
Chapter 4
Impact of Variability of Interarrival and
Service Times

4.1 Importance of Distributions: A Motivating Example

In this section we highlight the significant errors in the computation of performance
indexes that are introduced when only the mean values are considered instead of the
distributions of some input parameters. Consider a server that requires a constant
Service time S of 1 s to execute a request. Assume that the requests arrive
with rate λ = 60 req/min in groups (bursts) and that the requests of a burst arrive
at the same instant of time. The time between consecutive bursts is constant. We
will analyze the impact on Queue time and Response time of different burst
lengths, ranging from 1 to 60, considering always the same arrival rate.

In the case shown in Fig. 4.1a, a request arrives at the server exactly every second.
Since the time S required for its execution is always equal to 1 s, the queue will
never take place (the Queue time is equal to zero) and thus the mean Response
time (Queue time plus Service time) is exactly one second for all requests.
In the other graphs it is assumed that the requests arrive at the server with burst of
increasing dimensions.

In Fig. 4.1b a burst of size 2 arrives exactly every two seconds. The first request
never waits in queue, while the latter waits for one second, that is, the execution time
of the first. So the mean Queue time is 0.5 s. In the graph of Fig. 4.1c a burst of
size 3 arrives exactly every three seconds. The first request never waits, the second
waits a second and the third waits two seconds. So the mean Queue time is 1 s
and the mean Response time is 2 s.

Finally, in Fig. 4.1d 60 requests arrive together in a single burst every sixty seconds
(the rate is always 1 req/s). In this case the mean Queue time is 29.5 s. Let us
remind that the sum of n positive consecutive integers starting from 1 is n(n + 1)/2.
In our case we have 60 requests, but only n = 59 of them wait from 1 to 59 s,
respectively. Thus, themeanwaiting time (Queue time) of the 60 requests is 29.5
s and the mean Response time is 30.5 s! The conclusion is
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Fig. 4.1 Impact of different burst lengths on mean Response time

Even considering the same arrival rate λ = 1 req/s and the same
Service times S=1 s, depending on the arrival pattern of requests we
could have a very high variability of mean Response times: from
1 to 30.5 s in the example considered (and this is not the worst case!).

4.2 Variability of Interarrival Times

tags: open, single class, Queue, Exp/Hypo-exp/Hyper-exp, JSIMg.

The objective of this case study is to emphasize the impact of the variance of
Interarrival times on the performance of a system.

4.2.1 Problem Description

Consider a model of a web server that needs to execute an e-commerce applica-
tion to sell equipment produced by a new company. While the mean and variance
of Service time required to process a purchase order can be estimated with
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sufficient accuracy, the pattern of incoming requests is unknown as customers are
located all over the world.

We use a simple model of the web server consisting of a single queue station.
To account for the unknown patterns of the incoming requests we consider five
distributions of interarrival times with the same mean and increasing variability. To
describe the variance of interarrival times we use the coefficient of variation c of
each distribution (given by the standard deviation/mean ratio). For a given value
of arrival rate, the values of c are directly proportional to the variance of the five
distributions since their means are the same.

The Service times are assumed exponentially distributed with the same
mean S = 1 s for all the models.

To analyze a wide range of traffic intensities we consider several arrival rates,
ranging from light-load (10% of server utilization) to heavy-load (90% of server
utilization) conditions. For each arrival rate we execute five models corresponding
to the five interarrival time distributions. As a reference metric we consider the mean
Response times of the models executed. The models are solved with JSIMg.

4.2.2 Model Implementation

We use a open model consisting of three stations: Source1, Queue1, and Sink1,
Fig. 4.2a. The Service times of Queue1, with mean S = 1 s, used in all the
models have the same exponential distribution. The five distributions considered of
Interarrival times, in sequence of increasing variance are: Constant cv =
0, Hypo-exponential cv = 0.5 (Hypo-exp), Exponential cv = 1 (Exp), Hyper-
exponential cv = 5 (Hyper-exp), Hyper-exponential cv = 10 (Hyper-exp).
Figure 4.2b shows the window for setting the mean = 10 (corresponding to λ =
0.1 req/s) and the coefficient of variation cv = 10 of the Hyper-exp
distribution.

The differences between the distributions are emphasized in Fig. 4.3a (obtained
with λ = 0.9 req/s), that shows the graphs relating to three of them: Hypo-exp
cv = 0.5, Exp cv = 1, and Hyper-exp cv = 0.5. As can be seen, the percentages of
Interarrival times (i.e., the percentiles) that are less than the mean value
1.111 s are very different: 56.8% for the Hypo-exp, 63.6% for the Exp (the exact
analytical result is 0.6321), and 85% for the Hyper-exp with cv= 5 (and 91% for the
Hyper-exp cv = 10, not shown in the figure). To obtain the percentiles of a metric
with JSIMg see Sect. 2.2 and Figs. 2.10, 2.11.

The increase of variability also heavily influences the maximum values of the
various distributions: 5.4 s for the Hypo-exp, 16.69 s for the Exp, 261.22 s for
the Hyper-exp cv = 5, and 864.46 s for the Hyper-exp cv = 10. The number of
samples needed to reach the equilibrium of the metric Throughput of Source1,
that provides the Interarrival timeswith 99% Confidence Interval and 0.03
Max Rel. Err., ranges from 40960 of the Hypo-exp to 1063920 of the Hyper-exp
cv = 10.
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Fig. 4.2 The model considered (a), Settings of the mean = 10 and coeff. of variation
cv = 10 of the Hyper-exponential distribution of Interarrival times for Arr.rate 0.1
req/s (b)

Fig. 4.3 Interarrival time distributionswith increasing variability (cv= 0.5, 1, 5) obtained
with λ = 0.9 req/s and the same mean 1.111 s (a); the corresponding Response times of
Queue1 for λ = 0.1 ÷ 0.9 req/s (b)
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Table 4.1 Response times [s] with five Interarrival time distributions with increas-
ing variance vs Arrival rates. Service times S = 1 s are exponentially distributed

Arrival
rate

Response times

Interarrival time distributions

Const
cv = 0

Hypo-exp
cv = 0.5

Exp
cv = 1

Hyper-exp
cv = 5

Hyper-exp
cv = 10

λ = 0.1
[req/s]

1.00 1.01 1.11 1.22 1.24

λ = 0.3
[req/s]

1.05 1.12 1.43 2.20 2.40

λ = 0.6
[req/s]

1.47 1.70 2.54 14.49 46.98

λ = 0.9
[req/s]

5.13 6.43 9.92 116.88 455.06

4.2.3 Results

To simulate the different traffic intensities we use, for each distribution, a What-if
analysis, withArrival rate as control parameter, that execute ninemodels with λ rang-
ing from 0.1 (light load) to 0.9 (heavy load) req/s with increments of 0.1. Figure 4.3b
shows how the Response time R varies with different arrival patterns and rates.
To make it easier to understand the figure, only R obtained with three distributions
are plotted: Exp cv = 1, and Hyper-exp with cv = 5 and cv = 10. As can be seen,
the values of R grow very fast not only when the Arrival rate is approaching
the saturation value λsat = 1 req/s (and expected) but also with the increase of the
variability of the Interarrival times (and this is not so expected).

Table 4.1 shows theResponse Times for the five distributionswith Arrival
rates λ = 0.1, 0.3, 0.6, 0.9 req/s.

Even if we do not consider the two extreme distributions (i.e., the Constant cv
= 0 and the Hyper-exp cv = 10), the differences between the Response times
corresponding to the same λ become greater as the utilization of the server increases.
The values of the last row of the table, corresponding to the utilization of 90%, show
a difference of more than 18 times between 6.43 s with Hypo-exp cv = 0.5 and
116.88 s with Hyper-exp cv = 5!

Since for a given arrival rate λ the server utilization U is the same for all distri-
butions (it is U = λ S), we may conclude that:

measuring server Utilization is useless to predict Response times if it is not com-
plementedwith the knowledge of othermetrics, such as the distributions of Interarrival
and Service times.
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4.3 Variability of Service Times

tags: open, single class, Queue, Exp/Hypo-Exp/Hyper-Exp, JSIMg.

This case study has been purposely designed to highlight the impact of the variance
of Service times on the performance of a system. The Service times
followfive different distributions,while theInterarrival times are generated
according to the same Exponential distribution. It can be considered the dual of the
example discussed in the preceding section in which the opposite situation was
evaluated.

4.3.1 Problem Description

The scenario of this example is quite common in many practical problems in which
the execution times of the applications are often highly variable based on input data
and required functions (see, e.g., [21]).

We consider an application for the computation of the path between two geo-
graphical locations. The algorithms that compute the driving route from a source to
a destination are computationally heavy and the Service demands are highly
variable as a function of the locations considered. For these reasons the management
decided to deploy the application on a dedicated server and to evaluate the impact
on Response time of the different locations.

The Interarrival times of the route requests are assumed Exponentially
distributed and different Arrival rates, that cover the range from light to heavy
traffic, are considered. To account for the different fluctuations in execution times,
five distributions with increasing variances, from zero to very high values, and the
samemeanwere considered. For each Arrival ratewe evaluate theResponse
time for the five Service times distributions. The models are solved with
JSIMg.

4.3.2 Model Implementation

The layout of the open model used is shown in Fig. 4.4a. It consists of three stations:
Source1, Queue1, and Sink1. The five distributions of the Service times
considered, in sequence of increasing variance, are: Constant cv= 0 (Const), Hypo-
exponential cv = 0.5 (Hypo-exp), Exponential cv = 1 (Exp), Hyper-exponential
cv = 5 (Hyper-exp), Hyper-exponential cv = 10 (Hyper-exp). The use the
coefficient of variation cv of each distribution (given by the standard deviation/mean
ratio) to describe the variance of Service times is convenient in this case as,
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Fig. 4.4 Model considered (a); What-if with Arrival rates λ = 0.1÷ 0.9 req/s (b)

for a given Arrival rate, its values are directly proportional to the variance of
the five distributions being their means the same (S = 1 s).

The same Exponential distribution of the Interarrival times generated
by Source1 is used in all the models. A What-if analysis is used to execute, for
each distribution of Service times, 9 models with Arrival rates ranging
from 0.1 to 0.9 req/s with increments of 0.1 (see Fig. 4.4b). Globally, five What-if
analyses are required corresponding to the five distributions of Service times
considered (in total 45 models are executed).

4.3.3 Results

The objective of the two graphs of Fig. 4.5 is to provide a visual evidence of the
negative effects of service time fluctuations on Response times. In Fig. 4.5a the
Service times of a period of three hours (simulated time) with a Hyper-exp
cv = 5 distribution are shown. Remember that the mean is S = 1 s for all distribu-
tions! The Response times, with λ = 0.9 req/s, for the same period are shown
in Fig. 4.5. The data for the plots of Fig. 4.5 are obtained from the CSVfiles generated
by JSIMg.

The correlation between the bursts of high values of S and the peaks of Response
times is evident and consistent with intuition. The bursts create a congestion of the
server and small increases in arriving requests in this condition determine enormous
increases in queue length, and in Response times together with it. For example,
consider the initial period of half-hour, or the period of about 800 s centered at the
end of two hours (7200 s), or the period starting at about 9000 s. It must be pointed
out that the fluctuations of Response times are emphasized in our case due to
the high Utilization of the server U = λS = 0.9.
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Fig. 4.5 Service times generated with Hyper-exp distribution (S = 1 s and cv = 5) for a
period of three hours (a); corresponding Response times with λ = 0.9 req/s (b)

Fig. 4.6 Response Time with Hyper-exp cv = 5 distrib. of S (a); R with three different
Service times distributions and same mean 1 s, Interarrival times are Exponentially
distributed

Figure 4.6a shows an example of the results provided by one of the 45 models
executed: the behavior of the Response times obtained from a simulation run
with λ = 0.6 req/s and Hyper-exp distribution of Service times with cv = 5.
The mean value R= 20.56 s with the precision required (99% of conf. interval, 0.03
max error) is obtained with 9175040 samples.

The Response times obtainedwith three different distributions of Service
times are shown in Fig. 4.6b. Thearrival rate range from0.1 to 0.9 req/swith
step of 0.1. The variance of the three distributions increases from the Exponential
(cv = 1) to the Hyper-exp (cv = 10).

The Response times obtained by JSIMg simulating five distributions of
Service times and λ = 0.1, 0.3, 0.6, 0.9 req/s are given in Table 4.2. As can
be seen, for the same Arrival rate there are huge differences between the
values obtained with the five distributions. These differences increase as server
Utilization increases. Even avoiding to consider the Constant cv=0
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Table 4.2 Response times with five Service times distributions with increasing vari-
ance and same mean S = 1 s vs Arrival rates. Interarrival times are Exponentially
distributed

Arrival
rate

Response time

Service time distributions

Exp cv = 1 Const
cv = 0

Hypo-exp
cv = 0.5

Exp
cv = 1

Hyper-exp
cv = 5

Hyper-exp
cv = 10

λ = 0.1 [r/s] 1.05 1.06 1.11 2.42 6.67

λ = 0.3 [r/s] 1.21 1.26 1.43 6.66 22.62

λ = 0.6 [r/s] 1.76 1.95 2.54 20.56 77.15

λ = 0.9 [r/s] 5.53 6.51 9.92 119.17 453.36

λ = 0.9 M/G/1 5.5 6.625 10 118 455.5

distribution, which provides a lower bound for all distributions, we can have enor-
mous differences (up to 70 times with λ = 0.9 req/s) between the Response
times obtained with Hypo-exp cv = 0.5 (6.51 s) and those with Hyper-exp cv =
10 (453.36 s)! Let us remark that these differences occur even if the Utilization
of the server is the same for all distributions.

Thus, we can conclude that:

to provide accurate performance forecast of a server it is essential to know
the distributions of Interarrival and Service times, and not
just their mean values and server Utilization.

The model considered in this section could be solved analytically obtaining exact
results. In fact it corresponds to a M/G/1 queue station (see the tutorial [32] and,
e.g., [36]) having Exponential Interarrival times, i.e., the arrival process
is Poisson (Markovian, M), Service times with general distribution (G) with
given mean and variance, and a single server. The Response time of this
station is given by:

RQueue1 = waiting time in queue W+ Service time S = US(1+ cv2)

2(1−U )
+ S (4.1)

where U is the server Utilization (U= λS), and cv is the coefficient of variation
of the general distribution of Service times with mean S. Note that both the
mean and the variance of Service times must be known to compute the coef-
ficient of variation. In the last row of Table 4.2 are reported the exact Response
times computed with Eq. 4.1. As can be seen, the values obtained with JSIMg are
very close to the exact ones, and are all within the 99% confidence intervals.

Let us remark that when the Service times are Constant it is cv= 0 and the
model is identified as M/D/1 (D stands for Deterministic Service times). Its
waiting timeW (computed with Eq. 4.1) is half of that obtained with an Exponential
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distribution (in a M/M/1 model with cv = 1). For example, as shown in the last row
of Table 4.2 with Constant distribution it is W= 4.5 s while with Exponential it
is W= 9 s (with λ = 0.9 req/s and S= 1 s). The waiting timeW of an M/D/1 station
is the lower bound for any M/G/1 station with the same S and Arr. rate.
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