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Abstract. In recent years multiple deep-learning solutions have
emerged that aim to assist radiologists in prostate cancer (PCa) diagno-
sis. Most of the studies however do not compare the diagnostic accuracy
of the developed models to that of radiology specialists but simply report
the model performance on the reference datasets. This makes it hard to
infer the potential benefits and applicability of proposed methods in diag-
nostic workflows. In this paper, we investigate the effects of using pre-
trained models in the differentiation of clinically significant PCa (csPCa)
on mpMRI and report the results of conducted multi-reader multi-case
pilot study involving human experts. The study aims to compare the per-
formance of deep learning models with six radiologists varying in diag-
nostic experience. A subset of the ProstateX Challenge dataset counting
32 prostate lesions was used to evaluate the diagnostic accuracy of mod-
els and human raters using ROC analysis. Deep neural networks were
found to achieve comparable performance to experienced readers in the
diagnosis of csPCa. Results confirm the potential of deep neural networks
in enhancing the cognitive abilities of radiologists in PCa assessment.

Keywords: Deep learning · Prostate Cancer · Computer Aided
Diagnosis

1 Introduction

In light of the increasing incidence rate of prostate cancer (PCa) over the
previous years [2], there is a global focus on providing modern solutions that
can address this growing health issue. Noninvasive diagnostics based on multi-
parametric magnetic resonance imaging (mpMRI) became essential in clinical
decision-making as it enables more accurate risk stratification and therefore plays
an important role in selecting patients for biopsy and direct targeting of lesions
[6,11].

Radiological assessment of the prostate gland involves the interpretation
and reporting of mpMRI examinations according to the established global stan-
dards. The current version of the standardized prostate MRI assessment Prostate
Imaging-Reporting and Data System (PI-RADS v2.1) [8], provides an approach
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to the interpretation and reporting of PCa examinations. The system assumes
the evaluation of each mpMRI sequence separately. Each lesion assessment cat-
egory is established on a 5-point scale according to the assessment algorithm
involving previously scored sequences. Introducing the standard in diagnos-
tic practice improved the diagnostic accuracy of performed examinations and
improved the availability of the method. Low specificity, however, remains a
considerable aspect of MRI assessment and clinically significant (cs) PCa differ-
entiation, potentially leading to unnecessary biopsies. Because of the assessment
complexity and steep learning curve, it is mainly the case for radiologists with
low experience in prostate MRI reporting [10].

Recently, solutions based on machine learning have achieved promising
results in applications in PCa diagnostics. A PCa classification challenge held in
2017 (ProstateX) provided a way of comparing tools of automatic PCa differen-
tiation based on mpMRI [1]. 71 competing methods were evaluated on the lesion
classification task. The area under the receiver operating characteristic curve
(AUC) of submitted models ranged between 0.45 to 0.87 AUC. The top three
scoring teams achieved results of AUC = 0.84 and 0.87. We used the ProstateX
dataset to develop and validate the deep convolutional neural network (CNN)
model that achieved AUC = 0.84 on the test ProstateX dataset [7].

Narrative Review by Twilt et. al. [9] presents an overview of recently pro-
posed tools (between 2018 and 2022) that have been suggested to aid in the
diagnosis of PCa. Overall deep learning (DL) solutions achieve the highest per-
formance on PCa detection and diagnosis tasks. Computational models show
the potential in enhancing the diagnostic processes and increasing the specificity
of mpMRI assessment. However, only a limited number of studies validated the
results in clinical workflows - 85% of them report only stand-alone model diag-
nostic accuracy [9]. It remains a question of how the diagnostic accuracy of DL
solutions relates to that of radiology experts and what could be expected from
the integration of computational models in diagnostic workflows.

The objective of our study was to evaluate the diagnostic accuracy of radiol-
ogists with various levels of diagnostic experience in comparison to the proposed
DL solution for csPCa differentiation.

2 Methods

The retrospective study design involved the assessment of 32 suspicious lesions by
six radiologists and the deep CNN model in a multi-case multi-reader (MCMR)
setting.

2.1 Dataset

A group of cases from a publicly available database of annotated mpMRI data
were used in the study [3]. Complete mpMRI data (T2W, DCE, DWI, and ADC
sequences) were included for all cases in the database. We have selected a thirty-
two lesion dataset diversified according to its clinical significance based on the
results of a histopathological evaluation.
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The selected dataset contained:

– 14 PZ lesions (7 cs and 7 not cs),
– 11 TZ lesions (5 cs and 6 not cs),
– 7 AS lesions (4 cs and 3 not cs).

2.2 Radiological Assessment Study

The study was carried out by a group of specialists with diversified expertise.
Six radiologists involved in the study had practical experience in PCa diagnosis
based on the mpMRI (three specialists with diagnostic experience of one to five
years; three specialists with more than ten years of diagnostic experience, and
at least five years of experience using the PI-RADS standard). Those groups
of experts are referred to in the paper as experienced and inexperienced raters.
The participating experts did not interact with each other during the assessment
phase.

Fig. 1. PI-RADS score evaluations for lesions in the dataset. Only three assessments
assigned lesions to the PI-RADS 1 category (only PZ lesions).

Experts participating in the study were not involved in the dataset selection,
development of the study methodology, and experiment results analysis.

The results of the assessments are presented in the Fig. 1. Even though the
dataset was balanced (close to an equal rate of cs and non-cs lesions) the distri-
bution of assigned scores did not reflect that.

2.3 Deep CNN Model

The model evaluated in this study was a multi-modal deep CNN network
of VGG-inspired architecture, adapted to the input sequence resolution and
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problem complexity. Introduced modifications reduced the number of trainable
parameters. The developed model architecture design reflected a PI-RADS cat-
egory assessment algorithm based on lesion zonal location. This was done by
integration of output routing and using complex loss function for optimization.
Resulting predictions were assigned using two subnetworks designed to base
predictions on T2W and DWI (subnetwork for TZ, AS, and SV lesions) and on
DWI/ADC and DCE (subnetwork for PZ lesions). The model has been evaluated
on the test reference dataset and resulted in a score corresponding to the state-
of-the-art results (AUC = 0.84) [1]. Model architecture and analysis of achieved
diagnostic accuracy have been described in the previously published study[7].

CNN predictions were made on unseen samples using 5-fold cross-validation
and collecting validation split classification results.

2.4 Probability Mapping

Fig. 2. The left figure shows the results of a mapping of raw CNN predictions to
bins corresponding to PI-RADS categories. Separate raw predictions for PZ (raw pz)
and TZ and AS lesions (raw tz as) show different response characteristics resulting
from separate network optimization processes. The right figure presents the empirical
cumulative distribution function (ECDF) of bins in relation to normalized CNN output.

It could be argued that continuous predictions resulting from softmax output
layers can produce superior AUC results in comparison to the ordinal estimations
made by human experts using the Likert scale. Therefore, to further evaluate
the diagnostic characteristics of the proposed model, we have mapped the raw
continuous CNN predictions to bins corresponding to PI-RADS scores (Fig. 2).
Bin discretization involved several steps that mapped the raw CNN predictions
to ordinal categories. We have used the mode of PI-RADS assessments for lesions
resulting from a radiological assessment study as ground truth for labels.
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First, continuous outputs resulting from PZ and TZ/AS sub-networks were
normalized to the range of [0,1]. Leave-one-out cross-validated estimates of bins
were obtained for each lesion using two ordinal regression models[4] (separate
each subnetwork predictions). This resulted in the mapping of continuous net-
work output to the Likert scale that reflected the PI-RADS category character-
istics based on the CNN prediction (Fig. 2).

We have mapped the 5-point Likert scale of manually assigned PI-RADS
categories and automatically estimated bins to the [0, 0.25, 0.5, 0.75, and 1]
probability values to perform the ROC analysis.

2.5 Statistical Analysis

We compare the model performance with that of experienced and inexperienced
radiology specialists using assessments collected during the retrospective study.
To evaluate the differences, we have used the Area under the Receiver operating
characteristic Curve (AUC) as a measure of diagnostic accuracy. Extensive simu-
lations using bootstrap re-sampling (1000 tests) [5] were conducted to construct
95% confidence intervals and perform hypothesis testing in various scenarios. We
have conducted separate experiments to compare the diagnostic characteristics
in relation to the combinations of assessment methods (CNN, human raters),
lesion location (PZ, TZ, and AS), and examinator experience. An alpha of 0.05
was used as the cutoff for statistical significance (we additionally report test
results with an alpha of 0.1 due to the small dataset sample size).

3 Results

The following section presents the results of the comparison of diagnostic accu-
racy between inexperienced, experienced radiologists and model predictions.
Additionally, we report the change in diagnostic accuracy resulting from the
integration of human and CNN assessments.

3.1 Results of Raw CNN Predictions

The results achieved by the CNN model (AUC = 0.83, CI [0.80, 0.88]) demon-
strated superior diagnostic accuracy in comparison with both:

experienced (AUC = 0.80, p > .1, CI [0.74, 0.86]) and
inexperienced (AUC = 0.71, p < .1, CI [0.63, 0.80])

specialists in the evaluation of lesions’ clinical significance using the PI-RADS
v2.1 standard.

The lowest diagnostic accuracy has been observed for AS lesions, where CNN
solution provides higher quality estimations in comparison both to experienced
and inexperienced radiologists (AUC = 0.79 vs. AUC = 0.64 vs. AUC = 0.59). In
the case of other lesion locations, the differences between the neural network and
the experienced radiology specialists were less pronounced: PZ (AUC = 0.88 vs.
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AUC = 0.85 vs. AUC = 0.72) and TZ (AUC = 0.89 vs. AUC = 0.84 vs. AUC
= 0.78). Differences in diagnostic accuracy dependent on lesion location were
however not statistically significant.

Following analyses were performed using binned CNN predictions.

3.2 CNN Performance Compared to Human Raters

Fig. 3. Diagnostic accuracy of inexperienced, experienced (left), and all (right) assess-
ments in comparison to the CNN predictions, expressed in established AUC values and
95% confidence intervals.

The Fig. 3 presents the results of a comparison of diagnostic accuracy measured
in AUC between inexperienced and experienced raters in comparison to model
predictions restricted to ordinal categories. Overall, CNN achieved superior (p
< .1) diagnostic accuracy (AUC = 0.83, CI [0.79, 0.87]) in comparison to all
(AUC = 0.76, CI [0.70, 0.81]) and inexperienced (AUC = 0.72, CI [0.63, 0.80])
rater assessments.

Differences were statistically significant for PZ lesion evaluation when con-
sidering assessments of all (CNN AUC = 0.90 vs AUC = 0.78, p < .05) and
inexperienced raters (AUC = 0.71, p < .05). There were no statistically signifi-
cant differences found in diagnostic accuracy between assessments of experienced
raters and CNN predictions.

3.3 Diagnostic Accuracy of Combined Assessment

To investigate the potential change in diagnostic accuracy by integration of
computer-aided assessment we analyzed the potential results of combining
human and automatic predictions. Integrated predictions were obtained by com-
puting average expert and binned CNN predictions on the lesion level and map-
ping those back to the Likert scale. This allowed investigation of the potential
gain in diagnostic accuracy in computer-aided PCa diagnosis.
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Fig. 4. Diagnostic accuracy for assessments of inexperienced and experienced radiolo-
gists compared to combined predictions expressed in established AUC values and 95%
confidence intervals.

A positive diagnostic accuracy change has been observed after combining the
model predictions with expert assessments in all tested settings (Fig. 4). Integra-
tion of CNN with rater predictions resulted in an overall increase of diagnostic
accuracy by 0.09 AUC (CNN+rater AUC = 0.85, p < .05, CI [0.80, 0.89])

4 Discussion and Conclusion

In this study, we investigated the performance of the deep CNN model for PCa
diagnosis on mpMRI data in comparison to human raters in an MRMC study
setting on a subset of the reference dataset.

The results suggest that the proposed model outperformed inexperienced
radiologists and achieved diagnostic accuracy similar to that of experienced
raters. The achieved results are promising, yet decisive conclusions cannot be
drawn confidently given the study design and small sample size used for valida-
tion.

Our study had several limitations. First of all, the dataset size used for valida-
tion in the conducted study was limited by the availability of readers. The study
involved a substantial number of readers, however, the analysis has been per-
formed in subgroups defined based on radiologist experience, which limited the
number of assessments considered in hypotheses testing. The modest sample size
resulted in wide 95% CIs constructed using bootstrap simulations and therefore
affected the power of performed statistical tests. Furthermore, the study design
was far from the clinical setting and based on the evaluation of selected single
lesions. Finally, we could not evaluate the stability of the model performance on
external data.

Although promising, results need confirmation in further, more extensive
studies.
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