Skip to main content

Photobiomodulation Therapy for Dementia

  • Chapter
  • First Online:
Photobiomodulation for the Brain

Abstract

This chapter explores the application of photobiomodulation (PBM) therapy for dementia, providing an overview of various types of dementia and discussing the potential benefits and limitations of PBM in both animal models and human studies. Section 1 introduces the concept of dementia, discussing its various forms, including mild cognitive impairment (1.1), Alzheimer’s disease (1.2), and vascular dementia (2.3). The chapter delves into the problem of Alzheimer's disease (1.2.1) and presents an overview of animal models used for studying Alzheimer's disease (1.2.2). Section 2 focuses on the application of PBM therapy for dementia, with subsections discussing its use in animal models (2.1) and human studies (2.2). The section provides a comprehensive overview of the current state of research, highlighting the potential benefits of PBM therapy in alleviating cognitive decline, improving memory, and promoting neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns, A., and P. Robert. 2009. The national dementia strategy in England. British Medical Journal Publishing Group.

    Google Scholar 

  2. Folstein, M.F., S.E. Folstein, and P.R. McHugh. 1975. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12 (3): 189–198.

    Article  Google Scholar 

  3. Nasreddine, Z.S., et al. 2005. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society 53 (4): 695–699.

    Article  Google Scholar 

  4. Skinner, J., et al. 2012. The Alzheimer’s disease assessment scale-cognitive-plus (ADAS-Cog-Plus): An expansion of the ADAS-Cog to improve responsiveness in MCI. Brain Imaging and Behavior 6 (4): 489–501.

    Article  Google Scholar 

  5. Cummings, J.L. 1997. The neuropsychiatric inventory: Assessing psychopathology in dementia patients. Neurology 48(5 Suppl 6): 10S–16S.

    Google Scholar 

  6. Petersen, R.C., et al. 2014. Mild cognitive impairment: A concept in evolution. Journal of Internal Medicine 275 (3): 214–228.

    Article  Google Scholar 

  7. Albert, M.S., et al. 2011. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia 7 (3): 270–279.

    Article  Google Scholar 

  8. Petersen, R.C. 2016. Mild cognitive impairment. CONTINUUM: Lifelong Learning in Neurology 22(2 Dementia): 404.

    Google Scholar 

  9. Jia, J., et al. 2014. The prevalence of mild cognitive impairment and its etiological subtypes in elderly Chinese. Alzheimer’s & Dementia 10 (4): 439–447.

    Article  Google Scholar 

  10. Morris, J.C., et al. 2001. Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology 58 (3): 397–405.

    Article  Google Scholar 

  11. Petersen, R.C., et al. 2001. Current concepts in mild cognitive impairment. Archives of Neurology 58 (12): 1985–1992.

    Article  Google Scholar 

  12. Praticò, D., et al. 2002. Increase of brain oxidative stress in mild cognitive impairment: A possible predictor of Alzheimer disease. Archives of Neurology 59 (6): 972–976.

    Article  Google Scholar 

  13. Wang, J., W.R. Markesbery, and M.A. Lovell. 2006. Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. Journal of Neurochemistry 96 (3): 825–832.

    Article  Google Scholar 

  14. Butterfield, D.A., et al. 2007. Roles of amyloid β-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radical Biology and Medicine 43 (5): 658–677.

    Article  Google Scholar 

  15. Yin, C., et al. 2013. Brain imaging of mild cognitive impairment and Alzheimer’s disease. Neural Regeneration Research 8 (5): 435–444.

    Google Scholar 

  16. Ries, M.L., et al. 2008. Magnetic resonance imaging characterization of brain structure and function in mild cognitive impairment: A review. Journal of the American Geriatrics Society 56 (5): 920–934.

    Article  Google Scholar 

  17. Dai, W., et al. 2009. Mild cognitive impairment and alzheimer disease: Patterns of altered cerebral blood flow at MR imaging. Radiology 250 (3): 856–866.

    Article  Google Scholar 

  18. Fujiwara, Y., et al. 2010. Brief screening tool for mild cognitive impairment in older Japanese: Validation of the Japanese version of the Montreal Cognitive Assessment. Geriatrics & Gerontology International 10 (3): 225–232.

    Article  Google Scholar 

  19. Kokmen, E., J.M. Naessens, and K.P. Offord. 1987. A short test of mental status: Description and preliminary results. In Mayo clinic proceedings. Elsevier.

    Google Scholar 

  20. Ströhle, A., et al. 2015. Drug and exercise treatment of Alzheimer disease and mild cognitive impairment: A systematic review and meta-analysis of effects on cognition in randomized controlled trials. The American Journal of Geriatric Psychiatry 23 (12): 1234–1249.

    Article  Google Scholar 

  21. Alzheimer, A. 1907. Uber eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschrift fur Psychiatrie und Psychisch-gerichtliche Medizin 18: 177–179.

    Google Scholar 

  22. Association, A.S. 2017. 2017 Alzheimer's disease facts and figures. Alzheimer's & Dementia 13(4): 325–373.

    Google Scholar 

  23. Jack, C.R., Jr., et al. 2013. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. The Lancet Neurology 12 (2): 207–216.

    Article  Google Scholar 

  24. Raskin, J., et al. 2015. Neurobiology of Alzheimer’s disease: Integrated molecular, physiological, anatomical, biomarker, and cognitive dimensions. Current Alzheimer Research 12 (8): 712–722.

    Article  Google Scholar 

  25. Sadigh-Eteghad, S., et al. 2015. Amyloid-beta: A crucial factor in Alzheimer’s disease. Medical Principles and Practice 24 (1): 1–10.

    Article  Google Scholar 

  26. Majdi, A., et al. 2017. Revisiting nicotine’s role in the ageing brain and cognitive impairment. Reviews in the Neurosciences 28 (7): 767–781.

    Article  Google Scholar 

  27. Sadigh-Eteghad, S., et al. 2016. Astrocytic and microglial nicotinic acetylcholine receptors: An overlooked issue in Alzheimer’s disease. Journal of Neural Transmission 123 (12): 1359–1367.

    Article  Google Scholar 

  28. Reddy, P.H. 2011. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Research 1415: 136–148.

    Article  Google Scholar 

  29. Wong, P.C., et al. 2012. Neurobiology of Alzheimer’s disease. In Basic neurochemistry, 8th ed. 815–828.

    Google Scholar 

  30. Braak, H., and E. Braak. 1991. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica 82 (4): 239–259.

    Article  Google Scholar 

  31. Wang, X., et al. 2014. Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1842(8): 1240–1247.

    Google Scholar 

  32. Lyketsos, C.G., et al. 2011. Neuropsychiatric symptoms in Alzheimer’s disease. Elsevier.

    Google Scholar 

  33. Herholz, K., et al. 2002. Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. Journal of Nuclear Medicine 43 (1): 21–26.

    Google Scholar 

  34. Nestor, P.J., P. Scheltens, and J.R. Hodges. 2004. Advances in the early detection of Alzheimer’s disease. Nature Medicine 10 (7): S34.

    Article  Google Scholar 

  35. Ferreira, L.K., and G.F. Busatto. 2011. Neuroimaging in Alzheimer's disease: Current role in clinical practice and potential future applications. Clinics (Sao Paulo, Brazil) 66(Suppl 1): p. 19–24.

    Google Scholar 

  36. Hampel, H., et al. 2010. Biomarkers for Alzheimer’s disease: Academic, industry and regulatory perspectives. Nature Reviews Drug Discovery 9 (7): 560.

    Article  Google Scholar 

  37. Dubois, B., et al. 2014. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. The Lancet Neurology 13 (6): 614–629.

    Article  Google Scholar 

  38. Schelterns, P., and H. Feldman. 2003. Treatment of Alzheimer’s disease; current status and new perspectives. The Lancet Neurology 2 (9): 539–547.

    Article  Google Scholar 

  39. Luijmes, R.E., S. Pouwels, and J. Boonman. 2016. The effectiveness of neurofeedback on cognitive functioning in patients with Alzheimer’s disease: Preliminary results. Neurophysiologie Clinique/Clinical Neurophysiology 46 (3): 179–187.

    Article  Google Scholar 

  40. Nardone, R., et al. 2014. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer’s disease. Acta Neurologica Scandinavica 129 (6): 351–366.

    Article  Google Scholar 

  41. Hardenacke, K., et al. 2013. Deep brain stimulation as a tool for improving cognitive functioning in Alzheimer’s dementia: A systematic review. Frontiers in Psychiatry 4: 159.

    Article  Google Scholar 

  42. Philipson, O., et al. 2010. Animal models of amyloid-β-related pathologies in Alzheimer’s disease. The FEBS Journal 277 (6): 1389–1409.

    Article  Google Scholar 

  43. Laurijssens, B., F. Aujard, and A. Rahman. 2013. Animal models of Alzheimer’s disease and drug development. Drug Discovery Today: Technologies 10 (3): e319–e327.

    Article  Google Scholar 

  44. T O'Brien, J., and A. Thomas. 2015. Vascular dementia. The Lancet 386(10004): 1698–1706.

    Google Scholar 

  45. Jorm, A.F., and D. Jolley. 1998. The incidence of dementia: A meta-analysis. Neurology 51 (3): 728–733.

    Article  Google Scholar 

  46. Pendlebury, S.T., and P.M. Rothwell. 2009. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. The Lancet Neurology 8 (11): 1006–1018.

    Article  Google Scholar 

  47. Ylikoski, R., et al. 2007. Comparison of the Alzheimer’s disease assessment scale cognitive subscale and the vascular dementia assessment scale in differentiating elderly individuals with different degrees of white matter changes. Dementia and Geriatric Cognitive Disorders 24 (2): 73–81.

    Article  Google Scholar 

  48. Román, G.C., et al. 1993. Vascular dementia: Diagnostic criteria for research studies: Report of the NINDS-AIREN international workshop. Neurology 43 (2): 250–250.

    Article  Google Scholar 

  49. Guekht, A.B., et al. 2011. Cerebrolysin in vascular dementia: Improvement of clinical outcome in a randomized, double-blind, placebo-controlled multicenter trial. Journal of Stroke and Cerebrovascular Diseases 20 (4): 310–318.

    Article  Google Scholar 

  50. Rea, T.D., et al. 2005. Statin use and the risk of incident dementia: The Cardiovascular Health Study. Archives of Neurology 62 (7): 1047–1051.

    Article  Google Scholar 

  51. Cechetti, F., et al. 2012. Environmental enrichment prevents behavioral deficits and oxidative stress caused by chronic cerebral hypoperfusion in the rat. Life Sciences 91 (1–2): 29–36.

    Article  Google Scholar 

  52. Sun, H., et al. 2010. Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Current Neurovascular Research 7 (4): 268–280.

    Article  Google Scholar 

  53. Lu, Y., et al. 2017. Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiology of Aging 49: 165–182.

    Article  Google Scholar 

  54. Duggett, N.A., and P.L. Chazot. 2014. Low-intensity light therapy (1068 nm) protects CAD neuroblastoma cells from β-amyloid-mediated cell death. Biologie et Médecine 1 (103): 2.

    Google Scholar 

  55. da Luz Eltchechem, C., et al. 2017. Transcranial LED therapy on amyloid-β toxin 25–35 in the hippocampal region of rats. Lasers in Medical Science 32(4): 749–756.

    Google Scholar 

  56. Blivet, G., et al. 2018. Neuroprotective effect of a new photobiomodulation technique against Aβ25–35 peptide–induced toxicity in mice: Novel hypothesis for therapeutic approach of Alzheimer’s disease suggested. Alzheimer’s & Dementia: Translational Research & Clinical Interventions 4: 54–63.

    Article  Google Scholar 

  57. De Taboada, L., et al. 2011. Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice. Journal of Alzheimer’s Disease 23 (3): 521–535.

    Article  Google Scholar 

  58. Purushothuman, S., et al. 2014. Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex–evidence from two transgenic mouse models. Alzheimer’s Research & Therapy 6 (1): 1–13.

    Article  Google Scholar 

  59. Purushothuman, S., et al. 2015. Near infrared light mitigates cerebellar pathology in transgenic mouse models of dementia. Neuroscience Letters 591: 155–159.

    Article  Google Scholar 

  60. Comerota, M.M., et al. 2019. Near infrared light treatment reduces synaptic levels of toxic tau oligomers in two transgenic mouse models of human Tauopathies. Molecular Neurobiology 56 (5): 3341–3355.

    Article  Google Scholar 

  61. Comerota, M.M., B. Krishnan, and G. Taglialatela. 2017. Near infrared light decreases synaptic vulnerability to amyloid beta oligomers. Scientific reports 7 (1): 1–11.

    Article  Google Scholar 

  62. Farfara, D., et al. 2015. Low-level laser therapy ameliorates disease progression in a mouse model of Alzheimer’s disease. Journal of Molecular Neuroscience 55 (2): 430–436.

    Article  Google Scholar 

  63. Bathini, M., C.R. Raghushaker, and K.K. Mahato. 2020. The molecular mechanisms of action of photobiomodulation against neurodegenerative diseases: A systematic review. Cellular and Molecular Neurobiology, 1–17.

    Google Scholar 

  64. Grillo, S., et al. 2013. Non-invasive infra-red therapy (1072 nm) reduces β-amyloid protein levels in the brain of an Alzheimer’s disease mouse model, TASTPM. Journal of Photochemistry and Photobiology B: Biology 123: 13–22.

    Article  Google Scholar 

  65. Shen, Q., et al. 2021. Photobiomodulation suppresses JNK3 by activation of ERK/MKP7 to attenuate AMPA receptor endocytosis in Alzheimer’s disease. Aging Cell 20 (1): e13289.

    Article  Google Scholar 

  66. Lim, L. 2014. Intranasal photobiomodulation improves cognitive and memory performance of Alzheimer’s disease patients in case studies. In NAALT/WALT2014, Arlington, Virginia.

    Google Scholar 

  67. Berman, M.H., M.R. Hamblin, and P. Chazot. 2017. Photobiomodulation and other light stimulation procedures. In Rhythmic stimulation procedures in neuromodulation, 97–129. Elsevier.

    Chapter  Google Scholar 

  68. Saltmarche, A.E., et al. 2016. Significant improvement in memory and quality of life after transcranial and intranasal photobiomodulation: A randomized, controlled, single-blind pilot study with dementia. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 12 (7): P155–P156.

    Google Scholar 

  69. Zomorrodi, R., et al. 2017. Complementary EEG evidence for a significantly improved Alzheimer’s disease case after photobiomodulation treatment. In 26th annual scientific conference, Canadian academy of geriatric psychiatry Toronto.

    Google Scholar 

  70. Berman, M.H., et al. 2017. Photobiomodulation with near infrared light helmet in a pilot, placebo controlled clinical trial in dementia patients testing memory and cognition. Journal of Neurology and Neuroscience 8(1).

    Google Scholar 

  71. Saltmarche, A.E., et al. 2017. Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: Case series report. Photomedicine and Laser Surgery 35 (8): 432–441.

    Article  Google Scholar 

  72. Salehpour, F., M.R. Hamblin, and J.O. DiDuro. 2019. Rapid reversal of cognitive decline, olfactory dysfunction, and quality of life using multi-modality photobiomodulation therapy: Case report. Photobiomodulation, Photomedicine, and Laser Surgery 37 (3): 159–167.

    Article  Google Scholar 

  73. Vallat-Azouvi, C., P. Pradat-Diehl, and P. Azouvi. 2012. The working memory questionnaire: A scale to assess everyday life problems related to deficits of working memory in brain injured patients. Neuropsychological Rehabilitation 22(4): 634–649.

    Google Scholar 

  74. Nawashiro, H., et al. 2019. Time courses of BOLD responses during transcranial near-infrared laser irradiation. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation 12 (3): 778–780.

    Article  Google Scholar 

  75. Chao, L.L. 2019. Effects of home photobiomodulation treatments on cognitive and behavioral function, cerebral perfusion, and resting-state functional connectivity in patients with dementia: A pilot trial. Photobiomodulation, Photomedicine, and Laser Surgery 37 (3): 133–141.

    Article  Google Scholar 

  76. Maksimovich, I.V. 2012. Endovascular application of low-energy laser in the treatment of dyscirculatory angiopathy of Alzheimer’s type. Journal of Behavioral and Brain Science 2 (1): 67–81.

    Article  Google Scholar 

  77. Maksimovich, I.V. 2015. Dementia and cognitive impairment reduction after laser transcatheter treatment of Alzheimer’s disease. World Journal of Neuroscience 5 (03): 189.

    Article  Google Scholar 

  78. Maksimovich, I.V. 2019. Intracerebral transcatheter laser photobiomodulation therapy in the treatment of Binswanger’s disease and vascular parkinsonism: research and clinical experience. Photobiomodulation, Photomedicine, and Laser Surgery 37 (10): 606–614.

    Article  Google Scholar 

  79. Hamblin, M.R. 2019. Photobiomodulation for Alzheimer’s disease: Has the light dawned? In Photonics. Multidisciplinary Digital Publishing Institute.

    Google Scholar 

  80. Arakelyan, H.S. 2005. Treatment of Alzheimer’s disease with a combination of laser, magnetic field and chromo light. Laser Therapy 14 (1): 19–28.

    Article  Google Scholar 

  81. Maksimovich, I.V. 2012. Endovascular application of low-energy laser in the treatment of dyscirculatory angiopathy of Alzheimer’s type. Journal of Behavioral and Brain Science 2 (01): 67.

    Article  Google Scholar 

  82. Stephan, W., R.A. Din, L.J. Banas, J. Thomas, C. Kochert, R.J. Lamartiniere, et al. 2017. Management of post-traumatic stress (PTSD) dementia and other neuro-degenerative disease with photo-medicine: Clinical experience and case studies. Open Journal of Psychiatry 7(04): 386.

    Google Scholar 

  83. Berman, M.H., J.P. Halper, T.W. Nichols, H. Jarrett, A. Lundy, and J.H. Huang. 2017. Photobiomodulation with near infrared light helmet in a pilot, placebo controlled clinical trial in dementia patients testing memory and cognition. Journal of Neurology and Neuroscience 8(1).

    Google Scholar 

  84. Saltmarche, A.E., M.A. Naeser, K.F. Ho, M.R. Hamblin, and L. Lim. 2017. Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: Case series report. Photomedicine and Laser Surgery 35(8): 432–441.

    Google Scholar 

  85. Salehpour, F., M.R. Hamblin, and J.O. DiDuro. 2019. Rapid reversal of cognitive decline, olfactory dysfunction, and quality of life using multi-modality photobiomodulation therapy: Case report. Photobiomodulation, Photomedicine, and Laser Surgery 37(3): 159–167.

    Google Scholar 

  86. Nawashiro, H., S. Kawauchi, Y. Tsunoi, and S. Sato. 2019. Time courses of BOLD responses during transcranial near-infrared laser irradiation. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation 12(3): 778–780.

    Google Scholar 

  87. Sutalangka, C., et al. 2013. Laser acupuncture improves memory impairment in an animal model of Alzheimer’s disease. Journal of Acupuncture and Meridian Studies 6 (5): 247–251.

    Article  Google Scholar 

  88. Purushothuman, S., et al. 2014. Photobiomodulation with near infrared light mitigates Alzheimer’s disease-related pathology in cerebral cortex–evidence from two transgenic mouse models. Alzheimer’s Research & Therapy 6 (1): 2.

    Article  Google Scholar 

  89. Comerota, M.M., B. Krishnan, and G. Taglialatela. 2017. Near infrared light decreases synaptic vulnerability to amyloid beta oligomers. Scientific Reports 7 (1): 15012.

    Article  Google Scholar 

  90. Han, M., et al. 2018. Near infra-red light treatment of Alzheimer’s disease. Journal of Innovative Optical Health Sciences 11 (01): 1750012.

    Article  Google Scholar 

  91. Cho, G.M., et al. 2018. Photobiomodulation using a low-level light-emitting diode improves cognitive dysfunction in the 5XFAD mouse model of Alzheimer’s disease. The Journals of Gerontology: Series A.

    Google Scholar 

  92. Zhang, Z., et al. 2019. Activation of PKA/SIRT1 signaling pathway by photobiomodulation therapy reduces Aβ levels in Alzheimer's disease models. Aging Cell

    Google Scholar 

  93. Zhang, J., et al. 2019. Illumination with 630 nm Red light reduces oxidative stress and restores memory by photo-activating catalase and formaldehyde dehydrogenase in SAMP8 mice. Antioxidants & Redox Signaling 30 (11): 1432–1449.

    Article  Google Scholar 

  94. Yue, X., et al. 2019. New insight into Alzheimer’s disease: Light reverses Aβ-obstructed interstitial fluid flow and ameliorates memory decline in APP/PS1 mice. Alzheimer’s & Dementia: Translational Research & Clinical Interventions 5: 671–684.

    Article  Google Scholar 

  95. Zinchenko, E., et al. 2019. Pilot study of transcranial photobiomodulation of lymphatic clearance of beta-amyloid from the mouse brain: Breakthrough strategies for non-pharmacologic therapy of Alzheimer’s disease. Biomedical Optics Express 10 (8): 4003–4017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salehpour, F., Sadigh-Eteghad, S., Mahmoudi, J., Kamari, F., Cassano, P., Hamblin, M.R. (2023). Photobiomodulation Therapy for Dementia. In: Photobiomodulation for the Brain. Synthesis Lectures on Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-36231-6_9

Download citation

Publish with us

Policies and ethics