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Abstract Bio-inspired computing is a promising approach to tackle problems that
are too complex for state-of-the-art computing approaches. It is a highly interdisci-
plinary field of research as it requires expertise, which ranges from understanding
biological organisms (psychology, physiology zoology, biology, bio-chemistry) to
building electrical circuits (electrical engineering, physics). This chapter focuses on
theoretical circuits designs and concepts to abstractly map biological behavior to ide-
alized circuits. We utilize a special digital emulation technique as a tool to digitally
replicate circuits and hence bridge the gap from biological behavioral observation to
hardware circuit designs. Application examples include parameter optimization of
a neuronal oscillator, gait pattern generation, multi-neuron communication, neuro-
plasticity and optical illusions. The fundamental circuit elemental to realize several
bio-inspired circuit designs is the memristor, which is essentially a resistor with a
memory. Since memristors are hard to fabricate with the current state of technology,
digital emulators are a useful tool to accelerate development cycles and investigate
the circuits of the next generation.

Keywords Memristor · Electrical circuits · Emulation · Neuromorphic
engineering · Self-organization

1 Introduction

It is worth noting that a digital emulator is different compared to a hardware emu-
lator and naturally comes with some benefits, although it is generally harder to
construct. Hardware emulators use electrical devices to emulate the behavior of a
desired electrical system. Due to the intrinsic computational parallelism in a signal
processing sense of voltage and current in an electrical circuit, such an emulation
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circuit is a powerful instrument. However, such emulators are often hardwired and a
change of parameters in the system of interest requires new designing of the electrical
hardware [1, 2]. This makes hardware emulators somewhat inflexible, as a physi-
cal exchange of electrical devices in the emulation circuit is required, sometimes
the circuit even needs to be partially or completely redesigned. Software emula-
tion on the contrary can change parameter values digitally. This enables not only
uncomplicated and time-saving parameter changes, but also in-operando parame-
ter manipulation, meaning that parameters can even be changed during run-time.
Consequently, procedures such as parameter optimization and sensitivity analyses
are possible, as demonstrated in [3]. It should however be mentioned that a digital
emulation comes at a cost. First, appropriate interfaces with the help of analogue-
to-digital (A/D) and digital-to-analogue converters (D/A) need to be implemented
[4]. Second, digital emulators are typically more sophisticated to design compared
to hardware emulators because the stability of the overall system must not be altered
by the digital emulator which runs under finite precision arithmetic.

2 Digital Emulation Technique

The wave digital concept [5] takes into account all of the above and is here exploited
as a digital emulation technique as it is known to preserve energetic properties such
as passivity in a digital signal processing sense [6, 7]. It leads to a computationally
massive parallel algorithm,which can be implemented onDSPs or FPGAs andASICs
for real-time applications in integrated circuits [8, 9]. A short overview of the wave
digital concept is given below.

Voltage u and current i of Fig. 1 are related to incident wave a and reflectedwave b
via an arbitrary positive constant R that is called the port resistance and the bijective
transformation

[
a
b

]
=

[
1 R
1 −R

] [
u
i

]
, R > 0. (1)

Consequently, to obtain the wave digital model based on a reference circuit, one
has to translate all electrical devices port-wise and their Kirchhoff interconnection

Fig. 1 Definition of a port
with electrical quantities u, i
(left) and wave quantities a,
b with port resistance R
(right)
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Table 1 Wave digital sources

Element Electrical circuit Wave flow graph

Voltage source

e

R0

R

i

u
[1− �]e

�

R

a

b

Current source

j G0

R

i

u
[1 + �]Rj

�

R

a

b

network separately in the wave digital domain and then connect them port-wise again
subsequently. For example, resistive voltage and current sources described by

u = e − R0i and i = j − G0u, (2)

with source resistance R0 or source conductance G0 and inputs e, j , respectively.
Using the bijective transformation (1), their wave digital flow graphs are described
by

a = [1 − �]e + �b and a = [1 + �]R j + �b, (3)

respectively, with � = [R0 − R]/[R0 + R], cf. Table 1. In the case of ideal sources,
the inner resistances vanish and hence

R0 = 0 ⇔ � = −1 and G0 = 0 ⇔ � = 1, (4)

resulting in the simplified expression

a = 2e − b and a = 2R j + b. (5)

Other selected nonreactive elements include the resistor, which is characterized
by

u = Zi ⇔ b = �a, (6)

with � = [Z − R]/[Z + R]. After discretization and deploying the trapezoidal inte-
gration rule due to its beneficial features regarding passivity and stability [6], the
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Table 2 Selected wave digital reactive elements

Element Electrical circuit Wave flow graph

Capacitor

C

T
2C

i

u T T
2C

a

b

Inductor

L

2L
T

i

u T

−1

2L
T

a

b

capacitor and the inductor become simple delay elements in the wave digital domain.
By defining the step size T = tk − tk−1, one obtains

b(tk) = a(tk−1) and b(tk) = −a(tk−1), (7)

for a capacitor and inductor, respectively, after their port resistances haven been
chosen to R = T/[2C] and R = [2L]/T , respectively. Their corresponding wave
digital flow graphs are shown in Table 2.

Now that selected electrical devices and their corresponding wave flow graphs
have been presented, their port-wise connection is discussed. Since all wave quan-
tities are always related to their respective port resistance, only elements with the
same port resistances can be connected immediately. While certain elements allow
for an arbitrary (but positive) choice of the port resistance, such as the resistor, others
do not offer this degree of freedom, such as the capacitor or inductor. To still be able
to connect elements with different port resistances, parallel and series adaptors rep-
resenting Kirchhoff parallel and series interconnections are utilized. The underlying
equations describing a Kirchhoff series interconnection are

1T u = 0 and i = 1i0, (8)

with 1 = [1 . . . 1]T being the all one vector of appropriate dimension. When the
electrical quantities are replaced by wave quantities, cf. (1), the relation

b = [1 − γ1T ] with γ = 2R1
1T R1

(9)
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Table 3 Wave digital adaptors

Element Electrical circuit Wave flow graph

Four-port
parallel connection

R1

i1

u1

R2
i2

i2

R3

i3

u3

R4

i4

u4

R1

a1

b1

γ1

R2
a2b2

γ2

R3

a3

b3

γ3

R4a4 b4

γ4

Four-port
series connection

R1

i1

u1

R2
i2

u2

R3

i3

u3

R4

i4

u4

R1

a1

b1

γ1

R2
a2b2

γ2

R3

a3

b3

γ3

R4a4 b4

γ4

emerges, where 1 is the identity matrix of suitable dimensions and R = diagnμ=1Rμ,
with Rμ being the port resistance of the μ-th port. Likewise, a Kirchhoff parallel
interconnection is described by

1T i = 0 and u = 1u0 (10)

in the electrical domain, which yields the wave relationship

b = [1γ T − 1] with γ = 21TG
1TG1

, (11)

with G = R−1. The respective wave digital symbols of Kirchhoff series and parallel
adaptors are shown in Table 3.

3 Memristive Neuronal Oscillator

The well-known Morris-Lecar model is a second-order model describing a neuron’s
membrane potential behavior [10]. The structure of its electrical circuit is shown in
Fig. 2 (top left) and the underlying equations are written as
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C
du

dt
= iApp − gCa(u)[u − ECa] − zGK1[u − EK] − GL[u − EL], (12)

with the nonlinear resistor and memristor described by

gCa(u) = GCa1σ

(
u − UCa1

UCa2

)
, (13)

dz

dt
= [z∞(u) − z]FK cosh

(
u − UK1

2UK2

)
, with z∞(u) = σ

(
u − UK1

UK2

)
,

(14)

respectively,whereσ(·) is sigmoid function, the capacitormodels the changingmem-
brane potential, EL and GL model the leakage current behavior. ECa is the voltage
offset to achieve biologically meaningful calcium (Ca) concentration values and the
nonlinear resistor gCa(u) described by (13) models the opening and closing behavior
of the Ca-channels. Likewise, voltage offset EK aims at accomplishing biologi-
cally meaningful potassium (K) concentration values and the memristor WK(z, u)

described by (14) models the opening and closing behavior of K-channels [11]. The
nonlinear resistor here models the opening and closing behavior of the Calcium
channels, whereas the memristor accounts for opening and closing behavior of the
Potassium channels.

A fundamentally important phase of an action potential is the hyperpolarization
phase, in which the membrane potential temporarily falls below the resting poten-
tial. This is relevant for several learning mechanisms, e.g. spike-timing dependent
plasticity [12]. The problem with the parameter set given in [11] is that for several
values of the applied current iApp the hyperpolarization phase is missing. In order to
possibly find a parameter set, where the hyperpolarization phase is present, a param-
eter optimization on the basis of a wave digital emulation is conducted [3]. The
wave digital model of the circuit is shown in Fig. 2 (bottom right) and is obtained
from the electrical circuit by a port-wise translation of its electrical components
and Kirchhoff interconnection structures. For this reason, the structural similarities
between the electrical circuit and thewave digital flow graph are immediately observ-
able. There, implicit relationships between certain wave quantities are highlighted
in orange. To deal with these, fixpoint iterations are utilized [13]. Because the wave
digital model is real-time capable, in-operando parameter manipulations enable a
parameter optimization during run-time.

For the emulation results, an ideal current source is placed at the left-hand port
to mimic the applied current iApp and the resulting membrane potential is observed
at the right-hand port. The action potential emergence as a reaction to the constant
input iApp = 69 μA with the state-of-the-art parameters of [11] as the reference and
in comparison with the in [3] optimized parameters is given in Fig. 3.

The following is gathered. The membrane potential of the reference parameter set
never fall below its resting potential �ref = −60.86 mV. The highlights that indeed
the important hyperpolarization phase is missing. On the contrary, the optimized
parameter cause the membrane potential to fall deeper while the resting potential
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Fig. 2 Wave digital flow graph of the Morris-Lecar neuron model. Its structural, port-wise corre-
spondence to the electrical circuit (top left) becomes apparent
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Fig. 3 Constant current of the Morris-Lecar model with optimized parameters from [3] in com-
parison to parameters as in [11]

�opt = −49.35mV is increased. This results in a clear hyperpolarization phase, indi-
cated by the green areas in Fig. 3. In summary, a sophisticated in-operando parameter
optimization has been conducted via the wave digital model, which resulted in a bio-
logically more meaningful behavior.

4 Stimulus-Driven Topology Formation

4.1 Supervised Topology Formation

Memristors are a suitable electrical device for supervised topology formation and
first preinvestigations in this regard have been done in [14]. For an extension of
this concept, descriptive sketches of neurons and their coupling strengths like in
Fig. 4(i) are considered. They are used especially in biology to visualize neuronal
setups [15]. In this context, the nodes symbolize the neurons and the arrows represent
the (unidirectional) synapses. The numbers indicate the couplings strength between
0 and 1, where the + and − sign stands for excitatory and inhibitory couplings,
respectively. The synthesis of an electrical circuit based on these descriptions is
challenging for multiple reasons. The probably biggest questions arise when aiming
to realize the unidirectional synaptic coupling, as effects like propagation of voltages
and currents in an electrical circuit are generally not unidirectional and hence are not
free from feedback.

In the following, it is explained how the wave digital model of Fig. 4(ii) achieves
these tasks. To do so, the wave digital concept is here exploited as a modeling tool,
since this process is more intuitive in the wave domain rather than the electrical
domain as it will become apparent subsequently [16]. Lastly, the appropriate elec-
trical circuit is obtained due to its direct correspondence with the final wave digital
model. The model is subsequently verified in the context of a dog’s gait patterns.
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Fig. 4 (i): Conceptual neuronal networkwith coupling strengths and inhibitory/excitatory coupling
represented by negative/positive signs. (ii): Synthesized wave flow diagram

Figure5 shows the proposed synapse model to synthesize the scenario of Fig. 4(i).
It consists of a four port circulator with two attached resistances R1 and R2 that
account for the coupling strength and coupling type (excitatory for positive reflec-
tion coefficients or inhibitory for negative coefficients). To explain its functioning,
the reflection coefficients are expressed by

�μ = Rμ − R

Rμ + R
, μ ∈ {1, 2}. (15)

The special cases of the these reflection coefficients are of interest here in this context.
Specifically it holds that

Rμ → ∞ ⇔ �μ = 1,

Rμ → 0 ⇔ �μ = −1,

Rμ = R ⇔ �μ = 0.

It can be seen that the whole spectrum �μ ∈ [−1, 1] is experienced and that the sign
of the reflection coefficients is determined by whether the resistance value Rμ is
smaller or bigger than the circulation resistance R. Of special interest is the case,
where Rμ = R, as this results in �μ = 0. This case is special, because it allows for
unidirectional coupling. This can best be seen when the power flow is is calculated
to [

ppre,in
ppost,in

]
=

[
0 �2

2
�2
1 0

] [
ppre,out
ppost,out

]
, (16)
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Fig. 5 Left: Proposed synapse model designed as a wave digital model. Right: Its corresponding
electrical circuit

where

ppre,in = b2pre
4R

, ppre,out = a2pre
4R

, ppost,in = b2post
4R

, ppost,out = a2post
4R

and the total power consumption of the pre- and postsynaptic ports

ppre = ppre,in − ppre,out, ppost = ppost,in − ppost,out.

It becomes evident that �1 = 0 prohibits any power to flow from pre- towards post-
synaptic neuron and vice versa for �2 = 0. Consequently, this enables unidirectional
coupling if either one of the reflection coefficients is zero or complete decoupling
if both are zero. With these insights it is possible to synthesize an electrical circuit
corresponding to the scenario of Fig. 4(i) as shown in Fig. 4(ii). It becomes evident
that the nature of the scattering parameter depiction is much more similar to the con-
ceptual graph compared to a depiction in electrical quantities. Therefore, depending
on the context, the wave digital concept can not only be a powerful emulation tech-
nique but is also a versatile modeling tool by enabling perspectives that are quite
unintuitive in the electrical domain, but are easily accessible in the wave domain.

To verify the proper functioning of the concept presented above, a simple applica-
tion example in the context of a dog’s gait patterns is examined.More specifically, the
gait pattern running, pacing and trotting are investigated. To analyze these patterns,
two subgroups S1 and S2 with the following features are created

1. Every component within a subgroup is synchronized to every other component
within the same subgroup (intra-group synchronization),
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Fig. 6 Output signals of four interconnected, optimized Morris-Lecar neuronal oscillators mim-
icking the gait of a dog changing from running (t ≤ T1) to pacing (T1 < t ≤ T2) to trotting
(T2 < t ≤ T3) to standstill (t > T3). Each color represents the motion of a dog’s leg as indicated at
the top

2. Every component of subgroup S1 is asynchron to every component of subgroup
S2 (inter-group asynchronization).

By these categorizations, the three above mentioned gait patterns can be established
by assigning the four legs of a dog to the subgroups S1,S2.

For the emulation scenario, four optimized wave digital neuronal oscillators, cf.
Sects. 3 and [3], are associatedwith a leg of a dog each as indicated by the top sketches
of Fig. 6. They represent a neuron population that accounts for themovement of a leg.
First results in this context have been published in [16]. The neuronal oscillatormodel
of choice is the optimizedMorris-Lecar neuronmodel of Fig. 2 with its parameters as
mentioned in [3]. The sketches on top of Fig. 6 indicate intra-group synchronization
(solid arrows) and intra-group asynchronization (dashed arrows). The intra-group
synchronization is here realized by a bidirectional coupling with edge weights +1
while intra-group asynchronization is achieved by bidirectional couplings with edge
weights−1. Although arbitrary but different initial conditions are chosen for the four
neuron’s membrane potentials, the desired pattern is achieved after just two oscilla-
tions and indeed represents the gait pattern of a running dog, cf. Fig. 6. At t = T1, the
edge weights are abruptly changed to the pacing gait pattern. Note that although the
topology changes are abrupt, the transition behavior is actually smooth and steady.
In fact, almost no changes with respect to the phases are visible during the first four
oscillations after the switch, only the amplitude is temporarily reduced. Note that in
the transition phase the underlying synaptic interconnection of the neurons does not
match their relative behavior. For this reason, they interact destructively until this
transition phase is completed. This is the case after approximately 10 oscillations
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after t = T1 = 250ms. A similar behavior is observable when the synaptic coupling
weights are changed once again to mimic a trotting gait pattern at t = T2 = 1000ms.
During the transition phase, where the constellation of neuronal activity and under-
lying synaptic interconnection is inconsistent, the amplitudes are damped. Then,
after around 6 oscillations the relative positions of the membrane potentials start to
change until completion after around 14 oscillations. Note that here the change in
synaptic coupling weights are again abrupt, but the transition is still smooth. This is
highly desirable because this translates to the dog being able to change gaits with-
out tumbling. At t = T3 = 1625ms, the current exciting the Morris-Lecar neurons
is switched off and consequently a standstill is achieved after just one oscillation
but in a smooth fashion. To summarize, a slow down process from a running to a
still standing dog was successfully emulated, where its multiple gait patterns were
mimicked in the process. An important detail worth mentioning is the fact that in
this application example the hyperpolarizon phase is present at all times, which is
observable by the action potential minima always surpassing the resting potential
�opt = −49.35mV. This once again highlights the improved Morris-Lecar neuron
model [3].

It is also apparent that the here presented gait pattern generator is closely related to
the synchronization of neuronal activity to form a biologically meaningful behavior.
More general investigations on synchronization of linear(ized) circuits have been
conducted in [17, 18] and also in the context of an Ising machine [19]. Furthermore,
the first results in this context have sparked more sophisticated results incorporating
axon growth in the case of gait pattern generation [20] and gait pattern classification
[21].

4.2 Self-organized Topology Formation

4.2.1 Optimal Two-Neuron Communications

It is desirable to investigate how information from an origin neuron can be transferred
to a destination neuron optimally, i.e. with the least amount of delay. This problem
can be formulated by graph theory, where nodes represent neurons and edges mimic
synapses. Doing so, the task is comparable to solving a maze, where the entry of the
maze accounts for the origin neuron and the exit accounts for the destination neuron.
The here exploited analog parallelism is different from computational parallelism
and enables the solution to the problem to outperform all known graph-theoretical
algorithms [22]. The structure of the maze represents the structure of the neural
network, where it is assumed that only nearest neighbor synaptic couplings exist
and that an obstacle, e.g. a wall, means that no synaptic coupling exists between
these specific neighboring neurons. First preinvestigations have been done in [23].
The concept can also be used to determine the longest rather than the shortest path,
which is also a computationally complex problem [24].
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Fig. 7 Setup of the maze to mimic two-neuron communication, which consists of nodes ϕμ and
their interconnections Cμ

Stacking all neuron potentials ϕμν and all synaptic currents jκ in vectors ϕ and
j , respectively, allows for a condensed notation of the maze topology, cf. Fig. 7. The
synapse voltages v are obtained by the respective neuron potential differences and
can be expressed as

v = NTϕ(u), (17)

where N is the incidencematrix and voltage u is the potential difference between ori-
gin neuron potential ϕμ = u and destination neuron potential ϕν = 0. Consequently,
by Tellegen’s theorem, the relationship between synaptic currents j and neuronal
currents i is

i = N j , (18)

where i = −eTμ i = eTν i .
The synapse model mimics bidirectional (both switches closed) or unidirectional

(only one switch closed) connection or no connection at all (both switches open) and
is depicted in Fig. 8. This is because the switches decide whether a current can flow
through the memductors W ′

κ ,W
′′
κ or not. Here, a wave digital model with physically
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Fig. 8 Synapse model for two-neuron communication

Table 4 Maze memristor emulation parameters

i0 = 38.74 µA R0 = 10 k	

u0 = 0.5 V Sp = −50 Hz/V

N = 1.5 Sn = −0.4 Hz/V

β = 0.1 Utp = 1 V

γ = 3.8 Utn = −0.5 V

meaningful parameters of a RRAM-cell, developed in [25], has been utilized. This
device distinguishes itself by its rapid switching behavior, which here is exploited
to achieve the final state of the maze as quickly as possible. Consequently, synaptic
currents j and voltages v are related by j = W(z, v) v, which in combination with
the synaptic voltages and the neuronal currents, cf. (17) and (18), yields a nonlinear
relationship between i and u

i = eTν NW(z, NTϕ(u)) NTϕ(u), (19)

which is numerically solvable in the wave digital domain by using fixpoint iterations
for the implicit relationships between u, i and z [23]. By Chua’s closure theorem,
the memristive network can be summarized by single memristor, see [26]. With
the emulation parameters as shown in Table 4, there are two emulation scenarios
investigated in the following.

Scenario 1 involves a maze of size 20 × 20 as shown in Fig. 9 (top left). There are
only three possible communication paths for the origin neuron (entry) to transmit
information to the destination neuron (exit). The course of the current as a response
to the input voltage ramp e is displayed to the right. Every notch represents the
switching of all RRAM-cells along a certain path, which can be exploited as a detec-
tion mechanism. Since here the current is highest among the path with the least total
memristance, the possible communication paths are found in order of ascending path
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Fig. 9 Comparison of a 20 × 20 maze with three possible paths from entry to exit, highlighted in
orange, green and blue (top left) and a 50 × 50 maze with only a single path (bottom left). The
course of the currents for the 20 × 20 and 50 × 50 maze are shown at the top right and bottom right,
respectively

length at t = 13ms, t = 32ms and t = 39ms, respectively. In scenario 2 a bigger
maze of size 50 × 50, cf. Fig (bottom left), is investigated with the course of the cur-
rent again illustrated to its right. A single notch indicates that there is only a single
communication path possible. Note that the point in time, in which the communi-
cation path is discovered by the setup, is also t = 13ms. This is the same amount
of time required in the first scenario with the significantly smaller maze to find the
shortest communication path. Remember that the first scenario requires 361 connec-
tion elements and consequently 722 RRAM-cells, while the second scenario requires
more than six times that many (2401 connection elements, 4802 RRAM-cells).

This leads to the counterintuitive conclusion that the size of the maze has a negli-
gible influence on the convergence time. This is due to the inherently massive analog
parallelism and is the reason why computationally complex problems as the one
investigated in this work can be solved efficiently by memristive circuits. While in
the first scenario an input voltage e = 180V has been utilized, in comparison to
the second scenario, where an input voltage e = 500V has been deployed, roughly
three-times more voltage was required to compensate the time requirement, it is still
remarkable that independent of the maze size, the presented setup requires an iden-
tical convergence time to find the shortest communication path. Furthermore, due to
the immense amount of memristive devices present in the setup, a run-time compar-
ison between the here presented wave digital emulation and the circuit simulation
software LTspice was investigated in [23]. Although the scenarios were different, a
run-time advantage by the factor of 300 in favor of the wave digital emulation was
discovered on an identical computational device.
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4.2.2 Mimicking Neuroplasticity

Here, one neuron of interest aims to find the optimal, e.g. shortest, communication
pathways to all other neurons being part of the neural network. The basic concept
was presented in [27], extended in [24] to solve the longest path problem and in
[28] to mimic neuroplasticity. A fundamental scenario of optimal communication
pathways with regards to multiple neurons is shown in Fig. 10.

There, three interconnected neurons are depicted with different time delays that
canbe associated for examplewith their axon lengths. For instance, an actionpotential
can travel from neuron NA to neuron NB with a time delay of τ . The same holds
true for a communication between neuronsNB andNC . However, a communication
betweenneuronsNA andNC requires triple the time, namely 3τ . From the perspective
ofNA, there are two possibilities to transmit information towardsNC: First, the direct
path, whichwould require a time delay of 3τ . Second, the path overNB, whichwould
require 2τ in total. The second choice is obviously better than the first with respect
to time delay and should hence be used. This would make the synaptic connection
between NA and NC obsolete. Because keeping this path (axon, axon terminals,
synapse) alive requires energy, it would make sense from an energy perspective to
let this path shut down, as indicated in Fig. 11 (right).

The ambition of the following steps is to synthesize an electrical circuit that
inherently incorporates the above mechanisms. First, the problem is abstractly rep-
resented as a graph, where a neuron is mimicked by a node and a synaptic connection
by a directed edge. The edge weights then represent the according time delay of the
path. This is visualized by way of example as a nine neuron setup NA, . . . ,NI
in Fig. 11 (left). By doing so, the problem of finding the minimal communication
paths from neuron NA to all other neurons NB, . . . ,NI becomes the problem of
finding the minimum spanning tree, where NA is the root. Previously, non-circuit
approaches to solve this problem exist, such as the Dijkstra, A*, Bellman-Ford or
Floyd-Warshall algorithms [29]. Among other features, these algorithms differ in
their access to information on the topology and costs in the graph. Apart from the
inherent favorable convergence time [30], a self-organizing circuit solution to the
minimum spanning tree problem is also desirable in the context of unsupervised

τ

τ

τ

4τ

A

B C

D

optimized
communication

τ

τ

τ

4τ

A

B C

D

Fig. 10 A fundamental scenario what adaption and optimization means: The setup determines the
paths of least delay self-organizingly and lets all other paths die off to increase energy efficiency
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I
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D

E

F

G

H

I

Fig. 11 Left: Initial neuronal network with dense synaptic connection. Right: Only synaptic con-
nections enabling the least delay communication between neuron A and all other neurons in the
network remain, all others have died off. The synapse between neurons E and F is formed after the
synapse between neurons C and F was damaged

learning, as the circuit itself discovers optimal communications structures for infor-
mation transport. Unsupervised learning is also of interest in other domains, such
as pattern recognition, where circuit-based solutions are applied [31]. The circuit to
inherently find this minimum spanning tree in designed by synthesizing the neurons
(nodes) and synapses (edges) as proposed by Fig. 12.

There, two different types ofmemductors are utilized. The neurons are represented
by the μ-indexed memductor, which is described by equations

iμ = Wμ(zμ)uμ, (20a)

Wμ(zμ) = WN
0 WN

1

WN
1 + zμ

[
WN

0 − WN
1

] (20b)

where Wμ(zμ) is the memductance and zμ is the inner state. Here, zμ = 0 indicates
the neuron memductor is in the high conductance stateWN

0 and zμ = 1 indicates the
low conductance state WN

1 . The state equation is described by

żμ = g(uμ)
[
σ(uμ)σ (zμ) + σ(−uμ)σ (1 − zμ)

]
,

g(uμ) = SN
[
uμ − u p

]
σ(uμ − u p) + SN

[−uμ + un
]
σ(−uμ + un),

(21)

where σ(·) is the Heaviside function, SN is the steepness of the change from WN
0

to WN
1 and vice versa, up is the set voltage and un is the reset voltage. The synapse

between neuron μ and neuron ν is described by the double-indexed memductor
model
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Fig. 12 Circuit concept to mimic neuroplasticity in the neuronal network of Fig. 11

jμν = Wμν(zμν)vμν, (22a)

Wμν(zμν) = W S
0 W S

1

W S
1 + zμν

[
W S

0 − W S
1

] (22b)

and its state equation

żμν = g(vμν)
[
σ(vμν)σ (zμν) + σ(−vμν)σ (1 − zμν)

] + SRσ(zμν − 0.1),

g(vμν) = SS
[
vμν − vp

]
σ(vμν − vp) + SS

[−vμν + vn
]
σ(−vμν + vn),

(23)

where SR is the amplitude of the retention characteristic, SS is the steepness of the
change fromW S

0 toW S
1 and vice versa, vp is the set voltage and vn is the reset voltage.

Additionally, in order for the circuit to function properly, it was explained in [27] in
detail that

W S
0 � WN

0 � W S
1 � WN

1 . (24)
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Table 5 Simulation parameters

W S
0 = 1 S vp = 0 V up = 6 V

WN
0 = 1 mS vn = −1 V un = −0.74 V

W S
1 = 1 µS SS = −1.2 Hz/V SN = −100 kHz/V

WN
1 = 1 nS SR = 0.1 Hz/V

must hold. By keeping the above mentioned specifics in mind, the setup of Fig. 11
(left) is synthesized by the electrical circuit presented in Fig. 12.

The mechanisms work as follows. Assuming all neuron memductors are initially
in the high conductance state and all synapse memductors in the low conductance
state, the root neuron NA is attached to an ideal voltage source e mimicking its
membrane potential activity. When the synapse memductors directly attached to
the root memductor experienced enough magnetic flux, they transition to the high
conductance state. At this point, both the root memductor and the newly reached
neuron memductor are approximately at the the same voltage potential. Therefore,
this neuronmemductor experiences almost all of the voltage from e. Since the neuron
memductors are oriented in a way such that they transition in the low conductance
state when experiencing a negative voltage, i.e. during the hyperpolarization phase,
it is exploited as a mechanism to signal that the path of minimal delay towards
this neuron has been found. To further illustrate this procedure, the initial neuron
population of Fig. 11 (left) is considered in a state where it has not yet adapted to its
environment. The corresponding memristive circuit of Fig. 12 is simulated for this
purpose with its parameters given in Table 5. The initial states of synapse and neuron
memductors are chosen to zS0 = 0.7 and zN0 = 0, respectively, and the input signal is
given by a sequence of action potentials with U1 = −0.75V, U2 = 4V and period
Te = 1 s.

The behavior of all synapse memductance states are shown in Fig. 13, where all
synapses’ states being part of the optimal synaptic structure formation are visualized
on top and all others at the bottom.

In particular, pathNA toNB is found first at t1 = 0.45 s, followed by pathNB to
NC at t2 = 1.35 s, pathNB toNE at t3 = 1.55 s, pathNC toNF at t4 = 2.45 s, path
NE to ND at t5 = 4.25 s, path NE to NH as well as path NF to NI at t6 = 5.45 s,
and finally path ND to NG at t7 = 6.35 s. At this point, all neurons NB, . . . ,NI in
the setup can be reached from the root neuron NA. There are three things worth
highlighting. First, notice that path E to H and path F to I are found simultaneously,
which shows that no overwriting of previous states is required. Second, note that
the communication paths are found in order of ascending total delay time from
the perspective of NA. Lastly, all synapses associated with the memductance states
shown in Fig. 13 (bottom) are not part of the optimal communication structure and
hence must die off from the perspective of energy efficiency. The circuit identifies
those synapses by all memductances whose states are not in the high conductance
state. The proper interpretation is visualized by the blue communication paths in
Fig. 11 (right).
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Fig. 13 Simulation results of all synaptic memristors which are part of the optimal communication
structure (top) and are not part of the optimal communication structure (bottom)

However at t8 = 9.76 s, thememductorWCF is removed from the electrical circuit
to account for some damage to the neural network, maybe induced by an accident
or a disease. Because the path from NC to NF was part of the previously optimal
communication structure, NA can not communicate with all neurons of the neural
network any more. Specifically, neurons NF and NI are affected. However, the
circuit is able to self-heal this damage. After a short period of time at t9 = 12.21 s,
the memductor WEF transitions to the high conductance state, indicating that the
previously died synapse between NE and NF is now created anew. Now the root
neuron NA can communicate again with neurons NF and NI , highlighted by the
green arrow in Fig. 11 (right). Note that the circuit will always inherently find away to
self-heal the communication structurewith theminimal amount of changes compared
to the already established, but incomplete structure. By this circuit synthesis and the
subsequent simulation results it was shown that a structure can be simultaneously
energy-efficient and fault-tolerant. Both are features frequently associated with the
human brain and typically are in a trade-off with one another, where more energy
needs to be invested in order to achieve a redundancy, which in return guarantees the
fault tolerance.
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5 An Elementary Decision Problem via Optical Illusions

Optical illusions are closely linked to associative learning. They also showcase that
we permanentlymake unconscious decisions and it is for examplewhenwe encounter
an optical illusion that we become aware of it, because something does not seem to
be right. This is where the limits of our decision making is revealed. Associative
learning or Hebbian learning was developed by Hebb, and is often summarized
as “Cells that fire together, wire together” [32]. It describes a rule for change in
synaptic coupling strength betweenmutually active pre- and postsynaptic neurons. In
general, it attempts to explain associative learning, but is a very simplistic explanation
that lacks details. For example, time delays caused by the axon are not considered.
One famous example of associative learning is Pavlov’s dog [33]. There, it was
observed that a dog produces saliva whenever hewas given food. After a time, Pavlov
discovered that the saliva was already produced when the lab’s assistant entered the
room with the food. He developed the theory that the dog had learned to associate
the assistant’s foot steps with the food and hence the foot steps caused the saliva
production. He then tested the theory by ringing a bell shortly before the dog was
given food. And sure enough, after repeating the process several times, a ring of the
bell produced saliva in the dog’s mouth, even if there was no food given after the
bell’s sound. He discovered that the two stimuli (sound of bell and presenting of food)
both have to be presented within short period of time in order for the dog to associate
the two events with one another. Since then, associative learning has been tried to
replicate in electrical circuits as one branch of bio-inspired behavior. In this context,
a simple form of associative learning is synthesized by a simple memristive network
with neuronal oscillators [34]. Such oscillators are generally nonlinear models, cf.
Sect. 3. A well-known, well-investigated nonlinear oscillator model is the Kuramoto
model, which describes a set of multiple interconnected systems [35]. It is here
utilized to model such a neuronal oscillator. The overall set �K is described by

�K :

⎧⎪⎨
⎪⎩

ϕ̇μ = ω + 1
m

∑m
ν=1 κμν sin(ϕν − ϕμ)

zμ = ϕμ

yμ = sin(ϕμ)

, (25)

where μ = 1, . . . ,m, ϕμ is the angle of the μ-th oscillator, ω is the intrinsic radian
frequency, κμν is a nonlinear coupling factor, zμ is an output providing the neigh-
boring subsystems with information about ϕμ and yμ is the output from which the
oscillations can be observed. Note that the phases ϕ̇μ itself are only integrated and
the oscillation of the system is only due to the nonlinear output function yμ. To
incorporate the Hebbian learning rule, the coupling strength κμν between oscillator
μ and ν has a memory

κ̇μν = ε[α cos(ϕν − ϕμ) − κμν], (26)
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Fig. 14 Integrator circuit representing the Kuramoto model (left) and a memristive coupling ele-
ment to describe the input signal of integrator μ from integrator ν (right)

where ε is the learning rate, α determines the weighting of new information. Here,
the cosine function seeks to model the associative learning rule, as it is maximizes
when the phases ϕν and ϕμ are similar and minimized when the phase shift is π [36].
For the circuit synthesis process, details are elaborated in [37]. The two circuits of
Fig. 14 are synthesize the Kuramoto model as in (25). The underlying equation of
the left circuit is

u̇μ = T0 I0
C0

ω − iμ, (27)

where T0, I0,C0 are normalization constants with the units of a time, a current and
a capacitance, respectively. A detailed analysis on a Kuramoto model with adaptive
coupling is provided in [38]. It can already be seen that (27) synthesizes the first
equation of (25) under the condition that

iμ = 1

m

m∑
ν=1

κμν sin

(
uμ − uν

U0

)
, (28)

where U0 is a normalization constant with the unit of a voltage and uμ is associated
with ϕμ. Note that the negative sign has been incorporated in the argument of the
sine function.

The right circuit of Fig. 14 possesses the underlying equation

jμν = Wμν(zμν, vμν)vμν, vμν = uμ − uν, (29)

withWμν = 1/Mμν . The goal of thememductive interconnection is tomodel the ν-th
element of the sum in (25). This is achieved when the coupling strength is associated
with the state of the memductor and the phase difference with the voltage over the
memductor, such that κμν = zμν and ϕμ − ϕν = vμν . For thememductance it follows
that

Wμν = jμν

vμν

= 1

m
zμν si

(
vμν

U0

)
G0, (30)
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Fig. 15 Setup of four synthesized and fully coupled Kuramoto oscillators with the memductances
incorporating the Hebbian learning rule

where G0 is a normalization constant with the unit of a conductance. It must be
mentioned however that (30) allows forWμν ≤ 0 and hence is not passive in general.
Such memristors are called active memristors [26]. The Hebbian learning rule (26)
is then synthesized by the proper modeling of the memductor’s state equation

żμν = ε

[
α cos

(
vμν

U0

)
− zμν

]
. (31)

Figure15 shows a setup synthesizing four Kuramoto oscillators with a fully coupled
interconnection network [37].

In the following, a condensed description of the memductive interconnection
network will be given before the wave digital model is established. To obtain a
general description of an arbitrarily large number of connected Kuramoto oscilla-
tors m, the voltages and currents are summarized by vectors u = [u1, . . . , um]T and
i = [i1, . . . , im]T , respectively. Notice in Fig. 15 that the orientiation of the currents
jμν is chosen such that the they originate at the lower level subsystem and are directed
towards to the higher level subsystem. This allows for a representation of the inter-
connection structure by the incidence matrix N . Kirchoff’s node and current laws
are then given by

i = N j , u = NT v, (32)
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where j is the vector of all currents jμν and v is the vector of all voltages vμν of
the interconnections with μ, ν = 1, . . . ,m, μ < ν. Utilizing this notation, (29) is
rewritten as

j = W(z, v)v, W(z, v) = m
diag

μ,ν=1, μ<ν

(
Wμν(zμν, vμν)

)
. (33)

With the help of (32), the relationship between the oscillator voltages and currents
u, i and the memductors of the interconnection network is described by

i = Ŵu, with Ŵ = NW(z, v)NT , (34)

where Ŵ = Ŵ(z, v) contains both the information about the memductances and the
topology. With these insights it is possible to not only form a vector-based repre-
sentation of the synthesized Kuramoto model, but to also obtain the corresponding
wave digital model, cf. [37]. There, RC = T/2C01, RW = RW1 and consequently

RS = [
R−1
C + R−1

W

]−1
. The value of RW can essentially be chosen arbitrarily, as long

as RW > 0, but it should have a value close to the middle of Wμν’s range. Doing so
typically results in a good numerical condition of the scattering matrix SW , where

i = Ŵu ⇔ aW = SW bW , with SW = [R−1
W + Ŵ ]−1[R−1

W − Ŵ ]. (35)

In the following, an application example of the synthesized Kuramoto model in
the context of an optical illusion is presented. For this, the optical illusion depicted
in Fig. 16 is considered. Here, the setup of Fig. 15 models the four relevant aspects
of the optical illusion, whereN1,N3 account for the water and cloud (background),
respectively. N2 accounts for the bottom part of middle pillar of the object and N4

accounts for both the top part of the middle pillar and the cloud background. It
becomes apparent that the state of N4 and whether it is associated with the cloud
or the middle pillar is the key factor of why the whole setup is an optical illusion.
As the bottom part of the middle pillar and the ocean are spatially close, it appears

Fig. 16 An optical illusion
being modeled by the setup
of Fig. 15
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Fig. 17 Four oscillators form two synchronized groups with the latter being in an anti-phase
configuration, explaining the contradiction of the optical illusion

natural to initialize the phases of the corresponding Kuramoto oscillators close as
well. The same holds true for the archway and the cloud. Since the ocean and cloud
are spatially far away from each other, their phase difference is comparatively big
initially.Hence,ϕ1 = 0,ϕ2 = −0.1π ,ϕ3 = π andϕ4 = 0.9π was chosen.Moreover,
the learning rate was chosen ε = 0.1, the weighting of new information α = 0.1 and
the intrinsic radian frequency ω = 1s−1. The according emulation results are shown
in Fig. 17. It can be observed that due to the initial conditions, the oscillatorsN1 and
N2 representing the ocean background and the lower part of the middle pillar fire
together. And as expected, due to “cells that fire together, wire together” [32], these
two oscillators synchronize. This is interpreted as being an association of the bottom
part of the middle pillar with the ocean. The same association takes place with with
the top part of the pillar and the cloud, represented by oscillators N3 and N4. This
example might indicate that the optical illusion works due to the spatial correlation
of the contradictory association between object and background. This contradiction
is represented by a large phase shift between the two synchronized subgroups in
Fig. 17. Of course, a human is able to detect the contradiction after a short period of
time and to determine the origin of the optical illusion.

6 Conclusion

Due to their inherent massive parallelism in a signal processing sense, electrical cir-
cuits in general are candidates to replicate the computing power as well as energy
and spatial efficiency of biological systems. In order to do so, the underlying biolog-
ical systems must be understood and then abstractly transferred to hardware circuits,
making bio-inspired computing a highly interdisciplinary field. Before circuits can
bemanufactured, theoretical circuits must be designed to abstractlymimic biological
behavior and serve as a proof of concept. This purpose has been fulfilled in a variety
of application presented in this chapter. The wave digital concept has been used as an
emulation technique to digitally replicate these theoretical circuits. Since memristors
are the centerpieces of all these circuit concepts and currently hard to fabricate with
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the current state of technology. Hence, software-based preinvestigations are useful
to shorten development cycles, especially since the wave digital concept is real-time
capable and offers in-operando parameter manipulation. For example, this has been
exploited to optimized parameters of the well-known Morris-Lecar model in order
to show a more biologically meaningful behavior. Further applications included a
gait pattern generator, for which a unidirectional synapse has been developed. Also,
two- and multi-neuron communications has been investigated on an abstract level,
where the circuit concept for the latter also exhibited self-healing to repair synaptic
damage and hence showed a rich behavior in the context of neuroplasticity. Lastly,
an optical illusion was investigated to mimic an elementary decision problem.

In summary, the field of bio-inspired computing has the potential to tackle prob-
lems, which are too complex for current computing concepts. The memristor is a
novel electrical circuit element that enables computations with and in memory and
could be the key component to enable bio-inspired circuits. The bottlenecks, which
need to be overcome to manufacture high performance circuits that mimic biological
behavior is twofold: First, the understanding of the way biological systems function
must be increased to identify its general and abstract mechanism, which then need to
be modeled in an electrical circuit. Second, the manufacturing process of memristors
must become more reliable and precise.
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