
Performance
Engineering

Giuseppe Serazzi

Learning Through Applications
Using JMT

Performance Engineering

Giuseppe Serazzi

Performance Engineering
Learning Through Applications Using JMT

Giuseppe Serazzi
Milano, Pavia, Italy

ISBN 978-3-031-36762-5 ISBN 978-3-031-36763-2 (eBook)
https://doi.org/10.1007/978-3-031-36763-2

© The Editor(s) (if applicable) and The Author(s) 2024. This book is an open access publication.

OpenAccess This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribu-
tion and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-36763-2
http://creativecommons.org/licenses/by/4.0/

In memory of
Larry Dowdy, Martin Reiser, Paul Schweitzer, Kennet Sevcik

before the night falls

Preface

This open-access book aims to improve users’ skills needed to implement models
for performance evaluation of digital infrastructures. Models are widely used in
any branch of engineering. Unfortunately, their use for performance evaluation of
computing infrastructures is pretty much limited to modeling specialists and not to
their end-users, who have complete knowledge of the analyzed phenomena. Among
the reasons for this limitation, there is the intrinsic complexity of the modeling
process, which cannot be fully learned with the academic approach alone, and the
frequent use of unnecessary mathematical details, which typically create a fog shield
that hides the key features of the models. Furthermore, it is known that to increase
the ability to build reliable models, it is necessary to accumulate experiences that
can only be learned through trial-and-error work by solving problems of different
difficulties.

Based on these considerations, we tried to keep this book as simple as possible by
adopting the following guidelines. On one side, we present a collection of modeling
studies of increasing complexity, describing the assumptionsmade andmotivating the
decisions taken. Readers are introduced to the modeling process gradually, learning
the basic concepts step-by-step as they go through the case studies. On the other
side, we try to avoid superfluous exposure to mathematical concepts. For interested
readers, we reported in Appendix some basic notions that may be useful to know.

Among the various techniques used in performance evaluation modeling, we will
useQueueing Networks, possibly integrated with Petri Nets when the characteristics
of the models require it. This type of model provides a good balance between the
accuracy of results, complexity, and parameterization effort, for a large variety of
problems. Analytical, simulation, and asymptotic techniques are applied to solve the
models.

The book is structured in six Chapters and an Appendix. Chapter 1 is focused
on the description of the model building process. The input parameters, the output
metrics, and the operational laws are illustrated. Themost important steps to building
models to be solved with simulation and analytical techniques are reviewed. In the
following Chapters, fifteen case studies of increasing complexity covering different
aspects of performance evaluation are described.Webelieve that readers could benefit

vii

viii Preface

from analyzing these models by focusing on the abstraction process applied to their
design. In Chaps. 2 and 3, models of systems with homogeneous and heterogeneous
workloads are presented, respectively. The problem of bottleneck identification and
performance optimization is addressed for both types of workloads. Chapter 4 is
devoted to the analysis of the impact of variability of the traffic of requests and service
demands on throughput and response time. Chapter 5 focuses on parallel computing
and describes the influence of different synchronization policies on performance.
Chapter 6 presents four case studies derived from real-life scenarios: a surveillance
system, an architecture that autoscales for load fluctuations, a web app workflow
simulation, and a crowd computing platform. The autoscaler model consists of
Queueing Networks and Petri Nets integrated, i.e., it is a multi-formalism model.

The Java Modelling Tools (JMT), a open source suite of six tools for
performance engineering and capacity planning using Queueing Networks and Petri
Nets, were applied to build and solve the models. Details on JMT, which can be
downloaded from http://jmt.sourceforge.net, can be found in [8]. JMT
is a project coordinated and co-developed by Politecnico di Milano (G. Serazzi) and
Imperial College London (G. Casale).

This book is intended as a text for courses in performance evaluation andmodeling
for graduate and senior-level computer science students. Researchers and practi-
tioners whose work is related to performance evaluation of computer infrastructures
will find it useful as a reference text. It can be used also as a supporting text for
courses in disciplines outside of computer science that require the use of modeling
to evaluate the performance of their applications.

We hope you will find the learning through applications approach followed in
this book useful for your work, and apologize in advance for the mistakes you will
find. The author cannot be considered responsible for errors that you may introduce
in your work due to the content of this book.

Milano, Pavia, Italy
May 2023

Giuseppe Serazzi

http://jmt.sourceforge.net

Acknowledgments

The author wishes to thank Giuliano Casale for his important effort in supporting
the JMT project. Thanks to his fundamental coordination and co-development work,
the JMT suite has achieved the technical level it is recognized for. Thanks for your
scientific support!Special thanks also go toMarcoGribaudo, for the enlightening and
endless discussions that have increased my knowledge on performance modeling.
Thanks for your patience! The author is grateful to Andrea Sianesi and Eugenio
Gatti, respectively, President and General Director of the Fondazione Politecnico di
Milano, for supporting the publication of this book as Open Access. Thanks for your
enthusiasm in accepting my request!

Giuseppe Serazzi

ix

Contents

1 The Process of Modeling . 1
1.1 Model Implementation . 1
1.2 Inputs and Outputs of Models . 3
1.3 Parameterization of Simulation Models . 10
1.4 Parameterization of Analytical Models . 16

2 Systems with Homogeneous Workloads . 21
2.1 A Web Server with External Workload . 21
2.2 A Computing Infrastructure with a Closed Workload 27
2.3 Equivalent Model with Service Demands . 33
2.4 Optimal Operating Point of a Server . 37

3 Systems with Heterogeneous Workloads . 43
3.1 Parameterization of Heterogeneous Workloads 43
3.2 Motivating Example of Multiclass Models . 46
3.3 Performance Optimization of a Data Center . 54

4 Impact of Variability of Interarrival and Service Times 63
4.1 Importance of Distributions: A Motivating Example 63
4.2 Variability of Interarrival Times . 64
4.3 Variability of Service Times . 68

5 Parallel Computing . 73
5.1 Synchronization of All Parallel Tasks . 73
5.2 Impact of Variance on Synchronization . 80
5.3 Synchronization on the Fastest Task . 85

xi

xii Contents

6 Reference Models . 91
6.1 A Facial Recognition Surveillance System . 91
6.2 Autoscaling Load Fluctuations . 102
6.3 Simulation of the Workflow of a Web App . 118
6.4 A Crowd Computing Platform . 127

Appendix A: What May Be Useful to Know . 137

References . 145

Chapter 1
The Process of Modeling

1.1 Model Implementation

Typically building models is a fairly easy task, but making them accurate repre-
sentations of the phenomena to be reproduced is a completely different matter. The
potential sources of error are so many! Among them, the most frequent regard the
wrong interconnections of the components, the inaccurate values assigned to input
parameters and the incorrect use of the techniques and tools adopted to implement
and solve the models.

The construction of a model requires several iterations at different levels of gran-
ularity. At the highest level the user need to iterate many times between three differ-
ent operational environments: the Real world, the Abstract space, and theModeling
domain. The process of modeling is outlined in Fig. 1.1. In this book we will focus
primarily on the Modeling Domain phase.

Amodeling study typically begins in the real-world environmentwith the observa-
tion and measurement of the phenomenon that must be reproduced. The interactions
among the various components, or resources, must be assessed and their influence on
the behavior of the phenomenonmust be investigated. The variables that describe the
quantities that we measure or we want to estimate will be referred to as performance
metrics or indexes. Usually, some key components are very critical for the success
of the study for the strong influence they exert on the metrics of interest, while others
have a negligible impact on them. Since the effect on the results produced by the
latter are minimal or zero, they can be ignored without affecting the validity of the
model and thus greatly reducing its complexity.

Among the key components of the model it is very important to identify the most
requested one, i.e., the bottleneck, as it determines the performance of the overall
system. The saturation condition of the bottleneck depends on the characteristics of
both the service requests and the component itself. Note that due to the typical fluc-
tuations of a workload, both in the intensity and in the amount of work required, the
bottleneck canmigrate amongdifferent resources generating abrup changes in perfor-
mance. Ignoring this condition may invalidate the entire modeling study. Bottleneck

© The Author(s) 2024
G. Serazzi, Performance Engineering,
https://doi.org/10.1007/978-3-031-36763-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36763-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-36763-2_1

2 1 The Process of Modeling

Fig. 1.1 Operational
environments involved in the
modeling process

migration is very common when the workload consists of different applications with
highly variable service demands.

The technical features of the components, the assumptions introduced, the work-
load considered, and the statistical properties of the variables usedmust be accurately
described. Depending on the type of study, the data required for these operations can
be derived directly from measurements or must be generated by analytic functions.

The knowledge gained from the analysis of the real-world phenomenon will be
merged in the Abstract space (see Fig. 1.1) with the technical background of the
modeler. In this phase, decisions on the modeling technique to be adopted, on the
plausibility of the assumptions introduced, on which components should be consid-
ered, on the metrics to be used, and many others must be taken. The actions that must
be done in the abstract space rely upon the experience and creativity of a person
rather than her/his technical background. These skills can neither be learned with an
academic approach nor passively absorbed; instead them build up with experience
gained through daily trial-and-error work.

Thework in the abstract space endwith the implementation of a first version of the
model. We are now entering in themodeling domain. The process of implementing a
model is intrinsically iterative and an incremental approach is usually adopted, and
strongly recommended.

The components represented in the model are progressively increased starting
from a small initial set that must include the bottleneck and other key components
that have a great impact on the results. At each iteration the complexity of the model
is increased until the level of detail of the metrics obtained matches that of the
objectives of the study.

Once a model with its workload are completely defined and parameterized, the
validation phase starts to assess its accuracy. Several methods of analysis are used
to evaluate different properties of the model. The techniques adopted are function of
the type of study to be conducted.

1.2 Inputs and Outputs of Models 3

A model should be calibrated,its sensitivity and robustness must be assessed, its
performance must be forecast with a projection technique, and the domain of valid-
ity of its results must be evaluated. Typically, a validation technique requires several
iterations at low level of granularity. When the system to be analyzed is operating,
the performance metrics obtained as model outputs must be compared with those
measured from the real system while it processes the production workload. In this
case, the calibration of the model consists in the tuning of its input parameters so that
the differences between the two sets of performance metrics (the measured outputs
compared to those of the model) are negligible or at least tolerable. In case of unac-
ceptable differences, the input parameters must be recomputed and the assumptions
introduced (including the layout of the model) should be revised.

Great attention must also be paid to the selection of the measurement interval (the
observation interval) in which data on the behavior of the system components and
the workload executed are detected. The data must be collected when the workload
processed is representative of the load that is typically executed by the system.
In some cases, the measurement period may consist of several disjoint intervals.
The main steps of the modeling design process and the operations required by the
incremental approach are shown in Fig. 1.2.

1.2 Inputs and Outputs of Models

Any computing system can be viewed as a set of resources (hardware and soft-
ware) that execute the processing requests submitted by users. Therefore, the input
parameters of a model can be divided into two groups regarding the load and the
resources, respectively. Depending on the system being modeled, in the following
processing requests will hereinafter be interchangeably called jobs, applications, cus-
tomers, requests or users, and the resources will be referred to as stations, elements,
components, or service centers.

The arriving requests are collectively called workload, while workload character-
ization refers to their quantitative description [11]. When the individual workload
components have similar characteristics, they are grouped together and their statisti-
cal parameters, such as mean, standard deviation, and distribution, are used as inputs
to models. In this case, the workload is referred to as homogeneous or single class
and the models are called single class models. The components of a workload that
consists of various types of applications typically have significantly different service
demands. In this case, several groups of components with similar characteristics
must be identified and the workload is referred to as heterogeneous or multiple class
(multiclass). Each class will be described with its statistical characteristics.

In this Section we focus on the inputs and outputs of single class models. With
multiple classworkloads the notations becomemore complex (an index for the classes
must be added to the identifiers of the stations), but the meaning of the parameters
remain the same. Models with single class workloads will be described in Chap. 2
while models with multiclass workloads will be analyzed in Chap. 3.

4 1 The Process of Modeling

Fig. 1.2 Incremental approach to model building

1.2 Inputs and Outputs of Models 5

Table 1.1 Some basic input parameters and output measures of single class queueing network
models with queue and delay stations

Component-level
(index r)

System-level (index 0)

Input parameters t ype of component (queue, delay,
...)

model type: open, closed

Vr number of visits per each job
execution

K total number of components

Sr service requirement per visit λ0 jobs arrival rate (open models)

Dr service demand of a job N0 number of jobs in syst. (closed
models)

Zr think time (for delay component) Reference station

Output measures Xr throughput of the component

Nr number of requests in the
component

X0 system throughput (closed
models)

Ur utilization N0 number of jobs in syst. (open
models)

Qr queue time (for queue
component)
Rr response time of a request
Rdr residence time of a job

R0 system response time

Since performance models can be implemented at different levels of detail, the
metrics described in Table 1.1 are divided in two groups whether they refer to the
component-level or to the system-level. These metrics are the basic ones
used in single class models consisting of queue and delay stations. In a queue
station requests compete for the server and wait in queue to receive service, then
leave the station when finished. In a delay station there is no server competition as
it is assumed that there is always a free server for all incoming requests.

In single class models, the class index can be avoided. When a metric refer to a
single component of themodel, the subscript identify the specific element considered.
The subscript 0 (zero) is used to identifymetrics which refer to the system as a whole.
For clarity, whenever possible, we will refer to the service requests arriving at each
station in a component-level model as simply requests. In system-level models, the
computational requests submitted by the users will be identified as jobs or customers
interchangeably.

A description of some basic input parameters and output results for models that
use queue and delay stations follows. The algebraic relationships among some of
them, derived in [10, 16, 26], are also reported. Metrics for other types of stations,
e.g., fork/join, finite capacity regions, Petri Nets place/transitions, will be described
in the case studies where they are used.

Throughout this book we have tried to keep the description as general as possible,
but since we have used the JMT Java Modelling Tools to solve the models,
it has sometimes been necessary to refer to terms specific to the individual tools

6 1 The Process of Modeling

used, i.e., JSIMg (the Simulator), JMVA (the Analytical solver), and JABA (the
Asymptotic Bound Analyzer).

The open source JMT suite can be downloaded from http://jmt.sourceforge.net.
Let us remark that a large part of the queueing networks solved with analytical

techniques are of separable type. This subset of general queueing networks can be
solved analytically with very efficient algorithms. Clearly, the property of being sep-
arable introduces some restrictions to the system characteristics that can be modeled.
Some of them concern the concurrent use of resources, the constraints on the num-
ber of requests, the adaptivity of the routing, the priority scheduling algorithms, the
blocking policies, the creation and deletion of jobs, the dynamic change of Service
times (see Sect.2.3 and, e.g., [4, 25]).

Often these limitations have a minimum impact on the behavior of the system
modeled and can be bypassed easily changing the assumptions adopted. In some
cases, system characteristics that cannot bemodeled directlywith separable networks
may have a negligible influence on performance. In other cases, the global model can
be splitted in several sub-models, some separable and other not, that may be solved
with different techniques. The results obtained from the solution of the individual
sub-models can then be combined with various techniques in order to obtain the
solution of the original global model.

In any case, it is important to note that these limitations only affect models that
are solved analytically, while those solved with simulation are not (or minimally)
affected.

Input Parameters

Open/Closed (types of workloads, types of models)
Workloads, like models, may be of two types: open or closed. When the workload is
open, the number of customers in the model is fluctuating and can grow indefinitely
as a station becomes saturated, while with a closed workload this number is kept
constant. An example of an open workload is the flow of requests arriving from a
Internet connection, which is usually quite bursty. The models that execute open
workloads are referred to as open models while those executing closed workloads
are called closed models (see Fig. 1.3).

An example of a closed workload is a computing infrastructure that can only be
accessed by employees of a company. The number of customers is fixed and limited
to the company employees. When the maximum number of customers that can be
in execution simultaneously is reached, a new customer can enter the system only
when a customer completes its execution. In simulation models with open workloads
the customers arriving to the system are generated by a Source station, and at the
end of the execution are routed to a Sink station (in JSIMg also Fork, Class
Switch, and Transition stations may generate customers). Models with both
types of open and closed workloads running concurrently are also possible, and are
referred to as mixed models.

http://jmt.sourceforge.net

1.2 Inputs and Outputs of Models 7

Fig. 1.3 Examples of the two basic types of models: open (a) and closed (b)

λ0–Interarrival times (workload intensity in open models)
Describes the characteristics of the incoming flow of requests arriving at the system.
In analytical models (JMVA), the exponential distribution of Interarrival times is
typically assumed as default, and in this case only the arrival rate λ0 is required. In
simulation models (with JSIMg), different types of distributions (e.g., burst, hyper-
exponential, Erlang, Pareto, etc.) may be selected and some related statistical indexes
should be defined. The number of these parameters varies as a function of the distri-
bution.

N0–Number of customers in the model (workload intensity in closed models)
This parameter in closed models refers to the mean number N0 of customers in the
model. A job arrives at the system, circulate among the service stations (the resources
of the system), and then departs at the completion of the execution. In closed models
it is immediately replaced by a new job with the same characteristics, keeping N0

constant.

Type of component: Queue, Delay, Source, Sink, Class Switch,
Fork/ Join, Semaphore, Place/Transition, Finite Cap.
Region, Router
In a model, the components representing system resources can be of different types.
The most used components in analytically solved models are typically of two types:
queue and delay. In queue components, requests arrive, compete for the server,
wait in the queue when it is busy, execute when it becomes idle, then exit. A delay
component simply introduces a delay in the flow of requests, but no queue is cre-
ated. In this case, an arriving request will always find an idle server since they are
assumed to be infinite.Manymore types of components are used in simulationmodels
depending of the tool considered and the complexity of the system to bemodeled. For
example, in JSIMg Fork and Join stations are used to simulate parallelism, FCR
Finite Capacity Regions to control access to model regions, Semaphore
to block selectively the requests, Place and Transition to simulate Petri Nets.

8 1 The Process of Modeling

Vr–Number of visits per job (to each component)
During its execution, a job visit the components (CPU, disks, storage, ...) several
times before leaving the system. Vr is the mean number of visits, also referred to as
visit count, that a job makes to station r during its complete execution.

Sr–Service time per visit (for queue components)
The mean time required to component r to execute one service request, correspond-
ing to one visit, is referred to as Service time. This value does not include the
time waiting in queue when the server is busy. The mean value of Sr and/or other sta-
tistical indexes (distribution, variance, coefficient of variation, etc.) must be provided
according to the technique adopted to solve the model (analytical or simulation). See
also comments made above for Interarrival times.

Dr–Service demand per job (for each component)–Dr = Vr Sr Dr = Br / C .
The global amount of service time required by a job to component r for a complete
execution is referred to as Service demand Dr . Its value is given by the product
of the Service time Sr required by a visit to the component r by the Number
of visits Vr that the job makes to it. The Dr are important because it can be
shown that the solution of most queueing networks does not depend on the single val-
ues of Vr and Sr but only on their product, i.e., only the service demandmatters. This
property, exhibited by separable queueing networks, is important as its application
reduce the number of input parameters and the complexity of the models. Further-
more, the Dr can be measured more easily than Vr and Sr since, very often, their
values are stored directly in the system log files. Another possibility to obtain the
values of the Dr is to divide the total busy time Br of component r by the number of
jobs C completed in the observation interval. The high level of aggregation adopted
in the models that use the Dr makes it impossible to compute the Throughput and
Response time at the single component level, while the performance indexes at
the system level are obtained correctly. A more detailed description of Service
demands and separable networks can be found in the Case Study Sect. 2.3.

Z–Think time per visit (for delay components)
In a delay component, the requests never wait in queue since a server is always
available for their execution which therefore always takes on average Z time units
(this time is typically referred to asThink time). Z is the correspondent of service
time S of queue components and can be considered as the mean delay introduced by
a delay component to the flow of requests that goes through it. A delay component
is often used to represent the users in closed models. For this reason it is commonly
selected by default as Reference station of a model.

1.2 Inputs and Outputs of Models 9

Reference station for each workload class (at system level)
The station used to compute the performance indexes at the system level (throughput,
response time, global utilization of resources, etc.) is referred to as Reference
station (RS). When a job flows through an RS, in most cases it is implicitly
assumed that its execution has completed and therefore it is leaving the system.
In this case, a job visits the RS only once during its life and for this reason the
delay station that in most models simulates the users is often selected as RS. How-
ever, any of the components of the model may be selected as RS. Clearly, all the
performance indexes are affected by this choice. To compute their values, the vis-
its to each component of the model must be scaled with respect to those made to
RS. In open models JSIMg assumes by default a Source station as RS. When a
job completes its execution, its performance indexes are computed considering the
time interval elapsed between its generation from the Source and its exit from the
Sink. In closedmodels any station can be selected asRS. In this case its performance
indexes are calculated considering the time elapsed between its generation from RS
and enters the model and the time it exits the model and reaches the RS (see Fig. 1.3).

Output Measures

X0–System Throughput (at system level)–X0 = N0/(R0 + Z)closed model
λ0 = N0/R0 open model Little Law
This metric represents the rate at which the jobs complete their executions and leave
the system. To compute this metric it is fundamental to know which is the Reference
station of the model since only the jobs that visit it have completed their executions.
Without loss of generality, the visit to the external part of the model is often assumed
to be one. X0 may be computed applying Little law to the system as a whole (see
Fig. 1.3).

N0–Number of jobs (at system level)–N0 = X0(R0 + Z) closed model
N0 = λ0R0 open model
In open models the number of jobs in the system is an output metric since it depends
on the arrival rate and on the contention of the components. When the utilization of
a component is close to one it saturates and the value of N0 grows to infinity.

R0–System Response Time (at system level)–R0 = (N0/X0) − Z closed model
R0 = N0/λ0 open model
The amount of time required by a complete execution of a job is referred to as
System Response Time. In closed models, it can be seen as the time interval
between two consecutive visits to the Reference station by the same job
(the first corresponds to the instant of time in which the job is generated and the
second to the instant of its completion). In open models, R0 corresponds to the time
interval between the generation of a job by the Source station and the moment in
which it completes its execution and reaches the Sink station. Since the models are
in equilibrium and each job entering the system visits the Sink usually once, the
Source can be considered as Reference station.

10 1 The Process of Modeling

Xr–Throughput of component r–Xr = X0Vr Forced Flow law
Number of requests processed in a time unit by the component r . Note that the unit of
measure is requests per unit of time and not jobs per unit of time (used by System
Throughput). When the Service demands Dr instead of the Visits Vr and
Service times Sr are used as input parameters, the Xr cannot be obtained from
the model. In this case, the throughput of each component is equal to X0. The rela-
tionship between X0 and Xr are obtained from the Forced Flow law.

Nr–Number of requests in component r
In a queue component, this metric refers to all the requests in the station, whether
waiting in queue or in execution. In a delay component all the requests in the station
are in execution, thus Nr corresponds to the mean number of requests in service.

Ur–Utilization of component r–Ur = Xr Sr = X0Vr Sr = X0Dr Utilization law
Fraction of time the server of a queue component r is busy (in a station with one
server). In a delay component this value corresponds to the mean number of requests
in service.

Qr–Queue time of component r (per request)–Qr = Rr − Sr
Mean time spent in queue waiting for the server in a queue component.

Rr–Response time of component r (per request)–Rr = Nr/Xr

Mean time required to execute the processing request of one visit to component r .
Its value includes all time spent in the component during a visit, whether waiting in
queue or being served. The unit of measure is the time per request. If the number of
servers of the queue component is one, then it will be: Rr = Qr + Sr .

Rdr–Residence time of component r (per job)–Rdr = Vr Rr

The total time spent by a job at component r during its complete execution (including
both the time spent in queue and the time being served) is referred to as Residence
time Rdr . While the Response time Rr is local to a component (i.e., it may
be computed considering only the Response times of one visit to the resource),
to compute the Residence time Rdr of a resource it is necessary to know the
Number of visits Vr that a job makes to the resource during its complete
execution (seeAppendixA.1). The unit ofmeasure is job. TheSystem Response
Time is the sum of the Residence times of all the components of the model.

1.3 Parameterization of Simulation Models

The sequence of operations required to implement amodel is clearly influenced by the
techniques and tools used. In this section we restrict our attention to the simulation
which, compared to other techniques, allows for maximum generality in terms of
system architectures that can be modeled and adoptable assumptions.

1.3 Parameterization of Simulation Models 11

In the following description of the steps required to implement a simulationmodel
(see Fig. 1.4) we tried to be as general as possible. However, since the models were
solvedwith the JSIMg simulator, its characteristics clearly influenced the sequence of
operations performed. The figures mentioned in the flowchart of Fig. 1.4 show some
user-interface windows for setting the parameters required by the steps represented.

Implementing a model begins with describing its components and their intercon-
nections. Depending on the types of user interface available, a graphical (see, for
example, the model of Fig. 1.5 created with JSIMg), or other type (e.g., wizard) of
description can be done.

The parameters for the workload characterization are: type of customers
classes (open or closed), arrival rate and distribution of inter-
arrival times (in some cases also other statistical parameters are required) for
open classes, number of customers for closed classes, and Reference
station. In Fig. 1.6 the following parameters for Class1 are set: open class,
arrival rate λ = 1 req/s, exponential distribution of interarrival times,
and the station Source1 as Reference station. To select different arrival
rates or distributions, simply click on the Edit button and the list of available distri-
butions will be shown. With multiclass workloads the parameters of each class must
be provided.

The next step is setting the station parameters for all workload classes. In JSIMg,
the parameters for a Queue station are organized into three sections: Queue,
Service, and Routing. In the Queue Section, the Capacity size (max
number of customers allowed in the station, in queue and in service), the type of
scheduling algorithm, the queue policy, and the Drop Rule (in sta-
tions with limited capacity) are set. In the Service Section, the Number of
Servers of the station, the type of service Strategy whether load indepen-
dent or load dependent, and the statistical parameters of the Service Times
Distribution are set. In the Routing Section the routing strategies of jobs
on the interconnections automatically detected among the stations may be described.
For example, in Fig. 1.7, for station Queue1 the Probability has been set
as Routing Strategy, and the customers in output are sent to Queue2 with
probability 0.3 and to Queue3 with probability 0.7.

The next step concerns the selection of the metrics (performance indexes) that
must be computed with the model. Usually, for each metric, several statistical vari-
ables must be set. In JSIMg (see Fig. 1.8) the following parameters are required: the
class of customers and the station (or the entire system) considered, the confidence
level (see Appendix A.2 and, e.g., [36, 37]), the maximum relative error, and the
decision whether to generate the file with all the collected values of the metric ana-
lyzed or not. In Fig. 1.8 five indexes concerningClass1 customers are selected: two
aggregated at system level (System Response Time and System Number
of Customers), and three at the Queue1 station level: (Response time,
Number of customers, and Utilization). For the Response time, the
generation of the CSV file with all the values of the samples analyzed is required
(i.e., theStat.Res checkbox isflagged). The99%confidence level (default
value) is required for all the indexes and the max relative error tolerated is

12 1 The Process of Modeling

Fig. 1.4 Main steps to implement a simulation model with JSIMg. Figure numbers in the flowchart
refer to examples of the corresponding screenshots

1.3 Parameterization of Simulation Models 13

Fig. 1.5 Example of the graphical representation of a model using JSIMg

Fig. 1.6 Definition of the parameters for the open class Class1

0.03. The simulator no longer collects data of an index when the required accuracy
is achieved.

When the simulation starts, for each selected index agraph like the oneofFig. 1.9 is
plotted.As the simulation progress, the behavior of the confidence intervals and of the
mean value of each index are shown together with the number of samples analyzed.
According to the request (see the Stat.Res. checkbox flagged in Fig. 1.8), the
CSV file was generated with all the values of Response times and the statistical
indexes were computed. The CSV file will contain, among the other variables, the
values of the percentiles (see the example of Figs. 2.10, 2.11).

14 1 The Process of Modeling

Fig. 1.7 Parameters of the Routing Section of Queue1 station

Fig. 1.8 Performance indexes to be collected, their precision and statistical requirements

Most of the performance studies require the evaluationof the impact on systemper-
formance of one or more parameters. To meet this objective it is necessary to execute
a sequence of models increasing (or decreasing) at each step the value of a parame-
ter, e.g., Arrival rate or Number of customers, referred to as Control
parameter. To make this process efficient, many simulators show a feature called
What-if. For example, Fig. 1.10 shows the Response times obtained from
the execution of 10 models with Class1 customer Arrival rate increasing
from 0.2 to 1.2 job/s. Mean values and confidence intervals are also reported.

1.3 Parameterization of Simulation Models 15

Fig. 1.9 Response times of Queue1 station: mean value and confidence intervals computed
on different samples collected during the simulation progress

Fig. 1.10 Response times of Queue1 station as a function of the Arrival rates

16 1 The Process of Modeling

1.4 Parameterization of Analytical Models

In this section we will outline the steps required to implement a model that will be
solved with a analytical technique. As can be seen from Fig. 1.11, these steps are not
very different from the ones already described for the simulation models in Fig. 1.4.
Clearly, the analytical technique and the tool adopted introduce some peculiarities
on the operations that can’t be found in simulation.

As a function of the solution algorithm adopted, the analytical techniques can be
subdivided in exact, approximate, and asymptotic. Each technique has its own param-
eters. In the following, we will refer to models solved with Mean Value Analysis
(MVA) technique [25, 31] using the JMVA tool. The MVA algorithm compute the
exact values of performance indexes, but has several limitations in terms of system
characteristics that can be modeled.

In the screenshot of Fig. 1.12 the MVA has been selected as solution algo-
rithm for the closed class Class1 of 10 customers. The tabs are reported
with the sequence that must be followed for the parameter settings: Classes,
Stations, Service times, Visits, Reference station,
What-if. In Fig. 1.13 the mean values of the Service times of the three
stationsCPU, Storage1, and Storage2 are set. As requested by theMVA algo-
rithm, the values of these parameters are considered exponentially distributed. The
visits to the three stations are VCPU = 10000, VStorage1 = 5499, VStorage2 = 4500.

In simulation models, to minimize the overhead introduced by the collection
of the data, users should select only those performance indexes interested in the
study. In analytical models, however, a consistent set of indexes is always com-
puted as their derivation is very fast (see, e.g., Fig. 1.14). In Figs. 1.15 and 1.16 the
Utilizations and the Residence times of the three stations are plotted for
the Number of customers ranging from 10 to 100 (90 models were executed
with a What-if analysis). The values of the performance indexes are also provided
in tabular form.

1.4 Parameterization of Analytical Models 17

Fig. 1.11 Main steps for the implementation of a JMVA model solved with analytical tech-
nique. Figure numbers in the flowchart refer to examples of the corresponding screenshots

18 1 The Process of Modeling

Fig. 1.12 Selection of the MVA solution algorithm and settings of one closed class Class1 with
10 customers

Fig. 1.13 Settings of the Service times of the three stations

1.4 Parameterization of Analytical Models 19

Fig. 1.14 Throughput of the three stations. All the performance indexes are computed

Fig. 1.15 Utilizations of the three stations as a function of the Number of customers

20 1 The Process of Modeling

Fig. 1.16 Residence times of the three station as a function of the Number of
customers

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 2
Systems with Homogeneous Workloads

2.1 A Web Server with External Workload

tags: open, single class, Source/Queue/Sink, JMVA.

The models for analyzing the performance of a system can be developed at different
levels of detail and with a single element that can represent the system as a whole
or just one of its components. In spite of their high level of aggregation, models in
which the resources of a system are collectively represented with a single component
(i.e., the system is modeled as a black box) yields in many cases interesting results.
These models can also provide useful insights for the evaluation of more complex
scenarios.

To solve the model presented in this section we use the analytical tool JMVA that
applies the classical Queuing Networks equations.

2.1.1 Problem Description

A capacity planning study is required to model a web server utilized for the distribu-
tion of technical documentation concerning the products of a company and accessible
by a high number of users through Internet. Requests arrive at the server from the net-
work, compete for the resources, and once executed leave the system, see Fig. 2.1a.
These models are usually referred to as open models. The workload consists of a
single request class. The requests have similar service demands, are independent
each other and arrive to the server with exponentially distributed interarrival times.
We consider a simple high-level aggregated model, i.e., a single queue station, repre-
senting the web server accessed by a request only once before leaving the station, see
Fig. 2.1b. This single-station model may seem inadequate to describe a web server
that has at least two resources, a CPU and a storage, that are visited many times by
the requests during their execution.

© The Author(s) 2024
G. Serazzi, Performance Engineering,
https://doi.org/10.1007/978-3-031-36763-2_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36763-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-36763-2_2

22 2 Systems with Homogeneous Workloads

Fig. 2.1 Web server model at high level of abstraction

However, there are several problems in which single-station models yield inter-
esting results. Among the motivations that make them useful in many situations
are:

• it is common the case in which only one resource of a system is the dominant
concern for the performance objectives, while the remainder components have a
negligible impact on them. Modeling this critical resource clearly provides useful
information about overall system performance.

• usually, one resource ismuchmore utilized than the others (i.e., it is the bottleneck)
and is largely responsible for the overall system performance. Models with only
this resource can provide accurate predictions of the overall system performance.

• a technique to implement large models is to partition them in smaller submodels
and to study them in isolation. The solutions of the submodels are then combined
in order to analyze their impact on the behavior of the global model. The station
used to represent collectively the stations of a single submodel is called FES, Flow
Equivalent Server. The objective of a FES station is to introduce in the flow of
requests the same delay as the submodel it represents (see, e.g., Chap. 8 of [25]).

The assumption of single class workload is important in many situations for the
accuracy of the models. When the workload components have significant differences
in resource requirements, i.e., when there are multiple class requests, the bottleneck
may migrate among resources as a function of the fluctuations of the mix of requests
in execution (see, e.g., [2, 3]). The effect of this migration may be dramatic for the
accuracy of the results. With single class workloads the bottleneck does not switch
among resources provided that all of them are load independent, i.e., their service
time is not a function of the number of requests that are in the resource (waiting in
queue and in service).

Concerning the single visit hypothesis, this should not be a concern. Depending
on the abstraction level of themodel, it may not be necessary to explicitly describe the
load of each component r of a system at the lower levels of detail using the Service
times Sr and the Visits Vr but it is sufficient to consider the global Service

2.1 A Web Server with External Workload 23

demand Dr placed on each of them during a complete execution (i.e., Dr = Vr Sr).
To reduce the number of parameters and the effort required by their measurement,
we will parameterize most of the models with the Service demands Dr .

2.1.2 Model Implementation

We consider a simple open model at high level of abstraction, i.e., system-level,
(see Fig. 2.1b) consisting of a single queue station Queue 1, representing the web
server that is accessed by the requests generated by the Source. Once executed, the
requests leave the queue station for the Sink. In these open models the number of
requests in execution is not controlled by the system itself but depends on the char-
acteristics of the traffic generated by the Source (rate and fluctuations of arrivals,
service requirements). Depending on these parameters, a system can be flooded with
requests whose number can suddenly grow to very high values.

Requests are assumed to be independent of each other and arrive at the server
at random times. This is equivalent to saying that Interarrival times are
exponentially distributed. All the requests are considered statistically equal, i.e., are
indistinguishable each other, and leave the server at random times. The randomness
of the departure times has as the consequence that the Service times S, i.e., the
time requirement per visit, are exponentially distributed.

All requests arriving at the station can be accepted for execution, i.e., there is
enough space to store themall that cangrow indefinitely. This type of station is usually
referred to as M/M/1 station (see, e.g., [36, 37]). The arrival rate is λ = 0.2 req/s,
thus the average Interarrival time is 1/λ. The average time required by a
complete execution of a request is 1 s. This time usually is referred to as Service
demandD of a request, but since the number of visits to the server in the aggregated
model is one, its value coincides with the Service time S. Thus, for simplicity,
we will use the notation S instead of D in this example. The requests are served
according to their order of arrival, i.e., with a FCFS scheduling.

With the hypotheses considered, this model can be solved analytically with the
classical Queueing Networks equations implemented in the JMVA.

2.1.3 Results

In what follows we will describe the operations required to achieve some of the
objectives (referred to as Obj.1–Obj.4) of the capacity planning study.

Obj.1: implement a model of the server and compute the performance indexes
with the parameters above described
In Fig. 2.2 the input parameters for the model solved with QN (Queueing Networks)
equations are shown. Some of the performance indexes computed by the model are

24 2 Systems with Homogeneous Workloads

Fig. 2.2 Input parameters of the JMVA for the open model of Fig. 2.1b

shown in Fig. 2.3. The mean number of requests N in the server is 0.25 req
and the mean Response time is 1.25 s. To check the correctness of the results
we computed the values of the same indexes with the exact equations of Queueing
Networks:

N = U

1 −U
= λ S

1 − λ S
= 0.25 req. R = S

1 −U
= S

1 − λ S
= 1.25 s (2.1)

Obj.2: compute the behavior of the performance indexes when the workload
increases to λ = 0.9 req/s.
A What-if analysis is required with Arrival rate as Control
Parameter ranging from 0.2 to 0.9 req/s. In Fig. 2.4 the parameterization of the
What-if (100 models are requested) and the behavior of two performance indexes,
i.e., the Throughput X and the Response time R, are shown. Since in the
model there is only the Queue1 station, its Throughput and Response time
coincide with the ones of the System. The linear behavior of the Throughput X
is correct since we increase linearly the Arrival rate λ from 0.2 to 0.9 req/s
and the models are in equilibrium, i.e., it is λ = X . The maximum Throughput
of the server corresponds to the saturation load λsat = 1/S = 1 req/s.

2.1 A Web Server with External Workload 25

Fig. 2.3 Some of the performance indexes computed by the JMVA

Fig. 2.4 System Throughput and System Response Time of 100 models with
Arrival rates λ ranging from 0.2 and 0.9 req/s obtained with a What-if analysis

26 2 Systems with Homogeneous Workloads

Fig. 2.5 What-if analysis: tabular results of the System Response Times corresponding
to the Arrival rates λ = 0.793 and 0.801 req/s

Obj.3: according to themarketing department forecast, amaximum Response
timeR = 5 s can be tolerated. Compute the maximum increase of the workload
that satisfy this constraint (% with respect to the original λ = 0.2 req/s).
We can use the results provided in tabular format from the What-if analysis made
in the previous step. Figure 2.5 shows the Response times of models 85 and 86
that are just above and just below the value R = 5 s (4.85 and 5.02, respectively). The
arrival rates used in the two models are 0.793 and 0.801 respectively. So we
are sure that λ = 0.793 req/s satisfy the constraint. Just as a simple check, we may
use Eq. 2.1 to derive the value of λ corresponding to R = 5 s and S = 1 s. We obtain
λ = 0.8 req/s. Thus, the increment of the workload tolerated is 300%.

Obj.4: a new set of complex technical manuals are expected in the near future
whose Service demand is assumed to be S = 2 s. What will be the System
Response Time R with an expected arrival rate double the actual one (i.e.,
λ = 0.4 req/s)?
New values for the input parameters S = 2 s and λ = 0.4 req/s must be set. The
corresponding value of System Response Time is R = 10 s.

2.2 A Computing Infrastructure with a Closed Workload 27

2.2 A Computing Infrastructure with a Closed Workload

tags: closed, single class, Delay/Queue, JSIMg.

In this section we describe a model of a computing infrastructure with a closed work-
load (see Sect. 1.2) solved with the simulation technique. The main characteristic
of this type of workload is that the number of customers in execution is constant. A
new customer enter the system when a customer complete its execution.

On the basis of the assumptionsmade, this model could also be solved analytically
with JMVA.However, we have used the simulation technique to provide a first simple
example of implementing a model with a simulator. Furthermore, it should be noted
that simulation is by far the most popular modeling technique used in performance
engineering. Indeed, simulators are very powerful tools and the set of models they
can implement is practically unlimited given the great generality offered in terms of
characteristic of the systems and type of assumptions that can be represented.

2.2.1 Problem Description

A computing infrastructure, located in a large data center, is used to execute appli-
cations that are very critical to the company’s business. This infrastructure adopts
very high security techniques to control accesses that are reserved only to a lim-
ited number of authorized employees. It mainly consists of three servers: a Web
Server (WS) and two servers (AS1 and AS2) dedicated to the Application
and Storage functions, see Fig. 2.6a.

Due to the apps executed, the resource requirements of the user requests are simi-
lar, i.e., theworkload is single-class. TheService times of the three servers have
different mean values, and are assumed exponentially distributed. The probabilities
(i.e., the routing probabilities) that the requests in output from the Web Server are
routed to servers AS1 and AS2 are known. In some problems, instead of the routing
probabilities, the visits that a request perform to each resource during its execution

Fig. 2.6 The computing infrastructure considered (a) and the corresponding queueing network (b)

28 2 Systems with Homogeneous Workloads

are known. These two sets of values are related each other and to derive one set from
the other it is required to know the topology of the network. In Appendix A.1 it is
described how to obtain the relationships between the routing probabilities and the
visits for the topology considered in Fig. 2.6b. Assuming that when a request leaves
the model it has been completely executed, i.e., that it is V0 = 1, we have:

VWS = 1

p0
= 10 VAS1 = p1

p0
= 6 VAS2 = p2

p0
= 3 (2.2)

Models can be parameterized with one set of values or the other. JSIMg accept
both types of parameters. The scheduling algorithm adopted by the resources is
FCFS.

2.2.2 Model Implementation

Since the number of users (i.e., the employees authorized to access the computing
infrastructure) is constant, we implement a closed model with four stations: one
delay and three queue, see Fig. 2.6b. Each user submit one request. The probabilities
pi ’s that after a visit to the Web server WS a request is routed to App&Stora-
ge servers ASi are known. The index 0 is used to represent the world outside
the system, and the metrics with index 0 are at system-level. Therefore, X0 and R0

represent theThroughput and the Response time of the global system, and p0
is the probability that a request leaves the system as it has completed its execution.
We assume that a request is routed to this path only once in his lifetime, so the
number of visits V0 that it performs outside the system is one. According to
the layout of the model it is

∑2
i=0 pi = 1.

The workload is generated by a station external to the system representing the
Users, that we consider as Reference station. This station is used to com-
pute the System Response Time R0 and the System Throughput X0 .
R0 is defined as the period of time between the instant in which a request enters
the model (leaving the Reference station) and the one in which it leaves the
model (entering the Reference station). X0 is the rate of completed requests
that leave the model and enter the Reference station. Others performance
indexes are also influenced by the selection of the station that will be considered as
reference (see Appendix A.1). The mean Service time for each Visit to servers
WS, AS1 and AS2 are: SWS = 0.005 s, SAS1 = 0.020 s, and SAS2 = 0.025 s, respec-
tively. The think time of the delay station Users is Z = 1 s. All the values are
exponentially distributed. The JSIMg model of Fig. 2.7 was solved with simulation.
The routing probabilities of the requests leaving the Web Server are: p0 = 0.1,
p1 = 0.6, and p2 = 0.3, see Fig. 2.8.

2.2 A Computing Infrastructure with a Closed Workload 29

Fig. 2.7 The JSIMg model of the computing infrastrucure of Fig. 2.6b

Fig. 2.8 Settings of the Routing Probabilities of the Web Server WS

2.2.3 Results

Several objectives of the capacity planning study were set. In what follows we will
describe the results of some of them referred to as Obj.1–Obj.4.

Obj.1: Implement the model of the computing infrastructure with the param-
eters assigned. Investigate the behavior of System Throughput X0 and
System Response Time R0 for the Number of Customers N0 ranging
from 1 to 20. Which will be the 90th percentile of R0 with N0 = 20?

30 2 Systems with Homogeneous Workloads

Fig. 2.9 System Throughput and System Response Time versus Number of
customers

A What-if analysis is performed by setting the Number of customers
N0 = 1 ÷ 20 as control parameter. Figure 2.9 show the behavior of System
Throughput X0 and System Response Time R0, respectively, with respect
to N0. Please note that the R0 values computed by JSIMg include the time spent in
the Reference station, i.e., the Users station, that is Z = 1 s. For N0 = 20
we have X0 = 8.32 req/s and R0 = 2.4 s. As N0 increases from 1 to 20, X0 becomes
flat and tends to its horizontal upper bound, while R0 becomes linear and tends to its
lower bound which is a oblique line. These behaviors are typical of closed systems
when a resource is approaching saturation. In the followingObjs. 2, 3 wewill analyze
this condition in detail.

Thevalues of somepercentiles of theSystem Response Times, for example
the 90th or the 95th, are often requested in performance studies. Let us recall that the
90th percentile �90 of a variable Y is the value below which can be found 90% of all
the values assumed byY, i.e., it is P(Y ≤ �90) = 0.9. To obtain the percentile values
in JSIMg it is necessary to flag the check box Stat.Res. (see, e.g., Fig. 1.8) in
the window of the metrics to be collected. A CSV file with all collected values of the
selected metric is then generated and stored. Various statistical indexes are computed
by clicking on the Statistical Results button (see Fig. 1.9) in the window
of the analyzed metric. Selecting Distribution as a drawing option, the
values are sorted in increasing order and are grouped in intervals. For example,
300 intervals have been selected in Fig. 2.10. The percentiles corresponding to each
interval are calculated and stored in a CSV file. A sample of this file for the intervals
70 ÷ 76 with the corresponding percentiles (from 88.9 to 91.3) is shown in Fig. 2.11.
The 90.1 percentile corresponds to R0 = 4.88 s. It should be noted that if the values
of a variable Y are exponentially distributed it is �90 � 2.3 x (mean value of Y).
In our case, the values of R0 are hypo-exponentially distributed (the coefficient of
variation is 0.76< 1, see Fig. 2.10). Their variance is less than that of an exponentially
distributed variable with the same mean. Thus, it seems correct to obtain the value of

2.2 A Computing Infrastructure with a Closed Workload 31

Fig. 2.10 Statistical indexes of the System Response Times

Fig. 2.11 Sample of the CSV file with the values of R0 sorted in increasing order and subdivided
into 300 intervals. The four columns refer respectively to: the id of the intervals, the extremes of
each interval, and the percentile corresponding to the extreme with maximum value

4.88 s for the 90th percentile of R0 which is less than 5.52 s (2.3 x 2.4), as it would be
if they were exponentially distributed. By increasing the number of intervals, more
detailed percentiles can be obtained.

Obj.2: To improve the computing infrastructure performance, one of the first
actions that seems natural is to replace AS2, the slowest of the App&Storage
servers, with a new model that is 20% faster (that is, the same as AS1). Evaluate
the effects on X0 and R0.
The mean Service time of server AS2 of the original model must be modified
decreasing its value from 0.025 to 0.020 s. The model with the What-if for N0 =
1 ÷ 20 users is executed again.

As expected, the Utilization of AS2 decreased, e.g., from 61.8% to 50%
with N0 = 20. However, surprisingly NO improvements are obtained on X0 and R0.

32 2 Systems with Homogeneous Workloads

Fig. 2.12 Utilizations of the three servers AS1, AS2, and WS versus N0

Indeed, with the new fast server AS2 we have X0(20) = 8.27 req/s and R0(20) =
2.42 s while with the slow one we had X0 = 8.32 req/s and R0 = 2.40 s, respec-
tively. The two values of X0 can be considered equally likely estimates of the exact
throughput value since they are both in the same 99% confidence interval. The same
observation applies to R0 (see Appendix A.2).

Analyzing the Utilizations of the three servers, in Fig. 2.12a with the orig-
inal configuration and in Fig. 2.12b with the new AS2, we have an answer to this
unexpected result. FromFig. 2.12a it is possible to see that the utilizations of AS1 and
AS2 are unbalanced, and that AS1 is the bottleneck of the computing infrastructure
despite being the faster of the two. Indeed, its utilization is the highest of all servers
and for heavy load it is close to saturation (e.g., with N0 > 15 it is UAS1 > 0.95).

This is the main motivation of the uselessness of the action we have done:

improving any station but the bottleneck do not generate any performance gain with
heavy workload. It is known that performance improvements can only be achieved
by reducing its contention. Actions that reduce the load of stations other than the
bottleneck produce minimal improvements (if any) only under very light workload
(see Obj.3).

Obj.3: Given the insignificant results obtained in Obj.2, we want to evaluate the
performance improvements that can be achieved by replacing the AS1 server
with a new model 20% faster (the same increase considered in Obj.2 for AS2).
We recompute the original model (Fig. 2.7) settings the mean Service Time of
server AS1 to a value 20% faster (from 0.020 s to 0.016 s). We then execute again the
What-if for N0 = 1 ÷ 20 users obtaining the values of X0 and R0 reported in Fig.
2.13. For N0 = 20, with respect to the original system, X0 increases of 20%, from

2.3 Equivalent Model with Service Demands 33

Fig. 2.13 X0 and R0 with the new server AS1 20% faster

8.32 to 9.99 req/s, and R0 drops of 17% from 2.4 to 1.99 s. The bottleneck remain
the server AS1, its utilization is 0.95 (in the original model was 0.99).

Let us remark that these positive results were obtained because we improved the
station that is the bottleneck of the system, i.e., the server AS1. Indeed, as seen in
the previous Obj.2, improving other stations do not produce any significant results
on performance.

Obj.4: According to the management, the number of internal employees autho-
rized to access the computing infrastructure may increase to 40 in a semester.
Which will be R0 and X0 with the actual configuration with N0 = 40 users?
We recompute the original model (Fig. 2.7) settings the Number of
Customers in the closed class definition window to 40. The behavior of the mean
value of R0 and of the confidence intervals during the simulation are shown in
Fig. 2.14. As can be seen, the mean value of R0 is 4.821 s obtained from the model is
very close to the lower bound 4.8 s given by N0Dmax = N0VAS1SAS1 = 40 x 0.12.
The X0(40) is 8.325 req/s, very close to its upper bound 1/DAS1 = 1/0.12 =
8.333 req/s (see Sect. 2.3).

2.3 Equivalent Model with Service Demands

tags: closed, single class, Delay/Queue, JSIMg

In this section we describe a model, solved with JSIMg, parameterized with
Service demands. This model is equivalent to the one solved in the previous
section using the Visits and Service times of the stations. The granularity
at the system-level is here adopted compared to that at the station-level adopted in
the previous model.

34 2 Systems with Homogeneous Workloads

Fig. 2.14 System Response Time of the computing infrastructure with the initial configura-
tion and N0 = 40 users

2.3.1 Problem Description

The models can be designed at different levels of granularity (see Chap.1), from
the single component (station) to the entire system. In Sect. 2.2 we implemented a
station-levelmodel using theRouting probabilities pi j , i.e., the probability
that a request in output from station i is routed to station j . We have also described
how to obtain from the pi j s the number of Visits Vr that a request makes to each
station during its complete execution (see Appendix A.1). In the models parameter-
ized at this level of detail we may compute all the performance indexes describing
the behavior of each station, including its Throughput and Response time.
However, measuring the pi j , or the Vr , is difficult or in some cases impossible. A
parameter that is often used is the Service demand Dr of a request to station
r , which represents the total amount of Service time that a request requires
from station r to complete its execution. The Dr values may be obtained by mul-
tiplying the Service time Sr required by one visit to the number of Visits
Vr that a request makes to station r during its execution, i.e., Dr = Sr Vr . There are
many motivations that make the models parameterized with Service demands
so popular. Among them are:

• the limited effort required to obtain the mean values of Service demands Dr

from measurements. Indeed, the system log file usually shows the Dr values for
every request executed. Recall that several executions are needed to have a reliable
estimate of the mean values of Dr and the confidence intervals of the measured
values must be computed, (see Appendix A.2 and, e.g., [36, 37]). The Drs can

2.3 Equivalent Model with Service Demands 35

also be obtained dividing the busy time Br of a resource by the number C0 of user
requests executed;

• the models that use Service demands are less expensive to parameterize than
more detailed models using Service times and Visits as the number of
parameters required is significantly lower. The measurement of even one more
parameter may require a non-trivial effort;

• a large part of queueing networks considered in performance studies are of the
separable type (see Sect.1.2 and, e.g., [4, 25]) and can be solved by knowing only
the values of Dr and not those of its single factors Vr and Sr . The paths followed
by requests between the resources can be unknown, only the global amount of
service time required to each resource (i.e., the Service demands) counts.
According to this property, for example, a model in which a job make 1000 visits
to a station whose service time is 5 milliseconds, is equivalent to one in which
the job make a single visit to that station requiring 5 sec of service time. Clearly
the equivalence must be applied also to all the other stations of the system. The
performance indexes obtained with this equivalent model are the same as the
more detailed model with regard to the indexes at the system-level, i.e., System
Throughput and System Response Time. The same is true also for the
Utilization and the Residence time of the single stations. However, in
this case, due to the high level of granularity adopted, we cannot compute the
Throughput and the Response time at the station-level (their computation
requires the Visits and Service times of each station).

Based on the described advantages, when possible, the models are preferably param-
eterized in terms of Service demands Dr instead of Visits and Service
times. Clearly, with this high level of granularity we lose the structural similarity
with the considered system, but the models are easier to implement, the solution
algorithms are faster, and the performance indexes that can be computed (not all, but
almost) are correct.

2.3.2 Model Implementation

To illustrate the practical applicability of the Service demands we consider
again the closed model solved in Sect.2.2 using the Routing probabilities
pi j and the Service times Sr , see Fig. 2.6b. In this Section we implement a new
version of it using Service demands. From the pi j s it is possible to derive the
Visits to the three servers VWS = 10, VAS1 = 6, VAS2 = 3 (see Appendix A.1)
and knowing the Service times SWS = 0.005 s, SAS1 = 0.020 s and SAS2 =
0.025 s, we can compute the Service demands (Dr = Vr Sr) DWS = 0.050 s,
DAS1 = 0.120 s, DAS2 = 0.075 s.

The implementedmodel of Fig. 2.15 consists of three servers, having asService
times the Dr , which are visited only once during the execution of a user request.
The structure of this new model is clearly simpler than that of Fig. 2.7.

36 2 Systems with Homogeneous Workloads

Fig. 2.15 Model parameterized with Service demands equivalent to that of Fig. 2.7 which
uses Visits and Service times

2.3.3 Results

We solve the model of Fig. 2.15 using the What-if analysis with N0 = 1 ÷ 20
customers as control parameter. The performance measures obtained are
practically the same, i.e., they lie in the same 99% confidence interval of the corre-
sponding indexes obtained with the model of Fig. 2.7. Table 2.1 compares the values
of some performance indexes computed by the twomodels with N0 = 20 customers.

It should be noted that with the high level parameterization, and the conse-
quent simplified layout of the equivalent model, it is NOT possible to compute the
Throughput and the Response time of each station. Indeed, at the system
level, we do not model the Visits, thus only the parameters at high level of aggre-
gation can be computed for each station, i.e., the global Utilization and the
Residence time. The values inside the boxes in Table 2.1 emphasize that in the
equivalent model the three servers have the same Throughput (measured in user
requests per time unit), that coincide with the System Throughput X0. This is
because the three servers in this model are visited only once, requiring the Service
demand Dr to each of them, are connected in series. Thus, we may compute only
the Residence times Rdr of the servers and not their Response times Rr

(since it is Rdr = Vr Rr).

Table 2.1 Performance metrics for N0 = 20 customers obtained from the two equivalent models
parameterized at different levels of granularity (Visits and Service times and Service
demands, respectively)
Parameters used Performance metrics

R0 X0 UWS UAS1 UAS2 RdWS RdAS1 RdAS2 XWS XAS1 XAS2

Visits and
Service
time (Fig. 2.7)

2.4 8.32 0.419 0.993 0.618 0.082 1.14 0.184 82.13 49.32 24.74

Service
demands
(Fig. 2.15)

2.4 8.31 0.415 0.992 0.622 0.083 1.14 0.185 8.31 8.31 8.31

2.4 Optimal Operating Point of a Server 37

The operational analysis laws can be applied also to models parameterized with
Service demands. For example, using the Forced Flow law Xr = X0 Vr , the
Utilization law becomes

Ur = Xr Sr = X0 Vr Sr = X0 Dr (2.3)

From Table 2.1 it is possible to see that Eq. 2.3 is verified with the metrics obtained
from the model parameterized with the Dr . For example, for the server WS it is
UWS = 8.31 x 0.05 = 0.415 that coincides with the measured value of UWS . Note
that the results of the two models may not coincide exactly as we are in simulation
and we know only the confidence intervals of the computed variables. Wemay verify
also that, according to Eq. 2.3, the ratio of the Ur coincides with the ratio of the Dr :

UWS

UAS1
= 0.418 � DWS

DAS1
= 0.416

UAS1

UAS2
= 1.594 � DAS1

DAS2
= 1.6 (2.4)

The Little law applied to resource r using the Residence times becomes:

Nr = Xr Rr = X0 Vr Rr = X0 Rdr (2.5)

It should be recalled that the System Response Time R0 provided by JSIMg
comprises the time spent by a user request in the Reference station, that in
our model is the Users with Z = 1 s. So, it is R0 = RdWS + RdAS1 + RdAS2 +
Z = 2.409 s. Applying Little law at the system-level we have: N0 = X0 R0 =
8.31x 2.409 = 20 customers, as expected.

From the analysis of the Dr we can derive that the server AS1 is the most utilized
of the resources since DAS1 = 0.120 s is the largest of the Service demands. As
N0 increases it will be the first resource to saturate, i.e., it becomes the bottleneck of
the system, limiting the System Throughput to X0 ≤ 1/Dmax = 8.333 req/s.
With N0 = 20 customers we obtained X0 = 8.31 req/s (see Table 2.1) since AS1
is not completely saturated (it is UAS1 = 0.992).

2.4 Optimal Operating Point of a Server

tags: open, single class, Source/Queue/Sink, JSIMg.

We describe how to identify the optimal operating condition of a system that is
characterized by the highest Throughputwith the shortest Response time. A
system in this condition, referred to as optimal operating point, operates with maxi-
mum of efficiency, that is, it maximizes its productivity by introducing the minimum
delay. We consider a simple model of a system that is solved using both analytical
techniques (Queueing Networks) and simulation techniques (JSIMg model).

38 2 Systems with Homogeneous Workloads

2.4.1 Problem Description

Identifying the optimal operating point of a digital infrastructure is a problem that IT
managers face in their daily lives. Nowadays, this task is becoming more and more
important as the size of data centers and clouds continues to grow in the number
of servers, applications and users. The basic idea is that a small profit on a single
server can translate into a large profit when evaluated on hundreds of servers with
thousands of users.

Clearly, depending on the context considered, the notion of optimal operating
point assumes various definitions that translate into different actions. For example, it
can refer to the operating conditions that minimize the energy required to execute a
workloadwhile meeting the performance goals, or to the operating point that satisfies
the SLA (Service Level Agreement) by minimizing the number of allocated servers.

To simplify the description, let’s consider a single server that we assume is oper-
ating under the optimal conditions when its Throughput X is maximized and its
Response timeR isminimized. The load corresponding to this optimal condition
will be referred to as optimal load.

In this simple case, when the goal of the performance study is to identify the
load that maximizes the ThroughputX or the one that minimizes the Response
time R, the answers are easily provided. In fact, a resource generates the maximum
X when it is saturated and provides the minimum R when only one request is in
execution, that is, there is no contention. However, when X and R are to be compared
at the same time, a new metric must be used that considers the trade-off between the
two. To this end, belowwewill consider theSystem power�, ametric introduced
in [19] and extensively studied by Kleinrock [23, 24], defined as

� = X

R
(2.6)

The behavior of�may be considered in some way related to that of theQuality of
Service. Indeed, an increase in Throughput or a decrease in Response time
increases the System power, that may be considered in the SLA as indicator of
the Quality of Service delivered to the users.

In the next section we consider a system consisting of a single server modeled
with a Queue station (see, e.g., Fig. 2.1) that execute a homogeneous workload
(single class) with Interarrival times and Service times exponentially
distributed.

For this simple case, we describe the analytical computation of the optimal load,
and then we implement the correspondent model with JSIMg. The analytical deriva-
tion of � for more complex systems is not easy to obtain. However, it should be
emphasized that the JSIMg provides the System Power behavior for all simu-
lated models, regardless of their complexity. � is one of the metrics available in the
tool.

2.4 Optimal Operating Point of a Server 39

2.4.2 Model Implementation

In this section we address the problem of the identification of the optimal operat-
ing point of a single server executing requests with Interarrival times and
Service times exponentially distributed. For its simplicity, we initially present
the analytical solution of this model that was derived in [23]. Below, we describe the
simulation results obtained with the corresponding model implemented with JSIMg.

The System Power � for the considered M/M/1 model is

� = λ

R
= λ (1 − λS)

S
(2.7)

where λ is the arrival rate and S is the mean service time of the requests. To find the
load λopt that maximizes � it is sufficient to set to zero its first derivative �′ with
respect to λ and derive the value of λopt . We have: �′ = (1/S) − 2λopt = 0, thus it
will be

λopt = 1

2

1

S
(2.8)

Therefore, according to Eq. 2.8, the optimal operating point is obtained with a load
λopt equal to half of the one corresponding to the maximum Throughput 1/S.
The Ropt , Uopt and Nopt are

Ropt = S

1 − λopt S
= 2S Uopt = λopt S = 0.5 Nopt = 0.5

1 − 0.5
= 1 req

Let us remark that Ropt is twice its minimumvalue S, the server is utilized at 50% and
the mean number of customers in the server is 1, 0.5 in queue and 0.5 in execution. In
this optimal condition, an arriving request has 50% of probability to find the queue
empty and the server idle. Figure 2.16 shows the behavior of � of a server with
S = 1 s.

An interesting observation can be obtained from the analysis of Fig. 2.16b which
shows thatSystem Power ismaximizedwith the load corresponding to the tangent
point of the straight line R = mλ from the origin to the Response time curve.
Equating to zero the discriminant of the equation that compute the intersection of the
two functions we obtain m = 4S2. Replacing it in the equation of the intersection
we obtain λ = 0.5(1/S), which has already been found as optimal load in Eq. 2.8.

This property allows to define the optimality condition as the one corresponding
to a load λopt for which the relative increase of the Throughput X is equal to that
of the Response time R. When it is λ < λopt it will be dX/X > dR/R therefore
an increase in λ increases the Throughput more than the Response time, so
the gain is higher than the loss. The opposite situation occurs when it is λ > λopt

since in this condition an increase of λ generates losses greater than the gains, i.e., it
is dX/X < dR/R.

40 2 Systems with Homogeneous Workloads

Fig. 2.16 Power � (a) and Response time R (b) versus Utilization with S = 1 s

This definition of the optimal operating point is valid for any Throughput and
any Response time functions. The metric System Power can be very useful
to implement load balancing policies based on machine learning and as a target
function in autoscaling components.

The implemented JSIMg openmodel consists of three stations:Source,Queue,
Sink (see, e.g., Fig. 2.1). TheService timesof theQueue are exponentially dis-
tributedwithmean S = 1 s. TheInterarrival times of the requests generated
by theSourcehave exponential distributionwith arrival rates ranging from0.1 to 0.9
req/s. Figure 2.17 emphasizes the selection of System Throughput, System
Response time, and System Power indexes (the last two are shown in the
graphs of Fig. 2.18).

2.4.3 Results

A What-if analysis is used with the arrival rate λ of requests as control
parameter with values ranging from 0.1 to 0.9 in 9 models. As can be seen from
Fig. 2.18, the values of R and � corresponding to the optimal load λopt = 0.5 req/s
are very close to the exact ones obtained analytically (R = 2 s, and � = 0.25). The
confidence intervals are very small.

2.4 Optimal Operating Point of a Server 41

Fig. 2.17 Selection of the System Power index

Fig. 2.18 Response time R and System Power � obtained with JSIMg

2.4.4 Limitations and Improvements

• High variability of Service times: In [24] it is described the analytical deriva-
tion of � in simple models with exponential Interarrival times and high
variability of Service times (for M/G/1 stations).

42 2 Systems with Homogeneous Workloads

• Models with complex structure: Although we have described the use of System
power in models with a single resource, it should be clear that all the consider-
ations made can be applied also to open and closed models with more complex
structure and multiple resources. The identification of the analytical expression of
� in these models is clearly not so simple as the one of Eq. 2.7.

• Availability of Power index: JSIMg compute and plot the values of � for all the
simulated models, independently of their complexity.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 3
Systems with Heterogeneous Workloads

3.1 Parameterization of Heterogeneous Workloads

As for the characterization of the requests, there is a direct correspondence between
Service times, Visits, and Service demands used in single-class mod-
els and those used inmulticlass models. However, since their valuesmust be specified
on a per-class basis, each parameter must be identified now with two indexes: the
station and the class it will refers to. For example, the service demand Dr of resource
r becomes now Dr,c, the Service demand of class-c request to resource r.

However, new problems arise when the growth of workload intensity has to
be described as this can be done in different ways. Indeed, while to specify the
workload intensity in single-class models is sufficient to know the Number of
customers N0 in execution in closed systems, or the arrival rate λ0 and distribu-
tion of Interarrival times in open systems, the presence of multiple classes
make these descriptions no longer adequate. Recall that with the index 0 (zero) of a
metric we refer to the system as a whole.

In this section we first consider closed models, then we will analyze open models.
In closed models with of C classes of jobs, the workload intensity is described

by the vector N0 = {N0,1, N0,2, ..., N0,C } whose components are the number of jobs
of each class in execution. The total number of jobs in execution is given by N0 =
N0,1 + N0,2 + ... + N0,C . For example,N0 = {25, 75}means that in the closedmodel
there are globally N0 = 100 jobs in execution, 25 of class-1 and 75 of class-2.

A new parameter very useful for the description of multiclass workloads growth
is the vector β representing the fractions of jobs of the C classes in execution in the
system, that we will denote as population mix or job-mix:

β = {β1, ..., βC } with βc = N0,c/N0 and β1 + β2 + ... + βC = 1 (3.1)

Using the population mix, the workload N0 of the previous example can be
described by N = N0 β, with N0 = 100 and β = {0.25, 0.75}.

© The Author(s) 2024
G. Serazzi, Performance Engineering,
https://doi.org/10.1007/978-3-031-36763-2_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36763-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-36763-2_3

44 3 Systems with Heterogeneous Workloads

The importance of the job-mix lies in the fact that in multiclass networks the ratio
of the global utilizations of two stations is no longer constant with N0, as in single
class case, but depends on the fractions of jobs of the various classes in execution.
Indeed, applying in single-class models the Utilization law to resources i and j we
have:Ui = X0Di andUj = X0Dj , and their ratioUi/Uj = Di/Dj is constant with
N . The immediate consequence of this behavior is that the bottleneck of the system
maymigrate among the resources as a function of the populationmix. Thus, since it is
known that the overall performance of a system is limited by the congested resource
(i.e., the bottleneck), the fluctuation of the mixes may abruptly change them deeply.

While the definition of bottleneck is simple, i.e., the resource with the highest
utilization, inmulticlassmodels, the problem of bottleneck identification is not trivial
since the same model can exhibit different bottlenecks depending on the population
mix. Different types of bottlenecks can be identified. The class-c bottleneck is the
station with the highest service demand of that class and saturates (its utilization
tends to one) when the number of class-c customers grows to infinity. The problem
inmulticlass systems is that, as a function of the populationmix, a stationmay saturate
also if it is not a class-bottleneck (in this case the stationwill be referred to as system-
bottleneck or model-bottleneck) or more stations may saturate concurrently with
several mixes, referred to as common saturation sector (see [2, 3, 15]).

Therefore, to characterize the workload behavior in multiclass models, we must
describe the variations of the mixes. In general, different β may yield different
bottlenecks. Two types of workload increment should be considered: proportional
and unbalanced. The population growth that consists of letting the total number
of customers N0 to grow keeping constant the population mix β is referred to as
proportional growth.

According to this type of growth, in the example of workload above considered,
the jobs in execution will be increased according to the proportions 25% of class-1
and 75% of class-2 since the mix is β = {0.25, 0.75}. So, when the total number of
jobs increases to 300, we will have 75 class-1 and 225 class-2 jobs in execution.

We have the unbalanced population growth when only one class of jobs, say c,
increases. As N0,c continue to growth, the bottleneck of the system tends to the station
that is the class-c bottleneck, the population mix tends to β = {0, 0, 0, ..., 1C }, and
the performance tend to the asymptotes of single-class workloads.

To support users who need to model the different types of population growth,
JMT implement specific features of the What-if analysis that allow the automatic
increment of the population of a single class only (see, e.g., Fig. 3.2) or the generation
of all the possible mixes of two classes in closed models (see, e.g., Fig. 3.7b).

Most of what has been previously described for the closed models also applies to
openmodels. The number of jobs in execution of the various classesmust be replaced
with the corresponding arrival rates. So, the global arrival rate to a open system is
λ0 = {λ0,1, λ0,2, ..., λ0,C } and the population mix is described by:

β = {β1, ..., βC } βc = λ0,c/λ0 β1 + β2 + ... + βC = 1 (3.2)

3.1 Parameterization of Heterogeneous Workloads 45

Differences between open and closed systems lie in the bottleneck switch behav-
ior. In the former, the bottleneck migrate instantaneously between two resources
without going through a common saturation section, i.e., the set of mixes that satu-
rate both concurrently. Regarding the scheduling disciplines of the various classes

in multiclass models, there are differences as a function of the solution technique
adopted.While with simulation the users have practically no limitations (someminor
incompatibilities may take place as a function of the types of discipline selected), the
analytical technique introduce some constraints. Typically, the queueing networks
that are solved analytically are of the separable types (see, e.g., [9, 36]) and their
solution (the stationary probability of their states) can be obtained by the product of
the individual solutions of the stations. The computational complexity introduced by
the presence of multiple classes that may have different scheduling algorithms, and
usually by the large numbers of stations and customers has required the introduction
of some limitations. An important theorem, the BCMP (see, e.g., [6, 36]), for open,
closed, and mixed queueing networks define the characteristics that a multiclass net-
work should have to be separable and thus to be solved analytically with efficient
algorithms. Each station must be of one of the following types:

• a queue station with FCFS scheduling discipline (requests are served according
to the sequence of arrival), with one or more servers, having the same expo-
nential distribution of Service times for all the classes. For each resource,
the Service times Sr,c must be the same for all the classes. The differences
between the classes may be considered using the number of visits Vr,c to the
resources, providing the possibility to have different Service demands Dr,c

for the same station (which in any case cannot be modeled with FCFS discipline).
• a queue station with PS (processor-sharing) scheduling discipline: the n requests
in the station are served simultaneously receiving each 1/n of the server capacity.
For example, in a queue station with one server if during the execution of a
request that has Service time S = 2 s there are 10 requests in the station,
then the execution of this request will be completed after 20 sec. This discipline
is commonly used to model the time quantum of the processors, in this case the
quantum tends to zero. The distribution of the service times, and their means, can
be general and different for each class.

• aqueue stationwithLCFS-PR (last-comefirst-servedpreemptive-resume) schedul-
ing discipline. When a new request arrives, it interrupts the execution currently
in progress and starts its execution immediately. When it is completed, the last
preempted request resumes the execution at the point it was interrupted. The dis-
tribution of the Service times, and their means, can be general and different
for each class.

• a delay station, referred to as IS infinite servers station, in which each request has
its dedicated server. Its Response time coincide with the Service time
since there is no queue time. The distribution of the service times, and their means,
can be general and different for each class.

Load-dependent service times are allowed. For PS, LCFS-PR, and IS stations the
service times for the requests of a class may depend on the number of requests of

46 3 Systems with Heterogeneous Workloads

that class in the station, or on the global number of requests in that station. For FCFS
station the service times may depend only on the global number of requests of all
the classes in that station.

In conclusion, users must be sure that the multiclass models who want to solve
analytically have stations of the four types described. For example, if you want to
solve analitycally a model that has different per-class Service times Sr,c on the
same resource, the JMVA will solve it in any case (it compute the Dr,c) but you
should be aware that the modeled scheduling discipline is PS and not FCFS. If in
any case it is necessary to solve this model with the FCFS discipline, then there is
no other choice than to use simulation.

3.2 Motivating Example of Multiclass Models

tags: closed, two-class, Delay/Queue, JMVA.

In this section we describe an example purposely designed to emphasize the errors
on the performance forecast that can be obtained from the same model assuming
that a multiclass workload consists of a single class of jobs. The counterintuitive
behavior exhibited by some performance indexes of multiclass models as a function
of the fluctuations of the classes of jobs in execution is also investigated. We solve
this model analytically with JMVA.

3.2.1 Problem Description

Consider a powerful web server, accessed by administrative staff and graduate stu-
dents of a university,which has twomain resources:CPU andStorage (Fig. 3.1a). The
workload consists of two different applications. The first one is used to manage the
administrative procedures concerning the students curricula (tuition fees payments,
courses attended, grades obtained, ...). The second one is devoted to the management
(uploads, downloads, folder structure) of the course materials/documents (slides,
notes, class exercises, homeworks, exams) that professors, assistants, and students
access. According to the resource requirements of the two types of users, two classes
of jobs, referred to as Adm and Doc, are identified.

Initially, we want to investigate the effects on performance indexes generated
by different workload scenarios. More precisely, we increment the number of jobs
of one class only while keeping constant the jobs of the other class. The different
growth rates of the various classes of the workload are described by modifying the
parameter β. To model the growth of class-i jobs, we increase the corresponding βi .

Then, we want to illustrate the errors that can be introduced in the performance
forecast by a wrong assumption on the number of classes of the workload. We
solve the same system model assuming the two-class workload as consisting of a

3.2 Motivating Example of Multiclass Models 47

Fig. 3.1 Web server layout (a) and closed queueing network with two different applications (b)

single-class of jobs. We consider a base system and an upgraded system with a
CPU more powerful of a factor of five (the corresponding CPU service demands are
decreased by five times). The behavior of the performance indexes are studied with
respect to all the possible combinations of the two classes of jobs in execution, i.e.,
all the possible population mix.

3.2.2 Model Implementation

We use a closed model (Fig. 3.1b) since the customers that have access to the server
are limited (administrative staff and graduate students). It consists of three resources:
Users, CPU, and Storage. The Users station is of delay type.

The two classes of the workload are characterized by the Service demands
shown in Table 3.1. Let N0 be the global number of jobs of the two classes. To
model the growth of class-Doc jobs only (unbalanced population growth), we use
the What-if feature with Number of customers and class-Doc ascontrol
parameters (Fig. 3.2). The N0,Doc values range from 5 to 280 with step of 5.
To study the effects on performance forecast corresponding to the two different
assumptions on the number of classes (one and two) in the workload, we consider
two configurations, i.e., base and upgraded, of the same system. The behavior
of performance indexes in the two configurations has been investigated modeling

Table 3.1 Service demands [s] of the two classes of jobs

Resources (stations) Two classes

Adm Doc

Users think time 3 10

CPU 0.20 0.100

Storage 0.050 0.60

48 3 Systems with Heterogeneous Workloads

Fig. 3.2 Parameters of the What-if for the description of the unbalanced population growth:
only class-Doc jobs increase while class-Adm jobs are kept constant

all possible population mixes β with N0 = 300 jobs (Fig. 3.5) and modifying the
Service demands of Table 3.1 (see Table 3.2).

3.2.3 Results

In what follows we will describe the operations required to achieve the objectives of
the study (referred to as Obj.1–Obj.2).

Obj.1: Show the counterintuitive result that with a multiclass workload the
Global System Throughput X0 can decrease in spite that the global number N0

of jobs in execution increases
We consider the model with the two-class workload whose service demands are
shown in Table 3.1. The initial workload is N = {20, 5}, globally N0 = 25 jobs
are in execution, 20 of class-Adm and 5 of class-Doc. The volume of traffic due
to the class-Doc jobs is expected to increase during the next semester up to 280.
This behavior is the typical unbalanced population growth that can be used when
one class increases more than the others. We use the What-if feature of JMVA to
evaluate the Global System Throughput X0. The parameters that describe
the increase of class Doc jobs are shown in Fig. 3.2. The Control Parameter
is the Number of customers of class-Doc N0,Doc, and the execution of 276
models with its increasing values from 5 to 280 are required.

In Fig. 3.3a the behavior of the Global and per-class System
Throughput are shown for the number of jobs N0 in execution increasing from
25, N = {20, 5}, to 300, N = {20, 280}. Initially X0 increases until the number of
Doc jobs reaches 19, corresponding to the maximum value of X0 = 5.416 j/s. Then,
any further increase of N0,Doc, and clearly of N0, corresponds to a decrease of X0

(with N0,Doc = 280 it is X0 = 2.724 j/s). How is it possible this happens?

3.2 Motivating Example of Multiclass Models 49

Fig. 3.3 Counterintuitive behavior of performance indexes (Base system) with unbalanced
increase of the Global Number N0 of jobs in execution: only class-Doc jobs increases from
5 to 280

The answer is prompted by Fig. 3.3b showing the Global Utilization of
CPU and Storage. For N0,Doc ≤ 18 the CPU is the most utilized resource, while
for N0,Doc ≥ 19 the Storage is the most utilized. We are addressing the bottle-
neck switch phenomenon that can occur with multiclass workloads when different
classes have their highest service demands on different stations. The basic concept
is the following: the service demands of the various classes at the bottleneck station
determine the performance of the global system. Since when the station bottleneck
changes typically also the corresponding service demands are different, this migra-
tion may have a deep impact on the performance. While the identification of the
bottleneck in single-class models is easy, in multiclass models is more complex [3].
As described in Sect. 3.1, with multiclass workloads the bottleneck may migrate
among stations as a function of the percentage of jobs of the different classes in
execution, i.e., of the population mix.

With the workload behavior considered in this Obj.1 study, only class-Doc jobs
increase from 5 to 280 and the population mix range from β = {0.8, 0.2} (N =
{20, 5}) to β = {0.066, 0.933} (N = {20, 280}). When the Doc jobs are ≤ 18, the
contribute of the Adm jobs, with Dmax,Adm = 0.2 on CPU, is fundamental for the
saturation ofCPU.WhenDoc jobs, with Dmax,Doc = 0.6, are≥ 19 the load generated
on Storage makes its global utilization predominant with that of the CPU.

As the number of Doc jobs continue to increase, asymptotically it will be
(N0,Doc → ∞), and the workload assume the characteristics of a single-class with
β → {0, 1}. In this case, the maximum system throughput is given by 1/Dmax,Doc.
In our workload the max Service demand of class-Doc is DSto,Doc = 0.6 s,
thus it will be X∞

0 = 1/DSto,Doc = 1.666 j/s. As can be seen from Figs. 3.3a, 3.4a,
the System throughput of class-Doc and of the Global system tend to this

50 3 Systems with Heterogeneous Workloads

Fig. 3.4 System throughput asymptotes of the (Base system) when only class-Doc jobs
increase from 5 to 2000 (a), and only class-Adm jobs increase from 20 to 2000 (b)

value: for N0,Doc = 280 jobs it is X0,Doc = 1.57 job/s and for N0,Doc = 2000 jobs
it is X0,Doc = 1.65 job/s. The Global System Throughput X0 decreases as
N0,Doc increases beyond 19 jobs.

To emphasize the impact of the population mix on the Global System
Throughputwe ran two experiments with unbalanced population growth. Starting
from the same initial workloadN = {20, 5}, in the first one we increase to 2000 only
class-Doc jobs while in the second one we increase to 2000 only class-Adm jobs.
The System throughputs are shown in Fig. 3.4.

In Fig. 3.4a X0,Doc and X0 tend to the same asymptotic value 1.666 j/s while
in Fig. 3.4b X0,Adm and X0 tend to the same asymptotic value 5 job/sec. The
Global System Throughput X0 tend to X0,Doc in (a) and to X0,Adm in (b).
The differences between the two asymptotic values are evident. It should be pointed
out that these values are not bounds! Indeed, a program mix that maximize the
Utilization of all the resources of a system (see Fig. 3.3) maximize also the
System throughput.

Obj.2: Show that assuming amulticlass workload as single-class allows the con-
struction of models that generate very inaccurate performance forecast. Some
counterintuitive results (other than those of Obj.1) that occur with multiclass
models are also shown.
In this study (inspired, with some differences, by [25]) we will show that the perfor-
mance projections obtained using a wrong assumption for the workload characteri-
zation, i.e., the workload is assumed to consist of a single class instead of multiple
classes of customers, are unreliable.

We consider the closed system with three stations (Fig. 3.1b), that process the
two-class workload whose Service demands are shown in Table 3.1.

3.2 Motivating Example of Multiclass Models 51

Table 3.2 Inputs and outputs of the single- and two-class models, for the original (Base) and the
upgraded (Up) systems. The two-class workload is N = {255, 45} jobs, β = {0.85, 0.15}

Single-class workload Two-class workload

Aggregate Adm Doc

Base Up wrong Up correct Base Up Base Up

Inputs DCPU 0.180 0.036 0.039 0.2 0.04 0.1 0.02

DSto 0.159 0.159 0.059 0.05 0.05 0.6 0.6

Z0 4.390 4.390 3.118 3 3 10 10

R0 49.649 43.38 14.683 54.322 12.393 30.801 147.228

Output X0 5.551 6.279 16.857 4.448 16.565 1.102 0.2862

Measures UCPU 1 0.2262 0.6683 0.8897 0.6626 0.1103 0.0057

USto 0.8842 1 1 0.2224 0.8283 0.6617 0.1717

In what follows we will refer to the values reported in Table 3.2 obtained with
the two-class workload N = {255, 45} jobs, the corresponding population mix is
β = {0.85, 0.15}. The study has been carried out according to the following steps:

step (1)—First, we assume to know that the workload consists of N0 = 300 jobs
belonging to two classes Adm and Doc whose service demands are shown in
Table 3.1. We consider the population mix β = {0.85, 0.15}, i.e., the workload
is N = {255, 45} jobs, 255 Adm and 45 Doc. Some output measures (System
Response time R0, System Throughput X0, and the Utilizations of
CPU and Storage) obtained from the execution of the two-class model are shown in
columns Adm-Base and Doc-Base of Table 3.2.

step (2)—From the outputs of the two classmodelwe compute the correspondent sin-
gle class aggregate model (column aggregate-Base). The aggregate values of
Utilization and System Throughput X0 are obtained summing the cor-
respondent per-class indexes: UCPU = UCPU,Adm +UCPU,Doc = 0.89 + 0.11 = 1
USto = USto,Adm +USto,Doc = 0.22 + 0.66 = 0.88X0 = X0,Adm + X0,Doc = 4.448
+ 1.102 = 5.551. For the System Response time R0, according to the Lit-
tle law Ni = Xi Ri , the per-class values must be weighted by the relative throughput:

RBase
0 = N0

X0
= R0,Adm

X0,Adm

X0
+ R0,Doc

X0,Doc

X0
= 49.649 sec (3.3)

This is the correct computation of the System Response time with multiclass
workloads.The same weights must be applied to the computation of the aggregate
service demands DBase

CPU = 0.180 s and DBase
Sto = 0.159 s. The weights of the relative

throughputs have also the following intuitive interpretation. The number of jobs of
the two classes Adm and Doc executed in the interval T are C0,Adm and C0,Doc,
respectively. This means that in the log file of the system executing the two classes
workload there will be C0,Adm times the value of R0,Adm and C0,Doc times the value

52 3 Systems with Heterogeneous Workloads

of R0,Doc. Thus, to compute the mean of all the R0s we need to weight the two values
with the respective times they appear in the file. And, dividing by T both the terms
of the ratios C0,Adm/C0 and C0,Doc/C0 we obtain X0,Adm/X0 and X0,Doc/X0, that
are the weights considered in Eq. 3.3.

step (3)—Now consider a new analyst who does not know anything about the system
workload and builds a single-class model considering all measures of the log file as
belonging to a single type of jobs. If he made the right computations, he will get the
same values shown in the column Aggregate-Base for both input parameters and
output measures. We note that these values are the same as those already computed
in the previous step. Indeed, he, without being aware, automatically applies for their
computation the correct weights described in step 2. At this point, the analyst has
the wrong certainty that the implemented model is correct!

step (4)—Now we will use the two workload models (the one with two classes
and the one with a single class) for the performance projections. An increase of
Doc customers is expected in the near future. We want to evaluate the effect on the
response time R0,Doc of Doc jobs that will be generated by an increase of the CPU
speed.We assume to consider a multicore processor that for the workload considered
increases by a factor of five the CPU speed.

The primary effect of this upgrade is the decrease of the CPU service demands
DCPU,Adm from 0.2 to 0.04 and of DCPU,Doc from 0.1 to 0.02 (see DCPU in columns
Adm-Up and Doc-Up, respectively). The execution of the two-class model compute
the indexes reported in the lower part of these columns. Applying the computations
described in step 2) it is possible to derive the correct values of the aggregated single-
class model corresponding to the two-class model (see column Aggregate-Up
correct).

Analyzing the System Response times of the two classes, wemay see that
while the R0,Adm decreases of 77%, the R0,Doc increases of 377% (from30.8 to 147.2
s)! This is a counterintuitive result: performance degrades with a CPU upgrade!
Themotivation of this result hampered by intuition is related to the switch of the bot-
tleneck from the CPU to the storage which take place after the upgrade. Indeed, since
the throughput X0,Adm of class-Adm (that has the CPU as class-bottleneck) increases
from 4.4 to 16.5 j/s, the competition for the Storage increases a lot (USto reach satura-
tion) and the class-Doc jobs, that are heavily storage bound (it is DSto,Doc = 0.6 s, the
Storage is the class-Doc bottleneck), experience a strong degradation of the response
time.

Figure 3.5 shows the behavior of the System Response times of the two
classes and the aggregated value as a function of all the population mixes, of the
original system (a) and the upgraded version (b). The workload consists of 300
jobs, ranging from N = {300, 0} to N = {0, 300} jobs. The differences between the
behavior of the correspondent curves are evident.

step (5)—We consider here the single-class model built in step 3) by the ignorant
analyst, assuming that all the jobs as belonging to the same single class. The effect
of the CPU upgrade is a decrease in service demand DCPU from 0.180 to 0.036 s,

3.2 Motivating Example of Multiclass Models 53

Fig. 3.5 System Response times versus all β population mixes of the original (Base) and
the upgraded (Up) systems, with 300 jobs. Dashed lines represent β = {0.85, 0.15} used in Table
3.2

see columns (Aggregate-Base) and (Aggregate-Up wrong). The output
measures (Table 3.2) obtained from the execution of this single class model with
N = 300 jobs show an improvement of performance: R0 decreases from 49.64 to
43.38 s, and X0 increases from 5.5 to 6.2 j/s. As this qualitative behavior corresponds
to the expectations, the analyst my have the wrong impression that the implemented
model is correct. Indeed, comparing the values of the two columnsAggregate-Up
wrong and Aggregate-Up correct it is possible to understand immediately
the large errors affecting R0 and X0: -66% and +168%, respectively. Thus, we may
conclude that

the performance forecast based on single-classmodels of heterogeneousworkloads are
inaccurate when used to obtain projections for the average aggregate job. Furthermore,
as Fig. 3.5 shows, it is evident that the average aggregate job cannot be used to derive
reliable projections for each class of the two-class workload.

Let us remark that the per-class System Response times plotted by JMVA
in Fig. 3.5 are the sum of the Residence times of a job of that class at
all the resources of the system, including the Reference station. Thus, for
example, we should add Z0,Doc = 10 s (the Residence time of Doc jobs at
the Reference station) to the System Response time of Doc jobs
R0,Doc = 30.801 s of Table 3.2 to obtain the value 40.801 plotted in Fig. 3.5a in
correspondence to program mix β = {0.85, 0.15}.

54 3 Systems with Heterogeneous Workloads

3.3 Performance Optimization of a Data Center

tags: closed, two-class, Queue, JMVA.

In this case study we illustrate a general approach applicable to several capacity
planning problems with an example based on the performance optimization of a
data center with a workload consisting of heterogeneous applications, [14, 38]. The
problems of bottleneck identification and migration are addressed as a function of
the fluctuations of the different types (classes) of requests being executed. The topic
of load balancing is also investigated.

3.3.1 Problem Description

Adata center partition consists of six servers utilized by business critical applications
that access to sensitive data stored. The area is highly protected for both physical
access and digital security. It consists of one Web Server, two Application
Servers, and three Storage Servers (see Fig. 3.6). The access to the appli-
cations and data stored on these servers is permitted only to a limited number of
employees with the appropriate authorization. Based on the different requirements,
in terms of amount of resources used and Quality of Service (QoS) targets, two types
of applications can be identified in the workload. The two classes of requests, called
class-1 and class-2, generated by the two applications are focused on business logic
processing the first, and on intensive data processing (search, update) the second.

Fig. 3.6 Layout of the data center considered

3.3 Performance Optimization of a Data Center 55

The mean number of their requests that are in execution simultaneously is 100.
According to forecasts, the number of employees authorized to access the servers is
expected to double over the next nine months. The management is concerned that
performancemay degrade to an unacceptable level. Several initiatives are considered.

As a first action it is required to investigate the impact on performance of an
increase of the global number N0 of requests in execution from 100 to 200. More
precisely, it is required to know if the QoS in terms of the mean per-class Response
times defined for 100 employees are still satisfied. Since it is not possible to know
how the fractions of the requests in execution of the two classes vary over time,
to compute the upper bound of Response times it is necessary to consider all
the possible combinations of the two classes of requests in execution, i.e., all the
population mix, with N0 = 200 req.

The capacity planning study should answer to several questions such as “Does
the data center with the current configuration support the increase of the workload
without saturating one or more resources?”, “With N0 = 200 req in execution will
the QoS targets on the per-class Response times be satisfied?”, “Which is
the resource that is the bottleneck of the system?”.

Other important questions to be answered concern the actions that should be
taken to increase, if possible, the performance of the data center with the current
configuration: “Which is the impact of the population mix on the potential increase
of performance?”, “The utilization of the resources are balanced?”, “Which is the
populationmix thatmaximizes theSystem Throughput andminimize themean
System Response time (referred to as optimal population mix)?”.

These questions have been grouped into the two Objectives of the study that are
analyzed below.

3.3.2 Model Implementation

We need to evaluate the performance of the data center with an overall number
of customers doubled (200) with respect to the current one (100). We implement
a closed queueing model with six queue stations (see Fig. 3.6) and N0 = 200 req
in execution. The workload N0 = {N0,1, N0,2} consists of two classes of requests,
where N0,1 and N0,2 are the number of requests in execution of class1 and class2,
respectively.

To characterize the two type of applications in terms of processing requirements,
a set of Service demands, one for each resource and each class, is used. The
Service demand Dr,c of a request of class-c at resource r is the total amount of
time the request requires at that resource in order to be completely executed. The
Dr,c are computed ignoring contention by other requests and may be estimated mea-
suring utilizations and throughputs and using the equation Ur,c = X0,c Dr,c, where
X0,c is the system throughput for class-c requests and Ur,c is their utiliza-
tion of resource r . To minimize the errors in the parameter estimation, it is recom-
mended, when possible, to collect the measurements when the two types of appli-

56 3 Systems with Heterogeneous Workloads

Fig. 3.7 Service demands of the two classes of requests (a), and What-if parameters (b)

cations are executed in isolation. The Service demands of the two classes of
requests, in ms, are shown in Fig. 3.7a. The amount of work requested from the Web
Server is much less demanding than the one requested from the Application
and Storage Servers. The computations required by the business logic place a
medium load on the Application Servers while the high number of data
manipulated, uploaded and downloaded, generate a high load on the Storage
Servers.

The Service demands are exponentially distributed and the scheduling dis-
cipline of the servers is processor sharing PS. These assumptions allows us to solve
the model analytically with the MVA algorithm [25, 31] using the JMVA. Indeed,
according to theBCMP theorem (see Sect. 3.1) ,multiclassmodels inwhich the queue
stations adopt the PS scheduling discipline can be solved analytically with efficient
algorithms also if the service times (as may be considered the service demands of
the single visit used our case) of the two classes at the same resource are different.
Models in which these assumptions are not satisfied (e.g., if FCFS scheduling is
required), must be solved with the simulation technique using JSIM.

The performance predictions obtained by the capacity planning study are based
on several What-if analyses.

To evaluate the performance metrics corresponding to all the possible population
mix we used the What-if feature of JMVA varying from 100% to 0% the requests
in execution of one class and the opposite (from 0% to 100%) the fraction of the
other class.

3.3.3 Results

The peculiarity of the workload forecasting strategy adopted in this study is that only
the global intensity, i.e., the total number N0 = 200 requests in execution is known,
and it is not possible to predict how the fractions of the requests of the two classes
(i.e., the population mix) vary over time. Typically, it may be quite bursty.

3.3 Performance Optimization of a Data Center 57

Thus, to achieve the capacity planning goals What-if analyses are required
with population mix as control parameter, Fig. 3.7b. The fraction β1 of class-1
requests in execution range from 0.5% to 99.5%, the one of class-2 is the complement
to 100%.

Obj.1: Evaluate the behavior of the performance indexes of the data center with
a global Number of requests in execution N0 = 200 and for all the possible
combinations of the two classes.
JMVA is used to estimate the performance of the data center for the required param-
eter range with the Service demands shown in Fig. 3.7a. In the What-if
screenshot of Fig. 3.7b the control parameter is population mix, and 199 mod-
els are executed with all the possible mix of the requests of the two classes ranging
from N0 = {1, 199} to N0 = {199, 1}.

Let’s start with the analysis of the behavior of per-class and Global
System Response times with respect to all the population mix with N0 =
200 req shown in Fig. 3.8a. The x-axis represents the fraction of class-1 requests β1

with respect to the total number of requests in execution. In the two extremes β1 = 0
and β1 = 1 the workload consists of a single class, class-2 and class-1 only, respec-
tively. In these cases, the resource that limit the performance of the system, i.e, the
bottleneck, corresponds to the onewith themax service demand Dmax .When the bot-
tleneck is saturated (Ubott = 1), the values of System Response times can be
easily computed considering the Dmax and applying the Utilization and Little laws,
see Sect. 1.2. With only class-2 requests (β1 = 0), the bottleneck is Storage1with
DSto1 = Dmax = 0.105 s, from the Utilization law USto1 = X0Dmax = 1 we derive

Fig. 3.8 System Response times [ms] (a) and System Throughputs [req/s] (b) with
N0 = 200 req versus fraction of class-1 requests in execution, from 0.5% to 99.5%

58 3 Systems with Heterogeneous Workloads

X0 = 1/Dmax and by Little law it will be Rmax
0 = N0Dmax = 200 x 0.105 = 21 s.

In the other extreme β1 = 1 with only class-1 requests, the bottleneck is Storage2
with DSto2 = Dmax = 0.070 s and it will be Rmax

0 = N0Dmax = 200 x 0.070 =
14 s.

As soon as the number of class-1 requests in execution increases (and thus class-2
requests decrease), the load of Storage2 starts to grow. As a consequence, the bot-
tleneck tends tomigrate from Storage1, i.e., the class-2 bottleneck, toStorage2,
i.e., the class-1 bottleneck. The corresponding class-1 System Response time
R0,1 increases until 13.86 swith theworkloadN0 = {199, 1}, very close to the asymp-
totic value 14 s above computed. It does not coincide with it because with 199 req
of class-1 and 1 req of class-2 the Utilization USto2,1 of Storage2 for class-
1 req. is 0.995 and not 1. Similar motivations apply with the opposite workload
N0 = {1, 199}, i.e., β1 = 0.005, where it isUSto1,2 = 0.995 and the class-2 System
Response time R0,2 is 20.85 s while the asymptotic value is 21 s.

As can be seen in Fig. 3.8a, the Global System Response time R0 is
practically constant for a wide range of mixes, approximately between 30% and
70% of class-1. The important feature of these mixes is that executing a workload
with one of them will result in the saturation of two resources simultaneously.

This interval of joint saturation, referred to as common saturation sector, is impor-
tant in order to find the load of the system that optimize the performance, i.e.,
Throughput maximization and Response time minimization.

The identification of this interval can be done analytically under the assumption
that the workload in execution is very large so that the bottleneck(s) is saturated [3].
With our workload of 200 req. the extremes of this interval are only approximate
since the load does not saturate completely the bottlenecks.

TheResponse times of the two classes are identicalwhen the two bottlenecks
are equiloaded (for β1 = 0.6 it is R0, 1 = R0, 2 = 10.8 s) and it can be shown that
the corresponding equiload mix lies inside the common saturation sector [35]. R0 is
minimum in correspondence to this mix.

Figure 3.8b shows the System Throughput, Global X0 and per-class
X0,1 X0,2. It is evident that X0 is maximized for all the mix of requests that belong
to the common saturation sector while the per-class throughput are constant in the
interval. It can be shown that the equiutilization point, i.e., the mix of the two classes
that causes two bottlenecks to be equally utilized, lies into this interval and provides
the optimal load that maximizes [35] the global System Throughput.

The behavior of Response times and Throughputs in Fig. 3.8 can be
understood by analyzing the bottleneck migration. Indeed, it is known that the
resource that limit the performance of the system under all possible workload mix is
the bottleneck. So, when the bottleneck changes also the performance changes.

The Utilizations of the three Storage Servers of Fig. 3.9a show
graphically this phenomenon. We do not consider Web and App servers because
their Service demands, see Fig. 3.7a, are definitively lower than those of
Storage servers, and therefore will never be saturated. As predicted, Storage1
and Storage2 saturate together for all the mixes of the common saturation sector
(approximately between 30% and 70% fractions of class-1 req. of the total popu-

3.3 Performance Optimization of a Data Center 59

lation of 200 req.) while the Utilization of Storage3 is definitively lower
(its max Utilization reached in the common saturation sector isUSto3 = 0.52),
since its Service demands are smaller with respect to those of Storage1 and
Storage2. When only a few class-1 requests are in execution (β1 < 0.3), the bot-
tleneck isStorage1. On the other side, when the fraction of class-1 req in execution
is high (β1 > 0.8) only Storage2 is saturated.

With regard to the Quality of Service targets on the per-class System
Response times that were set for the original configuration of the data cen-
ter with a workload of N0 = 100 req evenly divided between the two classes, i.e.,
β = {0.5, 0.5}, we can see that with N0 = 200 req cannot be satisfied. Indeed, the
target values assigned to the mean System Response times of the two classes
were R0,1 = 8 s and R0,2 = 12 s, respectively. With N0 = 100 req these valueswere
met (R0,1 = 4.5 s and R0,2 = 6.7 s), with N0 = 200 req otherwise they are not
(R0,1 = 9 s and R0,2 = 13.5 s), see Fig. 3.8a. We will see in the following Obj.2 that
a load balancing action allows the satisfaction of the targets.

Obj.2: Investigate on the actions that may improve the performance of the data
center with the current configuration and a workload of N0 = 200 req. Can the
System Response time objectives be achieved after these actions?
Figure 3.9a emphasizes the problem: the unbalanced utilization of the Storage
Servers.

To enhance the performance we need to take into consideration the most heavily
loaded servers, namely Storage1 and Storage2, since reducing the Service
demands at resources other than the bottlenecks produces only marginal improve-
ments. The total load on the two Storage Servers 1 and 2 is fairly balanced,
DSto1 = 125 ms and DSto2 = 100 ms, while the load of the third server is much

Fig. 3.9 Utilizations of the Storage servers in the original configuration (a) and in
the balanced system (b) vs population mixes. The workload ranges from {0,200} to {200,0} req

60 3 Systems with Heterogeneous Workloads

Fig. 3.10 Service demands for the balanced configuration of the three Storage Servers

smaller, 58 ms, see Fig. 3.7a. We want to assess the effect of alleviating the bot-
tlenecks, trying to balance the loads of all three Storage Servers. So, even
according to usage statistics, some files have been migrated between the various
storage, more precisely from Storage1 and Storage2 to Storage3, in order
to make their total Service demands more similar to each other than in the
original configuration. Figure 3.10 shows the new Service demands.

Let us remark that the Global Service demand to all the three Storage
Servers must remain the same as the one of the original configuration, namely
283 ms, since all the servers have the same technical characteristics. Thus, shifting
some data from one resource to another alter the visits Vr but not the Service
time Sr of a request.

This configuration denotes a good balancing of the load of the three storages and
no server is underutilized, Fig. 3.9b. By comparing their behavior with those of Fig.
3.9a obtained with the original system it is evident that the sum of the three Ur is
maximized, thus enabling the maximization of the System Throughput.

The maximum System Throughput of the original system, obtained with
fractions inside the common saturation sector, was Xmax

0 = 0.0185 req/ms, Fig. 3.8b,
while the one obtained after the balancing action, Fig. 3.11b, is Xmax

0 = 0.0218 req/ms,
with an improvement of about 17.8%.

The corresponding minimum System Response time were Rmin
0 = 10.8 s

for the original system, Fig. 3.8a, and Rmin
0 = 9.18 s for the balanced, Fig. 3.11a,

with a reduction of about 15%.

3.3 Performance Optimization of a Data Center 61

Fig. 3.11 System Response times [ms] and Throughputs [req/ms] in the balanced con-
figuration versus population mixes. The workload ranges from {0,200} to {200,0} req

With regard to the targets defined for the per-class System Response
times, i.e., R0,1 = 8 s and R0,2 = 12 s,with themixβ = {0.5, 0.5},we can see from
Fig. 3.11b that the balanced configuration is able to satisfy them, i.e., R0,1 = 7.65 s
and R0,2 = 11.47 s. Instead, as described previously, the original configuration of
data center with 200 req in execution was unable to reach them.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 4
Impact of Variability of Interarrival and
Service Times

4.1 Importance of Distributions: A Motivating Example

In this section we highlight the significant errors in the computation of performance
indexes that are introduced when only the mean values are considered instead of the
distributions of some input parameters. Consider a server that requires a constant
Service time S of 1 s to execute a request. Assume that the requests arrive
with rate λ = 60 req/min in groups (bursts) and that the requests of a burst arrive
at the same instant of time. The time between consecutive bursts is constant. We
will analyze the impact on Queue time and Response time of different burst
lengths, ranging from 1 to 60, considering always the same arrival rate.

In the case shown in Fig. 4.1a, a request arrives at the server exactly every second.
Since the time S required for its execution is always equal to 1 s, the queue will
never take place (the Queue time is equal to zero) and thus the mean Response
time (Queue time plus Service time) is exactly one second for all requests.
In the other graphs it is assumed that the requests arrive at the server with burst of
increasing dimensions.

In Fig. 4.1b a burst of size 2 arrives exactly every two seconds. The first request
never waits in queue, while the latter waits for one second, that is, the execution time
of the first. So the mean Queue time is 0.5 s. In the graph of Fig. 4.1c a burst of
size 3 arrives exactly every three seconds. The first request never waits, the second
waits a second and the third waits two seconds. So the mean Queue time is 1 s
and the mean Response time is 2 s.

Finally, in Fig. 4.1d 60 requests arrive together in a single burst every sixty seconds
(the rate is always 1 req/s). In this case the mean Queue time is 29.5 s. Let us
remind that the sum of n positive consecutive integers starting from 1 is n(n + 1)/2.
In our case we have 60 requests, but only n = 59 of them wait from 1 to 59 s,
respectively. Thus, themeanwaiting time (Queue time) of the 60 requests is 29.5
s and the mean Response time is 30.5 s! The conclusion is

© The Author(s) 2024
G. Serazzi, Performance Engineering,
https://doi.org/10.1007/978-3-031-36763-2_4

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36763-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-36763-2_4

64 4 Impact of Variability of Interarrival and Service Times

Fig. 4.1 Impact of different burst lengths on mean Response time

Even considering the same arrival rate λ = 1 req/s and the same
Service times S=1 s, depending on the arrival pattern of requests we
could have a very high variability of mean Response times: from
1 to 30.5 s in the example considered (and this is not the worst case!).

4.2 Variability of Interarrival Times

tags: open, single class, Queue, Exp/Hypo-exp/Hyper-exp, JSIMg.

The objective of this case study is to emphasize the impact of the variance of
Interarrival times on the performance of a system.

4.2.1 Problem Description

Consider a model of a web server that needs to execute an e-commerce applica-
tion to sell equipment produced by a new company. While the mean and variance
of Service time required to process a purchase order can be estimated with

4.2 Variability of Interarrival Times 65

sufficient accuracy, the pattern of incoming requests is unknown as customers are
located all over the world.

We use a simple model of the web server consisting of a single queue station.
To account for the unknown patterns of the incoming requests we consider five
distributions of interarrival times with the same mean and increasing variability. To
describe the variance of interarrival times we use the coefficient of variation c of
each distribution (given by the standard deviation/mean ratio). For a given value
of arrival rate, the values of c are directly proportional to the variance of the five
distributions since their means are the same.

The Service times are assumed exponentially distributed with the same
mean S = 1 s for all the models.

To analyze a wide range of traffic intensities we consider several arrival rates,
ranging from light-load (10% of server utilization) to heavy-load (90% of server
utilization) conditions. For each arrival rate we execute five models corresponding
to the five interarrival time distributions. As a reference metric we consider the mean
Response times of the models executed. The models are solved with JSIMg.

4.2.2 Model Implementation

We use a open model consisting of three stations: Source1, Queue1, and Sink1,
Fig. 4.2a. The Service times of Queue1, with mean S = 1 s, used in all the
models have the same exponential distribution. The five distributions considered of
Interarrival times, in sequence of increasing variance are: Constant cv =
0, Hypo-exponential cv = 0.5 (Hypo-exp), Exponential cv = 1 (Exp), Hyper-
exponential cv = 5 (Hyper-exp), Hyper-exponential cv = 10 (Hyper-exp).
Figure 4.2b shows the window for setting the mean = 10 (corresponding to λ =
0.1 req/s) and the coefficient of variation cv = 10 of the Hyper-exp
distribution.

The differences between the distributions are emphasized in Fig. 4.3a (obtained
with λ = 0.9 req/s), that shows the graphs relating to three of them: Hypo-exp
cv = 0.5, Exp cv = 1, and Hyper-exp cv = 0.5. As can be seen, the percentages of
Interarrival times (i.e., the percentiles) that are less than the mean value
1.111 s are very different: 56.8% for the Hypo-exp, 63.6% for the Exp (the exact
analytical result is 0.6321), and 85% for the Hyper-exp with cv= 5 (and 91% for the
Hyper-exp cv = 10, not shown in the figure). To obtain the percentiles of a metric
with JSIMg see Sect. 2.2 and Figs. 2.10, 2.11.

The increase of variability also heavily influences the maximum values of the
various distributions: 5.4 s for the Hypo-exp, 16.69 s for the Exp, 261.22 s for
the Hyper-exp cv = 5, and 864.46 s for the Hyper-exp cv = 10. The number of
samples needed to reach the equilibrium of the metric Throughput of Source1,
that provides the Interarrival timeswith 99% Confidence Interval and 0.03
Max Rel. Err., ranges from 40960 of the Hypo-exp to 1063920 of the Hyper-exp
cv = 10.

66 4 Impact of Variability of Interarrival and Service Times

Fig. 4.2 The model considered (a), Settings of the mean = 10 and coeff. of variation
cv = 10 of the Hyper-exponential distribution of Interarrival times for Arr.rate 0.1
req/s (b)

Fig. 4.3 Interarrival time distributionswith increasing variability (cv= 0.5, 1, 5) obtained
with λ = 0.9 req/s and the same mean 1.111 s (a); the corresponding Response times of
Queue1 for λ = 0.1 ÷ 0.9 req/s (b)

4.2 Variability of Interarrival Times 67

Table 4.1 Response times [s] with five Interarrival time distributions with increas-
ing variance vs Arrival rates. Service times S = 1 s are exponentially distributed

Arrival
rate

Response times

Interarrival time distributions

Const
cv = 0

Hypo-exp
cv = 0.5

Exp
cv = 1

Hyper-exp
cv = 5

Hyper-exp
cv = 10

λ = 0.1
[req/s]

1.00 1.01 1.11 1.22 1.24

λ = 0.3
[req/s]

1.05 1.12 1.43 2.20 2.40

λ = 0.6
[req/s]

1.47 1.70 2.54 14.49 46.98

λ = 0.9
[req/s]

5.13 6.43 9.92 116.88 455.06

4.2.3 Results

To simulate the different traffic intensities we use, for each distribution, a What-if
analysis, withArrival rate as control parameter, that execute ninemodels with λ rang-
ing from 0.1 (light load) to 0.9 (heavy load) req/s with increments of 0.1. Figure 4.3b
shows how the Response time R varies with different arrival patterns and rates.
To make it easier to understand the figure, only R obtained with three distributions
are plotted: Exp cv = 1, and Hyper-exp with cv = 5 and cv = 10. As can be seen,
the values of R grow very fast not only when the Arrival rate is approaching
the saturation value λsat = 1 req/s (and expected) but also with the increase of the
variability of the Interarrival times (and this is not so expected).

Table 4.1 shows theResponse Times for the five distributionswith Arrival
rates λ = 0.1, 0.3, 0.6, 0.9 req/s.

Even if we do not consider the two extreme distributions (i.e., the Constant cv
= 0 and the Hyper-exp cv = 10), the differences between the Response times
corresponding to the same λ become greater as the utilization of the server increases.
The values of the last row of the table, corresponding to the utilization of 90%, show
a difference of more than 18 times between 6.43 s with Hypo-exp cv = 0.5 and
116.88 s with Hyper-exp cv = 5!

Since for a given arrival rate λ the server utilization U is the same for all distri-
butions (it is U = λ S), we may conclude that:

measuring server Utilization is useless to predict Response times if it is not com-
plementedwith the knowledge of othermetrics, such as the distributions of Interarrival
and Service times.

68 4 Impact of Variability of Interarrival and Service Times

4.3 Variability of Service Times

tags: open, single class, Queue, Exp/Hypo-Exp/Hyper-Exp, JSIMg.

This case study has been purposely designed to highlight the impact of the variance
of Service times on the performance of a system. The Service times
followfive different distributions,while theInterarrival times are generated
according to the same Exponential distribution. It can be considered the dual of the
example discussed in the preceding section in which the opposite situation was
evaluated.

4.3.1 Problem Description

The scenario of this example is quite common in many practical problems in which
the execution times of the applications are often highly variable based on input data
and required functions (see, e.g., [21]).

We consider an application for the computation of the path between two geo-
graphical locations. The algorithms that compute the driving route from a source to
a destination are computationally heavy and the Service demands are highly
variable as a function of the locations considered. For these reasons the management
decided to deploy the application on a dedicated server and to evaluate the impact
on Response time of the different locations.

The Interarrival times of the route requests are assumed Exponentially
distributed and different Arrival rates, that cover the range from light to heavy
traffic, are considered. To account for the different fluctuations in execution times,
five distributions with increasing variances, from zero to very high values, and the
samemeanwere considered. For each Arrival ratewe evaluate theResponse
time for the five Service times distributions. The models are solved with
JSIMg.

4.3.2 Model Implementation

The layout of the open model used is shown in Fig. 4.4a. It consists of three stations:
Source1, Queue1, and Sink1. The five distributions of the Service times
considered, in sequence of increasing variance, are: Constant cv= 0 (Const), Hypo-
exponential cv = 0.5 (Hypo-exp), Exponential cv = 1 (Exp), Hyper-exponential
cv = 5 (Hyper-exp), Hyper-exponential cv = 10 (Hyper-exp). The use the
coefficient of variation cv of each distribution (given by the standard deviation/mean
ratio) to describe the variance of Service times is convenient in this case as,

4.3 Variability of Service Times 69

Fig. 4.4 Model considered (a); What-if with Arrival rates λ = 0.1÷ 0.9 req/s (b)

for a given Arrival rate, its values are directly proportional to the variance of
the five distributions being their means the same (S = 1 s).

The same Exponential distribution of the Interarrival times generated
by Source1 is used in all the models. A What-if analysis is used to execute, for
each distribution of Service times, 9 models with Arrival rates ranging
from 0.1 to 0.9 req/s with increments of 0.1 (see Fig. 4.4b). Globally, five What-if
analyses are required corresponding to the five distributions of Service times
considered (in total 45 models are executed).

4.3.3 Results

The objective of the two graphs of Fig. 4.5 is to provide a visual evidence of the
negative effects of service time fluctuations on Response times. In Fig. 4.5a the
Service times of a period of three hours (simulated time) with a Hyper-exp
cv = 5 distribution are shown. Remember that the mean is S = 1 s for all distribu-
tions! The Response times, with λ = 0.9 req/s, for the same period are shown
in Fig. 4.5. The data for the plots of Fig. 4.5 are obtained from the CSVfiles generated
by JSIMg.

The correlation between the bursts of high values of S and the peaks of Response
times is evident and consistent with intuition. The bursts create a congestion of the
server and small increases in arriving requests in this condition determine enormous
increases in queue length, and in Response times together with it. For example,
consider the initial period of half-hour, or the period of about 800 s centered at the
end of two hours (7200 s), or the period starting at about 9000 s. It must be pointed
out that the fluctuations of Response times are emphasized in our case due to
the high Utilization of the server U = λS = 0.9.

70 4 Impact of Variability of Interarrival and Service Times

Fig. 4.5 Service times generated with Hyper-exp distribution (S = 1 s and cv = 5) for a
period of three hours (a); corresponding Response times with λ = 0.9 req/s (b)

Fig. 4.6 Response Time with Hyper-exp cv = 5 distrib. of S (a); R with three different
Service times distributions and same mean 1 s, Interarrival times are Exponentially
distributed

Figure 4.6a shows an example of the results provided by one of the 45 models
executed: the behavior of the Response times obtained from a simulation run
with λ = 0.6 req/s and Hyper-exp distribution of Service times with cv = 5.
The mean value R= 20.56 s with the precision required (99% of conf. interval, 0.03
max error) is obtained with 9175040 samples.

The Response times obtainedwith three different distributions of Service
times are shown in Fig. 4.6b. Thearrival rate range from0.1 to 0.9 req/swith
step of 0.1. The variance of the three distributions increases from the Exponential
(cv = 1) to the Hyper-exp (cv = 10).

The Response times obtained by JSIMg simulating five distributions of
Service times and λ = 0.1, 0.3, 0.6, 0.9 req/s are given in Table 4.2. As can
be seen, for the same Arrival rate there are huge differences between the
values obtained with the five distributions. These differences increase as server
Utilization increases. Even avoiding to consider the Constant cv=0

4.3 Variability of Service Times 71

Table 4.2 Response times with five Service times distributions with increasing vari-
ance and same mean S = 1 s vs Arrival rates. Interarrival times are Exponentially
distributed

Arrival
rate

Response time

Service time distributions

Exp cv = 1 Const
cv = 0

Hypo-exp
cv = 0.5

Exp
cv = 1

Hyper-exp
cv = 5

Hyper-exp
cv = 10

λ = 0.1 [r/s] 1.05 1.06 1.11 2.42 6.67

λ = 0.3 [r/s] 1.21 1.26 1.43 6.66 22.62

λ = 0.6 [r/s] 1.76 1.95 2.54 20.56 77.15

λ = 0.9 [r/s] 5.53 6.51 9.92 119.17 453.36

λ = 0.9 M/G/1 5.5 6.625 10 118 455.5

distribution, which provides a lower bound for all distributions, we can have enor-
mous differences (up to 70 times with λ = 0.9 req/s) between the Response
times obtained with Hypo-exp cv = 0.5 (6.51 s) and those with Hyper-exp cv =
10 (453.36 s)! Let us remark that these differences occur even if the Utilization
of the server is the same for all distributions.

Thus, we can conclude that:

to provide accurate performance forecast of a server it is essential to know
the distributions of Interarrival and Service times, and not
just their mean values and server Utilization.

The model considered in this section could be solved analytically obtaining exact
results. In fact it corresponds to a M/G/1 queue station (see the tutorial [32] and,
e.g., [36]) having Exponential Interarrival times, i.e., the arrival process
is Poisson (Markovian, M), Service times with general distribution (G) with
given mean and variance, and a single server. The Response time of this
station is given by:

RQueue1 = waiting time in queue W+ Service time S = US(1+ cv2)

2(1−U)
+ S (4.1)

where U is the server Utilization (U= λS), and cv is the coefficient of variation
of the general distribution of Service times with mean S. Note that both the
mean and the variance of Service times must be known to compute the coef-
ficient of variation. In the last row of Table 4.2 are reported the exact Response
times computed with Eq. 4.1. As can be seen, the values obtained with JSIMg are
very close to the exact ones, and are all within the 99% confidence intervals.

Let us remark that when the Service times are Constant it is cv= 0 and the
model is identified as M/D/1 (D stands for Deterministic Service times). Its
waiting timeW (computed with Eq. 4.1) is half of that obtained with an Exponential

72 4 Impact of Variability of Interarrival and Service Times

distribution (in a M/M/1 model with cv = 1). For example, as shown in the last row
of Table 4.2 with Constant distribution it is W= 4.5 s while with Exponential it
is W= 9 s (with λ = 0.9 req/s and S= 1 s). The waiting timeW of an M/D/1 station
is the lower bound for any M/G/1 station with the same S and Arr. rate.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 5
Parallel Computing

5.1 Synchronization of All Parallel Tasks

tags: open, single class, Source/Fork/Queue/Join/Sink, JSIMg.

5.1.1 Problem Description

The focus of this problem is on the use of Fork and Join stations for parallel
computing and synchronization. The model is open and the workload consists of a
single class of jobs.

We will consider the problem of modeling the execution of a job that at some
point (i.e., at the Fork station) splits into several parts, referred to as tasks, that
will be executed in parallel. The tasks may be instances of the same code processing
different data set, or part of the code performing different computations. Each task
can follow a different path through the resources between the Fork and the Join.
When all tasks complete their executions, they are merged in the Join station
and then, according to the synchronization policy, the job that generated them can
continue its execution. This type of behavior is typical of many current applications,
such as Map/Reduce, that alternate phases in which various instances of the code are
generated and executed in parallel with phases that require their synchronization.

5.1.2 Model Implementation

We use a Fork station that when a job arrives generates four equal jobs, referred to
as tasks, that will be executed in parallel, and a Join station to synchronize their
executions. When all the executions are completed, the Join releases, i.e., fire, the
job. The layout of themodel is shown inFig. 5.1.ASource station generates theflow

© The Author(s) 2024
G. Serazzi, Performance Engineering,
https://doi.org/10.1007/978-3-031-36763-2_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36763-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-36763-2_5

74 5 Parallel Computing

Fig. 5.1 Fork1 generates for each job four tasks executed in parallel and synchronized on Join1

Fig. 5.2 Fork1 parameterization: one task is generated and sent on each output link

of jobs with exponentially distributed Interarrival times. The Service
times Si of the four queueing stations Queue1÷4 are exponentially distributed.

The Arrival rate of the jobs is λ = 1 j/s and the mean Service times
of the four queue stations are S1 = S2 = S3 = S4 = 0.5 s.

In the Editing Fork Properties window (Fig. 5.2) we do not flag
the check box for enabling the Advanced Forking Strategies so the
Standard Strategy is applied.

For each arriving job, this strategy send n tasks on each link in output of the Fork.
For n we left the default value n = 1. We want that all the four tasks generated by a
job, one per output link, will be completely executed before the job exit the Join
station. To synchronize all the tasks of a job at the Join station the Standard
Join Strategy (see Fig. 5.3) is selected.

Initially we execute a model with Arrival rate λ = 1 j/s. The perfor-
mance indexes to be collected together with the requested precision (in terms of
confidence level and max relative error) of their values are shown
in Fig. 5.4.

5.1 Synchronization of All Parallel Tasks 75

Fig. 5.3 Join1parameterization: executions of all tasks are synchronized before the job is released

Fig. 5.4 Performance indexes collected during the simulation, and their precision parameters

After this single simulation run, we investigate the behavior of performance
indexes for different values of arrival rate λ. To this end we use the What-if
analysis feature (Fig. 5.5). We check the box Enable what-if analysis,
and we select Arrival rate as control parameter. Five executions are required
with arrival rates λ = 1, 1.2, 1.4, 1.6, 1.8 j/s.

76 5 Parallel Computing

Fig. 5.5 What-if analysis: 5 models with Arrival rates from 1 to 1.8 j/s are executed

5.1.3 Results

In this section we show some of the results obtained from the simulations and we
compare their values with the corresponding exact values computed analytically,
when these are available.

The simulationwithλ = 1 j/s provided the values of all themeasured performance
indexes with the precision required in Fig. 5.4.

In Fig. 5.6, the mean Response times of Queue1 RQ1 = 1.01 s and of
Join1 RJ1 = 0.938 s stations are shown. TheResponse time of Queue1 is the
mean time of a visit to Queue1 (queue+service). The Response time of Join1
is the synchronization time of the four tasks since it represents themean time that three
tasks, whose executions are already terminated, must wait that also the fourth end
before thefire of the job can take place. TheFork/Join Response time (mean
time within a Fork/Join section) provided by the simulation is RF J = 1.92 s and,
in the model considered, is obtained by adding the mean of the four Response
times of the queue stations and the Synchronization time of Join1.

The validation of the results of the individual queue stations, considered in
isolation from the rest of the model, can be done by comparison with the corre-
sponding exact values computed analytically. Indeed, each queue can be mod-
eled as a M/M/1 station since both its Interarrival times and Service
times are exponentially distributed. Thus, its Utilization is Ui = λSi = 0.5,
its Response Time (mean time for one visit, queue plus Service times)
Ri = Si/(1−Ui) = 1 s, its mean Number of customers (tasks) in the station
Ni = Ui/(1−Ui) = 1 task.

The results obtained from the simulation are very close to these ones computed
analytically: the Response time of Queue1 is RQ1 = 1.01 s (Fig. 5.6), the
Utilization is UQ1 = 0.505, and the mean Number of tasks is

5.1 Synchronization of All Parallel Tasks 77

Fig. 5.6 Response times of Queue1 and Join1 stations (mean time for a visit to Queue1
and mean synchronization time at the Join1, respectively) for the model of Fig. 5.1 with
λ = 1 j/s

NQ1 = 1.01 tasks. Similar values have been obtained for the other three stations
Queue2, Queue3, and Queue4.

To study the behavior of the Fork/Join Response time, that includes the
Synchronization time of the tasks at Join1, we use a What-if analysis
(Fig. 5.5) requiring the simulation of five models with Arrival rates λ = 1÷
1.8 j/s. The results are plotted in Fig. 5.7.

Unfortunately, the exact formula to compute the Fork/Join Response
time is known only for particular models. In more general cases various approxi-
mate solutions are available.

The exact Fork/Join Response time can be computed only when there
are two parallel paths in output of the Fork and the two servers are M/M/1 queue
stations with the same service rate.

In this model, the exact mean Fork/Join Response time, see [17], is
given by:

RF J = 12−U

8

S

1−U
(5.1)

and the exact mean Synchronization time at the Join (referred to as RJ) is

RJ = 4−U

8

S

1−U
(5.2)

The results obtained with simulation are validated considering the model of Fig. 5.8
whose exact Fork/Join Response time and Synchronization time
are given by Eqs. 5.1 and 5.2, respectively. The parameters used are λ = 1÷ 1.8 j/s
and SQ1 = SQ2 = 0.5 s and all the distributions are exponential.

78 5 Parallel Computing

Fig. 5.7 Fork/Join Response time of the model of Fig. 5.1 computed with a What-if
with the Arrival rate λ ranging from 1 to 1.8 j/s in five steps (see Fig. 5.5)

Fig. 5.8 Fork/Join with two equal Queues M/M/1 that can be solved analytically, Eqs. 5.1,
5.2

Table 5.1 shows the results obtained with JSIMg and the corresponding exact
values. As can be seen, the exact values are within the 99% confidence intervals as
required, (see Fig. 5.4).

For Fork/Join structures with a number of parallel paths greater than two,
heterogeneous queue stations, and general distributions there are no exact formula
to compute the performance indexes.However, several approximations, some enough
precise but complex to compute, are available in literature (see, e.g., [28]).

An estimation, rather coarse but simple to compute, can be obtained considering
the model typically adopted to study the reliability of parallel infrastructures.
A system consisting of n parallel components fails when all the n components fail.
Consider the instants in which the tasks complete their executions as events corre-
sponding to the failures of components of the reliability model. We can see that the
two models (the Fork/Join and the reliability) are similar since both seek the

5.1 Synchronization of All Parallel Tasks 79

Table 5.1 Fork/Join Response times and Synchronization times of the two
equal parallel queues (Fig. 5.8) obtained with JSIMg and their exact values computed with Eqs.
5.1 and 5.2

Arrival rate [j/s] Fork/join Response time Synchronization time

JSIMg Exact JSIMg Exact

λ = 1.0 1.413 1.437 0.431 0.437

λ = 1.2 1.775 1.781 0.526 0.531

λ = 1.4 2.378 2.354 0.692 0.687

λ = 1.6 3.478 3.5 0.981 1.0

λ = 1.8 6.971 6.937 1.956 1.937

mean time required for the end of all the n tasks or the failures of all the n compo-
nents. In the reliability model several assumptions are typically made (that are not
completely satisfied in the Fork/Joinmodel): the n components are independent,
identical (with exponentially distributed Interarrival times of failures with
the same mean), non-repairable, and no interference is possible between consecutive
events (no queues of events are possible for the same component). The events, i.e.,
the failures, can be regarded as generated by n independent Poisson streams with the
same mean. Denoting with MTT F the mean time to failure of a single component,
and with MTT Fn the mean time to failure of all the n components, (its derivation
is summarized in Appendix A.3) it will be:

MTT Fn =
(
1

n
+ 1

n − 1
+ ... + 1

2
+ 1

)
MTT F (5.3)

The MTT F of a component represents the mean Response time R of a queue
station of our model, whose values are exponentially distributed since each station
is modeled as a M/M/1 queue. The MTT Fn represents the mean time required
to have the executions of all the n parallel tasks completed, i.e., the Fork/Join
Response time.

Unfortunately, our original model (Fork/Join) violate several assumptions of
the reliability model: the events on the four queue stations are not independent (the
Fork generates the n parallel tasks of a job simultaneously), the tasksmay be queued
at a station to wait until the server is idle, and a task of a job may start its execution on
a station also if the tasks of a previous job are still in execution on the other stations.
However, in spite of these violations, the values given by Eq. 5.3 are not very far
from the results of the simulation.

To verify these results, consider the Fork/Join Response times shown
in Fig. 5.7. With λ = 1 j/s the result of simulation is RF J = 1.922 s while Eq. 5.3
gives 2.08 s.With λ = 1.4 j/s the RF J is 3.096 s and the approximated value is 3.47 s.
With λ = 1.8 j/s the simulation provides RF J = 9.036 s and the approximated value
is 10.4 s. If we consider a very low arrival rate, e.g., λ = 0.1 j/s the utilization is
0.05, the queues are very unlike and the simulation provides RF J = 1.086 s while

80 5 Parallel Computing

Eq. 5.3 gives 1.096 s, very close! Clearly, the errors increase with the queue lengths,
i.e., with the arrival rate, and then with the Utilization of the stations.

5.1.4 Limitations and Improvements

• Servers with different mean Service times: we assumed that the Service
times of the four Queue stations have the same mean and that are exponentially
distributed. For a generalization it is sufficient to select Queue stations with
different mean Service times, see case study Sect. 5.2.

• Different number of tasks on each output link of a Fork: the number of tasks
generated by a job on each output link is the same. Generalizations are easy to
implement by selecting the Advanced Forking Strategies, see Fig. 5.2.

5.2 Impact of Variance on Synchronization

tags: open, single class, Source/Fork/Queue/Join/Sink, JSIMg.

5.2.1 Problem Description

As in the previous problem,we consider the parallel executions of four tasks and their
synchronization. The layout of the model is shown in Fig. 5.9. The only difference
with respect to the problem of Fig. 5.1 stem in the variance of Service times
of one of the four queue stations: Queue1 has a higher variance with respect to
the other three stations (all the mean values are always Si = 0.5 s, as in the previous
model). We want to investigate on the impact on the synchronization time of the four
executions of this high-variance station.

The high variability of Service times is typical of many current comput-
ing infrastructures since frequently the applications are executed by very different
systems. For example, theVirtualMachines that are dynamically allocated to applica-
tions have different computational power and their workloads are often unbalanced.
What is surprising is that even a relatively small difference in the variance of the
Service times of one station out of four (that have the same mean) has a deep
impact on the Fork/Join Response time.

5.2 Impact of Variance on Synchronization 81

Fig. 5.9 Fork1 generates for each job four tasks executed in parallel and synchronized on Join1.
Service times of Queue1 are hyper-exp while those of the other three stations are exponential

5.2.2 Model Implementation

The mean Service times of the four queue stations are the same used in the
model of Fig. 5.1, S1 = S2 = S3 = S4 = 0.5 s. In this model, we assume that the
coefficient of variation cv (given by standard dev./mean) of Queue1
Service times is cv = 3 instead of 1 (as it was in the previous model where we
assumed exponential distributions). Thus, the standard deviation of the Service
times is 1.5 s, and the variance is 2.25 s2. Since it is cv>1, to simulate theService
times of Queue1we use the Hyperexponential distribution (Fig. 5.10) with
parameters cv = 3 and mean value SQ1 = 0.5 s (see Fig. 5.10). From these two
parameters JSIMg automatically derives the other parameters needed to generate an
hyper-exponential distribution with a given mean and variance.

Initially a model with Arrival rate λ = 1 j/s is executed. The impact of
the variability of Service times of one of the stations (Queue1) on the
Synchronization time of the four tasks is then investigated. Comparisons
with the performance of a single station M/G/1 are also done.

5.2.3 Results

A single simulation run is executed with λ = 1 j/s. The Response times of
Queue1 and Join1 stations are shown in Fig. 5.11. The latter represents the
Synchronization time of the executions of the four tasks.

82 5 Parallel Computing

Fig. 5.10 Hyper-exp Service time distribution of Queue1, with mean = 0.5 and cv = 3

Fig. 5.11 Response times of Queue1 and Join1 stations of the model of Fig. 5.9 with
λ = 1 j/s . The latter represents the Synchronization time of the four tasks

We evaluated the behavior of the Fork/Join Response time for different
values of Arrival rate λ using a What-If (Fig. 5.5). Five models with λ =
1, 1.2, 1.4, 1.6, 1.8 j/s have been executed and the corresponding Fork/Join
Response times are shown in Fig. 5.12.

In Table 5.2 we report for comparison purposes the Fork/Join Response
times and the Synchronization times of the two models of Fig. 5.1 (col-
umn Exp) and Fig. 5.9 (column Hyper), respectively, obtained with JSIMg. The
impact of the variability of Service times of one station to the Global
Response time of the Fork is evident. For example, with stations utilized at

5.2 Impact of Variance on Synchronization 83

Fig. 5.12 Fork/Join Response times of the model of Fig. 5.9 computed with a What-if
with the Arrival rate λ ranging from 1 to 1.8 j/s in 5 steps (Fig. 5.5)

90% the Fork/Join Response time increases from 9 s (when the standard
deviation of Service times is 0.5 s) to 25 s (when the standard deviation of is
1.5 s).

Let us remark that it has been sufficient that only one of the four servers increased
its variance of Service times of three times to generate a similar increase of
the Response Time of the Global Fork/Join structure.

To analyze the impact of the Queue1 station with the high variance on the
Fork/Join Response timewe study it in isolation. According to the assump-
tions, the Interarrival times of the tasks are exponentially distributed and
its Service times follow an hyper-exponential distribution. Thus, Queue1 can
be modeled analytically as aM/G/1 queue. Its Response Time is given by (see,
e.g., [36]):

RQ1 = S + US(1+ cv2)

2(1−U)
(5.4)

where U is the Utilization of the station (U = λ S), S = 0.5 s is the mean
of Service times and cv = 3 is their coefficient of variation. In the last two
columns of Table 5.2 the Response Times of two stations M/G/1 and M/M/1,
considered in isolation, are reported. The contribution of the M/G/1 station to the
global Fork/Join performance is evident if we consider, for example, that with
λ = 1.8 j/s its Response time (23 s) represents the 92% of the Fork/Join
Response time (25 s) with the four queue stations. It must also be pointed out
the huge difference between the Response Times of the two types of queues

84 5 Parallel Computing

Ta
bl
e
5.
2
F
o
r
k
/
J
o
i
n
R
e
s
p
o
n
s
e
t
i
m
e
s
an
d
S
y
n
c
h
r
o
n
i
z
a
t
i
o
n
t
i
m
e
s
of

th
e
tw
o
m
od
el
s
of

Fi
gs
.5
.1
(l
ab
el
E
x
p
,f
ou
re
xp

)a
nd

5.
9
(l
ab
el
H
y
p
e
r
,

on
e
hy
pe
r-
ex
p
an
d
th
re
e
ex
p)

A
r
r
i
v
a
l
r
a
t
e

U
t
i
l
.

F
o
r
k
/
J
o
i
n
R
e
s
p
o
n
s
e
t
i
m
e

S
y
n
c
h
r
o
n
i
z
a
t
i
o
n
t
i
m
e

R
e
s
p
.
t
i
m
e
s
i
n
g
l
e
s
t
a
t
i
o
n

[j/s
]

%
H
yp

er
E
x
p

H
yp

er
E
x
p

M
/G

/1
M
/M

/1

λ
=

1.
0

0.
5

3.
95
1

1.
92
2

2.
46
3

0.
92
0

3.
00

1

λ
=

1.
2

0.
6

5.
19
1

2.
33
8

3.
19
7

1.
10
3

4.
25

1.
25

λ
=

1.
4

0.
7

7.
56
4

3.
09
6

4.
68
0

1.
44
3

6.
33
3

1.
66
6

λ
=

1.
6

0.
8

11
.8
93

4.
51
0

7.
24
4

2.
04
6

10
.5
0

2.
5

λ
=

1.
8

0.
9

25
.0
65

9.
03
6

15
.8
75

4.
02
4

23
.0
0

5

5.3 Synchronization on the Fastest Task 85

M/G/1 and M/M/1, for example, with U = 0.9 the two values are 23 and 5 s, respec-
tively (last two columns of Table 5.2).

5.2.4 Limitations and Improvements

• High variability of Service times: All the servers considered in the models
have the same mean. It is easy to generalize these models considering heteroge-
neous servers with different mean Service times and distributions.

• Impact of high variability of Service times of one server : Let us remark that
it has been enough an increase of the variance of Service times of only one
server out of four to generate dramatic effects on system performance. You may
imagine how frequently this condition occurs in real world data centers with the
high degree of heterogeneity of current workloads! It is therefore very important
to keep the variability of Service times of all the servers under control.

5.3 Synchronization on the Fastest Task

tags: open, single class, Source/Fork/Queue/Join/Sink, JSIMg.

5.3.1 Problem Description

In this section we will analyze the effects on the Fork/Join Response time
of a Join Strategy different from the Standard one (that synchronizes the
executions of all the tasks). According to the Quorum strategy, a Join station
releases a job, i.e., fire the job, when a subset of the parallel tasks generated by the
Fork for each job completed their execution. In this problem we assume that as
soon as one task of a job completed its execution, the Join releases the job.

This problem is typical of several actual digital infrastructures like CEPH, the
object storage used by OpenStack, or RAID1, the mirroring storage architecture,
that use data replication as a technique to improve performance and reliability of
systems. The requests for a object (data, file or other subject) are split in several
tasks that are sent in parallel to all the devices containing the replicated data. In our
case, the object is sent back when the first task (the fastest) finishes. The results show
that the impact of replication technique to the performance and reliability of digital
infrastructures is significant.

86 5 Parallel Computing

5.3.2 Model Implementation

We consider the parallel executions of four tasks generated by a job at the Fork on
four Queue stations having the same characteristics.

The service requests of the four tasks have the same mean S1 = S2 = S3 = S4 =
0.5 s and are exponentially distributed. The arrival rate of the jobs is λ = 1 j/s, and
the interarrival times are exponentially distributed. The layout of the model is shown
in Fig. 5.13. The difference of this model with respect to the one considered in Sect.
5.1 is that the Join do not requires that all the four executions must be completed
before releasing the job but it is sufficient that only one of them (i.e., the fastest)
completes. We will use the Join Strategy with Quorum=1 (see Fig. 5.14).

5.3.3 Results

The behavior of performance indexes for different values of arrival rate λ is investi-
gated using the What-if (see, e.g., Fig. 5.5). The Arrival rate is selected as
control parameter and the solution of seven models is requested with λ = 0.25, 0.5,
0.75, 1.0, 1.25, 1.5, 1.75 j/s, respectively.

The mean Fork/Join Response times are shown in Fig. 5.15. We want
to emphasize the differences between the mean values of this index obtained with
Quorum=1 (the Join releases the job when the shortest task completes its execu-
tion) and the ones obtained with Quorum=4 (the Join wait that all the executions
of four tasks are completed before release the job). Table 5.3 shows the values of
these indexes in the first two columns for the Arrival rates λ ranging from
0.25 to 1.75 j/s.

Fig. 5.13 Fork1 generates four tasks executed in parallel for a job: Join1 waits only the fastest

5.3 Synchronization on the Fastest Task 87

Fig. 5.14 Selection of the Quorum Strategy of the Join

Fig. 5.15 Fork/Join Response times with Quorum=1 Strategy obtained with a
What-if

88 5 Parallel Computing

Table 5.3 Fork/Join Response times with Join Strategies Quorum=4 (Join
waits all four tasks) and Quorum=1 (Join waits only the fastest task)

Arrival rate Fork/Join Response time Queue1 Queue1 Optim.

λ [j/s] Quorum = 4 Quorum = 1 Resp.Time Utiliz. Approx.

0.25 1.165 0.152 0.570 0.125 0.142

0.5 1.328 0.188 0.670 0.248 0.166

0.75 1.558 0.239 0.793 0.376 0.200

1.0 1.915 0.320 1.006 0.501 0.250

1.25 2.513 0.452 1.321 0.625 0.333

1.5 3.722 0.722 2.013 0.764 0.500

1.75 7.227 1.516 3.963 0.877 1.000

As can be seen, the differences between the values obtained with Quorum=1 and
Quorum=4 are remarkable. For example, for λ = 1 j/s the value with Quorum=1
is about 6 times less than the value with Quorum=4 (0.320 s vs. 1.915 s)!

To highlight the impact of the parallelism and synchronization policies, we also
show in the Table 5.3 the Response time and Utilization of one of the
Queue stations considered in isolation. Let us remind that all the four queues
are the same. Since with Quorum=1 the Fork/Join Response time is the
Response Time of only one task, it may seem correct to consider only one of the
queue in isolation to compute its value (see the Queue1 Resp.time column).
This assumption is wrong. Indeed, the Response times with Quorum=1 are
considerably lower than those obtained with a single queue station (e.g., with λ =
1 j/s it is 0.320 s vs. 1.006 s!). The error occurs because with Quorum=1 only the
minimum of four sequences of exponentially distributed execution times (with the
same mean) is considered, while with the single queue only the average of a single
sequence of exponentially distributed Service times is considered.

An estimate very easy to compute (referred to as Optimal Approximation)
of theFork/Join Response timewith Quorum=1 can be obtained consider-
ing the end of each task as events generated by n independent poissonian generators
with the same rate 1/R. This modeling approach is often used to study the reliability
of a system consisting of n components, e.g., devices, connected in series. This type
of systems fails when any one of the n components fails. The events considered are
the failures of devices. The time between two consecutive failures of a device is
referred to as MTTF, mean time to failure. The assumptions considered are: inde-
pendence of the n identical components, the failures are exponentially distributed in
time, and the components are non-repairable. Thus, we may consider the model as
consisting of n identical independent poissonian arrival streams of events (the fail-
ures) with interarrival times exponentially distributed, and no queues are possible

5.3 Synchronization on the Fastest Task 89

Fig. 5.16 Fork/Join Response time with Join Strategy Quorum=1 and λ =
0.05 j/s

among consecutive events. The mean time MTT F1(n) for the first failure of such a
systems (see Appendix A.3 for its derivation) is given by:

MTT F1(n) = MTT F

n
= R

n
(5.5)

where MTTF represents in our model the mean Response time R of a queue
station that is exponentially distributed. Indeed, according to the assumptions, each
queue is of M/M/1 type, and thus it is R = S/(1− λS) with exponential distribu-
tion. Considering that the number n of parallel stations is 4, Eq. 5.5 provides the
values reported in the last column Optim.Approx. of Table 5.3.

As can be seen, these values are not very far from the corresponding Fork/Join
Response times with Quorum=1 and the differences increase with λ. This is
due to the assumptions made in the failures model that are violated in the simulated
model of Fork/Join. Indeed, the parallel tasks of a job are generated by the Fork
simultaneously on the n queue stations, so are not independent, and furthermore
interferences are possible among consecutive tasks at any of the n queue.

If we consider a very low Arrival rate, e.g., λ = 0.05 j/s, the Fork/Join
Response time given by Eq. 5.5 is 0.128 s and the value obtained with JSIMg is
0.130 s (Fig. 5.16). These values are so close because in this case theUtilization
of the queues is very low, U = λS = 0.025, and thus the interferences among
consecutive tasks are negligible. Indeed, the Response time of a Queue station
given by the simulation is 0.514 s and the mean Service time S is 0.5 s, very
close (practically, queues of tasks waiting for the server almost never form). Clearly,
with the increase in the arrival rate, the approximation becomes increasingly losing.

90 5 Parallel Computing

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 6
Reference Models

6.1 A Facial Recognition Surveillance System

tags: open, two classes, Source/Queue/Class-Switch/Sink, JSIMg.

We consider a surveillance system consisting in the facial identification of passengers
flowing in an airport. It is implemented with a Edge computing architecture. Similar
systems can be applied in several environments such as railway stations, shopping
malls, roads, airways, banks, public buildings, museums, hospitals, etc. It is a simple
model that represents a first step towards the solution of the complex problems of
security control.

6.1.1 Problem Description

Currently available Internet of Things (IoT) devices are equipped with powerful
processors, large storage and actuators that generate huge amounts of data that must
be transmitted through the network. Cloud computing, with its characteristics of
large availability of highly scalable servers, is very appropriate also for the IoT-
based architectures. However, since the distance between the IoT devices and the
cloud servers is typically large, the resulting latency is not negligible and exhibit
unpredictable fluctuations.

This characteristic is very negative for most IoT applications that are delay-
sensitive because are based on decision/reaction cycles (see, e.g., virtual reality,
smart building, video surveillance, facial recognition, e-health, monitoring, automo-
tive and traffic control). Minimizing the time required to process the data generated
by the IoT devices is essential for the correct execution of these applications.

To approach this problem, massively distributed architectures that allow the
implementation of the Edge computing paradigm have been introduced. In these

© The Author(s) 2024
G. Serazzi, Performance Engineering,
https://doi.org/10.1007/978-3-031-36763-2_6

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36763-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-36763-2_6

92 6 Reference Models

Fig. 6.1 The surveillance system based on the identification of facial scans of passengers

environments, the components, referred to as Edge nodes, that process the data
are placed as close as possible to IoT devices, i.e., at the edge of the network.

Typically, the Edge nodes have sufficient processing power and storage capac-
ity to execute efficiently most of the tasks of the applications.Coordinator servers
that perform application management tasks (when they are needed) are placed near
the Edge nodes and are connected to them with fast links. Only the heaviest tasks
are sent to the Cloud servers.

The latency reduction is achieved in two ways: on one side most of the tasks
are executed locally by the Edge nodes in close proximity of IoT devices, on
the other side only the heaviest tasks are sent to powerful cloud servers. As
a consequence, the data transmitted over the network and the Response times
can be minimized.

In this case study we describe the Edge computing environment (see Fig. 6.1)
which is used in an airport to implement a surveillance system based on facial recog-
nition. The identification system detects the faces of passengers passing by the
scanners, those that go up and down the escalators, those in line at check-in desks,
and those flowing in various areas of the airport (e.g., waiting rooms, shops, bar,
restaurants). Five categories of persons are considered, corresponding to five types
of scans: poor-quality image, regular, suspect, dangerous, and unknown person.

To identify the category to which they belong, the faces detected by a scanner are
first compared with those of an in-memory database stored in the directly connected
Edge node. The reaction actions that must be taken after a scan identification vary
greatly depending on its category. The scans belonging to poor-quality and regular
(safe people) categories only require accesses to the local databases but no further
actions. The scans of suspect and dangerous categories require, among others, very
quick actions to synchronize the scanners along the path followed by the person to
be tracked and must transmit messages to the interconnected security agencies.

The algorithms for matching the detected faces with the images stored in the local
in-memory database are executed on the Edge nodes. The Edge nodes also

6.1 A Facial Recognition Surveillance System 93

interact with each other to synchronize the in-memory databases and to coordinate
reaction actions.

The scans of the unknown category (i.e., those not present in the local Edge
nodes databases) are sent to the cloud for more in-depth analysis. At the cloud
layer, very large NoSQL distributed databases for Big Data (such as Apache
HBase,Hive,Cassandra,MongoDB),with documents, socialmedia profiles, biomet-
ric data, and voice traces are used for extensive identification analysis with the most
advanced face detection algorithms. Machine learning algorithms are implemented
to train the system to minimize false identifications. The results of these additional
processing are sent back to the Edge nodes to update the local databases and then
sent to the System Coordinators to implement the reaction actions. To make
the presentation simple, in the implemented model we have not explicitly consid-
ered the System Coordinator servers as very often they are not present or are
powerful servers that do not cause performance problems.

The capacity planning study is structured in two main phases, referred to as initial
sizing phase and performance forecast phase, respectively.

The objective of the initial sizing phase is the calculation of the number of Edge
nodes that guarantee the achievement of the performance targets with the planned
workload (referred to as original workload). The most important performance con-
straint is the time required to analyze a scan by Edge nodes, i.e., their mean
Response time, that must be less than 3 s for all scan categories, excluding the
unknown. This constraint is important as most of the reaction actions to be effec-
tive must be activated within 3 s from the image detection. The configuration of each
Edge node consists initially of one server mounted in a rack located in a dedicated
room. The computed number of Edge nodes coincide with the number of server
rooms. To ensure the highest level of physical safety of the equipments, the locations
of the rooms are kept secret. To increase the availability of the global system, each
room has independent equipments for fire detection, flooding protection, cooling and
power continuity UPS. For several important reasons, the number of server rooms
can not change over a long period of time. Initially, the scan flows arriving at the
Edge nodes are considered balanced across all nodes. This first phase of the study
is also important for its connections with the building constructions of the airport.

The second phase of the study is devoted to the assessment of the impact of differ-
ent workload growth patterns on the Response times of Edge nodes. Several
factors, in fact, as the results of the commercial policies of the airlines or the success
of the new destinations served, make the forecast of workload trends very uncertain.
In short periods of time, huge differences can occur between the scan streams arriving
at the various Edge Nodes. Therefore, it is required that the implemented model
be able to simulate very different workloads in terms of arrival patterns and mix of
scan categories. Two types of workload growth are considered: increase of traffic
intensity keeping fixed the fractions of scan categories of the original workload, and
workloads with significant differences in the mixes of categories in execution. The
impact of these types of workload changes on the performance of the global system
are studied. This knowledge is fundamental for the implementation of the scalability
feature of the Edge nodes with respect to the workload growth.

94 6 Reference Models

The main results of this case study are:

• computation of the number of Edge nodes required to meet the performance
target of their Response times with the original workload

• identification of the number of scanners for each Edge node in order to provide a
balanced load of scans based on the airport map on theEdge nodes as a function
of the characteristics of the layout of the airport and differences (in intensity
and mix of scan categories) of passenger flows. This result allows to identify the
physical locations of Edge nodes in the various buildings

• computation of the number of servers for each Edge node required to meet
their performance target as a function of the workload growth. The computed
performance metric can be used to drive the horizontal scaling component (that
can be implemented in the system) of each Edge node separately

• show how a complex model can be decomposed into several simpler models that
can be solved separately, the results thus obtained can be combined to provide the
solution of the global model (see, e.g., the incremental approach in Sect. 1.1 and
Fig. 1.2).

6.1.2 Model Implementation

The scanners generate the face scans sent in input to the model and represent the
Source of the identification requests arriving at the Edge nodes (Fig. 6.2).
Depending on the processing time and the path between the resources, the requests
can be divided into two groups, i.e., two classes. The first class (class-E) comprises
the scans belonging to the poor-quality, regular, suspects, and dangerous categories,
that are completely processed by the Edge nodes. The second class (class-C)
consists of the scans of the unknown category that require additional processing by
the Cloud servers.

Figure 6.2 shows the model of the global system. The solid lines represent the
path between the resources of class-E requests while the dashed lines represent
the path of class-C requests.

All the requests sent by the Source stations to the Edge nodes are initially of
class-E type. When their identification process is completed, requests that belong
to poor-quality, regular, suspect, and dangerous categories leave the model through
Sink class-E stations. They will be subsequently processed by the System
Coordinators servers, not considered in the model presented here, to implement
the reaction actions. The requests of the unknown category are instead routed to
the Cloud servers for a more extensive analysis. The class of these requests
is changed from class-E to class-C in the Class-Switch station before
joining theCloud servers. Once their processing is completed, theseclass-C
requests are sent back to the Edge nodes to update the local in-memory databases
and other data structures before leaving the model through the Sink class-C
stations. In Fig. 6.2, pc represents the fraction of the requests generated by the

6.1 A Facial Recognition Surveillance System 95

Fig. 6.2 Model of the global facial recognition system. Solid lines represent the path of class-E
requests while the dashed lines the one of class-C requests

Fig. 6.3 Parameter settings of class-E and class-C requests (a); probability that a request
change class in the Class-Switch station (b)

scanners connected to an Edge node that is sent to the Cloud servers, i.e.,
those that belong to the unknown category.

An example of the parameter settings of the two classes is shown in Fig. 6.3a. Note
that only class-E requests are generated by the Source (in the figure, their arrival
rate is set to λ = 0.2 req/s with exponential distribution) because the class-C
requests are generated in the Class-Switch station from the arriving class-E
requests (thus no parameters must be set). As a consequence, the Reference

96 6 Reference Models

Table 6.1 Service demands [s] of class-E and class-C requests. pc is the fraction of
class-E requests that belong to unknown category, sent to Cloud servers as class-C
requests

Resource Class of requests

(Station) E C

Edge node 0.5 0.1 pc
Cloud server – 0.8 pc

stations of the two classes are Source and Class-Switch, respectively. The
selection of different Reference stations is important for the computation of
the correct values of the per-class performance indexes.

Thewindow for the definition of the parameters of the Class-Switch station is
shown in Fig. 6.3b. In the considered problem it consists of a 2x2matrix, whose entry
i-j represents the probability that a class-i request entering the station will be
changed to class-j when it exit. In our model this matrix is simple as the arriving
requests at Class-Switch station are only of class-E and are all changed to
class-C. Indeed, the class-C requests arriving at the Edge node after being
processed by the Cloud servers, are sent directly to the Sink class-C station
by the routing algorithm.

For each Edge node an instance of a Virtual Machine (VM) is launched in a
Cloud server to process all the requests sent by that node.

The global processing time required by the face recognition algorithm to solve
the pair matching problem (i.e., to find which person among the set of the local in-
memory database the scan represents, if any) on an Edge node is DE,E = 500 ms.
The time required by a scanner to detect, pre-process and transmit an image is
negligible compared to the time required for its analysis. We take care of it by
applying a small increase in the service demand DE,E .

Scans of categoryunknown are sent to the Cloud servers asclass-C requests,
and require DC,C = 800 ms for their processing. The results of this analysis are sent
back (still as class-C requests) from Cloud servers to Edge nodes that require
additional DE,C = 100 ms for their analysis (to update several data structures and the
local in-memory database) before sending them toSink class-C. TheNetwork
is not represented in the model as a separate component since the transmission time
of data to and from the Cloud servers is negligible with respect to their processing
demands.

Table 6.1 summarizes themeanvalues of theService demands(exponentially
distributed) of the two classes of requests. The weight pc of the class-C demands

is introduced to take into account that only the fraction pc of the requests generated
by the scanners is sent to the Cloud servers as class-C requests. The difference
between the processing time of the two class of requests is very large: class-C
require 900 ms while class-E require 500 ms! Clearly, the value of pc deeply
influences the performance of the system. Therefore, by changing the value of pc
from 0 to 1, we can model all the possible configurations of the workload.

6.1 A Facial Recognition Surveillance System 97

Fig. 6.4 JSIMg model of an elementary component consisting of one Edge node. Solid lines
represent the path of class-E requests while the dashed lines the one of class-C requests

Important simplifications of the global systemmodel can be obtained by applying
the assumptions introduced in the project description. Thesemade it possible to adopt
the incremental approach technique (see Fig. 1.2). Among them, the most important
are: once computed in the initial phase, the number of Edge nodes must be
kept constant while the number of servers of each node can increase as a function
of the performance requirements, the scanners cannot change the Edge node to
which they are directly connected but their number can change according to several
parameters (e.g., high or low traffic locations serverd, bursts of arriving people, layout
of the building), the fraction pc of the unknown scans received by the Edge nodes
is initially considered the same for all nodes, the load of each Edge node can vary
according to several parameters that are dependent only from the node itself, there
is no interference among the VM instantiated in the cloud by the various nodes.

As a result of these assumptions, Edge nodes can be considered independent
from each other and the global system model can be subdivided into as many simple
models, referred to as elementary components, as there are Edge nodes. The
model of an elementary component is shown in Fig. 6.4. Therefore, we can approach
the capacity planning problem of the overall system by investigating the performance
behavior of each Edge node separately.

As requested by the application, the mean time required by the analysis of a scan
by an Edge node must be less than 3 s, i.e., for class-E requests it must be
RE
Edge ≤ 3 s. Each Edge node must meet this performance constraint processing

scans of all categories except for the unknown ones.
In the initial sizing phase, the overall intensity of the original workload has been

subdivided evenly among all the nodes. The load of each node is assumed the same
both in intensity and composition (i.e., mix of scan categories) for all the nodes.
The number of Edge nodes computed in this phase, initially configured with one
server each, is the minimum required to satisfy the performance constraint with
the original workload. The correspondent arrival rates, referred to as guard values,
are considered as thresholds that cannot be overcome. When a node guard value is
reached (or rather approached), a new server will be allocated on its rack (or switched
to on-line status if it is already mounted) and the incoming requests to the node will

98 6 Reference Models

be balanced among all servers in the rack. This scaling policy is applied on all Edge
nodes separately.

The JSIMg tool has been used to implement the simulation models.

6.1.3 Results

The objectives of the study weremany. In what follows wewill describe the activities
regarding the following two:
— Obj.1: Initial sizing and Dynamic Scalability of the Edge nodes
— Obj.2: Investigate the behavior of the Response times of the Edge nodes
as a function of the mix of scan categories in execution

— Obj.1: Initial sizing and Dynamic Scalability of the Edge nodes.
In the design-phase of the project, the arrival rate of scans for the entire airport,
referred to as original workload, is set to λ0 = 42 scan/s. The fraction of the detected
scans that belong to the unknown category is 40% (pc = 0.4) and is assumed to be
the same for all Edge nodes. The service demands of the two classes of requests,
are shown in Table 6.1. According to the hypotheses, the original workload of rate
λ0 is subdivided evenly among all the nodes NEN . We considered the model of an
individual Edge node (see Fig. 6.4) subject to arrival rates of scans ranging from
0.2 to 1.75 scan/s. Let us remark that the saturation load of an Edge node is λsat =
1/[0.5+(0.1x0.4)] = 1.85 scan/s. The Response times of an Edge node in the
initial configuration with one server, obtained with a What-if analysis, are shown
in Fig. 6.5. We assume exponential Interarrival times of the scans, and PS
(Processor Sharing) scheduling policy in the queue stations that is typically used
to simulate multiclass workload parametrized with the service demands. This policy
capture the reality better than FCFS since the Service demands are obtained
summing the Service times of all the visits of a request. So, with PS, the
executions of all the requests are seen to progress concurrently also at the demands
level. Furthermore, several analytical solvers (see JMVA)when this policy is adopted
provide exact solutions of models with multiclass workload (see, the BCMP theorem
in Sect. 3.1).

The threshold value of the average processing time (i.e., the Response time)
of class-E scans of the Edge nodes is 3 s. According to the hypothesis that
the original workload is initially equally divided among all the Edge nodes, we
computed their minimum number NEN needed to satisfy the constraint.With NEN =
30 servers, the arriving rate of scans at each node is 1.4 scan/s (λ0/NEN), and the
correspondent mean Response time of the Edge node with one servers is
� 2 s (see Fig. 6.5).

Higher arrival rates, e.g., 1.55 scan/s, could also have been considered. But the
adoption of λ = 1.4 scan/s as guard value for the scalability monitor is motivated
by the tolerance of unexpected fluctuations in the flow of passengers without seri-
ously violating the constraint of Response times (e.g., the 10% increase in load

6.1 A Facial Recognition Surveillance System 99

Fig. 6.5 Response times [s] of an Edge node with a single server for arrival rates of scans
λ = 0.2 ÷ 1.75 scan/s, 40% of them belong to the unknown category (pc = 0.4)

corresponds to a Response time of � 3 s, which in any case still satisfies its
limit value).

The global number of scanners NScan to be installed in the airport has been com-
puted considering the technical characteristics of the scanners, the processing capac-
ity of the Edge servers, and the intensity of the flow of passengers in the airport. The
result of the computation is NScan = 840, an average of 28 scanners per node. Let us
remark that due to the heterogeneity of traffic in the paths of the airport, this initial
subdivision does not correspond to the assignment of the same number of scanners
per each node but to the one that generate a balanced load across all nodes. With the
arrival rate of 1.4 scan/s at each node, and the average of 28 scanners per node, each
scanner generate an average of 1 scan every 20 s.

To avoid instability, a new server is allocated in a node when its arrival rate is
higher than the guard value for a time interval whose duration depends on the path
considered. The load will be re-balanced among all installed servers after a transient
period considering the arrival of new requests and the exit of executed requests. In
Fig. 6.6 the behavior of the Response times of an Edge nodewith arrival rate
ranging from 0.2 to 10 scan/s and a number of servers from 1 to 6 is shown. This
diagram is fundamental for the horizontal scalability of the Edge nodes since it
provides the number of servers that are needed to meet the performance constraint
on Response times as a function of the load behavior. When an autoscaling
component is used, it provides the values for triggering scale-up actions.

100 6 Reference Models

Fig. 6.6 Response Times of an Edge node for the analysis of a face-scan versus the arrival
rate for various number of servers; 40% of the arriving scans belong to the unknown category
(pc = 0.4)

— Obj.2: Investigate the behavior of the Response times of the Edge
nodes as a function of the mix of scan categories in execution.

In systems with multiclass workloads, the bottleneck (i.e., the resource with the
highest utilization) can migrate between resources depending on the mix of classes
of requests being executed. The greater the difference between the maximum service
demands of the classes (when they refer to different resources) the deeper the effects
of bottleneckmigration on system performance. For example, in our systemwhen the
load consists of class-E scans only (i.e., with pc = 0) the maximum Throughput
is Xmax

0 = 1/Dmax
E = 2 scan/s while with class-C scans only (i.e., with pc = 1) it

is Xmax
0 = 1/Dmax

C =1.25 scan/s (37.5% less!).
Thus, it is important to consider the resource utilizations of each class of requests.

The capacity planning study must evaluate the projections on performance of all
possible changes in the workload, not only in terms of intensity but also in the mix
of classes of requests being executed.

In Obj.1 the fractions of scan categories arriving at the Edge nodes (initially
they are all of Class-E) were considered constant: 40% of them were of unknown
category (pc = 0.4). Now we relax this assumption and investigate the behavior
of the Utilizations and Response times with all the possible mix of scan
categories. By applying the utilization lawUi = λDi to theEdge and Cloud servers
of the open model of Fig. 6.4, we can easily obtain the mix of requests that balances
the load on the two resources.

By simplifying the two equations ofλ and equating the global service demands DE

and DC (see Table 6.1) we have 0.5+0.1pc = 0.8pc. Thus, we can derive the fraction
pc = 0.71 of all incoming scans that generate the equiutilization of the resources.
For pc < 0.71 the most utilized resource is the Edge node, while for pc > 0.71
it is the Cloud server. Figure 6.7 show the behavior of Utilizations

6.1 A Facial Recognition Surveillance System 101

Fig. 6.7 Utilization and Response time of the Edge node and the Cloud server
with respect to the mix of scan categories in execution, with arrival rate λ = 1.4 scan/s

and Response times of the Edge node (with one server) and the Cloud
server for all the possible mix of scan categories in execution with arrival rate of
scans λ = 1.4 scan/s.

The impact of the different mixes on the performance of the two classes of
requests is evident. As computed above, the mix corresponding to the equiutilization
of the two resources is obtained with pc = 0.71. The Utilizations of Edge
node range from 0.7 (with pc = 0.1) to 0.8 (with pc = 0.9) and the corresponding
Response times are 1.7 and 2.9 s. Note that the Cloud server Response
time increases rapidly when its arrival rate of class-C requests approach the sat-
uration value of 1/Dmax

C = 1/0.8 = 1.25 scan/s. Since the arrival rate of class-C
requests toCloud server is λ pc, its utilization is given byUC = λ pc DC,C . The
values of pc that generate the saturation can be easily obtained from this equation
considering UC = 1, λ = 1.4 scan/s, and DC,C = 0.8 S. The result is pc = 0.892.
Clearly, the models with higher values of pc are not in equilibrium and are unstable
since one resource is saturated. To improve the performance of the systemwith higher
values of pc it is necessary to use more powerful VMs of the Cloud servers.

6.1.4 Limitations and Improvements

The model described is clearly a simplified version of a global surveillance system
model.However,with limited effort it can be improved in different directions.Among
them are:

• Fractions of scan categories: The assumption that the fraction of scans of unknown
category is the same for all the Edge nodes is a limitation that can be easily
relaxed. In this case, it is enough to make a model for each distinct Edge node
with the fractions of scan categories arriving at the node. In many cases it is suf-
ficient to identify groups of Edge nodes having similar characteristics with

102 6 Reference Models

respect to the flow of passengers and the fraction of scan categories and to imple-
ment only their models.

• Interarrival time distributions of scans: To capture the differences of arriving traffic
of scans among the various categories several classes can be considered. So, for
example, bursts can affect one category while another one can have a different dis-
tribution. For each class, follow the sequence Define customer classes,
Edit, and select the distribution from the list, e.g., Burst general.

• Interconnection network:Depending on the characteristics of the network connect-
ing the Edge nodes to the cloud, it is possible to model it with a dedicated
component, e.g., a delay station, with themean service time and variance collected
directly from the network.

• Allocation/Deallocation of servers: A policy similar to that described for the
dynamic allocation of the servers to the Edge nodes can be used for their deal-
location. In this case, a new guard value of the Response time of the Edge
nodes, i.e., its minimum mean value, must be defined by the users and set in the
autoscaler component. When reached, a server of the node can be deallocated and
its load redistributed among the remaining ones or simply stop to load it.

• Fluctuations: Depending on the environments considered, the traffic of arriving
scans can be affected by fluctuations with very high peaks and deep valleys. In
these cases, to avoid problems of instability of the number of servers of the Edge
nodes, it can be useful to define for each of the two guard values used by the
allocation/deallocation policies of the autoscaler, ranges of tolerated values instead
of the two mean values only.

6.2 Autoscaling Load Fluctuations

tags: open/closed, two classes, Source/Queue/Place/Transition/Sink, JSIMg.

In this case study we describe a multi-formalism model [5, 20] (with Queueing Net-
works and Petri Nets stations integrated) that simulates an autoscaler component that
manages congestion created by fluctuations in incoming traffic and computational
demands. The focus is on the description of the dynamic routing mechanism (that
is state-dependent) of the arriving requests as a function of the load fluctuations of
an online web service center. The solution described allows cost savings, in terms
of resources used, while preserving the expected system performance and can be
applied with considerable savings to exascale data centers.

6.2.1 Problem Description

Most data centers of Internet Service Providers experience load fluctuations caused
by the combined effects of variability in incoming traffic rate and the computation

6.2 Autoscaling Load Fluctuations 103

time of the requests [13]. Depending on the service provided, fluctuations can have
very different intensities and time scales. For example, in e-commerce sites, the
increase of load due to seasonal sales can last several weeks with medium intensity
and quarterly frequency, while unexpected events, such as special offers, create high
spikes in requests with short duration and heavy computation time.

We can basically distinguish between long-term and short-term fluctuations. The
former have low frequency, small/medium intensity and are generated by the typical
growth trend of workloads. The latter have a short duration, high intensity and can
occur at unpredictable times.

In such a variable scenario, the right-sizing problem, i.e., the identification of
the minimum number of resources that must be used to achieve the performance
objectives, is a very difficult problem. Over-provisioning may result in a waste of
resources and money. On the other hand, under-provisioning can lead to violating
customer expectations in terms of Quality of Service (QoS) with negative effects
on business. Autoscaling techniques are increasingly used to dynamically allocate
and release resources both in clouds (e.g., AWS Auto Scaler [1], Microsoft Azure
autoscaler [27]), and in private data centers (e.g., [18, 22, 30]). Basically, these
dynamic scaling techniques (usually divided into horizontal and vertical scaling
techniques) monitor one (or more) performance indicator and when its target value
is reached (or approached) trigger decisions to adapt the number of resources as
the load increases or decreases. In the following we consider only the increase case
because is the most critical for performance and furthermore the decisions taken in
the decrease case are usually the opposite of those made in the first case.

When the target value of the performance indicator is detected, horizontal scaling
typically allocate new resources while vertical scaling increases the capacity share
of the resources.

Horizontal scalers provide good results when used with loads subject to long-
term fluctuations such as those generated by physiological workload trends, whose
growth rate increases progressively and continuously. But their application to loads
subject to short-term fluctuations is unsatisfactory. The presence of load spikes has
a very negative impact on performance as it creates a sudden congestion of resor-
ces which is responsible for the high Response times. Furthermore, they can
foster horizontal scalers to make contradictory decisions in a short time that could
generate dangerous oscillations in the number of resources provided. These unstable
conditions must be avoided as much as possible as resources allocation are costly
and time-consuming operations.

To address these drawbacks, we designed a hierarchical scaler (see, e.g., [33, 34])
with two operational layers shown in Fig. 6.8. The objective of the horizontal scaler
at Layer 1 is the typycal one: to provide the minimum number of resources (referred
to as Web Servers) that should be used to achieve the performance target. This
scaler has been enhanced with a second operational layer, Layer 2, consisting of a
Spike Server that allocates CPU capacity to execute load spikes according to a
vertical scaling technique. A request can be executed by a Web Server or by the
Spike Server depending of the load conditions.

104 6 Reference Models

Fig. 6.8 Hierarchical autoscaler for load spikes

At Layer 1, a new Web Server is allocated when the monitored performance
indicator reaches, or is close to, its threshold value. To make decisions on whether to
scale or not, we have considered the performance indicator mean Response time
R0 of the data center, i.e., the mean time required by the execution of a request. Layer
2 operations are triggered when a load spike is expected to arrive at one of the Web
servers.

While the evaluation of R0 is a well defined process, the load spikes are usually
not so easy to predict with reasonable accuracy. Instead of running complex and time-
consuming analyses on the traces of arriving requests, we considered the signals that
anticipate the arrival of a potential peak load. More precisely, we consider a Spike
Indicator (SI) metric whose alarm threshold SImax , when reached, indicates that a
peak load is likely to occur. Since a spike is anticipated by an increase in load in
the system, we associate SI with the number of concurrent requests in execution in
the considered Web Server. This metric is very suitable for the autoscaler as it is
easy to measure and can detect the creation of peaks in their early stages not only
in the arrival traffic flow but also in the request execution times. When SI reaches,
or approaches, the threshold SImax , a scaling decision should be made quickly to
alleviate the congestion of the Web Server: the new incoming requests are routed
to the Spike Server. As a consequence, the load of Web Serverwill decrease
as running requests complete their execution. The routing of the requests is switched
back toWeb ServerwhenSI decreases below SImax . Tominimize the fluctuations

6.2 Autoscaling Load Fluctuations 105

in the number of resources allocated, a range of values can be considered that includes
SImax instead of a single value (that we consider for simplicity).

Clearly, the detection of the correct value of SImax is a very critical operation for
the effectiveness of the autoscaler. If too many false positive spikes are detected the
Spike Server tends to be congested. On the other side, if toomany false negative
spikes are detected themechanism fails to reduce the congestion of Web Servers.
The SImax value is influenced by the characteristics of the workload, both by the
arrival patterns and by the execution times, and by the performance objectives. In
the following we will describe one of the possible approaches to tune SImax .

The presence of the Spike Server has a very positive impact in reducing the
System Response Time R0. In fact, the larger values of Response times,
mainly due to the congestion states of the Web Server, are replaced with smaller
values obtained from the executions of the Spike Server, which is typically
not congested. This smoothing effect reduces the variance of Response times,
their mean value, and therefore the number of scale actions and their oscillations.
The efficacy of the introduction of Spike Server is related to the following basic
principle that applies to open models: the increase in Response time due to an
increase �λ of load is greater than its decrease due to the same decrease �λ. This
effect is due to the vertical asymptote to which the Response time tends as the
queue component approaches saturation.

The operating steps of the hierarchical autoscaler are:

1. at Layer 1, the horizontal scaler monitor the performance metric System
Response Time R0 and triggers congestion management actions when a
threshold value has been exceeded. The value of R0 is computed applying a mov-
ing window technique whose duration is a function of the characteristics of the
workload. In the computation of R0 both the execution times of theWeb server
and those of the Spike Servermust be considered. According to the rules set
at design phase, when the alarm threshold of R0 is reached, or approached, the
scaling decisions concerning the provisioning of new Web servers must be
activated.

2. the control of the arrival of load spikes is always active, Layer 2, through the
monitoring of the number of requests SI concurrently in execution in the Web
Server. When the alarm threshold SImax is reached, the dynamic routing to
the Spike Server of new arriving requests is activated. When SI falls below
SImax , the incoming requests will be routed again to the Web Server. To avoid
fluctuations, a range of tolerated values can be adopted instead of a single value
SImax .

3. if the System Response Time R0 does not drop below its alarm threshold
with the spikes control, then it is necessary to activate the actions triggered by the
rules set in the autoscaler (typically increase in the number of servers). A further
decrease of R0 can be obtained by vertical scaling actions applied to the Spike
Server increasing the share of the CPU dedicated to the application (when this
is possible).

106 6 Reference Models

In this case study we focus on the model of the workload fluctuations and on the
identification of the alarm threshold SImax for the control of load peaks. Among the
problems that can be studied are:

– evaluation of the influence of fluctuations in arriving requests with different time
scales and intensities on the system performance

– impact of variability of service demands of requests on performance metrics
– assess the influence on System Response Time R0 of the alarm threshold
value SImax for significant changes in workload arrival rate, e.g., up to about
40,000 req/h per Web Server

– identification of the value SImax that minimizes the System Response Time
R0 for a given workload

– behavior of the autoscaler (in terms of the number of scaling up actions) with
respect to the size of the moving window considered for the computation of the
metrics used as performance indicators (e.g., the System Response Time,
the Utilization of the Web Server and of the Spike Server)

– effects of vertical scaling actions of the CPU share of Spike Server on the
number of servers provisioned as a function of arrival rates.

6.2.2 Model Implementation

The implemented multi-formalism model consisting of both Queuing Networks and
Petri Nets components is shown in Fig. 6.9. Since this case study is focused on
the autoscaling of load fluctuations, below we will concentrate on the description of
Layer 2 operations.At Layer 1 the horizontal scaler performs the typical provisioning
actions of new servers when the performance indicators exceed the threshold values
(see, e.g., Sec.6.1) balancing the load between them according to the policy adopted.

To simplify the presentation, we have introduced some assumptions that have
small or no influence on the validity of the results. First, we modeled the app with
only its most utilized resource, i.e., the bottleneck, that has a deep impact on the
performance. The error introduced on the performance indexes ignoring the other
resources should be very low as they are usually utilized much less than the bot-
tleneck. Indeed, in many real-world cases, several important tasks of an app are
allocated on a single (or very few) host server, typically very powerful and the most
secure, which quickly becomes congested as the workload increases (e.g., the tasks
that execute the front-endmodules, the catalog and the cart services, themanagement
of encryption/decryption keys for the payments, the 3D-secure procedure for online
shops). The resource of the model that executes the requests is the queue station
referred to as Web Server1. This is the resource that is replicated by the Layer
1 autoscaler provisioning actions. The Spike Server at Layer 2 is dedicated to
the execution of the spikes of load.

Furthermore, to better investigate the behavior of the spike control, we have con-
sidered in the model only one server (Web Server1) with the connected Spike

6.2 Autoscaling Load Fluctuations 107

Fig. 6.9 Model with one Web Server1 and one Spike Server for the auto-control of
fluctuations

Server. Clearly, the results obtained for this initial configuration, with a web server
and a spike server, also apply to each web server in the data center (if there are more
than one), regardless of their number. Indeed, all servers can be considered indepen-
dent of each other as their arrival rates are computed by the horizontal scaler algo-
rithm, which is typically executed by a dedicated resource. Since the CPU capacity of
a Spike Server is shared among severalWeb Servers, it is necessary to apply
adequate scaling up actions on them as the number of Web Servers increases.

Theworkload consists of two classes of customers: the incoming requests submit-
ted by the users of the application, and the tokens. The arriving users requests, referred
to as ArrivReq and represented with an open class, are generated by the Source1
station and routed to place Arriving. The tokens, referred to as maxReqLink1,
are modeled with a closed class and are associated to the requests in execution
(the SI metric), one token per request. Their maximum value represents the maxi-
mum number of requests that can be executed concurrently by the Web Server1
(referred to as alarm threshold SImax) for the load spikes control. At the beginning
of the simulation, all tokens are located in place MaxReqServer1. The transi-
tion JoinWebserver1, see Fig. 6.10a, is enabled when a request arrives in place
Arriving and there is at least one token available in place MaxReqServer1.
At each activation, a request is sent to Web Server1 and the number of available
tokens in place MaxReqServer1 is decremented by one. When a request is com-
pletely executed, transition Rel routes it to Sink1, see Fig. 6.11b, and returns the
token to the place MaxReqServer1 increasing the number of requests that can
be in execution by one. When the number of tokens in MaxReqServer1 is zero,
the maximum number of requests in execution SImax is reached and the autoscaler

108 6 Reference Models

Fig. 6.10 Enabling and Inhibiting conditions of the three transitions

Fig. 6.11 Firing rules of the three transitions

control routes new arriving requests to the Spike Server, i.e., the transition
JoinWebServer1 is no longer activated. This is achieved through the inhibiting
arc from place MaxReqServer1 and transition JoinSpikesServer, see Fig.
6.10c. The value 1 in the inhibiting conditions of this transition means that when
there are one or more tokens in place MaxReqServer1 the transition is blocked.
The values∞ that appear in the inhibiting conditions indicate that the correspondent
inhibitions are never met. To allow the computation of several interesting metrics,
e.g., the Response times and the Throughput of the spikes, the requests exe-
cuted by theSpike Server are addressed to the dedicated sink Sink2. The firing
rules, i.e., the Throughput, of the three transition stations are shown in Fig. 6.11.

To reproduce the fluctuations of the incoming traffic, the distribution of the inter-
arrival times of requests has been assumed hyperexponential with coefficient of
variation cv = 4 and mean 0.15 s. The high variability of the service demands of

6.2 Autoscaling Load Fluctuations 109

Fig. 6.12 Parameters of the Web Server1 station

the requests was modeled in both servers with a hyperexponential distribution with
coefficient of variation cv = 4 and mean 0.16 s (see Fig. 6.12). The service demands
of the tokens are set to zero to not interfere with the execution of arriving requests.
The scheduling discipline of the two queue stations modeling the CPUs with two
classes of customers is Processor Sharing (PS). This discipline is commonly
used for the simulation of the time quantum policy of processors that share the capac-
ity among all the requests to be executed, which can belong to different classes of
workload.

The objectives of the case study required the execution of different types of anal-
ysis. To analyze the behavior of the model, several single simulation runs were
performed with the collection of traces (see, e.g., Figs. 2.10, 2.11) with the CSV
values of the performance metrics over time. The usual capacity planning problems
are solved with What-if analyses using various control parameters, e.g., the arrival
rate of requests generated by Source1, and the value of the alarm threshold SImax

of spike control.

6.2.3 Results

Of all the possible objectives that can be achieved with the implemented model, we
will describe the operations required by the following four:
— Obj.1: Implementation of the model of the autoscaler with two operational layers
and evaluation of the correctness of its dynamic behavior to control load spikes.
— Obj.2: Given the arrival rate of requests of 400 req/min, evaluate the impact of
different alarm thresholds SImax of Web Server1 on performance metrics.

110 6 Reference Models

— Obj.3: Evaluate the behavior of System Response Time R0 as the work-
load grows to approximately 40,000 req/h.
— Obj.4: Analyze the impact of vertical scaling of Spike Server capacity on
System Response Time R0.

Obj.1 shows the use of the CSV traces of performance metrics generated by
the model executions for the analysis of its dynamic behavior. To efficiently use
autoscaling techniques, it is very important to know the impact that the performance
indicators monitored by autoscalers have on the satisfaction of service level agree-
ments (SLAs). For example, what is the influence of the Spike Indicator SI on the
System Response Time R0? Obj.2 and Obj.3 address this issue. The impact of
vertical scaling actions of CPU share of Spike server on the number of scaling
actions is described by Obj.4

The description of the operations required to achieve the four objectives follows.

— Obj.1: Model implementation of an autoscaler component that detects load
peaks in Web Server1 and relieves its congestion by dynamically routing new
requests to a Spike Server.

The structure of the model is described in the previous section.
To analyze the dynamic behavior of themodel and to assess its correctness we col-

lected the CSV traces with the values of several metrics over time (see Figs. 1.8, 2.10,
2.11). Several simulations were carried out using controlled workloads of increasing
complexity. A visual evidence of the correctness of the load controller is provided
in Fig. 6.13 that plots the Number of requests in execution in Web Server
1 and in Spike Server over time. An interval of time of 1080 s, from 120 to
1200 s, has been considered. The alarm threshold SImax (i.e., the max number of
requests in execution in Web Server1) is set to 140 req. This value corresponds
to the number of tokens of the closed class maxReqLink1 that at the beginning
of the simulation are in the place MaxReqServ1. Figure 6.13b shows that when
SImax is reached, e.g., in the interval 320–490 s, the state-dependent control of the
autoscaler routes the new incoming requests to Spike Server. As soon as some
requests complete their execution in Web Server1, the SI indicator drops below
140, e.g., in the interval from 570 to 690 s, and then the new incoming requests will
be directed to Web Server1 again.

The impact of load fluctuations on the performance are clearly shown in Fig. 6.14
which plot the Response times of Web Server1 and SpikServer for the
interval 120÷1200 s. For example, towards the end of a long period of high-load,
at about 480 s, a peak of 50 s of the Response time of Web Server1 occurs,
see Fig. 6.14a. As expected, the Response times of Spike Server, see
Fig. 6.14b, are much lower than those of Web Server1. A significant decrease
of mean System Response Time R0 with the workload considered, can be
obtained simply by decreasing the alarm threshold SImax . This action tends to bal-
ance the utilizations of the two servers, decreasing the congestion of Web Server1
while increasing the load of Spike Server (see the following objectives).

6.2 Autoscaling Load Fluctuations 111

Fig. 6.13 Number of requests in Web Server1 (a) and Spike Server (b) in the inter-
val 120÷1200 s with the alarm threshold SImax of Spike Indicator set to 140 req (initial population
of place MaxReqServer1) and Arrival rate of 6.66 req/s

— Obj.2: With the arrival rate of 400 req/min (6.66 req/s), compute the per-
formance indexes of Web Server1 and Spike Server and the System
Response Time R0 for the alarm thresholds SImax ranging from 10 to 160
req. Identify the value of SImax that should be provided as input to the auto-
scaler in order to obtain a mean System Response Time as close as possible
to the target value of 8 s.

The parameterization of the workload is shown in Fig. 6.15. The flow of arriv-
ing requests (open class Arriv_Req) is generated by the Source station with a
hyper-exponential distribution of Interarrival times with mean 0.15 s cor-
responding to the arriving rate of 6.66 req/s and coefficient of variation cv = 4.
The service times of the two servers are hyper-exponentially distributed with mean
0.16 s and cv = 4 to simulate the fluctuations of service demands. The global pop-
ulation of the closed class maxReq_Link1 corresponds to the value of the alarm
threshold SImax for Web Server1 (in Fig. 6.15 it is SImax = 100 req). The value
of SImax represents the maximum number of requests that can be in execution on
Web Server1 which, once reached, identifies a state of high-load which causes
the routing of arriving requests towards the Spike Server.

To tune the autoscaler parameters we evaluate the effects of the alarm threshold
SImax on the System Response Time. We used a What-if analysis with
control parameter SImax ranging from 10 to 160 req with increments of 10, so

112 6 Reference Models

Fig. 6.14 Response times of Web Server1 (a) and Spike Server (b) in the interval
120÷1200 s . with alarm threshold SImax of Spike Indicator set to 140 req and arrival rate of
requests 6.66 req/s

Fig. 6.15 Parameters of the Source station for the generation of the arriving flow of requests of
6.66 req/s and coefficient of variation cv = 4 (open class Arriv_Req), and setting of the alarm
threshold SImax = 100 req

6.2 Autoscaling Load Fluctuations 113

Fig. 6.16 Requests in execution versus alarm thresholds SImax with load of 6.66 req/s

Fig. 6.17 Throughput of Web Server1 and Spike Server versus SImax (from
10 to 160 req)

overall 16 models are executed in sequence. We have considered such a wide range
of values in order to provide a large set of data for the training set of the machine
learning algorithm that will be applied in a second phase of the project. Some of the
indexes detected are reported in Figs. 6.16, 6.17, 6.18. The number of times SImax

is reached decreases as its value grows from 10 to 160.
As SImax increases, the Number of requests in execution, the

Throughput and the Response time of Web Server1 increase while the
corresponding indexes of Spike Server decrease. Let us remark that with the
arrival rate of 6.66 req/s the Utilization of theSpike Server decreases from
0.4 (with SImax = 10) to 0.12 (with SImax = 160). This low Utilization is the
motivation of the modest decrease of its Response times (see Fig. 6.18b) with
the increase of SImax from 10 to 160 req. The Utilization of Web Server1
increases almost linearly from 0.66 to 0.94 as SImax increases. This is due to the
scaling algorithm that route the arriving requests of Web Server1 dynamically
to the Spike Server when SImax is reached. It is important to note that we are
evaluating the behavior of these performance indexes by keeping the request arrival
rate fixed (6.66 req/s and, as seen above, not particularly high), so the saturation
effects are very limited. In the following Obj.3, we will evaluate the system perfor-
mance with different Arrival rates and the effects of server saturation on the
System Response Time will be discussed.

114 6 Reference Models

Fig. 6.18 Response times of Web Server1 and Spike Server versus SImax (from 10
to 160 req)

Fig. 6.19 System Response Time vs Alarm threshold SImax with arrival rate of 6.66
req/s, the Interarrival times are hyper-exponentially distributed and cv = 4

The mean System Response Time R0 of the model in Fig. 6.9 is given by
the sum of themean Response times of Web Server1 and Spike Server
weighted by the respective percentages of System Throughput X0:

R0 = RWebServer1
XWebServer1

X0
+ RSpikeServer

XSpikeServer

X0

.
To identify the value of the alarm threshold SImax that with the Arrival rate

of 400 req/min (6.66 req/s) provide a System Response Time R0 ≤ 8 s a
What-if analysis that performs repeated executions with SImax as a control param-
eter ranging from 10 to 160 (globally 16 models) has been utilized.

As shown in Fig. 6.19, with SImax = 90 the mean System Response Time
R0 is 7.98 s, too close to the target value of 8 s. A conservative answer to the question
of Obj.2 is SImax = 80 that provides R0 = 7.09 s.

6.2 Autoscaling Load Fluctuations 115

Fig. 6.20 System Response time vs Arrival rate (Interarr.timewith hyper-exp
distr. and cv = 4)

— Obj.3: Assess the impact of various alarm thresholds SImax on System
Response Time R0 for significant changes in workload arrival rate, from 1
to 12 req/s (43,200 req/h).

To achieve this goal, a What-if analysis was performed for SImax values from
40 to 160 req with arrival rates as control parameter ranging from 1 to 12 req/s
(60 to 720 req/min). The positive impact of the dynamic control of the high-load
states of Web Server1 on System Response Time R0 is highlighted in Fig.
6.20. The lower curve represents R0 for SImax = 40 req, while the upper one for
SImax = 160 req. These two values correspond respectively to the minimum and
the maximum utilization of Web Server1. In Fig. 6.20 three different operational
phases can be identified according to the workload intensity: light, medium, heavy.

In Phase 1, which includes arrival rates between 1 and 6 req/s, R0 is less than 6 s
for all the SImax values. It is important to note that without any scaling action the R0

corresponding to an arrival rate of 5 req/s is about 10 s, while small increments of
successive arrivals cause its very large increases. This is because theWeb Server1
with these arrival rates and no spike control is highly utilized (theResponse time
grows to infinity) and we are approaching the Throughput bound. Let us remind
that themaximumarrival rate that Web Server1 can processwhen it is saturated, is
given by λmax = 1/DWebServer1 = 6.25 req/s (from the utilization lawUWebServer1 =
λ0 DWebServer1).

The low arrival rates of Phase 1 reduced drastically the need of autoscaling
actions, and thus the load of Spike Server. As a consequence, the contribution

116 6 Reference Models

of the Spike Server to the System Response Time is minimal. In fact,
even towards the extreme of the interval with the highest arrival rate of 6 req/s and
SImax = 160 req , the utilization of Spike Server is very low and thus its execu-
tions have minimum impact on the computation of R0 = 5.42 s. The correspondent
utilization of Web Server1 is UWebServer1 = 0.93.

Phase 2 includes arrival rates between 6 and 10 req/s and shows increasing values
of R0 until the arrival rate of about 8 req/s. This increase ismainly due to the increment
of the arrival rate at the Web Server1 that now is close to congestion. A further
increase in arrival rate from 8 to 10 req/s generates an increase in the number of high-
load states of Web Server1 detected by the autoscaler and therefore the number
of requests routed to Spike Server grows progressively. As a consequence, R0

is decreasing since the contribution to its computation due to the Spike Server
executions, which are much shorter than those of Web Server1, becomes more
substantial as its Throughput increases (with a medium utilization). Indeed, for
example, with SImax = 160 req the USpikeServer is 28% with 8 req/s arrival rate
and is 60% with 10 req/s. The correspondent Throughputs XSpikeServer are 1.76
req/s and 3.77 req/s, and the Response times RSpikeServer are 0.69 s and 1.54 s ,
respectively. R0 will return to growth as the utilization of Spike Server increases
and therefore its Response times increase (in the Phase 3).

It should also be emphasized that the pattern of the requests arriving to the Spike
Server is typically bursty since in most cases consists of load spikes, see e.g.
Fig. 6.13b, and it is known that the presence of bursts has a very negative influence
on performance.

Phase 3 is characterized by two factors: the heavy workload (between 10 and
12 req/s) and the congestion of the Spike Server. Considering, for example,
SImax = 160 req, the utilization of the Spike Server USpikeServer for arrival
rates of 10 and 12 req/s are 60% and 97%, respectively, and its Response
times RSpikeServer are 1.54 and 7.54 s. Since the corresponding Throughputs
XSpikeServer are 3.77 and 5.69 req/s (representing approximately 50% of the System
Throughput X0), the impact on the mean System Response Time R0 ?? of
Spike Server executions becomes substantial. As the SImax values decrease
from 160 to 40 req the increases of R0 become more evident as the load of Spike
Server increases.

The values shown in the previous figures are very important for setting the param-
eters of the autoscaler, and for a machine learning algorithm, in order to satisfy the
target value of the selected performance metric. For example, consider an arrival
rate of 9 req/s with cv = 4 and a target value of the scaling metric R0 ≤ 8 s. From
Fig. 6.20 it is possible to see that with the alarm threshold of 80 req this objective
can be achieved. Note that the autoscaling policy tries to use a web server as much
as possible as long as the specified target value of the scaling metric is met. With an
increase of the arrival rate from 9 to 12 req/s this target value cannot be matched. In
this case, a scaling action is needed. If the Spike Server has unused capacity,
a vertical scaling can be activated (see the following Obj.4) increasing the share
devoted to the application. If this is not possible, then a new server must be allocated
(through a scaling action at Layer 1) to handle the service demands.

6.2 Autoscaling Load Fluctuations 117

Fig. 6.21 Impact of doubling the CPU capacity share of Spike Server (vertical scaling from
40% to 80%) on System Response time R0 with 80 and 160 req alarm thresholds

— Obj.4: Assess the impact on System Response Time of a vertical scaling
action that double the capacity share of Spike Server from 40% to 80%.

When the Spike Server approaches congestion state (as in Phase 3 of
Fig. 6.20), it causes a degradation of System Response Time R0. In this case, before
activating the horizontal scaling actions by increasing the number of web servers,
it can be very effective to apply a vertical scaling action by increasing, if possible,
the CPU share of the Spike Server dedicated to the application. This vertical
scaling action is typically much less expensive than the horizontal one and faster to
apply. Clearly, in this case the CPU power of the Spike Server must be greater
(at least two times or more) than that of the Web Server1.

Since in the previous Obj.3 the CPU share was 40%, in this Obj.4 we evaluate the
effects on R0 obtained by doubling this share to 80%. The parameter of the model
that must be changed is the service demand DSpikeServer of the Spike Server
that must be set to 80 ms instead of 160 ms. The R0 values for arrival rates between 1
and 12 req/s and the alarm thresholds SImax 80 and 160 req are shown in Fig. 6.21.

The dashed lines represent the R0 values with the original CPU share of 40% (con-
sidered in the previous Objectives) while the solid lines represent the corresponding
values with the CPU share doubled to 80%. As expected, significant decreases in R0

values are achieved in the Phase 3 area where the Spike Server is more utilized.
For example, with arrival rate of 12 req/s and SImax = 80 req the target value R0 ≤ 8
s considered in Obj.3 can be reached with 80% share (R0 = 6.2 s), while with 40%
share this is not possible (R0 = 9.83 s).

118 6 Reference Models

6.2.4 Limitations and Improvements

• Various application scenarios: The case study described is focused on the imple-
mentation of a model that exhibit dynamic behavior as a function of the load char-
acteristics. With simple modifications/upgrades, it can be used in various applica-
tion scenarios, such as, for example, to model the dynamic load split between the
servers of a private and a public cloud, or to evaluate the performance impact of
the number of cores in the various partitions of an HPC system.

• Oscillations control: To minimize the oscillations in the number of provisioned
resources, it would be better to use a range of values as a target for the scaling
indicators rather than just the mean values.

• Workload with heterogeneous apps: The modeling approach described can also
be used with multiclass workloads. The rules for enabling, firing, and inhibiting
can be specified for each individual class.

• Vertical scaling: For a given arrival rate of requests, the effects of vertical scaling
of Spike Server can be investigated with a What-if analysis that uses as
control parameter its service demands scaled according to the CPU share policy
adopted.

• Horizontal scaling: Themodel described can be enhancedwith the implementation
of the horizontal scaling provisioning policy at Layer 1. The structure used for
Web Server1 must be replicated for each of the considered Web Servers
whose load is controlled by a new transition component that implement the
replication policy.

• Machine Learning: Efficient scaling policies in complex scenarios can be obtained
integrating several techniques, like modeling, and machine learning into a single
tool that dynamically tune the parameters according to the varying load conditions.
For example, from the results of a sequence of models obtained with a What-if
analysis, a machine learning algorithm can derive the set of parameters that keep
performance indicators as close as possible to their target values.

• Use of Finite Capacity Region: The model described can also be implemented
using a Finite Capacity Region (withmax capacity set to SImax) for each
Web Server and implementing the firing rule in the transition that manages the
flow of arriving requests according to the planned scheduling policy.

6.3 Simulation of the Workflow of a Web App

tags: open, three classes, Source/Queue/Class-Switch, JSIMg.

While in the typical Queueing Network models the paths followed by the requests
between the stations are defined according to probabilistic rules, with the use of the
Class-Switch parameter of the requests it is possible to describe in JSIMg the
paths in a deterministic way. A similar behavior can be modeled also using the Petri
Nets stations (see, e.g., Sect. 6.2).

6.3 Simulation of the Workflow of a Web App 119

6.3.1 Problem Description

Regardless of the paradigm adopted in modern web application architectures (e.g.,
web services, microservices, serverless) software developers must describe the busi-
ness logic of the apps through workflows representing the sequence of execution of
the tasks. Depending on its layout, mapping a workflow to a queuing network model
may not be an easy task. More precisely, we refer to the case in which a request after
being executed by a station and flowed through the model, returns to that station and
requires service times and routing very different from the ones required previously.
The problem we face arises because JMT does not store the execution history of a
request in terms of paths followed between the various resources. To solve this, we
use the class identifier parameter Class ID associated with each running request to
track only its recent execution history.

In fact, each request in execution is assigned a Class ID that is used to describe
its behavior and characteristics, such as, type (open or closed), priority, mean and
distribution of service times. Routing algorithms are defined on a per-class basis.
Of fundamental importance to the problem approached is that a request may change
Class ID during its the execution flowing through a Class-Switch station or
when a specific routing algorithm is selected. Therefore, with the use of the Class ID
parameter we can know the last station visited by a request and the path followed.

To describe this technique we consider a simplified version of the e-commerce
application of an online food shopping company. The web services of the soft-
ware platform are allocated on two powerful servers, referred to as Server A and
Server B, of the private cloud infrastructure. Figure 6.22 shows the layout of the
data center with the paths followed by the requests and the relative Classes. The
sequence of execution of the paths for each request coincides with the numbers of
the Class IDs.
Server A is a multicore system that execute several services of Front-End.

Among them are: customer authentication, administrative and CRMprocesses, inter-
action with the payment service (for the strong authentication for payments), check-
out operations with the update of the DB, invoice generation, shipping and tracking
services, and update of customer data.Server B is amultiprocessors blade system,
highly scalable, fault tolerant, with redundant configuration for continuous availabil-
ity, equipped with large RAM memory and SSDs storage for the DBs. Among the
most important services allocated are those for browsing the catalog, processing the
shopping cart, and managing the DBs of products and customers. To provide the
minimum Response time to customers, an in-memory DB is implemented to
dynamically cache each customer’s most recent purchases.

A third server Server P, located in the data center of an external provider, is
used for payment services.

To reduce the complexity of the description we have considered a simplified
version of the workflow of the e-commerce app, see Fig. 6.23, consisting only of the
services that are needed to describe the problem approached and its solution. Figure
6.23 shows the services considered and the servers where are stored.

120 6 Reference Models

Fig. 6.22 The data center with the path followed by the requests and their Class IDs

Fig. 6.23 Short version of the workflow of an order submission to an online grocery store

6.3 Simulation of the Workflow of a Web App 121

According to the business logic of the e-commerce app, the complete execution
of a request requires three visits to Server A, one to Server B and one to
Server P. At each visit to Server A, different web services are executed which
require different mean service times. The sequence of visits to the three servers A,
B, and P during a complete execution is A-B-A-P-A. With a smart use of the Class
IDs we may model this deterministic routing of the requests among the servers.

In addition to the implementation of the model for executing the workflow of
Fig. 6.23, the capacity planning study requires:

– the performance forecast of the e-commerce appwith the current workload and the
one-factor authentication level for payments for a wide range of arriving requests;

– the impact assessment of a new web service for the Strong Customer Authentica-
tion (SCA)
Indeed, according to PSD2 (Payment Services Directive EU) a new authentication
service is planned to replace the current one to enhance the security of online
payments with a two-factor authentication levels;

– the Throughput bound of the current system and the actions to be applied to
process a workload 15% higher than the current one (with max arrival rate of about
5000 req/h).

6.3.2 Model Implementation

The model implemented with JSMg is shown in Fig. 6.24. We use the Class ID of
the requests to trace the path between stations followed during their executions. The
sequence of paths modeled is shown in Figs. 6.22 and 6.23. The arriving requests
from Source station, generated with Class1 as Class IDs, are sent to Server
A. After the execution of the services scheduled for this first visit to Server A, the
requests are routed to Server B and then to Class-Switch station CS. This
station, which has zero service time, change the Class IDs of incoming requests to
new ones according to the probabilities described in its parameters. In our case, see
Fig. 6.25, the Class IDs of the requests arriving from Server B (that are Class1)
are changed to Class2 before being redirected to Server A.

After the execution of the services scheduled for this second visit to Server
A (which are different from those executed in the first visit that were for Class1
requests) the Class2 requests are routed to the payment server Server P of an
external provider. At the end of this service, the Class IDs of requests are changed
to Class3 by Class-Switch CS station that route them back to Server A.
The service demands of this third visit to Server A are those for the requests of
Class3 type. Then, the routing algorithm sends them to the Sink station where
they exit the model.

In the model implemented we have not explicitly represented the network con-
nections to payment server Server P and the User think times. Indeed,
the service times of the network components, typically modeled with Delay

122 6 Reference Models

Fig. 6.24 The JSIMg model implemented

Fig. 6.25 Class-Switch
probabilities of the CS
station

stations, are negligible compared to the service times of the other components of the
model and therefore their impact on the performance is practically zero. As for the
User Think Times it should be emphasized that with this type of e-commerce
app, related to online grocery shopping, their values, especially those on the browser-
side (i.e., between the selection of products), are highly variable from user to user as
they are deeply influenced by the characteristics of individual customers (e.g., age,
type of network connection, digital equipment used). Thus, having a reliable fore-
cast of their values and distribution is practically impossible and somewhat useless.
Furthermore, not considering the User think times increases the reliability of
the metric System Response Times R to evaluate the differences between the
various versions of web services and security protocols. We must keep in mind that
in this case we simulate the worst case scenario related to the stress of the resources
since the load is the maximum possible.

The Service times required by all services executed during each visit have
been parametrizedwith their global Service demandsDs. Three different work-
loads should be considered: the current, (called light workload), with an average of

6.3 Simulation of the Workflow of a Web App 123

Table 6.2 Service demands [s] to the servers of the current workload with one-factor (left)
and with two-factor (right) authentication for payment security

25 products in the shopping cart per customer in each session and one-factor authen-
tication for secure payment, the same workload with a new two-factor authentica-
tion system, and the new expected workload (called heavy workload) with a 15%
increase in incoming traffic compared to current one. Tables 6.2 shows the Service
demands of the first two.

The fluctuations in the number of items purchased per session and service times
are considered in the distributions of the global service demandsDs. The values in the
boxes are thosemodified by the two-factor payment system.Tomodel the fluctuations
in the number of items and in service times required by their different types we
have assumed the exponential distribution of service demands Ds. If necessary, it is
possible to select distributions with the same mean and greater variance, for example
hyper-exponential, with a single click in the station parameterization windows. The
scheduling discipline of the servers is PS, processor sharing. The traffic intensities
analyzed range from 0.5 to 1.2 req/s (about 4300 req/h).

6.3.3 Results

In what follows we will describe the activities regarding the following three
objectives:
— Obj.1: Implementation of a model to execute the workflow of Fig.6.23
— Obj.2: Capacity planning of the data center with the current workload and eval-
uation of the impact of a two factor authentication system
— Obj.3: Computation of the Throughput bound and prediction of the perfor-
mance of a new heavy workload that has a max arrival rate of 5000 req/h

— Obj.1: Implementation of a model to execute the workflow of the e-commerce
app with deterministic paths.

124 6 Reference Models

Fig. 6.26 Temporal sequence of visits to the three servers during the execution of a request

The workflow with the tasks that are executed for an online order submission is
shown in Fig. 6.23. To construct a simple example that allows the visual evidence of
the sequence of visits to the three servers A,B, and Pwe have implemented the model
of Fig. 6.24 assuming that all the parameters have constant values. In this example:
the interarrival times are 3 s, the service demand of the first visit to Server A is 0.2
s (the request is of Class1), the service demand to Server B is 0.8 s (the request
is of Class1), the service demand of the second visit to Server A is 0.4 s (the
request is now of Class2), the service demand to Server P is 0.4 s (the request
is of Class2), and the service demand of the third visit to Server A is 0.1 s (the
request is now of Class3).

The temporal diagram of Fig. 6.26 provides visual representation of the sequence
of visits A-B-A-P-A to the three servers during the complete execution of a request.
The values plotted in this diagram are obtained simply by flagging the check-
boxStatistical Results(Stat.Res.) of the correspondent performance
index selected in the Performance Indices window (see Fig. 1.8) (the CSV
files with the values of the Response Times will be generated automatically).

6.3 Simulation of the Workflow of a Web App 125

Fig. 6.27 Execution of 15 models with Arrival rates from 0.5 to 1.2 req/s

Fig. 6.28 Number of requestsN in execution (a) and System Response times R [s]
(b) with one-factor and two-factor authentication layers of security

— Obj.2: Capacity planning of the data center with the current workload
and evaluation of the impact of a two-factor authentication system for secure
payments.

The traffic intensities considered range from 0.5 to 1.2 req/s (4320 req/h). The
What-if analysis of Fig. 6.27 execute 15 independent models with arrival rates
increasingby0.05 eachmodel . Figure 6.28 show theNumber of RequestsNin
concurrent execution and the System Response times R with the Service
demands of the current workload with one-factor authentication security system
(see Table 6.2).

The values of N range from 1.4 to 30.81 req while those of R range from 2.9
to 25.8 s. Recall that, as already pointed out, the values of R do not include User
Think times both at the browser and the session levels.

126 6 Reference Models

The bottleneck is server B whose utilization increases from 0.39, with 0.5
req/s, to 0.95, with 1.2 req/s. Its service demand is 0.8 s, the maximum among all
servers, and therefore the Throughput bound of the system is X0 = 1/Dmax =
1.25 req/s.

To detect the impact on performance of the new two-factor authentication sys-
tem for secure payments we executed the What-if analysis with the service
demands of the new payment service (see Table 6.2). Figure 6.28 allow the visual
comparison of the values of N and R obtained with the two-factor authentication
with those obtained with the one-factor authentication. With 1.2 req/s the new values
of N and R are 35.9 req and 34.8 s, respectively. The 9 s increase in R compared to
the old value obtained with a single-factor is mainly due to the increase in service
demands of the new authentication system.

— Obj.3: Computation of theThroughput bound and performance prediction
of a new heavy workload that has a max arrival rate of about 5000 req/h.

The current workload intensity is expected to increase by approximately 15%
following the acquisition of a new online grocery store company. Arrival rates with
a maximum value of about 5000 req/h are also expected.

The bottleneck with the current workload is Server B which constrains
Throughput to be at most 1/Dmax = 1.25 req/s, which is less than the new required
maximum1.4 req/s.Among the possible actions to improve theThroughput bound
it has been decided to replace the current Server B with a new one that is twice
as fast (equipped with new processors, more cores, and larger RAM). As a conse-
quence, the service demand of Server B is 0.4 s, half of the previous one. The
new Dmax is the one of Server A, equal to 0.7 s, that becomes the bottleneck.
So, the new Throughput bound is 1.42 req/s, which satisfies the constraint of
5000 req/h. Figure 6.29 shows the System Response time R of the two data
center configurations with the old (upper curve) and new (lower curve) Server B
respectively.

It must be pointed out that the performance gains obtained with the new Server
B that is twice as fast of the old one are not as expected, e.g., the Throughput
bound increased of about 14% only. Indeed, with the new Server B the limit to
the extent of the improvement is imposed by Server Awhich has become the new
bottleneck with the second highest service demand of the original data center, i.e.,
0.7 s, as it was the secondary bottleneck.

6.3.4 Limitations and Improvements

• Workload characterization: identifying multiple classes of customers (rather than
a single one as done in the case study) may be better for providing customers with
more accurate Response times with respect their characteristics (in terms of
the number of products purchased).

6.4 A Crowd Computing Platform 127

Fig. 6.29 System Response time R [s] of the two data center configurations

• Flow of incoming customers: the pattern of arriving requests can be simulated
with high precision capturing the fluctuations with some of the distributions imple-
mented in JMT, e.g.,Hyper-exponential,Coxian,Phase-Type,Burst,
Markovian Arrival Processes) or using the Replayer to replicate the
data collected from a real workload.

• Load balancing: regardless of the paradigm adopted in web application architec-
tures, the identification of elementary tasks, their dependencies on other tasks and
their allocation among web services, are the actions that play a key role in the load
balancing of servers in a data center.

6.4 A Crowd Computing Platform

tags: open/closed, multiple class, Source/Delay/Queue/FCR/Sink, Exp/Hyper-exp,
JSIMg.

This case study describes an application of a simple but powerful structure that can
be implemented with one of the JSIMg features: the Finite Capacity Region (FCR).
It can be used either stand alone, as described below, or as a part of more complex
models [29], for example to simulate the servers downtime (due to failure or other
causes of shutdown) in large data centers, to control the load to a set of servers, or
to implement the zig-bee energy savings feature [7].

128 6 Reference Models

6.4.1 Problem Description

The crowd paradigm has been used for centuries to solve problemswhose difficulty is
beyond the capacity of single individuals or organizations: a group (i.e., the crowd) of
subjects cooperate to solve a problem.With the evolution of digital technologies, and
particularly the Internet, crowd applications encompass a wide range of real-world
problems of both a scientific or non-scientific nature from agriculture, to health-care,
funding, searching, social productivity, distributedweather forecast, problem-solving
and ideas-sharing.

In this case study, we consider a crowd of individuals that collectively contribute
with their digital devices (computers, servers, tablets, etc.) to the implementation
of a large computing infrastructure. A device can be added or removed from the
infrastructure by each contributor. The members of this infrastructure belong to two
groups: contributors and associates. The former are authorized to add and remove
their equipments to the infrastructure of the crowd that they canuse free of charge. The
latter can only use the infrastructure devices and are charged for their computations.
Associate members have been introduced to increase the economic sustainability of
the crowd, their number is larger than that of contributors.Wewill collectively refer to
themembers of the two categories asusers andwe assume that the service demands
of both the categories are similar. In this ideal crowd computing platform (Fig. 6.30),
the contributors receive by the crowd manager the app that allow them to add their
computers to the platform, becoming a node accessible by the community, or to
remove it. The crowdmanager is responsible for the managing of the resources of the
platform through dedicated servers. Among others, scalability is one of the important
features that they exhibit. For their characteristics, these types of infrastructures can
also be referred to as open cloud computing systems.

Fig. 6.30 Layout of the considered crowd computing scenario

6.4 A Crowd Computing Platform 129

In these applications, the processes of contribution (i.e., arrivals) and removal (i.e.,
delete) of the equipments to the platform are very peculiar and follow unpredictable
distributions.

In the following sections, we focus on the simulation of these two processes and
we analyze their impact on the performance of the crowd platform. More precisely,
we evaluate the behavior of System Response Times of the user requests as
a function of the variance of unaivalability time of the nodes.

6.4.2 Model Implementation

Themodel implementedwith JSIMg is shown in Fig. 6.31. The flowof computational
requests submitted by contributors and associates members, has been simulated with
the requests of the open class users generated by the source station Source1.
The Service demands of both the group of members have the same statistical
characteristics, i.e., the same distribution (exponential) and the same mean Duser =
4 s. Thus we assume that all the computational requests belong to the same class.

The number of contributors is 200, each can add/remove a system that can execute
the user requests. We simulate the computational devices of the platform, i.e., the
nodes, with the 200 servers of the single queue station CompServers. Tomodel the
add/remove behavior of the 200 nodes, we use the Finite Capacity Region
(FCR) CrowdPlatform, with capacity NFCR = 200 customers, and a closed class
Node with 200 customers. The Node customers flow through the queue station
Unavailable and the delay station Available.

Thus, the workload of the model consists of two classes of customers: User
(open) and Node (closed). In JSIMg the queue of requests entering an FCR is unique.
In Fig. 6.31 two queues are drawn only for reasons of graphical representation.

Fig. 6.31 The crowd
computing model: the
CrowdPlatform region
has a limited capacity,
class-2 Node customers
have higher priority than
class-1 User customers

130 6 Reference Models

Fig. 6.32 User (open) and Node (closed with high priority) classes (a), and the FCR (b)

The parameter settings of the two-class workload is shown in Fig. 6.32a. The open
class User describes the computational requests submitted by all the users, con-
tributors and associates, arriving at the platform with rate λ = 4 req/s and exponen-
tial distribution of Interarrival times (whose mean is 1/λ = 0.25 s). The
closed class Node of 200 customers and priority 1 (higher than that of the
User class) has been added to represent the systems of the platform that may be
available/unavailable to execute the User requests.

Figure 6.32b shows the parameters of the FCR. The maximum Region
capacity is NFCR = 200 customers, including both user and node. The default
values (infinite) of the maximum number of customers per class have no effects as in
any case the maximum value of 200 customers in the FCR is a constraint that cannot
be exceeded. The Drop policy is set to false for both the classes since we do not
want to drop the requests (both User and Node) arriving when the FCR is full but
we want to keep them in a queue waiting to be admitted inside.

The queue station CompServers, located inside the FCR, has a single queue and
200 servers, each server will execute a user request. Since the number of customers
in the FCR is limited, i.e., it is NFCR = NFCR,User + NFCR,Node ≤ 200, any Node
customer within the FCR (in the Unavailable station) decreases the number of
servers available for user computations in the CompServers station.

The primary effect of removing a node is represented in the model by an increase
of customers at the Unavailable station and thus a decrease in the number of
servers available for computations at CompServers station. Similarly, the primary
effect of adding a node is represented by a decrease of the Unavailable customers
(a customer move to the Available station outside the FCR) and an increase in
the number of servers available for computations at CompServers station. The
result will be an increase in the node activity and an improvement in the platform
performance.

6.4 A Crowd Computing Platform 131

The behavior of the model is as follows:

• if a User request arrives at CrowdPlatform when there is at least one
server available in the CompServers station, i.e., when it is NCompServers +
NUnavailable < 200, then it is executed immediately;

• if a User request arrives to CrowdPlatform when no computing server is
available to users (i.e., when it is NCompServers + NUnavailable = 200) then it must
wait until a user request complete its execution or a new node is added and that
the eventual queue of requests already waiting for a server (i.e., in queue to enter
the FCR) becomes empty;

• when a Node removal request arrives at CrowdPlatform, i.e., a Node customer
is released by the Available station, and it is NFCR < 200, then the number of
servers available in the CompServers station is decreased by one unit;

• when a Node removal request arrives at CrowdPlatform and it is NFCR = 200
then it must wait in queue to enter the FCR until a User request complete its
execution and release the server or a new server is added (i.e., a Node customer
exit the FCR). Indeed, in spite that the Node requests have higher priority than
User, since the scheduling discipline of the queue of requests waiting to enter the
FCR is FIFO non-preemptive, i.e., an arriving removal request of a node does not
interrupt the execution of a User request but waits for its completion to lock the
server. The requests in queue are served according to their priority.

In this case study we focus on the behavior of the number of nodes of the platform
that are available/unavailable for computations. Typically, in this type of applica-
tions the time in which a node is unavailable follows an unpredictable distribution
with a very large variance. This can be explained by considering that each contrib-
utor is independent of the others and follows custom working schedules. As a first
approach, we consider the mean unavailability time SUnavailable = 1 s (Service
time of the Unavailable queue station, located inside the FCR), and hyper-
exponential distribution. Several models with the same mean Service time and
different coefficients of variation cv are executed. Let us remind that to model a
hyper-exponential distribution in JSIMg it is sufficient to set its mean value and
coefficient of variation (see, e.g., Fig. 5.10). The availability times are modeled with
the service times of the delay station Available (located outside the FCR), with
mean SAvailable = 60 s and exponential distribution.

6.4.3 Results

The simple model implemented allows to answer several capacity planning ques-
tions. For example: how does the platform Response time vary with the number
of nodes? which is the impact on performance of the arrival rate of user requests
and of the distribution of interarrival times? which is the bottleneck of the infras-
tructure which constraints the Throughput? what happens if we alleviate/remove
the bottleneck? which will be the effect on Response times of an increase of

132 6 Reference Models

the number of associates members? which are the scalability limits of the platform
(hardware components capacity, software requests, distributions of service demands,
variance of interarrival times, ...)?

In this case studywe concentrate on themodeling of the addition/removal of nodes
to the crowd platform. The primary effect of the interaction of these two processes
is reflected by the dynamic changes in the number of nodes available/unavailable
for the execution of user requests. As described in the previous section, we use
the exponential distribution to model availability times and the hyperexponential
distribution to model unavailability times.

Among the possible objectives of the capacity planning study, we describe in
detail the following two.

Obj.1: Evaluate the impact of the variance of unavailability times of the platform
nodes (keeping constant the mean value) on the Response Time of User
requests.

To achieve the objective of the study we cannot use the What-if feature since in
JSIMg the variance of a distribution is not one of the control parameters admit-
ted. Thus, we ran five independent JSIMg models with different values of the
variance of the unavailabity times. More precisely, for the Service times of
Unavailable station we considered the same mean SUnavailable = 1 s and five
different coefficients of variation cv = 1, 5, 10, 15, and 20 of their hyper-exponential
distribution.

The graphs in Fig. 6.33 show the results of five models of Fig. 6.31 obtained with
different cv of SUnavailable. For each cv, the corresponding 99% confidence interval is
also shown. As expected, the high variance of theUnavailability time causes a degra-
dation in the performance. As the cv increases, the System Response time of
User requests grows. For example, with cv = 20 the model yielded R0,User = 203.4

Fig. 6.33 System Response time (a) and System Number of User requests in
the platform (in execution and in queue for FCR) (b) versus coefficient of variation of Unavailability
time

6.4 A Crowd Computing Platform 133

s (see Fig. 6.33a). Note that this index is at the System level because it also includes
the queue time (if present) of the requests waiting to enter the FCR when all nodes
are unavailable.

Similarly, Fig. 6.33b shows that with the increases of cv, also increases the mean
number of User requests in the system. Note that this index is defined as System
Number of customers because it includes both User requests that are sub-
mitted to the platform but that are queued waiting for a node (to enter the FCR) and
requests that are in execution (inside the FCR). Indeed, its mean values can be higher
that 200 (e.g., with cv = 20 it is N0,User = 834 req).

Obj.2: To answer some questions of the capacity planning study it is required
a detailed statistical analysis of the values of three performance indexes:
Number of nodes available in the platform, Response time and Number
of user requests arrived at the platform. The study of their behavior over time
is also requested.

To achieve this objective it is necessary to tick the checkboxes Stat.Res.
in the Performance Indices definition window corresponding to the indexes
analyzed. In Fig. 6.34 a statistical analysis is requested for the indexes Number
of customers of Available station, System Response times of the
User requests, and System Number of Customers because the correspond-
ing three checkboxes Stat.Res. are checked.

For each selected index, a CSV file with all its values is generated. In Fig. 6.34b
a sample of the CSV file generated by the Number of customers in the
Available station is shown. The values of the three columns are: the time stamps
of the event, the actual number of customers in the station, and the time interval since
the last event, respectively.

Fig. 6.34 Selection of statistical analyses (see Stat.Res. check boxes) of three performance
indexes (a) and a sample of the CSV file of Number of Customers of the Available
station (b)

134 6 Reference Models

Fig. 6.35 Statistical indexes computed for the Number of Unavailable nodes

Fig. 6.36 Behavior of the number of nodes available in the crowd platform (a) and of
the System Response times of User requests (b) in the time interval 0 ÷ 20000 s

For example, Fig. 6.35 shows the statistical indexes computed for the Number
of customers in the Unavailable node. The histogram graph style has
been selected.

By processing the CSV files there is the possibility to analyze the behavior of
the indexes over time. Figure 6.36a represents the behavior of the Number of
Customers of class-Node in the Available station (that correspond to the
number of nodes available in the crowd platform) over time. Each increasing step
means the occurrence of an arrival (a contribution) of a new system (node) or

6.4 A Crowd Computing Platform 135

the completion of the execution of a User request that releases the server. Each
decreasing step means that a system has been removed from the crowd or that a
server has been assigned to a newly arrived User request. The values plotted have
been obtained in a model with mean unavailability time SUnava = 1 s and cv = 20.

Figure 6.36a shows for the same time interval the behavior of the System
Response time of the User requests. The values of this index are highly fluc-
tuating. As can be seen from Fig. 6.36, the high peaks of Response times (see,
e.g., the one ending at about 15000 s in Fig. 6.36b) occur after periods where the
number of nodes available for computations is very low or null (see Fig. 6.36a). In
fact, the primary effect of these periods is represented by the fast increase of the
queue of User requests waiting to enter the FCR, resulting in a significant increase
in their Response time.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Appendix A
What May Be Useful to Know

A.1 Routing Probabilities Versus Visits to Resources

tags: open, single class, Source/Queue/Sink, JMVA/JSIM.

In many performance studies the probabilities that the requests follow given paths
through the resources are known, while in other cases the number of visits that
requests during their execution make to resources are known. In this section we
derive the relationships between routing probabilities and visits.

Let us consider the open queueing network of Fig. A.1 that model a system with a
central server, the Application server AS, and three Storage servers
Si in parallel. The probabilities pi ’s that after a visit to theApplication server
AS a request is routed to Storage server Si are known. The index 0 is used to
represent the outside part of the queueing network, p0 is the path that will be followed
by a request that has completed its execution and leaves the model. To simplify the
presentation, we assume that a request is routed to this path only once in his lifetime,
so the number of visits V0 that it performs outside the network is one. According to
the structure of the network of Fig. A.1 it is

∑3
i=0 pi = 1.

The requests arrive to the system with rate λ0 and can be regarded as generated
by a station external to the model representing the users. This station, used as
Reference station, is visited only once during the execution of a request and
it is used to compute the Response time R0 and the Throughput X0 of the
entire system. Indeed, R0 is defined as the period of time between the arriving to the
system of a new request (leaving theReference station) and its departure once
completed (entering the Reference station), and X0 is the rate of completed
requests that enter the Reference station. Sometimes R0 is also referred to as

© The Editor(s) (if applicable) and The Author(s) 2024
G. Serazzi, Performance Engineering,
https://doi.org/10.1007/978-3-031-36763-2

137

https://doi.org/10.1007/978-3-031-36763-2

138 Appendix A: What May Be Useful to Know

Fig. A.1 Open model with one Application server AS and three Storage servers Si

Table A.1 Routing probability matrix for the model of Fig. A.1

AS S1 S2 S3

AS 0 p1 p2 p3

S1 1 0 0 0

S2 1 0 0 0

S3 1 0 0 0

System cycle time since it represents the time required to a request to make complete
cycle in the system with respect to the Reference station.

The routing probabilities of the queueing network of Fig. A.1 are shown in
Table A.1. The element i j of this matrix represents the probability that after a visit
to resource i a request is routed to resource j . Since a model in order to be solved
analytically must be flow balanced, i.e., it must be in equilibrium, (see Sect.1.2) the
number of requests that enter a station equals the number of requests that exit. We
may say also that the throughput X0 of the entire model, or that of a station, will be
the same as the arrival rate λ0 to the model, or to that station, respectively. Thus, for
any station i of the queueing network it will be λi = Xi (flow in = flow out). For the
model of Fig. A.1 we may write the following system of equations:

⎧
⎪⎪⎨

⎪⎪⎩

λ0 + λS1 + λS2 + λS3 = λAS

p1 λAS = λS1

p2 λAS = λS2

p3 λAS = λS3

(A.1)

Since it is p0 = 1 − (p1 + p2 + p3), from Eq. A.1 we have

λAS = λ0
1

p0
λS1 = λ0

p1

p0
λS2 = λ0

p2

p0
λS3 = λ0

p3

p0
(A.2)

Appendix A: What May Be Useful to Know 139

From these results and recalling that the global number of operations Ci completed
by station i divided by the observation interval T is its throughput Xi , we may derive
the average number of visits VAS that during its execution a request makes to station
AS (recall that we assume V0 = 1):

λAS

λ0
= CAS/T

C0/T
= VAS = 1

p0
(A.3)

where C0 is the global number of requests executed by the system in T . Similarly,
for the other stations it will be

VS1 = p1

p0
VS2 = p2

p0
VS3 = p3

p0
(A.4)

Dividing the first equation of (A.1) by λ0 we obtain the following relation between
a central resource and the peripheral resources it connects to in a network with a
central server

VAS = 1 + VS1 + VS2 + VS3

that may be used in several models having complex structures.
Equations A.3 and A.4, with the values of the routing probabilities of Fig. A.1,

provide the following visits to stations:

VAS = 1

0.1
= 10 VS1 = 0.6

0.1
= 6 VS2 = 0.1

0.1
= 1 VS3 = 0.2

0.1
= 2

Let us note that, depending on the objectives of the performance study, as
Reference station can be selected a station different from the one represent-
ing the Users, which is typically visited only once. In this case, the Response
time and the Throughput of the system must be computed with respect to the
new Reference station. Since typically its visits are greater than one, it is
necessary to rescale the visits to all stations dividing their values by the original
visits of the new Reference station. New values of visits must be computed
(after the scaling, the visits to the new Reference station will become one),
and the model provides the correct values of all the performance indexes computed
with respect to the new Reference station.

A.2 Confidence Intervals

Random numbers are used in the simulation of computer systems to generate
sequences of independent random values assigned to input parameters like
Interarrival times, Service times, Think times, Service

140 Appendix A: What May Be Useful to Know

demands, Routing probabilities. Consequently, the output of simulations
are sequences of random values describing metrics such as Response times,
Number of customers, Throughput, Utilizations, and users have to
estimate their distribution functions, their mean values and variance.

In Fig. A.2 a general view of a simulation process is shown. Several independent
runs are executed, each run utilizes its own sequence of random values of input
parameters and produce a corresponding sequence of output values of results.

A sequence of random numbers is constructed using a seed to initialize the gener-
ator algorithm. There is a direct correspondence between the values of seeds and the
sequences generated. Since the selection of the seed is typically left to the generator
algorithm, that usually derive its value from the clock time, it is clear that a different
sequence of random numbers is generated at each execution. As a consequence, each
execution of the same model will use a particular realization of the input sequences
and will produce distinct realizations of the set of output sequences.

A user must be able to estimate which one of the values, for example a mean
value, computed on the different output sequences of several independent simulation
runs is the closest to the true mean value of the variable considered.

This is a classical statistical inference problem: using the results obtained from
a sample, i.e., a subset of the elements of the analyzed population, a user need to
derive conclusions at the level of the entire population.

For example, let us consider the variable describing the Response times R of a job
computed by a model. The true mean value of R is unknown and we want to evaluate
the accuracy of the mean computed on a sample of n independent executions of the
same job. This type of estimation, that provides a single value (the mean of n values),
is known as point estimation.

Fig. A.2 High-level view of a simulation process. Several runs are executed, each run utilizes its
own sequence of input random values and generate the corresponding sequence of output results

Appendix A: What May Be Useful to Know 141

Notice that almost never the point estimate coincides with the true value of the
variable to be estimated. Indeed, it is not possible to know how far the value computed
with a sample on n independent runs is from the true value of the index analyzed.

However, based on the values computed using the data collected by repeated
independent executions, it is possible to construct an interval estimate, referred to
as confidence interval, that will contain the true value of the index being estimated
with a given probability (1 − α), referred to as confidence level 100(1 − α)%, where
α is the probability that the correct value of the parameter lies outside the confidence
interval. Some of the more frequently used confidence levels are 90%, 95%, 99%
(see, e.g., Fig. 1.8 for JSIMg).

It should be pointed out that when we consider only one sample of size n and we
compute the 100(1 − α)% confidence interval, it represents the likely range for the
correct mean value of the estimated parameter (that may or may not be contained).
For example, if we consider the 95% confidence intervals generated from 100 samples
(of the same size and collected independently) we may expect that 95 of them will
contain (and 5 of them do not contain) the correct mean value.

We assume that the mean and the variance of the index to be estimated are
unknown, and we consider symmetric confidence intervals (that generate intervals
of minimum size). By the Central Limit theorem we may assume that the sample
means computed considering several independent executions of size n (n must have
a large value >30) of the same job tend to a normal distribution. Since the real
value of the variance σ 2 is unknown, we may use its estimated value σ 2

s computed
with the values of the sample. With n > 30, a good approximation of the confidence
interval 100(1 − α)% for the mean of the estimated index R is

(
x − zα/2

σs√
n

)
< R <

(
x + zα/2

σs√
n

)
(A.5)

where x and σ 2
s are the mean and the variance computed with the sample values,

(1 − α) is the confidence level (e.g., 90%, 95%, 99%) and zα/2 is a value that can
be obtained from the table of the standard normal distribution function such that
P(Z < −z) = P(Z > z) = α/2. By definition, the area under the z density function
from the value −zα/2 to its left is equal to −α/2. Z is the standard normal N(0,1)
random variable Z = (x − mean)/(σs/

√
n). For example, to compute the 95% or

the 99% confidence intervals, the values of zα/2 are 1.96 and 2.576, respectively.
When the number of executions is small (the sample size is n<30), to have

an acceptable estimate of the confidence intervals it is better to use the Stu-
dent’s t-distribution instead of the standard normal distribution. Thus, in Eq. A.5

142 Appendix A: What May Be Useful to Know

instead of the zα/2 the tn−1;α/2 should be used. Indeed, the random variable T =
(x − mean)/(σs/

√
n) has a student t-distribution with n-1 degrees of freedom. It is

convenient to have sample sizes of at least 10. The values of tn−1;α/2 may be easily
found in the tables of the Student t-distribution with n – 1 degrees of freedom.

A.3 Details on Reliability Models of Chap. 5

System with n-Parallel Components

Consider the reliability model of a system with n identical and statistically indepen-
dent parallel components, with exponentially distributed lives, and non-repairable.
This system fails when all the n components failed. In our model this condition cor-
responds to the time in which the execution of the last task end, i.e., the Fork/Join
Response time. To study the system failure time we need to compute the distribu-
tion function FXmax of the maximum Xmax of the n variables Xi that are exponentially
distributed with the same mean. Since it is Xmax ≤ t if and only if it is Xi ≤ t for all
i = 1, ..., n, it will be

prob[Xmax ≤ t] = prob [X1, X2, ..., Xn ≤ t]

Thus, the distribution Fmax of the maximum of n independent random variables Xi

is given by (see, e.g., [36, 37]):

Fmax (t) = prob [X1, X2, ..., Xn ≤ t] = FX1(t) FX2(t) ... FXn (t) (A.6)

Since all the variables Xi have the following identical exponential distribution with
the same mean R

FXi (t) = prob [Xi ≤ t] = 1 − e−t/R

from Eq. A.6 we have
FXmax (t) = (1 − e−t/R)n (A.7)

The distribution of Eq. A.7 is not exponential. To compute its mean value we may
apply recursively Eq. 5.5 to a number of components decreasing from n to 1. Thus,
the mean time to the first failure of n independent identically distributed compo-
nents is MTT F/n, the following failure when the components are n − 1 happens
after MTT F/(n − 1) and so on until only one component is working that fails after
MTT F .

Appendix A: What May Be Useful to Know 143

System with n-Components in Series

Consider the reliability model of a system consisting of n components connected
in series. In such a system we are interested in the mean time to the first failure,
that in our model corresponds to the end of the fastest task that reach the Join.
This equivalent problem can be stated as the computation of the distribution function
FXmin (t) of the minimum Xmin of n independent random variables Xi exponentially
distributed with the same mean R. The condition Xmin > t is satisfied if and only if
it is Xi > t for all i = 1, ..., n. Thus, it will be (see, e.g., [36, 37]):

FXmin (t) = 1 − prob [X1, X2, ..., Xn > t] = 1 −
n∏

i=1

(1 − FXi (t)) (A.8)

where each FXi (t) is the distribution function of the exponentially distributed random
variable Xi with mean R:

FXi (t) = 1 − e−t/R (A.9)

Substituting the FXi in Eq. A.8 by their expressions of Eq. A.9 we obtain

FXmin (t) = 1 − e−n (t/R) (A.10)

As can be seen from Eq. A.10, the distribution of the minimum of n independent
exponential distributions is itself an exponential distribution with mean 1/n-th of the
mean R of any of the individual distributions (it is much lower)!

Let us remark, that in the preceding reliability model all the n components are
assumed independent and identical, with the same mean and exponential distribu-
tion. Non-repairable components are considered and no interference among events
is possible (queues will never take place).

A.4 Models Described in the Book

See Table A.2.

144 Appendix A: What May Be Useful to Know

Ta
bl
e
A
.2

M
od

el
s

de
sc

ri
be

d
in

th
e

bo
ok

Su
bj

ec
ts

Se
ct

io
ns

M
od

el
C

la
ss

St
at

io
ns

D
is

tr
ib

ut
io

ns
To

ol

W
eb

se
rv

er
pe

rf
or

m
an

ce
2.

1
O

pe
n

Si
ng

le
So

ur
ce

/Q
ue

ue
/S

in
k

E
xp

JM
V

A

C
ap

ac
ity

pl
an

ni
ng

2.
2

C
lo

se
d

Si
ng

le
D

el
ay

/Q
ue

ue
E

xp
JS

IM
g

U
se

of
se

rv
ic

e
de

m
an

ds
2.

3
C

lo
se

d
Si

ng
le

D
el

ay
/Q

ue
ue

E
xp

JS
IM

g

O
pt

im
al

lo
ad

of
a

se
rv

er
2.

4
O

pe
n

Si
ng

le
So

ur
ce

/Q
ue

ue
/S

in
k

E
xp

JS
IM

g

M
ul

tic
la

ss
w

or
kl

oa
d

3.
2

C
lo

se
d

m
ul

ti
D

el
ay

/Q
ue

ue
E

xp
JM

V
A

O
pt

im
iz

at
io

n
of

da
ta

ce
nt

er
3.

3
C

lo
se

d
m

ul
ti

Q
ue

ue
E

xp
JM

V
A

V
ar

ia
bi

lit
y

in
te

ra
rr

.ti
m

es
4.

2
O

pe
n

Si
ng

le
So

ur
ce

/Q
ue

ue
/S

in
k

E
xp

/H
yp

o/
H

yp
er

JS
IM

g

V
ar

ia
bi

lit
y

se
rv

ic
e

tim
es

4.
3

O
pe

n
Si

ng
le

So
ur

ce
/Q

ue
ue

/S
in

k
E

xp
/H

yp
o/

H
yp

er
JS

IM
g

Ta
sk

s
sy

nc
hr

on
iz

at
io

n
5.

1
O

pe
n

Si
ng

le
So

ur
ce

/F
or

k/
Jo

in
/Q

ue
ue

/S
in

k
E

xp
JS

IM
gQ

N

Sy
nc

.v
er

su
s

va
ri

an
ce

5.
2

O
pe

n
Si

ng
le

So
ur

ce
/F

or
k/

Jo
in

/Q
ue

ue
/S

in
k

E
xp

/H
yp

er
ex

p
JS

IM
gQ

N

Sy
nc

.o
n

fa
st

es
tt

as
k

5.
3

O
pe

n
Si

ng
le

So
ur

ce
/F

or
k/

Jo
in

/Q
ue

ue
/S

in
k

E
xp

/H
yp

er
ex

p
JS

IM
gQ

N

Su
rv

ei
lla

nc
e

sy
st

em
6.

1
O

pe
n

m
ul

ti
So

ur
ce

/C
la

ss
Sw

itc
h/

Q
ue

ue
/S

in
k

E
xp

JS
IM

g

A
ut

os
ca

lin
g

flu
ct

ua
tio

ns
6.

2
O

pe
n

m
ul

ti
So

ur
ce

/Q
ue

ue
/P

la
ce

/T
ra

ns
iti

on
/S

in
k

H
yp

er
ex

p/
Fi

ri
ng

Im
m

ed
ia

te
JS

IM
g

W
or

kfl
ow

si
m

ul
at

io
n

6.
3

O
pe

n
m

ul
ti

So
ur

ce
/Q

ue
ue

/C
la

ss
Sw

itc
h/

Si
nk

E
xp

JS
IM

g

C
ro

w
d

co
m

pu
tin

g
6.

4
m

ix
ed

m
ul

ti
So

ur
ce

/Q
ue

ue
/F

C
R

/S
in

k
E

xp
/H

yp
er

ex
p

JS
IM

g

R
ou

tin
g

pr
ob

.v
er

su
s

V
is

its
A

.1
O

pe
n

Si
ng

le
So

ur
ce

/Q
ue

ue
/S

in
k

E
xp

Q
N

References

1. AWS Auto Scaling (2020), https://docs.aws.amazon.com/autoscaling/index.html
2. G. Balbo, G. Serazzi, Asymptotic analysis of multiclass closed queueing networks: common

bottleneck. Perform. Eval. 26, 51–72 (1996)
3. G. Balbo, G. Serazzi, Asymptotic analysis of multiclass closed queueing networks: multiple

bottlenecks. Perform. Eval. 30(3), 115–152 (1997)
4. S. Balsamo, A. Marin, Separable solutions for Markov processes in random environments. Eur.

J. Oper. Res. 229(2), 391–403 (2013)
5. E. Barbierato, M. Gribaudo, G. Serazzi, Multiformalism models for performance engineering.

Future Internet 12(3), 50 (2020). https://doi.org/10.3390/fi12030050
6. F. Baskett, K.M. Chandy, R.R. Muntz, F.G. Palacios, Open, closed, and mixed networks of

queues with different classes of customers. J. ACM 22(2), 248–260 (1975)
7. P. Bellasi, A. Faisal, W. Fornaciari, G. Serazzi, Queueing network models for performance

evaluation of ZigBee based wireless sensor networks, in EPEW, 7th European Performance
EngineeringWorkshop. LNCS, vol. 6342 (Springer, 2010), pp. 147–159. ISBN 9783642157837

8. M. Bertoli, G. Casale, G. Serazzi, JMT: performance engineering tools for system modeling.
ACM SIGMETRICS Perform. Eval. Rev. 36(4), 10–15 (2009). ISSN:0163-5999. https://doi.
org/10.1145/1530873.1530877

9. G. Bolch, S. Greiner, H. de Meer, K.S. Trivedi,Queueing Networks andMarkov Chains (Wiley,
2006)

10. J.P. Buzen, Fundamental operational laws of computer system performance. Acta Inf. 7(2),
167–182 (1976)

11. M. Calzarossa, G. Serazzi, Workload characterization: a survey. Proc. IEEE 81(8), 1136–1150
(1993)

12. G. Casale, M. Cazzoli, S. Jiang, V.S. Lopes, G. Serazzi, and L. Zhu, Generalized synchroniza-
tions and capacity constraints for Java modelling Tools, ICPE 2017, in Proceedings of 2017
ACM/SPEC International Conference on Perference Engineering (2017), pp. 169–170

13. G. Casale, N. Mi, L. Cherkasova, E. Smirni, How to parameterize models with bursty workloads.
ACM Perf. Evaluation Rev. 36(2), 38–44 (2008)

14. G. Casale, N. Mi, E. Smirni, Bound analysis of closed queueing networks with workload
burstiness. ACM SIGMETRICS Perf. Evaluat. Rev. 13–24 (2008)

15. G. Casale, G. Serazzi, Bottlenecks identification in multiclass queueing networks using convex
polytopes. In Proceedings of IEEE MASCOTS Symposium (IEEE Press, 2004), pp. 223–230

16. P.J. Denning, J.P. Buzen, The operational analysis of queueing network models. ACM Comput.
Surv. 10(3), 225–261 (1978)

© The Editor(s) (if applicable) and The Author(s) 2024
G. Serazzi, Performance Engineering,
https://doi.org/10.1007/978-3-031-36763-2

145

https://docs.aws.amazon.com/autoscaling/index.html
https://doi.org/10.3390/fi12030050
https://doi.org/10.1145/1530873.1530877
https://doi.org/10.1145/1530873.1530877
https://doi.org/10.1007/978-3-031-36763-2

146 References

17. L. Flatto, Two parallel queues created by arrivals with two demands II. SIAM J. Appl. Math.
45(5), 861–878 (1985)

18. A.Ul Gias, G. Casale, M. Woodside, ATOM: model-driven autoscaling for microservices, in
Proceedings of IEEE ICDCS (2019), pp. 1994-2004

19. A. Giessler, J. Hanle, A. Konig, E. Pade, Free buffer allocation - an investigation by simulation.
Comput. Netw. 3(1), 191–204 (1978)

20. M. Gribaudo, M. Iacono, Theory and application of multi-formalism modeling. (2013). https://
doi.org/10.4018/978-1-4666-4659-9

21. M. Harchol-Balter,PerformanceModeling andDesign of Computer Systems:Queueing Theory
in Action (Cambridge University Press, 2013)

22. E. Incerto, M. Tribastone, C. Trubiani, Combined vertical and horizontal autoscaling through
model predictive control, inProceedings of European conference on parallel processing (2018),
pp. 147–159

23. L. Kleinrock, On flow control in computer networks, in Proceedings of the IEEE International
Conference on Communications - ICC, vol. 2 (1978), pp. 27.2.1–27.2.5

24. L. Kleinrock, Power and Deterministic rules of thumb for probabilistic problems in computer
communications. in Proceedings of the IEEE International Conference on Communications -
ICC (1979), pp. 43.1.1–43.1.10

25. E.D. Lazowska, J. Zahorjan, G.S. Graham, K.C. Sevcik, Quantitative System Performance
(Prentice-Hall, 1984)

26. J.D.C. Little, A proof of the queueing formula L = λW . Oper. Res. 9, 383–387 (1961)
27. Microsoft Azure autoscale (2018), https://docs.microsoft.com/en-us/azure/azure-monitor/

platform/autoscale-overview
28. R. Nelson, A.N. Tantawi, Approximate analysis of fork/join synchronization in parallel queues.

IEEE Trans. Comput. 37(6), 739–743 (1988)
29. R. Pinciroli, S. Distefano, Characterization and evaluation of mobile crowdsensing performance

and energy indicators. SIGMETRICS perform. Evaluat. Rev. 44(4), 80–90 (2017)
30. C. Qu, R.N. Calheiros, R. Buyya, Auto-scaling web applications in clouds: a taxonomy and

survey. ACM Comput. Surv. 51(4), 73:1–73:33 (2018)
31. M. Reiser, S.S. Lavenberg, Mean-value analysis of closed multichain queueing networks. J.

ACM 27(2), 312–322 (1980)
32. A. Riska, E. Smirni, M/G/1-type Markov processes: a tutorial, in Performance 2002, pp. 36–63
33. F. Rossi, V. Cardellini, F. Lo Presti, Hierarchical scaling of microservices in kubernetes, in Pro-

ceedings of the First International Conference on Autonomic Computing and Self-Organizing
Systems, ACSOS 2020 (IEEE, 2020)

34. F. Rossi, V. Cardellini, F. Lo Presti, Self-adaptive threshold-based policy for microservices
elasticity, in Proceedings of Symposium on Modelling, Analysis, and Simulation of Computer
and Telecommunication Systems, MASCOTS 2020 (IEEE, 2020)

35. E. Rosti, F. Schiavoni, G. Serazzi, Queueing network models with two classes of customers, in
Proceedings of the Fifth International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 1997. MASCOTS’97 (IEEE, 1997), pp. 229–234

36. W.J. Stewart,Probability,MarkovChains, Queues, and Simulation (Princeton University Press,
, 2009)

37. K.S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer Science Appli-
cations (Wiley, 2016)

38. R. Wang, G. Casale, A. Filieri, Estimating multiclass service demand distributions using Marko-
vian arrival processes. ACM Trans. Model. Comput. Simul. 33(1–2), 1–26 (2023)

https://doi.org/10.4018/978-1-4666-4659-9
https://doi.org/10.4018/978-1-4666-4659-9
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/autoscale-overview
https://docs.microsoft.com/en-us/azure/azure-monitor/platform/autoscale-overview

	603597_1_En_OFC
	603597_1_En_BookFrontmatter_OnlinePDF
	Preface
	Acknowledgments
	Contents

	603597_1_En_1_Chapter_OnlinePDF
	1 The Process of Modeling
	1.1 Model Implementation
	1.2 Inputs and Outputs of Models
	1.3 Parameterization of Simulation Models
	1.4 Parameterization of Analytical Models

	603597_1_En_2_Chapter_OnlinePDF
	2 Systems with Homogeneous Workloads
	2.1 A Web Server with External Workload
	2.1.1 Problem Description
	2.1.2 Model Implementation
	2.1.3 Results

	2.2 A Computing Infrastructure with a Closed Workload
	2.2.1 Problem Description
	2.2.2 Model Implementation
	2.2.3 Results

	2.3 Equivalent Model with Service Demands
	2.3.1 Problem Description
	2.3.2 Model Implementation
	2.3.3 Results

	2.4 Optimal Operating Point of a Server
	2.4.1 Problem Description
	2.4.2 Model Implementation
	2.4.3 Results
	2.4.4 Limitations and Improvements

	603597_1_En_3_Chapter_OnlinePDF
	3 Systems with Heterogeneous Workloads
	3.1 Parameterization of Heterogeneous Workloads
	3.2 Motivating Example of Multiclass Models
	3.2.1 Problem Description
	3.2.2 Model Implementation
	3.2.3 Results

	3.3 Performance Optimization of a Data Center
	3.3.1 Problem Description
	3.3.2 Model Implementation
	3.3.3 Results

	603597_1_En_4_Chapter_OnlinePDF
	4 Impact of Variability of Interarrival and Service Times
	4.1 Importance of Distributions: A Motivating Example
	4.2 Variability of Interarrival Times
	4.2.1 Problem Description
	4.2.2 Model Implementation
	4.2.3 Results

	4.3 Variability of Service Times
	4.3.1 Problem Description
	4.3.2 Model Implementation
	4.3.3 Results

	603597_1_En_5_Chapter_OnlinePDF
	5 Parallel Computing
	5.1 Synchronization of All Parallel Tasks
	5.1.1 Problem Description
	5.1.2 Model Implementation
	5.1.3 Results
	5.1.4 Limitations and Improvements

	5.2 Impact of Variance on Synchronization
	5.2.1 Problem Description
	5.2.2 Model Implementation
	5.2.3 Results
	5.2.4 Limitations and Improvements

	5.3 Synchronization on the Fastest Task
	5.3.1 Problem Description
	5.3.2 Model Implementation
	5.3.3 Results

	603597_1_En_6_Chapter_OnlinePDF
	6 Reference Models
	6.1 A Facial Recognition Surveillance System
	6.1.1 Problem Description
	6.1.2 Model Implementation
	6.1.3 Results
	6.1.4 Limitations and Improvements

	6.2 Autoscaling Load Fluctuations
	6.2.1 Problem Description
	6.2.2 Model Implementation
	6.2.3 Results
	6.2.4 Limitations and Improvements

	6.3 Simulation of the Workflow of a Web App
	6.3.1 Problem Description
	6.3.2 Model Implementation
	6.3.3 Results
	6.3.4 Limitations and Improvements

	6.4 A Crowd Computing Platform
	6.4.1 Problem Description
	6.4.2 Model Implementation
	6.4.3 Results

	603597_1_En_BookBackmatter_OnlinePDF
	Appendix A What May Be Useful to Know
	A.1 Routing Probabilities Versus Visits to Resources
	A.2 Confidence Intervals
	A.3 Details on Reliability Models of Chap. 5
	A.4 Models Described in the Book
	Appendix References
	

