick, Massachusetts
(2022)

54. Musau, P., Johnson, T.T.: Continuous-time recurrent neural networks (ctrnns)
(benchmark proposal). In: 5th Applied Verification for Continuous and Hybrid
Systems Workshop (ARCH), Oxford, UK (2018). https://doi.org/10.29007/6czp

55. Müller, M.N., Brix, C., Bak, S., Liu, C., Johnson, T.T.: The third international
verification of neural networks competition (vnn-comp 2022): Summary and results
(2022)

56. Oki, E.: Glpk (gnu linear programming kit) (2012)
57. (ONNX), O.N.N.E.: https://github.com/onnx/
58. O’Shea, K., Nash, R.: An introduction to convolutional neural net-

works. CoRR abs/1511.08458 (2015). http://dblp.uni-trier.de/db/journals/corr/
corr1511.html#OSheaN15

59. Prabhakar, P., Rahimi Afzal, Z.: Abstraction based output range analysis for neural
networks. Adv. Neural Inf. Process. Syst. 32 (2019)

60. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

61. Rubanova, Y., Chen, R.T.Q., Duvenaud, D.K.: Latent ordinary differential equa-
tions for irregularly-sampled time series. In: Wallach, H., Larochelle, H., Beygelz-
imer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Infor-
mation Processing Systems, vol. 32. Curran Associates, Inc. (2019)

62. Ryou, W., Chen, J., Balunovic, M., Singh, G., Dan, A., Vechev, M.: Scalable poly-
hedral verification of recurrent neural networks. In: Silva, A., Leino, K.R.M. (eds.)
CAV 2021. LNCS, vol. 12759, pp. 225–248. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8 10

63. Schilling, C., Forets, M., Guadalupe, S.: Verification of neural-network control
systems by integrating Taylor models and zonotopes. In: AAAI, pp. 8169–8177.
AAAI Press (2022). https://doi.org/10.1609/aaai.v36i7.20790

https://doi.org/10.1561/2400000035
http://users.isy.liu.se/johanl/yalmip
http://users.isy.liu.se/johanl/yalmip
https://doi.org/10.29007/6czp
https://github.com/onnx/
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#OSheaN15
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#OSheaN15
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1007/978-3-030-81685-8_10
https://doi.org/10.1609/aaai.v36i7.20790

NNV 2.0 411

64. Shriver, D., Elbaum, S., Dwyer, M.B.: DNNV: a framework for deep neural network
verification. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp.
137–150. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 6

65. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Advances in Neural Information Processing Systems,
pp. 10825–10836 (2018)

66. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 41 (2019)

67. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

68. The MathWorks, I.: Deep Learning Toolbox Converter for ONNX Model Format.
Natick, Massachusetts, United State (2022). https://www.mathworks.com/
matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-
model-format

69. The MathWorks, I.: Deep Learning Toolbox Verification Library. Natick, Mas-
sachusetts, United State (2022). https://www.mathworks.com/matlabcentral/
fileexchange/118735-deep-learning-toolbox-verification-library

70. The MathWorks, I.: Optimization Toolbox. Natick, Massachusetts, United State
(2022). https://www.mathworks.com/products/optimization.html

71. Thoma, M.: A survey of semantic segmentation (2016)
72. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional

neural networks using imagestars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8 2

73. Tran, H.D., Cei, F., Lopez, D.M., Johnson, T.T., Koutsoukos, X.: Safety veri-
fication of cyber-physical systems with reinforcement learning control. In: ACM
SIGBED International Conference on Embedded Software (EMSOFT 2019). ACM
(2019)

74. Tran, H.D., Choi, S., Yamaguchi, T., Hoxha, B., Prokhorov, D.: Verification of
recurrent neural networks using star reachability. In: The 26th ACM International
Conference on Hybrid Systems: Computation and Control (HSCC) (2023)

75. Tran, H.D., et al.: Parallelizable reachability analysis algorithms for feed-forward
neural networks. In: Proceedings of the 7th International Workshop on Formal
Methods in Software Engineering (FormaliSE 2019), pp. 31–40. IEEE Press, Pis-
cataway (2019). https://doi.org/10.1109/FormaliSE.2019.00012

76. Tran, H.D., et al.: Parallelizable reachability analysis algorithms for feed-forward
neural networks. In: 7th International Conference on Formal Methods in Software
Engineering (FormaliSE2019), Montreal, Canada (2019)

77. Tran, H.-D., et al.: Star-based reachability analysis of deep neural networks. In:
ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp.
670–686. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8 39

78. Tran, H.D., et al.: Verification of piecewise deep neural networks: a star set app-
roach with zonotope pre-filter. Formal Asp. Comput. 33(4), 519–545 (2021)

79. Tran, H.-D., et al.: Robustness verification of semantic segmentation neural net-
works using relaxed reachability. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12759, pp. 263–286. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81685-8 12

80. Tran, H.D., et al.: NNV: the neural network verification tool for deep neural net-
works and learning-enabled cyber-physical systems. In: 32nd International Confer-
ence on Computer-Aided Verification (CAV) (2020)

https://doi.org/10.1007/978-3-030-81685-8_6
http://arxiv.org/abs/1312.6199
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format
https://www.mathworks.com/matlabcentral/fileexchange/67296-deep-learning-toolbox-converter-for-onnx-model-format
https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://www.mathworks.com/matlabcentral/fileexchange/118735-deep-learning-toolbox-verification-library
https://www.mathworks.com/products/optimization.html
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1109/FormaliSE.2019.00012
https://doi.org/10.1007/978-3-030-30942-8_39
https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/978-3-030-81685-8_12

412 D. M. Lopez et al.

81. Transformation, N.N.V.M.: https://github.com/verivital/nnvmt
82. Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In:

Proceedings of the 23rd ACM International Conference on Multimedia, pp. 689–
692. ACM (2015)

83. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th {USENIX} Security Symposium
({USENIX} Security 2018), pp. 1599–1614 (2018)

84. Wang, S., et al.: Beta-CROWN: efficient bound propagation with per-neuron split
constraints for complete and incomplete neural network verification. Adv. Neural
Inf. Process. Syst. 34 (2021)

85. Wu, B., Iandola, F.N., Jin, P.H., Keutzer, K.: Squeezedet: unified, small, low power
fully convolutional neural networks for real-time object detection for autonomous
driving. In: CVPR Workshops, pp. 446–454 (2017)

86. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and ver-
ification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777–5783 (2018)

87. Xu, K., et al.: Fast and Complete: enabling complete neural network verifi-
cation with rapid and massively parallel incomplete verifiers. In: International
Conference on Learning Representations (2021). https://openreview.net/forum?
id=nVZtXBI6LNn

88. Yamagishi, J., Veaux, C., MacDonald, K.: Cstr vctk corpus: English multi-speaker
corpus for cstr voice cloning toolkit (version 0.92). In: University of Edinburgh.
The Centre for Speech Technology Research (CSTR) (2019). https://doi.org/10.
7488/ds/2645

89. Zeqiri, M., Mueller, M.N., Fischer, M., Vechev, M.: Efficient robustness verification
of neural ordinary differential equations. In: The Symbiosis of Deep Learning and
Differential Equations II (2022)

90. Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verification
of recurrent neural networks for cognitive tasks via reachability analysis. In: ECAI
2020, pp. 1690–1697. IOS Press (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://github.com/verivital/nnvmt
https://openreview.net/forum?id=nVZtXBI6LNn
https://openreview.net/forum?id=nVZtXBI6LNn
https://doi.org/10.7488/ds/2645
https://doi.org/10.7488/ds/2645
http://creativecommons.org/licenses/by/4.0/

QEBVerif: Quantization Error Bound
Verification of Neural Networks

Yedi Zhang1, Fu Song1,2,3(B), and Jun Sun4

1 ShanghaiTech University, Shanghai 201210, China
songfu@shanghaitech.edu.cn

2 Institute of Software, Chinese Academy of Sciences and University of Chinese
Academy of Sciences, Beijing 100190, China

3 Automotive Software Innovation Center, Chongqing 400000, China
4 Singapore Management University, Singapore 178902, Singapore

Abstract. To alleviate the practical constraints for deploying deep neu-
ral networks (DNNs) on edge devices, quantization is widely regarded as
one promising technique. It reduces the resource requirements for com-
putational power and storage space by quantizing the weights and/or
activation tensors of a DNN into lower bit-width fixed-point numbers,
resulting in quantized neural networks (QNNs). While it has been empir-
ically shown to introduce minor accuracy loss, critical verified properties
of a DNN might become invalid once quantized. Existing verification
methods focus on either individual neural networks (DNNs or QNNs)
or quantization error bound for partial quantization. In this work, we
propose a quantization error bound verification method, named QEB-
Verif, where both weights and activation tensors are quantized. QEBVerif
consists of two parts, i.e., a differential reachability analysis (DRA) and
a mixed-integer linear programming (MILP) based verification method.
DRA performs difference analysis between the DNN and its quantized
counterpart layer-by-layer to compute a tight quantization error inter-
val efficiently. If DRA fails to prove the error bound, then we encode
the verification problem into an equivalent MILP problem which can
be solved by off-the-shelf solvers. Thus, QEBVerif is sound, complete,
and reasonably efficient. We implement QEBVerif and conduct extensive
experiments, showing its effectiveness and efficiency.

1 Introduction

In the past few years, the development of deep neural networks (DNNs) has
grown at an impressive pace owing to their outstanding performance in solving
various complicated tasks [23,28]. However, modern DNNs are often large in
size and contain a great number of 32-bit floating-point parameters to achieve
competitive performance. Thus, they often result in high computational costs
and excessive storage requirements, hindering their deployment on resource-
constrained embedded devices, e.g., edge devices. A promising solution is to
quantize the weights and/or activation tensors as fixed-point numbers of lower

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 413–437, 2023.
https://doi.org/10.1007/978-3-031-37703-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_20&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_20

414 Y. Zhang et al.

bit-width [17,21,25,35]. For example, TensorFlow Lite [18] supports quantiza-
tion of weights and/or activation tensors to reduce the model size and latency,
and Tesla FSD-chip [61] stores all the data and weights of a network in the form
of 8-bit integers.

In spite of the empirically impressive results which show there is only minor
accuracy loss, quantization does not necessarily preserve properties such as
robustness [16]. Even worse, input perturbation can be amplified by quanti-
zation [11,36], worsening the robustness of quantized neural networks (QNNs)
compared to their DNN counterparts. Indeed, existing neural network quan-
tization methods focus on minimizing its impact on model accuracy (e.g., by
formulating it as an optimization problem that aims to maximize the accu-
racy [27,43]). However, they cannot guarantee that the final quantization error
is always lower than a given error bound, especially when some specific safety-
critical input regions are concerned. This is concerning as such errors may lead to
catastrophes when the quantized networks are deployed in safety-critical appli-
cations [14,26]. Furthermore, analyzing (in particular, quantifying) such errors
can also help us understand how quantization affect the network behaviors [33],
and provide insights on, for instance, how to choose appropriate quantization
bit sizes without introducing too much error. Therefore, a method that soundly
quantifies the errors between DNNs and their quantized counterparts is highly
desirable.

There is a large and growing body of work on developing verification
methods for DNNs [2,12,13,15,19,24,29,30,32,37,38,51,54,55,58–60,62] and
QNNs [1,3,16,22,46,66,68], aiming to establish a formal guarantee on the net-
work behaviors. However, all the above-mentioned methods focus exclusively on
verifying individual neural networks. Recently, Paulsen et al. [48,49] proposed
differential verification methods, aimed to establish formal guarantees on the
difference between two DNNs. Specifically, given two DNNs N1 and N2 with the
same network topology and inputs, they try to prove that |N1(x) − N2(x)| < ε
for all possible inputs x ∈ X , where X is the interested input region. They
presented fast and sound difference propagation techniques followed by a refine-
ment of the input region until the property can be successfully verified, i.e., the
property is either proved or falsified by providing a counterexample. This idea
has been extended to handle recurrent neural networks (RNNs) [41] though the
refinement is not considered therein. Although their methods [41,48,49] can be
used to analyze the error bound introduced by quantizing weights (called par-
tially QNNs), they are not complete and cannot handle the cases where both
the weights and activation tensors of a DNN are quantized to lower bit-width
fixed-point numbers (called fully QNNs). We remark that fully QNN can signifi-
cantly reduce the energy-consumption (floating-point operations consume much
more energy than integer-only operations) [61].

Main Contributions. We propose a sound and complete Quantization Error
Bound Verification method (QEBVerif) to efficiently and effectively verify if the
quantization error of a fully QNN w.r.t. an input region and its original DNN
is always lower than an error bound (a.k.a. robust error bound [33]). QEBVerif

QEBVerif: Quantization Error Bound Verification of Neural Networks 415

first conducts a novel reachability analysis to quantify the quantization errors,
which is referred to as differential reachability analysis (DRA). Such an analysis
yields two results: (1) Proved, meaning that the quantization error is proved to
be always less than the given error bound; or (2) Unknown, meaning that it fails
to prove the error bound, possibly due to a conservative approximation of the
quantization error. If the outcome is Unknown, we further encode this quanti-
zation error bound verification problem into an equivalent mixed-integer linear
programming (MILP) problem, which can be solved by off-the-shelf solvers.

There are two main technical challenges that must be addressed for DRA.
First, the activation tensors in a fully QNN are discrete values and contribute
additional rounding errors to the final quantization errors, which are hard to
propagate symbolically and make it difficult to establish relatively accurate dif-
ference intervals. Second, much more activation-patterns (i.e., 3 × 6 = 18) have
to consider in a forward propagation, while 9 activation-patterns are sufficient
in [48,49], where an activation-pattern indicates the status of the output range
of a neuron. A neuron in a DNN under an input region has 3 patterns: always-
active (i.e., output ≥ 0), always-inactive (i.e., output < 0), or both possible. A
neuron in a QNN has 6 patterns due to the clamp function (cf. Definition 2).
We remark that handling these different combinations efficiently and soundly is
highly nontrivial. To tackle the above challenges, we propose sound transforma-
tions for the affine and activation functions to propagate quantization errors of
two networks layer-by-layer. Moreover, for the affine transformation, we provide
two alternative solutions: interval-based and symbolic-based. The former directly
computes sound difference intervals via interval analysis [42], while the latter
leverages abstract interpretation [10] to compute sound and symbolic difference
intervals, using the polyhedra abstract domain. In comparison, the symbolic-
based one is usually more accurate but less efficient than the interval-based one.
Note that though existing tools can obtain quantization error intervals by inde-
pendently computing the output intervals of two networks followed by interval
subtractions, such an approach is often too conservative.

To resolve those problems that cannot be proved via our DRA, we resort to
the sound and complete MILP-based verification method. Inspired by the MILP
encoding of DNN and QNN verification [39,40,68], we propose a novel MILP
encoding for verifying quantization error bounds. QEBVerif represents both the
computations of the QNN and the DNN in mixed-integer linear constraints which
are further simplified using their own output intervals. Moreover, we also encode
the output difference intervals of hidden neurons from our DRA as mixed-integer
linear constraints to boost the verification.

We implement our method as an end-to-end tool and use Gurobi [20] as
our back-end MILP solver. We extensively evaluate it on a large set of verifica-
tion tasks using neural networks for ACAS Xu [26] and MNIST [31], where the
number of neurons varies from 310 to 4890, the number of bits for quantizing
weights and activation tensors ranges from 4 to 10 bits, and the number of bits
for quantizing inputs is fixed to 8 bits. For DRA, we compare QEBVerif with a
naive method that first independently computes the output intervals of DNNs

416 Y. Zhang et al.

and QNNs using the existing state-of-the-art (symbolic) interval analysis [22,55],
and then conducts an interval subtraction. The experimental results show that
both our interval- and symbolic-based approaches are much more accurate and
can successfully verify much more tasks without the MILP-based verification. We
also find that the quantization error interval returned by DRA is getting tighter
with the increase of the quantization bit size. The experimental results also con-
firm the effectiveness of our MILP-based verification method, which can help
verify many tasks that cannot be solved by DRA solely. Finally, our results also
allow us to study the potential correlation of quantization errors and robustness
for QNNs using QEBVerif.

We summarize our contributions as follows:

– We introduce the first sound, complete, and reasonably efficient quantiza-
tion error bound verification method QEBVerif for fully QNNs by cleverly
combining novel DRA and MILP-based verification methods;

– We propose a novel DRA to compute sound and tight quantization error
intervals accompanied by an abstract domain tailored to QNNs, which can
significantly and soundly tighten the quantization error intervals;

– We implement QEBVerif as an end-to-end open-source tool [64] and conduct
an extensive evaluation on various verification tasks, demonstrating its effec-
tiveness and efficiency.

The source code of our tool and benchmarks are available at https://github.
com/S3L-official/QEBVerif. Missing proofs, more examples, and experimental
results can be found in [65].

2 Preliminaries

We denote by R,Z,N and B the sets of real-valued numbers, integers, natu-
ral numbers, and Boolean values, respectively. Let [n] denote the integer set
{1, . . . , n} for given n ∈ N. We use BOLD UPPERCASE (e.g., W) and bold
lowercase (e.g., x) to denote matrices and vectors, respectively. We denote by
Wi,j the j-entry in the i-th row of the matrix W, and by xi the i-th entry of
the vector x. Given a matrix W and a vector x, we use ̂W and x̂ (resp. ˜W and
x̃) to denote their quantized/integer (resp. fixed-point) counterparts.

2.1 Neural Networks

A deep neural network (DNN) consists of a sequence of layers, where the first
layer is the input layer, the last layer is the output layer and the others are called
hidden layers. Each layer contains one or more neurons. A DNN is feed-forward
if all the neurons in each non-input layer only receive inputs from the neurons
in the preceding layer.

Definition 1 (Feed-forward Deep Neural Network). A feed-forward DNN
N : Rn → R

s with d layers can be seen as a composition of d functions such
that N = ld ◦ ld−1 ◦ · · · ◦ l1. Then, given an input x ∈ R

n, the output of the DNN
y = N (x) can be obtained by the following recursive computation:

https://github.com/S3L-official/QEBVerif
https://github.com/S3L-official/QEBVerif

QEBVerif: Quantization Error Bound Verification of Neural Networks 417

– Input layer l1 : Rn → R
n1 is the identity function, i.e., x1 = l1(x) = x;

– Hidden layer li : Rni−1 → R
ni for 2 ≤ i ≤ d − 1 is the function such that

xi = li(xi−1) = φ(Wixi−1 + bi);
– Output layer ld : Rnd−1 → R

s is the function such that y = xd = ld(xd−1) =
Wdxd−1 + bd.

where n1 = n, Wi and bi are the weight matrix and bias vector in the i-th layer,
and φ(·) is the activation function which acts element-wise on an input vector.

In this work, we focus on feed-forward DNNs with the most commonly used acti-
vation functions: the rectified linear unit (ReLU) function, defined as ReLU(x) =
max(x, 0). We also use nd to denote the output dimension s.

A quantized neural network (QNN) is structurally similar to its real-valued
counterpart, except that all the parameters, inputs of the QNN, and outputs of
all the hidden layers are quantized into integers according to the given quantiza-
tion scheme. Then, the computation over real-valued arithmetic in a DNN can
be replaced by the computation using integer arithmetic, or equally, fixed-point
arithmetic. In this work, we consider the most common quantization scheme, i.e.,
symmetric uniform quantization [44]. We first give the concept of quantization
configuration which effectively defines a quantization scheme.

A quantization configuration C is a tuple 〈τ,Q, F 〉, where Q and F are the
total bit size and the fractional bit size allocated to a value, respectively, and
τ ∈ {+,±} indicates if the quantized value is unsigned or signed. Given a real
number x ∈ R and a quantization configuration C = 〈τ,Q, F 〉, its quantized
integer counterpart x̂ and the fixed-point counterpart x̃ under the symmetric
uniform quantization scheme are:

x̂ = clamp(2F · x
, Clb, Cub) and x̃ = x̂/2F

where Clb = 0 and Cub = 2Q −1 if τ = +, Clb = −2Q−1 and Cub = 2Q−1 −1 oth-
erwise, and 	·
 is the round-to-nearest integer operator. The clamping function
clamp(x, a, b) with a lower bound a and an upper bound b is defined as:

clamp(x, a, b) =

⎧

⎪

⎨

⎪

⎩

a, if x < a;
x, if a ≤ x ≤ b;
b, if x > b.

Definition 2 (Quantized Neural Network). Given quantization configura-
tions for the weights, biases, output of the input layer and each hidden layer as
Cw = 〈τw, Qw, Fw〉, Cb = 〈τb, Qb, Fb〉, Cin = 〈τin, Qin, Fin〉, Ch = 〈τh, Qh, Fh〉,
the quantized version (i.e., QNN) of a DNN N with d layers is a function
̂N : Zn → R

s such that ̂N = l̂d ◦ l̂d−1 ◦ · · · ◦ l̂1. Then, given a quantized input
x̂ ∈ Z

n, the output of the QNN ŷ = ̂N (x̂) can be obtained by the following
recursive computation:

– Input layer l̂1 : Zn → Z
n1 is the identity function, i.e., x̂1 = l̂1(x̂) = x̂;

– Hidden layer l̂i : Zni−1 → Z
ni for 2 ≤ i ≤ d − 1 is the function such that for

each j ∈ [ni],

418 Y. Zhang et al.

(a) DNN e. (b) QNN e.

Fig. 1. A 3-layer DNN Ne and its quantized version ̂Ne.

x̂i
j = clamp(2Fi ̂Wi

j,: · x̂i−1 + 2Fh−Fb b̂i
j
, 0, Cub

h),

where Fi is Fh − Fw − Fin if i = 2, and −Fw otherwise;
– Output layer l̂d : Znd−1 → R

s is the function such that ŷ = x̂d = l̂d(x̂d−1) =
2−Fw ̂Wdx̂d−1 + 2Fh−Fb b̂d.

where for every 2 ≤ i ≤ d and k ∈ [ni−1], ̂Wi
j,k = clamp(2FwWi

j,k
, Clb
w , Cub

w) is
the quantized weight and b̂i

j = clamp(2Fbbi
j
, Clb

b , Cub
b) is the quantized bias.

We remark that 2Fi and 2Fh−Fb in Definition 2 are used to align the precision
between the inputs and outputs of hidden layers, and Fi for i = 2 and i > 2
because quantization bit sizes for the outputs of the input layer and hidden layers
can be different.

2.2 Quantization Error Bound and Its Verification Problem

We now give the formal definition of the quantization error bound verification
problem considered in this work as follows.

Definition 3 (Quantization Error Bound). Given a DNN N : Rn → R
s,

the corresponding QNN ̂N : Zn → R
s, a quantized input x̂ ∈ Z

n, a radius r ∈ N

and an error bound ε ∈ R. The QNN ̂N has a quantization error bound of ε w.r.t.
the input region R(x̂, r) = {x̂′ ∈ Z

n | ||x̂′ − x̂||∞ ≤ r} if for every x̂′ ∈ R(x̂, r),
we have ||2−Fh ̂N (x̂′) − N (x′)||∞ < ε, where x′ = x̂′/(Cub

in − Clb
in).

Intuitively, quantization-error-bound is the bound of the output difference of
the DNN and its quantized counterpart for all the inputs in the input region. In
this work, we obtain the input for DNN via dividing x̂′ by (Cub

in − Clb
in) to allow

input normalization. Furthermore, 2−Fh is used to align the precision between
the outputs of QNN and DNN.

Example 1. Consider the DNN Ne with 3 layers (one input layer, one hidden
layer, and one output layer) given in Fig. 1, where weights are associated with the
edges and all the biases are 0. The quantization configurations for the weights,
the output of the input layer and hidden layer are Cw = 〈±, 4, 2〉, Cin = 〈+, 4, 4〉
and Ch = 〈+, 4, 2〉. Its QNN ̂Ne is shown in Fig. 1.

QEBVerif: Quantization Error Bound Verification of Neural Networks 419

Given a quantized input x̂ = (9, 6) and a radius r = 1, the input region for
QNN ̂Ne is R((9, 6), 1) = {(x, y) ∈ Z

2 | 8 ≤ x ≤ 10, 5 ≤ y ≤ 7}. Since Cub
in = 15

and Clb
in = 0, by Definitions 1, 2, and 3, we have the maximum quantization error

as max(2−2
̂Ne(x̂′) − Ne(x̂′/15)) = 0.067 for x̂′ ∈ R((9, 6), 1). Then, ̂Ne has a

quantization error bound of ε w.r.t. input region R((9, 6), 1) for any ε > 0.067.
We remark that if only weights are quantized and the activation tensors

are floating-point numbers, the maximal quantization error of ̂Ne for the input
region R((9, 6), 1) is 0.04422, which implies that existing methods [48,49] cannot
be used to analyze the error bound for a fully QNN.

In this work, we focus on the quantization error bound verification problem
for classification tasks. Specifically, for a classification task, we only focus on the
output difference of the predicted class instead of all the classes. Hence, given
a DNN N , a corresponding QNN ̂N , a quantized input x̂ which is classified
to class g by the DNN N , a radius r and an error bound ε, the quantization
error bound property P (N , ̂N , x̂, r, ε) for a classification task can be defined as
follows:

∧

x̂′∈R(x̂,r)

(|2−Fh ̂N (x̂′)g − N (x′)g| < ε
) ∧ (

x′ = x̂′/(Cub
in − Clb

in)
)

Note that N (·)g denotes the g-th entry of the vector N (·).

2.3 DeepPoly

We briefly recap DeepPoly [55], which will be leveraged in this work for com-
puting the output of each neuron in a DNN.

The core idea of DeepPoly is to give each neuron an abstract domain in the
form of a linear combination of the variables preceding the neuron. To achieve
this, each hidden neuron xi

j (the j-th neuron in the i-th layer) in a DNN is
seen as two nodes xi

j,0 and xi
j,1, such that xi

j,0 =
∑ni−1

k=1 Wi
j,kx

i−1
k,1 + bi

j (affine
function) and xi

j,1 = ReLU(xi
j,0) (ReLU function). Then, the affine function is

characterized as an abstract transformer using an upper polyhedral computa-
tion and a lower polyhedral computation in terms of the variables xi−1

k,1 . Finally,
it recursively substitutes the variables in the upper and lower polyhedral com-
putations with the corresponding upper/lower polyhedral computations of the
variables until they only contain the input variables from which the concrete
intervals are computed.

Formally, the abstract element Ai
j,s for the node xi

j,s (s ∈ {0, 1}) is a tuple
Ai

j,s = 〈ai,≤
j,s ,ai,≥

j,s , lij,s, u
i
j,s〉, where ai,≤

j,s and ai,≥
j,s are respectively the lower and

upper polyhedral computations in the form of a linear combination of the vari-
ables xi−1

k,1 ’s if s = 0 or xi
k,0’s if s = 1, lij,s ∈ R and ui

j,s ∈ R are the concrete
lower and upper bound of the neuron. Then, the concretization of the abstract
element Ai

j,s is Γ (Ai
j,s) = {x ∈ R | ai,≤

j,s ≤ x ∧ x ≤ ai,≥
j,s }.

Concretely, ai,≤
j,0 and ai,≥

j,0 are defined as ai,≤
j,0 = ai,≥

j,0 =
∑ni−1

k=1 Wi
j,kx

i−1
k,1 +bi

j .
Furthermore, we can repeatedly substitute every variable in ai,≤

j,0 (resp. ai,≥
j,0) with

420 Y. Zhang et al.

its lower (resp. upper) polyhedral computation according to the coefficients until
no further substitution is possible. Then, we can get a sound lower (resp. upper)
bound in the form of a linear combination of the input variables based on which
lij,0 (resp. ui

j,0) can be computed immediately from the given input region.
For ReLU function xi

j,1 = ReLU(xi
j,0), there are three cases to consider of

the abstract element Ai
j,1:

– If ui
j,0 ≤ 0, then ai,≤

j,1 = ai,≥
j,1 = 0, lij,1 = ui

j,1 = 0;
– If lij,0 ≥ 0, then ai,≤

j,1 = ai,≤
j,0 , ai,≥

j,1 = ai,≥
j,0 , lij,1 = lij,0 and ui

j,1 = ui
j,0;

– If lij,0 < 0 ∧ ui
j,0 > 0, then ai,≥

j,1 = ui
j,0(x

i
j,0−lij,0)

ui
j,0−lij,0

, ai,≤
j,1 = λxi

j,0 where λ ∈ {0, 1}
such that the area of resulting shape by ai,≤

j,1 and ai,≥
j,1 is minimal, lij,1 = λlij,0

and ui
j,1 = ui

j,0.

Note that DeepPoly also introduces transformers for other functions, such
as sigmoid, tanh, and maxpool functions. In this work, we only consider DNNs
with only ReLU as non-linear operators.

3 Methodology of QEBVerif

In this section, we first give an overview of our quantization error bound verifi-
cation method, QEBVerif, and then give the detailed design of each component.

3.1 Overview of QEBVerif

An overview of QEBVerif is shown in Fig. 2. Given a DNN N , its QNN ̂N , a
quantization error bound ε and an input region consisting of a quantized input x̂
and a radius r, to verify the quantization error bound property P (N , ̂N , x̂, r, ε),
QEBVerif first performs a differential reachability analysis (DRA) to compute
a sound output difference interval for the two networks. Note that, the differ-
ence intervals of all the neurons are also recorded for later use. If the output
difference interval of the two networks is contained in [−ε, ε], then the prop-
erty is proved and QEBVerif outputs “Proved”. Otherwise, QEBVerif leverages
our MILP-based quantization error bound verification method by encoding the
problem into an equivalent mixed integer linear programming (MILP) problem
which can be solved by off-the-shelf solvers. To reduce the size of mixed inte-
ger linear constraints and boost the verification, QEBVerif independently applies
symbolic interval analysis on the two networks based on which some activation
patterns could be omitted. We further encode the difference intervals of all the
neurons from DRA as mixed integer linear constraints and add them to the MILP
problem. Though it increases the number of mixed integer linear constraints, it
is very helpful for solving hard verification tasks. Therefore, the whole verifi-
cation process is sound, complete yet reasonably efficient. We remark that the
MILP-based verification method is often more time-consuming and thus the first
step allows us to quickly verify many tasks first.

QEBVerif: Quantization Error Bound Verification of Neural Networks 421

Fig. 2. An overview of QEBVerif.

3.2 Differential Reachability Analysis

Naively, one could use an existing verification tool in the literature to indepen-
dently compute the output intervals for both the QNN and the DNN, and then
compute their output difference directly by interval subtraction. However, such
an approach would be ineffective due to the significant precision loss.

Recently, Paulsen et al. [48] proposed ReluDiff and showed that the accu-
racy of output difference for two DNNs can be greatly improved by propagating
the difference intervals layer-by-layer. For each hidden layer, they first compute
the output difference of affine functions (before applying the ReLU), and then
they use a ReLU transformer to compute the output difference after applying
the ReLU functions. The reason why ReluDiff outperforms the naive method
is that ReluDiff first computes part of the difference before it accumulates.
ReluDiff is later improved to tighten the approximated difference intervals [49].
However, as mentioned previously, they do not support fully quantified neural
networks. Inspired by their work, we design a difference propagation algorithm
for our setting. We use Sin(xi

j) (resp. Sin(x̂i
j)) to denote the interval of the j-th

neuron in the i-th layer in the DNN (resp. QNN) before applying the ReLU func-
tion (resp. clamp function), and use S(xi

j) (resp. S(x̂i
j)) to denote the output

interval after applying the ReLU function (resp. clamp function). We use δin
i

(resp. δi) to denote the difference interval for the i-th layer before (resp. after)
applying the activation functions, and use δin

i,j (resp. δi,j) to denote the interval
for the j-th neuron of the i-th layer. We denote by LB(·) and UB(·) the concrete
lower and upper bounds accordingly.

Based on the above notations, we give our difference propagation in Algo-
rithm 1. It works as follows. Given a DNN N , a QNN ̂N and a quantized input
region R(x̂, r), we first compute intervals Sin(xi

j) and S(xi
j) for neurons in N

using symbolic interval analysis DeepPoly, and compute interval Sin(x̂i
j) and

S(x̂i
j) for neurons in ̂N using concrete interval analysis method [22]. Remark that

no symbolic interval analysis for QNNs exists. By Definition 3, for each quan-
tized input x̂′ for QNN, we obtain the input for DNN as x′ = x̂′/(Cub

in − Clb
in).

After precision alignment, we get the input difference as 2−Fin x̂′ − x′ =
(2−Fin − 1/(Cub

in − Clb
in))x̂

′. Hence, given an input region, we get the output dif-
ference of the input layer: δ1 = (2−Fin −1/(Cub

in −Clb
in))S(x̂

1). Then, we compute
the output difference δi of each hidden layer iteratively by applying the affine
transformer and activation transformer given in Algorithm 2 and Algorithm 3.

422 Y. Zhang et al.

Algorithm 1: Forward Difference Propagation
Input : DNN N , QNN ̂N , input region R(x̂, r)
output: Output difference interval δ

1 Compute Sin(xi
j) and S(xi

j) for i ∈ [d − 1], j ∈ [ni] using DeepPoly;
2 Compute Sin(x̂i

j) and S(x̂i
j) for i ∈ [d − 1], j ∈ [ni] by applying interval analysis [22];

3 Initialize the difference: δ1 = (2−Fin − 1/(Cub
in − Clb

in))S(x̂1);
4 for i in 2, . . . , d − 1 do // propagate in hidden layers
5 for j in 1, . . . , ni do
6 Δbi

j = 2−Fb b̂i
j − bi

j ; ξ = 2−Fh−1;
7 δin

i,j = AffTrs(Wi
j,:, 2

−Fw ̂Wi
j,:, Δbi

j , S(xi−1), δi−1, ξ);
8 δi,j = ActTrs(δin

i,j , Sin(xi
j), 2

−FhSin(x̂i
j));

9 // propagate in the output layer
10 for j in 1, . . . , nd do
11 Δbd

j = 2−Fb b̂d
j − bd

j ;
12 δd,j = δin

d,j = AffTrs(Wd
j,:, 2

−Fw ̂Wd
j,:, Δbd

j , S(xd−1), δd−1, 0);
13 return (δi,j)2≤i≤d,1≤j≤nd

;

Algorithm 2: AffTrs Function
Input : Weight vector Wi

j,:, weight vector ˜Wi
j,:, bias difference Δbi

j , neuron interval
S(xi−1), difference interval δi−1, rounding error ξ

output: Difference interval δin
i,j

1 lb = LB
(

˜Wi
j,:δi−1 + (˜Wi

j,: − Wi
j,:)S(xi−1)

)

+ Δbi
j − ξ;

2 ub = UB
(

˜Wi
j,:δi−1 + (˜Wi

j,: − Wi
j,:)S(xi−1)

)

+ Δbi
j + ξ;

3 return [lb, ub];

Finally, we get the output difference for the output layer using only the affine
transformer.

Affine Transformer. The difference before applying the activation function for
the j-th neuron in the i-th layer is: δin

i,j = 2−Fh	2Fi ̂Wi
j,:S(x̂

i−1) + 2Fh−Fb b̂i
j
 −

Wi
j,:S(x

i−1)−bi
j where 2−Fh is used to align the precision between the outputs of

the two networks (cf. Sect. 2). Then, we soundly remove the rounding operators
and give constraints for upper/lower bounds of δin

i,j as follows:

UB(δin
i,j) ≤ UB(2−Fh(2Fi ̂Wi

j,:S(x̂
i−1) + 2Fh−Fb b̂i

j + 0.5) − Wi
j,:S(x

i−1) − bi)
LB(δin

i,j) ≥ LB(2−Fh(2Fi ̂Wi
j,:S(x̂

i−1) + 2Fh−Fb b̂i
j − 0.5) − Wi

j,:S(x
i−1) − bi)

Finally, we have UB(δin
i,j) ≤ UB

(

˜Wi
j,:S(x̃

i−1) − Wi
j,:S(x

i−1)
)

+ Δbi
j + ξ and

LB(δin
i,j) ≥ LB

(

˜Wi
j,:S(x̃

i−1) − Wi
j,:S(x

i−1)
)

+ Δbi
j − ξ, which can be further

reformulated as follows:

UB(δin
i,j) ≤ UB

(

˜Wi
j,:δi−1 + ΔWi

j,:S(x
i−1)

)

+ Δbi
j + ξ

LB(δin
i,j) ≥ LB

(

˜Wi
j,:δi−1 + ΔWi

j,:S(x
i−1)

)

+ Δbi
j − ξ

where S(x̃i−1) = 2−FinS(x̂i−1) if i = 2, and 2−FhS(x̂i−1) otherwise. ˜Wi
j,: =

2−Fw ̂Wi
j,:, ΔWi

j,: = ˜Wi
j,: − Wi

j,:, Δbi
j = 2−Fb b̂i

j − bi
j and ξ = 2−Fh−1.

QEBVerif: Quantization Error Bound Verification of Neural Networks 423

Algorithm 3: ActTrs function
Input : Difference interval δin

i,j , neuron interval Sin(xi
j), neuron interval Sin(x̃i

j), clamp
upper bound t

output: Difference interval δi,j

1 if UB(Sin(xi
j)) ≤ 0 then lb = clamp(LB(Sin(x̃i

j)), 0, t); ub = clamp(UB(Sin(x̃i
j)), 0, t);

2 else if LB(Sin(xi
j)) ≥ 0 then

3 if UB(Sin(x̃i
j)) ≤ t and LB(Sin(x̃i

j)) ≥ 0 then lb = LB(δin
i,j); ub = UB(δin

i,j);
4 else if LB(Sin(x̃i

j)) ≥ t or UB(Sin(x̃i
j)) ≤ 0 then

5 lb = clamp(LB(Sin(x̃i
j)), 0, t)−UB(Sin(xi

j));
6 ub = clamp(UB(Sin(x̃i

j)), 0, t)−LB(Sin(xi
j));

7 else if UB(Sin(x̃i
j)) ≤ t then

8 lb = max(−UB(Sin(xi
j)), LB(δ

in
i,j)); ub = max(−LB(Sin(xi

j)), UB(δin
i,j));

9 else if LB(Sin(x̃i
j)) ≥ 0 then

10 lb = min(t − UB(Sin(xi
j)), LB(δ

in
i,j)); ub = min(t − LB(Sin(xi

j)), UB(δin
i,j));

11 else
12 lb = max(−UB(Sin(xi

j)), min(t − UB(Sin(xi
j)), LB(δ

in
i,j)));

13 ub = max(−LB(Sin(xi
j)), min(t −LB(Sin(xi

j)), UB(δin
i,j)));

14 else
15 if UB(Sin(x̃i

j)) ≤ t and LB(Sin(x̃i
j)) ≥ 0 then

16 lb = min(LB(Sin(x̃i
j)), LB(δ

in
i,j)); ub = min(UB(Sin(x̃i

j)), UB(δin
i,j));

17 else if LB(Sin(x̃i
j)) ≥ t or UB(Sin(x̃i

j)) ≤ 0 then
18 lb = clamp(LB(Sin(x̃i

j)), 0, t)−UB(Sin(xi
j)); ub = clamp(UB(Sin(x̃i

j)), 0, t);
19 else if UB(Sin(x̃i

j)) ≤ t then
20 lb = max(LB(δin

i,j), −UB(Sin(xi
j))); ub = min(UB(δin

i,j), UB(Sin(x̃i
j)));

21 if UB(δin
i,j) ≤ 0 then ub = 0;

22 if LB(δin
i,j) ≥ 0 then lb = 0;

23 else if LB(Sin(x̃i
j)) ≥ 0 then

24 lb = min(LB(δin
i,j), LB(S

in(x̃i
j)), t −UB(Sin(xi

j))); ub = min(UB(δin
i,j), t);

25 else
26 lb = min(t −UB(Sin(xi

j)), 0, max(LB(δin
i,j), −UB(Sin(xi

j))));
27 ub = clamp(UB(δin

i,j), 0, t);
28 return [lb, ub] ∩ (

(Sin(x̃i
j) ∩ [0, t]) − (Sin(xi

j) ∩ [0,+∞))
)

;

Activation Transformer. Now we give our activation transformer in Algo-
rithm 3 which computes the difference interval δi,j from the difference interval
δin
i,j . Note that, the neuron interval S(x̂i

j) for the QNN has already been con-
verted to the fixed-point counterpart S(x̃i

j) = 2−FhS(x̂i
j) as an input parameter,

as well as the clamping upper bound (t = 2−FhCub
h). Different from ReluDiff

[48] which focuses on the subtraction of two ReLU functions, here we investigate
the subtraction of the clamping function and ReLU function.

Theorem 1. If τh = +, then Algorithm 1 is sound.

Example 2. We exemplify Algorithm 1 using the networks Ne and ̂Ne shown
in Fig. 1. Given quantized input region R((9, 6), 3) and the corresponding real-
valued input region R((0.6, 0.4), 0.2), we have S(x̂1

1) = [6, 12] and S(x̂1
2) = [3, 9].

First, we get Sin(x2
1) = S(x2

1) = [0.36, 0.92], Sin(x2
2) = [−0.4, 0.2], S(x2

2) =
[0, 0.2] based on DeepPoly and Sin(x̂2

1) = S(x̂2
1) = [1, 4], Sin(x̂2

2) = [−2, 1],
S(x̂2

2) = [0, 1] via interval analysis: LB(Sin(x̂2
1)) = 	(5LB(x̂1

1)−UB(x̂1
2))/2

−4
 =
1, UB(Sin(x̂2

1)) = 	(5UB(x̂1
1)−LB(x̂1

2))/2
−4
 = 4, LB(Sin(x̂2

2)) = 	(−3UB(x̂1
1)+

424 Y. Zhang et al.

3LB(x̂1
2))/2

−4
 = −2, and UB(Sin(x̂2
2)) = 	(−3LB(x̂1

1) + 3UB(x̂1
2))/2

−4
 = 1.
By Line 3 in Algorithm 1, we have δ1,1 = − 1

16×15S(x̂1
1) = [−0.05,−0.025],

δ1,2 = − 1
16×15S(x̂1

2) = [−0.0375,−0.0125].
Then, we compute the difference interval before the activation functions.

The rounding error is ξ = 2−Fh−1 = 0.125. We obtain the difference intervals
δin
2,1 = [−0.194375, 0.133125] and δin

2,2 = [−0.204375, 0.123125] as follows based
on Algorithm 2:

– LB(δin
2,1) = LB(˜W1

1,1δ1,1 + ˜W1
1,2δ1,2 + ΔW1

1,1S(x
1
1) + ΔW1

1,2S(x
1
2)) − ξ =

1.25×LB(δ1,1)−0.25×UB(δ1,2)+(1.25−1.2)×LB(S(x1
1))+(−0.25+0.2)×

UB(S(x1
2)) − 0.125, UB(δin

2,1) = UB(˜W1
1,1δ1,1 + ˜W1

1,2δ1,2 + ΔW1
1,1S(x

1
1) +

ΔW1
1,2S(x

1
2)) + ξ = 1.25 × UB(δ1,1) − 0.25 × LB(δ1,2) + (1.25 − 1.2) ×

UB(S(x1
1)) + (−0.25 + 0.2) × LB(S(x1

2)) + 0.125;
– LB(δin

2,2) = LB(˜W1
2,1δ1,1 + ˜W1

2,2δ1,2 + ΔW1
2,1S(x

1
1) + ΔW1

2,2S(x
1
2)) − ξ =

−0.75 × UB(δ1,1) + 0.75 × LB(δ1,2) + (−0.75 + 0.7) × UB(S(x1
1)) + (0.75 −

0.8)×UB(S(x1
2))−0.125, UB(δin

2,2) = UB(˜W1
2,1δ1,1+˜W1

2,2δ1,2+ΔW1
2,1S(x

1
1)+

ΔW1
2,2S(x

1
2)) + ξ = −0.75 × LB(δ1,1) + 0.75 × UB(δ1,2) + (−0.75 + 0.7) ×

LB(S(x1
1)) + (0.75 − 0.8) × LB(S(x1

2)) + 0.125.

By Lines 20∼22 in Algorithm 3, we get the difference intervals after the acti-
vation functions for the hidden layer as: δ2,1 = δin

2,1 = [−0.194375, 0.133125],
δ2,1 = [max

(

LB(δin
2,2),−UB(Sin(x2

2))
)

,min
(

UB(δin
2,2),UB(Sin(x̃2

2))
)

] =
[−0.2, 0.123125].

Next, we compute the output difference interval of the networks using
Algorithm 2 again but with ξ = 0: LB(δin

3,1) = LB(˜W2
1,1δ2,1 + ˜W2

1,2δ2,2 +
ΔW2

1,1S(x
2
1)+ΔW2

1,2S(x
2
2)) = 0.25×LB(δ2,1)+0.75×LB(δ2,2)+(0.25−0.3)×

UB(S(x2
1)) + (0.75 − 0.7) × LB(S(x2

2)), UB(δin
3,2) = UB(˜W2

1,1δ2,1 + ˜W2
1,2δ2,2 +

ΔW2
1,1S(x

2
1)+ΔW2

1,2S(x
2
2)) = 0.25×UB(δ2,1)+0.75×UB(δ2,2)+(0.25−0.3)×

LB(S(x2
1))+ (0.75− 0.7)×UB(S(x2

2)). Finally, the quantization error interval is
[-0.24459375, 0.117625].

3.3 MILP Encoding of the Verification Problem

If DRA fails to prove the property, we encode the problem as an equivalent
MILP problem. Specifically, we encode both the QNN and DNN as sets of (mixed
integer) linear constraints, and quantize the input region as a set of integer linear
constraints. We adopt the MILP encodings of DNNs [39] and QNNs [40] to
transform the DNN and QNN into a set of linear constraints. We use (symbolic)
intervals to further reduce the size of linear constraints similar to [39] while [40]
did not. We suppose that the sets of constraints encoding the QNN, DNN, and
quantized input region are Θ

̂N , ΘN , and ΘR, respectively. Next, we give the
MILP encoding of the robust error bound property.

Recall that, given a DNN N , an input region R(x̂, r) such that x is classified
to class g by N , a QNN ̂N has a quantization error bound ε w.r.t. R(x̂, r) if
for every x̂′ ∈ R(x̂, r), we have |2−Fh ̂N (x̂′)g − N (x′)g| < ε. Thus, it suffices to
check if |2−Fh ̂N (x̂′)g − N (x′)g| ≥ ε for some x̂′ ∈ R(x̂, r).

QEBVerif: Quantization Error Bound Verification of Neural Networks 425

Let x̂d
g (resp. xd

g) be the g-th output of ̂N (resp. N). We introduce a real-
valued variable η and a Boolean variable v such that η = max(2−Fh x̂d

g − xd
g, 0)

can be encoded by the set Θg of constraints with an extremely large number M:
Θg =

{

η ≥ 0, η ≥ 2−Fh x̂d
g − xd

g, η ≤ M · v, η ≤ 2−Fh x̂d
g − xd

g + M · (1 − v)
}

.
As a result, |2−Fh x̂d

g − xd
g| ≥ ε iff the set of linear constraints Θε = Θg ∪ {2η −

(2−Fh x̂d
g − xd

g) ≥ ε} holds.
Finally, the quantization error bound verification problem is equivalent to the

solving of the constraints: ΘP = Θ
̂N ∪ ΘN ∪ ΘR ∪ Θε. Remark that the output

difference intervals of hidden neurons obtained from Algorithm 1 can be encoded
as linear constraints which are added into the set ΘP to boost the solving.

4 An Abstract Domain for Symbolic-Based DRA

While Algorithm 1 can compute difference intervals, the affine transformer
explicitly adds a concrete rounding error interval to each neuron, which accu-
mulates into a significant precision loss over the subsequent layers. To alleviate
this problem, we introduce an abstract domain based on DeepPoly which helps
to compute sound symbolic approximations for the lower and upper bounds of
each difference interval, hence computing tighter difference intervals.

4.1 An Abstract Domain for QNNs

We first introduce transformers for affine transforms with rounding operators
and clamp functions in QNNs. Recall that the activation function in a QNN
̂N is also a min-ReLU function: min(ReLU(·
), Cub

h). Thus, we regard each
hidden neuron x̂i

j in a QNN as three nodes x̂i
j,0, x̂i

j,1, and x̂i
j,2 such that x̂i

j,0 =
	2Fi

∑ni−1
k=1

̂Wi
j,kx̂

i−1
k,2 + 2Fh−Fb b̂i

j
 (affine function), x̂i
j,1 = max(x̂i

j,0, 0) (ReLU
function) and x̂i

j,2 = min(x̂i
j,1, Cub

h) (min function). We now give the abstract
domain ̂Ai

j,p = 〈âi,≤
j,p , âi,≥

j,p , l̂ij,p, û
i
j,p〉 for each neuron x̂i

j,p (p ∈ {0, 1, 2}) in a QNN
as follows.

Following DeepPoly, âi,≤
j,0 and âi,≥

j,0 for the affine function of x̂i
j,0 with round-

ing operators are defined as âi,≤
j,0 = 2Fi

∑ni−1
k=1

̂Wi
j,kx̂

i−1
k,2 + 2Fh−Fb b̂i

j − 0.5 and
âi,≥

j,0 = 2Fi
∑ni−1

k=1
̂Wi

j,kx̂
i−1
k,2 + 2Fh−Fb b̂i

j + 0.5. We remark that +0.5 and −0.5
here are added to soundly encode the rounding operators and have no effect
on the perseverance of invariant since the rounding operators will add/subtract
0.5 at most to round each floating-point number into its nearest integer. The
abstract transformer for the ReLU function xi

j,1 = ReLU(xi
j,0) is defined the

same as DeepPoly.
For the min function x̂i

j,2 = min(x̂i
j,1, Cub

h), there are three cases for ̂Ai
j,2:

– If l̂ij,1 ≥ Cub
h , then âi,≤

j,2 = âi,≥
j,2 = Cub

h , l̂ij,2 = ûi
j,2 = Cub

h ;
– If ûi

j,1 ≤ Cub
h , then âi,≤

j,2 = âi,≤
j,1 , âi,≥

j,2 = âi,≥
j,1 , l̂ij,2 = l̂ij,1 and ûi

j,2 = ûi
j,1;

426 Y. Zhang et al.

Fig. 3. Convex approximation for the min function in QNNs, where Fig. 3(a) and

Fig. 3(b) show the two ways where α =
Cub
h −l̂ij,1

ûi
j,1−l̂ij,1

and β =
(ûi

j,1−Cub
h)

ûi
j,1−l̂ij,1

.

– If l̂ij,1 < Cub
h ∧ ûi

j,1 > Cub
h , then âi,≥

j,2 = λx̂i
j,1 + μ and âi,≤

j,2 = Cub
h −l̂ij,1

ûi
j,1−l̂ij,1

x̂i
j,1 +

(ûi
j,1−Cub

h)

ûi
j,1−l̂ij,1

l̂ij,1, where (λ, μ) ∈ {(0, Cub
h), (1, 0)} such that the area of resulting

shape by âi,≤
j,2 and âi,≥

j,2 is minimal, l̂ij,2 = l̂ij,1 and ûi
j,2 = λûi

j,1 + μ. We show
the two ways of approximation in Fig. 3.

Theorem 2. The min abstract transformer preserves the following invariant:
Γ (̂Ai

j,2) ⊆ [l̂ij,2, û
i
j,2].

From our abstract domain for QNNs, we get a symbolic interval analysis,
similar to the one for DNNs using DeepPoly, to replace Line 2 in Algorithm 1.

4.2 Symbolic Quantization Error Computation

Recall that to compute tight bounds of QNNs or DNNs via symbolic interval
analysis, variables in upper and lower polyhedral computations are recursively
substituted with the corresponding upper/lower polyhedral computations of vari-
ables until they only contain the input variables from which the concrete intervals
are computed. This idea motivates us to design a symbolic difference computa-
tion approach for differential reachability analysis based on the abstract domain
DeepPoly for DNNs and our abstract domain for QNNs.

Consider two hidden neurons xi
j,s and x̂i

j,s from the DNN N and the QNN
̂N . Let Ai,∗

j,s = 〈ai,≤,∗
j,s ,ai,≥,∗

j,s , li,∗j,s, u
i,∗
j,s〉 and ̂Ai

j,p = 〈âi,≤,∗
j,p , âi,≥,∗

j,p , l̂i,∗j,p, û
i,∗
j,p〉 be their

abstract elements, respectively, where all the polyhedral computations are linear
combinations of the input variables of the DNN and QNN, respectively, i.e.,

– ai,≤,∗
j,s =

∑m
k=1 w

l,∗
k x1

k + bl,∗
j , ai,≥,∗

j,s =
∑m

k=1 w
u,∗
k x1

k + bu,∗
j ;

– âi,≤,∗
j,p =

∑m
k=1 ŵ

l,∗
k x̂1

k + b̂l,∗
j , âi,≥,∗

j,p =
∑m

k=1 ŵ
u,∗
k x̂1

k + b̂u,∗
j .

Then, the sound lower bound Δli,∗j,s and upper Δui,∗
j,s bound of the difference can

be derived as follows, where p = 2s:

QEBVerif: Quantization Error Bound Verification of Neural Networks 427

Table 1. Benchmarks for QNNs and DNNs on MNIST.

QNNs
Arch #Paras

Q = 4 Q = 6 Q = 8 Q = 10
DNNs

P1: 1blk_100 ≈ 79.5k 96.38% 96.79% 96.77% 96.74% 96.92%
P2: 2blk_100 ≈ 89.6k 96.01% 97.04% 97.00% 97.02% 97.07%
P3: 3blk_100 ≈ 99.7k 95.53% 96.66% 96.59% 96.68% 96.71%
P4: 2blk_512 ≈ 669.7k 96.69% 97.41% 97.35% 97.36% 97.36%
P5: 4blk_1024 ≈ 3,963k 97.71% 98.05% 98.01% 98.04% 97.97%

– Δli,∗j,s = LB(2−Fh x̂i
j,p − xi

j,s) = 2−Fh âi,≤,∗
j,p − ai,≥,∗

j,s ;
– Δui,∗

j,s = UB(2−Fh x̂i
j,p − xi

j,s) = 2−Fh âi,≥,∗
j,p − ai,≤,∗

j,s .

Given a quantized input x̂ of the QNN ̂N , the input difference of two networks
is 2−Fin x̂−x = (2−FinCub

h −1)x. Therefore, we have Δ1
k = x̃1

k −x1
k = 2−Fin x̂1

k −
x1

k = (2−FinCub
h − 1)x. Then, the lower bound of difference can be reformulated

as follows which only contains the input variables of DNN N : Δli,∗j,s = Δbl,∗
j +

∑m
k=1(−wu,∗

k +2−FinCub
h w̃l,∗

k)x1
k, where Δbl,∗

j = 2−Fh b̂l,∗
j −bu,∗

j , F ∗ = Fin −Fh,
Δ1

k = x̃1
k − x1

k and w̃l,∗
k = 2F ∗

ŵl,∗
k .

Similarly, we can reformulated the upper bound Δui,∗
j,s as follows using the

input variables of the DNN: Δui,∗
j,s = Δbu,∗

j +
∑m

k=1(−wl,∗
k + 2−FinCub

h w̃u,∗
k)x1

k,
where Δbu,∗

j = 2−Fh b̂u,∗
j − bl,∗

j , F ∗ = Fin − Fh, and w̃u,∗
k = 2F ∗

ŵu,∗
k .

Finally, we compute the concrete input difference interval δin
i,j based on the

given input region as δin
i,j = [LB(Δli,∗j,0),UB(Δui,∗

j,0)], with which we can replace
the AffTrs functions in Algorithm 1 directly. An illustrating example is given
in [65].

5 Evaluation

We have implemented our method QEBVerif as an end-to-end tool written in
Python, where we use Gurobi [20] as our back-end MILP solver. All floating-
point numbers used in our tool are 32-bit. Experiments are conducted on a
96-core machine with Intel(R) Xeon(R) Gold 6342 2.80GHz CPU and 1 TB
main memory. We allow Gurobi to use up to 24 threads. The time limit for each
verification task is 1 h.

Benchmarks. We first build 45 * 4 QNNs from the 45 DNNs of ACAS Xu [26],
following a post-training quantization scheme [44] and using quantization con-
figurations Cin = 〈±, 8, 8〉, Cw = Cb = 〈±, Q,Q − 2〉, Ch = 〈+, Q,Q − 2〉, where
Q ∈ {4, 6, 8, 10}. We then train 5 DNNs with different architectures using the
MNIST dataset [31] and build 5 * 4 QNNs following the same quantization
scheme and quantization configurations except that we set Cin = 〈+, 8, 8〉 and
Cw = 〈±, Q,Q − 1〉 for each DNN trained on MNIST. Details on the networks

428 Y. Zhang et al.

trained on the MNIST dataset are presented in Table 1. Column 1 gives the
name and architecture of each DNN, where Ablk_B means that the network
has A hidden layers with each hidden layer size B neurons, Column 2 gives the
number of parameters in each DNN, and Columns 3–7 list the accuracy of these
networks. Hereafter, we denote by Px-y (resp. Ax-y) the QNN using the archi-
tecture Px (using the x-th DNN) and quantization bit size Q = y for MNIST
(resp. ACAS Xu), and by Px-Full (resp. Ax-Full) the DNN of architecture Px
for MNIST (resp. the x-th DNN in ACAS Xu).

5.1 Effectiveness and Efficiency of DRA

We first implement a naive method using existing state-of-the-art reachability
analysis methods for QNNs and DNNs. Specifically, we use the symbolic interval
analysis of DeepPoly [55] to compute the output intervals for a DNN, and
use interval analysis of [22] to compute the output intervals for a QNN. Then,
we compute quantization error intervals via interval subtraction. Note that no
existing methods can directly verify quantization error bounds and the methods
in [48,49] are not applicable. Finally, we compare the quantization error intervals
computed by the naive method against DRA in QEBVerif, using DNNs Ax-Full,
Py-Full and QNNs Ax-z, Py-z for x = 1, y ∈ {1, 2, 3, 4, 5} and z ∈ {4, 6, 8, 10}.
We use the same adversarial input regions (5 input points with radius r =
{3, 6, 13, 19, 26} for each point) as in [29] for ACAS Xu, and set the quantization
error bound ε ∈ {0.05, 0.1, 0.2, 0.3, 0.4}, i.e., resulting 25 tasks for each radius.
For MNIST, we randomly select 30 input samples from the test set of MNIST
and set radius r = 3 for each input sample and quantization error bound ε ∈
{1, 2, 4, 6, 8}, resulting in a total of 150 tasks for each pair of DNN and QNN of
same architecture for MNIST.

Table 2 reports the analysis results for ACAS Xu (above) and MNIST
(below). Column 2 lists different analysis methods, where QEBVerif (Int) is
Algorithm 1 and QEBVerif (Sym) uses a symbolic-based method for the affine
transformation in Algorithm 1 (cf. Sect. 4.2). Columns (H_Diff) (resp. O_Diff)
averagely give the sum ranges of the difference intervals of all the hidden neu-
rons (resp. output neurons of the predicted class) for the 25 verification tasks
for ACAS Xu and 150 verification tasks for MNIST. Columns (#S/T) list the
number of tasks (#S) successfully proved by DRA and average computation
time (T) in seconds, respectively, where the best ones (i.e., solving the most
tasks) are highlighted in blue. Note that Table 2 only reports the number of true
propositions proved by DRA while the exact number is unknown.

Unsurprisingly, QEBVerif (Sym) is less efficient than the others but is still
in the same order of magnitude. However, we can observe that QEBVerif (Sym)
solves the most tasks for both ACAS Xu and MNIST and produces the most
accurate difference intervals of both hidden neurons and output neurons for
almost all the tasks in MNIST, except for P1-8 and P1-10 where QEBVerif (Int)
performs better on the intervals for the output neurons. We also find that QEB-
Verif (Sym) may perform worse than the naive method when the quantization
bit size is small for ACAS Xu. It is because: (1) the rounding error added into

QEBVerif: Quantization Error Bound Verification of Neural Networks 429

Table 2. Differential Reachability Analysis on ACAS Xu and MNIST.

r = 3 r = 6 r = 13 r = 19 r = 26
Q Method

H_Diff O_Diff #S/T H_Diff O_Diff #S/T H_Diff O_Diff #S/T H_Diff O_Diff #S/T H_Diff O_Diff #S/T

Naive 270.5 0.70 15/0.47 423.7 0.99 9/0.52 1,182 4.49 0/0.67 6,110 50.91 0/0.79 18,255 186.6 0/0.81
4 QEBVerif (Int) 270.5 0.70 15/0.49 423.4 0.99 9/0.53 1,181 4.46 0/0.70 6,044 50.91 0/0.81 17,696 186.6 0/0.85

QEBVerif (Sym) 749.4 145.7 0/2.02 780.9 150.2 0/2.11 1,347 210.4 0/2.24 6,176 254.7 0/2.35 18,283 343.7 0/2.39

Naive 268.3 1.43 5/0.47 557.2 4.00 0/0.51 1,258 6.91 0/0.67 6,145 53.29 0/0.77 18,299 189.0 0/0.82
6 QEBVerif (Int) 268.0 1.41 5/0.50 555.0 3.98 0/0.54 1,245 6.90 0/0.69 6,125 53.28 0/0.80 18,218 189.0 0/0.83

QEBVerif (Sym) 299.7 2.58 10/1.48 365.1 3.53 9/1.59 1,032 7.65 5/1.91 5,946 85.46 4/2.15 18,144 260.5 0/2.27

Naive 397.2 3.57 0/0.47 587.7 5.00 0/0.51 1,266 7.90 0/0.67 6,160 54.27 0/0.78 18,308 190.0 0/0.81
8 QEBVerif (Int) 388.4 3.56 0/0.49 560.1 5.00 0/0.53 1,222 7.89 0/0.69 6,103 54.27 0/0.79 18,212 190.0 0/0.83

QEBVerif (Sym) 35.75 0.01 24/1.10 93.78 0.16 18/1.19 845.2 5.84 8/1.65 5,832 58.73 5/1.97 18,033 209.6 5/2.12

Naive 394.5 3.67 0/0.49 591.4 5.17 0/0.51 1,268 8.04 0/0.68 6,164 54.42 0/0.78 18,312 190.1 0/0.80
10 QEBVerif (Int) 361.9 3.67 0/0.50 546.2 5.17 0/0.54 1,209 8.04 0/0.68 6,083 54.42 0/0.79 18,182 190.1 0/0.83

QEBVerif (Sym) 15.55 0.01 25/1.04 54.29 0.06 22/1.15 764.6 4.53 9/1.52 5,780 57.21 5/1.91 18,011 228.7 5/2.08

P1 P2 P3 P4 P5
Q Method

H_Diff O_Diff #S/T H_Diff O_Diff #S/T H_Diff O_Diff #S/T H_Diff O_Diff #S/T H_Diff O_Diff #S/T

Naive 64.45 7.02 61/0.77 220.9 20.27 0/1.53 551.6 47.75 0/2.38 470.1 22.69 2/11.16 5,336 140.4 0/123.0
4 QEBVerif (Int) 32.86 6.65 63/0.78 194.8 20.27 0/1.54 530.9 47.75 0/2.40 443.3 22.69 2/11.23 5,275 140.4 0/123.4

QEBVerif (Sym) 32.69 3.14 88/1.31 134.9 7.11 49/2.91 313.8 14.90 1/5.08 365.2 11.11 35/22.28 1,864 50.30 1/310.2

Naive 68.94 7.89 66/0.77 249.5 24.25 0/1.52 616.2 54.66 0/2.38 612.2 31.67 1/11.18 7,399 221.0 0/125.4
6 QEBVerif (Int) 10.33 2.19 115/0.78 89.66 12.81 14/1.54 466.0 52.84 0/2.39 307.6 20.22 5/11.28 7,092 221.0 0/125.1

QEBVerif (Sym) 10.18 1.46 130/1.34 55.73 3.11 88/2.85 131.3 5.33 70/4.72 158.5 3.99 102/21.85 861.9 12.67 22/279.9

Naive 69.15 7.95 64/0.77 251.6 24.58 0/1.52 623.1 55.42 0/2.38 620.6 32.43 1/11.29 7,542 226.1 0/125.3
8 QEBVerif (Int) 4.27 0.89 135/0.78 38.87 5.99 66/1.54 320.1 40.84 0/2.39 134.0 8.99 50/11.24 7,109 226.1 0/125.7

QEBVerif (Sym) 4.13 1.02 136/1.35 34.01 2.14 108/2.82 82.90 3.48 86/4.61 96.26 2.39 128/21.45 675.7 6.20 27/273.6

Naive 69.18 7.96 65/0.77 252.0 24.63 0/1.52 624.0 55.55 0/2.36 620.4 32.40 1/11.19 7,559 226.9 0/124.2
10 QEBVerif (Int) 2.72 0.56 139/0.78 25.39 4.15 79/1.53 260.9 34.35 0/2.40 84.12 5.75 73/11.26 7,090 226.9 0/125.9

QEBVerif (Sym) 2.61 0.92 139/1.35 28.59 1.91 112/2.82 71.33 3.06 92/4.56 81.08 2.01 131/21.48 646.5 5.68 31/271.5

the abstract domain of the affine function in each hidden layer of QNNs is large
due to the small bit size, and (2) such errors can accumulate and magnify layer
by layer, in contrast to the naive approach where we directly apply the interval
subtraction. We remark that symbolic-based reachability analysis methods for
DNNs become less accurate as the network gets deeper and the input region
gets larger. It means that for a large input region, the output intervals of hid-
den/output neurons computed by symbolic interval analysis for DNNs can be
very large. However, the output intervals of their quantized counterparts are
always limited by the quantization grid limit, i.e., [0, 2Q−1

2Q−2]. Hence, the difference
intervals computed in Table 2 can be very conservative for large input regions
and deeper networks.

5.2 Effectiveness and Efficiency of QEBVerif

We evaluate QEBVerif on QNNs Ax-z, Py-z for x = 1, y ∈ {1, 2, 3, 4} and
z ∈ {4, 6, 8, 10}, as well as DNNs correspondingly. We use the same input regions
and error bounds as in Sect. 5.1 except that we consider r ∈ {3, 6, 13} for each
input point for ACAS Xu. Note that, we omit the other two radii for ACAS Xu
and use medium-sized QNNs for MNIST as our evaluation benchmarks of this
experiment for the sake of time and computing resources.

Figure 4 shows the verification results of QEBVerif within 1 h per task, which
gives the number of successfully verified tasks with three methods. Note that
only the number of successfully proved tasks is given in Fig. 4 for DRA due
to its incompleteness. The blue bars show the results using only the symbolic

430 Y. Zhang et al.

(a) ACAS Xu:Q = 4. (b) ACAS Xu: Q =
6.

(c) ACAS Xu: Q = 8.(d) ACAS Xu: Q =
10.

(e) MNIST: Q = 4. (f) MNIST: Q = 6. (g) MNIST: Q = 8. (h) MNIST: Q = 10.

Fig. 4. Verification Results of QEBVerif on ACAS Xu and MNIST.

differential reachability analysis, i.e., QEBVerif (Sym). The yellow bars give the
results by a full verification process in QEBVerif as shown in Fig. 2, i.e., we first
use DRA and then use MILP solving if DRA fails. The red bars are similar to
the yellow ones except that linear constraints of the difference intervals of hidden
neurons got from DRA are added into the MILP encoding.

Overall, although DRA successfully proved most of the tasks (60.19% with
DRA solely), our MILP-based verification method can help further verify many
tasks on which DRA fails, namely, 85.67% with DRA+MILP and 88.59% with
DRA+MILP+Diff. Interestingly, we find that the effectiveness of the added lin-
ear constraints of the difference intervals varies on the MILP solving efficiency
on different tasks. Our conjecture is that there are some heuristics in the Gurobi
solving algorithm for which the additional constraints may not always be helpful.
However, those difference linear constraints allow the MILP-based verification
method to verify more tasks, i.e., 79 tasks more in total.

5.3 Correlation of Quantization Errors and Robustness

We use QEBVerif to verify a set of properties Ψ = {P (N , ̂N , x̂, r, ε)},
where N = P1-Full, ̂N ∈ {P1-4, P1-8}, x̂ ∈ X and X is the set of
the 30 samples from MNIST as above, r ∈ {3, 5, 7} and ε ∈ Ω =
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0}. We solve all the above tasks and process
all the results to obtain the tightest range of quantization error bounds [a, b]
for each input region such that a, b ∈ Ω. It allows us to obtain intervals that
are tighter than those obtained via DRA. Finally, we implemented a robustness
verifier for QNNs in a way similar to [40] to check the robustness of P1-4 and
P1-8 w.r.t. the input regions given in Ψ .

Figure 5 gives the experimental results. The blue (resp. yellow) bars in
Figs. 5(a) and 5(e) show the number of robust (resp. non-robust) samples among
the 30 verification tasks, and blue bars in the other 6 figures demonstrate the

QEBVerif: Quantization Error Bound Verification of Neural Networks 431

(a) Robustness Re-
sults for P1-4.

(b) Errors for P1-4
under r = 3.

(c) Errors for P1-4
under r = 5.

(d) Errors for P1-4
under r = 7.

(e) Robustness Re-
sults for P1-8.

(f) Errors for P1-8
under r = 3.

(g) Errors for P1-8
under r = 5.

(h) Errors for P1-8
under r = 7.

Fig. 5. Distribution of (non-)robust samples and Quantization Errors under radius r
and quantization bits Q.

quantization error interval for each input region. By comparing the results of
P1-8 and P1-4, we observe that P1-8 is more robust than P1-4 w.r.t. the 90
input regions and its quantization errors are also generally much smaller than
that of P1-4. Furthermore, we find that P1-8 remains consistently robust as the
radius increases, and its quantization error interval changes very little. However,
P1-4 becomes increasingly less robust as the radius increases and its quantiza-
tion error also increases significantly. Thus, we speculate that there may be some
correlation between network robustness and quantization error in QNNs. Specif-
ically, as the quantization bit size decreases, the quantization error increases
and the QNN becomes less robust. The reason we suspect “the fewer bits, the
less robust” is that with fewer bits, a perturbation may easily cause significant
change on hidden neurons (i.e., the change is magnified by the loss of precision)
and consequently the output. Furthermore, the correlation between the quanti-
zation error bound and the empirical robustness of the QNN suggests that it is
indeed possible to apply our method to compute the quantization error bound
and use it as a guide for identifying the best quantization scheme which balances
the size of the model and its robustness.

6 Related Work

While there is a large and growing body of work on quality assurance tech-
niques for neural networks including testing (e.g., [4–7,47,50,56,57,63,69]) and
formal verification (e.g., [2,8,12,13,15,19,24,29,30,32,34,37,38,51,54,55,58–60,
62,70]). Testing techniques are often effective in finding violations, but they
cannot prove their absence. While formal verification can prove their absence,
existing methods typically target real-valued neural networks, i.e., DNNs, and

432 Y. Zhang et al.

are not effective in verifying quantization error bound [48]. In this section, we
mainly discuss the existing verification techniques for QNNs.

Early work on formal verification of QNNs typically focuses on 1-bit quan-
tized neural networks (i.e., BNNs) [3,9,46,52,53,66,67]. Narodytska et al. [46]
first proposed to reduce the verification problem of BNNs to a satisfiability prob-
lem of a Boolean formula or an integer linear programming problem. Baluta
et al. [3] proposed a PAC-style quantitative analysis framework for BNNs via
approximate SAT model-counting solvers. Shih et al. proposed a quantitative
verification framework for BNNs [52,53] via a BDD learning-based method [45].
Zhang et al. [66,67] proposed a BDD-based verification framework for BNNs,
which exploits the internal structure of the BNNs to construct BDD models
instead of BDD-learning. Giacobbe et al. [16] pushed this direction further by
introducing the first formal verification for multiple-bit quantized DNNs (i.e.,
QNNs) by encoding the robustness verification problem into an SMT formula
based on the first-order theory of quantifier-free bit-vector. Later, Henzinger et
al. [22] explored several heuristics to improve the efficiency and scalability of [16].
Very recently, [40,68] proposed an ILP-based method and an MILP-based verifi-
cation method for QNNs, respectively, and both outperform the SMT-based ver-
ification approach [22]. Though these works can directly verify QNNs or BNNs,
they cannot verify quantization error bounds.

There are also some works focusing on exploring the properties of two neural
networks which are most closely related to our work. Paulsen et al. [48,49] pro-
posed differential verification methods to verify two DNNs with the same network
topology. This idea has been extended to handle recurrent neural networks [41].
The difference between [41,48,49] and our work has been discussed throughout
this work, i.e., they focus on quantized weights and cannot handle quantized
activation tensors. Moreover, their methods are not complete, thus would fail to
prove tighter error bounds. Semi-definite programming was used to analyze the
different behaviors of DNNs and fully QNNs [33]. Different from our work focus-
ing on verification, they aim at generating an upper bound for the worst-case
error induced by quantization. Furthermore, [33] only scales tiny QNNs, e.g., 1
input neuron, 1 output neuron, and 10 neurons per hidden layer (up to 4 hidden
layers). In comparison, our differential reachability analysis scales to much larger
QNNs, e.g., QNN with 4890 neurons.

7 Conclusion

In this work, we proposed a novel quantization error bound verification method
QEBVerif which is sound, complete, and arguably efficient. We implemented it as
an end-to-end tool and conducted thorough experiments on various QNNs with
different quantization bit sizes. Experimental results showed the effectiveness and
the efficiency of QEBVerif. We also investigated the potential correlation between
robustness and quantization errors for QNNs and found that as the quantization
error increases the QNN might become less robust. For further work, it would be
interesting to investigate the verification method for other activation functions
and network architectures, towards which this work makes a significant step.

QEBVerif: Quantization Error Bound Verification of Neural Networks 433

Acknowledgements. This work is supported by the National Key Research Program
(2020AAA0107800), National Natural Science Foundation of China (62072309), CAS
Project for Young Scientists in Basic Research (YSBR-040), ISCAS New Cultivation
Project (ISCAS-PYFX-202201), and the Ministry of Education, Singapore under its
Academic Research Fund Tier 3 (MOET32020-0004). Any opinions, findings and con-
clusions or recommendations expressed in this material are those of the authors and
do not reflect the views of the Ministry of Education, Singapore.

References

1. Amir, G., Wu, H., Barrett, C.W., Katz, G.: An SMT-based approach for verifying
binarized neural networks. In: Proceedings of the 27th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pp. 203–222
(2021)

2. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction:
a synergistic approach for analyzing neural network robustness. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 731–744 (2019)

3. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification
of neural networks and its security applications. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1249–1264
(2019)

4. Bu, L., Zhao, Z., Duan, Y., Song, F.: Taking care of the discretization problem:
a comprehensive study of the discretization problem and a black-box adversarial
attack in discrete integer domain. IEEE Trans. Dependable Secur. Comput. 19(5),
3200–3217 (2022)

5. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks.
In: Proceedings of the 2017 IEEE Symposium on Security and Privacy, pp. 39–57
(2017)

6. Chen, G., et al.: Who is real Bob? Adversarial attacks on speaker recognition
systems. In: Proceedings of the 42nd IEEE Symposium on Security and Privacy,
pp. 694–711 (2021)

7. Chen, G., Zhao, Z., Song, F., Chen, S., Fan, L., Liu, Y.: AS2T: arbitrary source-to-
target adversarial attack on speaker recognition systems. IEEE Trans. Dependable
Secur. Comput., 1–17 (2022)

8. Chen, G., et al.: Towards understanding and mitigating audio adversarial examples
for speaker recognition. IEEE Trans. Dependable Secur. Comput., 1–17 (2022)

9. Choi, A., Shi, W., Shih, A., Darwiche, A.: Compiling neural networks into tractable
Boolean circuits. In: Proceedings of the AAAI Spring Symposium on Verification
of Neural Networks (2019)

10. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages,
pp. 238–252 (1977)

11. Duncan, K., Komendantskaya, E., Stewart, R., Lones, M.: Relative robustness
of quantized neural networks against adversarial attacks. In: Proceedings of the
International Joint Conference on Neural Networks, pp. 1–8 (2020)

12. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Proceedings of the 15th International Symposium on Automated Technology
for Verification and Analysis, pp. 269–286 (2017)

434 Y. Zhang et al.

13. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neu-
ral network verification. In: Proceedings of the 32nd International Conference on
Computer Aided Verification, pp. 43–65 (2020)

14. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classifi-
cation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1625–1634 (2018)

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: Proceedings of the IEEE Symposium on Security and Privacy,
pp. 3–18 (2018)

16. Giacobbe, M., Henzinger, T.A., Lechner, M.: How many bits does it take to quan-
tize your neural network? In: TACAS 2020. LNCS, vol. 12079, pp. 79–97. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45237-7_5

17. Gong, R., et al.: Differentiable soft quantization: bridging full-precision and low-bit
neural networks. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 4851–4860 (2019)

18. Google: Tensorflow lite (2022). https://www.tensorflow.org/lite
19. Guo, X., Wan, W., Zhang, Z., Zhang, M., Song, F., Wen, X.: Eager falsification

for accelerating robustness verification of deep neural networks. In: Proceedings of
the 32nd IEEE International Symposium on Software Reliability Engineering, pp.
345–356 (2021)

20. Gurobi: a most powerful mathematical optimization solver (2018). https://www.
gurobi.com/

21. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network
with pruning, trained quantization and Huffman coding. In: Proceedings of the 4th
International Conference on Learning Representations (2016)

22. Henzinger, T.A., Lechner, M., Zikelic, D.: Scalable verification of quantized neural
networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, pp. 3787–3795 (2021)

23. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition:
the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97
(2012)

24. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Proceedings of the 29th International Conference on Computer Aided
Verification, pp. 3–29 (2017)

25. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713 (2018)

26. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression
for aircraft collision avoidance systems. J. Guid. Control. Dyn. 42(3), 598–608
(2019)

27. Jung, S., et al.: Learning to quantize deep networks by optimizing quantization
intervals with task loss. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4350–4359 (2019)

28. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Li, F.: Large-
scale video classification with convolutional neural networks. In: Proceedings of
2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–
1732 (2014)

29. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Proceedings of the 29th
International Conference on Computer Aided Verification, pp. 97–117 (2017)

https://doi.org/10.1007/978-3-030-45237-7_5
https://www.tensorflow.org/lite
https://www.gurobi.com/
https://www.gurobi.com/

QEBVerif: Quantization Error Bound Verification of Neural Networks 435

30. Katz, G., et al.: The marabou framework for verification and analysis of deep neural
networks. In: Proceedings of the 31st International Conference on Computer Aided
Verification, pp. 443–452 (2019)

31. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
32. Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural

networks with symbolic propagation: towards higher precision and faster verifica-
tion. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 296–319. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_15

33. Li, J., Drummond, R., Duncan, S.R.: Robust error bounds for quantised and pruned
neural networks. In: Proceedings of the 3rd Annual Conference on Learning for
Dynamics and Control, pp. 361–372 (2021)

34. Li, R., et al.: Prodeep: a platform for robustness verification of deep neural net-
works. In: Proceedings of the 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 1630–
1634 (2020)

35. Lin, D.D., Talathi, S.S., Annapureddy, V.S.: Fixed point quantization of deep
convolutional networks. In: Proceedings of the 33nd International Conference on
Machine Learning, pp. 2849–2858 (2016)

36. Lin, J., Gan, C., Han, S.: Defensive quantization: when efficiency meets robustness.
In: Proceedings of the International Conference on Learning Representations (2019)

37. Liu, J., Xing, Y., Shi, X., Song, F., Xu, Z., Ming, Z.: Abstraction and refinement:
towards scalable and exact verification of neural networks. CoRR abs/2207.00759
(2022)

38. Liu, W., Song, F., Zhang, T., Wang, J.: Verifying ReLU neural networks from a
model checking perspective. J. Comput. Sci. Technol. 35(6), 1365–1381 (2020)

39. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. CoRR abs/1706.07351 (2017)

40. Mistry, S., Saha, I., Biswas, S.: An MILP encoding for efficient verification of quan-
tized deep neural networks. IEEE Trans. Comput.-Aided Des. Integrated Circuits
Syst. (Early Access) (2022)

41. Mohammadinejad, S., Paulsen, B., Deshmukh, J.V., Wang, C.: DiffRNN: differen-
tial verification of recurrent neural networks. In: Proceedings of the 19th Interna-
tional Conference on Formal Modeling and Analysis of Timed Systems, pp. 117–134
(2021)

42. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis, vol.
110. SIAM (2009)

43. Nagel, M., Amjad, R.A., Van Baalen, M., Louizos, C., Blankevoort, T.: Up or
down? Adaptive rounding for post-training quantization. In: Proceedings of the
International Conference on Machine Learning, pp. 7197–7206 (2020)

44. Nagel, M., Fournarakis, M., Amjad, R.A., Bondarenko, Y., van Baalen, M.,
Blankevoort, T.: A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295 (2021)

45. Nakamura, A.: An efficient query learning algorithm for ordered binary decision
diagrams. Inf. Comput. 201(2), 178–198 (2005)

46. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Veri-
fying properties of binarized deep neural networks. In: Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 6615–6624 (2018)

47. Odena, A., Olsson, C., Andersen, D.G., Goodfellow, I.J.: TensorFuzz: debugging
neural networks with coverage-guided fuzzing. In: Proceedings of the 36th Inter-
national Conference on Machine Learning, pp. 4901–4911 (2019)

https://doi.org/10.1007/978-3-030-32304-2_15
http://arxiv.org/abs/2106.08295

436 Y. Zhang et al.

48. Paulsen, B., Wang, J., Wang, C.: ReluDiff: differential verification of deep neural
networks. In: 2020 IEEE/ACM 42nd International Conference on Software Engi-
neering (ICSE), pp. 714–726. IEEE (2020)

49. Paulsen, B., Wang, J., Wang, J., Wang, C.: NeuroDiff: scalable differential verifi-
cation of neural networks using fine-grained approximation. In: Proceedings of the
35th IEEE/ACM International Conference on Automated Software Engineering,
pp. 784–796 (2020)

50. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing
of deep learning systems. In: Proceedings of the 26th Symposium on Operating
Systems Principles, pp. 1–18 (2017)

51. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Proceedings of the 22nd International Conference on
Computer Aided Verification, pp. 243–257 (2010)

52. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by Angluin-
style learning. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp.
354–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_25

53. Shih, A., Darwiche, A., Choi, A.: Verifying binarized neural networks by local
automaton learning. In: Proceedings of the AAAI Spring Symposium on Verifica-
tion of Neural Networks (2019)

54. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron convex
barrier for neural network certification. In: Proceedings of the Annual Conference
on Neural Information Processing Systems, pp. 15072–15083 (2019)

55. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. (POPL) 3, 41:1–41:30 (2019)

56. Song, F., Lei, Y., Chen, S., Fan, L., Liu, Y.: Advanced evasion attacks and mitiga-
tions on practical ml-based phishing website classifiers. Int. J. Intell. Syst. 36(9),
5210–5240 (2021)

57. Tian, Y., Pei, K., Jana, S., Ray, B.: DeepTest: automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of the 40th International Con-
ference on Software Engineering, pp. 303–314 (2018)

58. Tran, H.-D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional
neural networks using ImageStars. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 18–42. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8_2

59. Tran, H., et al.: Star-based reachability analysis of deep neural networks. In: Pro-
ceedings of the 3rd World Congress on Formal Methods, pp. 670–686 (2019)

60. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Proceedings of the 27th USENIX
Security Symposium, pp. 1599–1614 (2018)

61. WikiChip: FSD chip - tesla. https://en.wikichip.org/wiki/tesla_(car_company)/
fsd_chip. Accessed 30 Apr 2022

62. Yang, P., et al.: Improving neural network verification through spurious region
guided refinement. In: Groote, J.F., Larsen, K.G. (eds.) Proceedings of 27th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pp. 389–408 (2021)

63. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, land-
scapes and horizons. IEEE Trans. Software Eng. 48(2), 1–36 (2022)

64. Zhang, Y., Song, F., Sun, J.: QEBVerif (2023). https://github.com/S3L-official/
QEBVerif

65. Zhang, Y., Song, F., Sun, J.: QEBVerif: quantization error bound verification of
neural networks. CoRR abs/2212.02781 (2023)

https://doi.org/10.1007/978-3-030-24258-9_25
https://doi.org/10.1007/978-3-030-53288-8_2
https://doi.org/10.1007/978-3-030-53288-8_2
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://en.wikichip.org/wiki/tesla_(car_company)/fsd_chip
https://github.com/S3L-official/QEBVerif
https://github.com/S3L-official/QEBVerif

QEBVerif: Quantization Error Bound Verification of Neural Networks 437

66. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: BDD4BNN: a BDD-based
quantitative analysis framework for binarized neural networks. In: Silva, A., Leino,
K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 175–200. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81685-8_8

67. Zhang, Y., Zhao, Z., Chen, G., Song, F., Chen, T.: Precise quantitative analysis
of binarized neural networks: a BDD-based approach. ACM Trans. Software Eng.
Methodol. 32(3) (2023)

68. Zhang, Y., et al.: QVIP: an ILP-based formal verification approach for quantized
neural networks. In: Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, pp. 82:1–82:13 (2023)

69. Zhao, Z., Chen, G., Wang, J., Yang, Y., Song, F., Sun, J.: Attack as defense:
characterizing adversarial examples using robustness. In: Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis, pp.
42–55 (2021)

70. Zhao, Z., Zhang, Y., Chen, G., Song, F., Chen, T., Liu, J.: CLEVEREST: acceler-
ating CEGAR-based neural network verification via adversarial attacks. In: Singh,
G., Urban, C. (eds.) Proceedings of the 29th International Symposium on Static
Analysis, pp. 449–473 (2022). https://doi.org/10.1007/978-3-031-22308-2_20

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-81685-8_8
https://doi.org/10.1007/978-3-031-22308-2_20
http://creativecommons.org/licenses/by/4.0/

Verifying Generalization in Deep Learning

Guy Amir(B), Osher Maayan, Tom Zelazny, Guy Katz, and Michael Schapira

The Hebrew University of Jerusalem, Jerusalem, Israel
{guyam,osherm,tomz,guykatz,schapiram}@cs.huji.ac.il

Abstract. Deep neural networks (DNNs) are the workhorses of deep
learning, which constitutes the state of the art in numerous application
domains. However, DNN-based decision rules are notoriously prone to
poor generalization, i.e., may prove inadequate on inputs not encountered
during training. This limitation poses a significant obstacle to employ-
ing deep learning for mission-critical tasks, and also in real-world envi-
ronments that exhibit high variability. We propose a novel, verification-
driven methodology for identifying DNN-based decision rules that gener-
alize well to new input domains. Our approach quantifies generalization
to an input domain by the extent to which decisions reached by inde-
pendently trained DNNs are in agreement for inputs in this domain. We
show how, by harnessing the power of DNN verification, our approach
can be efficiently and effectively realized. We evaluate our verification-
based approach on three deep reinforcement learning (DRL) benchmarks,
including a system for Internet congestion control. Our results establish
the usefulness of our approach. More broadly, our work puts forth a
novel objective for formal verification, with the potential for mitigating
the risks associated with deploying DNN-based systems in the wild.

1 Introduction

Over the past decade, deep learning [35] has achieved state-of-the-art results
in natural language processing, image recognition, game playing, computational
biology, and many additional fields [4,18,21,45,50,84,85]. However, despite its
impressive success, deep learning still suffers from severe drawbacks that limit
its applicability in domains that involve mission-critical tasks or highly variable
inputs.

One such crucial limitation is the notorious difficulty of deep neural networks
(DNNs) to generalize to new input domains, i.e., their tendency to perform
poorly on inputs that significantly differ from those encountered while training.
During training, a DNN is presented with input data sampled from a specific dis-
tribution over some input domain (“in-distribution” inputs). The induced DNN-
based rules may fail in generalizing to inputs not encountered during training
due to (1) the DNN being invoked “out-of-distribution” (OOD), i.e., when there
is a mismatch between the distribution over inputs in the training data and in

G. Amir and O. Maayan—Contributed equally.

c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 438–455, 2023.
https://doi.org/10.1007/978-3-031-37703-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_21&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_21

Verifying Generalization in Deep Learning 439

the DNN’s operational data; (2) some inputs not being sufficiently represented
in the finite training data (e.g., various low-probability corner cases); and (3)
“overfitting” the decision rule to the training data.

A notable example of the importance of establishing the generalizability of
DNN-based decisions lies in recently proposed applications of deep reinforce-
ment learning (DRL) [56] to real-world systems. Under DRL, an agent, realized
as a DNN, is trained by repeatedly interacting with its environment to learn a
decision-making policy that attains high performance with respect to a certain
objective (“reward”). DRL has recently been applied to many real-world chal-
lenges [20,44,54,55,64–67,96,108]. In many application domains, the learned
policy is expected to perform well across a daunting breadth of operational
environments, whose diversity cannot possibly be captured in the training data.
Further, the cost of erroneous decisions can be dire. Our discussion of DRL-based
Internet congestion control (see Sect. 4.3) illustrates this point.

Here, we present a methodology for identifying DNN-based decision rules
that generalize well to all possible distributions over an input domain of interest.
Our approach hinges on the following key observation. DNN training in general,
and DRL policy training in particular, incorporate multiple stochastic aspects,
such as the initialization of the DNN’s weights and the order in which inputs
are observed during training. Consequently, even when DNNs with the same
architecture are trained to perform an identical task on the same data, somewhat
different decision rules will typically be learned. Paraphrasing Tolstoy’s Anna
Karenina [93], we argue that “successful decision rules are all alike; but every
unsuccessful decision rule is unsuccessful in its own way”. Differently put, when
examining the decisions by several independently trained DNNs on a certain
input, these are likely to agree only when their (similar) decisions yield high
performance.

In light of the above, we propose the following heuristic for generating DNN-
based decision rules that generalize well to an entire given domain of inputs:
independently train multiple DNNs, and then seek a subset of these DNNs that
are in strong agreement across all possible inputs in the considered input domain
(implying, by our hypothesis, that these DNNs’ learned decision rules generalize
well to all probability distributions over this domain). Our evaluation demon-
strates (see Sect. 4) that this methodology is extremely powerful and enables
distilling from a collection of decision rules the few that indeed generalize better
to inputs within this domain. Since our heuristic seeks DNNs whose decisions
are in agreement for each and every input in a specific domain, the decision rules
reached this way achieve robustly high generalization across different possible
distributions over inputs in this domain.

Since our methodology involves contrasting the outputs of different DNNs
over possibly infinite input domains, using formal verification is natural. To
this end, we build on recent advances in formal verification of DNNs [2,12,14,
16,27,60,78,86,102]. DNN verification literature has focused on establishing the
local adversarial robustness of DNNs, i.e., seeking small input perturbations that
result in misclassification by the DNN [31,36,61]. Our approach broadens the

440 G. Amir et al.

applicability of DNN verification by demonstrating, for the first time (to the best
of our knowledge), how it can also be used to identify DNN-based decision rules
that generalize well. More specifically, we show how, for a given input domain,
a DNN verifier can be utilized to assign a score to a DNN reflecting its level
of agreement with other DNNs across the entire input domain. This enables
iteratively pruning the set of candidate DNNs, eventually keeping only those in
strong agreement, which tend to generalize well.

To evaluate our methodology, we focus on three popular DRL benchmarks:
(i) Cartpole, which involves controlling a cart while balancing a pendulum; (ii)
Mountain Car, which involves controlling a car that needs to escape a valley;
and (iii) Aurora, an Internet congestion controller.

Aurora is a particularly compelling example for our approach. While Aurora
is intended to tame network congestion across a vast diversity of real-world
Internet environments, Aurora is trained only on synthetically generated data.
Thus, to deploy Aurora in the real world, it is critical to ensure that its policy
is sound for numerous scenarios not captured by its training inputs.

Our evaluation results show that, in all three settings, our verification-driven
approach is successful at ranking DNN-based DRL policies according to their
ability to generalize well to out-of-distribution inputs. Our experiments also
demonstrate that formal verification is superior to gradient-based methods and
predictive uncertainty methods. These results showcase the potential of our app-
roach. Our code and benchmarks are publicly available as an artifact accompa-
nying this work [8].

The rest of the paper is organized as follows. Section 2 contains background
on DNNs, DRLs, and DNN verification. In Sect. 3 we present our verification-
based methodology for identifying DNNs that successfully generalize to OOD
inputs. We present our evaluation in Sect. 4. Related work is covered in Sect. 5,
and we conclude in Sect. 6.

2 Background

Deep Neural Networks (DNNs) [35]

v11

v21

v12

v22

v13

v23

v14

1

−3

4

2

ReLU

ReLU

2

−1

+1

−2

Weighted
sum

ReLUInput Output

Fig. 1. A toy DNN.

are directed graphs that comprise several
layers. Upon receiving an assignment of
values to the nodes of its first (input)
layer, the DNN propagates these values,
layer by layer, until ultimately reaching
the assignment of the final (output) layer.
Computing the value for each node is
performed according to the type of that
node’s layer. For example, in weighted-
sum layers, the node’s value is an affine combination of the values of the nodes
in the preceding layer to which it is connected. In rectified linear unit (ReLU)
layers, each node y computes the value y = ReLU(x) = max(x, 0), where x is a
single node from the preceding layer. For additional details on DNNs and their

Verifying Generalization in Deep Learning 441

training see [35]. Figure 1 depicts a toy DNN. For input V1 = [1, 2]T , the sec-
ond layer computes the (weighted sum) V2 = [10,−1]T . The ReLU functions are
subsequently applied in the third layer, and the result is V3 = [10, 0]T . Finally,
the network’s single output is V4 = [20].

Deep Reinforcement Learning (DRL) [56] is a machine learning paradigm,
in which a DRL agent, implemented as a DNN, interacts with an environment
across discrete time-steps t ∈ 0, 1, 2.... At each time-step, the agent is presented
with the environment’s state st ∈ S, and selects an action N(st) = at ∈ A.
The environment then transitions to its next state st+1, and presents the agent
with the reward rt for its previous action. The agent is trained through repeated
interactions with its environment to maximize the expected cumulative discounted
reward Rt = E

[∑
t γt · rt

]
(where γ ∈ [

0, 1
]

is termed the discount factor) [38,
82,90,91,97,107].

DNN and DRL Verification. A sound DNN verifier [46] receives as input
(i) a trained DNN N ; (ii) a precondition P on the DNN’s inputs, limiting the
possible assignments to a domain of interest; and (iii) a postcondition Q on
the DNN’s outputs, limiting the possible outputs of the DNN. The verifier can
reply in one of two ways: (i) SAT, with a concrete input x′ for which P (x′) ∧
Q(N(x′)) is satisfied; or (ii) UNSAT, indicating there does not exist such an x′.
Typically, Q encodes the negation of N ’s desirable behavior for inputs that
satisfy P . Thus, a SAT result indicates that the DNN errs, and that x′ triggers
a bug; whereas an UNSAT result indicates that the DNN performs as intended.
An example of this process appears in Appendix B of our extended paper [7].
To date, a plethora of verification approaches have been proposed for general,
feed-forward DNNs [3,31,41,46,61,99], as well as DRL-based agents that operate
within reactive environments [5,9,15,22,28].

3 Quantifying Generalizability via Verification

Our approach for assessing how well a DNN is expected to generalize on out-of-
distribution inputs relies on the “Karenina hypothesis”: while there are many
(possibly infinite) ways to produce incorrect results, correct outputs are likely
to be fairly similar. Hence, to identify DNN-based decision rules that generalize
well to new input domains, we advocate training multiple DNNs and scoring the
learned decision models according to how well their outputs are aligned with
those of the other models for the considered input domain. These scores can be
computed using a backend DNN verifier. We show how, by iteratively filtering
out models that tend to disagree with the rest, DNNs that generalize well can
be effectively distilled.

We begin by introducing the following definitions for reasoning about the
extent to which two DNN-based decision rules are in agreement over an input
domain.

Definition 1 (Distance Function). Let O be the space of possible outputs for
a DNN. A distance function for O is a function d : O × O �→ R

+.

442 G. Amir et al.

Intuitively, a distance function (e.g., the L1 norm) allows us to quantify the
level of (dis)agreement between the decisions of two DNNs on the same input.
We elaborate on some choices of distance functions that may be appropriate in
various domains in Appendix B of our extended paper [7].

Definition 2 (Pairwise Disagreement Threshold). Let N1, N2 be DNNs
with the same output space O, let d be a distance function, and let Ψ be an input
domain. We define the pairwise disagreement threshold (PDT) of N1 and N2

as:

α = PDTd,Ψ (N1, N2) � min
{
α′ ∈ R

+ | ∀x ∈ Ψ : d(N1(x), N2(x)) ≤ α′}

The definition captures the notion that for any input in Ψ , N1 and N2 pro-
duce outputs that are at most α-distance apart. A small α value indicates that
the outputs of N1 and N2 are close for all inputs in Ψ , whereas a high value
indicates that there exists an input in Ψ for which the decision models diverge
significantly.

To compute PDT values, our approach employs verification to conduct a
binary search for the maximum distance between the outputs of two DNNs; see
Algorithm 1.

Algorithm 1. Pairwise Disagreement Threshold
Input: DNNs (Ni, Nj), distance func. d, input domain Ψ , max. disagreement M > 0
Output: PDT(Ni, Nj)

1: low ← 0, high ← M

2: while (low < high) do
3: α ← 1

2 · (low + high)
4: query ← SMT SOLVER 〈P ← Ψ, [Ni; Nj], Q ← d(Ni, Nj) ≥ α〉
5: if query is SAT then: low ← α
6: else if query is UNSAT then: high ← α
7: end while
8: return α

Pairwise disagreement thresholds can be aggregated to measure the disagree-
ment between a decision model and a set of other decision models, as defined
next.

Definition 3 (Disagreement Score). Let N = {N1, N2, . . . , Nk} be a set of
k DNN-induced decision models, let d be a distance function, and let Ψ be an
input domain. A model’s disagreement score (DS) with respect to N is defined
as:

DSN ,d,Ψ (Ni) =
1

|N | − 1

∑

j∈[k],j �=i

PDTd,Ψ (Ni, Nj)

Verifying Generalization in Deep Learning 443

Intuitively, the disagreement score measures how much a single decision model
tends to disagree with the remaining models, on average.

Using disagreement scores, our heuristic employs an iterative scheme for
selecting a subset of models that generalize to OOD scenarios—as encoded by
inputs in Ψ (see Algorithm 2). First, a set of k DNNs {N1, N2, . . . , Nk} are inde-
pendently trained on the training data. Next, a backend verifier is invoked to
calculate, for each of the

(
k
2

)
DNN-based model pairs, their respective pairwise-

disagreement threshold (up to some ε accuracy). Next, our algorithm iteratively:
(i) calculates the disagreement score for each model in the remaining subset of
models; (ii) identifies the models with the (relative) highest DS scores; and (iii)
removes them (Line 9 in Algorithm 2). The algorithm terminates after exceed-
ing a user-defined number of iterations (Line 3 in Algorithm 2), or when the
remaining models “agree” across the input domain, as indicated by nearly iden-
tical disagreement scores (Line 7 in Algorithm 2). We note that the algorithm
is also given an upper bound (M) on the maximum difference, informed by the
user’s domain-specific knowledge.

Algorithm 2. Model Selection
Input: Set of models N = {N1, . . . , Nk}, max disagreement M, number of ITERATIONS

Output: N ′ ⊆ N
1: PDT ← Pairwise Disagreement Thresholds(N , d, Ψ, M) � table with all PDTs
2: N ′ ← N
3: for l = 1 . . .ITERATIONS do
4: for Ni ∈ N ′ do
5: currentDS[Ni] ← DSN ′(Ni, PDT) � based on definition 3
6: end for
7: if modelScoresAreSimilar(currentDS) then: break
8: modelsToRemove ← findModelsWithHighestDS(currentDS)

9: N ′ ← N ′ \ modelsToRemove � remove models that tend to disagree
10: end for
11: return N ′

DS Removal Threshold. Different criteria are possible for determining the DS
threshold above for which models are removed, and how many models to remove
in each iteration (Line 8 in Algorithm 2). A natural and simple approach, used
in our evaluation, is to remove the p% models with the highest disagreement
scores, for some choice of p (25% in our evaluation). Due to space constraints, a
thorough discussion of additional filtering criteria (all of which proved successful)
is relegated to Appendix C of our extended paper [7].

4 Evaluation

We extensively evaluated our method using three DRL benchmarks. As discussed
in the introduction, verifying the generalizability of DRL-based systems is impor-
tant since such systems are often expected to provide robustly high performance

444 G. Amir et al.

across a broad range of environments, whose diversity is not captured by the
training data. Our evaluation spans two classic DRL settings, Cartpole [17] and
Mountain Car [68], as well as the recently proposed Aurora congestion controller
for Internet traffic [44]. Aurora is a particularly compelling example for a fairly
complex DRL-based system that addresses a crucial real-world challenge and
must generalize to real-world conditions not represented in its training data.

Setup. For each of the three DRL benchmarks, we first trained multiple DNNs
with the same architecture, where the training process differed only in the ran-
dom seed used. We then removed from this set of DNNs all but the ones that
achieved high reward values in-distribution (to eliminate the possibility that a
decision model generalizes poorly simply due to poor training). Next, we defined
out-of-distribution input domains of interest for each specific benchmark, and
used Algorithm 2 to select the models most likely to generalize well on those
domains according to our framework. To establish the ground truth for how
well different models actually generalize in practice, we then applied the models
to OOD inputs drawn from the considered domain and ranked them based on
their empirical performance (average reward). To investigate the robustness of
our results, the last step was conducted for varying choices of probability dis-
tributions over the inputs in the domain. All DNNs used have a feed-forward
architecture comprised of two hidden layers of ReLU activations, and include
32-64 neurons in the first hidden layer, and 16 neurons in the second hidden
layer.

The results indicate that models selected by our approach are likely to per-
form significantly better than the rest. Below we describe the gist of our evalua-
tion; extensive additional information is available in [7].

4.1 Cartpole

Fig. 2. Cartpole: in-distribution setting
(blue) and OOD setting (red). (Color figure
online)

Cartpole [33] is a well-known RL
benchmark in which an agent con-
trols the movement of a cart with
an upside-down pendulum (“pole”)
attached to its top. The cart moves
on a platform and the agent’s goal is
to keep the pole balanced for as long
as possible (see Fig. 2).

Agent and Environment. The agent’s inputs are s = (x, vx, θ, vθ), where x
represents the cart’s location on the platform, θ represents the pole’s angle (i.e.,
|θ| ≈ 0 for a balanced pole, |θ| ≈ 90◦ for an unbalanced pole), vx represents the
cart’s horizontal velocity and vθ represents the pole’s angular velocity.

In-Distribution Inputs. During training, the agent is incentivized to balance
the pole, while staying within the platform’s boundaries. In each iteration, the
agent’s single output indicates the cart’s acceleration (sign and magnitude) for
the next step. During training, we defined the platform’s bounds to be [−2.4, 2.4],

Verifying Generalization in Deep Learning 445

and the cart’s initial position as near-static, and close to the center of the plat-
form (left-hand side of Fig. 2). This was achieved by drawing the cart’s initial
state vector values uniformly from the range [−0.05, 0.05].

(OOD) Input Domain. We consider an input domain with larger platforms
than the ones used in training. To wit, we now allow the x coordinate of the
input vectors to cover a wider range of [−10, 10]. For the other inputs, we used
the same bounds as during the training. See [7] for additional details.

Fig. 3. Cartpole: Algorithm 2’s results, per iteration: the
bars reflect the ratio between the good/bad models (left
y-axis) in the surviving set of models, and the curve indi-
cates the number of surviving models (right y-axis).

Evaluation. We trained
k = 16 models, all
of which achieved high
rewards during training
on the short platform.
Next, we ran Algorithm 2
until convergence (7 itera-
tions, in our experiments)
on the aforementioned
input domain, resulting in
a set of 3 models. We
then tested all 16 origi-
nal models using (OOD)
inputs drawn from the
new domain, such that
the generated distribu-
tion encodes a novel set-
ting: the cart is now placed at the center of a much longer, shifted platform (see
the red cart in Fig. 2).

All other parameters in the OOD environment were identical to those used
for the original training. Figure 9 (in [7]) depicts the results of evaluating the
models using 20, 000 OOD instances. Of the original 16 models, 11 scored a low-
to-mediocre average reward, indicating their poor ability to generalize to this
new distribution. Only 5 models obtained high reward values, including the 3
models identified by Algorithm 2; thus implying that our method was able to
effectively remove all 11 models that would have otherwise performed poorly in
this OOD setting (see Fig. 3). For additional information, see [7].

4.2 Mountain Car

For our second experiment, we evaluated our method on the Mountain Car [79]
benchmark, in which an agent controls a car that needs to learn how to escape
a valley and reach a target. As in the Cartpole experiment, we selected a set of
models that performed well in-distribution and applied our method to identify
a subset of models that make similar decisions in a predefined input domain.
We again generated OOD inputs (relative to the training) from within this
domain, and observed that the models selected by our algorithm indeed general-
ize significantly better than their peers that were iteratively removed. Detailed

446 G. Amir et al.

information about this benchmark can be found in Appendix E of our extended
paper [7].

4.3 Aurora Congestion Controller

In our third benchmark, we applied our method to a complex, real-world system
that implements a policy for Internet congestion control. The goal of congestion
control is to determine, for each traffic source in a communication network, the
pace at which data packets should be sent into the network. Congestion control is
a notoriously difficult and fundamental challenge in computer networking [59,69];
sending packets too fast might cause network congestion, leading to data loss
and delays. Conversely, low sending rates might under-utilize available network
bandwidth. Aurora [44] is a DRL-based congestion controller that is the subject
of recent work on DRL verification [9,28]. In each time-step, an Aurora agent
observes statistics regarding the network and decides the packet sending rate
for the following time-step. For example, if the agent observes excellent network
conditions (e.g., no packet loss), we expect it to increase the packet sending rate
to better utilize the network. We note that Aurora handles a much harder task
than classical RL benchmarks (e.g., Cartpole and Mountain Car): congestion
controllers must react gracefully to various possible events based on nuanced
signals, as reflected by Aurora’s inputs. Here, unlike in the previous benchmarks,
it is not straightforward to characterize the optimal policy.

Agent and Environment. Aurora’s inputs are t vectors v1, . . . , vt, representing
observations from the t previous time-steps. The agent’s single output value
indicates the change in the packet sending rate over the next time-step. Each
vector vi ∈ R

3 includes three distinct values, representing statistics that reflect
the network’s condition (see details in Appendix F of [7]). In line with previous
work [9,28,44], we set t = 10 time-steps, making Aurora’s inputs of size 3t = 30.
The reward function is a linear combination of the data sender’s throughput,
latency, and packet loss, as observed by the agent (see [44] for additional details).

In-Distribution Inputs. Aurora’s training applies the congestion controller
to simple network scenarios where a single sender sends traffic towards a single
receiver across a single network link. Aurora is trained across varying choices of
initial sending rate, link bandwidth, link packet-loss rate, link latency, and size
of the link’s packet buffer. During training, packets are initially sent by Aurora
at a rate corresponding to 0.3 − 1.5 times the link’s bandwidth.

(OOD) Input Domain. In our experiments, the input domain encoded a link
with a shallow packet buffer, implying that only a few packets can accumulate in
the network (while most excess traffic is discarded), causing the link to exhibit a
volatile behavior. This is captured by the initial sending rate being up to 8 times
the link’s bandwidth, to model the possibility of a dramatic decrease in available
bandwidth (e.g., due to competition, traffic shifts, etc.). See [7] for additional
details.

Verifying Generalization in Deep Learning 447

Evaluation. We ran our algorithm and scored the models based on their dis-
agreement upon this large domain, which includes inputs they had not encoun-
tered during training, representing the aforementioned novel link conditions.

Experiment (1): High Packet Loss. In this experiment, we trained over 100
Aurora agents in the original (in-distribution) environment. Out of these, we
selected k = 16 agents that achieved a high average reward in-distribution (see
Fig. 20a in [7]). Next, we evaluated these agents on OOD inputs that are included
in the previously described domain. The main difference between the training
distribution and the new (OOD) ones is the possibility of extreme packet loss
rates upon initialization.

Our evaluation over the OOD inputs, within the domain, indicates that
although all 16 models performed well in-distribution, only 7 agents could suc-
cessfully handle such OOD inputs (see Fig. 20b in [7]). When we ran Algorithm 2
on the 16 models, it was able to filter out all 9 models that generalized poorly
on the OOD inputs (see Fig. 4). In particular, our method returned model {16},
which is the best-performing model according to our simulations. We note that
in the first iterations, the four models to be filtered out were models {1, 2, 6, 13},
which are indeed the four worst-performing models on the OOD inputs (see
Appendix F of [7]).

(a) Reward statistics of remaining models (b) Ratio between good/bad models

Fig. 4. Aurora: Algorithm 2’s results, per iteration.

Experiment (2): Additional Distributions over OOD Inputs. To further
demonstrate that, in the specified input domain, our method is indeed likely to
keep better-performing models while removing bad models, we reran the previous
Aurora experiments for additional distributions (probability density functions)
over the OOD inputs. Our evaluation reveals that all models removed by Algo-
rithm 2 achieved low reward values also for these additional distributions. These
results highlight an important advantage of our approach: it applies to all inputs
within the considered domain, and so it applies to all distributions over these
inputs.

Additional Experiments. We also generated a new set of Aurora models
by altering the training process to include significantly longer interactions. We

448 G. Amir et al.

then repeated the aforementioned experiments. The results (summarized in [7])
demonstrate that our approach (again) successfully selected a subset of models
that generalizes well to distributions over the OOD input domain.

4.4 Comparison to Additional Methods

Gradient-based methods [40,53,62,63] are optimization algorithms capable of
finding DNN inputs that satisfy prescribed constraints, similarly to verification
methods. These algorithms are extremely popular due to their simplicity and
scalability. However, this comes at the cost of being inherently incomplete and
not as precise as DNN verification [11,101]. Indeed, when modifying our algo-
rithm to calculate PDT scores with gradient-based methods, the results (sum-
marized in Appendix G of [7]) reveal that, in our context, the verification-based
approach is superior to the gradient-based ones. Due to the incompleteness of
gradient-based approaches [101], they often computed sub-optimal PDT values,
resulting in models that generalize poorly being retained.

Predictive uncertainty methods [1,74] are online methods for assessing uncer-
tainty with respect to observed inputs, to determine whether an encountered
input is drawn from the training distribution. We ran an experiment com-
paring our approach to uncertainty-prediction-based model selection: we gen-
erated ensembles [23,30,51] of our original models, and used a variance-based
metric (motivated by [58]) to identify subsets of models with low output vari-
ance on OOD-sampled inputs. Similar to gradient-based methods, predictive-
uncertainty techniques proved fast and scalable, but lacked the precision afforded
by verification-driven model selection and were unable to discard poorly general-
izing models. For example, when ranking Cartpole models by their uncertainty
on OOD inputs, the three models with the lowest uncertainty included also
“bad” models, which had been filtered out by our approach.

5 Related Work

Recently, a plethora of approaches and tools have been put forth for ensur-
ing DNN correctness [2,6,10,15,19,24–27,29,31,32,34,36,37,41–43,46–49,52,
57,61,70,76,81,83,86,87,89,92,94,95,98,100,102,104,106], including techniques
for DNN shielding [60], optimization [14,88], quantitative verification [16],
abstraction [12,13,73,78,86,105], size reduction [77], and more. Non-verification
techniques, including runtime-monitoring [39], ensembles [71,72,80,103] and
additional methods [75] have been utilized for OOD input detection.

In contrast to the above approaches, we aim to establish generalization guar-
antees with respect to an entire input domain (spanning all distributions across
this domain). In addition, to the best of our knowledge, ours is the first attempt
to exploit variability across models for distilling a subset thereof, with improved
generalization capabilities. In particular, it is also the first approach to apply
formal verification for this purpose.

Verifying Generalization in Deep Learning 449

6 Conclusion

This work describes a novel, verification-driven approach for identifying DNN
models that generalize well to an input domain of interest. We presented an
iterative scheme that employs a backend DNN verifier, allowing us to score
models based on their ability to produce similar outputs on the given domain.
We demonstrated extensively that this approach indeed distills models capable
of good generalization. As DNN verification technology matures, our approach
will become increasingly scalable, and also applicable to a wider variety of DNNs.

Acknowledgements. The work of Amir, Zelazny, and Katz was partially supported
by the Israel Science Foundation (grant number 683/18). The work of Amir was sup-
ported by a scholarship from the Clore Israel Foundation. The work of Maayan and
Schapira was partially supported by funding from Huawei.

References

1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: tech-
niques, applications and challenges. Inf. Fusion 76, 243–297 (2021)

2. Alamdari, P., Avni, G., Henzinger, T., Lukina, A.: Formal methods with a touch
of magic. In: Proceedings 20th International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pp. 138–147 (2020)

3. Albarghouthi, A.: Introduction to Neural Network Verification (2021). verified-
deeplearning.com

4. AlQuraishi, M.: AlphaFold at CASP13. Bioinformatics 35(22), 4862–4865 (2019)
5. Amir, G., et al.: Verifying learning-based robotic navigation systems. In: Sankara-

narayanan, S., Sharygina, N. (eds.) Proceedings 29th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
pp. 607–627. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30823-
9 31

6. Amir, G., Freund, Z., Katz, G., Mandelbaum, E., Refaeli, I.: veriFIRE: verify-
ing an industrial, learning-based wildfire detection system. In: Proceedings 25th
International Symposium on Formal Methods (FM), pp. 648–656. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-27481-7 38

7. Amir, G., Maayan, O., Zelazny, O., Katz, G., Schapira, M.: Verifying generaliza-
tion in deep learning. Technical report (2023). https://arxiv.org/abs/2302.05745

8. Amir, G., Maayan, O., Zelazny, T., Katz, G., Schapira, M.: Verifying general-
ization in deep learning: artifact (2023). https://zenodo.org/record/7884514#.
ZFAz 3ZBy3B

9. Amir, G., Schapira, M., Katz, G.: Towards scalable verification of deep reinforce-
ment learning. In: Proceedings 21st Internationl Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 193–203 (2021)

10. Amir, G., Wu, H., Barrett, C., Katz, G.: An SMT-based approach for verify-
ing binarized neural networks. In: TACAS 2021. LNCS, vol. 12652, pp. 203–222.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72013-1 11

11. Amir, G., Zelazny, T., Katz, G., Schapira, M.: Verification-aided deep ensemble
selection. In: Proceedings 22nd International Conference on Formal Methods in
Computer-Aided Design (FMCAD), pp. 27–37 (2022)

https://doi.org/10.1007/978-3-031-30823-9_31
https://doi.org/10.1007/978-3-031-30823-9_31
https://doi.org/10.1007/978-3-031-27481-7_38
https://arxiv.org/abs/2302.05745
https://zenodo.org/record/7884514#.ZFAz_3ZBy3B
https://zenodo.org/record/7884514#.ZFAz_3ZBy3B
https://doi.org/10.1007/978-3-030-72013-1_11

450 G. Amir et al.

12. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstraction:
a synergistic approach for analyzing neural network robustness. In: Proceedings
40th ACM SIGPLAN Conference on Programming Languages Design and Imple-
mentations (PLDI), pp. 731–744 (2019)

13. Ashok, P., Hashemi, V., Kretinsky, J., Mohr, S.: DeepAbstract: neural network
abstraction for accelerating verification. In: Proceedings 18th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA), pp.
92–107 (2020)

14. Avni, G., Bloem, R., Chatterjee, K., Henzinger, T.A., Könighofer, B., Pranger,
S.: Run-time optimization for learned controllers through quantitative games. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 630–649. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 36

15. Bacci, E., Giacobbe, M., Parker, D.: Verifying reinforcement learning up to infin-
ity. In: Proceedings 30th International Joint Conference on Artificial Intelligence
(IJCAI) (2021)

16. Baluta, T., Shen, S., Shinde, S., Meel, K., Saxena, P.: Quantitative verification
of neural networks and its security applications. In: Proceedings ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 1249–1264
(2019)

17. Barto, A., Sutton, R., Anderson, C.: Neuronlike adaptive elements that can solve
difficult learning control problems. In: Proceedings of IEEE Systems Man and
Cybernetics Conference (SMC), pp. 834–846 (1983)

18. Bojarski, M., et al.: End to end learning for self-driving cars. Technical report
(2016). http://arxiv.org/abs/1604.07316

19. Bunel, R., Turkaslan, I., Torr, P., Kohli, P., Mudigonda, P.: A unified view of
piecewise linear neural network verification. In: Proceedings 32nd Conference on
Neural Information Processing Systems (NeurIPS), pp. 4795–4804 (2018)

20. Chen, W., Xu, Y., Wu, X.: Deep reinforcement learning for multi-resource
multi-machine job scheduling. Technical report (2017). http://arxiv.org/abs/
1711.07440

21. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. (JMLR)
12, 2493–2537 (2011)

22. Corsi, D., Marchesini, E., Farinelli, A.: Formal verification of neural networks for
safety-critical tasks in deep reinforcement learning. In: Proceedings 37th Confer-
ence on Uncertainty in Artificial Intelligence (UAI), pp. 333–343 (2021)

23. Dietterich, T.: Ensemble methods in machine learning. In: Proceedings 1st Inter-
national Workshop on Multiple Classifier Systems (MCS), pp. 1–15 (2020)

24. Dong, G., Sun, J., Wang, J., Wang, X., Dai, T.: Towards repairing neural networks
correctly. Technical report (2020). http://arxiv.org/abs/2012.01872

25. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: Proceedings 22nd
ACM International Conference on Hybrid Systems: Computation and Control
(HSCC), pp. 157–168 (2019)

26. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Learning and verification of
feedback control systems using feedforward neural networks. IFAC-PapersOnLine
51(16), 151–156 (2018)

27. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Proceedings 15th International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA), pp. 269–286 (2017)

https://doi.org/10.1007/978-3-030-25540-4_36
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1711.07440
http://arxiv.org/abs/1711.07440
http://arxiv.org/abs/2012.01872

Verifying Generalization in Deep Learning 451

28. Eliyahu, T., Kazak, Y., Katz, G., Schapira, M.: Verifying learning-augmented
systems. In: Proceedings Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM), pp. 305–318 (2021)

29. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward
safe control through proof and learning. In: Proceedings 32nd AAAI Conference
on Artificial Intelligence (AAAI) (2018)

30. Ganaie, M., Hu, M., Malik, A., Tanveer, M., Suganthan, P.: Ensemble deep learn-
ing: a review. Eng. Appl. Artif. Intell. 115, 105151 (2022)

31. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, E., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Proceedings 39th IEEE Symposium on Security and Privacy (S&P)
(2018)

32. Geng, C., Le, N., Xu, X., Wang, Z., Gurfinkel, A., Si, X.: Toward reliable neural
specifications. Technical report (2022). https://arxiv.org/abs/2210.16114

33. Geva, S., Sitte, J.: A cartpole experiment benchmark for trainable controllers.
IEEE Control Syst. Mag. 13(5), 40–51 (1993)

34. Goldberger, B., Adi, Y., Keshet, J., Katz, G.: Minimal modifications of deep
neural networks using verification. In: Proceedings 23rd Proceedings Conference
on Logic for Programming, Artificial Intelligence and Reasoning (LPAR), pp.
260–278 (2020)

35. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
36. Gopinath, D., Katz, G., Pǎsǎreanu, C., Barrett, C.: DeepSafe: a data-driven app-

roach for assessing robustness of neural networks. In: Proceedings 16th Inter-
national Symposium on Automated Technology for Verification and Analysis
(ATVA), pp. 3–19 (2018)

37. Goubault, E., Palumby, S., Putot, S., Rustenholz, L., Sankaranarayanan, S.: Static
analysis of ReLU neural networks with tropical Polyhedra. In: Proceedings 28th
International Symposium on Static Analysis (SAS), pp. 166–190 (2021)

38. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor. In: Proceedings
Conference on Machine Learning, pp. 1861–1870. PMLR (2018)

39. Hashemi, V., Křet́ınsky, J., Rieder, S., Schmidt, J.: Runtime monitoring for out-
of-distribution detection in object detection neural networks. Technical report
(2022). http://arxiv.org/abs/2212.07773

40. Huang, S., Papernot, N., Goodfellow, I., Duan, Y., Abbeel, P.: Adversarial attacks
on neural network policies. Technical report (2017). https://arxiv.org/abs/1702.
02284

41. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neu-
ral networks. In: Proceedings 29th International Conference on Computer Aided
Verification (CAV), pp. 3–29 (2017)

42. Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural network verification with proof
production. In: Proceedings 22nd International Conference on Formal Methods
in Computer-Aided Design (FMCAD), pp. 38–48 (2022)

43. Jacoby, Y., Barrett, C., Katz, G.: Verifying recurrent neural networks using invari-
ant inference. In: Proceedings 18th International Symposium on Automated Tech-
nology for Verification and Analysis (ATVA), pp. 57–74 (2020)

44. Jay, N., Rotman, N., Godfrey, B., Schapira, M., Tamar, A.: A deep reinforce-
ment learning perspective on internet congestion control. In: Proceedings 36th
International Conference on Machine Learning (ICML), pp. 3050–3059 (2019)

https://arxiv.org/abs/2210.16114
http://arxiv.org/abs/2212.07773
https://arxiv.org/abs/1702.02284
https://arxiv.org/abs/1702.02284

452 G. Amir et al.

45. Julian, K., Lopez, J., Brush, J., Owen, M., Kochenderfer, M.: Policy compression
for aircraft collision avoidance systems. In: Proceedings 35th Digital Avionics
Systems Conference (DASC), pp. 1–10 (2016)

46. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: an efficient
SMT solver for verifying deep neural networks. In: Proceedings 29th International
Conference on Computer Aided Verification (CAV), pp. 97–117 (2017)

47. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: a calculus
for reasoning about deep neural networks. Formal Methods Syst. Des. (FMSD)
(2021)

48. Katz, G., et al.: The marabou framework for verification and analysis of deep neu-
ral networks. In: Proceedings 31st International Conference on Computer Aided
Verification (CAV), pp. 443–452 (2019)

49. Könighofer, B., Lorber, F., Jansen, N., Bloem, R.: Shield synthesis for reinforce-
ment learning. In: Proceedings International Symposium on Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISoLA), pp. 290–306 (2020)

50. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convo-
lutional neural networks. In: Proceedings 26th Conference on Neural Information
Processing Systems (NeurIPS), pp. 1097–1105 (2012)

51. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active
learning. In: Proceedings 7th Conference on Neural Information Processing Sys-
tems (NeurIPS), pp. 231–238 (1994)

52. Kuper, L. Katz, G., Gottschlich, J., Julian, K., Barrett, C., Kochenderfer, M.:
Toward scalable verification for safety-critical deep networks. Technical report
(2018). https://arxiv.org/abs/1801.05950

53. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical
world. Technical report (2016). http://arxiv.org/abs/1607.02533

54. Lekharu, A., Moulii, K., Sur, A., Sarkar, A.: Deep learning based prediction model
for adaptive video streaming. In: Proceedings 12th International Conference on
Communication Systems & Networks (COMSNETS), pp. 152–159. IEEE (2020)

55. Li, W., Zhou, F., Chowdhury, K.R., Meleis, W.: QTCP: adaptive congestion
control with reinforcement learning. IEEE Trans. Netw. Sci. Eng. 6(3), 445–458
(2018)

56. Li, Y.: Deep reinforcement learning: an overview. Technical report (2017). http://
arxiv.org/abs/1701.07274

57. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. Technical report (2017). http://arxiv.org/abs/1706.07351

58. Loquercio, A., Segu, M., Scaramuzza, D.: A general framework for uncertainty
estimation in deep learning. In: Proceedings International Conference on Robotics
and Automation (ICRA), pp. 3153–3160 (2020)

59. Low, S., Paganini, F., Doyle, J.: Internet congestion control. IEEE Control Syst.
Mag. 22(1), 28–43 (2002)

60. Lukina, A., Schilling, C., Henzinger, T.A.: Into the unknown: active monitoring
of neural networks. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974,
pp. 42–61. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9 3

61. Lyu, Z., Ko, C.Y., Kong, Z., Wong, N., Lin, D., Daniel, L.: Fastened crown: tight-
ened neural network robustness certificates. In: Proceedings 34th AAAI Confer-
ence on Artificial Intelligence (AAAI), pp. 5037–5044 (2020)

62. Ma, J., Ding, S., Mei, Q.: Towards more practical adversarial attacks on graph
neural networks. In: Proceedings 34th Conference on Neural Information Process-
ing Systems (NeurIPS) (2020)

https://arxiv.org/abs/1801.05950
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1706.07351
https://doi.org/10.1007/978-3-030-88494-9_3

Verifying Generalization in Deep Learning 453

63. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learn-
ing models resistant to adversarial attacks. Technical report (2017). http://arxiv.
org/abs/1706.06083

64. Mammadli, R., Jannesari, A., Wolf, F.: Static neural compiler optimization via
deep reinforcement learning. In: Proceedings 6th IEEE/ACM Workshop on the
LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hierar-
chical Parallelism for Exascale Computing (HiPar), pp. 1–11 (2020)

65. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with
deep reinforcement learning. In: Proceedings 15th ACM Workshop on Hot Topics
in Networks (HotNets), pp. 50–56 (2016)

66. Mao, H., Netravali, R., Alizadeh, M.: Neural adaptive video streaming with Pen-
sieve. In: Proceedings Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM), pp. 197–210 (2017)

67. Mnih, V., et al.: Playing Atari with deep reinforcement learning. Technical report
(2013). https://arxiv.org/abs/1312.5602

68. Moore, A.: Efficient Memory-based Learning for Robot Control. University of
Cambridge (1990)

69. Nagle, J.: Congestion control in IP/TCP internetworks. ACM SIGCOMM Com-
put. Commun. Rev. 14(4), 11–17 (1984)

70. Okudono, T., Waga, M., Sekiyama, T., Hasuo, I.: Weighted automata extraction
from recurrent neural networks via regression on state spaces. In: Proceedings
34th AAAI Conference on Artificial Intelligence (AAAI), pp. 5037–5044 (2020)

71. Ortega, L., Cabañas, R., Masegosa, A.: Diversity and generalization in neural
network ensembles. In: Proceedings 25th International Conference on Artificial
Intelligence and Statistics (AISTATS), pp. 11720–11743 (2022)

72. Osband, I., Aslanides, J., Cassirer, A.: Randomized prior functions for deep rein-
forcement learning. In: Proceedings 31st International Conference on Neural Infor-
mation Processing Systems (NeurIPS), pp. 8617–8629 (2018)

73. Ostrovsky, M., Barrett, C., Katz, G.: An abstraction-refinement approach to ver-
ifying convolutional neural networks. In Proceedings 20th International Sympo-
sium on Automated Technology for Verification and Analysis (ATVA), pp. 391–
396 (2022)

74. Ovadia, Y., et al.: Can you trust your model’s uncertainty? Evaluating predic-
tive uncertainty under dataset shift. In: Proceedings 33rd Conference on Neural
Information Processing Systems (NeurIPS), pp. 14003–14014 (2019)

75. Packer, C., Gao, K., Kos, J., Krähenbühl, P., Koltun, V., Song, D.: Assessing
generalization in deep reinforcement learning. Technical report (2018). https://
arxiv.org/abs/1810.12282

76. Polgreen, E., Abboud, R., Kroening, D.: Counterexample guided neural synthesis.
Technical report (2020). https://arxiv.org/abs/2001.09245

77. Prabhakar, P.: Bisimulations for neural network reduction. In: Finkbeiner, B.,
Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 285–300. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-94583-1 14

78. Prabhakar, P., Afzal, Z.: Abstraction based output range analysis for neural net-
works. Technical report (2020). https://arxiv.org/abs/2007.09527

79. Riedmiller, M.: Neural fitted Q iteration – first experiences with a data efficient
neural reinforcement learning method. In: Gama, J., Camacho, R., Brazdil, P.B.,
Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 317–328.
Springer, Heidelberg (2005). https://doi.org/10.1007/11564096 32

http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1810.12282
https://arxiv.org/abs/1810.12282
https://arxiv.org/abs/2001.09245
https://doi.org/10.1007/978-3-030-94583-1_14
https://arxiv.org/abs/2007.09527
https://doi.org/10.1007/11564096_32

454 G. Amir et al.

80. Rotman, N., Schapira, M., Tamar, A.: Online safety assurance for deep reinforce-
ment learning. In: Proceedings 19th ACM Workshop on Hot Topics in Networks
(HotNets), pp. 88–95 (2020)

81. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings 27th International Joint Confer-
ence on Artificial Intelligence (IJCAI) (2018)

82. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal pol-
icy optimization algorithms. Technical report (2017). http://arxiv.org/abs/1707.
06347

83. Seshia, S., et al.: Formal specification for deep neural networks. In: Proceedings
16th International Symposium on Automated Technology for Verification and
Analysis (ATVA), pp. 20–34 (2018)

84. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

85. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Technical report (2014). http://arxiv.org/abs/1409.1556

86. Singh, G., Gehr, T., Puschel, M., Vechev, M.: An abstract domain for certifying
neural networks. In: Proceedings 46th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL) (2019)

87. Sotoudeh, M., Thakur, A.: Correcting deep neural networks with small, general-
izing patches. In: Workshop on Safety and Robustness in Decision Making (2019)

88. Strong, C., et al.: Global optimization of objective functions represented by ReLU
networks. J. Mach. Learn., 1–28 (2021)

89. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. In: Proceedings 22nd ACM International Conference on
Hybrid Systems: Computation and Control (HSCC) (2019)

90. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press
(2018)

91. Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for
reinforcement learning with function approximation. In: Proceedings 12th Con-
ference on Neural Information Processing Systems (NeurIPS) (1999)

92. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. Technical report (2017). http://arxiv.org/abs/1711.
07356

93. Tolstoy, L.: Anna Karenina. The Russian Messenger (1877)
94. Urban, C., Christakis, M., Wüstholz, V., Zhang, F.: Perfectly parallel fairness

certification of neural networks. In: Proceedings ACM International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA),
pp. 1–30 (2020)

95. Usman, M., Gopinath, D., Sun, Y., Noller, Y., Pǎsǎreanu, C.: NNrepair:
constraint-based repair of neural network classifiers. Technical report (2021).
http://arxiv.org/abs/2103.12535

96. Valadarsky, A., Schapira, M., Shahaf, D., Tamar, A.: Learning to route with deep
RL. In: NeurIPS Deep Reinforcement Learning Symposium (2017)

97. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-
learning. In: Proceedings 30th AAAI Conference on Artificial Intelligence (AAAI)
(2016)

98. Vasić, M., Petrović, A., Wang, K., Nikolić, M., Singh, R., Khurshid, S.: MoËT:
mixture of expert trees and its application to verifiable reinforcement learning.
Neural Netw. 151, 34–47 (2022)

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/2103.12535

Verifying Generalization in Deep Learning 455

99. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: Proceedings 27th USENIX Security
Symposium, pp. 1599–1614 (2018)

100. Wu, H., et al.: Parallelization techniques for verifying neural networks. In: Pro-
ceedings 20th International Conference on Formal Methods in Computer-Aided
Design (FMCAD), pp. 128–137 (2020)

101. Wu, H., Zeljić, A., Katz, K., Barrett, C.: Efficient neural network analysis with
sum-of-infeasibilities. In: Proceedings 28th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pp. 143–163
(2022)

102. Xiang, W., Tran, H., Johnson, T.: Output reachable set estimation and verifi-
cation for multi-layer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
(TNNLS) (2018)

103. Yang, J., Zeng, X., Zhong, S., Wu, S.: Effective neural network ensemble approach
for improving generalization performance. IEEE Trans. Neural Netw. Learn. Syst.
(TNNLS) 24(6), 878–887 (2013)

104. Yang, X., Yamaguchi, T., Tran, H., Hoxha, B., Johnson, T., Prokhorov, D.: Neu-
ral network repair with reachability analysis. In: Proceedings 20th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS),
pp. 221–236 (2022)

105. Zelazny, T., Wu, H., Barrett, C., Katz, G.: On reducing over-approximation errors
for neural network verification. In: Proceedings 22nd International Conference on
Formal Methods in Computer-Aided Design (FMCAD), pp. 17–26 (2022)

106. Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verifi-
cation of recurrent neural networks for cognitive tasks via reachability analysis.
In: Proceedings 24th European Conference on Artificial Intelligence (ECAI), pp.
1690–1697 (2020)

107. Zhang, J., Kim, J., O’Donoghue, B., Boyd, S.: Sample efficient reinforcement
learning with REINFORCE. Technical report (2020). https://arxiv.org/abs/2010.
11364

108. Zhang, J., et al.: An end-to-end automatic cloud database tuning system using
deep reinforcement learning. In: Proceedings of the 2019 International Conference
on Management of Data (SIGMOD), pp. 415–432 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/2010.11364
https://arxiv.org/abs/2010.11364
http://creativecommons.org/licenses/by/4.0/

Correction to: COQCRYPTOLINE: A Verified
Model Checker with Certified Results

Ming-Hsien Tsai, Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi,
Bow-Yaw Wang, and Bo-Yin Yang

Correction to:
Chapter “COQCRYPTOLINE: A Verified Model Checker
with Certified Results” in: C. Enea and A. Lal (Eds.):
Computer Aided Verification, LNCS 13965,
https://doi.org/10.1007/978-3-031-37703-7_11

The originally published version of chapter 11 contained mistakes in authors affiliation
information and typographical errors in the article main text. The mistakes in authors
affiliation information and typographical errors have been corrected.

The updated original version of this chapter can be found at
https://doi.org/10.1007/978-3-031-37703-7_11

© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, p. C1, 2023.
https://doi.org/10.1007/978-3-031-37703-7_22

https://doi.org/10.1007/978-3-031-37703-7_11
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_22&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_11
https://doi.org/10.1007/978-3-031-37703-7_22

Author Index

A
Abdulla, Parosh Aziz I-184
Akshay, S. I-266, I-367, III-86
Albert, Elvira III-176
Alistarh, Dan I-156
Alur, Rajeev I-415
Amilon, Jesper III-281
Amir, Guy II-438
An, Jie I-62
Anand, Ashwani I-436
Andriushchenko, Roman III-113
Apicelli, Andrew I-27
Arcaini, Paolo I-62
Asada, Kazuyuki III-40
Ascari, Flavio II-41
Atig, Mohamed Faouzi I-184

B
Badings, Thom III-62
Barrett, Clark II-163, III-154
Bastani, Favyen I-459
Bastani, Osbert I-415, I-459
Bayless, Sam I-27
Becchi, Anna II-288
Beutner, Raven II-309
Bisping, Benjamin I-85
Blicha, Martin II-209
Bonchi, Filippo II-41
Bork, Alexander III-113
Braught, Katherine I-351
Britikov, Konstantin II-209
Brown, Fraser III-154
Bruni, Roberto II-41
Bucev, Mario III-398

C
Calinescu, Radu I-289
Češka, Milan III-113
Chakraborty, Supratik I-367

Chatterjee, Krishnendu III-16, III-86
Chaudhuri, Swarat III-213
Chechik, Marsha III-374
Chen, Hanyue I-40
Chen, Taolue III-255
Chen, Yu-Fang III-139
Choi, Sung Woo II-397
Chung, Kai-Min III-139
Cimatti, Alessandro II-288
Cosler, Matthias II-383
Couillard, Eszter III-437
Czerner, Philipp III-437

D
Dardik, Ian I-326
Das, Ankush I-27
David, Cristina III-459
Dongol, Brijesh I-206
Dreossi, Tommaso I-253
Dutertre, Bruno II-187

E
Eberhart, Clovis III-40
Esen, Zafer III-281
Esparza, Javier III-437

F
Farzan, Azadeh I-109
Fedorov, Alexander I-156
Feng, Nick III-374
Finkbeiner, Bernd II-309
Fremont, Daniel J. I-253
Frenkel, Hadar II-309
Fu, Hongfei III-16
Fu, Yu-Fu II-227, III-329

G
Gacek, Andrew I-27
Garcia-Contreras, Isabel II-64

© The Editor(s) (if applicable) and The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 457–460, 2023.
https://doi.org/10.1007/978-3-031-37703-7

https://doi.org/10.1007/978-3-031-37703-7

458 Author Index

Gastin, Paul I-266
Genaim, Samir III-176
Getir Yaman, Sinem I-289
Ghosh, Shromona I-253
Godbole, Adwait I-184
Goel, Amit II-187
Goharshady, Amir Kafshdar III-16
Goldberg, Eugene II-110
Gopinath, Divya I-289
Gori, Roberta II-41
Govind, R. I-266
Govind, V. K. Hari II-64
Griggio, Alberto II-288, III-423
Guilloud, Simon III-398
Gurfinkel, Arie II-64
Gurov, Dilian III-281

H
Hahn, Christopher II-383
Hasuo, Ichiro I-62, II-41, III-40
Henzinger, Thomas A. II-358
Hofman, Piotr I-132
Hovland, Paul D. II-265
Hückelheim, Jan II-265

I
Imrie, Calum I-289

J
Jaganathan, Dhiva I-27
Jain, Sahil I-367
Jansen, Nils III-62
Jeż, Artur II-18
Johannsen, Chris III-483
Johnson, Taylor T. II-397
Jonáš, Martin III-423
Jones, Phillip III-483
Joshi, Aniruddha R. I-266
Jothimurugan, Kishor I-415
Junges, Sebastian III-62, III-113

K
Kang, Eunsuk I-326
Karimi, Mahyar II-358
Kashiwa, Shun I-253
Katoen, Joost-Pieter III-113
Katz, Guy II-438
Kempa, Brian III-483
Kiesl-Reiter, Benjamin II-187

Kim, Edward I-253
Kirchner, Daniel III-176
Kokologiannakis, Michalis I-230
Kong, Soonho II-187
Kori, Mayuko II-41
Koval, Nikita I-156
Kremer, Gereon II-163
Křetínský, Jan I-390
Krishna, Shankaranarayanan I-184
Kueffner, Konstantin II-358
Kunčak, Viktor III-398

L
Lafortune, Stéphane I-326
Lahav, Ori I-206
Lengál, Ondřej III-139
Lette, Danya I-109
Li, Elaine III-350
Li, Haokun II-87
Li, Jianwen II-288
Li, Yangge I-351
Li, Yannan II-335
Lidström, Christian III-281
Lin, Anthony W. II-18
Lin, Jyun-Ao III-139
Liu, Jiaxiang II-227, III-329
Liu, Mingyang III-255
Liu, Zhiming I-40
Lopez, Diego Manzanas II-397
Lotz, Kevin II-187
Luo, Ziqing II-265

M
Maayan, Osher II-438
Macák, Filip III-113
Majumdar, Rupak II-187, III-3, III-437
Mallik, Kaushik II-358, III-3
Mangal, Ravi I-289
Marandi, Ahmadreza III-62
Markgraf, Oliver II-18
Marmanis, Iason I-230
Marsso, Lina III-374
Martin-Martin, Enrique III-176
Mazowiecki, Filip I-132
Meel, Kuldeep S. II-132
Meggendorfer, Tobias I-390, III-86
Meira-Góes, Rômulo I-326
Mell, Stephen I-459
Mendoza, Daniel II-383

Author Index 459

Metzger, Niklas II-309
Meyer, Roland I-170
Mi, Junri I-40
Milovančević, Dragana III-398
Mitra, Sayan I-351

N
Nagarakatte, Santosh III-226
Narayana, Srinivas III-226
Nayak, Satya Prakash I-436
Niemetz, Aina II-3
Nowotka, Dirk II-187

O
Offtermatt, Philip I-132
Opaterny, Anton I-170
Ozdemir, Alex II-163, III-154

P
Padhi, Saswat I-27
Păsăreanu, Corina S. I-289
Peng, Chao I-304
Perez, Mateo I-415
Preiner, Mathias II-3
Prokop, Maximilian I-390
Pu, Geguang II-288

R
Reps, Thomas III-213
Rhea, Matthew I-253
Rieder, Sabine I-390
Rodríguez, Andoni III-305
Roy, Subhajit III-190
Rozier, Kristin Yvonne III-483
Rümmer, Philipp II-18, III-281
Rychlicki, Mateusz III-3

S
Sabetzadeh, Mehrdad III-374
Sánchez, César III-305
Sangiovanni-Vincentelli, Alberto L. I-253
Schapira, Michael II-438
Schmitt, Frederik II-383
Schmuck, Anne-Kathrin I-436, III-3
Seshia, Sanjit A. I-253
Shachnai, Matan III-226
Sharma, Vaibhav I-27

Sharygina, Natasha II-209
Shen, Keyi I-351
Shi, Xiaomu II-227, III-329
Shoham, Sharon II-64
Siegel, Stephen F. II-265
Sistla, Meghana III-213
Sokolova, Maria I-156
Somenzi, Fabio I-415
Song, Fu II-413, III-255
Soudjani, Sadegh III-3
Srivathsan, B. I-266
Stanford, Caleb II-241
Stutz, Felix III-350
Su, Yu I-40
Sun, Jun II-413
Sun, Yican III-16

T
Takhar, Gourav III-190
Tang, Xiaochao I-304
Tinelli, Cesare II-163
Topcu, Ufuk III-62
Tran, Hoang-Dung II-397
Tripakis, Stavros I-326
Trippel, Caroline II-383
Trivedi, Ashutosh I-415
Tsai, Ming-Hsien II-227, III-329
Tsai, Wei-Lun III-139
Tsitelov, Dmitry I-156

V
Vafeiadis, Viktor I-230
Vahanwala, Mihir I-184
Veanes, Margus II-241
Vin, Eric I-253
Vishwanathan, Harishankar III-226

W
Waga, Masaki I-3
Wahby, Riad S. III-154
Wang, Bow-Yaw II-227, III-329
Wang, Chao II-335
Wang, Jingbo II-335
Wang, Meng III-459
Watanabe, Kazuki III-40
Wehrheim, Heike I-206
Whalen, Michael W. I-27
Wies, Thomas I-170, III-350

460 Author Index

Wolff, Sebastian I-170
Wu, Wenhao II-265

X
Xia, Bican II-87
Xia, Yechuan II-288

Y
Yadav, Raveesh I-27
Yang, Bo-Yin II-227, III-329
Yang, Jiong II-132
Yang, Zhengfeng I-304
Yu, Huafeng I-289
Yu, Yijun III-459
Yue, Xiangyu I-253

Z
Zdancewic, Steve I-459
Zelazny, Tom II-438
Zeng, Xia I-304
Zeng, Zhenbing I-304
Zhang, Hanliang III-459
Zhang, Li I-304
Zhang, Miaomiao I-40
Zhang, Pei III-483
Zhang, Yedi II-413
Zhang, Zhenya I-62
Zhao, Tianqi II-87
Zhu, Haoqing I-351
Žikelić, Ðor -de III-86
Zufferey, Damien III-350

	 Preface
	 Organization
	 Contents – Part II
	Decision Procedures
	Bitwuzla
	1 Introduction
	2 Architecture
	2.1 Node Manager
	2.2 Solving Context

	3 Theory Solvers
	3.1 Arrays
	3.2 Bit-Vectors
	3.3 Floating-Point Arithmetic
	3.4 Uninterpreted Functions
	3.5 Quantifiers

	4 Evaluation
	5 Conclusion
	References

	Decision Procedures for Sequence Theories
	1 Introduction
	2 Motivating Example
	3 Models
	4 Solving Equational and Regular Constraints
	5 Algorithm for Straight-Line Formulas
	6 Extensions and Undecidability
	7 Implementations, Optimizations and Benchmarks
	8 Conclusion and Future Work
	References

	Exploiting Adjoints in Property Directed Reachability Analysis
	1 Introduction
	2 Preliminaries and Notation
	3 Adjoint PDR
	3.1 Progression
	3.2 Heuristics
	3.3 Negative Termination

	4 Recovering Adjoints with Lower Sets
	4.1 AdjointPDR"3223379 : Positive Chain in L, Negative Sequence in L"3223379
	4.2 AdjointPDR"3223379 Simulates LT-PDR

	5 Instantiating AdjointPDR"3223379 for MDPs
	6 Implementation and Experiments
	References

	Fast Approximations of Quantifier Elimination
	1 Introduction
	2 Background
	3 Extracting Formulas from Egraphs
	4 Quantifier Reduction
	5 Model Based Projection Using QEL
	6 Evaluation
	7 Conclusion
	References

	Local Search for Solving Satisfiability of Polynomial Formulas
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 A General Local Search Framework

	3 The Search Space of SMT(NRA)
	4 The Cell-Jump Operation
	4.1 Sample Points
	4.2 Cell-Jump Along a Line Parallel to a Coordinate Axis
	4.3 Cell-Jump Along a Fixed Straight Line

	5 Scoring Functions
	6 The Main Algorithm
	7 Experiments
	7.1 Experiment Preparation
	7.2 Instances
	7.3 Experimental Results

	8 Conclusion
	References

	Partial Quantifier Elimination and Property Generation
	1 Introduction
	2 Basic Definitions
	3 Property Generation by PQE
	3.1 High-Level View of Property Generation by PQE
	3.2 Property Generation as Generalization of Testing
	3.3 Computing Properties Efficiently
	3.4 Using Design Coverage for Generation of Unwanted Properties
	3.5 High-Quality Tests Specified by a Property Generated by PQE

	4 Invariant Generation by PQE
	4.1 Bugs Making States Unreachable
	4.2 Proving Operative State Unreachability by Invariant Generation

	5 Introducing EG-PQE
	5.1 An Example
	5.2 Description of EG-PQE
	5.3 Discussion

	6 Introducing EG-PQE+
	6.1 Main Idea
	6.2 Discussion

	7 Experiment with FIFO Buffers
	7.1 Buffer Description
	7.2 Bug Detection by Invariant Generation
	7.3 Detection of the Bug by Conventional Methods

	8 Experiments with HWMCC Benchmarks
	8.1 Experiment 1
	8.2 Experiment 2
	8.3 Experiment 3

	9 Properties Mimicking Symbolic Simulation
	10 Some Background
	11 Conclusions and Directions for Future Research
	References

	Rounding Meets Approximate Model Counting
	1 Introduction
	2 Notation and Preliminaries
	2.1 Universal Hash Functions
	2.2 Helpful Combinatorial Inequality

	3 Related Work
	4 Weakness of ApproxMC
	5 Rounding Model Counting
	5.1 Algorithm
	5.2 Repetition Reduction
	5.3 Proof of Lemma 4 for Case 2-1<1

	6 Experimental Evaluation
	6.1 RQ1. Overall Performance
	6.2 RQ2. Approximation Quality

	7 Conclusion
	A Proof of Proposition 1
	B Weakness of Proposition 3
	C Proof of pmax 0.36 for ApproxMC
	D Proof of Lemma 4
	D.1 Proof of Pr[L] 0.262 for <2-1
	D.2 Proof of Pr[L] 0.085 for 1<3
	D.3 Proof of Pr[L] 0.055 for 3<42-1
	D.4 Proof of Pr[L] 0.023 for 42-1
	D.5 Proof of Pr[U] 0.169 for <3
	D.6 Proof of Pr[U] 0.044 for 3

	References

	Satisfiability Modulo Finite Fields
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Algebra
	2.2 Ideal Membership
	2.3 Zero Knowledge Proofs
	2.4 SMT

	3 The Theory of Finite Fields
	4 Decision Procedure
	4.1 Algebraic Reduction
	4.2 Incomplete Unsatisfiability and Cores
	4.3 Completeness Through Model Construction

	5 Implementation
	6 Benchmark Generation
	6.1 Examples

	7 Experiments
	7.1 Comparison with Bit-Vectors
	7.2 The Cost of Field Polynomials
	7.3 The Benefit of UNSAT Cores
	7.4 Comparison to Pure Computer Algebra
	7.5 Main Experiment

	8 Discussion and Future Work
	A Proofs of IdealCalc Properties
	B Proof of Correctness for FindZero
	C Benchmark Generation
	References

	Solving String Constraints Using SAT
	1 Introduction
	2 Preliminaries
	3 Overview
	4 Reducing the Alphabet
	5 Propositional Encodings
	5.1 Substitutions
	5.2 Theory Literals

	6 Refining Upper Bounds
	6.1 Unsatisfiable-Core Analysis

	7 Implementation
	8 Experimental Evaluation
	9 Conclusion
	References

	The GOLEM Horn Solver
	1 Introduction
	2 Tool Overview
	3 Back-end Engines of GOLEM
	3.1 Transition Power Abstraction
	3.2 Engines for State-of-the-Art Model-Checking Algorithms

	4 Experiments
	4.1 Category LRA-TS
	4.2 Category LIA-Lin
	4.3 Category LIA-Nonlin

	5 Conclusion
	References

	Model Checking
	CoqCryptoLine: A Verified Model Checker with Certified Results
	1 Introduction
	2 CoqCryptoLine
	2.1 CryptoLine Language
	2.2 The Architecture of CoqCryptoLine
	2.3 Features and Optimizations

	3 Walkthrough
	4 Evaluation
	5 Conclusion
	References

	Incremental Dead State Detection in Logarithmic Time
	1 Introduction
	2 Guided Incremental Digraphs
	2.1 Problem Statement
	2.2 Existing Approaches

	3 Algorithms
	3.1 First-Cut Algorithm
	3.2 Logarithmic Algorithm
	3.3 Lazy Algorithm

	4 Experimental Evaluation
	5 Application to Extended Regular Expressions
	5.1 Reduction from Incremental Regex Emptiness to GIDs

	6 Related Work
	References

	Model Checking Race-Freedom When ``Sequential Consistency for Data-Race-Free Programs'' is Guaranteed
	1 Introduction
	2 Theory
	3 Implementation and Evaluation
	3.1 Background on OpenMP
	3.2 Background on CIVL-C
	3.3 Transformation for Data Race Detection
	3.4 Evaluation

	4 Related Work
	5 Conclusion
	References

	Searching for i-Good Lemmas to Accelerate Safety Model Checking
	1 Introduction
	2 Preliminaries
	2.1 Boolean Transition System
	2.2 Safety Checking and Reachability Analysis
	2.3 Overview of IC3 and CAR

	3 Finding i-Good Lemmas
	3.1 What Are i-good Lemmas
	3.2 Searching for i-good Lemmas

	4 Related Work
	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Why Do branching and refer-skipping Work?

	6 Conclusions and Future Work
	References

	Second-Order Hyperproperties
	1 Introduction
	2 Preliminaries
	3 Second-Order HyperLTL
	3.1 Hyper2LTL
	3.2 Hyper2LTLfp
	3.3 Common Knowledge in Multi-agent Systems
	3.4 Hyper2LTL Model Checking

	4 Expressiveness of Hyper2LTL
	4.1 Hyper2LTL and LTLK, C
	4.2 Hyper2LTL and Asynchronous Hyperproperties

	5 Model-Checking Hyper2LTLfp
	5.1 Fixpoints in Hyper2LTLfp
	5.2 Functions as Automata
	5.3 Model Checking for First-Order Quantification
	5.4 Bidirectional Model Checking
	5.5 Computing Under- and Overapproximations

	6 Implementation and Experiments
	7 Related Work
	8 Conclusion
	References

	Neural Networks and Machine Learning
	Certifying the Fairness of KNN in the Presence of Dataset Bias
	1 Introduction
	2 Background
	2.1 Fairness of the Learned Model
	2.2 Fairness in the Presence of Dataset Bias

	3 Overview of Our Method
	3.1 The KNN Algorithm
	3.2 Certifying the KNN Algorithm

	4 Abstracting the KNN Prediction Step
	4.1 Finding the K-Nearest Neighbors
	4.2 Checking the Classification Result

	5 Abstracting the KNN Learning Step
	5.1 Overapproximating the Classification Error
	5.2 Underapproximating the Classification Error

	6 Experiments
	7 Related Work
	8 Conclusions
	References

	Monitoring Algorithmic Fairness
	1 Introduction
	1.1 Motivating Examples
	1.2 Related Work

	2 Preliminaries
	2.1 Markov Chains as Randomized Generators of Events
	2.2 Randomized Register Monitors

	3 Algorithmic Fairness Specifications and Problem Formulation
	3.1 Probabilistic Specification Expressions
	3.2 The Monitoring Problem

	4 Frequentist Monitoring
	4.1 The Main Principle
	4.2 Implementation of the Frequentist Monitor

	5 Bayesian Monitoring
	5.1 The Main Principle
	5.2 Implementation of the Bayesian Monitor

	6 Experiments
	7 Conclusion
	References

	nl2spec: Interactively Translating Unstructured Natural Language to Temporal Logics with Large Language Models
	1 Introduction
	2 Background and Related Work
	2.1 Natural Language to Linear-Time Temporal Logic
	2.2 Large Language Models

	3 The nl2spec Framework
	3.1 Overview
	3.2 Interactive Few-Shot Prompting

	4 Evaluation
	4.1 Study Setup
	4.2 Results

	5 Conclusion
	References

	NNV 2.0: The Neural Network Verification Tool
	1 Introduction
	2 Related Work
	3 Overview and Features
	3.1 NNV 2.0 vs NNV

	4 Evaluation
	4.1 Comparison to MATLAB's Deep Learning Verification Toolbox
	4.2 Neural Ordinary Differential Equations
	4.3 Recurrent Neural Networks
	4.4 Semantic Segmentation

	5 Conclusions
	References

	QEBVerif: Quantization Error Bound Verification of Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Neural Networks
	2.2 Quantization Error Bound and Its Verification Problem
	2.3 DeepPoly

	3 Methodology of QEBVerif
	3.1 Overview of QEBVerif
	3.2 Differential Reachability Analysis
	3.3 MILP Encoding of the Verification Problem

	4 An Abstract Domain for Symbolic-Based DRA
	4.1 An Abstract Domain for QNNs
	4.2 Symbolic Quantization Error Computation

	5 Evaluation
	5.1 Effectiveness and Efficiency of DRA
	5.2 Effectiveness and Efficiency of QEBVerif
	5.3 Correlation of Quantization Errors and Robustness

	6 Related Work
	7 Conclusion
	References

	Verifying Generalization in Deep Learning
	1 Introduction
	2 Background
	3 Quantifying Generalizability via Verification
	4 Evaluation
	4.1 Cartpole
	4.2 Mountain Car
	4.3 Aurora Congestion Controller
	4.4 Comparison to Additional Methods

	5 Related Work
	6 Conclusion
	References

	Correction to: CoqCryptoLine: A Verified Model Checker with Certified Results
	Correction to: Chapter “CoqCryptoLine: A Verified Model Checker with Certified Results” in: C. Enea and A. Lal (Eds.): Computer Aided Verification, LNCS 13965, https://doi.org/10.1007/978-3-031-37703-7_11

	Author Index

