
Chapter 2
Systems with Homogeneous Workloads

2.1 A Web Server with External Workload

tags: open, single class, Source/Queue/Sink, JMVA.

The models for analyzing the performance of a system can be developed at different
levels of detail and with a single element that can represent the system as a whole
or just one of its components. In spite of their high level of aggregation, models in
which the resources of a system are collectively represented with a single component
(i.e., the system is modeled as a black box) yields in many cases interesting results.
These models can also provide useful insights for the evaluation of more complex
scenarios.

To solve the model presented in this section we use the analytical tool JMVA that
applies the classical Queuing Networks equations.

2.1.1 Problem Description

A capacity planning study is required to model a web server utilized for the distribu-
tion of technical documentation concerning the products of a company and accessible
by a high number of users through Internet. Requests arrive at the server from the net-
work, compete for the resources, and once executed leave the system, see Fig. 2.1a.
These models are usually referred to as open models. The workload consists of a
single request class. The requests have similar service demands, are independent
each other and arrive to the server with exponentially distributed interarrival times.
We consider a simple high-level aggregated model, i.e., a single queue station, repre-
senting the web server accessed by a request only once before leaving the station, see
Fig. 2.1b. This single-station model may seem inadequate to describe a web server
that has at least two resources, a CPU and a storage, that are visited many times by
the requests during their execution.
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Fig. 2.1 Web server model at high level of abstraction

However, there are several problems in which single-station models yield inter-
esting results. Among the motivations that make them useful in many situations
are:

• it is common the case in which only one resource of a system is the dominant
concern for the performance objectives, while the remainder components have a
negligible impact on them. Modeling this critical resource clearly provides useful
information about overall system performance.

• usually, one resource ismuchmore utilized than the others (i.e., it is the bottleneck)
and is largely responsible for the overall system performance. Models with only
this resource can provide accurate predictions of the overall system performance.

• a technique to implement large models is to partition them in smaller submodels
and to study them in isolation. The solutions of the submodels are then combined
in order to analyze their impact on the behavior of the global model. The station
used to represent collectively the stations of a single submodel is called FES, Flow
Equivalent Server. The objective of a FES station is to introduce in the flow of
requests the same delay as the submodel it represents (see, e.g., Chap. 8 of [25]).

The assumption of single class workload is important in many situations for the
accuracy of the models. When the workload components have significant differences
in resource requirements, i.e., when there are multiple class requests, the bottleneck
may migrate among resources as a function of the fluctuations of the mix of requests
in execution (see, e.g., [2, 3]). The effect of this migration may be dramatic for the
accuracy of the results. With single class workloads the bottleneck does not switch
among resources provided that all of them are load independent, i.e., their service
time is not a function of the number of requests that are in the resource (waiting in
queue and in service).

Concerning the single visit hypothesis, this should not be a concern. Depending
on the abstraction level of themodel, it may not be necessary to explicitly describe the
load of each component r of a system at the lower levels of detail using the Service
times Sr and the Visits Vr but it is sufficient to consider the global Service
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demand Dr placed on each of them during a complete execution (i.e., Dr = Vr Sr ).
To reduce the number of parameters and the effort required by their measurement,
we will parameterize most of the models with the Service demands Dr .

2.1.2 Model Implementation

We consider a simple open model at high level of abstraction, i.e., system-level,
(see Fig. 2.1b) consisting of a single queue station Queue 1, representing the web
server that is accessed by the requests generated by the Source. Once executed, the
requests leave the queue station for the Sink. In these open models the number of
requests in execution is not controlled by the system itself but depends on the char-
acteristics of the traffic generated by the Source (rate and fluctuations of arrivals,
service requirements). Depending on these parameters, a system can be flooded with
requests whose number can suddenly grow to very high values.

Requests are assumed to be independent of each other and arrive at the server
at random times. This is equivalent to saying that Interarrival times are
exponentially distributed. All the requests are considered statistically equal, i.e., are
indistinguishable each other, and leave the server at random times. The randomness
of the departure times has as the consequence that the Service times S, i.e., the
time requirement per visit, are exponentially distributed.

All requests arriving at the station can be accepted for execution, i.e., there is
enough space to store themall that cangrow indefinitely. This type of station is usually
referred to as M/M/1 station (see, e.g., [36, 37]). The arrival rate is λ = 0.2 req/s,
thus the average Interarrival time is 1/λ. The average time required by a
complete execution of a request is 1 s. This time usually is referred to as Service
demandD of a request, but since the number of visits to the server in the aggregated
model is one, its value coincides with the Service time S. Thus, for simplicity,
we will use the notation S instead of D in this example. The requests are served
according to their order of arrival, i.e., with a FCFS scheduling.

With the hypotheses considered, this model can be solved analytically with the
classical Queueing Networks equations implemented in the JMVA.

2.1.3 Results

In what follows we will describe the operations required to achieve some of the
objectives (referred to as Obj.1–Obj.4) of the capacity planning study.

Obj.1: implement a model of the server and compute the performance indexes
with the parameters above described
In Fig. 2.2 the input parameters for the model solved with QN (Queueing Networks)
equations are shown. Some of the performance indexes computed by the model are
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Fig. 2.2 Input parameters of the JMVA for the open model of Fig. 2.1b

shown in Fig. 2.3. The mean number of requests N in the server is 0.25 req
and the mean Response time is 1.25 s. To check the correctness of the results
we computed the values of the same indexes with the exact equations of Queueing
Networks:

N = U

1 −U
= λ S

1 − λ S
= 0.25 req. R = S

1 −U
= S

1 − λ S
= 1.25 s (2.1)

Obj.2: compute the behavior of the performance indexes when the workload
increases to λ = 0.9 req/s.
A What-if analysis is required with Arrival rate as Control
Parameter ranging from 0.2 to 0.9 req/s. In Fig. 2.4 the parameterization of the
What-if (100 models are requested) and the behavior of two performance indexes,
i.e., the Throughput X and the Response time R, are shown. Since in the
model there is only the Queue1 station, its Throughput and Response time
coincide with the ones of the System. The linear behavior of the Throughput X
is correct since we increase linearly the Arrival rate λ from 0.2 to 0.9 req/s
and the models are in equilibrium, i.e., it is λ = X . The maximum Throughput
of the server corresponds to the saturation load λsat = 1/S = 1 req/s.
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Fig. 2.3 Some of the performance indexes computed by the JMVA

Fig. 2.4 System Throughput and System Response Time of 100 models with
Arrival rates λ ranging from 0.2 and 0.9 req/s obtained with a What-if analysis
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Fig. 2.5 What-if analysis: tabular results of the System Response Times corresponding
to the Arrival rates λ = 0.793 and 0.801 req/s

Obj.3: according to themarketing department forecast, amaximum Response
timeR = 5 s can be tolerated. Compute the maximum increase of the workload
that satisfy this constraint (% with respect to the original λ = 0.2 req/s).
We can use the results provided in tabular format from the What-if analysis made
in the previous step. Figure 2.5 shows the Response times of models 85 and 86
that are just above and just below the value R = 5 s (4.85 and 5.02, respectively). The
arrival rates used in the two models are 0.793 and 0.801 respectively. So we
are sure that λ = 0.793 req/s satisfy the constraint. Just as a simple check, we may
use Eq. 2.1 to derive the value of λ corresponding to R = 5 s and S = 1 s. We obtain
λ = 0.8 req/s. Thus, the increment of the workload tolerated is 300%.

Obj.4: a new set of complex technical manuals are expected in the near future
whose Service demand is assumed to be S = 2 s. What will be the System
Response Time R with an expected arrival rate double the actual one (i.e.,
λ = 0.4 req/s)?
New values for the input parameters S = 2 s and λ = 0.4 req/s must be set. The
corresponding value of System Response Time is R = 10 s.
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2.2 A Computing Infrastructure with a Closed Workload

tags: closed, single class, Delay/Queue, JSIMg.

In this section we describe a model of a computing infrastructure with a closed work-
load (see Sect. 1.2) solved with the simulation technique. The main characteristic
of this type of workload is that the number of customers in execution is constant. A
new customer enter the system when a customer complete its execution.

On the basis of the assumptionsmade, this model could also be solved analytically
with JMVA.However, we have used the simulation technique to provide a first simple
example of implementing a model with a simulator. Furthermore, it should be noted
that simulation is by far the most popular modeling technique used in performance
engineering. Indeed, simulators are very powerful tools and the set of models they
can implement is practically unlimited given the great generality offered in terms of
characteristic of the systems and type of assumptions that can be represented.

2.2.1 Problem Description

A computing infrastructure, located in a large data center, is used to execute appli-
cations that are very critical to the company’s business. This infrastructure adopts
very high security techniques to control accesses that are reserved only to a lim-
ited number of authorized employees. It mainly consists of three servers: a Web
Server (WS) and two servers (AS1 and AS2) dedicated to the Application
and Storage functions, see Fig. 2.6a.

Due to the apps executed, the resource requirements of the user requests are simi-
lar, i.e., theworkload is single-class. TheService times of the three servers have
different mean values, and are assumed exponentially distributed. The probabilities
(i.e., the routing probabilities) that the requests in output from the Web Server are
routed to servers AS1 and AS2 are known. In some problems, instead of the routing
probabilities, the visits that a request perform to each resource during its execution

Fig. 2.6 The computing infrastructure considered (a) and the corresponding queueing network (b)
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are known. These two sets of values are related each other and to derive one set from
the other it is required to know the topology of the network. In Appendix A.1 it is
described how to obtain the relationships between the routing probabilities and the
visits for the topology considered in Fig. 2.6b. Assuming that when a request leaves
the model it has been completely executed, i.e., that it is V0 = 1, we have:

VWS = 1

p0
= 10 VAS1 = p1

p0
= 6 VAS2 = p2

p0
= 3 (2.2)

Models can be parameterized with one set of values or the other. JSIMg accept
both types of parameters. The scheduling algorithm adopted by the resources is
FCFS.

2.2.2 Model Implementation

Since the number of users (i.e., the employees authorized to access the computing
infrastructure) is constant, we implement a closed model with four stations: one
delay and three queue, see Fig. 2.6b. Each user submit one request. The probabilities
pi ’s that after a visit to the Web server WS a request is routed to App&Stora-
ge servers ASi are known. The index 0 is used to represent the world outside
the system, and the metrics with index 0 are at system-level. Therefore, X0 and R0

represent theThroughput and the Response time of the global system, and p0
is the probability that a request leaves the system as it has completed its execution.
We assume that a request is routed to this path only once in his lifetime, so the
number of visits V0 that it performs outside the system is one. According to
the layout of the model it is

∑2
i=0 pi = 1.

The workload is generated by a station external to the system representing the
Users, that we consider as Reference station. This station is used to com-
pute the System Response Time R0 and the System Throughput X0 .
R0 is defined as the period of time between the instant in which a request enters
the model (leaving the Reference station) and the one in which it leaves the
model (entering the Reference station). X0 is the rate of completed requests
that leave the model and enter the Reference station. Others performance
indexes are also influenced by the selection of the station that will be considered as
reference (see Appendix A.1). The mean Service time for each Visit to servers
WS, AS1 and AS2 are: SWS = 0.005 s, SAS1 = 0.020 s, and SAS2 = 0.025 s, respec-
tively. The think time of the delay station Users is Z = 1 s. All the values are
exponentially distributed. The JSIMg model of Fig. 2.7 was solved with simulation.
The routing probabilities of the requests leaving the Web Server are: p0 = 0.1,
p1 = 0.6, and p2 = 0.3, see Fig. 2.8.
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Fig. 2.7 The JSIMg model of the computing infrastrucure of Fig. 2.6b

Fig. 2.8 Settings of the Routing Probabilities of the Web Server WS

2.2.3 Results

Several objectives of the capacity planning study were set. In what follows we will
describe the results of some of them referred to as Obj.1–Obj.4.

Obj.1: Implement the model of the computing infrastructure with the param-
eters assigned. Investigate the behavior of System Throughput X0 and
System Response Time R0 for the Number of Customers N0 ranging
from 1 to 20. Which will be the 90th percentile of R0 with N0 = 20?
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Fig. 2.9 System Throughput and System Response Time versus Number of
customers

A What-if analysis is performed by setting the Number of customers
N0 = 1 ÷ 20 as control parameter. Figure 2.9 show the behavior of System
Throughput X0 and System Response Time R0, respectively, with respect
to N0. Please note that the R0 values computed by JSIMg include the time spent in
the Reference station, i.e., the Users station, that is Z = 1 s. For N0 = 20
we have X0 = 8.32 req/s and R0 = 2.4 s. As N0 increases from 1 to 20, X0 becomes
flat and tends to its horizontal upper bound, while R0 becomes linear and tends to its
lower bound which is a oblique line. These behaviors are typical of closed systems
when a resource is approaching saturation. In the followingObjs. 2, 3 wewill analyze
this condition in detail.

Thevalues of somepercentiles of theSystem Response Times, for example
the 90th or the 95th, are often requested in performance studies. Let us recall that the
90th percentile �90 of a variable Y is the value below which can be found 90% of all
the values assumed byY, i.e., it is P(Y ≤ �90) = 0.9. To obtain the percentile values
in JSIMg it is necessary to flag the check box Stat.Res. (see, e.g., Fig. 1.8) in
the window of the metrics to be collected. A CSV file with all collected values of the
selected metric is then generated and stored. Various statistical indexes are computed
by clicking on the Statistical Results button (see Fig. 1.9) in the window
of the analyzed metric. Selecting Distribution as a drawing option, the
values are sorted in increasing order and are grouped in intervals. For example,
300 intervals have been selected in Fig. 2.10. The percentiles corresponding to each
interval are calculated and stored in a CSV file. A sample of this file for the intervals
70 ÷ 76 with the corresponding percentiles (from 88.9 to 91.3) is shown in Fig. 2.11.
The 90.1 percentile corresponds to R0 = 4.88 s. It should be noted that if the values
of a variable Y are exponentially distributed it is �90 � 2.3 x (mean value of Y ).
In our case, the values of R0 are hypo-exponentially distributed (the coefficient of
variation is 0.76< 1, see Fig. 2.10). Their variance is less than that of an exponentially
distributed variable with the same mean. Thus, it seems correct to obtain the value of
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Fig. 2.10 Statistical indexes of the System Response Times

Fig. 2.11 Sample of the CSV file with the values of R0 sorted in increasing order and subdivided
into 300 intervals. The four columns refer respectively to: the id of the intervals, the extremes of
each interval, and the percentile corresponding to the extreme with maximum value

4.88 s for the 90th percentile of R0 which is less than 5.52 s (2.3 x 2.4), as it would be
if they were exponentially distributed. By increasing the number of intervals, more
detailed percentiles can be obtained.

Obj.2: To improve the computing infrastructure performance, one of the first
actions that seems natural is to replace AS2, the slowest of the App&Storage
servers, with a new model that is 20% faster (that is, the same as AS1). Evaluate
the effects on X0 and R0.
The mean Service time of server AS2 of the original model must be modified
decreasing its value from 0.025 to 0.020 s. The model with the What-if for N0 =
1 ÷ 20 users is executed again.

As expected, the Utilization of AS2 decreased, e.g., from 61.8% to 50%
with N0 = 20. However, surprisingly NO improvements are obtained on X0 and R0.
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Fig. 2.12 Utilizations of the three servers AS1, AS2, and WS versus N0

Indeed, with the new fast server AS2 we have X0(20) = 8.27 req/s and R0(20) =
2.42 s while with the slow one we had X0 = 8.32 req/s and R0 = 2.40 s, respec-
tively. The two values of X0 can be considered equally likely estimates of the exact
throughput value since they are both in the same 99% confidence interval. The same
observation applies to R0 (see Appendix A.2).

Analyzing the Utilizations of the three servers, in Fig. 2.12a with the orig-
inal configuration and in Fig. 2.12b with the new AS2, we have an answer to this
unexpected result. FromFig. 2.12a it is possible to see that the utilizations of AS1 and
AS2 are unbalanced, and that AS1 is the bottleneck of the computing infrastructure
despite being the faster of the two. Indeed, its utilization is the highest of all servers
and for heavy load it is close to saturation (e.g., with N0 > 15 it is UAS1 > 0.95).

This is the main motivation of the uselessness of the action we have done:

improving any station but the bottleneck do not generate any performance gain with
heavy workload. It is known that performance improvements can only be achieved
by reducing its contention. Actions that reduce the load of stations other than the
bottleneck produce minimal improvements (if any) only under very light workload
(see Obj.3).

Obj.3: Given the insignificant results obtained in Obj.2, we want to evaluate the
performance improvements that can be achieved by replacing the AS1 server
with a new model 20% faster (the same increase considered in Obj.2 for AS2).
We recompute the original model (Fig. 2.7) settings the mean Service Time of
server AS1 to a value 20% faster (from 0.020 s to 0.016 s). We then execute again the
What-if for N0 = 1 ÷ 20 users obtaining the values of X0 and R0 reported in Fig.
2.13. For N0 = 20, with respect to the original system, X0 increases of 20%, from
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Fig. 2.13 X0 and R0 with the new server AS1 20% faster

8.32 to 9.99 req/s, and R0 drops of 17% from 2.4 to 1.99 s. The bottleneck remain
the server AS1, its utilization is 0.95 (in the original model was 0.99).

Let us remark that these positive results were obtained because we improved the
station that is the bottleneck of the system, i.e., the server AS1. Indeed, as seen in
the previous Obj.2, improving other stations do not produce any significant results
on performance.

Obj.4: According to the management, the number of internal employees autho-
rized to access the computing infrastructure may increase to 40 in a semester.
Which will be R0 and X0 with the actual configuration with N0 = 40 users?
We recompute the original model (Fig. 2.7) settings the Number of
Customers in the closed class definition window to 40. The behavior of the mean
value of R0 and of the confidence intervals during the simulation are shown in
Fig. 2.14. As can be seen, the mean value of R0 is 4.821 s obtained from the model is
very close to the lower bound 4.8 s given by N0Dmax = N0VAS1SAS1 = 40 x 0.12.
The X0(40) is 8.325 req/s, very close to its upper bound 1/DAS1 = 1/0.12 =
8.333 req/s (see Sect. 2.3).

2.3 Equivalent Model with Service Demands

tags: closed, single class, Delay/Queue, JSIMg

In this section we describe a model, solved with JSIMg, parameterized with
Service demands. This model is equivalent to the one solved in the previous
section using the Visits and Service times of the stations. The granularity
at the system-level is here adopted compared to that at the station-level adopted in
the previous model.
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Fig. 2.14 System Response Time of the computing infrastructure with the initial configura-
tion and N0 = 40 users

2.3.1 Problem Description

The models can be designed at different levels of granularity (see Chap.1), from
the single component (station) to the entire system. In Sect. 2.2 we implemented a
station-levelmodel using theRouting probabilities pi j , i.e., the probability
that a request in output from station i is routed to station j . We have also described
how to obtain from the pi j s the number of Visits Vr that a request makes to each
station during its complete execution (see Appendix A.1). In the models parameter-
ized at this level of detail we may compute all the performance indexes describing
the behavior of each station, including its Throughput and Response time.
However, measuring the pi j , or the Vr , is difficult or in some cases impossible. A
parameter that is often used is the Service demand Dr of a request to station
r , which represents the total amount of Service time that a request requires
from station r to complete its execution. The Dr values may be obtained by mul-
tiplying the Service time Sr required by one visit to the number of Visits
Vr that a request makes to station r during its execution, i.e., Dr = Sr Vr . There are
many motivations that make the models parameterized with Service demands
so popular. Among them are:

• the limited effort required to obtain the mean values of Service demands Dr

from measurements. Indeed, the system log file usually shows the Dr values for
every request executed. Recall that several executions are needed to have a reliable
estimate of the mean values of Dr and the confidence intervals of the measured
values must be computed, (see Appendix A.2 and, e.g., [36, 37]). The Drs can
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also be obtained dividing the busy time Br of a resource by the number C0 of user
requests executed;

• the models that use Service demands are less expensive to parameterize than
more detailed models using Service times and Visits as the number of
parameters required is significantly lower. The measurement of even one more
parameter may require a non-trivial effort;

• a large part of queueing networks considered in performance studies are of the
separable type (see Sect.1.2 and, e.g., [4, 25]) and can be solved by knowing only
the values of Dr and not those of its single factors Vr and Sr . The paths followed
by requests between the resources can be unknown, only the global amount of
service time required to each resource (i.e., the Service demands) counts.
According to this property, for example, a model in which a job make 1000 visits
to a station whose service time is 5 milliseconds, is equivalent to one in which
the job make a single visit to that station requiring 5 sec of service time. Clearly
the equivalence must be applied also to all the other stations of the system. The
performance indexes obtained with this equivalent model are the same as the
more detailed model with regard to the indexes at the system-level, i.e., System
Throughput and System Response Time. The same is true also for the
Utilization and the Residence time of the single stations. However, in
this case, due to the high level of granularity adopted, we cannot compute the
Throughput and the Response time at the station-level (their computation
requires the Visits and Service times of each station).

Based on the described advantages, when possible, the models are preferably param-
eterized in terms of Service demands Dr instead of Visits and Service
times. Clearly, with this high level of granularity we lose the structural similarity
with the considered system, but the models are easier to implement, the solution
algorithms are faster, and the performance indexes that can be computed (not all, but
almost) are correct.

2.3.2 Model Implementation

To illustrate the practical applicability of the Service demands we consider
again the closed model solved in Sect.2.2 using the Routing probabilities
pi j and the Service times Sr , see Fig. 2.6b. In this Section we implement a new
version of it using Service demands. From the pi j s it is possible to derive the
Visits to the three servers VWS = 10, VAS1 = 6, VAS2 = 3 (see Appendix A.1)
and knowing the Service times SWS = 0.005 s, SAS1 = 0.020 s and SAS2 =
0.025 s, we can compute the Service demands (Dr = Vr Sr ) DWS = 0.050 s,
DAS1 = 0.120 s, DAS2 = 0.075 s.

The implementedmodel of Fig. 2.15 consists of three servers, having asService
times the Dr , which are visited only once during the execution of a user request.
The structure of this new model is clearly simpler than that of Fig. 2.7.
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Fig. 2.15 Model parameterized with Service demands equivalent to that of Fig. 2.7 which
uses Visits and Service times

2.3.3 Results

We solve the model of Fig. 2.15 using the What-if analysis with N0 = 1 ÷ 20
customers as control parameter. The performance measures obtained are
practically the same, i.e., they lie in the same 99% confidence interval of the corre-
sponding indexes obtained with the model of Fig. 2.7. Table 2.1 compares the values
of some performance indexes computed by the twomodels with N0 = 20 customers.

It should be noted that with the high level parameterization, and the conse-
quent simplified layout of the equivalent model, it is NOT possible to compute the
Throughput and the Response time of each station. Indeed, at the system
level, we do not model the Visits, thus only the parameters at high level of aggre-
gation can be computed for each station, i.e., the global Utilization and the
Residence time. The values inside the boxes in Table 2.1 emphasize that in the
equivalent model the three servers have the same Throughput (measured in user
requests per time unit), that coincide with the System Throughput X0. This is
because the three servers in this model are visited only once, requiring the Service
demand Dr to each of them, are connected in series. Thus, we may compute only
the Residence times Rdr of the servers and not their Response times Rr

(since it is Rdr = Vr Rr ).

Table 2.1 Performance metrics for N0 = 20 customers obtained from the two equivalent models
parameterized at different levels of granularity (Visits and Service times and Service
demands, respectively)
Parameters used Performance metrics

R0 X0 UWS UAS1 UAS2 RdWS RdAS1 RdAS2 XWS XAS1 XAS2

Visits and
Service
time (Fig. 2.7)

2.4 8.32 0.419 0.993 0.618 0.082 1.14 0.184 82.13 49.32 24.74

Service
demands
(Fig. 2.15)

2.4 8.31 0.415 0.992 0.622 0.083 1.14 0.185 8.31 8.31 8.31
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The operational analysis laws can be applied also to models parameterized with
Service demands. For example, using the Forced Flow law Xr = X0 Vr , the
Utilization law becomes

Ur = Xr Sr = X0 Vr Sr = X0 Dr (2.3)

From Table 2.1 it is possible to see that Eq. 2.3 is verified with the metrics obtained
from the model parameterized with the Dr . For example, for the server WS it is
UWS = 8.31 x 0.05 = 0.415 that coincides with the measured value of UWS . Note
that the results of the two models may not coincide exactly as we are in simulation
and we know only the confidence intervals of the computed variables. Wemay verify
also that, according to Eq. 2.3, the ratio of the Ur coincides with the ratio of the Dr :

UWS

UAS1
= 0.418 � DWS

DAS1
= 0.416

UAS1

UAS2
= 1.594 � DAS1

DAS2
= 1.6 (2.4)

The Little law applied to resource r using the Residence times becomes:

Nr = Xr Rr = X0 Vr Rr = X0 Rdr (2.5)

It should be recalled that the System Response Time R0 provided by JSIMg
comprises the time spent by a user request in the Reference station, that in
our model is the Users with Z = 1 s. So, it is R0 = RdWS + RdAS1 + RdAS2 +
Z = 2.409 s. Applying Little law at the system-level we have: N0 = X0 R0 =
8.31x 2.409 = 20 customers, as expected.

From the analysis of the Dr we can derive that the server AS1 is the most utilized
of the resources since DAS1 = 0.120 s is the largest of the Service demands. As
N0 increases it will be the first resource to saturate, i.e., it becomes the bottleneck of
the system, limiting the System Throughput to X0 ≤ 1/Dmax = 8.333 req/s.
With N0 = 20 customers we obtained X0 = 8.31 req/s (see Table 2.1) since AS1
is not completely saturated (it is UAS1 = 0.992).

2.4 Optimal Operating Point of a Server

tags: open, single class, Source/Queue/Sink, JSIMg.

We describe how to identify the optimal operating condition of a system that is
characterized by the highest Throughputwith the shortest Response time. A
system in this condition, referred to as optimal operating point, operates with maxi-
mum of efficiency, that is, it maximizes its productivity by introducing the minimum
delay. We consider a simple model of a system that is solved using both analytical
techniques (Queueing Networks) and simulation techniques (JSIMg model).
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2.4.1 Problem Description

Identifying the optimal operating point of a digital infrastructure is a problem that IT
managers face in their daily lives. Nowadays, this task is becoming more and more
important as the size of data centers and clouds continues to grow in the number
of servers, applications and users. The basic idea is that a small profit on a single
server can translate into a large profit when evaluated on hundreds of servers with
thousands of users.

Clearly, depending on the context considered, the notion of optimal operating
point assumes various definitions that translate into different actions. For example, it
can refer to the operating conditions that minimize the energy required to execute a
workloadwhile meeting the performance goals, or to the operating point that satisfies
the SLA (Service Level Agreement) by minimizing the number of allocated servers.

To simplify the description, let’s consider a single server that we assume is oper-
ating under the optimal conditions when its Throughput X is maximized and its
Response timeR isminimized. The load corresponding to this optimal condition
will be referred to as optimal load.

In this simple case, when the goal of the performance study is to identify the
load that maximizes the ThroughputX or the one that minimizes the Response
time R, the answers are easily provided. In fact, a resource generates the maximum
X when it is saturated and provides the minimum R when only one request is in
execution, that is, there is no contention. However, when X and R are to be compared
at the same time, a new metric must be used that considers the trade-off between the
two. To this end, belowwewill consider theSystem power�, ametric introduced
in [19] and extensively studied by Kleinrock [23, 24], defined as

� = X

R
(2.6)

The behavior of�may be considered in some way related to that of theQuality of
Service. Indeed, an increase in Throughput or a decrease in Response time
increases the System power, that may be considered in the SLA as indicator of
the Quality of Service delivered to the users.

In the next section we consider a system consisting of a single server modeled
with a Queue station (see, e.g., Fig. 2.1) that execute a homogeneous workload
(single class) with Interarrival times and Service times exponentially
distributed.

For this simple case, we describe the analytical computation of the optimal load,
and then we implement the correspondent model with JSIMg. The analytical deriva-
tion of � for more complex systems is not easy to obtain. However, it should be
emphasized that the JSIMg provides the System Power behavior for all simu-
lated models, regardless of their complexity. � is one of the metrics available in the
tool.
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2.4.2 Model Implementation

In this section we address the problem of the identification of the optimal operat-
ing point of a single server executing requests with Interarrival times and
Service times exponentially distributed. For its simplicity, we initially present
the analytical solution of this model that was derived in [23]. Below, we describe the
simulation results obtained with the corresponding model implemented with JSIMg.

The System Power � for the considered M/M/1 model is

� = λ

R
= λ (1 − λS)

S
(2.7)

where λ is the arrival rate and S is the mean service time of the requests. To find the
load λopt that maximizes � it is sufficient to set to zero its first derivative �′ with
respect to λ and derive the value of λopt . We have: �′ = (1/S) − 2λopt = 0, thus it
will be

λopt = 1

2

1

S
(2.8)

Therefore, according to Eq. 2.8, the optimal operating point is obtained with a load
λopt equal to half of the one corresponding to the maximum Throughput 1/S.
The Ropt , Uopt and Nopt are

Ropt = S

1 − λopt S
= 2S Uopt = λopt S = 0.5 Nopt = 0.5

1 − 0.5
= 1 req

Let us remark that Ropt is twice its minimumvalue S, the server is utilized at 50% and
the mean number of customers in the server is 1, 0.5 in queue and 0.5 in execution. In
this optimal condition, an arriving request has 50% of probability to find the queue
empty and the server idle. Figure 2.16 shows the behavior of � of a server with
S = 1 s.

An interesting observation can be obtained from the analysis of Fig. 2.16b which
shows thatSystem Power ismaximizedwith the load corresponding to the tangent
point of the straight line R = mλ from the origin to the Response time curve.
Equating to zero the discriminant of the equation that compute the intersection of the
two functions we obtain m = 4S2. Replacing it in the equation of the intersection
we obtain λ = 0.5(1/S), which has already been found as optimal load in Eq. 2.8.

This property allows to define the optimality condition as the one corresponding
to a load λopt for which the relative increase of the Throughput X is equal to that
of the Response time R. When it is λ < λopt it will be dX/X > dR/R therefore
an increase in λ increases the Throughput more than the Response time, so
the gain is higher than the loss. The opposite situation occurs when it is λ > λopt

since in this condition an increase of λ generates losses greater than the gains, i.e., it
is dX/X < dR/R.
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Fig. 2.16 Power � (a) and Response time R (b) versus Utilization with S = 1 s

This definition of the optimal operating point is valid for any Throughput and
any Response time functions. The metric System Power can be very useful
to implement load balancing policies based on machine learning and as a target
function in autoscaling components.

The implemented JSIMg openmodel consists of three stations:Source,Queue,
Sink (see, e.g., Fig. 2.1). TheService timesof theQueue are exponentially dis-
tributedwithmean S = 1 s. TheInterarrival times of the requests generated
by theSourcehave exponential distributionwith arrival rates ranging from0.1 to 0.9
req/s. Figure 2.17 emphasizes the selection of System Throughput, System
Response time, and System Power indexes (the last two are shown in the
graphs of Fig. 2.18).

2.4.3 Results

A What-if analysis is used with the arrival rate λ of requests as control
parameter with values ranging from 0.1 to 0.9 in 9 models. As can be seen from
Fig. 2.18, the values of R and � corresponding to the optimal load λopt = 0.5 req/s
are very close to the exact ones obtained analytically (R = 2 s, and � = 0.25). The
confidence intervals are very small.
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Fig. 2.17 Selection of the System Power index

Fig. 2.18 Response time R and System Power � obtained with JSIMg

2.4.4 Limitations and Improvements

• High variability of Service times: In [24] it is described the analytical deriva-
tion of � in simple models with exponential Interarrival times and high
variability of Service times (for M/G/1 stations).
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• Models with complex structure: Although we have described the use of System
power in models with a single resource, it should be clear that all the consider-
ations made can be applied also to open and closed models with more complex
structure and multiple resources. The identification of the analytical expression of
� in these models is clearly not so simple as the one of Eq. 2.7.

• Availability of Power index: JSIMg compute and plot the values of � for all the
simulated models, independently of their complexity.
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