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Abstract Combining data from different sources and modalities can unlock novel 
insights that are not available by analyzing single data sources in isolation. We 
investigate how multimodal user-generated data, consisting of images, videos, or 
text descriptions, can be used to enrich trajectories of migratory birds, e.g., for 
research on biodiversity or climate change. Firstly, we present our work on advanced 
visual analysis of GPS trajectory data. We developed an interactive application that 
lets domain experts from ornithology naturally explore spatiotemporal data and 
effectively use their knowledge. Secondly, we discuss work on the integration of 
general-purpose image data into citizen science platforms. As part of inter-project 
cooperation, we contribute to the development of a classifier pipeline to semi-
automatically extract images that can be integrated with different data sources to 
vastly increase the number of available records in citizen science platforms. These 
works are an important foundation for a dynamic matching approach to jointly 
integrate geospatial trajectory data and user-generated geo-referenced content. 
Building on this work, we explore the joint visualization of trajectory data and 
VGI data while considering the uncertainty of observations. BirdTrace, a visual 
analytics approach to enable a multi-scale analysis of trajectory and multimodal 
user-generated data, is highlighted. Finally, we comment on the possibility to 
enhance prediction models for trajectories by integrating additional data and domain 
knowledge. 
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4.1 Introduction 

Our goal is to integrate and match the two heterogeneous large data sources to 
enrich the spatial databases with contextual information. Furthermore, we want to 
investigate in detail the uncertainty that is found in different VGI data sources. In 
this chapter, we describe our research toward this goal, by focusing on three core 
contributions: 

1. Visual-interactive analysis of GPS trajectory data for domain experts 
2. The usage of additional non-verified data sources for VGI in the context of 

birdwatching 
3. A joint approach to analyze GPS trajectory data and VGI contributions con-

sidering the uncertainty that, e.g., was introduced by the previous extraction of 
non-verified data 

Additionally, we present work on using visual analytics for the training of deep 
learning models for movement prediction, which can support future research in 
domains of geographic information science and forecasting for biologging data. 

In the following, we first present the relevant background that motivates our 
research. Subsequently, we describe pursued research contributing to the aforemen-
tioned points, done in conjunction with domain experts or in close collaboration 
with other partners of the priority program. Finally, we give a brief outlook on 
possible future research directions. 

4.2 Related Work 

VGI contains insight that has the potential to solve fundamental and unsolved 
social and environmental challenges. The big scientific challenge consists of how 
to investigate and extract value from noisy VGI data sources. Coxen et al. (2017) 
stressed that there is a general concern about spatial biases in citizen science 
datasets. Geldmann et al. (2016) also underline that untrained volunteers might 
be introducing biases, leading to spatial biases toward densely populated areas 
and easy-to-watch observations. Integrating and assimilation of VGI into scientific 
models requires a change of paradigm that embraces uncertainty and bias. Some 
popular citizen science initiatives have already tried to assimilate VGI to improve 
the results of biodiversity models. Since 2002, the eBird project has been gathering 
bird observation records from volunteers around the world. The participation of 
volunteers has shown a rapid increase in recent years with millions of observations 
submitted each year. Since then, more than 500,000 users have visited the eBird 
website (Sullivan et al. 2009). Kelling et al. (2012) proposed a Human/Computer 
Learning Network for Biodiversity Conservation incorporating VGI coming from 
eBird using an active learning feedback loop to improve the results of the AI 
algorithms. Fink et al. (2010, 2013) introduced a spatiotemporal exploratory model,
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STEM, and AdaSTEM, to study species distribution models. They used massively 
crowdsourced citizen science data to construct the corresponding models. The 
STEM model was afterward integrated into a visual analytics system, BirdVis 
(Ferreira et al. 2011), that allows the ornithologist to analyze abundance models 
to understand better bird populations. Coxen et al. (2017) compare two species 
distribution models using satellite tracking data vs. citizen science datasets coming 
from eBird datasets. Their results showed the effectiveness of citizen science 
datasets for this particular use. In other disciplines, such as atmospheric sciences, 
the shift to the user-generated information paradigm is even harder. Chapman et al. 
(2017) stated that in atmospheric science, high-quality and precise observation is 
deeply rooted in the essence of the discipline and other data sources with low-
quality, bias, and imprecision are hard to accept. Other antecedents to understanding 
bird migration behavior and patterns are the work of Jain and Dilkina, who 
constructed a migration network using K-means clustering and Markov chain model 
(Jain and Dilkina 2015), and the tool of Wood et al., where they studied the seasonal 
behavior of bird species within a specific location (Wood et al. 2011). There is 
also previous work to understand the quality of the observations and uncertainty 
of the models, by characterizing bird watchers. Cole and Scott in 1999 used Texas 
Conservation Passport holders and members of the American Birding Association 
to categorize differences between two different groups of wildlife watching as 
casual wildlife watchers and serious birders (Cole and Scott 1999). These two 
groups were defined by their skill level at identifying birds, the frequency of 
participation, expenditures, and bird-watching behavior. Afterward, Scott conducted 
another study with Thigpen (Scott and Thigpen 2003) to understand bird watchers’ 
behavior. Data were collected from the bird-watching festival in September 1995 
at the Seventh Annual HummerBird Celebration in Rockport/Fulton, Texas. In 
Scott and Shafer (2001), specialization was measured with regard to birdwatcher 
behavior, level of skill, and commitment. Based on the this, they categorized 
birders into casual, interested, active, and skilled birders. The outcomes of the 
study by Scott and Thigpen have supported McFarlane’s investigation of birders 
in Alberta (McFarlane 1994). She revealed that .80% of the general population in 
her example were casual or novice birders. This information could be very valuable 
to quantify the confidence of VGI observations. Previous work shows a glimpse of 
the unprecedented opportunity to materialize a change in the way scientific models 
treat data, changing the VGI data paradigm to embrace the uncertainty and bias of 
data provided by humans as part of the scientific investigation process. From now 
on, a fascinating endeavor comprises for us the development of new techniques that 
can bridge the gap between social, exact, and natural sciences by using VGI as an 
interlinkage among biodiversity and human behavior to provide effective and timely 
answers to societal calls such as climate change and nature preservation. 

Previous work has shown how geo-tagged social media data reflects the spa-
tiotemporal distribution of social groups (MacEachren et al. 2011). For example, 
scatterplots combine event detection and classification in investigating the geo-
tagged social media, to enable situation awareness (Thom et al. 2012; Cao et al. 
2012) for geospatial information diffusion. Our preliminary work in this area covers
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the dynamics of social groups and their expressions on social media. Our work on 
social media bubbles (Diehl et al. 2018) is the first step toward the structuring of 
complex social relationships on social media. The main connection point between 
the social group structure as the scaffolding of society and VGI is the uncertainty 
that humans introduce into the data and the trustworthiness of systems consumed by 
humans. This work addresses different aspects of uncertainty from a practical point 
of view. Our work on the visual assessment for visual abstractions (Sacha et al. 
2017) addresses the trustworthiness of the users in the systems for the particular 
case of soccer data. The works above addressed the uncertainty from the perspective 
of the producer of VGI and the trustworthiness of the users on the systems. During 
the last few years, the study of uncertainty and its propagation through the visual 
analytics workflow have gained popularity. Early, in 2015, MacEachren proposed 
to consider the propagation of uncertainty through the whole VA workflow rather 
than just the visualization of the uncertainty at the end of the pipeline (MacEachren 
et al. 2011). He illustrated current challenges and possible approaches to tackle 
uncertainty using definitions from decision sciences. Kinkeldey et al. analyzed 
the impact of visually represented geodata uncertainty on decision-making and 
addressed possible approaches for the evaluation of uncertainty in visualizations. 
Previously, we tackled the uncertainty aspects of VGI using a theoretical framework 
(Diehl et al. 2018), which, for the first time, shapes the human factors of uncertainty 
in VGI and defines a new term “user uncertainty” to enclose them. 

4.3 Analysis of GPS Trajectory Data 

We start by looking at an analysis that is possible for stand-alone trajectory data in 
the biologging context. Analysis tools, both visually and algorithmically, build the 
foundation for our goal of enabling a joint approach for trajectory data and voluntary 
geographic information. 

4.3.1 Motivation and Research Gap 

Segmenting biologging time series of animals on multiple temporal scales is an 
essential step that requires complex techniques with careful parameterization and 
possibly cross-domain expertise. Yet, there is a lack of visual-interactive tools 
that strongly support such multi-scale segmentation. To close this gap, we present 
our MultiSegVA platform for interactively defining segmentation techniques and 
parameters on multiple temporal scales in our paper MultiSegVA: Using Visual 
Analytics to Segment Biologging Time Series on Multiple Scales (Meschenmoser 
et al. 2020). MultiSegVA primarily contributes tailored, visual-interactive means 
and visual analytics paradigms for segmenting unlabeled time series on multiple 
scales. Further, to flexibly compose the multi-scale segmentation, the platform
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contributes a new visual query language that links a variety of segmentation tech-
niques. To illustrate our approach, we present a domain-oriented set of segmentation 
techniques derived in collaboration with movement ecologists. In the paper, the 
applicability and usefulness of MultiSegVA are demonstrated in two real-world use 
cases from movement ecology, related to behavior analysis after environment-aware 
segmentation and after progressive clustering. Expert feedback from movement 
ecologists shows the effectiveness of tailored visual-interactive means and visual 
analytics paradigms in segmenting multi-scale data, enabling them to perform 
semantically meaningful analyses. Here, we want to highlight two key aspects of the 
work, the characteristics of biologging time series data and the respective analysis, 
as well as how we can support this process within the visual analytics framework. 
For further details, we refer to the paper of Meschenmoser et al. (2020). For our 
work, we focus on biologging time series of moving animals: these time series have 
prototypical multi-scale characters and include widely unexplored behaviors, which 
are hidden in high resolutions and cardinalities. Additionally, biologging-driven 
movement ecology is an emerging field (Brown et al. 2013; Shepard et al. 2008), 
triggered by technical advances that enable academia to address open questions in 
innovative ways. The biologging time series stems from miniaturized tags and gives 
high-resolution information about, e.g., an animal’s location, tri-axial acceleration, 
and heart rate. Here, semantics are typically distributed on diverse temporal scales, 
including life stages, seasons, days, day times, and (micro)movement frames. These 
temporal scales are complemented by spatial scales concerning, e.g., the overall 
migration range, migration stops, and foraging ranges. There are complex scale-
and context-specific conditions (Benhamou 2014; Levin 1992), implying different 
energy expenditures, driving factors, and decisions for behavior. Hence, segmenting 
such time series on a single scale with global parameters does not sufficiently 
address their multi-scale character. The relevance of multi-scale segmentation can 
be further motivated by three reasons. First, analysts can deepen their understanding 
of how scales relate to each other: e.g., in terms of nesting relations, next to relative 
scale sizes and types. A multi-scale perspective can even enable one “to gain 
an insight on an entire knowledge domain or a relevant sub-part” (Nazemi et al. 
2015). Second, even without labeled data or thoroughly parameterized single-scale 
techniques, it is possible to identify fine-grained patterns that are wrapped by lower-
scale, context-yielding patterns. Such fine-grained and context-aware patterns are 
crucial to enriching existing classification and prediction models. Third, demands 
for more multi-scale analyses originate from domain literature. Such demands can 
be found in movement ecology and analysis (Andrienko and Andrienko 2013; 
Demšar et al. 2015), but also in, e.g., medical sciences (Alber et al. 2019) and 
social sciences (Cash et al. 2006). However, in practice, segmenting time series 
on multiple scales is often impeded by several factors. First, multi-scale techniques 
rely on more in-depth, theoretical foundations and inherent parameters that need to 
be carefully adapted. Therefore, analysts (e.g., movement ecologists) might require 
cross-domain expertise in statistical multi-scale time series analysis. Second, even 
with such expertise, it is difficult to decide on scale properties (e.g., size, dimension, 
number of scales) and further parameters. Third, we observe a lack of suitable
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visual-interactive approaches in related works (Sect. 3.2) that can strongly support 
and promote segmenting time series on multiple scales. 

For MultiSegVa, we defined four requirements in cooperation with domain 
experts: 

1. An application that integrates analysis tools at different time scales without the 
need to manually combine different algorithms or libraries. 

2. Support time series segmentation by revealing the multi-scale structure and 
addressing its specifics. 

3. The analysis should be able to flexibly parameterize segmentation algorithms to 
the specific context. 

4. Visual-interactive features that can help the analysts’ work. 

4.3.2 Approach 

To close the research gap of enabling multi-scale analysis of biologging time 
series, we present our web-based MultiSegVA platform that allows analysts to 
visually explore and refine a multi-scale segmentation, which results from a simple 
way of setting segmentation techniques on multiple scales. In the context of 
multi-scale segmentation, MultiSegVA primarily contributes to the use of tailored 
visual-interactive features and established VA paradigms. To flexibly configure 
segmentation techniques and parameters, MultiSegVA includes a new visual query 
language (VQL, C2) that links a variety of segmentation techniques across multiple 
scales. These techniques stem in the present case from a set that was derived together 
with movement ecologists and covers typical domain use cases. Figure 4.1 shows 
the main window of the MultiSegVA system. Here, the analyst can build visual 
queries and analyze the existing segmentation results in a hierarchy visualization, 

Fig. 4.1 A screenshot from MultiSegVA
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Fig. 4.2 The visual query language interface: In the left column, multiple time series segmentation 
methods can be selected. The hierarchy of applied methods can be changed via an interactive 
interface, shown in the second column. Finally, detailed settings for each method can be changed 
in the third column 

which in turn is closely linked to one- and multidimensional time series plots. 
It is also possible to access additional details of segments via a temporal detail 
window or inspect the underlying trajectories on a map. MultiSegVA implements 
a feedback loop for iterative analysis and refinement of the segmentation. After 
importing a time series, e.g., GPS trajectory data of tracked animals via Movebank 
(Wikelski M 2023), the analyst can start to analyze the time series. After an initial 
visual inspection of the time series dimensions, an analyst can steer hierarchical 
time series segmentation using the visual query language (VQL). The interface 
is shown in Fig. 4.2. The VQL serves three purposes here: (1) Different types of 
segmentation techniques can be easily arranged across different time scales, (2) 
the hierarchical application order can be defined by manipulating with building 
blocks, and (3) the chosen techniques can be interactively parameterized. The query 
interface first provides a list of available techniques organized by category and 
can recommend appropriate techniques. To modify the hierarchical application of 
techniques, selected techniques are arranged as visual building blocks which can be 
modified by drag-and-drop interactions. This can alleviate some issues that arise 
with text-based queries. In particular, it avoids changing the ordering of nested 
queries, which can be tedious and error-prone in text-based queries. The query 
language also provides several selectors and operations to chain and link different 
techniques at the same or different scales. The finalized query is then processed in 
the backend of the application, and the results are visualized via the icicle hierarchy 
view; see the top of Fig. 4.1. The analyst can choose to adapt the query based on the 
achieved results to iteratively improve the segmentation results and get a detailed 
understanding of the time series data.
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4.3.3 Results 

MultiSegVA enables the comprehensive exploration and refining of multi-scale 
segmentation by tailored visual-interactive features and VA paradigms. MultiSegVA 
includes segment tree encoding, subtree highlighting, guidance, density-dependent 
features, adapted navigation, multi-window support, and a feedback-based work-
flow. The VQL facilitates exploring and parameterizing different multi-scale struc-
tures. Still, a few aspects remain for further reflection. The icicle visualization 
meets expert requests and has several benefits. Yet, guiding the user by color 
to interesting parts of the segment tree is a challenging task. We tested global, 
level-based, and sibling-based guidance variants according to color fills. We chose 
sibling-based guidance (i.e., all siblings of one hovered segment are colored) that 
optimally captures local similarities while requiring more navigation effort across 
levels and nodes. Upcoming works will include an even more effective variant, 
i.e., guidance to local similarities with little interaction and one fixed color scale. 
Our VQL makes it trivial to build a multi-scale segmentation. Query building 
is a play with building blocks that benefits from strong abstraction and simple 
interactions. Rather, it is difficult to decide which multi-scale structure and building 
blocks are most appropriate: a decision that depends on data, analysis, and tasks. 
MultiSegVA facilitates this decision through extensive documentation, technique 
categorization, few technique parameters, and short processing times in a compact 
workflow. For further support, we plan predefined queries, and instant responses 
at query building, next to the parameter and technique suggestions. For suggesting 
parameters, we will apply estimators (Catarci et al. 1997; Yao  1988) for the number 
of change points as well as the elbow method for knn-searches. While motif length 
and HDBSCAN’s minPts (Campello et al. 2013) optimally benefit from domain 
expertise, suggesting other parameters will simplify the interaction and can address 
another limitation. Now, a technique processes each segment of one scale with 
the same parameters; thus, slight data-dependent parameter modifications will be 
examined. For technique suggestions, we envision for each technique a scale-wise 
relevance score that reflects data properties and is part of a rule-based prioritization, 
shaped by domain expertise and meaningful hierarchies. It is essential to depict the 
semantics into which MultiSegVA can provide insights. First of all, MultiSegVA 
illuminates diverse multi-scale structures and gives insights into how scales relate 
to each other. Coarse behaviors can be distinguished by relatively simple techniques, 
motifs show repetitive behaviors, and knn-searches allow the matching with already 
explored segments. Segment lengths and similarities can be explored, next to local 
anomalies and spatial contexts. However, with the current techniques, it is difficult 
to broadly capture deeper, behavioral semantics (e.g., chew, scratch). Hereto more 
complex or learning techniques (e.g., HMMs, SVMs) will be needed that neither 
overfill the interface nor delimit generalizability due to the lack of learned patterns. 
The latter point goes hand in hand with our major limitation and the corresponding 
implication for upcoming work: integrating even more intelligent methods and 
automatism. These plans all relate to aspects from above, i.e., better guidance,
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technique, and more parameter suggestions, as well as techniques for deeper 
behavioral semantics. MultiSegVA relies on requirements from movement ecology 
experts and stands for an iterative, extensively collaborative, and interdisciplinary 
process. We can gather domain feedback on several stages, derive a domain-oriented 
set of techniques, and even link MultiSegVA to Movebank with .>2.2 billion animal 
locations. With this application domain-focused, MultiSegVA underpins the value of 
multi-scale analyses and is certainly another step forward “to empower the animal 
tracking community and to foster new insight into the ecology and movement of 
tracked animals” (Spretke et al. 2011). Meanwhile, our third use case shows that 
MultiSegVA variants for other domains are conceivable, especially with tailored 
domain-oriented technique sets. This generalizability is promoted by the platform’s 
I/O features and its ability to handle heterogeneous time series, with .>1.2 million 
records. 

4.4 Analysis of VGI Contributor Data 

In joint collaborative work with partners of the priority program, we investigate the 
utility of using a novel pipeline based on a deep learning-based image classifier 
to integrate images from the social media platform Flickr with data from citizen 
science platforms: A text and image analysis workflow using citizen science data to 
extract relevant social media records: combining red kite observations from Flickr, 
eBird and iNaturalist (Hartmann et al. 2022). In our research agenda, this work 
serves a dual role: (1) We explore the characteristics of VGI image data in our 
chosen domain of migratory birds, as well as automated integration techniques, 
and (2) we integrate contributions from non-verified data sources, which directly 
connects to the research topic of uncertainty in data sources. Specifically, the 
confidence of the developed classification pipeline might be directly used as an 
uncertainty measure for the matching process we introduce in the following chapter. 

4.4.1 Motivation and Research Gap 

There is an urgent need to develop new methods to monitor the state of the envi-
ronment. One potential approach is to use new data sources, such as user-generated 
content, to augment existing approaches. Despite a wide range of works discussing 
and demonstrating the potential of new data forms in the creation of indicators, we 
could not identify previous research which explicitly created a workflow designed 
to integrate data from different sources and of different modalities. Furthermore, 
although the properties of different forms of UGC are relatively well understood, 
they have not been effectively used to develop reproducible workflows. Finally, most 
studies evaluate the quality of extracted information in isolation through metrics 
such as precision and recall, but do not explore the added value of integrating data.
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In the paper, we propose, implement, and evaluate a workflow taking advantage 
of citizen science data documenting and recording sightings of birds and more 
specifically red kites (Milvus milvus). Analyzing social media data until recently 
has often used simple keyword-based methods to perform an initial filtering or 
search step, meaning that content tagged in other ways was not found. However, 
improvements in content-based classification now mean that it is also possible to 
use off-the-shelf, pre-trained algorithms to reliably identify predefined classes such 
as the presence of buildings, people, or birds in image data with reasonable accuracy. 

4.4.2 Approach 

We take a new approach, using citizen science projects recording sightings of red 
kites (Milvus milvus) to train and validate a convolutional neural network (CNN) 
capable of identifying images containing red kites. This CNN is integrated into a 
sequential workflow that also uses an off-the-shelf bird classifier and text metadata 
to retrieve observations of red kites in the Chilterns, England. Our workflow reduces 
an initial set of more than 600,000 images to just 3065 candidate images. Manual 
inspection of these images shows that our approach has a precision of 0.658. A 
workflow using only text identifies .14% fewer images than that including image 
content analysis, and by combining image and text classifiers, we achieve an almost 
perfect precision of 0.992. Images retrieved from social media records complement 
those recorded by citizen scientists spatially and temporally, and our workflow is 
sufficiently generic that it can easily be transferred to other species. 

Flickr is a social media site, where individuals can upload photographs and 
metadata, including tags and locations in the form of coordinates. Flickr’s usage 
has declined in recent years, but it remains very popular in research, mostly because 
of its well-documented and easy-to-use API, which allows querying using search 
terms and bounding boxes. Our citizen scientist data came from two platforms: 
iNaturalist and eBird. iNaturalist allows participants to upload images of organisms 
such as plants and insects to the platform and use its community to crowdsource 
taxonomic identification. Currently, according to their website (https://inaturalist. 
org), iNaturalist hosts nearly 100 million observations of over 375000 species and 
is, therefore, one of the largest and most successful citizen science projects to date 
(Unger et al. 2020). eBird has similar features to iNaturalist but as a platform is 
exclusively specialized in bird observations. Their website states (https://ebird.org) 
that “eBird is among the world’s largest biodiversity-related science projects, with 
more than 100 million bird sightings contributed annually.” It predominantly hosts 
observation location data, but also corresponding bird images, as well as bird sounds 
(Sullivan et al. 2009; Wood et al. 2011). 

Since our workflow is designed to be generic, take advantage of the text and 
image data, and combine records from citizen science reports with social media data, 
it uses a combination of a simple rule-based approach, existing pre-trained models, 
and a model trained specifically for our target species. Our approach is designed

https://inaturalist.org
https://inaturalist.org
https://inaturalist.org
https://ebird.org
https://ebird.org
https://ebird.org
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to take advantage of what we assume to be high-quality data collected by citizen 
scientists with an interest in ornithology, use off-the-shelf models where possible, 
and reduce the initial number of social media posts in a given region to a manageable 
size for manual verification. In the following, we want to give a summary of the 
proposed workflow: 

1. We identify all geo-tagged social media records in a study area (in our case, the 
Chiltern Hills area in the UK). 

2. Out of the identified records, we assign all records that contain the Latin name 
of our target species Milvus milvus to our result set. We assume that users 
familiar with the biological taxonomy are experts and thus treat these records 
as trustworthy. 

3. We use a generic image classification model to identify images that contain birds 
(with a confidence threshold of p. B 0.5). These retained images are then processed 
further. 

4. For these filtered images, we use metadata such as title or description to identify 
records that are highly likely Red Kites, e.g., because the description contains 
the common name in a European language (such as “Red Kite” or “Rotmilan” 
(German)). We include these images in the result set. 

5. We use a secondary image classifier trained on citizen science data to identify 
images that likely are red kites (with a confidence of .pRK > 50%). These are 
also added to the final set of candidate images. 

6. As a final step, we assume that an expert can manually verify the extracted 
images. As the workflow significantly reduces the set of candidate images, this 
task becomes feasible and ensures high data quality. 

The workflow creates a high-confidence dataset of images that can be integrated 
with existing citizen science platform data. As part of the paper, we ran a detailed 
study of the characteristics of the different data sources, namely, Flickr, eBird, and 
iNaturalist. In the chosen target area, we compare (1) spatial coverage, (2) temporal 
distribution, (3) contributor patterns, as well as (4) image data quality. 

4.4.3 Results 

Our workflow aimed to extract relevant images of red kites from Flickr data and to 
use these to complement citizen science records from eBird and iNaturalist. In the 
following, we, therefore, explore the following aspects of the results we obtained: 

• How effective is our workflow at extracting relevant red kite images, and how 
much added value is obtained through the use of both text and image content? 

• What are the properties of the extracted records within our study area, and do the 
social media data complement the citizen science platforms? 

The workflow returned 3065 candidate images, downsampling the original 
dataset by 99.5%. These images were then individually inspected to identify true
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Table 4.1 Precision using different combinations of the components in the workflow 

approach included posts true positives precision 

only visual data 2763 1723 0.624 

only text data 2215 1946 0.878 

initial workflow 3065 2017 0.658 

text . + visual data (final workflow) 3559 2262 0.636 

and false positives and allow us to calculate the precision. Images were marked as 
true positives if a red kite was identifiable in an image. This meant that images had 
to be sufficiently clear, such that distinctive features of red kites (e.g., their forked 
tails or red-brown coloring) were visible. Images where a bird was visible, but not 
unambiguously identifiable, images showing feathers or pellets, and images that 
were obviously irrelevant were all marked as false positives. A total of 2017 records 
were thus identified as true positives, with 1048 false positives and a resulting 
precision for the complete workflow of 0.658. 

To understand the benefits of text and image analysis, we ran the compo-
nents of the workflow individually and annotated any additional images extracted 
(Table 4.1). 

1. In the textual workflow setting, records were returned if either the Latin name 
or a common name for red kite (in six language variations) were detected. This 
approach identified 2215 posts, of which 1946 were true positives and 269 false 
positives, resulting in a precision of 0.879. 

2. In the visual workflow setting, only visual information was considered. A post 
was considered relevant and included if both the bird model and red kite model 
return a probability above 50% for the given image. This approach returned 2763 
included posts, of which 1723 were true positives and 1040 were false positives, 
giving a precision of 0.624. 

We found 1419 Flickr posts that were included by both settings, of which 1407 
were true positives. This means that by only retaining candidate records identified 
by both textual and image-based information, we can achieve an almost perfect 
precision of 0.992. We then checked for records that were exclusively identified by 
either text or image analysis. Five hundred and thirty-nine posts were only detected 
by the textual analysis (point 1 in the list above), and 316 were only detected by 
the visual analysis (point 2 in the list above). Combining these results leads to a 
total of 3559 records, of which 2262 are true positives and 1297 are false positives, 
and a precision of 0.636. Looking back at the performance of our initial integrated 
workflow, we note that 245 (12%) additional true positive red kite posts were 
extracted by merging the results of separately performed textual and visual analysis. 
This increase in recall is at the cost of a very slight reduction in the precision of 
0.02. Summarizing these findings, 62% of true positives were found using either 
text or image analysis. Twenty-four percent are only correctly classified by textual 
data, and 14% are missed if no visual analysis is performed.
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We find that the workflow functions as a data filter, reducing the data volume by 
99.5%. By reducing the data volume, it becomes realistic to analyze the remaining 
data manually to select true positives. The workflow thus addresses the research gap 
identified by Burke et al. (2022), using generalizable methods to extract target data 
from various unverified sources to enrich data. 

We found that while keyword matching delivered high precision with little 
evidence of ambiguity, image analysis returned more potential candidates than 
textual analysis, but with lower precision. By only retaining posts identified by 
both textual and visual analysis, they were able to achieve almost perfect precision 
(0.992), at the cost of a lower recall. By combining the two approaches, they 
increased the extracted data volume by almost 14% while still downsampling the 
original dataset by around 99.5% and with a precision 0.636. 

The visual distribution of points on the map in the article shows how different 
sources can complement one another when trying to determine patterns. The 
locations of Flickr posts tend to cluster around urban areas and points of interest 
along existing road networks, which suggests that the Flickr observations are often 
taken opportunistically. eBird and iNaturalist observations, on the other hand, are 
more heterogeneously allocated and show less obvious relationships to known 
spatial features, suggesting that birdwatchers go out with a clear intent to observe 
birds and seek a variety of locations for that purpose. 

The study found that the temporal coverage of red kite observations in the 
Chilterns was different on a yearly and monthly scale. Aggregating data over years 
showed that the pattern shown by Flickr was different from the ones of eBird 
and iNaturalist. Year-on-year changes appeared to be more driven by underlying 
platform dynamics, such as user base and popularity changes. The study found that 
the rapid drop in Flickr observations from 2012 onward represented a decrease in 
Flickr popularity rather than a decline in red kites in the Chilterns. On the other 
hand, the study found that there was a strong increase for eBird and iNaturalist 
from the year 2016 onward. This could be the result of increased popularity, 
increased interest in red kites, or increased visits to the study region. Looking at 
monthly temporal scales showed a trend toward the warmer spring and summer 
months between March and June. These results may suggest higher visitation 
rates to the Chilterns in warmer periods, but could also be influenced by specific 
red kite behavioral patterns. Investigating the number of unique users per data 
source revealed that representativeness varies between platforms. eBird data was 
contributed by the fewest individuals, whereas Flickr and iNaturalist offered a more 
diverse user base. This observation could be attributed to higher platform popularity 
and an overall larger user base of the latter. Knowing the share of the population 
represented by a UGC-based analysis is crucial for policymakers to make adequate 
decisions that reflect the people’s opinion (Wang et al. 2019b). 

The image quality analysis revealed clear differences between social media 
data on Flickr and citizen science data in eBird and iNaturalist. Flickr’s users 
are interested in capturing scenic and visually pleasing images, while eBird and 
iNaturalist users are more concerned about capturing the target species itself as 
proof of observation and less about the image quality. This discovery may point
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to the potential usefulness of social media data for the identification and tracking of 
individuals. 

4.5 BirdTrace: A Visual Analytics Application to Jointly 
Analyze Trajectory Data and VGI 

4.5.1 Motivation and Research Gap 

BirdTrace makes use of two primary data sources: GPS data from tagged birds and 
user-generated content from birders. GPS data typically is of high quality but is 
only available on a small scale, while user-generated data is more abundant but 
of variable quality. By combining these two data sources, BirdTrace can provide 
a more complete picture of bird populations. The system uses a dynamic matching 
approach to semantically enrich trajectory data with geo-referenced data like images 
or textual descriptions. 

4.5.2 Automated Matching 

A key step was the development of semi-automatic methods to extract, integrate, and 
match data from VGI and tracked spatiotemporal datasets. This has allowed for fur-
ther knowledge to be gained about individuals and populations of animals, including 
information about local animal habitats, animal migrations across continents, land-
use change, biodiversity loss, invasive species, the spread of diseases, and climate 
change. There are yet no existing methods and systems that integrate and fuse mixed 
VGI data from birdwatchers and tracked trajectories of wildlife animals from the 
ICARUS (Movebank), so we developed them as part of the project. 

We have already described the analysis of the trajectories, but now want to 
find relevant VGI contributions (e.g., images, video, audio, or text descriptions) 
for trajectories. Here, relevance refers to “how well a domain expert can use the 
found VGI contributions to answer specific questions.” As this implies, the criteria 
for relevance might therefore depend on the problem. We tackle this problem by 
giving users the possibility to choose between different matching criteria, e.g., based 
on spatial or temporal distance, and potential classified behaviors like breeding. 
By including additional data sources, one might increase the number of possible 
matching criteria in the future. Let’s look at the way we enable automated matching; 
see Fig. 4.3: 

1. We assume the availability of GPS trajectory data for individuals of a species of 
interest. As our data source, we utilize Movebank. 

2. Secondly, collect and locally store multimedia VGI data from citizen science 
platforms and potentially Flickr (as described in the previous chapter).
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Fig. 4.3 The pipeline and workflow of the BirdTrace system. We combine animal movement 
trajectory data with VGI data from different citizen science portals. An automated matching 
approach is used to filter relevant VGI contributions to respective movement trajectories. Both 
trajectories and VGI data points are then jointly visualized in a shared visual interface. The 
interface enables aggregating, filtering, or annotating the given data 

3. Based on a user query and selected matching criteria, we match individual VGI 
contributions with GPS trajectory data. 

4. Trajectories and VGI contributions are jointly visualized in an interactive visual 
analytics application, which facilitates analysis by a domain expert. 

5. The user can use additional interactive tools to search, filter, and highlight the 
matched contributions. 

To facilitate the matching process, we implemented a data processing pipeline, 
which applies appropriate preprocessing to both the GPS trajectory data and the VGI 
contributions. We apply steps like line simplification, motif discovery, and outlier 
detection to the trajectory data to reduce the size of the data and to simplify the 
matching computations. VGI contributions from VGI portals like eBird, iNaturalist, 
and GBIF are collected and processed. To simplify analysis, we use precomputing 
and caching of data. This enables the efficient clustering of VGI contributions and 
fast matching of VGI contributions with trajectory data. 

4.5.3 A Joint Visual Analytics Workspace 

We developed BirdTrace,1 a novel visual analytics method and interfaces to support 
the semantic annotation of the integrated database consisting of the VGI and the 
tracked trajectory data. The goal of the application is to add context information 
semantically from a domain expert (ornithologist) to increase the quality and 
enrich the integrated data sources previously discussed. The primary challenge is 
to reduce the uncertainty of the combined data sources and to raise awareness of 
the remaining uncertainty in our resulting database. Specifically, the tool allows 
annotating spatiotemporal databases and VGI in their semantic context. We will 
further support the annotation process with a semi-automatic process to enable the 
fast and reliable annotation of large datasets. We have to add semi-automatically

1 Available at https://birdtrace.dbvis.de. 

https://birdtrace.dbvis.de
https://birdtrace.dbvis.de
https://birdtrace.dbvis.de
https://birdtrace.dbvis.de
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Fig. 4.4 A screenshot from BirdTrace 

annotation to the dataset, as the domain experts do not have the time to review a 
large number of matchings. 

Using the semantic annotations, we will be able to enrich our joined database 
with more knowledge from domain experts to increase the data quality of our 
integrated database. For instance, an ornithologist can verify or oppose the VGI 
information. The semantic annotation will also assist to clean and prune possibly 
incorrect merged data records and increase the awareness of uncertainty. Figure 4.4 
shows the user interface of BirdTrace, showing a spatial map view on top, and a 
temporal “timeline” view on the bottom. 

4.6 Data-Driven Modeling of Tracked and Observed Animal 
Behavior 

Finally, we explored the challenging tasks of training prediction models, applicable, 
e.g., to animal trajectory forecasting. To improve uncertainty-aware prediction 
models for animal trajectories, we explored techniques from deep imitation and 
reinforcement learning. Specifically, we explored how to use data-driven deep 
learning methods to predict the movement of fish swarms. A complete presentation 
of results on predictive models would be beyond the scope of this chapter. We, 
therefore, want to focus on the workflow and, specifically, how concepts from visual 
analytics can be used here. We leave a discussion on model implementations for 
future work. In general, although deep learning-based approaches for related tasks 
are very promising, we still observe low adoption. Multiple challenges hinder the 
application of reinforcement learning algorithms in experimental and real-world use 
cases. Such challenges occur at different stages of the development and deployment 
of such models. While reinforcement learning workflows share similarities with
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machine learning approaches, we argue that distinct challenges can be tackled 
and overcome using visual analytic concepts. Thus, we propose a comprehensive 
workflow for reinforcement learning and present an implementation of our workflow 
incorporating visual analytic concepts integrating tailored views and visualizations 
for different stages and tasks of the workflow (Metz et al. 2022). In this final section, 
we would like to shine a light on how our workflow supports experimentation 
in this space and encourage future research in the application of novel RL-based 
methods for a wide range of problems in the context of geoinformatics and VGI, 
e.g., trajectory forecasting. 

4.6.1 Motivation and Research Gap 

Recently, there have been notable examples of the capabilities of reinforcement 
learning (RL) in diverse fields like robotics (Nguyen and La 2019), physics 
(Martín-Guerrero and Lamata 2021), or even video compression (Mandhane et al. 
2022). Despite these successes, the application and evaluation of recent deep 
reinforcement and imitation learning techniques in real-world scenarios are still 
limited. Existing research almost exclusively focuses on synthetic benchmarks and 
use cases (Bellemare et al. 2013). We argue that the usage and evaluation in realistic 
scenarios is a mandatory step in assessing the capabilities of current approaches and 
identifying existing weaknesses and possibilities for further development. In this 
chapter, we present a visual analytics workflow and an instantiation of the approach 
that facilitates the application of state-of-the-art algorithms to various scenarios. 
Our presented approach is designed specifically to support domain experts, with 
basic knowledge of core concepts in reinforcement learning, who are interested in 
applying RL algorithms to domain-specific sequential decision-making tasks. The 
goal is to enable the effective application of their knowledge to (1) design agents and 
simulation environments including reward functions and (2) a detailed assessment 
of trained agents’ capabilities in terms of performance, robustness, and traceability. 
A structured and well-defined approach can also help to critically investigate and 
combat some fundamental difficulties of reinforcement learning like brittleness, 
generalization to new tasks and environments, and issues of reproducibility (Dulac-
Arnold et al. 2020; Henderson et al. 2017). 

Outside of reinforcement and imitation learning, there exists a wide range of 
workflows and interactive visual analytics (VA) tools for the training and evaluation 
of ML models (Amershi et al. 2015; Endert et al. 2018; Spinner et al. 2020). 
Compared to other fields of machine learning, there has been less work on applying 
visual analytics in the space of reinforcement and especially imitation learning. A 
large number of necessary decisions and the existence of interconnected tasks make 
the application of interactive machine learning, with a close coupling of model and 
human, especially valuable for reinforcement learning. 
Existing work such as DQNViz by Wang et al. (2019a) enables the analysis of 
spatial behavior patterns of agents in Atari environments like breakout (see arcade 
learning environment (Bellemare et al. 2013)) using visual analytics. He et al.
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present DynamicsExplorer (He et al. 2020) to evaluate and diagnose a trained 
policy in a robotics use case, which incorporates views to track the trajectories 
of a ball in the maze during episodes. The application enables the inspection 
of the effect of real-world conditions for trained agents. Saldanha et al. (2019) 
showcase an application that supports data scientists during experimentation by 
increasing situational awareness. Key elements are thumbnails summarizing agent 
performance during episodes and specialized views to understand the connection 
between particular hyperparameter settings and training performance. 

Compared to the existing approaches, we (1) extend the existing frameworks 
to encompass a holistic view of the relevant stages of the reinforcement learning 
process instead of just sub-tasks; (2) present a generic, easily adaptable application, 
which can be instantiated to specific use cases; (3) explicitly consider imitation 
learning, due to the frequent use in conjunction with reinforcement learning; and (4) 
apply our framework in a novel, custom real-world use case instead of an existing 
benchmark environment. 

4.6.2 Approach 

There has not been a comprehensive workflow for the experimentation and appli-
cation of reinforcement learning tightly incorporating users. This leaves both 
researchers and practitioners to loosely defined best practices. In the following 
chapter, we outline a conceptual workflow for developers and researchers, which 
we base on guides, projects, and popular open-source libraries. We follow the 
terminology used, e.g., in the Gym package (Brockman et al. 2016). As a starting 
point, we consider the fundamental workflow from Sacha et al. (2019) that is aimed 
at generic ML tasks: 

1. Prepare-Data: Data selection, cleaning, and transformations; detection of faulty 
or missing data 

2. Prepare-Learning: Specification of an initial model, preparation of training, 
selection of algorithms, and training parameters 

3. Model-Learning: Training of the actual model, monitoring, and supervision 
4. Evaluate-Model: Apply the model to testing data, selecting and analyzing quality 

metrics, and understanding the model 

We are interested in highlighting steps and tasks that are specific and critical to 
reinforcement and imitation learning and which have not been captured previ-
ously by more generic workflows. Figure 4.5 summarizes our proposed workflow 
described in this chapter. In the paper, we discuss the specific stages for imitation 
and reinforcement learning mirroring the workflow. Specifically, we highlight user 
tasks during (1) setup and design of the environment which corresponds to mapping 
a domain-specific problem to a setup applicable to RL algorithms, (2) model training 
and supervision, and finally (3) evaluation and understanding of trained models. 
For each of these steps, we present further detailed user tasks and highlight how
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Fig. 4.5 Overview of the RIVA (Reinforcement and Imitation Learning with Visual Analytics) 
workflow. RIVA is an integrated experimentation workflow and application that provides a range 
of tools to support all major critical steps: (a) inspecting observations, actions, and rewards 
and ensuring matching values between simulation, expert demonstrations, and architectures, (b) 
provenance tracking of interesting states to enable targeted case-based evaluation, (c) tracking of 
parameters and settings to ensure reproducibility and understand the effect of design decision, (d) 
interactively monitor training and final performance beyond reward, (e) enable effective evaluation 
by integrating multiple evaluation tools, and (f) explain behavior by natively integrating XAI 
methods like input attribution techniques 

visual analytics concepts are applicable. We apply the proposed framework and 
developed an application in the use case of imitation and reinforcement learning for 
collective behavior: data-driven learning of the behavior of fish schools (collective 
movement of fish swarms). We cooperated with a domain expert throughout the 
entire process, from designing custom environments and agents, training, to final 
evaluation. Modeling the behavior of individual actors in swarm systems has been 
a long-standing problem in biology (Reynolds 1987; Sumpter 2006; Calovi et al.  
2013). Learning individual policies that lead to coordinated collective behavior via 
both reinforcement learning and imitation learning from recorded trajectories is 
an exciting application that promises to overcome existing simplifications in hand-
crafted models. 

4.6.3 Results and Discussion 

The use case can be well integrated into our workflow and application with minimal 
modifications. Noticeably, a custom interactive rendering of the environment was 
added. We utilize the modularity of the software to integrate additional components 
like custom visualizations. During the design phase, the inspection views were 
used to ensure consistency between environment, agent, and dataset, e.g., to spot 
premature episode termination. Our workflow was highly effective in maintaining
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a high level of productivity and consistency through an iterative design process, in 
which we experimented with different observation space designs, reward functions, 
network types, and hyperparameter configurations. The set of evaluation tools is 
used both for internal evaluation and external presentation. 

4.7 Discussion and Conclusion 

In this chapter, we have given an overview of research contributing to the overall 
goal of enriching high-quality sparse and curated data with VGI contributions 
to enable different applications like analysis of species distribution or prediction 
modeling of movement. In particular, we highlighted the potential of visual analytics 
solutions for different stages of curation, analysis, and model building using VGI 
data. Visualizations can be especially suited to present data of varying quality and 
express uncertainty. Both our joint collaborative work on integrating Flickr images 
with citizen science data and the BirdTrace platform highlight the potential of 
integrating different data sources, ranking from citizen science platforms, social 
media, to professional data collection efforts. 
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