
Chapter 2 
Analyzing and Improving the Quality and 
Fitness for Purpose of OpenStreetMap as 
Labels in Remote Sensing Applications 

Moritz Schott, Adina Zell, Sven Lautenbach, Gencer Sumbul, 
Michael Schultz, Alexander Zipf, and Begüm Demir 

Abstract OpenStreetMap (OSM) is a well-known example of volunteered geo-
graphic information. It has evolved to one of the most used geographic databases. 
As data quality of OSM is heterogeneous both in space and across different thematic 
domains, data quality assessment is of high importance for potential users of OSM 
data. As use cases differ with respect to their requirements, it is not data quality 
per se that is of interest for the user but fitness for purpose. We investigate the 
fitness for purpose of OSM to derive land-use and land-cover labels for remote 
sensing-based classification models. Therefore, we evaluated OSM land-use and 
land-cover information by two approaches: (1) assessment of OSM fitness for 
purpose for samples in relation to intrinsic data quality indicators at the scale of 
individual OSM objects and (2) assessment of OSM-derived multi-labels at the 
scale of remote sensing patches (.1.22×1.22 km) in combination with deep learning 
approaches. The first approach was applied to 1000 randomly selected relevant OSM 
objects. The quality score for each OSM object in the samples was combined with 
a large set of intrinsic quality indicators (such as the experience of the mapper, the 
number of mappers in a region, and the number of edits made to the object) and 
auxiliary information about the location of the OSM object (such as the continent 
or the ecozone). Intrinsic indicators were derived by a newly developed tool 
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based on the OSHDB (OpenStreetMap History DataBase). Afterward, supervised 
and unsupervised shallow learning approaches were used to identify relationships 
between the indicators and the quality score. Overall, investigated OSM land-use 
objects were of high quality: both geometry and attribute information were mostly 
accurate. However, areas without any land-use information in OSM existed even 
in well-mapped areas such as Germany. The regression analysis at the level of 
the individual OSM objects revealed associations between intrinsic indicators, but 
also a strong variability. Even if more experienced mappers tend to produce higher 
quality and objects which underwent multiple edits tend to be of higher quality, an 
inexperienced mapper might map a perfect land-use polygon. This result indicates 
that it is hard to predict data quality of individual land-use objects purely on intrinsic 
data quality indicators. The second approach employed a label-noise robust deep 
learning method on remote sensing data with OSM labels. As the quality of the OSM 
labels was manually assessed beforehand, it was possible to control the amount of 
noise in the dataset during the experiment. The addition of artificial noise allowed 
for an even more fine-grained analysis on the effect of noise on prediction quality. 
The noise-tolerant deep learning method was capable to identify correct multi-labels 
even for situations with significant levels of noise added. The method was also used 
to identify areas where input labels were likely wrong. Thereby, it is possible to 
provide feedback to the OSM community as areas of concern can be flagged. 

Keywords Volunteered geographic information · Data quality · Data analysis · 
Remote sensing · OpenStreetMap · Machine learning 

2.1 Introduction 

OpenStreetMap (OSM) has evolved to one of the most used geographic databases 
and is a prototype for volunteered geographic information (VGI). It is a major 
knowledge source for researchers, professionals, and the general public to answer 
geographically related questions. As a free and open community project, the OSM 
database can not only be edited but also used by any person with very limited 
restrictions such as internet access or usage citation. This open nature of the project 
enabled the establishment of a vibrant community that curates and maintains the 
projects’ data and infrastructure, but also a growing ecosystem of tools that use or 
analyze the data (OpenStreetMap Contributors 2022a,b). 

Recently, OSM has become a popular source of labeled data for the remote sens-
ing community. However, spatial heterogeneous data quality provides challenges 
for the training of machine learning models. Frequently, OSM land-use and land-
cover (LULC) data has thereby been taken at face value without critical reflection. 
And, while the quality and fitness for purpose of OSM data have been proven in 
many cases (e.g., Jokar Arsanjani et al. 2015; Fonte et al. 2015), these analyses 
have also unveiled quality variations, e.g., between rural and urban regions. The 
quality of OSM can thus be assumed to be generally high, but remains unknown
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for a specific use case. It is therefore of importance to develop both tools that are 
capable of quantifying data quality of LULC information in OSM and approaches 
that are capable of dealing with the noise potentially present in OSM. 

The IDEAL-VGI project investigated the fitness for purpose of OSM to derive 
LULC labels for remote sensing-based classification models by two approaches: 
(1) assessment of OSM fitness for purpose for samples in relation to intrinsic data 
quality indicators at the scale of individual OSM objects and (2) assessment of 
OSM-derived multi-labels at the scale of remote sensing patches (.1.22 × 1.22 km) 
in combination with deep learning methods. 

2.2 Intrinsic Data Quality Analysis for OSM LULC Objects 

One of the most prominent analysis topics in OSM-related research is data quality 
that has been covered in theory (see, e.g., Barron et al. 2014; Senaratne et al. 
2017) as well as in many practical studies (e.g., Jokar Arsanjani et al. 2015; 
Brückner et al. 2021). The topic of data quality is of concern for many studies 
working with volunteered geographic information—Chap. 1, for example, deals 
with data quality in OSM andWikidata. Senaratne et al. (2017) characterize analyses 
into extrinsic metrics, where OSM is compared to another dataset, and intrinsic 
indicators, where metrics are calculated from the data itself. Semi-intrinsic (or 
semi-extrinsic) metrics use auxiliary information to assess the quality of OSM— 
population density can, for example, be used to assess the completeness of buildings 
in OSM, as population density and number of buildings are related. The quality 
gold standard has frequently been defined for extrinsic metrics through an external 
dataset of higher or known quality and standards. However, external datasets of high 
quality—including high up-to-dateness—are frequently not available. Therefore, 
intrinsic data quality indicators have frequently been used (Barron et al. 2014). 
These try to capture data quality aspects based on the history of OSM data 
itself, such as the number of edits to an object. Although OSM objects can be 
viewed individually, they are always embedded in a larger context of surrounding 
OSM objects, communities of contributors, and other classification systems, such 
as biomes or socioeconomic factors. Comparing contributions and communities 
for selected cities, (Neis et al. 2013), e.g., found a positive correlation between 
contributor density and gross national product per capita and showed that commu-
nity sizes vary between Europe and other regions. In 2021, Schott et al. (2021) 
described “digital” and “physical locations” in which an OSM object is located. 
These “locations” consist of, intrinsic, OSM-specific measures such as density 
and diversity of elements, but also include—semi-intrinsic—aspects of economic 
status, culture, and population density to describe the surrounding of an object. 
Such information provides potentially relevant information to help characterize and 
predict data quality of OSM objects. 

LULC information in OSM is a challenging topic. On the one hand, this 
information provides the background for all other data rendered on the central map.
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It can highly benefit from local input, survey mapping, and (live) updates. On the 
other hand, this information has a difficult position within the OSM ecosystem. 
While the routing and the building of communities are prominent, LULC is not 
so frequently mentioned in the ecosystems’ communication platforms. LULC 
information can also be quite cumbersome or even difficult to map, e.g., due to 
natural ambiguity. The growing tagging scheme provides a collection of sometimes 
ambiguous or overlapping tag definitions that are not fully compatible with any 
official LULC legend definition (Fonte et al. 2016). Furthermore, the data is highly 
shaped by national preferences and imports. 

2.2.1 OSM Element Vectorization: Intrinsic and Semi-intrinsic 
Data Quality Indicators 

The OSM element vectorization tool (OEV, Schott et al. 2022) has been developed 
to ease access to intrinsic and semi-intrinsic indicators, with a specific focus on 
LULC feature classes. The tool1 provides access to currently 31 indicators at the 
level of single OSM objects (c.f. Table 2.1), which cover aspects concerning the 
element itself, surrounding objects, and the editors of the object. 

The usability of the tool was proven on the use case of LULC polygons. One 
thousand out of the globally existing 62.9 million LULC elements were randomly 
sampled on 2022-01-01. Only polygonal objects with at least one of the LULC 
defining tags were considered. These elements’ IDs were then fed to the tool to 
extract the data and calculate the described metrics from Table 2.1. These metrics 
were used in a cluster analysis to identify structures in the OSM LULC objects. 
Furthermore, we tested three hypotheses on the triangular relation between the 
size of OSM objects, their age, and their location in terms of population density. 
We hypothesized that a general mapping order exists where the OSM community 
first concentrates on or arises from urban areas before moving to rural areas. 
This was tested by the hypotheses 1 (H. 1): There is a positive correlation between 
the object age and the population density. Second, we tested the hypotheses that 
areas with higher population density are more fragmented and therefore exhibit 
smaller elements, while areas with low population density, such as forest, are often 
larger objects: (H. 2) there is a negative correlation between the object size and the 
population density. Third, we tested the effect between the OSM LULC objects’ 
age and population density, assuming a non-significant correlation. This was based 
on two opposing assumptions: Large geographical entities may be mapped first, 
and regions may be first coarsely drafted before adding details. This would lead to 
old objects being of larger size. Yet, hypotheses 1 and 2 contradict this tendency: 
according to H. 1 and H. 2, younger objects would be in areas with less population 
density and therefore tend to be larger. All three hypotheses were tested separately

1 https://oev.geog.uni-heidelberg.de/. 

https://oev.geog.uni-heidelberg.de/
https://oev.geog.uni-heidelberg.de/
https://oev.geog.uni-heidelberg.de/
https://oev.geog.uni-heidelberg.de/
https://oev.geog.uni-heidelberg.de/
https://oev.geog.uni-heidelberg.de/
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using Kendall’s . τ (Hollander and Wolfe 1973), with the p-values adjusted for 
multiple testing (Benjamini and Hochberg 1995). 

Results of this first exploratory analysis provided interesting insights into the 
complex and multifaceted structure of OSM land-use objects and its relation to 
OSM mapping communities. The main hypotheses regarding the mapping order 
(H. 1) could not be confirmed. In fact, the estimated correlation was slightly negative, 
meaning that for the used sample, objects in urban areas were younger than in rural 
areas. Yet, this does not imply that this mapping order does not exist in certain sub-
regions. In addition, the age of an object is a fragile metric that highly depends 
on the mapping style of local mappers. Mappers frequently decide to delete and 
redraw elements instead of changing the original object, especially if the object was 
only a coarse approximation. This “resets” the object age, meaning that urban areas 
may have a high share of young objects because they are still actively mapped and 
maintained, even though they started their map appearance relatively early. H. 3 was 
equally confirmed, but only after p-value correction (p-value . = 0.14). Regional 
specialities may exist in this aspect and need further investigation. 

The negative correlation between the object size and the population density (H. 2) 
was confirmed with a p-value. <0.01 though the . τ was only .−0.096 implying a small 
effect. At the global scale, many influencing factors may overlap or intervene with 
each other, hindering the extraction of single detailed effects. For the example at 
hand, we can assume that there are multiple regional communities or active mappers 
with individual mapping styles. The mapping detail in urban or rural regions will 
therefore be linked to these and other factors as well, not only the population density. 
Population density itself may not be generalizable on a global scale. The same 
level of fragmentation, meaning object size distribution, may be reached at different 
population density values, depending, e.g., on the continent. 

The cluster analysis revealed interesting aspects, as some clusters could be 
associated with imports. Especially, a large import of North American lakes could 
be separated. This element group made up a considerable share of the global data 
and must therefore be taken into account when analyzing or describing the global 
dataset. 

One thousand LULC objects were manually checked against high-resolution 
imagery. A combined quality score was assigned based on the thematic and the 
geometric correctness of the object. A quantile random forest was used to identify 
relationships between the data quality score and the 31 indicators calculated by the 
OEV tool. 

While the overall quality of the model was intermediate, we were able to identify 
a series of interesting relationships between the indicators and the quality of the 
land-use objects based on the visual inspection of partial dependency plots. The 
most important features in the model (c.f. Fig. 2.1) were the size of the OSM object, 
contributor characteristics (such as experience and remoteness), rare OSM tags, and 
regional OSM mapping aspects (e.g., number of OSM objects in the surrounding of 
the object). 

Element size had by far the highest feature importance. However, the effect 
on data quality of the OSM object had no clear direction. The indicator had to
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Fig. 2.1 Feature importance in relation to data quality. The importance was derived based on a 
quantile random forest for 1000 randomly selected OSM objects. The features are sorted by the 
percentage increase in squared mean error if the feature would be dropped. In addition, node purity 
is provided as a second feature importance indicator. To ease interpretation, the second indicator 
is displayed together with its position relative to the median node purity value across all selected 
features 

be interpreted in combination with other indicators such as the primary tag (e.g., 
landuse or natural) as some land-use tags were characterized by big objects (e.g., 
forest) and others by small objects (e.g., urban grass). Objects with rare primary 
tags indicated, in general, a lower object quality—presumably as these tags are less 
well established and possibly poorly defined and thereby harder to map consistently. 
The effect of contributor experience showed a multimodal distribution: contributors 
with very little experience (newcomers) were associated with objects of medium 
quality and contributors with medium experience (stable mappers) with high quality 
of the land-use objects. Interestingly, highly experienced mappers were associated 
with poor quality of the land-use object. One possible explanation is that these
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extraordinary active users might represent bots or importers. One has, however, to 
keep in mind that only a few contributors fell into this category, which led to a low 
statistical power. 

With respect to the number of elements surrounding an OSM LULC object, 
areas with more elements were—expectedly—better mapped. The larger the share 
of the surrounding of an OSM object mapped by LULC, the higher the quality of 
the OSM object. However, shares above 100% expectedly were associated with a 
lower quality of the OSM object. These regions are characterized by areas mapped 
using highly overlapping polygons, which typically indicate mapping errors. OSM 
edits are contributed as changesets. Larger changesets (more elements, often from 
different regions) were associated with lower quality of the OSM land-use objects. 
This is in line with the expectation that local, concise, and coherent edits are better. 
With respect to the primary tag (the LULC class), the model indicated differences 
in the quality of some classes: while forest objects were of higher quality, grass-
dominated LULC classes were of lower quality. This could be explained by the 
clear distinction of forest from other LULC classes and the diversity of tags used 
to characterize different grass-dominated LULC classes. LULC objects in North 
America had a tendency for lower quality, presumably due to the large imports 
in this region. Besides that, LULC objects mapped in regions with higher Human 
Development Index or higher population density were associated with better data 
quality. This presumably reflects the larger OSM community in the Global North, 
especially in countries such as Austria, Germany, or France, as well as the higher 
number of potential mappers available in urban areas compared to the countryside. 
With respect to out-of-dateness, complex interactions were identified; however, 
generally recently changed objects were associated with higher quality. Except for 
newcomers, lower user diversity—i.e., users focusing on one aspect of OSM—was 
associated with higher data quality. 

2.3 Label Noise Robust Deep Learning for Remote Sensing 
Data with OSM Tags 

2.3.1 OSM as the Source of Training RS Image Labels in ML 

Supervised ML methods have attracted great attention for Earth observation appli-
cations on ever-growing RS image archives. Due to their capability to automatically 
model higher-level RS image semantics in large scale, they are applied to many 
problems in RS such as multi-label image classification and land-cover map 
generation. These methods generally require the availability of a high quantity 
of annotated training RS images. However, the manual collection of RS image 
annotations by domain experts for a large amount of data can be time-consuming, 
complex, and costly. Accordingly, the use of volunteered geographic information as 
crowdsourced data such as OSM to automatically derive annotated training data
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has been drawing significant attention in RS. As an example, in (Kaiser et al. 
2017; Wan et al. 2017; Comandur and Kak 2021), it is shown that the direct use 
of OSM tags as pixel-level land-use class labels is useful for the automatic map 
generation of RS images through support vector machines and convolutional neural 
networks (CNNs). In (Li et al. 2020), OSM tags are utilized as scene-level class 
labels of training RS images to automatically predict land-use/land-cover classes 
of RS image scenes through CNNs. In (Audebert et al. 2017), OSM data is also 
utilized as an auxiliary information source by fusing it with optical data from 
very-high-resolution satellite imagery through dual-stream CNNs. In (Lin et al. 
2022), an active learning strategy is introduced to partially annotate RS images 
with salient multi-labels based on OSM tags. In this study, an adaptive temperature-
associated model is also proposed to apply multi-label RS image classification by 
utilizing partially annotated training data and automatically assigning missing labels 
to training images during training. 

Thanks to the publicly available OSM database, collection of RS image anno-
tations for a high quantity of training data to be utilized for ML methods can 
be achieved at lower costs. However, OSM tags can be outdated regarding RS 
images due to possible changes on the ground; or there can be annotation errors. 
Accordingly, using OSM tags as the source of training image annotations may 
increase the chance of including noisy labels in training data of ML methods. As 
an example, for multi-label image annotations of RS images, two types of noise 
can exist. Noise can be associated with missing labels or wrong labels. A missing 
label means that although a land-use/land-cover class exists in an RS image, the 
corresponding class label is not assigned. A wrong label means that although a class 
label is assigned to RS image, the corresponding class is not present in the image. 

2.3.2 Label Noise Robust ML Methods 

When a ML model is trained on noisy training data, there is a risk of overfitting of 
the model parameters to noisy labels and thus suboptimal inference performance. 
To this end, a few methods are presented in RS to improve the robustness of ML 
models toward noisy labels in training data. As an example, in (Zhang et al. 2020a), 
a noisy label knowledge distillation method is introduced for single-label RS image 
classification problems to leverage the knowledge learned through a teacher model 
on images with noisy labels for a student model. In this method, two CNNs are 
employed as a teacher-student framework, while a clean and trustworthy subset of a 
training set is assumed to be available for the student CNN. In (Aksoy et al. 2022), 
a collaborative learning framework is proposed to identify and exclude images with 
noisy multi-labels during training. To this end, it employs two CNNs operating 
collaboratively, while they are forced to characterize distinct image representations 
and to produce similar predictions. In (Burgert et al. 2022), the effects of the 
abovementioned label noise types in multi-label RS image classification problems 
are investigated, while different single-label noise robust methods are integrated to
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multi-label classification problems in RS. In (Dong et al. 2022), for land-cover map 
generation through semantic segmentation, an online noise correction approach is 
introduced to detect and correct pixel-level noisy labels via information entropy 
at the early stage of model training and thus to continue training with corrected 
labels. Although all these methods are potentially effective, the development of label 
noise robust ML methods when the OSM tags are utilized as the source of image 
annotations has not yet been investigated in RS literature. 

It is worth mentioning that learning the parameters of ML models under noisy 
labels in training data has been studied more extensively in computer vision (CV) 
literature than RS. Recent research directions in CV can be grouped into the devel-
opment of (1) deep neural network (DNN) architectures, (2) ML loss functions, (3) 
regularization strategies for training ML models, and (4) training sample selection 
and label adjustment techniques for single-label image classification problems. The 
first set of methods are concentrated on the development of DNN architectures 
designed for training data with noisy labels. For example, a contrastive-additive 
noise network is introduced in (Yao et al. 2019) to model trustworthiness of noisy 
training labels. This network consists of a probabilistic latent variable model as a 
contrastive layer in order to measure the quality of annotations and an additive layer 
to aggregate the class predictions and noisy labels. The second set of methods is 
mostly focused on the development of ML loss functions, which embody robust 
characteristics toward noisy labels. As an example, in (Ridnik et al. 2021), an 
asymmetric loss function is proposed to dynamically decrease the weights of 
negative classes in multi-labels. This allows to decrease the effect of images with 
missing labels on ML model parameter updates during training. The third set of 
methods are concentrated on regularizing the whole ML model training to prevent 
overfitting of model parameters to noisy labels. For instance, a regularization term is 
integrated into the cross-entropy loss function in (Liu et al. 2020) to utilize the class 
predictions from an early stage of ML model training to prevent the memorization of 
noisy labels. The fourth set of methods aim to first select images with correct labels 
or adjust noisy labels and then to learn through samples with correct labels. As an 
example, a joint training with co-regularization approach is introduced in (Wei et al. 
2020) to employ collaborative learning of two CNNs for the selection of correct 
labels by an agreement strategy. 

2.3.3 Proposed Methods 

Due to the public availability of OSM, RS images can be automatically associated 
with multiple land-use/land-cover classes (i.e., multi-labels) by using OSM tags. 
This allows to create large training sets for deep learning (DL)-based multi-label 
RS image classification methods at lower costs. Let .X={x1, . . . , xM} be an RS 
image archive that includes M images, where . xk is the kth image in the archive. 
We assume that a training set .T = {(xi , yi )}Di=1 is available. Each training image
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. xi is associated with a set of class labels .yi ∈ {0, 1}S based on the corresponding 
OSM tags, where S is the total number of classes. Let .φ : θ,X �→ Ŷ be any 
type of convolutional neural network (CNN) that generates the multi-label . ̂yk of an 
image .xk ∈ X. Training . φ on . T, which may include noisy labels due to noisy OSM 
tags, can lead to learning suboptimal model parameters . θ and inaccurate inference 
performance, as discussed in the previous sections. 

To address this issue, we aim to first automatically detect noisy OSM tags based 
on the CNN . φ trained on . T and then adjust training labels associated with noisy 
OSM tags for label noise robust learning of the CNN model parameters . θ . 

2.3.3.1 Noisy OSM Tag Detection 

Region-based RS image representations combining both local information and the 
related spatial organization of land-use/land-cover classes are important for the 
accurate detection of noisy OSM tags. However, multi-label RS image predictions 
. Ŷ of the considered CNN . φ do not provide spatial information regarding the class 
location. 

Accordingly, we employed class activation maps (CAM) introduced in (Zhou 
et al. 2016) since they are capable of deriving the regions most relevant for a 
given class with respect to the DL model trained for image classification. Let 
.Fi ∈ R

CxWxH be a set of feature maps for an image . xi obtained from the last 
convolutional layer of the CNN backbone where C, H, and W represent the number 
of channels, height, and width of the feature maps, respectively. CAMs associated 
with . xi can be obtained by applying a 1x1 convolutional layer, which takes the 
feature maps . Fi of . xi as input and produces a set of feature maps .Ai ∈ R

SxWxH . 
The sth feature map .As

i ∈ R
WxH is the localization map associated with a class s, 

which can be obtained as follows: 

.As
i =

C∑

c=1

wc
sFc

i (2.1) 

where . wc
s is the weight of importance for the cth feature map . Fc

i regarding the sth 
class. The obtained CAMs are forwarded through a global average pooling (GAP) 
layer to obtain multi-label class predictions. However, multi-label classification 
models from which CAMs can be derived are trained only to identify the presence 
of a given class within the image. Thus, CAMs tend to focus only on the most 
discriminative features within the image, leading to the incomplete coverage of the 
target class within the image (Zhang et al. 2020b). 

Self-enhancement maps (SEMs) introduced in (Zhang et al. 2020b) address this 
issue and improve the localization maps derived from CAMs by including the 
similarity of feature maps in the localization map calculation. This is achieved 
by first defining seed coordinates, which are the image regions with the largest 
activation values on CAMs for a given class. Then, a similarity map is created for
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each seed point based on the cosine similarity between the seed point feature vector 
and all other feature vectors. For a given class s of an image . xi , the final class 
activation map . Es

i is obtained by taking the maximum value at each pixel across the 
similarity maps. After obtaining all the class activation maps, we generate a class 
prototype . P s for the class s by following (Lee et al. 2018). This is achieved by 
averaging all the feature maps, which are extracted from . T and associated with the 
class s. Class prototypes allow us to obtain more accurate class predictions based on 
spatial information regarding the location of image classes and the corresponding 
region-based image representations. Accordingly, to define whether the class s is 
present in the image . xi , the extracted features of the image for the class . Fs

i are 
compared with the corresponding class prototype based on their cosine similarity as 
follows: 

.ŷ
s
i =

{
1, cos(P s,Fs

i ) > 0.5
0, otherwise

(2.2) 

To detect if . xi is associated with noisy labels, we compare the class predictions . ̂yi

with the associated OSM tags. If the CNN model predicts a class which is not in the 
list of class labels derived from OSM tags, it is assumed to be a missing class. This 
missing class can be localized through SEMs. If the CNN model does not predict 
a class, but it is in the list of class labels derived from OSM tags, it is assumed 
to be a wrong class label. It is noted that automatically defining noisy OSM tags 
and the localization of missing classes via SEMs allow providing feedback to the 
OSM community. Such feedback together with further investigations in the OSM 
community can lead to correcting noisy OSM tags by human mappers. 

2.3.3.2 Label Noise Robust Multi-label RS Image Classification 

It is worth noting that the abovementioned method for the detection of noisy OSM 
tags relies on the model parameters . θ of the considered CNN, which is obtained 
through training on . T. If a small trustworthy subset .C ∈ T of the training set 
is available, this method can also be used to automatically find training images 
associated with noisy labels. 

To this end, we divide the whole learning procedure into two stages. In the first 
stage, . θ is learned by training . φ only on . C. After this stage is finalized, we first 
automatically divide the rest of the training set .T\C into training images with noisy 
labels . N and training images with correct labels . L (i.e., .N∪L = T\C). Then, class 
labels associated with each image in . N are automatically corrected based on (2.2) 
leading to training images with corrected labels . N∗. This leads to automatically 
correcting noisy labels in .T\C derived from OSM tags. Then, the training set of the 
second stage . T∗ is formed by combining . L, . C, and . N∗. 

In the second stage, all the model parameters of . φ are fine-tuned on . T∗. Thanks to 
the first stage, noisy labels included in the training set of this stage are significantly 
reduced. This allows to overcome overfitting on noisy labels of the whole training
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set in the second stage. Due to this two-stage learning of the model parameters, 
abundant training RS images annotated with OSM tags can be facilitated for label 
noise robust learning of multi-label RS image classification through CNNs. 

2.3.4 Results and Discussion 

In this subsection, we first describe the considered dataset and the experimental 
setup and then provide our analysis of the experimental results. 

2.3.4.1 Dataset Description and Experimental Setup 

To conduct experiments, we selected a Sentinel-2 tile acquired over South-West 
Germany including parts of France on 2021-06-13. This region spans from the 
Palatinate Forest in the west to the Odenwald in the east and includes large forested 
areas as well as areas dominated by agriculture or by built-up areas. This tile 
was divided into .81001.22 × 1.22-km-sized image patches. Each image patch is 
annotated with multi-labels based on the presence or absence of four major land-use 
classes that are defined with OSM tags (c.f. Table 2.2). While assigning the labels, 
small OSM objects were filtered (see Table 2.2 for thresholds used). The resulting 
labels of 910 image patches were manually validated against Sentinel-2 imagery. 

Table 2.2 OSM land-use classes used for the multi-label image classification 

Class Description and filter OSM tags 

Water bodies Continuous 0.2 ha of 
non-intermittent surface water; 
smaller ponds and all pools were not 
considered 

landuse=reservoir, natural=water, 
waterway=dock, 
waterway=riverbank 

Forests Continuous 0.5 ha closed tree cover; 
smaller tree groups were not 
considered 

landuse=forest, natural=wood 

Agricultural 
areas 

Continuous 0.5 ha meadow; arable 
land or vineyards, non-agricultural 
areas (parks, etc.), and smaller 
isolated elements were not 
considered assuming they are 
non-agricultural gardens or similar 

landuse=farmland, 
landuse=meadow, landuse=vineyard 

Built-up areas Continuous 0.5 ha containing 
mostly impermeable features 
(buildings, roads, etc.); single 
isolated buildings are not 
considered, and large permeable 
objects like parks or sports grounds 
are not part of the built-up area 

landuse=civic_admin, 
landuse=commercial, 
landuse=depot, landuse=education, 
landuse=farmyard, 
landuse=garages, 
landuse=industrial, 
landuse=residential, landuse=retail
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Table 2.3 Multi-label image 
classification results in terms 
of mean average precision 
(mAP) obtained by the direct 
use of OSM tags (OSM) with 
different values of synthetic 
label noise rate (SLNR) of 
test set and DeepLabV3. +
with different values of 
SLNR of training set 

Method SLNR mAP (%) 

OSM 

0% 94.2 

10% 89.4 

20% 83.1 

30% 77.3 

40% 72.9 

DeepLabV3. +

0% 99.2 

20% 96.8 

40% 70.9 

60% 66.6 

80% 60.4 

The OSM quality and completeness in the region were high (c.f. Table 2.3). OSM-
based multi-label assignments had a mean average precision of 94.2%. The patches 
were clustered with respect to the correct assignment of the multi-labels: Clusters 
of correct OSM data were often due to monotonous landscapes, e.g., the Palatinate 
Forest. Clusters of flawed data were often due to missing data, e.g., in the region 
around Kaiserslautern. To perform experiments, 200 manually labeled patches were 
used as the test set, while the rest of the image patches were utilized as the training 
set. 

In the experiments, we utilized the DeepLabv3. + (Chen et al. 2018) CNN archi-
tecture as the DL model. It is worth noting that DeepLabv3. + is originally designed 
for semantic segmentation problems. We replaced its semantic segmentation head 
with a fully connected layer followed by a GAP layer that forms the multi-label 
classification head with four output classes. We trained DeepLabv3. + for 20 epochs 
with Adam optimizer and the initial learning rate of 0.001. For the proposed label 
noise robust learning method, the same number of training epochs is used for each 
of the first and second stages. Experimental results are provided in terms of micro 
mean average precision (mAP) scores and noise detection accuracies. 

We conducted experiments to (i) compare the considered DL model with the 
direct use of OSM tags for multi-label RS image classification, (ii) analyze the 
effectiveness of the proposed label noise detection method, and (iii) assess the 
effectiveness of the proposed label noise robust learning method. For the proposed 
label noise robust learning method, which requires the availability of a small 
trustworthy subset of the training set, we included the manually labeled image 
patches to the training set. However, for the comparison between the DL model and 
the OSM tags, only non-verified training data was utilized. To assess the robustness 
of the CNN model toward label noise and to detect noisy samples, we injected 
synthetic label noise to the training and test sets at different percentages (which 
were 20%, 40%, 60%, and 80% for the training set and 10%, 20%, 30%, and 40% 
for the test set) by following (Burgert et al. 2022).
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2.3.4.2 Comparison Between Direct Use of OSM Tags and DL-Based 
Multi-label Image Classification 

In this subsection, we assess the effectiveness of the considered DL model 
(DeepLabV3. +) compared to the direct use of OSM tags for multi-label RS image 
classification. To this end, the model parameters of the DL model were learned on 
abundant non-verified training data without considering label noise robust learning. 
Table 2.3 shows the corresponding results in terms of mAP values, when the 
different values of synthetic label noise rate (SLNR) were applied to the training 
set of DeepLabV3. + and the OSM tags. One can observe from the table that when 
SLNR equals to 0% for training and test sets, DeepLabV3. + achieves 5% higher 
mAP values compared to directly using OSM tags. Even when 20% label noise 
is synthetically added to the training set of the CNN model, it is still capable of 
achieving higher results compared to OSM when SLNR value equals to 0%. It is 
worth mentioning that directly using OSM of such low quality leads to missing or 
wrong classes. It can be seen from the table that when synthetic noise is added to 
OSM tags, its multi-label image classification performance is significantly reduced. 
As an example, when SLNR value is increased to 20% from 0%, multi-label image 
classification performance of OSM is reduced by more than 10%. These results 
show the effectiveness of using OSM as a training source of CNN models compared 
to directly using OSM tags for multi-label image classification. This is relevant 
because preliminary OSM data analyses may not be able to confidently identify 
such malicious areas of bad quality. 

It is worth noting that further increasing the SLNR value of the training set of 
DeepLabV3. + significantly reduces multi-label image classification performance. 
This is due to the fact that when a training set of a DL model includes a higher 
rate of noisy labels, the model parameters are overfitted on noisy labels that lead to 
suboptimal learning of multi-label image classification. Figure 2.2 shows the self-
enhancement maps (SEMs) of an RS image obtained on DeepLabV3. + trained under 
different values of SLNR. One can see from the figure that as the SLNR value of 
the training set increases, the capability of CNN model to characterize the semantic 
content of the image reduces due to noisy labels. 

2.3.4.3 Label Noise Detection 

In this subsection, we assess the effectiveness of the proposed label noise detection 
method when different rates of synthetic label noise are applied to the test set. We 
also analyze the effect of the level of label noise (which is present in the training 
data) on our method. Table 2.4 shows the corresponding label noise detection 
accuracies obtained on DeepLabV3. + trained with abundant non-verified training 
data at different SLNR values and a small data, which is verified in terms of label 
noise. One can observe from the table that when SLNR equals to 0%, our label noise 
detection method, which is applied to DeepLabV3. + and trained on abundant data, 
achieves the highest label noise detection accuracies. For example, when synthetic
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Fig. 2.2 (a) An example of RS image and its self-enhancement maps obtained on DeepLabV3. +
trained under synthetic label noise rates (b) 0%,  (c) 10%, (d) 20%, (e) 30%, and (f) 40% 

Table 2.4 Label noise detection results in terms of accuracy (%) obtained by the proposed label 
noise detection method applied to the DeepLabV3. + trained with abundant non-verified data at 
different values of synthetic label noise rate (SLNR) and small verified data 

Training Set 
SLNR (Test Set) 

0% 10% 20% 30% 40% 

Abundant non-verified data (SLNR . = 0%) 80.0 88.5 87.0 89.0 94.0 

Abundant non-verified data (SLNR . = 20%) 63.0 72.5 79.0 82.5 86.5 

Abundant non-verified data (SLNR . = 40%) 0.5 30.0 50.5 64.5 71.5 

Abundant non-verified data (SLNR . = 60%) 0.0 31.0 55.5 65.5 74.0 

Abundant non-verified data (SLNR . = 80%) 0.0 31.5 55.5 65.0 74.0 

Small verified data 45.0 58.5 67.0 78.5 84.0
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label noise is applied to the test set with 40%, our label noise detection method 
is capable of achieving 94% accuracy. As the SLNR value increases on abundant 
training data, label noise detection accuracy of our method decreases. This is in line 
with our conclusion from the previous subsection about the effect of label noise level 
in training data. In greater details, when SLNR value reaches to 40% for abundant 
training data, noise detection accuracy of our method decreases by more than 50% 
compared to SLNR . = 0%. When a small verified training data with the size of 
10% of the whole training set is used for DeepLabV3. +, our noise detection method 
achieves higher accuracies compared to abundant training data with SLNR . ≥ 40%. 
These results show that our label noise detection method is capable of effectively 
detecting noisy labels without requiring a small verified data when the amount of 
label noise in the training data is small. However, if the level of label noise in training 
data is greater than a certain extent, our method requires the availability of a small 
trustworthy subset of the training set for accurate label noise detection. 

2.3.4.4 Label Noise Robust Multi-label Image Classification 

In this subsection, we compare the proposed label noise robust learning method 
with the standard learning procedure, in which label noise of a training set is not 
considered during training. Table 2.5 shows the corresponding multi-label RS image 
classification scores when synthetic label noise is injected to the training set at 
different values of SLNR. It can be seen from the table that when the label noise 
level in the training set is small (SLNR . ≤ 20%), standard learning of CNN model 
parameters achieves higher mAP values compared to label noise robust learning. 
As an example, when there is no synthetic label noise added to the training set, 
standard learning leads to more than 3% higher mAP score compared to label 
noise robust learning. However, as the SLNR value of the training set is higher 
than a particular value (20%), the considered CNN model with label noise robust 
learning provides higher multi-label RS image classification accuracies compared 
to standard learning. For example, when SLNR equals to 80% for the training 
set, label noise robust learning leads to almost 27% higher mAP value compared 
to standard learning. These results show that our learning method provides more 
robust learning of the model parameters for the considered CNN model toward label 
noise in the training set. Due to the two-stage learning procedure in our method, a 

Table 2.5 Multi-label image 
classification results in terms 
of mean average precision 
(mAP (%)) obtained by 
standard learning and our 
label noise robust learning for 
different values of SLNR 

SLNR Standard Label Noise 
(Training Set) Learning Robust Learning 

0% 99.2 95.6 

20% 96.8 89.9 

40% 70.9 91.0 

60% 66.6 88.3 

80% 60.4 87.0
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small trustworthy subset of the training set is effectively utilized in its first stage 
to automatically define noisy labels in the whole training set, which are accurately 
corrected. Then, employing corrected labels for fine-tuning CNN model parameters 
on the whole training set leads to leveraging abundant training data without being 
significantly affected by the label noise. 

2.4 Conclusion and Outlook 

While OSM provides ample opportunities for use as labels in machine learning-
based remote sensing applications, it is necessary to be aware of the challenges the 
dataset provides. Intrinsic and semi-intrinsic data quality indicators provide insights 
into the complexity of the OSM mapping process. Meaningful relationships between 
the indicators and data quality for a test set were derived. The complexity of the 
interactions did, however, not allow for a reliable prediction of data quality at the 
level of individual OSM objects. This might change if bigger sample sizes are used. 
And, while object-level quality prediction requires further research, the developed 
quality indicators referencing the data region can already support regional quality 
predictions which are successfully in use in production today. 

The proposed deep learning method showed its potential to perform label noise 
robust multi-label image classification if at least a small set of high-quality labels 
is available. This shows the potential of the method (i) to overcome the challenges 
of OSM land-use labels in remote sensing applications and (ii) to provide quality-
related feedback for the OSM community. As the OSM community is skeptical 
toward imports, especially based on automatic labeling, areas flagged as poten-
tially problematic will when presumable be investigated by human mappers and 
potentially corrected in OSM. Furthermore, these areas can further be analyzed in 
combination with the intrinsic data quality indicators developed during the project. 
Approaches described in Chap. 7 might become helpful for this communication. The 
remote sensing community, on the other hand, can profit from this work through the 
automated creation of regionalized high-quality image classification models. 
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