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Abstract The transverse force exerted on a rotating sphere immersed in an otherwise
uniform flow of a rarefied gas is investigated based on the Bhatnagar–Gross–Krook
(BGK) model of the Boltzmann equation assuming the Maxwell boundary condition
on the sphere. In several existing studies, it has been shown that the transverse force
acting on the sphere, also known as the Magnus force, has opposite signs in the
free molecular and continuum flows. The present study intends to clarify the force’s
transition in terms of the Knudsen number (i.e., the reciprocal ratio of the sphere
radius to the molecular mean free path) with a particular interest in the impact of
the sphere’s surface accommodation. It is found that the threshold of the Knudsen
number, at which the transverse force changes the sign, depends only weakly on
the accommodation coefficient, suggesting certain robustness in the threshold. The
present study is an extension of the previous work [S. Taguchi and T. Tsuji, J. Fluid.
Mech. 933, A37 (2022)], in which the case of complete accommodation (diffuse
reflection) is exclusively considered.
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1 Introduction

Understanding the motion of tiny particles in a gas is vital in many areas including
micro-nano technology, control of particles, and aerosol transport. For this purpose,
studying a gas flow around a particle is crucial. It is known that the Navier–Stokes
equation ceases to be accurate in describing flows with the miniaturization of a parti-
cle. Alternatively, the Boltzmann equation, describing molecules’ collective behav-
ior, can explain flows around tiny objects [6, 17]. In this context, the gas is referred
to as a rarefied gas.

In the present paper, we focus on the force, mainly the transverse force (or the lift),
acting on a single rigid spherical particle moving in a rarefied gas. This transverse
force occurs when rotation is given to the particle and is known as theMagnus effect.
Interestingly, the transverse force depends significantly on the relative particle size
to the mean free path of the gas molecules. Indeed, the authors showed, for the
case of a small relative particle velocity, that the transverse force FL is given by
FL = πρa3(� × v)h̄L , where ρ is the density of the surrounding gas, a the radius of
the sphere,� the particle’s angular velocity, and v the particle’s velocity, and that the
numerical factor h̄L decreases monotonically from positive to negative values with
the increase of the Knudsen number (i.e., the ratio between the mean free path of
the gas molecules and the sphere radius) [22]. To the authors’ best knowledge, this
was the first theoretical result to show the force’s transition to the so-called inverse
Magnus effect, formerly known for a free molecular gas [5, 8, 28] and having drawn
researchers’ attention [3, 10–12, 16, 27, 29, 30].

The present paper serves a dual purpose. First, we want to outline the analysis of
[22], which contains many technical details and formulas. The second purpose is to
get insight on the impact of the sphere’s surface accommodation into the transverse
force. In particular, we try to give the first answer to the following question: does the
threshold of the Knudsen number for the negative lift depend much on the surface
property of the sphere? To simplify the analysis as much as possible, we assume
the Maxwell boundary condition on the sphere with accommodation coefficient α

(0 < α ≤ 1). As a result, we find that the threshold is insensitive to α, although the
transverse force is generally affected by α. This robustness of the thresholdmay open
a way to use the transverse force to separate small particles from large ones.

2 Problem and Formulation

In this section, we give the complete statement of the problem, followed by its
mathematical formulation.
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Fig. 1 Schematic of the problem: a uniform flow past a rotating sphere. The Maxwell condition is
assumed on the sphere surface with accommodation coefficient α (0 < α ≤ 1)

2.1 Problem

We consider a rigid sphere with radius a placed in an otherwise uniform flow of a
rarefied gas (see Fig. 1). Let axi , i = 1, 2, 3, (or ax) denote the Cartesian coordinate
system for the physical space, whose origin is at the sphere center. We assume that
the state of the gas at infinity is a uniform flow, whose macroscopic velocity, density,
and temperature are denoted by v∞ = (v∞1, v∞2, 0), ρ0, and T0, respectively. We
further suppose that the sphere is kept at a uniform temperature T0 and is rotating
about one of its diameters with constant angular velocity �0 = (�0, 0, 0). External
forces (such as gravity) are assumed to be absent. We investigate the steady behavior
of the gas around the sphere under the following basic assumptions:

1. The behavior of the gas is described by the Bhatnagar–Gross–Krook (BGK)
model [4, 31] of the Boltzmann equation. In the sequel, however, we use the
Boltzmann equation for a general analysis. The BGK model will be used only
for the actual numerical computations.

2. The gas molecules are reflected on the sphere according to Maxwell’s diffuse-
specular reflection condition.

3. Themacroscopic flow velocity at infinity is much smaller than the corresponding
thermal speed, i.e., |v∞| � c0, where c0 = √

2RT0. Here, R is the specific gas
constant, i.e., R = kB/m with kB and m being the Boltzmann constant and the
mass of a molecule, respectively.

4. The sphere’s equatorial velocity due to the rotation is of the same order as the
flow speed at infinity, i.e., a�0/|v∞| = O(1).

For convenience, we also use p0 = ρ0RT0 to represent the gas pressure at the refer-
ence state.
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2.2 Formulation

In this subsection, we formulate the problemmentioned in Sect. 2.1. The formulation
will be presented mainly for the Boltzmann equation. The reader is referred to [22]
for the formulation based on the BGK model.

2.2.1 Basic Equations

Let c0ζi (or c0ζ ) denote the molecular velocity and let ρ0c
−3
0 (1 + φ(x, ζ ))E the

velocity distribution function of the gas molecules, where E = π−3/2 exp(−|ζ |2).
The stationary Boltzmann equation for φ = φ(x, ζ ) in the absence of external forces
is reduced to [17]

ζ · ∇xφ = 1

k
(L(φ) + J(φ, φ)). (1)

Here, L(φ) is the linearized collision integral and J(φ, φ) is the collision integral
defined by

J(F,G) = 1

2

∫
(ζ ∗,e)∈R3×S2

E∗(F ′
∗G

′ + F ′G ′
∗ − F∗G − FG∗) B d�(e)dζ ∗, (2a)

F = F(ζ ), F∗ = F(ζ ∗), F ′ = F(ζ ′), F ′
∗ = F(ζ ′

∗), (2b)

G = G(ζ ), G∗ = G(ζ ∗), G ′ = G(ζ ′), G ′
∗ = G(ζ ′

∗), (2c)

ζ ′ = ζ + [(ζ ∗ − ζ ) · e]e, ζ ′
∗ = ζ ∗ − [(ζ ∗ − ζ ) · e]e, (2d)

where E∗ = π−3/2 exp(−|ζ ∗|2), e denotes a unit vector, d�(e) the solid angle

element in the direction of e, and B = B
( |e·(ζ ∗−ζ )|

|ζ ∗−ζ | , |ζ ∗ − ζ |
)
the non-negative

function determined by a specific intermolecular force [17]. For example, B =
1

4
√
2π

|e · (ζ ∗ − ζ )| for a hard-sphere gas. The integration on the r.h.s. of (2a) is
carried out for the whole space of ζ ∗ and all directions of e. With J defined above,
the linearized collision integral L(φ) is given by L(φ) = 2J(1, φ). The parameter
k is defined by k =

√
π

2 Kn, where Kn = �0/a is the Knudsen number with �0 the
molecular mean free path in the reference state at rest with density ρ0 and temper-
ature T0. For a hard-sphere gas, �0 = [√2πd2

m(ρ0/m)]−1 with dm and m being the
diameter and mass of a molecule, respectively. For the BGK model of the collision
integral, whose explicit form is omitted here [22], �0 = 2√

π

c0
Acρ0

with Ac being a
constant.

Let us introduce the spherical coordinate system (r, θ, ϕ) associated with (x1, x2,
x3) by x1 = r cos θ , x2 = r sin θ cosϕ, x3 = r sin θ sin ϕ (0 ≤ θ ≤ π , 0 ≤ ϕ < 2π ).
Henceforth, the components of vectors or tensors in the spherical coordinates are
designated by the subscript r, θ, ϕ (e.g., ζr , ζθ , ζϕ). TheMaxwell boundary condition
on the sphere is written as
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φ = (1 − α) φ(x, ζ − 2ζrn)

+ α

[
1 + σw

π3/2
exp

(
−ζ 2

r − ζ 2
θ − (ζϕ − �̂0 sin θ)2

)
E−1 − 1

]
, ζr > 0, r = 1,

(3)

where the constant α ∈ (0, 1] denotes the accommodation coefficient, n (or ni ) the
unit normal vector on the sphere pointing to the gas, �̂0 = a�0/c0, and σw is deter-
mined by the impermeability condition as follows:

σw = −2
√

π

∫
ζr<0

ζrφ E dζ , r = 1. (4)

Note that the r.h.s. of (3) is a linear combination of the specular and diffuse reflection
conditions. In particular, the Maxwell condition reduces to the diffuse reflection
condition when α = 1. Finally, we impose the following equilibrium condition at
infinity:

φ → 1

π3/2
exp

(−(ζ1 − v̂∞1)
2 − (ζ2 − v̂∞2)

2 − ζ 2
3

)
E−1 − 1 as r → ∞, (5)

where v̂∞i = v∞i/c0, i = 1, 2.

2.2.2 Macroscopic Quantities

Let ρ0(1 + ω), c0ui , T0(1 + τ), p0(1 + P), and p0(δi j + Pij ) (i, j = 1, 2, 3) denote
the density, the flow velocity, the temperature, and the stress tensor of the gas, respec-
tively. Here, δi j stands for Kronecker’s δ. The (ω, ui , τ, P, Pij ) are given in terms of
φ as follows:

ω = 〈φ〉, (1 + ω)ui = 〈ζiφ〉, 3

2
(1 + ω)τ =

〈(
ζ 2
j − 3

2

)
φ

〉
− (1 + ω)u2j ,

(6a)

P = ω + τ + ωτ

(
= P11 + P22 + P33

3

)
, Pij = 2〈ζiζ jφ〉 − 2(1 + ω)uiu j ,

(6b)

where the brackets 〈 〉 stand for

〈g〉 =
∫
R3

g(ζ )Edζ . (7)

The stress tensor Pij is directly related to the force and torque acting on the sphere,
as seen from (9) below.
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Let Fi (or F) and Mi (or M) denote the force and torque acting on the sphere,
respectively. We introduce their dimensionless counterparts through the relations

Fi := Fi
p0a2

, Mi := Mi

p0a3
, i = 1, 2, 3. (8)

Note that Fi (or F ) and Mi (or M) are expressed in terms of the dimensionless
stress by

Fi = −
∫

|x|=1
Pijn j dS, Mi = −

∫
|x|=1

εi jm x j Pmlnl dS, (9)

where dS(= sin θ dθdϕ) is the surface element, εi jk (i, j, k = 1, 2, 3) is Eddington’s
ε (Levi–Civita symbol), and the integration is carried out over the whole surface of
the unit sphere |x| = 1.

2.2.3 Scaling

The problem (1), (3)–(5) is characterized by the following physical parameters:

k (or Kn), �̂0, v̂∞ = (v̂∞1, v̂∞2, 0), α. (10)

If we introduce the angle α0 between the vector v̂∞ and positive x1 axis (see Fig. 1)

and write v̂∞ := |v̂∞| =
√
v̂2∞1 + v̂2∞2, each component of v̂∞ is expressed as

v̂∞1 = v̂∞ cosα0, v̂∞2 = v̂∞ sin α0. (11)

Now we recall the assumptions (iii) and (iv) of Sect. 2.1 and put

ε ≡ v̂∞ � 1, �̂0 = Sε, (12)

where the constant S is of the order of unity, i.e., S = �̂0
ε

= a|�0|
|v∞| = O(1). In the

asymptotic analysis presented below, we use S instead of �̂0. Further, we assume
k = O(1) so that ε plays the role of a sole small parameter. Note that k = O(1) does
not necessarily mean that the value of k is moderate or large; it can be small as long
as k � ε.

In summary, the boundary-value problem to be solved consists of (1), (3)–(5)
with (11) and (12). In this problem, ε plays the role of a small parameter, and we
shall study the asymptotic behavior of the solution when ε � 1. In the sequel, we
put

U = cosα0, V = sin α0, (13)

to simplify the notation (U 2 + V 2 = 1), and assign the symbol ζ to denote |ζ | =
(ζ 2

j )
1/2.
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3 Asymptotic Analysis

We carry out an asymptotic analysis for small ε(� 1) for the problem introduced in
the previous section.

We first expand the solution φ in the form

φε = φ(1)ε + φ(2)ε2 + o(ε2), ε � 1. (14)

The corresponding expansion for each macroscopic quantity is given by

hε = h(1)ε + h(2)ε2 + o(ε2) (h = ω, ui , τ, P, Pij ). (15)

Note that the relations between h(m) and φ(m) (m = 1, 2) are obtained by substituting
(14) and (15) into (6) and collecting the terms of the same order.

3.1 Leading Order in ε

The problem for the leading-order term φ(1) is formally obtained by substituting (14)
into the original boundary-value problem and retaining the leading-order terms in ε,
yielding

ζ · ∇xφ
(1) = 1

k
L(φ(1)), r > 1, (16)

φ(1) = (1 − α) φ(1)(x, ζ − 2ζrn) + αK(φ(1)) + I (1)
w , ζr > 0, r = 1, (17)

φ(1) → I (1)
∞ as r → ∞, (18)

with

I (1)
w = 2αSζϕ sin θ, I (1)

∞ = 2(ζ1U + ζ2V ), (19)

and

K(g) = −2
√

π

∫
ζr<0

ζr g(ζ )Edζ . (20)

Equations (16)–(18) form a boundary-value problem for the linearized Boltzmann
equation in an unbounded domain, and its solution is obtained as a superposition of
two functions φ

(1)
U and φ

(1)
S , i.e.,

φ(1) = φ
(1)
U + φ

(1)
S , (21)
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where φ
(1)
U and φ

(1)
S are the solutions to (16)–(18) with I (1)

w = 0 and I (1)∞ = 0, respec-
tively. Specifically, φ(1)

U and φ
(1)
S solve ζ · ∇xφ

(1)
J = 1

kL(φ
(1)
J ) (J = U, S) under the

following respective conditions:

{
φ

(1)
U = (1 − α) φ

(1)
U (x, ζ − 2ζrn) + αK(φ

(1)
U ), ζr > 0, r = 1,

φ
(1)
U → 2(ζ1U + ζ2V ) as r → ∞,

(22)

and

{
φ

(1)
S = (1 − α) φ

(1)
S (x, ζ − 2ζrn) + αK(φ

(1)
S ) + 2αSζϕ sin θ, ζr > 0, r = 1,

φ
(1)
S → 0 as r → ∞.

(23)

Note that the problems for φ
(1)
U and φ

(1)
S correspond to classical problems of

a rarefied gas flow around a sphere under linearization assumptions. Indeed, the
problem for φ

(1)
U is equivalent to that of a slow flow past a stationary sphere [2, 7, 9,

13, 18, 25].1 In contrast, the problem forφ(1)
S describes a flowaround a rotating sphere

in an otherwise stationary gas [1, 13, 20]. These problems have been extensively
studied in the past few decades (see, e.g., [17, 20]).

3.1.1 Similarity Solutions

Thanks to the identities summarized in (52) in Sect. 5 below, we can seek φ
(1)
U and

φ
(1)
S in the forms

φ
(1)
U = (U cos θ + V sin θ cosϕ) φ

(1)
Ua

+ [ζθ (U sin θ − V cos θ cosϕ) + V ζϕ sin ϕ] φ
(1)
Ub , (24a)

φ
(1)
S = S ζϕ sin θ φ

(1)
Sa , (24b)

where φ
(1)
Ua , φ

(1)
Ub , and φ

(1)
Sa , which are functions of (r, ζr , ζ ), are unknowns to be

determined. The explicit forms of the problem for φ
(1)
Ua and φ

(1)
Ub and that for φ

(1)
S

are easily obtained by direct substitution and will be omitted for conciseness (cf.
(3.17) and (3.18) in [22] for the case α = 1). Note that the number of independent
variables has been lowered to three. Furthermore, the dependency of φ

(1)
U and φ

(1)
S

on the variables θ and ϕ is explicit in (24). Consequently, the dependency of each
macroscopic quantity on these variables is also explicit. For example, substituting
(21) and (24) into (6), the components of the leading-order flowvelocity are expressed
as

1 In the actual analysis, it suffices to consider the particular case U = 1 and V = 0 thanks to the
similarity solution (24a) introduced below.
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⎧⎪⎨
⎪⎩

u(1)
r = (U cos θ + V sin θ cosϕ) 〈ζrφ(1)

Ua〉,
u(1)

θ = (U sin θ − V cos θ cosϕ) 1
2 〈(ζ 2 − ζ 2

r )φ
(1)
Ub〉,

u(1)
ϕ = (V sin ϕ) 1

2 〈(ζ 2 − ζ 2
r )φ

(1)
Ub〉 + (S sin θ) 1

2 〈(ζ 2 − ζ 2
r )φ

(1)
Sa 〉,

(25)

where each of 〈· · · 〉 in (25) is a function of r . Similar expressions can be derived for
P (1)
i j , which are required to compute the force and torque acting on the sphere and

thus play a crucial role, as shown next.

3.1.2 Force and Torque on the Sphere: Order ε

Suppose φ
(1)
Ua , φ

(1)
Ub , φ

(1)
Sa and thus P (1)

i j are known. The force and torque acting on the

sphere are obtained by substituting the expression of Pij = P (1)
i j ε + O(ε2) into (9)

and carrying out the integration with respect to θ and ϕ, yielding

F = v̂∞hD + O(ε2), M = �̂0hM + O(ε2), (26)

where v̂∞ = v∞
c0

= (v̂∞1, v̂∞2, 0), �̂0 = a�0
c0

= (�̂0, 0, 0), and the quantities hD and

hM , independent of x and ζ , are given in terms of φ
(1)
Ua , φ

(1)
Ub , and φ

(1)
Sa by

⎧⎪⎪⎨
⎪⎪⎩

hD = − lim
r→1

8

3
π
(
〈ζ 2

r φ
(1)
Ua〉 − 〈ζr (ζ 2 − ζ 2

r ) φ
(1)
Ub〉
)

,

hM = − lim
r→1

8

3
π〈ζr (ζ 2 − ζ 2

r ) φ
(1)
Sa 〉.

(27)

Note that hD (or hM ) depends on k and α through φ
(1)
Ua and φ

(1)
Ub (or φ

(1)
Sa ). Numerical

values of hD for various k can be found in [17, 21, 25] in the case of α = 1, while
those of hM are tabulated in [20] for various k and α.

According to (26), the leading-order force acting on the sphere is parallel to v∞,
indicating the transverse force is absent at this stage. The absence of transverse force
in (26) is due to the lack of coupling between the uniform and rotating flows in the
linearized system. (No coupling terms between φ

(1)
U and φ

(1)
S occur in the system.)

In the following subsection, therefore, we proceed to the second-order problem for
φ(2) to study the coupling effect.

We conclude this subsection with a brief comment on the physical interpreta-
tion of hD and hM . Writing the force and torque obtained above using the original
dimensional quantities, we have

F = 6πμav∞h̄D, M = −8πμa3�0h̄M , (28)

where μ =
√

π

2
γ1 p0�0

c0
is the viscosity at the reference state [17] and
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h̄D = hD

6πγ1k
, h̄M = − hM

8πγ1k
. (29)

Here, the dimensionless viscosity constant γ1 > 0 is given by γ1 = 2
15 〈ζ 4B〉, where

B = B(ζ ) is the solution to the integral equation

L(ζi j B) = −2ζi j , ζi j = ζiζ j − 1
3ζ

2δi j . (30)

The value of γ1 for the BGKmodel is the unity (γ1 = 1), while that for a hard-sphere
gas is γ1 = 1.270042427 [17]. Equation (28) coincideswith the Stokes andKirchhoff
formulas for the drag and torque acting on a sphere if h̄D = h̄M = 1. Therefore, we
can interpret h̄D (or hD) and h̄M (or hM ) as numerical factors that represent the
deviations from the Stokes and Kirchhoff formulas, respectively. Since h̄D → 1 and
h̄M → 1 as k → 0,2 we recover the Stokes and Kirchhoff formulas for the drag and
torque as k → 0 (ε � k).

3.2 Second Order in ε

We consider the second-order problem.

3.2.1 Asymptotic Matching

In Sect. 3.1, we have discussed the leading-order term φ(1)(= φ
(1)
U + φ

(1)
S ) based

on the linearized Boltzmann equation. In [19], it has been pointed out that φ
(1)
U

does not approximate the solution of the Boltzmann equation uniformly in space.
For clarity, let us consider the case U = 1 and V = 0. The approach of φ

(1)
U to

I (1)∞ = 2ζ1 as r → ∞ is proportional to r−1 [19, 25]. Using this information,
the magnitude of the streaming term of the Boltzmann equation is estimated as
ζ · ∇x (εφ

(1)
U ) ∼ ε/r2 for r = |x| � 1. On the other hand, we can transform the non-

linear term as J(εφ
(1)
U , εφ

(1)
U ) ∼ −ε2L(2ζ 2

1 ) + O(ε2/r), where the term O(ε2/r)
contains nonlinear terms. Thus, the nonlinear term decays slower than the streaming
term, eventually becoming comparable to the latter for sufficiently large r , no matter
how small ε is. In other words, the term εφ(1), based on the linearized equation, does
not serve as a good approximate solution to the original system in the region far from
the sphere (owing to φ

(1)
U ).3 To overcome this difficulty, we amend the simple expan-

sion (14) to allow for a different length scale in the far field. Hence, we introduce

2 The asymptotic expressions for h̄D and h̄M for k � 1 are obtained as h̄D = 1 + k0 k + O(k2)
[17] and h̄M = 1 + 3k0 k + O(k2) [20]. See the caption of Fig. 2 for the meaning of k0.
3 We encounter similar shortcomings of a linearized systemwhen considering lowReynolds number
flows past a sphere based on the Navier–Stokes equation (Whitehead’s paradox [26]).
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the notion of a slowly varying solution and start over the analysis using the method
of matched asymptotic expansion developed in [19].

Following [19, 22], we consider two regions, the inner (1 < r � ε−1) and outer
(1 � r < ∞) regions, overlapping in the intermediate region (1 � r � ε−1). Here-
after, we denote by φH the solution in the outer region and regard the solution in (14)
as a solution in the inner region, valid in the region 1 < r � ε−1. We assume that
the length scale of variation of the solution in the outer region is of the order of 1/ε
(slowly varying solution). In other words, we assume ∂φH/∂xi = O(εφH) (except
possibly for the intermediate region). The following analysis is consistent with these
assumptions.

We assume that the slowly varying solution can be expanded as

φε
H = εφ

(1)
H + ε2φ

(2)
H + o(ε2). (31)

Since φH’s length scale of variation is of the order of ε−1, we can identify this
expansion with a Hilbert expansion for finite Reynolds numbers (S expansion [17]).
Consequently, the solution in the outer region is described fluid-dynamically by a set
of incompressible Navier-Stokes-type equations, whose explicit forms are shown in
(3.36)–(3.38) of [22]. Using this fact, as well as the asymptotic behavior of φ(1) in
the far field, we can determine the first two terms of the expansion (31).4 Once φε

H
is determined to order ε2, we can derive a matching condition for φ(2) at r → ∞,
which serves as a boundary condition at infinity. Since the process of derivation is the
same as that in [22], we omit further details and concentrate on the derived problem
for φ(2) next.

3.2.2 Problem for φ(2)

φ(2) is determined through the following problem:

ζ · ∇xφ
(2) = 1

k
L(φ(2)) + 1

k
I (2), r > 1, (32)

φ(2) = (1 − α) φ(2)(x, ζ − 2ζrn) + αK(φ(2)) + I (2)
w , ζr > 0, r = 1, (33)

φ(2) → I (2)
∞ as r → ∞, (34)

with

I (2) = J(φ(1), φ(1)), (35a)

I (2)
w = α (2ζ 2

ϕ − 1) S2 sin2 θ + 2αK(φ(1)) ζϕ S sin θ, (35b)

I (2)
∞ = 2(Uζ1 + V ζ2)

2 − 1

4 To be specific, φ
(1)
H = 2(Uζ1 + V ζ2) and φ

(2)
H is given by a Maxwellian with corresponding

macroscopic flow velocity given by an Oseenlet (see (3.59) in [22]).
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+ 3 h̄D

2γ1k

(
− 1

2
ζr (U cos θ + V sin θ cosϕ − 1) (3(U cos θ + V sin θ cosϕ) + 1)

+ ζθ (U sin θ − V cos θ cosϕ) (U cos θ + V sin θ cosϕ − 1)

+ ζϕV sin ϕ (U cos θ + V sin θ cosϕ − 1)

)
. (35c)

The condition (34) with (35c) is required for the inner solution φ to match the
outer solution φH. The physical meaning of the term proportional to h̄D in I (2)∞ is
a correction due to the long-range integration of the nonlinear term, omitted in the
analysis of φ

(1)
U . The first two terms of (35c) is a contribution from the uniform flow

distribution (5) at infinity.

3.2.3 Similarity Solutions

The problem (32)–(34) is similar to the problem for φ(1) except for the inhomoge-
neous terms, which suggests looking for a similarity solution for this problem.

We first put

φ(2) = 3 h̄D

4γ1k
(2Uζ1 + 2V ζ2) φ

(1)
U + φ

(2)
UU + φ

(2)
SS + φ

(2)
US, (36)

where φ
(2)
UU, φ

(2)
SS , and φ

(2)
US are functions to be determined. The φ

(2)
J (J = UU,SS,US)

satisfies (32)–(34) with φ(2) = φ
(2)
J , I (2) = I (2)

J , I (2)
w = I (2)

w,J, I
(2)∞ = I (2)

∞,J, where

I (2)
UU = J(φ

(1)
U , φ

(1)
U ), I (2)

SS = J(φ
(1)
S , φ

(1)
S ), I (2)

US = 2J(φ
(1)
U , φ

(1)
S ), (37)

I (2)
w,UU = 0, I (2)

w,SS = α(2ζ 2
ϕ − 1)S2 sin2 θ, I (2)

w,US = 2αK(φ
(1)
U |r=1) ζϕ S sin θ,

(38)

I (2)
∞,UU = (U cos θ + V sin θ cosϕ)2

(
−9

4

h̄D

γ1k
ζr + 3 ζ 2

r − ζ 2

)

+ (U cos θ + V sin θ cosϕ)
[
(U sin θ − V cos θ cosϕ) ζθ + V sin ϕ ζϕ

]

×
(
3 h̄D

2γ1k
− 4ζr

)

+ 2

{ [
(U sin θ − V cos θ cosϕ)2 − V 2 sin2 ϕ

] ζ 2
θ − ζ 2

ϕ

2

+ 2V sin ϕ (U sin θ − V cos θ cosϕ) ζθ ζϕ

}
+ 3 h̄D

4γ1k
ζr + ζ 2 − ζ 2

r − 1, (39)

I (2)
∞,SS = I (2)

∞,US = 0. (40)
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We want to find a similarity solution for each of φ
(2)
J . To this end, we note that not

only L but also J is an isotropic operator and use the identities shown in Sect. 5.1
below. Here, we only show the form of a similarity solution for φ

(2)
US [22] because

only φ
(2)
US contributes to the transverse force, among others:

φ
(2)
US = φ

(2)�
US + φ

(2)�
US , (41)

φ
(2)�
US = S sin θ (U cos θ + V sin θ cosϕ) ζϕ φ

(2)�
USa

+ S cos θ
[
(U sin θ − V cos θ cosϕ) ζϕ − V sin ϕ ζθ

]
φ

(2)�
USb

+ S sin θ

[
−V sin ϕ

ζ 2
θ − ζ 2

ϕ

2
+ (U sin θ − V cos θ cosϕ) ζθ ζϕ

]
φ

(2)�
USc

+ SV sin θ sin ϕ φ
(2)�
USd , (42)

φ
(2)�
US = S sin θ (U sin θ − V cos θ cosϕ) φ

(2)�
USa

+ S
[
(U sin 2θ − V cos 2θ cosϕ) ζθ + V cos θ sin ϕ ζϕ

]
φ

(2)�
USb

+ S sin θ

[
(U sin θ − V cos θ cosϕ)

ζ 2
θ − ζ 2

ϕ

2
+ V sin ϕ ζθ ζϕ

]
φ

(2)�
USc

+ SUφ
(2)�
USd , (43)

where φ
(2)�
USβ and φ

(2)�
USβ (β = a, b, c, d) on the r.h.s. of (42) and (43) are functions

of r , ζr , and ζ , whose dependency is not shown explicitly. Note that the similarity
solutions for φ

(2)
J are the same as those for α = 1 used in [22] (cf. (3.79)–(3.83)

there).
The equations and boundary conditions for φ

(2)�
USβ and φ

(2)�
USβ are derived once we

substitute (41)–(43) into those forφ(2)
US and use the identities (52) and (53) in Sect. 5.1.

Since the derived equations and boundary conditions are lengthy, we do not present
the explicit forms here (see Appendix E of [22] for the case α = 1). Note that thanks
again to the similarity solutions,we can explicitlywrite the dependencyof the second-
order macroscopic quantities on the variables θ and ϕ, as in (25).

3.2.4 Force and Torque on the Sphere: Order ε2

We now discuss general expressions for the force and torque to the second-order
approximation in ε. The derivation is similar to that for the first order. Therefore, we
only summarize the result. First, the second-order term of the torque turns out to be
zero, allowing us to write the second equation of (26) as

M = �̂0hM + o(ε2). (44)

Next, the force acting on the sphere (the first equation of (26)) improves to
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F = v̂∞
(
1 + ε

3

4

h̄D

γ1k

)
hD

︸ ︷︷ ︸
drag

+ (v̂∞ × �̂0) hL︸ ︷︷ ︸
transverse force

+o(ε2), (45)

where hL is the quantity defined by

hL = lim
r→1

4

3
π
(
〈ζr (ζ 2 − ζ 2

r )(φ
(2)�
USa − φ

(2)�
USb)〉 + 2〈ζ 2

r φ
(2)�
USd〉

)
. (46)

Note that hL depends on k and α through φ
(2)�
USa , φ

(2)�
USb, and φ

(2)�
USd . In this way, hL is

a quantity representing the effects of gas rarefaction and surface accommodation on
the transverse force.

Finally, it is worth expressing the drag, lift, and torque in dimensional forms.
Omitting the terms of o(ε2), they are given by

Drag: FD = 6πμav∞
(
1 + 3

8
Re h̄D

)
h̄D, (47)

Lift: FL = πρ0a
3(v∞ × �0) h̄L , (48)

Torque: M = −8πμa3�0 h̄M , (49)

where we have written

h̄L = hL

2π
, (50)

and Re = ρ0|v∞|a
μ

is the Reynolds number of the flow. Note the similarities of (47)
and (48) to the Oseen drag for a sphere and to the lift force for a rotating sphere
derived by Rubinow & Keller [14] for continuum flows, respectively.

4 Numerical Results for hL and Discussions

In this section, we compute the numerical values of hL for various k and α based on
the BGK model of the Boltzmann equation.

4.1 Comments on the Computation of hL

The computation of hL requires the information on φ
(2)�
US (or φ(2)�

USβ) according to (46).
Due to the source term that depends on the lower-order solutions, the computation
of φ

(2)�
USβ is numerically quite challenging. Fortunately, there is a way to bypass this

difficulty, devised in [22], and we shall take the same approach in this study.
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More specifically, in [22], an alternative formula forhL has beenderived in the case
of the diffuse reflection condition (α = 1). In this study, we obtain the corresponding
formula for the case of theMaxwell condition. The following formula gives the result
for the Boltzmann equation:

hL = 4

3
π
[
K(φ

(1)
Ua |r=1) 〈ζr (ζ 2 − ζ 2

r )φ
(1)
Ub |r=1〉

−1

k

∑
t=θ,ϕ

∫ ∞

1
r2
(
〈φ(1)−

Ua J(ζtφ
(1)
Ub , ζtφ

(1)
Sa )〉 − 〈ζtφ(1)−

Ub J(φ
(1)
Ua , ζtφ

(1)
Sa )〉

)
dr

⎤
⎦ ,

(51)

(0 < k < ∞, 0 < α ≤ 1). Here, the symbol − stands for the inversion of the veloc-
ity variables, i.e., ψ−(r, ζr , ζ ) = ψ(r,−ζr , ζ ) for ψ = φ

(1)
Uβ , β = a, b, etc. Note that

in (51), hL is expressed in terms of the lower-order functions φ
(1)
Ua , φ

(1)
Ub , and φ

(1)
Sa ,

enabling us to compute hL without solving any second-order problems. The deriva-
tion of (51) uses an identity derived in [24] (see Sect. 5 below). Interestingly, the
above formula does not explicitly depend on α but does so through φ

(1)
Ua , φ

(1)
Ub , and

φ
(1)
Sa . Indeed, the formula (51), applicable for any α ∈ (0, 1], is identical with that for

α = 1 derived in [22]. For the BGKmodel, we can derive the corresponding formula
easily from (51) by taking into account the corresponding expressions of J(·, ·) for
the BGK model (see (4.3), (4.8), and (4.12) of [22]).

We carry out actual computations using the BGK model as in [22]. To apply
the formula (51), we require numerical data for (φ

(1)
Ua , φ

(1)
Ub) and φ

(1)
Sa , which are the

solutions to the problem of a uniform flow past a sphere (say, problem U) and that of
a swirling flow around a sphere (say, problem S), respectively. Numerical analysis
for problem S under the Maxwell boundary condition has been carried out in [20]
for various α and k. In the present study, we also made additional computations
to obtain data for different α. Concerning problem U under the Maxwell boundary
condition, we performed calculations using the numerical code in [21], where the
diffuse reflection condition is assumed, with slight and necessary modifications. The
reader is referred to [21, 22, 25] for further details.

4.2 Transverse Force Acting on a Rotating Sphere

Figure 2 shows the obtained hL as a function of k for α = 1, 0.8, and 0.5. The
numerical data for α = 0.8 and 0.5 are new and those for α = 1 are taken from [22].
The corresponding numerical values are tabulated in Table 1, where the values of
hD for α = 0.8 and 0.5 and those of hM for α = 0.5 are also included. As seen from
the figure, the overall tendency of hL in terms of k is the same for all values of α.
That is, hL is decreasing with k. For each α, there is a threshold in k, above which
hL becomes negative. Consequently, the sphere experiences a negative lift when k
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Fig. 2 hL versus k for the BGK model under the Maxwell boundary condition for α = 0.8 (red
triangle) and 0.5 (green square). The results for the case α = 1 (the diffuse reflection) [22] are
shown by the blue circles. The dash-dotted lines indicate the values in the free molecular limit. The
dashed curve shows the asymptotic formula hL = 2π(1 + 3k0 k) for k � 1 (α = 1) [22], where
k0 is the slip coefficient, whose numerical value is k0 = −1.01619 for the BGK model under the
diffuse reflection condition [17]. The solid horizontal line indicates the limiting value as k → 0
(0 < α ≤ 1), corresponding to the value for a continuum flow [14]

exceeds this threshold (inverse Magnus effect). The values of hL are significantly
affected by α, especially when k is large. The transverse force tends to become small
for smaller α. On the other hand, interestingly, the value of k at which hL becomes
zero does not depend much on α. For example, the threshold is 0.710 [22], 0.695,
and 0.674 for α = 1, 0.8, and 0.5, respectively, for the present computations based
on the BGK model. Incidentally, the limiting value of hL as k → ∞, i.e., the free
molecular limit, is known to be given by hL = − 4

3απ [5, 8, 28].

5 Analytical Tools

This section summarizes essential tools used in the present analysis.

5.1 Isotropy of L and J

The isotropy of the operators L and J plays the key role to derive a general expres-
sion for hL , since it enables us to find similarity solutions. We recall that an operator
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Table 1 Values of hL for various k for the BGK model under the Maxwell boundary condition
with accommodation coefficient α. The values for the case α = 1 are taken from [22], in which
other values for different k are also available. Values of hD for α = 0.8, 0.5 and those of hM for
α = 0.5 are also shown, since they are newly reported here

hL hD hM

k α = 1 α = 0.8 α = 0.5 α = 0.8 α = 0.5 α = 0.5

0.05 5.3563 5.0578 — 0.8782 — —

0.1 4.5204 4.1055 3.2254 1.6579 1.5554 −1.3218

0.15 — 3.3558 2.4873 2.3635 2.2142 −1.5830

0.2 3.1866 2.7545 1.9594 2.9957 2.7947 −1.7489

0.3 2.2129 1.8523 1.2431 4.0824 3.7905 −1.9420

0.4 1.4763 1.2018 0.7682 4.9737 4.6052 −2.0478

0.5 0.8970 0.7048 0.4229 5.7114 5.2778 −2.1132

0.6 0.4272 0.3096 0.1569 6.3281 5.8388 −2.1571

0.7 0.0362 −0.0147 −0.0564 6.8500 6.3124 −2.1885

0.8 −0.2935 −0.2854 −0.2316 7.2948 6.7154 −2.2118

0.9 −0.5762 −0.5156 −0.3788 7.6780 7.0620 −2.2299

1 −0.8213 −0.7140 −0.5044 8.0110 7.3628 −2.2442

1.1 — −0.8868 −0.6129 8.3027 7.6258 −2.2558

1.2 — −1.0387 −0.7076 8.5599 7.8575 −2.2654

1.5 −1.6807 −1.4012 −0.9316 9.1754 8.4111 −2.2862

2 −2.1964 −1.8082 −1.1797 9.8661 9.0305 −2.3066

3 −2.7827 −2.2667 −1.4554 10.6394 9.7220 −2.3263

4 −3.1052 −2.5172 −1.6046 11.0581 10.0955 −2.3359

5 −3.3085 −2.6746 −1.6978 11.3194 10.3283 −2.3415

10 −3.7368 −3.0046 — 11.8624 — —

Op(F), where F is any function (or any pair of functions) of ζ , is called isotropic if
Op(F(li jζ j ))(ζ ) = Op(F(ζ ))(li jζ j ) holds for any orthogonal transformation matri-
ces li j (li j lkj = δik) [17]. The L and J satisfy this condition and thus are isotropic.

Let us introduce the notation ζa = ζi ai and ζ̄i = ζi − ζaai with ai (or a) being any
fixed unit vector. Note that ζ̄i (or ζ̄ ) is the projection of ζ onto a plane orthogonal to
a. Taking a function f of the form f (ζa, |ζ̄ |), which is rotationally invariant about a,
we consider the tensor fields defined by L( f ), L(ζ̄i f ), and L(ζ̄i ζ̄ j f ). Then, thanks
to the isotropy of L, they have the following representations [17]:

{
L( f ) = L0( f ), L(ζ̄i f ) = ζ̄iL1( f ),

L(ζ̄i ζ̄ j f ) = ζ̄i ζ̄ jL2( f ) + (δi j − aia j )L3( f ),
(52)

whereLi ( f )’s on the right-hand sides are functions of ζa and |ζ̄ |, i.e.,Li ( f (ζa, |ζ̄ |))
= Li ( f )(ζa, |ζ̄ |). Similarly, considering the tensor fields J( f, g), J( f, ζ̄i g), and
J(ζ̄i f, ζ̄ j g), where f and g are functions of ζa and |ζ̄ |, we have the following
representations [17, 22]:
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{
J( f, g) = J0( f, g), J( f, ζ̄i g) = J(ζ̄i g, f ) = ζ̄iJ1( f, g),

J(ζ̄i f, ζ̄ j g) = ζ̄i ζ̄ jJ2( f, g) + (δi j − aia j )J3( f, g) + εi jmamζaJ4( f, g).

(53)

Note that Ji ( f, g)’s on the right-hand sides are functions of ζa and |ζ̄ |. Moreover,
Ji ( f, g) = Ji (g, f ) (i = 0, 2, 3) and J4( f, g) = −J4(g, f ).

For example, from (52) we have L(ζθ f (ζr , |ζ̄ |))/ζθ = L(ζϕ f (ζr , |ζ̄ |))/ζϕ =
L1( f )(ζr , |ζ̄ |).

5.2 Symmetry Relation

We have computed hL in the present study based on the formula (51). This formula
relies on the symmetry relation associated with the linearized Boltzmann equation
derived in [24], which we briefly explain here.

Suppose a function φ = φ(x, ζ ) satisfies, in the region outside the unit sphere
|x| = 1, the (steady) linearized Boltzmann equation

ζ · ∇xφ = 1

k
L(φ) + I, r > 1, (54)

where the source term I = I (x, ζ ) is a given function of x and ζ . We also assume
that φ satisfies the following boundary condition on the sphere (i.e., the linearized
version of the Maxwell boundary condition for a steady state):

φ(x, ζ ) = αgw + αK(φ − gw) + (1 − α) φ(x, ζ − 2ζrn), ζr > 0, r = 1,
(55)

with

gw = 2ζ · cw + (|ζ |2 − 5
2

)
dw, (56)

where the vector cw = cw(x) and the scalar dw = dw(x) are given functions of x
(|x| = 1), independent of ζ . Since the domain is unbounded, the system should be
supplemented by a condition on the asymptotic behavior of φ at infinity, i.e.,

φ(x, ζ ) → Ig(x, ζ ) as r → ∞, (57)

where Ig(x, ζ ) is a given function of x and ζ . The system describes the steady
behavior of a rarefied gas around a unit sphere in the linearized framework (cf. (16)–
(18)). We have included the additional source term I for later convenience; we will
identify it with a source term appearing in the second-order problem (cf. (32)–(34)).5

5 Precisely speaking, the form of gw is not general enough to describe I (2)
w in (35b). But this does

not bother us because the term α(2ζ 2
ϕ − 1) S2 sin2 θ on the r.h.s. of (35b) does not contribute to hL ,

and therefore can be eliminated beforehand.
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We introduce the notation g−(ζ ) = g(−ζ ) for any function g of ζ . Further, let us
introduce the following notation:φI = φI(x, ζ ) andφII = φII(x, ζ ) are two functions
such that

1. φI satisfies (54), (55), and (57) with I = I I, Ig = I Ig , and gw = gIw ≡ 2ζ · cIw +
(|ζ |2 − 5

2 )d
I
w; and

2. φII satisfies (54), (55), and (57) with I = I II, Ig = I IIg , and gw = gIIw ≡ 2ζ · cIIw +
(|ζ |2 − 5

2 )d
II
w .

Here, φI and φII share the sameK ,L, and α. Then, the following symmetry relation
holds [24].

Proposition 1 If φI and φII approach I Ig and I IIg sufficiently fast as r → ∞ so that

lim
r0→∞

∫
|x|=r0

〈
ζr (φ

I− − I I−g )(φII − I IIg )
〉
dS = 0, (58)

the following identity, symmetric with respect to the interchange of indices I and II,
holds:

∫
|x|=1

〈
ζr g

II−
w φI〉 dS + lim

r0→∞

∫
|x|=r0

〈
ζr I

II−
g φI〉 dS

− lim
r0→∞

1

2

∫
|x|=r0

〈
ζr I

II−
g I Ig

〉
dS −

∫
|x|>1

〈
I II−φI

〉
dx

=
∫

|x|=1

〈
ζr g

I−
w φII

〉
dS + lim

r0→∞

∫
|x|=r0

〈
ζr I

I−
g φII

〉
dS

− lim
r0→∞

1

2

∫
|x|=r0

〈
ζr I

I−
g I IIg

〉
dS −

∫
|x|>1

〈
I I−φII

〉
dx. (59)

Note that the symmetry relation is derived in a more general situation in [24],
encompassing other boundary conditions and the cases of bounded and unbounded
domains. The result shown above is a particular version of the relation in the case of
an unbounded domain.

To apply the symmetry relation, we consider the following two problems: (I)
problem of a uniform flow past a sphere for φ

(1)
U (Sect. 3.1); and (II) the boundary-

value problem for φ(2)
US (Sect. 3.2.3). Here, we have to alter the condition at infinity for

φ
(1)
U to be able to obtain a meaningful result. Specifically, we consider the situation

in which the flow is parallel to the x3 direction, i.e., the direction of the transverse
force, at infinity. Thus, denoting a solution to the modified problem by φ̄

(1)
U , we arrive

at the following choice:

⎧⎨
⎩

φI = φ̄
(1)
U , gIw = 0, I Ig = 2ζ3, I I = 0,

φII = φ
(2)
US, gIIw = 2K(φ

(1)
U |r=1) ζϕ S sin θ, I IIg = 0, I II = 2

k
J(φ

(1)
U , φ

(1)
S ).

(60)
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Then, the formula (51) follows from the identity (59) after carrying out the integrals
with respect to θ and ϕ 6 [22].

The symmetry relationwas initially used to establish cross relations amongweakly
perturbed systems described by the linearized Boltzmann equation for arbitrary
Knudsen number [23, 24]. Here, we have demonstrated that we can even use the
symmetry relation to investigate a nonlinear effect in a weakly nonlinear problem.
The point is that the expansion of φ in ε leads to a sequence of linearized problems
with or without source terms, enabling us to apply the symmetry relation. In this
sense, weak nonlinearity is crucial for the present method to be applicable.

Finally, the current approach is, at a glance, similar to the one discussed in [15].
However, we should not forget the condition on the asymptotic behavior in the far
field (58), which ensures the validity of the symmetry relation in an unbounded-
domain problem. No account of a similar condition is given in [15]. On the other
hand, there is no such ambiguity in the symmetry relation discussed in [24]. In the
present problem, the condition (58) is fulfilled [22], and consequently, we can apply
the symmetry relation to derive the alternative formula for hL .

6 Concluding Remarks and Perspectives

In this paper, we have considered the flow past a rotating sphere based on kinetic
theory. This seemingly simple flow received particular interest owing to the dramatic
changes in transverse force over low and high Knudsen numbers (or large and small
particle sizes). Our previous study, which is based on the BGK model under the
diffuse reflection boundary condition, revealed the force’s transition in terms of Kn.
It also determined the precise value of the threshold above which the transverse force
changes the sign. The present study extends these results to the case of the Maxwell
boundary condition to get insight into the effect of the surface accommodation on the
transverse force. This paper presents results for moderate values of accommodation
coefficient α, i.e., α = 0.8 and 0.5. Our findings are summarized as follows:

1. The magnitude of the transverse force becomes smaller with the decrease of α;
2. The threshold for the transverse force is insensitive to the accommodation coef-

ficient for moderate α.

We have followed the same approach as in the previous report, and the adoption
of Maxwell’s condition is straightforward. As a byproduct, we have obtained new
numerical data for hD and hM , which describe the drag and torque acting on the
sphere (see Table 1).

The values of the accommodation coefficient considered in the present paper are
limited toα = 0.8 and 0.5. Therefore, enriching data for different values ofα or using
another type of boundary conditions will improve the availability of the formula (48).

6 φ̄
(1)
U = φ̄

(1)
U (r, θ, ϕ, ζr , ζθ , ζϕ) is expressed as φ̄

(1)
U = (sin θ sin ϕ) φ

(1)
Ua − (ζθ cos θ sin ϕ +

ζϕ cosϕ) φ
(1)
Ub in terms of φ

(1)
Uβ = φ

(1)
Uβ(r, ζr , ζ ), β = a, b.
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Also, we can apply the method developed in this (and previous) study to investigate
different types of nonlinear effects. For example, we can explore the impact of sphere
heating (or cooling) on the drag through coupling between the uniform flow and heat
transfer (due to the sphere heating/cooling).

Acknowledgements Thepresentworkwas supportedby JSPSKAKENHIGrantNos. JP20H02067
and JP22K03924.
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