Skip to main content

Graph Neural Network Potentials for Molecular Dynamics Simulations of Water Cluster Anions

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Abstract

Regression of potential energy functions is one of the most popular applications of machine learning within the field of materials simulation since it would allow accelerating molecular dynamics simulations. Recently, graph-based architectures have been proven to be especially suitable for molecular systems. However, the construction of robust and transferable potentials, resulting in stable dynamical trajectories, still needs to be researched. In this work, we design and compare several neural architectures with different graph convolutional layers to predict the energy of water cluster anions, a system of fundamental interest in chemistry and biology. After identifying the best aggregation procedures for this problem, we have obtained accurate, fast-evaluated and easy-to-implement graph neural network models which could be employed in dynamical simulations in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The 3D one-particle Schrödinger equation yields:

    $$\begin{aligned} H\psi _{e}(\boldsymbol{r}_{1},\ldots ,\boldsymbol{r}_{N};\boldsymbol{r}_{e})=E_{0}\psi _{e}(\boldsymbol{r}_{1},\ldots ,\boldsymbol{r}_{N};\boldsymbol{r}_{e}), \end{aligned}$$

    where the hamiltonian operator is \(H=-\nabla ^{2}/2m_e+V_{\textrm{W}-e}(\boldsymbol{r}_{1},\ldots ,\boldsymbol{r}_{N};\boldsymbol{r}_{e})\).

References

  1. Gijón, A.G.: Classical and quantum molecular dynamics simulations of condensed aqueous systems. PhD thesis, Digital CSIC (2021). https://hdl.handle.net/10261/251865

  2. Behler, J.: Four generations of high-dimensional neural network potentials. Chem. Rev. 121(16), 10037–10072 (2021). https://doi.org/10.1021/acs.chemrev.0c00868. PMID: 33779150

    Article  Google Scholar 

  3. Gijón, A., Hernandez, E.R.: Quantum simulations of neutral water clusters and singly-charged water cluster anions. Phys. Chem. Chem. Phys. 24, 14440–14451 (2022). https://doi.org/10.1039/D2CP01088G

    Article  Google Scholar 

  4. Grattarola, D., Alippi, C.: Graph neural networks in tensorflow and keras with spektral [application notes]. Comp. Intell. Mag. 16(1), 99–106 (2021). https://doi.org/10.1109/MCI.2020.3039072

    Article  Google Scholar 

  5. Hamilton, W.L.: Graph representation learning. Syn. Lect. Artif. Intell. Mach. Learn. 14(3), 1–159

    Google Scholar 

  6. Klicpera, J., Becker, F., Günnemann, S.: Gemnet: universal directional graph neural networks for molecules. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021). https://openreview.net/forum?id=HS_sOaxS9K-

  7. Li, Z., Meidani, K., Yadav, P., Barati Farimani, A.: Graph neural networks accelerated molecular dynamics. J. Chem. Phys. 156(14), 144103 (2022). https://doi.org/10.1063/5.0083060

    Article  Google Scholar 

  8. Rodríguez-Segundo, R., Gijón, A., Prosmiti, R.: Quantum molecular simulations of micro-hydrated halogen anions. Phys. Chem. Chem. Phys. 24, 14964–14974 (2022). https://doi.org/10.1039/D2CP01396G

    Article  Google Scholar 

  9. Schmidt, J., Marques, M.R.G., Botti, S., Marques, M.A.L.: Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5(1), 83 (2019). https://doi.org/10.1038/s41524-019-0221-0

  10. Stocker, S., Gasteiger, J., Becker, F., Günnemann, S., Margraf, J.T.: How robust are modern graph neural network potentials in long and hot molecular dynamics simulations? Mach. Learn.: Sci. Technol. 3(4), 045010 (2022). https://doi.org/10.1088/2632-2153/ac9955

    Article  Google Scholar 

  11. Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018). https://doi.org/10.1103/PhysRevLett.120.145301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Gijón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gijón, A., Molina-Solana, M., Gómez-Romero, J. (2023). Graph Neural Network Potentials for Molecular Dynamics Simulations of Water Cluster Anions. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36027-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36026-8

  • Online ISBN: 978-3-031-36027-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics