Skip to main content

Bioreactors for Tissue Engineering

  • Chapter
  • First Online:
Biomaterials and Tissue Engineering

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 74))

  • 574 Accesses

Abstract

Bioreactors have been widely used in various fields of biological production for many years. Their ability to provide a tightly controlled environment during the process and to allow for monitoring and intervention to the process parameters make them quite favorable to use in biological production lines. Also, bioreactors are widely employed in tissue engineering applications. Ideally, a tissue engineering bioreactor should have the capability to effectively regulate various environmental factors, such as pH, oxygen levels, temperature, nutrient transportation and waste elimination. Additionally, it should facilitate sterile operations, such as sampling and feeding, as well as automated procedures. The general approach for these applications include immobilization of suitable cells within porous, biodegradable and biocompatible scaffolds. These scaffolds serve as frameworks for tissue formation and the cell/scaffold constructs are cultured within a bioreactor, which creates a dynamic in vitro setting conducive to tissue growth. As the technology for these systems and required conditions continue to become more complex, these bioreactor designs will also evolve with time to help treat patients with diseases related to tissue damage.  There are specific designs for various kinds of bioreactors (spinner flasks, rotating wall vessel bioreactors, perfusion systems, pulsatile systems, strain systems, hollow fiber systems, wave bioreactors, microfluidic bioreactors, compression and hydrostatic systems) in the market which allows better outcomes for certain applications such as cardiovascular tissue engineering, bladder tissue engineering, neural tissue engineering, cornea tissue engineering, kidney tissue engineering, musculoskeletal tissue engineering, lung tissue engineering and gastrointestinal tissue engineering. All of these different systems and their special applications for tissue engineering studies are explained in this chapter with their specific advantages and disadvantages which make them favorable with the physicochemical environment they provide. When current developments are examined and evaluated, it is seen that bioreactors will have enhanced designs that will help them better mimic the physiological pathways of cells, tissues and their interaction with the surroundings to have better solutions for whole organ, bone, and regenerative tissue engineering applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abousleiman RI, Sikavitsas VI (2006) Bioreactors for tissues of the musculoskeletal system. Adv Exp Med Biol 585:243–259. https://doi.org/10.1007/978-0-387-34133-0_17/COVER

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed S, Bui MPN, Abbas A (2016) Paper-based chemical and biological sensors: engineering aspects. Biosens Bioelectron 77:249–263. https://doi.org/10.1016/J.BIOS.2015.09.038

    Article  CAS  PubMed  Google Scholar 

  3. Almeida GHD, Iglesia RP, Araujo MS, Carreira ACO, Dos Santos EX, Calomeno CVAQ, Miglino MA (2022) Uterine tissue engineering: where we stand and the challenges ahead. Tissue Eng Part B Rev 28(4):861–890. https://doi.org/10.1089/TEN.TEB.2021.0062

    Article  PubMed  Google Scholar 

  4. Amrollahi P, Tayebi L (2016) Bioreactors for heart valve tissue engineering: a review. J Chem Technol Biotechnol 91(4):847–856. https://doi.org/10.1002/JCTB.4825

    Article  CAS  Google Scholar 

  5. An Y, Li D (2014) Engineering skeletal muscle tissue in bioreactor systems. Chin Med J 127(23):4130–4139. https://doi.org/10.3760/CMA.J.ISSN.0366-6999.20141076

    Article  PubMed  Google Scholar 

  6. Ashammakhi N, Nasiri R, Barros NR de, Tebon P, Thakor J, Goudie M, Shamloo A, Martin MG, Khademhosseni A (2020) Gut-on-a-chip: current progress and future opportunities. Biomaterials 255. https://doi.org/10.1016/J.BIOMATERIALS.2020.120196

  7. Barron V, Lyons E, Stenson-Cox C, McHugh PE, Pandit A (2003) Bioreactors for cardiovascular cell and tissue growth: a review. Ann Biomed Eng 31(9):1017–1030. https://doi.org/10.1114/1.1603260

    Article  CAS  PubMed  Google Scholar 

  8. Bayir E, Sahinler M, Celtikoglu MM, Sendemir A, Sendemir A (2020) Bioreactors in tissue engineering: mimicking the microenvironment. Biomater Organ Tissue Regenerat New Technol Future Prosp 709–752. https://doi.org/10.1016/B978-0-08-102906-0.00018-0

  9. Benam KH, Villenave R, Lucchesi C, Varone A, Hubeau C, Lee HH, Alves SE, Salmon M, Ferrante TC, Weaver JC, Bahinski A, Hamilton GA, Ingber DE (2015) Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nature Methods 13(2):151–157. https://doi.org/10.1038/nmeth.3697

  10. Bernaerts K, Servaes RD, Kooyman S, Versyck KJ, Van Impe JF (2002) Optimal temperature input design for estimation of the square root model parameters: parameter accuracy and model validity restrictions. Int J Food Microbiol 73(2–3):145–157

    Article  PubMed  Google Scholar 

  11. Beşkardeş IG, Demirtaş TT, Durukan MD, Gümüşderelioğlu M (2015) Microwave-assisted fabrication of chitosan–hydroxyapatite superporous hydrogel composites as bone scaffolds. J Tissue Eng Regen Med 9(11):1233–1246. https://doi.org/10.1002/TERM.1677

    Article  PubMed  Google Scholar 

  12. Bilodeau K (2004) Conception et validation d'un bioréacteur spécifique à la régénération du tissu artériel sous contraintes mécaniques.(unpublished master's thesis.) à la Faculté des études supérieures de l'Université Laval

    Google Scholar 

  13. Bilodeau K, Couet F, Boccafoschi F, Mantovani D (2005) Design of a perfusion bioreactor specific to the regeneration of vascular tissues under mechanical stresses. Artif Organs 29(11):906–912. https://doi.org/10.1111/J.1525-1594.2005.00154.X

    Article  PubMed  Google Scholar 

  14. Blose KJ, Krawiec JT, Weinbaum JS, Vorp DA (2014) Bioreactors for tissue engineering purposes. Regenerat Med Appl Organ Transplant 177–185. https://doi.org/10.1016/B978-0-12-398523-1.00013-6

  15. Boni R, Ali A, Shavandi A, Clarkson AN (2018) Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 25(1):1–21. https://doi.org/10.1186/S12929-018-0491-8

  16. Brown TD (2000) Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 33(1):3–14. https://doi.org/10.1016/S0021-9290(99)00177-3

    Article  CAS  PubMed  Google Scholar 

  17. Bruijns B, van Asten A, Tiggelaar R, Gardeniers H (2016) Microfluidic devices for forensic DNA analysis: a review. Biosensors 6(3). https://doi.org/10.3390/BIOS6030041

  18. Burk J, Plenge A, Brehm W, Heller S, Pfeiffer B, Kasper C (2016) Induction of tenogenic differentiation mediated by extracellular tendon matrix and short-term cyclic stretching. Stem Cells Int. https://doi.org/10.1155/2016/7342379

  19. Carpentier B, Layrolle P, Legallais C (2011) Bioreactors for bone tissue engineering. Int J Art Organs 34(3):259–270. https://doi.org/10.5301/IJAO.2011.6333

  20. Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros-Mendez S (2020) Physically active bioreactors for tissue engineering applications. Adv Biosyst 4(10). https://doi.org/10.1002/ADBI.202000125

  21. Catapano G, Czermak P, Eibl R, Eibl D, Pörtner R (2009) Bioreactor design and scale-up, pp 173–259. https://doi.org/10.1007/978-3-540-68182-3_5

  22. Cei D, Costa J, Gori G, Frediani G, Domenici C, Carpi F, Ahluwalia A (2016) A bioreactor with an electro-responsive elastomeric membrane for mimicking intestinal peristalsis. Bioinspir Biomim 12(1):016001. https://doi.org/10.1088/1748-3190/12/1/016001

    Article  CAS  PubMed  Google Scholar 

  23. Chen HC, Hu YC (2006) Bioreactors for tissue engineering. Biotechnol Lett 28(18):1415–1423. https://doi.org/10.1007/S10529-006-9111-X

  24. Chen J, Ding J, Wu Y, Zhang S, Zheng N, Yang J, Xu J (2021) Chromium oxide nanoparticle impaired osteogenesis and cellular response to mechanical stimulus. Int J Nanomed 16:6157–6170. https://doi.org/10.2147/IJN.S317430

    Article  Google Scholar 

  25. Chen J, Yuan Z, Liu Y, Zheng R, Dai Y, Tao R, Xia H, Liu H, Zhang Z, Zhang W, Liu W, Cao Y, Zhou G (2017) Improvement of in vitro three-dimensional cartilage regeneration by a novel hydrostatic pressure bioreactor. Stem Cells Transl Med 6(3):982–991. https://doi.org/10.5966/SCTM.2016-0118

    Article  CAS  PubMed  Google Scholar 

  26. Chen L, Wei TQ, Wang Y, Zhang J, Li H, Wang KJ (2012) Simulated bladder pressure stimulates human bladder smooth muscle cell proliferation via the PI3K/SGK1 signaling pathway. J Urol 188(2):661–667. https://doi.org/10.1016/J.JURO.2012.03.112

    Article  CAS  PubMed  Google Scholar 

  27. Cho S, Islas-Robles A, Nicolini AM, Monks TJ, Yoon JY (2016) In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope. Biosens Bioelectron 86:697–705. https://doi.org/10.1016/J.BIOS.2016.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cimetta E, Figallo E, Cannizzaro C, Elvassore N, Vunjak-Novakovic G (2009) Micro-bioreactor arrays for controlling cellular environments: design principles for human embryonic stem cell applications. Methods (San Diego, Calif.) 47(2):81–89

    Google Scholar 

  29. Collier CA, Mendiondo C, Raghavan S (2022) Tissue engineering of the gastrointestinal tract: the historic path to translation. J Biol Eng 16(1):1–12. https://doi.org/10.1186/S13036-022-00289-6

    Article  Google Scholar 

  30. Dai Y, Chen J, Li H, Li S, Chen J, Ding Y, Wu J, Wang C, Tan M (2012) Characterizing the effects of VPA, VC and RCCS on Rabbit Keratocytes onto Decellularized Bovine Cornea. PLoS ONE 7(11):e50114. https://doi.org/10.1371/JOURNAL.PONE.0050114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Darling EM, Athanasiou KA (2003) Articular cartilage bioreactors and bioprocesses. Tissue Eng 9(1):9–26. https://doi.org/10.1089/107632703762687492

    Article  CAS  PubMed  Google Scholar 

  32. Davis NF, Callanan A (2016) Development of a bladder bioreactor for tissue engineering in urology. Methods Mol Biol 1502:213–221. https://doi.org/10.1007/7651_2015_309

    Article  CAS  PubMed  Google Scholar 

  33. de Lucena-Thomas JP, Boonprasirt P, Luetchford K, De Bank P, Ellis M (2020) Bed expansion properties of tissue engineering particles in a fluidized bed bioreactor. Biochem Eng J 160:107632

    Article  CAS  Google Scholar 

  34. Deng D, Liu W, Xu F, Yang Y, Zhou G, Zhang WJ, Cui L, Cao Y (2009) Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials 30(35):6724–6730. https://doi.org/10.1016/J.BIOMATERIALS.2009.08.054

    Article  CAS  PubMed  Google Scholar 

  35. Dermenoudis S, Missirlis Y (2010) Design of a novel rotating wall bioreactor for the in vitro simulation of the mechanical environment of the endothelial function. J Biomech 43(7):1426–1431. https://doi.org/10.1016/J.JBIOMECH.2010.01.012

    Article  PubMed  Google Scholar 

  36. Detamore MS, Athanasiou KA (2005) Use of a rotating bioreactor toward tissue engineering the temporomandibular joint disc. Tissue Eng 11(7–8):1188–1197. https://doi.org/10.1089/TEN.2005.11.1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. DiStefano T, Chen HY, Panebianco C, Kaya KD, Brooks MJ, Gieser L, Morgan NY, Pohida T, Swaroop A (2018) Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors. Stem Cell Rep 10(1):300–313. https://doi.org/10.1016/J.STEMCR.2017.11.001

    Article  CAS  Google Scholar 

  38. Donato D, De Napoli IE, Catapano G (2014) Model-based optimization of scaffold geometry and operating conditions of radial flow packed-bed bioreactors for therapeutic applications. Processes 2(1):34–57. https://doi.org/10.3390/PR2010034

  39. Dutt K, Harris-Hooker S, Ellerson D, Layne D, Kumar R, Hunt R (2003) Generation of 3D retina-like structures from a human retinal cell line in a NASA bioreactor. Cell Transplant 12(7):717–731. https://doi.org/10.3727/000000003108747334

    Article  PubMed  Google Scholar 

  40. Eibl R, Werner S, Eibl D (2009) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87. https://doi.org/10.1007/10_2008_15

    Article  CAS  PubMed  Google Scholar 

  41. El Haj AJ, Cartmell SH (2010) Bioreactors for bone tissue engineering. Proc Inst Mech Eng Part H J Eng Med 224(12):1523–1532. https://doi.org/10.1243/09544119JEIM802

  42. Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29(6):476–482. https://doi.org/10.1114/1.1376696

  43. Elomaa L, Yang YP (2017) Additive manufacturing of vascular grafts and vascularized tissue constructs. Tissue Eng Part B Rev 23(5):436–450. https://doi.org/10.1089/TEN.TEB.2016.0348

  44. Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G (2014) Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 32(5):245–253. https://doi.org/10.1016/J.TIBTECH.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  45. Farré R, Otero J, Almendros I, Navajas D (2018) Bioengineered lungs: a challenge and an opportunity. Archivos de Bronconeumología (English Edition) 54(1):31–38. https://doi.org/10.1016/J.ARBR.2017.09.010

    Article  Google Scholar 

  46. Fernández-Pérez J, Ahearne M (2020) Decellularization and recellularization of cornea: progress towards a donor alternative. Methods 171:86–96. https://doi.org/10.1016/J.YMETH.2019.05.009

    Article  PubMed  Google Scholar 

  47. Freed LE, Guilak F, Guo XE, Gray ML, Tranquillo R, Holmes JW, Radisic M, Sefton MV, Kaplan D, Vunjak-Novakovic G (2006) Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng 12:3285–3305

    Article  CAS  PubMed  Google Scholar 

  48. Gelinsky M, Bernhardt A, Milan F (2015) Bioreactors in tissue engineering: advances in stem cell culture and three-dimensional tissue constructs. Eng Life Sci 15(7):670–677. https://doi.org/10.1002/ELSC.201400216

    Article  CAS  Google Scholar 

  49. Ghosh S, Srivastava N, Jha S, Jana Kumar N (2022) Spinner Flask Bioreactor in Tissue Engineering. YMER Digital 21(06):611–626. https://doi.org/10.37896/YMER21.06/61

  50. Goodhart JM, Cooper JO, Smith RA, Williams JL, Haggard WO, Bumgardner JD (2014) Design and validation of a cyclic strain bioreactor to condition spatially-selective scaffolds in dual strain regimes. Processes 2(2):345–360. https://doi.org/10.3390/PR2020345

  51. Griffiths B, Noe W (1998) Scale-up of animal cell, pp 1–2

    Google Scholar 

  52. Groeber F, Kahlig A, Loff S, Walles H, Hansmann J (2013) A bioreactor system for interfacial culture and physiological perfusion of vascularized tissue equivalents. Biotechnol J 8(3):308–316. https://doi.org/10.1002/biot.201200160

  53. Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11(24):4165–4173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guindolet D, Crouzet E, He Z, Herbepin P, Perrache C, Garcin T, Gauthier AS, Forest F, Peoc’h M, Gain P, Gabison E, Thuret G (2021) Epithelial regeneration in human corneas preserved in an active storage machine. Translat Vis Sci Technol 10(2):31–31. https://doi.org/10.1167/TVST.10.2.31

  55. Günal G, Zihna G, Akel H, Okan M, Karaaslan C, Aydin HM (2022) Synthesis of hybrid myocardium constructs and in vitro characterization under mechanical stimulation. Mater Today Commun 33:104477. https://doi.org/10.1016/J.MTCOMM.2022.104477

    Article  Google Scholar 

  56. Halberstadt CR, Hardin R, Bezverkov K, Snyder D, Allen L, Landeen L (1994) Biotechnol Bioeng 43:740

    Article  CAS  PubMed  Google Scholar 

  57. Hami LS, Green C, Leshinsky N, Markham E, Miller K, Craig S (2004) GMP production and testing of Xcellerated T Cells for the treatment of patients with CLL. Cytotherapy 6(6):554–562. https://doi.org/10.1080/14653240410005348

    Article  CAS  PubMed  Google Scholar 

  58. Hansmann J, Groeber F, Kahlig A, Kleinhans C, Walles H (2013) Bioreactors in tissue engineering—principles, applications and commercial constraints. Biotechnol J 8(3):298–307

    Article  CAS  PubMed  Google Scholar 

  59. Hao S, Ha L, Cheng G, Wan Y, Xia Y, Sosnoski DM, Mastro AM, Zheng SY (2018) A spontaneous 3D bone-on-a-chip for bone metastasis study of breast cancer cells. Small (Weinheim an Der Bergstrasse, Germany) 14(12). https://doi.org/10.1002/SMLL.201702787

  60. Helmedag MJ, Weinandy S, Marquardt Y, Baron JM, Pallua N, Suschek CV, Jockenhoevel S (2015) The effects of constant flow bioreactor cultivation and keratinocyte seeding densities on prevascularized organotypic skin grafts based on a fibrin scaffold. Tissue Eng Part A 21(1–2):343. https://doi.org/10.1089/TEN.TEA.2013.0640

    Article  CAS  PubMed  Google Scholar 

  61. Henstock JR, Rotherham M, Rose JB, El Haj AJ (2013) Cyclic hydrostatic pressure stimulates enhanced bone development in the foetal chick femur in vitro. Bone 53(2):468–477. https://doi.org/10.1016/J.BONE.2013.01.010

    Article  CAS  PubMed  Google Scholar 

  62. Hoerstrup SP, Sodian R, Sperling JS, Vacanti JP, Mayer JE (2000) New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng 6(1):75–79. https://doi.org/10.1089/107632700320919

    Article  CAS  PubMed  Google Scholar 

  63. Huang CC, Hagar KL, Frost LE, Sun Y, Cheung HS (2004) Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22(3):313–323. https://doi.org/10.1634/STEMCELLS.22-3-313

    Article  CAS  PubMed  Google Scholar 

  64. Huang CP, Lu J, Seon H, Lee AP, Flanagan LA, Kim HY, Putnam AJ, Jeon NL (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Undefined 9(12):1740–1748. https://doi.org/10.1039/B818401A

    Article  CAS  Google Scholar 

  65. Huang JH, Harris JF, Nath P, Iyer R (2016) Hollow fiber integrated microfluidic platforms for in vitro co-culture of multiple cell types. Biomed Microdev 18(5). https://doi.org/10.1007/S10544-016-0102-Y

  66. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754. https://doi.org/10.1016/J.TCB.2011.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hundt B, Best C, Schlawin N, Kaßner H, Genzel Y, Reichl U (2007) Establishment of a mink enteritis vaccine production process in stirred-tank reactor and Wave® bioreactor microcarrier culture in 1–10 L scale. Vaccine 25(20):3987–3995. https://doi.org/10.1016/J.VACCINE.2007.02.061

    Article  CAS  PubMed  Google Scholar 

  68. Jang KJ, Suh KY (2010) A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab Chip 10(1):36–42. https://doi.org/10.1039/B907515A

    Article  CAS  PubMed  Google Scholar 

  69. Jasuja H, Kar S, Katti DR, Katti KS (2021) Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed. Biofabrication 13(3). https://doi.org/10.1088/1758-5090/abd9d6

  70. Jeong SI, Kwon JH, Lim JI, Cho SW, Jung Y, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ (2005) Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials 26(12):1405–1411. https://doi.org/10.1016/J.BIOMATERIALS.2004.04.036

    Article  CAS  PubMed  Google Scholar 

  71. Jungbauer S, Gao H, Spatz JP, Kemkemer R (2008) Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys J 95(7):3470–3478. https://doi.org/10.1529/BIOPHYSJ.107.128611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Karamichos D (2015) Ocular tissue engineering: current and future directions. J Func Biomater 6(1):77–80. https://doi.org/10.3390/JFB6010077

  73. Kim JH, Atala A, Yoo JJ (2020) Tissue engineering of the kidney. Principles Tissue Eng 825–843. https://doi.org/10.1016/B978-0-12-818422-6.00047-2

  74. Kim JJ, Ellett F, Thomas CN, Jalali F, Anderson RR, Irimia D, Raff AB (2019) A microscale, full-thickness, human skin on a chip assay simulating neutrophil responses to skin infection and antibiotic treatments. Lab Chip 19(18):3094–3103. https://doi.org/10.1039/C9LC00399A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim SS, Penkala R, Abrahimi P (2007) A perfusion bioreactor for intestinal tissue engineering. J Surg Res 142(2):327–331. https://doi.org/10.1016/J.JSS.2007.03.039

    Article  CAS  PubMed  Google Scholar 

  76. Kim S, Kim W, Lim S, Jeon JS (2017) Vasculature-on-a-chip for in vitro disease models. Bioengineering (Basel, Switzerland) 4(1). https://doi.org/10.3390/BIOENGINEERING4010008

  77. Ko IK, Atala A, Yoo JJ (2018) Bioreactors for regenerative medicine in urology. In: Clinical regenerative medicine in urology. Singapore, Springer Singapore, pp 87–104. https://doi.org/10.1007/978-981-10-2723-9_4

  78. Kopp MRG, Arosio P (2018) Microfluidic approaches for the characterization of therapeutic proteins. J Pharm Sci 107(5):1228–1236. https://doi.org/10.1016/J.XPHS.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  79. Korossis S, Bolland F, Kearney JN, Fisher J (2005) Bioreactors in tissue engineering. Top Tissue Eng 2:1–23

    Google Scholar 

  80. Kumar Mahto S, Tenenbaum-Katan J, Sznitman J (2012) Respiratory physiology on a chip. Scientifica 2012:1–12. https://doi.org/10.6064/2012/364054

    Article  CAS  Google Scholar 

  81. Kumar A, Starly B (2015) Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes. Biofabrication 7(4). https://doi.org/10.1088/1758-5090/7/4/044103

  82. Latifi N, Heris HK, Thomson SL, Taher R, Kazemirad S, Sheibani S, Li-Jessen NYK, Vali H, Mongeau L (2016) A flow perfusion bioreactor system for vocal fold tissue engineering applications. Tissue Eng Part C Methods 22(9):823–838. https://doi.org/10.1089/TEN.TEC.2016.0053

  83. Lee CF, Haase C, Deguchi S, Kaunas R (2010) Cyclic stretch-induced stress fiber dynamics—dependence on strain rate, Rho-kinase and MLCK. Biochem Biophys Res Commun 401(3):344–349. https://doi.org/10.1016/J.BBRC.2010.09.046

    Article  CAS  PubMed  Google Scholar 

  84. Lee CY, Chang CL, Wang YN, Fu LM (2011) Microfluidic mixing: a review. Int J Mol Sci 12(5):3263. https://doi.org/10.3390/IJMS12053263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee DY, Ahn HT, Cho KH (2000) A new skin equivalent model: dermal substrate that combines de-epidermized dermis with fibroblast-populated collagen matrix. J Dermatol Sci 23(2):132–137. https://doi.org/10.1016/S0923-1811(00)00068-2

    Article  CAS  PubMed  Google Scholar 

  86. Lichtenberg A, Tudorache I, Cebotari S, Ringes-Lichtenberg S, Sturz G, Hoeffler K, Hurscheler C, Brandes G, Hilfiker A, Haverich A (2006) In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 27(23):4221–4229. https://doi.org/10.1016/J.BIOMATERIALS.2006.03.047

    Article  CAS  PubMed  Google Scholar 

  87. Lim D, Renteria ES, Sime DS, Ju YM, Kim JH, Criswell T, Shupe TD, Atala A, Marini FC, Gurcan MN, Soker S, Hunsberger J, Yoo JJ (2022) Bioreactor design and validation for manufacturing strategies in tissue engineering. Bio-Design Manuf 5(1):43–63

    Article  Google Scholar 

  88. Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA (2017) Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip 17(11):1856–1883. https://doi.org/10.1039/C7LC00242D

    Article  CAS  PubMed  Google Scholar 

  89. Liu L, Wu W, Tuo X, Geng W, Zhao J, Wei J, Yan X, Yang W, Li L, Chen F (2010) Novel strategy to engineer trachea cartilage graft with marrow mesenchymal stem cell macroaggregate and hydrolyzable scaffold. Artif Organs 34(5):426–433. https://doi.org/10.1111/J.1525-1594.2009.00884.X

    Article  PubMed  Google Scholar 

  90. Luo DY, Wazir R, Du C, Tian Y, Yue X, Wei TQ, Wang KJ (2015) Magnitude-dependent proliferation and contractility modulation of human bladder smooth muscle cells under physiological stretch. World J Urol 33(11):1881–1887. https://doi.org/10.1007/S00345-015-1509-4

    Article  PubMed  Google Scholar 

  91. Maghsoudlou P, Sood G, Akhondi H (2022) Cornea transplantation

    Google Scholar 

  92. Mahdinia E, Cekmecelioglu D, Demirci A (2019) Bioreactor scale-up, pp 213–236. https://doi.org/10.1007/978-3-030-16230-6_7

  93. Mandenius CF (2016) Challenges for bioreactor design and operation. Bioreactors 1–34. https://doi.org/10.1002/9783527683369.ch1

  94. Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR (2022) 3D tissue-engineered vascular drug screening platforms: promise and considerations. Front Cardiov Med 9:355. https://doi.org/10.3389/FCVM.2022.847554/BIBTEX

    Article  Google Scholar 

  95. Marrero D, Pujol-Vila F, Vera D, Gabriel G, Illa X, Elizalde-Torrent A, Alvarez M, Villa R (2021) Gut-on-a-chip: mimicking and monitoring the human intestine. Biosens Bioelectron 181:113156. https://doi.org/10.1016/J.BIOS.2021.113156

    Article  CAS  PubMed  Google Scholar 

  96. Marsh D (2017) Engineering characterisation of a rocked bag bioreactor for improved process development and scale-up. University College London

    Google Scholar 

  97. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86. https://doi.org/10.1016/J.TIBTECH.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  98. Martin Y, Vermette P (2005) Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials 26(35):7481–7503. https://doi.org/10.1016/J.BIOMATERIALS.2005.05.057

    Article  CAS  PubMed  Google Scholar 

  99. Masoumi N, Howell MC, Johnson KL, Niesslein MJ, Gerber G, Engelmayr GC (2014) Design and testing of a cyclic stretch and flexure bioreactor for evaluating engineered heart valve tissues based on poly(glycerol sebacate) scaffolds. Proc Inst Mech Eng Part H J Eng Med 228(6):576–586. https://doi.org/10.1177/0954411914534837

  100. Matsuura K, Wada M, Konishi K, Sato M, Iwamoto U, Sato Y, Tachibana A, Kikuchi T, Iwamiya T, Shimizu T, Yamashita JK, Yamato M, Hagiwara N, Okano T (2012) Fabrication of mouse embryonic stem cell-derived layered cardiac cell sheets using a bioreactor culture system. PLoS ONE 7(12):e52176. https://doi.org/10.1371/JOURNAL.PONE.0052176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mauck RL, Soltz MA, Wang CCB, Wong DD, Chao PHG, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122(3):252–260. https://doi.org/10.1115/1.429656

    Article  CAS  PubMed  Google Scholar 

  102. McLoughlin ST, Mahadik B, Fisher J (2022) Bioreactors and scale-up in bone tissue engineering. Bone Tissue Eng 225–247. https://doi.org/10.1007/978-3-030-92014-2_10

  103. Melke J, Zhao F, Rietbergen B, Ito K, Hofmann S (2018) Localisation of mineralised tissue in a complex spinner flask environment correlates with predicted wall shear stress level localisation. Europ Cells Mater 36:57. https://doi.org/10.22203/ECM.V036A05

  104. Miller C, George S, Niklason L (2010) Developing a tissue-engineered model of the human bronchiole. J Tissue Eng Regen Med 4(8):619–627. https://doi.org/10.1002/TERM.277

    Article  CAS  PubMed  Google Scholar 

  105. Mirzabe AH, Hajiahmad A, Fadavi A, Rafiee S (2022) Design of nutrient gas-phase bioreactors: a critical comprehensive review. Bioprocess Biosyst Eng 45(8):1239–1265. https://doi.org/10.1007/s00449-022-02728-6

    Article  CAS  PubMed  Google Scholar 

  106. Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR (2019) Microfluidic brain-on-a-chip: perspectives for mimicking neural system disorders. Mol Neurobiol 56(12):8489–8512. https://doi.org/10.1007/S12035-019-01653-2

    Article  CAS  PubMed  Google Scholar 

  107. Mol A, Bouten CVC, Zünd G, Günter CI, Visjager JF, Turina MI, Baaijens FPT, Hoerstrup SP (2003) The relevance of large strains in functional tissue engineering of heart valves. Thoracic Cardiov Surg 51(2):78–83. https://doi.org/10.1055/S-2003-38993

    Article  CAS  Google Scholar 

  108. Moysidou CM, Barberio C, Owens RM (2021) Advances in engineering human tissue models. Front Bioeng Biotechnol 8:1566. https://doi.org/10.3389/FBIOE.2020.620962

    Article  Google Scholar 

  109. Nakazato T, Kawamura T, Uemura T, Liu L, Li J, Sasai M, Harada A, Ito E, Iseoka H, Toda K, Sawa Y, Miyagawa S (2022) Engineered three-dimensional cardiac tissues maturing in a rotating wall vessel bioreactor remodel diseased hearts in rats with myocardial infarction. Stem Cell Rep 17(5):1170–1182. https://doi.org/10.1016/J.STEMCR.2022.03.012

    Article  CAS  Google Scholar 

  110. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284(5413):489–493. https://doi.org/10.1126/SCIENCE.284.5413.489

    Article  CAS  PubMed  Google Scholar 

  111. Obregón R, Ramón Azcón J, Ahadian S (2017) Bioreactors in tissue engineering. Tissue engineering for artificial organs: regenerative medicine, smart diagnostics and personalized medicine. In Hasan A (ed) Tissue engineering for artificial organs: regenerative medicine, smart, vol 2, pp 169–213

    Google Scholar 

  112. Ortega MA, Fernández-Garibay X, Castaño AG, De Chiara F, Hernández-Albors A, Balaguer-Trias J, Ramón-Azcón J (n.d.) Muscle-on-a-chip with an on-site multiplexed biosensing system for in situ monitoring of secreted IL-6 and TNF-α. Pubs.Rsc.Org. https://doi.org/10.1039/x0xx00000x

  113. Orwin E, Shah A, Voorhees A, Ravi V (2007) Bioreactor design for cornea tissue engineering: material–cell interactions. Acta Biomater 3(6):1041–1049. https://doi.org/10.1016/J.ACTBIO.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  114. Paez-Mayorga J, Hernández-Vargas G, Ruiz-Esparza GU, Iqbal HMN, Wang X, Zhang YS, Parra-Saldivar R, Khademhosseini A (2019) Bioreactors for cardiac tissue engineering. Adv Healthcare Mater 8(7):1701504. https://doi.org/10.1002/ADHM.201701504

    Article  CAS  Google Scholar 

  115. Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic β cells in vitro. Cell 9, 159(2):428–39. https://doi.org/10.1016/j.cell.2014.09.040

  116. Panoskaltsis-Mortari A (2015) Bioreactor development for lung tissue engineering. Curr Transplant Rep 2(1):90. https://doi.org/10.1007/S40472-014-0048-Z

    Article  PubMed  PubMed Central  Google Scholar 

  117. Pasirayi G, Auger V, Scott SM, Rahman PKSM, Islam M, O’hare L, Ali Z (2011) Microfluidic bioreactors for cell culturing: a review. Micro Nanosyst 3(2):137–160. https://doi.org/10.2174/1876402911103020137

  118. Pei M, Solchaga LA, Seidel J, Zeng L, Vunjak-Novakovic G, Caplan AI, Freed LE (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. Wiley Online Library 16(12):1691–1694. https://doi.org/10.1096/fj.02-0083fje

    Article  CAS  Google Scholar 

  119. Peloso A, Ferrario J, Maiga B, Benzoni I, Bianco C, Citro A, Currao M, Malara A, Gaspari A, Balduini A, Abelli M, Piemonti L, Dionigi P, Orlando G, Maestri M (2015) Creation and implantation of acellular rat renal ECM-based scaffolds. Organogenesis 11(2):58–74. https://doi.org/10.1080/15476278.2015.1072661

  120. Pinto DS, da Silva CL, Cabral JM (2019) Scalable expansion of mesenchymal stem/stromal cells in bioreactors: a focus on hydrodynamic characterization. https://doi.org/10.1016/B978-0-12-801238-3.65541-1

  121. Plunkett N, O’Brien FJ (2011) Bioreactors in tissue engineering. Technol Health Care 19(1):55–69. https://doi.org/10.3233/THC-2011-0605

    Article  PubMed  Google Scholar 

  122. Podichetty JT, Bhaskar PR, Singarapu K, Madihally SV (2015) Multiple approaches to predicting oxygen and glucose consumptions by HepG2 cells on porous scaffolds in an axial‐flow bioreactor. Biotechnol Bioeng 112(2):393–404. https://doi.org/10.1002/bit.25355

  123. Pörtner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM (2005) Bioreactor design for tissue engineering. J Biosci Bioeng 100(3):235–245. https://doi.org/10.1263/jbb.100.235

    Article  CAS  PubMed  Google Scholar 

  124. Przepiorski A, Sander V, Tran T, Hollywood JA, Sorrenson B, Shih JH, Wolvetang EJ, McMahon AP, Holm TM, Davidson AJ (2018) A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. Stem Cell Rep 11(2):470. https://doi.org/10.1016/J.STEMCR.2018.06.018

    Article  CAS  Google Scholar 

  125. Rafiq QA, Coopman K, Hewitt CJ (2013) Scale-up of human mesenchymal stem cell culture: current technologies and future challenges. Curr Opin Chem Eng 2(1):8–16. https://doi.org/10.1016/j.coche.2013.01.005

  126. Ratcliffe A, Niklason LE (2002) Bioreactors and bioprocessing for tissue engineering. Ann N Y Acad Sci 961:210–215. https://doi.org/10.1111/j.1749-6632.2002.tb03087.x

    Article  CAS  PubMed  Google Scholar 

  127. Reinwald Y, Leonard KH, Henstock JR, Whiteley JP, Osborne JM, Waters SL, Levesque P, El Haj AJ (2015) Evaluation of the growth environment of a hydrostatic force bioreactor for preconditioning of tissue-engineered constructs. Tissue Eng Part C Methods 21(1):1–14. https://doi.org/10.1089/ten.tec.2013.0476

    Article  CAS  PubMed  Google Scholar 

  128. Rivron N, Rouwkema J, Truckenmüller R, Karperien M, De Boer J, Van Blitterswijk CA (2009) Tissue assembly and organization: developmental mechanisms in microfabricated tissues. Elsevier 30(28):4851–4858. https://www.sciencedirect.com/science/article/pii/S0142961209006486

  129. Rolev K, O’Donovan DG, Coussons P, King L, Rajan MS (2018) Feasibility study of human corneal endothelial cell transplantation using an in vitro human corneal Model. Cornea 37(6):778–784. https://doi.org/10.1097/ICO.0000000000001555

    Article  PubMed  Google Scholar 

  130. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698. https://doi.org/10.1101/GAD.242002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sabatino MA, Santoro R, Gueven S, Jaquiery C, Wendt DJ, Martin I, Moretti M, Barbero A (2015) Cartilage graft engineering by co‐culturing primary human articular chondrocytes with human bone marrow stromal cells. J Tissue Eng Regenerative Med 9(12):1394–1403. https://doi.org/10.1002/term.1661

  132. Sagita ID, Whulanza Y, Dhelika R, Nurhadi I (2018) Designing electrical stimulated bioreactors for nerve tissue engineering. AIP Conf Proc 1933(1):040019. https://doi.org/10.1063/1.5023989

    Article  CAS  Google Scholar 

  133. Saini S, Wick TM (2003) Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development. Biotechnol Prog 19(2):510–521. https://doi.org/10.1021/BP0256519

    Article  CAS  PubMed  Google Scholar 

  134. Salazar BH, Cashion AT, Dennis RG, Birla RK (2015) Development of a cyclic strain bioreactor for mechanical enhancement and assessment of bioengineered myocardial constructs. Cardiovasc Eng Technol 6(4):533–545. https://doi.org/10.1007/S13239-015-0236-8

    Article  PubMed  PubMed Central  Google Scholar 

  135. Salehi-Nik N, Amoabediny G, Pouran B, Tabesh H, Shokrgozar MA, Haghighipour N, Khatibi N, Anisi F, Mottaghy K, Zandieh-Doulabi B (2013) Engineering parameters in bioreactor’s design: a critical aspect in tissue engineering. BioMed Res Int 2013(3). https://doi.org/10.1155/2013/762132

  136. Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, Schweinlin M, Walles H, Hansmann J (2017) A versatile modular bioreactor platform for tissue engineering. Biotechnol J 12(2):1600326. https://doi.org/10.1002/BIOT.201600326

    Article  PubMed  Google Scholar 

  137. Schwarz RP, Goodwin TJ, Wolf DA (1992) Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J Tissue Cult Methods 14(2):51–57. https://doi.org/10.1007/BF01404744

    Article  CAS  PubMed  Google Scholar 

  138. Selden C, Bioengineering BF (2018) Role of bioreactor technology in tissue engineering for clinical use and therapeutic target design. Mdpi.Com. https://doi.org/10.3390/bioengineering5020032

  139. Serrano-Aroca Á, Vera-Donoso CD, Moreno-Manzano V (2018) Bioengineering approaches for bladder regeneration. Int J Mol Sci 19(6):1796. https://doi.org/10.3390/IJMS19061796

  140. Shachar M, Benishti N, Cohen S (2012) Effects of mechanical stimulation induced by compression and medium perfusion on cardiac tissue engineering. Biotechnol Prog 28(6):1551–1559. https://doi.org/10.1002/btpr.1633

  141. Shields CW IV, Reyes CD, López GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249. https://doi.org/10.1039/C4LC01246A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shoichet MS, Tate CC, Douglas Baumann M, LaPlaca MC (2008) Strategies for regeneration and repair in the injured central nervous system. Indwelling Neur Implant Strat Contend In Vivo Environ 221–244. https://doi.org/10.1201/9781420009309.ch8

  143. Shrestha J, Razavi Bazaz S, Aboulkheyr Es H, Yaghobian Azari D, Thierry B, Ebrahimi Warkiani M, Ghadiri M (2020) Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Taylor & Francis 40(2):213–230. https://doi.org/10.1080/07388551.2019.1710458

    Article  CAS  Google Scholar 

  144. Sikavitsas VI, Bancroft GN, Mikos AG (2002) Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 62(1):136–148. https://doi.org/10.1002/JBM.10150

    Article  CAS  PubMed  Google Scholar 

  145. Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30(1–3):149–158. https://doi.org/10.1023/A:1008025016272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Somerville RPT, Devillier L, Parkhurst MR, Rosenberg SA, Dudley ME (2012) Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE ®bioreactor. J Trans Med 10(1). https://doi.org/10.1186/1479-5876-10-69

  147. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Med 19(5):646–651. https://doi.org/10.1038/nm.3154

  148. Southgate J, Cross W, Eardley I, Thomas DFM, Trejdosiewicz LK (2005) Bladder reconstruction—from cells to materials. Proc Inst Mech Eng Part H J Eng Med 217(4):311–316. https://doi.org/10.1243/095441103322060776

  149. Spier MR, Vandenberghe LPS, Medeiros ABP, Soccol CR (2011) Application of Different Types of Bioreactors in Bioprocesses, Bioreactors. Bioreactors Des Prop Appl pp 55–90

    Google Scholar 

  150. Stiehler M, Bünger C, Baatrup A, Lind M, Kassem M, Mygind T (2009) Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res Part A 89(1):96–107. https://doi.org/10.1002/JBM.A.31967

    Article  Google Scholar 

  151. Sun T, Norton D, Haycock JW, Ryan AJ, MacNeil S (2006) Development of a closed bioreactor system for culture of tissue-engineered skin at an air–liquid interface. Tissue Eng 11(11–12):1824–1831. https://doi.org/10.1089/TEN.2005.11.1824

  152. Sun T, Norton D, Vickers N, McArthur SL, Neil SM, Ryan AJ, Haycock JW (2008) Development of a bioreactor for evaluating novel nerve conduits. Biotechnol Bioeng 99(5):1250–1260. https://doi.org/10.1002/BIT.21669

    Article  CAS  PubMed  Google Scholar 

  153. Tao Y, Shih J, Sinacore M, Ryll T, Yusuf-Makagiansar H (2011) Development and implementation of a perfusion-based high cell density cell banking process. Biotechnol Prog 27(3):824–829. https://doi.org/10.1002/BTPR.599

    Article  CAS  PubMed  Google Scholar 

  154. Theodoridis K, Aggelidou E, et al (2020) An effective device and method for enhanced cell growth in 3D scaffolds: investigation of cell seeding and proliferation under static and dynamic conditions. Elsevier. https://doi.org/10.1016/j.msec.2020.111060

  155. Tiemessen D, de Jonge P, Daamen W, Feitz W, Geutjes P, Oosterwijk E (2017) The effect of a cyclic uniaxial strain on urinary bladder cells. World J Urol 35(10):1531–1539. https://doi.org/10.1007/S00345-017-2013-9/FIGURES/6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Timmins NE, Palfreyman E, Marturana F, Dietmair S, Luikenga S, Lopez G, Fung YL, Minchinton R, Nielsen LK (2009) Clinical scale ex vivo manufacture of neutrophils from hematopoietic progenitor cells. Biotechnol Bioeng 104(4):832–840. https://doi.org/10.1002/BIT.22433

    Article  CAS  PubMed  Google Scholar 

  157. Titze I, Hitchcock R, Broadhead K, Webb K, Li W, Gray SD (2004) Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. J Biomech 37:1521–1529. https://doi.org/10.1016/j.jbiomech.2004.01.007

    Article  PubMed  Google Scholar 

  158. Todros S, Spadoni S, Maghin E, Piccoli M, Pavan PG (2021) A novel bioreactor for the mechanical stimulation of clinically relevant scaffolds for muscle tissue engineering purposes. Processes 9(3):474. https://doi.org/10.3390/PR9030474

  159. Tondon A, Kaunas R (2014) The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress. PLoS ONE 9(2). https://doi.org/10.1371/JOURNAL.PONE.0089592

  160. Tondreau MY, Laterreur V, Gauvin R, Vallières K, Bourget JM, Lacroix D, Tremblay C, Germain L, Ruel J, Auger FA (2015) Mechanical properties of endothelialized fibroblast-derived vascular scaffolds stimulated in a bioreactor. Acta Biomater 18:176–185. https://doi.org/10.1016/J.ACTBIO.2015.02.026

    Article  CAS  PubMed  Google Scholar 

  161. Tran SC, Cooley AJ, Elder SH (2011) Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage. Biotechnol Bioeng 108(6):1421–1429. https://doi.org/10.1002/BIT.23061

    Article  CAS  PubMed  Google Scholar 

  162. Ulbrich C, Wehland M, Pietsch J, Aleshcheva G, Wise P, Van Loon J, Magnusson N, Infanger M, Grosse J, Eilles C, Sundaresan A, Grimm D (2014) The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. BioMed Res Int. https://doi.org/10.1155/2014/928507

  163. Uzarski JS, Xia Y, Belmonte JCI, Wertheim JA (2014) New strategies in kidney regeneration and tissue engineering. Curr Opin Nephrol Hypertens 23(4):399–405. https://doi.org/10.1097/01.MNH.0000447019.66970.EA

    Article  CAS  PubMed  Google Scholar 

  164. Vrana N, Knopf-Marques H, Barthes J (Eds) (2020) Biomaterials for organ and tissue regeneration: new technologies and future prospects. Woodhead Publishing

    Google Scholar 

  165. Watanabe S, Inagaki S, Kinouchi I, Takai H, Masuda Y, Mizuno S (2005) Hydrostatic pressure/perfusion culture system designed and validated for engineering tissue. J Biosci Bioeng 100:105–111. https://doi.org/10.1263/jbb.100.105

  166. Webster A, Dyer CE, Haswell SJ, Greenman J (2010) A microfluidic device for tissue biopsy culture and interrogation. Anal Methods 2(8):1005–1007. https://doi.org/10.1039/C0AY00293C

    Article  CAS  Google Scholar 

  167. Weston MW, Yoganathan AP (2001) Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann Biomed Eng 29(9):752–763. https://doi.org/10.1114/1.1397794

  168. Wolf DA, Kleis SJ (2016) Principles of analogue and true microgravity bioreactors to tissue engineering. Effect Spaceflight Spaceflight Anal Cult Human Microbial Cells Novel Insights Dis Mech 39–60. https://doi.org/10.1007/978-1-4939-3277-1

  169. Wolf F, Rojas González DM, Steinseifer U, Obdenbusch M, Herfs W, Brecher C, Jockenhoevel S, Mela P, Schmitz-Rode T (2018) VascuTrainer: a mobile and disposable bioreactor system for the conditioning of tissue-engineered vascular grafts. Ann Biomed Eng 46(4):616–626. https://doi.org/10.1007/S10439-018-1977

    Article  PubMed  Google Scholar 

  170. Wong AK, Llanos P, Boroda N, Rosenberg SR, Rabbany SY (2016) A parallel-plate flow chamber for mechanical characterization of endothelial cells exposed to laminar shear stress. Cell Molecul Bioeng 9(1):127–138. https://doi.org/10.1007/S12195-015-0424-5

  171. Wu Z, Zhou Q, Duan H, Wang X, Xiao J, Duan H, Li N, Li C, Wan P, Liu Y, Song Y, Zhou C, Huang Z, Wang Z (2014) Reconstruction of auto-tissue-engineered lamellar cornea by dynamic culture for transplantation: a rabbit model. PLoS ONE 9(4):e93012. https://doi.org/10.1371/JOURNAL.PONE.0093012

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wung N, Acott SM, Tosh D, Ellis MJ (2014) Hollow fibre membrane bioreactors for tissue engineering applications. Biotech Lett 36(12):2357–2366. https://doi.org/10.1007/s10529-014-1619-x

    Article  CAS  Google Scholar 

  173. Xiang Y, Wen H, Yu Y, Li M, Fu X, Huang S (2020) Gut-on-chip: recreating human intestine in vitro. J Tissue Eng 11. https://doi.org/10.1177/2041731420965318

  174. Xie Y, Lu J (2016) Bioreactors for bone tissue engineering. Biomech Biomater Orthoped 115–122. https://doi.org/10.5301/ijao.2011.6333

  175. Yeatts AB, Fisher JP (2011) Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone 48(2):171–181. https://doi.org/10.1016/j.bone.2010.09.138

    Article  CAS  PubMed  Google Scholar 

  176. Yin CH, Chen W, Hsiao CC, Kuo CY, Chen CL, Wu WT (2007) Production of mouse embryoid bodies with hepatic differentiation potential by stirred tank bioreactor. Biosci Biotechnol Biochem 71(3):728–734. https://doi.org/10.1271/bbb.60568

    Article  CAS  PubMed  Google Scholar 

  177. Yoon HH, Bhang SH, Shin JY, Shin J, Kim BS (2012) Enhanced cartilage formation via three-dimensional cell engineering of human adipose-derived stem cells. Tissue Eng Part A 18(19–20):1949–1956. https://doi.org/10.1089/TEN.TEA.2011.0647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. You JB, Kang K, Tran TT, Park H, Hwang WR, Kim JM, Im SG (2015) PDMS-based turbulent microfluidic mixer. Lab Chip 15(7):1727–1735. https://doi.org/10.1039/c5lc00070j

    Article  CAS  PubMed  Google Scholar 

  179. Yu H, Chong SK, Hassanbhai AM, Teng Y, Balachander G, Muthukumaran P, Wen F, Teoh SH (2020) Principles of bioreactor design for tissue engineering. Principles Tissue Eng 179–203. https://doi.org/10.1016/B978-0-12-818422-6.00012-5

  180. Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A, Wells LA, Masse S, Kim J, Reis L, Momen A, Nunes SS, Wheeler AR, Nanthakumar K, Keller G, Sefton MV, Radisic M (2016) Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature Mater 15(6):669–678. https://doi.org/10.1038/nmat4570

  181. Zhao J, Griffin M, Cai J, Li S, Bulter PEM, Kalaskar DM (2016) Bioreactors for tissue engineering: an update. Biochem Eng J 109:268–281. https://doi.org/10.1016/J.BEJ.2016.01.018

    Article  CAS  Google Scholar 

  182. Zhao Y, Kankala RK, Wang SB, Chen AZ (2019) Multi-organs-on-chips: towards long-term biomedical investigations. Molecules 24(4):675. https://doi.org/10.3390/molecules24040675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zheng CX, Sui BD, Hu CH, Qiu XY, Zhao P, Jin Y (2018) Reconstruction of structure and function in tissue engineering of solid organs: toward simulation of natural development based on decellularization. J Tissue Eng Regen Med 12(6):1432–1447. https://doi.org/10.1002/TERM.2676

    Article  CAS  PubMed  Google Scholar 

  184. Zhou W, Chen Y, Roh T, Lin Y, Ling S, Zhao S, Lin JD, Khalil N, Cairns DM, Manousiouthakis E, Tse M, Kaplan DL (2018) Multifunctional bioreactor system for human intestine tissues. ACS Biomater Sci Eng 4(1):231. https://doi.org/10.1021/ACSBIOMATERIALS.7B00794

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabia Cakir Koc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahata, B. et al. (2023). Bioreactors for Tissue Engineering. In: Gunduz, O., Egles, C., Pérez, R.A., Ficai, D., Ustundag, C.B. (eds) Biomaterials and Tissue Engineering. Stem Cell Biology and Regenerative Medicine, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-031-35832-6_9

Download citation

Publish with us

Policies and ethics