Skip to main content

Does the Evaluation of Ocular Blood Supply Play a Role in Glaucoma Diagnostics and Prognosis of Progression?

  • Chapter
  • First Online:
Predictive, Preventive, and Personalised Medicine: From Bench to Bedside

Abstract

Primary open-angle glaucoma (POAG) is a chronic neurodegenerative disease that may progress to the irreversible blindness. Unstable ocular blood flow is associated with a stronger patients’ reaction to psychological stress, which was described in patients with primary vascular dysregulation. Excessive activity of the sympathetic autonomic nervous system (ANS) may lead to both a blood supply violation of the nervous system and to a decrease in ocular perfusion pressure in the vessels of the optic nerve and choroid. It plays the crucial role in the pathogenesis of normal tension glaucoma. Systemic autonomic dysfunction may show a higher risk of glaucoma progression due to the stronger sensitivity of the optic nerve to fluctuations in intraocular pressure and intraocular perfusion pressure. Heart rate variability is a common tool for studying the autonomic modulation of the sympathovagal balance.

As optic nerve head and retinal microcirculation is of great importance in glaucoma development and progression, it makes it reasonable to search for new methods of the vascular bed’s visualization for the early diagnosis and monitoring of glaucoma. New biomarkers of glaucoma progression including vascular parameters may improve glaucoma treatment and outcome in accordance with a goal of the predictive preventive personalized medicine (PPPM/3PM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANS:

Autonomic nervous system

ARI:

Autonomic regulation index

BP:

Blood pressure

CDI:

Color Doppler imaging

CPT:

Cold provocation test

CRA:

Central retinal artery

CV:

Coefficients of variation

EPS:

Enhanced polarization-sensitive

FLV:

Focal loss volume

FR:

Functional reserves

FS:

Functional status

GCC:

Ganglion cell complex

GLV:

Global loss volume

GON:

Glaucomatous optic neuropathy

HF:

High-frequency range

HRV:

Heart rate variability

HTG:

High tension glaucoma

ILM:

Internal limiting membrane

IOP:

Intraocular pressure

IPL:

Inner plexiform layer

LF:

Low-frequency range

MD:

Mean deviation

MOPP:

Mean ocular perfusion pressure

MvD:

Microvasculature dropout

NFI:

Nerve fiber indicator

NTG:

Normal tension glaucoma

OCTA:

Optic coherence tomography angiography

ONH:

Optic nerve head

OPP:

Ocular perfusion pressure

PACG:

Primary angle closure glaucoma

PERG:

Pattern electroretinogram

pfVD:

Perifoveal vessel density

POAG:

Primary open-angle glaucoma

PPPM:

Predictive preventive personalized medicine

PVD:

Primary vascular dysregulation

PVEP:

Pattern visual evoked potential

RGC:

Retinal ganglion cells

RI:

Resistivity index

RMSSD:

Parameter of parasympathetic autonomic regulation activity

RNFL:

Retinal nerve fiber layer

ROP:

Rate of progression

SAP:

Standard automated perimetry

SDNN:

Standard deviation of NN-interval

SD-OCT:

Spectral-domain optic coherence tomography

SNA:

Sympathetic neural activity

SPCA:

Short posterior ciliary artery

SSADA:

Split-spectrum amplitude-decorrelation angiography

TP:

Total spectral power

VD:

Vessel density

VF:

Visual fields

VFI:

Visual field index

wiVD:

Whole image vessel density

References

  1. Balendra SI, Zollet P, Casasca GCADGE, Cordeiro MF (2020) Personalized approaches for the management of glaucoma. Exp Rev Precis Med Drug Dev 5(3):145–164. https://doi.org/10.1080/23808993.2020.1756770

    Article  Google Scholar 

  2. Nathan M. Radcliffe; Jason Bacharach, Murray Fingeret, Lorraine M Provencher. Glaucoma treatments in 2021: personalizing patient needs 2021

    Google Scholar 

  3. Flammer J, Konieczka K, Bruno RM, Virdis A, Flammer AJ, Taddei S (2013) The eye and the heart. Eur Heart J 34(17):1270–1278. https://doi.org/10.1093/eurheartj/eht023

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nicolela MT, Ferrier SN, Morrison CA et al (2003) Effects of cold-induced vasospasm in glaucoma: the role of endothelin-1. Invest Ophthalmol Vis Sci 44(6):2565–2572. https://doi.org/10.1167/iovs.02-0913

    Article  PubMed  Google Scholar 

  5. Golubnitschaja O (2019) Flammer syndrome: from phenotype to associated pathologies, prediction, prevention and personalisation. Flammer Syndrome

    Google Scholar 

  6. Neves VJ, Moura MJ, Almeida BS et al (2012) Chronic stress, but not hypercaloric diet, impairs vascular function in rats. Stress 15(2):138–148. https://doi.org/10.3109/10253890.2011.601369

    Article  CAS  PubMed  Google Scholar 

  7. Konieczka K, Ritch R, Traverso CE et al (2014) Flammer syndrome. EPMA J 5(1):11. Published 2014 Jul 8. https://doi.org/10.1186/1878-5085-5-11

    Article  PubMed  PubMed Central  Google Scholar 

  8. Konieczka K, Flammer J, Sternbuch J, Binggeli T, Fraenkl S (2017) Leber’s hereditary optic neuropathy, Normal tension glaucoma, and Flammer syndrome: long term follow-up of a patient. Lebersche hereditäre Optikusneuropathie, Normaldruckglaukom und Flammer-Syndrom—eine langzeitige Beobachtung eines Patienten. Klin Monbl Augenheilkd 234(4):584–587. https://doi.org/10.1055/s-0042-119564

    Article  CAS  PubMed  Google Scholar 

  9. Schmidl D, Boltz A, Kaya S et al (2012) Comparison of choroidal and optic nerve head blood flow regulation during changes in ocular perfusion pressure. Invest Ophthalmol Vis Sci 53(8):4337–4346. Published 2012 Jul 1. https://doi.org/10.1167/iovs.11-9055

    Article  PubMed  Google Scholar 

  10. Grieshaber MC, Flammer J (2005) Blood flow in glaucoma. Curr Opin Ophthalmol 16(2):79–83. https://doi.org/10.1097/01.icu.0000156134.38495.0b

    Article  PubMed  Google Scholar 

  11. Hayreh SS (2001) Blood flow in the optic nerve head and factors that may influence it. Prog Retin Eye Res 20(5):595–624. https://doi.org/10.1016/s1350-9462(01)00005-2

    Article  CAS  PubMed  Google Scholar 

  12. Hwang JC, Konduru R, Zhang X et al (2012) Relationship among visual field, blood flow, and neural structure measurements in glaucoma. Invest Ophthalmol Vis Sci 53(6):3020–3026. Published 2012 May 17. https://doi.org/10.1167/iovs.11-8552

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20(4):4710–4725. https://doi.org/10.1364/OE.20.004710

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rusia D, Harris A, Pernic A et al (2011) Feasibility of creating a normative database of colour Doppler imaging parameters in glaucomatous eyes and controls. Br J Ophthalmol 95(9):1193–1198. https://doi.org/10.1136/bjo.2010.188219

    Article  PubMed  Google Scholar 

  15. Weinreb RN, Harris A (2007) Ocular blood flow in glaucoma: consensus series 6. Kugler Publications, Dordrecht

    Google Scholar 

  16. Yaoeda K, Shirakashi M, Fukushima A et al (2003) Relationship between optic nerve head microcirculation and visual field loss in glaucoma. Acta Ophthalmol Scand 81(3):253–259. https://doi.org/10.1034/j.1600-0420.2003.00073.x

    Article  PubMed  Google Scholar 

  17. Ben-Zion I, Harris A, Weizman Y, Ehrlich R, Rechtman E (2008) An updated review of methods for human retinal oximetry measurements and current applications. Harefuah 147(10):812–817. 836. Hebrew

    PubMed  Google Scholar 

  18. Jonas JB, Harazny J, Budde WM, Mardin CY, Papastathopoulos KI, Michelson G (2003) Optic disc morphometry correlated with confocal laser scanning Doppler flowmetry measurements in normal-pressure glaucoma. J Glaucoma 12(3):260–265. https://doi.org/10.1097/00061198-200306000-00014

    Article  PubMed  Google Scholar 

  19. Kawasaki R, Wang JJ, Rochtchina E, Lee AJ, Wong TY, Mitchell P (2013) Retinal vessel caliber is associated with the 10-year incidence of glaucoma: the Blue Mountains Eye Study. Ophthalmology 120(1):84–90. https://doi.org/10.1016/j.ophtha.2012.07.007

    Article  PubMed  Google Scholar 

  20. Stalmans I, Vandewalle E, Anderson DR et al (2011) Use of colour Doppler imaging in ocular blood flow research. Acta Ophthalmol 89(8):e609–e630. https://doi.org/10.1111/j.1755-3768.2011.02178.x

    Article  PubMed  Google Scholar 

  21. Wang Y, Bower BA, Izatt JA, Tan O, Huang D (2008) Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt 13(6):064003. https://doi.org/10.1117/1.2998480

    Article  PubMed  Google Scholar 

  22. Chan TCW, Bala C, Siu A, Wan F, White A (2017) Risk factors for rapid glaucoma disease progression. Am J Ophthalmol 180:151–157. https://doi.org/10.1016/j.ajo.2017.06.003

    Article  PubMed  Google Scholar 

  23. Flammer J, Konieczka K, Flammer AJ (2013) The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J 4(1):14. Published 2013 Jun 7. https://doi.org/10.1186/1878-5085-4-14

    Article  PubMed  PubMed Central  Google Scholar 

  24. Galassi F, Sodi A, Ucci F, Renieri G, Pieri B, Baccini M (2003) Ocular hemodynamics and glaucoma prognosis: a color Doppler imaging study. Arch Ophthalmol 121(12):1711–1715. https://doi.org/10.1001/archopht.121.12.1711

    Article  PubMed  Google Scholar 

  25. Flammer J, Orgül S, Costa VP et al (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21(4):359–393. https://doi.org/10.1016/s1350-9462(02)00008-3

    Article  PubMed  Google Scholar 

  26. Park HY, Park SH, Park CK (2014) Central visual field progression in normal-tension glaucoma patients with autonomic dysfunction. Invest Ophthalmol Vis Sci 55(4):2557–2563. Published 2014 Apr 21. https://doi.org/10.1167/iovs.13-13742

    Article  PubMed  Google Scholar 

  27. Drance S, Anderson DR, Schulzer M, Collaborative Normal-Tension Glaucoma Study Group (2001) Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 131(6):699–708. https://doi.org/10.1016/s0002-9394(01)00964-3

    Article  CAS  PubMed  Google Scholar 

  28. Satilmis M, Orgül S, Doubler B, Flammer J (2003) Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am J Ophthalmol 135(5):664–669. https://doi.org/10.1016/s0002-9394(02)02156-6

    Article  PubMed  Google Scholar 

  29. Phelps CD, Corbett JJ (1985) Migraine and low-tension glaucoma. A case-control study. Invest Ophthalmol Vis Sci 26(8):1105–1108

    CAS  PubMed  Google Scholar 

  30. Zhou W, Sabel B (2023) Vascular dysregulation in glaucoma: retinal vasoconstriction and normal neurovascular coupling in altitudinal visual field defects. EPMA J 14(1):87–99. https://doi.org/10.1007/s13167-023-00316-6

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gherghel D, Hosking SL, Cunliffe IA (2004) Abnormal systemic and ocular vascular response to temperature provocation in primary open-angle glaucoma patients: a case for autonomic failure? Invest Ophthalmol Vis Sci 45(10):3546–3554. https://doi.org/10.1167/iovs.04-0290

    Article  PubMed  Google Scholar 

  32. Kurysheva NI, Ryabova TY, Shlapak VN (2018) Heart rate variability: the comparison between high tension and normal tension glaucoma. EPMA J 9(1):35–45. https://doi.org/10.1007/s13167-017-0124-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Feke GT, Pasquale LR (2008) Retinal blood flow response to posture change in glaucoma patients compared with healthy subjects. Ophthalmology 115(2):246–252. https://doi.org/10.1016/j.ophtha.2007.04.055

    Article  PubMed  Google Scholar 

  34. Wierzbowska J, Wierzbowski R, Stankiewicz A, Siesky B, Harris A (2012) Cardiac autonomic dysfunction in patients with normal tension glaucoma: 24-h heart rate and blood pressure variability analysis. Br J Ophthalmol 96(5):624–628. https://doi.org/10.1136/bjophthalmol-2011-300945

    Article  PubMed  Google Scholar 

  35. Gherghel D, Hosking SL, Cunliffe IA, Heitmar R (2010) Transient cardiac ischaemia and abnormal variations in systemic blood pressure in unselected primary open angle glaucoma patients. Ophthalmic Physiol Opt 30(2):175–181. https://doi.org/10.1111/j.1475-1313.2009.00704.x

    Article  PubMed  Google Scholar 

  36. Chai E, Goldberg I, Chia A, Chen J (1999) Visual field responses to a hand vibration stimulus. Surv Ophthalmol 43(Suppl 1):S79–S86. https://doi.org/10.1016/s0039-6257(99)00051-x

    Article  PubMed  Google Scholar 

  37. Liu B, Zhao Y, Zhang H (2022) The effect of autonomic nervous system dysfunction on the progression of primary open-angle glaucoma. Int J Gen Med 15:4565–4573. Published 2022 May 2. https://doi.org/10.2147/IJGM.S362275

    Article  PubMed  PubMed Central  Google Scholar 

  38. Na KS, Lee NY, Park SH, Park CK (2010) Autonomic dysfunction in normal tension glaucoma: the short-term heart rate variability analysis. J Glaucoma 19(6):377–381. https://doi.org/10.1097/IJG.0b013e3181c4ae58

    Article  PubMed  Google Scholar 

  39. Riccadonna M, Covi G, Pancera P et al (2003) Autonomic system activity and 24-hour blood pressure variations in subjects with normal- and high-tension glaucoma. J Glaucoma 12(2):156–163. https://doi.org/10.1097/00061198-200304000-00011

    Article  PubMed  Google Scholar 

  40. Brown CM, Dütsch M, Michelson G, Neundörfer B, Hilz MJ (2002) Impaired cardiovascular responses to baroreflex stimulation in open-angle and normal-pressure glaucoma. Clin Sci (Lond) 102(6):623–630. https://doi.org/10.1042/cs1020623

    Article  PubMed  Google Scholar 

  41. Mroczkowska S, Benavente-Perez A, Negi A, Sung V, Patel SR, Gherghel D (2013) Primary open-angle glaucoma vs normal-tension glaucoma: the vascular perspective. JAMA Ophthalmol 131(1):36–43. https://doi.org/10.1001/2013.jamaophthalmol.1

    Article  PubMed  Google Scholar 

  42. Bossuyt J, Vandekerckhove G, De Backer TLM et al (2015) Vascular dysregulation in normal-tension glaucoma is not affected by structure and function of the microcirculation or macrocirculation at rest: a case-control study. Medicine (Baltimore) 94(2):e425. https://doi.org/10.1097/MD.0000000000000425

    Article  PubMed  Google Scholar 

  43. Ahrlich KG, De Moraes CG, Teng CC et al (2010) Visual field progression differences between normal-tension and exfoliative high-tension glaucoma. Invest Ophthalmol Vis Sci 51(3):1458–1463. https://doi.org/10.1167/iovs.09-3806

    Article  PubMed  Google Scholar 

  44. Choi J, Jeong J, Cho HS, Kook MS (2006) Effect of nocturnal blood pressure reduction on circadian fluctuation of mean ocular perfusion pressure: a risk factor for normal tension glaucoma. Invest Ophthalmol Vis Sci 47(3):831–836. https://doi.org/10.1167/iovs.05-1053

    Article  PubMed  Google Scholar 

  45. Thonginnetra O, Greenstein VC, Chu D, Liebmann JM, Ritch R, Hood DC (2010) Normal versus high tension glaucoma: a comparison of functional and structural defects. J Glaucoma 19(3):151–157. https://doi.org/10.1097/IJG.0b013e318193c45c

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kaiser HJ, Schoetzau A, Stümpfig D, Flammer J (1997) Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol 123(3):320–327. https://doi.org/10.1016/s0002-9394(14)70127-8

    Article  CAS  PubMed  Google Scholar 

  47. Kurysheva N, Kiseleva T, Irtegova E, Parshunina O (2015) Venous ocular blood flow in primary open angle glaucoma. Int J Ophthalmol Eye Res 3:1–7

    Google Scholar 

  48. Gasser P, Flammer J (1991) Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma. Am J Ophthalmol 111(5):585–588. https://doi.org/10.1016/s0002-9394(14)73703-1

    Article  CAS  PubMed  Google Scholar 

  49. Grunwald JE, Piltz J, Hariprasad SM, DuPont J (1998) Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci 39(12):2329–2336

    CAS  PubMed  Google Scholar 

  50. Koch EC, Staab J, Fuest M, Witt K, Voss A, Plange N (2015) Blood pressure and heart rate variability to detect vascular dysregulation in glaucoma. J Ophthalmol 2015:798958. https://doi.org/10.1155/2015/798958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Drance SM, Douglas GR, Wijsman K, Schulzer M, Britton RJ (1988) Response of blood flow to warm and cold in normal and low-tension glaucoma patients. Am J Ophthalmol 105(1):35–39. https://doi.org/10.1016/0002-9394(88)90118-3

    Article  CAS  PubMed  Google Scholar 

  52. Hood DC, Anderson SC, Wall M, Raza AS, Kardon RH (2009) A test of a linear model of glaucomatous structure-function loss reveals sources of variability in retinal nerve fiber and visual field measurements. Invest Ophthalmol Vis Sci 50(9):4254–4266. https://doi.org/10.1167/iovs.08-2697

    Article  PubMed  Google Scholar 

  53. Ojima T, Tanabe T, Hangai M, Yu S, Morishita S, Yoshimura N (2007) Measurement of retinal nerve fiber layer thickness and macular volume for glaucoma detection using optical coherence tomography. Jpn J Ophthalmol 51(3):197–203. https://doi.org/10.1007/s10384-006-0433-y

    Article  PubMed  Google Scholar 

  54. Nakatani Y, Higashide T, Ohkubo S, Takeda H, Sugiyama K (2011) Evaluation of macular thickness and peripapillary retinal nerve fiber layer thickness for detection of early glaucoma using spectral domain optical coherence tomography. J Glaucoma 20(4):252–259. https://doi.org/10.1097/IJG.0b013e3181e079ed

    Article  PubMed  Google Scholar 

  55. Kurysheva NI, Parshunina OA, Shatalova EO, Kiseleva TN, Lagutin MB, Fomin AV (2017) Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr Eye Res 42(3):411–417. https://doi.org/10.1080/02713683.2016.1184281

    Article  PubMed  Google Scholar 

  56. Kurysheva NI, Kiseleva TN, Hodak NA (2012) The study of bioelectricactivity and regional hemodynamics in glaucoma. Klinicheskaya oftalmologiya 3:91–94

    Google Scholar 

  57. Flammer J, Orgül S (1998) Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res 17(2):267–289. https://doi.org/10.1016/s1350-9462(97)00006-2

    Article  CAS  PubMed  Google Scholar 

  58. Tobe LA, Harris A, Hussain RM et al (2015) The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period. Br J Ophthalmol 99(5):609–612. https://doi.org/10.1136/bjophthalmol-2014-305780

    Article  PubMed  Google Scholar 

  59. Martínez A, Sánchez M (2005) Predictive value of colour Doppler imaging in a prospective study of visual field progression in primary open-angle glaucoma. Acta Ophthalmol Scand 83(6):716–722. https://doi.org/10.1111/j.1600-0420.2005.00567.x

    Article  PubMed  Google Scholar 

  60. Mokbel TH, Ghanem AA (2011) Diagnostic value of color Doppler imaging and pattern visual evoked potential in primary open-angle glaucoma. J Clin Exp Ophthalmol 2(1). https://doi.org/10.4172/2155-9570.1000127

  61. Jia Y, Wei E, Wang X et al (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121(7):1322–1332. https://doi.org/10.1016/j.ophtha.2014.01.021

    Article  PubMed  Google Scholar 

  62. Manalastas PIC, Zangwill LM, Saunders LJ et al (2017) Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma 26(10):851–859. https://doi.org/10.1097/IJG.0000000000000768

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen HS, Liu CH, Wu WC, Tseng HJ, Lee YS (2017) Optical coherence tomography angiography of the superficial microvasculature in the macular and Peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci 58(9):3637–3645. https://doi.org/10.1167/iovs.17-21846

    Article  PubMed  Google Scholar 

  64. Kurysheva NI (2016) Macula in glaucoma: vascularity evaluated by OCT angiography. Res J Pharm, Biol Chem Sci 7(5):651–662

    Google Scholar 

  65. Xu H, Yu J, Kong X, Sun X, Jiang C (2016) Macular microvasculature alterations in patients with primary open-angle glaucoma: a cross-sectional study. Medicine (Baltimore) 95(33):e4341. https://doi.org/10.1097/MD.0000000000004341

    Article  PubMed  Google Scholar 

  66. Akil H, Chopra V, Al-Sheikh M et al (2017. bjophthalmol-2016-309816) Swept-source OCT angiography imaging of the macular capillary network in glaucoma [published online ahead of print, 2017 Aug 9]. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2016-309816

  67. Shoji T, Zangwill LM, Akagi T et al (2017) Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study. Am J Ophthalmol 182:107–117. https://doi.org/10.1016/j.ajo.2017.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  68. HollĂł G (2016) Intrasession and Between-Visit Variability of Sector Peripapillary Angioflow Vessel Density Values Measured with the Angiovue Optical Coherence Tomograph in Different Retinal Layers in Ocular Hypertension and Glaucoma [published correction appears in PLoS One. 2016 Dec 9;11(12 ):e0168231]. PloS One 11(8):e0161631. Published 2016 Aug 18. https://doi.org/10.1371/journal.pone.0161631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park HL, Kim JW, Park CK (2018) Choroidal microvasculature dropout is associated with progressive retinal nerve fiber layer thinning in glaucoma with disc hemorrhage. Ophthalmology 125(7):1003–1013. https://doi.org/10.1016/j.ophtha.2018.01.016

    Article  PubMed  Google Scholar 

  70. Moghimi S, Zangwill LM, Penteado RC et al (2018) Macular and optic nerve head vessel density and progressive retinal nerve fiber layer loss in glaucoma. Ophthalmology 125(11):1720–1728. https://doi.org/10.1016/j.ophtha.2018.05.006

    Article  PubMed  Google Scholar 

  71. Yarmohammadi A, Zangwill LM, Diniz-Filho A et al (2016) Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology 123(12):2498–2508. https://doi.org/10.1016/j.ophtha.2016.08.041

    Article  PubMed  Google Scholar 

  72. Jia Y, Morrison JC, Tokayer J et al (2012) Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 3(12):3127–3137. https://doi.org/10.1364/BOE.3.003127

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wang X, Jiang C, Ko T et al (2015) Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 253(9):1557–1564. https://doi.org/10.1007/s00417-015-3095-y

    Article  PubMed  Google Scholar 

  74. Liu L, Jia Y, Takusagawa HL et al (2015) Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol 133(9):1045–1052. https://doi.org/10.1001/jamaophthalmol.2015.2225

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lee EJ, Lee KM, Lee SH, Kim TW (2016) OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 57(14):6265–6270. https://doi.org/10.1167/iovs.16-20287

    Article  PubMed  Google Scholar 

  76. Lévêque PM, Zéboulon P, Brasnu E, Baudouin C, Labbé A (2016) Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J Ophthalmol 2016:6956717. https://doi.org/10.1155/2016/6956717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yarmohammadi A, Zangwill LM, Diniz-Filho A et al (2016) Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci 57(9):OCT451–OCT459. https://doi.org/10.1167/iovs.15-18944

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chihara E, Dimitrova G, Amano H, Chihara T (2017) Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci 58(1):690–697. https://doi.org/10.1167/iovs.16-20709

    Article  PubMed  Google Scholar 

  79. Hood DC (2017) Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (OCT). Prog Retin Eye Res 57:46–75. https://doi.org/10.1016/j.preteyeres.2016.12.002

    Article  PubMed  Google Scholar 

  80. Hood DC, Raza AS, de Moraes CG, Johnson CA, Liebmann JM, Ritch R (2012) The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Transl Vis Sci Technol 1(1):3. https://doi.org/10.1167/tvst.1.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  81. Bowd C, Tafreshi A, Zangwill LM, Medeiros FA, Sample PA, Weinreb RN (2011) Pattern electroretinogram association with spectral domain-OCT structural measurements in glaucoma. Eye (Lond) 25(2):224–232. https://doi.org/10.1038/eye.2010.203

    Article  CAS  PubMed  Google Scholar 

  82. May JG, Ralston JV, Reed JL, Van Dyk HJ (1982) Loss in pattern-elicited electroretinograms in optic nerve dysfunction. Am J Ophthalmol 93(4):418–422. https://doi.org/10.1016/0002-9394(82)90131-3

    Article  CAS  PubMed  Google Scholar 

  83. Bobak P, Bodis-Wollner I, Harnois C et al (1983) Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol 96(1):72–83. https://doi.org/10.1016/0002-9394(83)90457-9

    Article  CAS  PubMed  Google Scholar 

  84. Wanger P, Persson HE (1983) Pattern-reversal electroretinograms in unilateral glaucoma. Invest Ophthalmol Vis Sci 24(6):749–753

    CAS  PubMed  Google Scholar 

  85. Bach M, Hiss P, Röver J (1988) Check-size specific changes of pattern electroretinogram in patients with early open-angle glaucoma. Doc Ophthalmol 69(3):315–322. https://doi.org/10.1007/BF00154412

    Article  CAS  PubMed  Google Scholar 

  86. Parisi V, Miglior S, Manni G, Centofanti M, Bucci MG (2006) Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma. Ophthalmology 113(2):216–228. https://doi.org/10.1016/j.ophtha.2005.10.044

    Article  PubMed  Google Scholar 

  87. Rejdak R, Toczołowski J, Kurkowski J et al (2003) Oral citicoline treatment improves visual pathway function in glaucoma. Med Sci Monit 9(3):PI24–PI28

    CAS  PubMed  Google Scholar 

  88. Tong Y, Wang P, Xia Z, Xia X, Xu X (2009) Color pattern reversal visual evoked potentials in primary open angle and angle closure glaucoma. Zhong Nan Da Xue Xue Bao Yi Xue Ban 34(8):771–775. Chinese

    PubMed  Google Scholar 

  89. Kurysheva NI, Maslova EV, Zolnikova IV, Fomin AV, Lagutin MB (2018) A comparative study of structural, functional and circulatory parameters in glaucoma diagnostics. PloS One 13(8):e0201599. Published 2018 Aug 23. https://doi.org/10.1371/journal.pone.0201599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kurysheva NI, Maslova EV, Trubilina AV, Fomin AV, Likhvantseva VG, Lagutin MB (2017) OCT angiography and color doppler imaging in glaucoma diagnostics. J Pharm Sci Res 9(5):527–536

    CAS  Google Scholar 

  91. Investigators AGIS (2002) The advanced glaucoma intervention study (AGIS): 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma. Am J Ophthalmol 134(4):499–512. https://doi.org/10.1016/s0002-9394(02)01659-8

    Article  Google Scholar 

  92. Leske MC, Heijl A, Hussein M et al (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121(1):48–56. https://doi.org/10.1001/archopht.121.1.48

    Article  PubMed  Google Scholar 

  93. Leske MC, Heijl A, Hyman L et al (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114(11):1965–1972. https://doi.org/10.1016/j.ophtha.2007.03.016

    Article  PubMed  Google Scholar 

  94. Miglior S, Zeyen T, Pfeiffer N et al (2005) Results of the European glaucoma prevention study. Ophthalmology 112(3):366–375. https://doi.org/10.1016/j.ophtha.2004.11.030

    Article  PubMed  Google Scholar 

  95. Chauhan BC, Mikelberg FS, Balaszi AG et al (2008) Canadian glaucoma study: 2. Risk factors for the progression of open-angle glaucoma [published correction appears in arch Ophthalmol. 2008 Oct;126(10):1364]. Arch Ophthalmol 126(8):1030–1036. https://doi.org/10.1001/archopht.126.8.1030

    Article  PubMed  Google Scholar 

  96. Kim SH, Lee EJ, Han JC, Sohn SW, Rhee T, Kee C (2016) the effect of diurnal fluctuation in intraocular pressure on the evaluation of risk factors of progression in normal tension glaucoma. PloS One 11(10):e0164876. Published 2016 Oct 24. https://doi.org/10.1371/journal.pone.0164876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. De Moraes CG, Juthani VJ, Liebmann JM et al (2011) Risk factors for visual field progression in treated glaucoma [published correction appears in arch Ophthalmol. 2011 Jul;129(7):878]. Arch Ophthalmol 129(5):562–568. https://doi.org/10.1001/archophthalmol.2011.72

    Article  PubMed  Google Scholar 

  98. Musch DC, Gillespie BW, Niziol LM, Lichter PR, Varma R, CIGTS Study Group (2011) Intraocular pressure control and long-term visual field loss in the collaborative initial glaucoma treatment study. Ophthalmology 118(9):1766–1773. https://doi.org/10.1016/j.ophtha.2011.01.047

    Article  PubMed  Google Scholar 

  99. Medeiros FA, Sample PA, Zangwill LM, Bowd C, Aihara M, Weinreb RN (2003) Corneal thickness as a risk factor for visual field loss in patients with preperimetric glaucomatous optic neuropathy. Am J Ophthalmol 136(5):805–813. https://doi.org/10.1016/s0002-9394(03)00484-7

    Article  PubMed  Google Scholar 

  100. De Moraes CV, Hill V, Tello C, Liebmann JM, Ritch R (2012) Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma 21(4):209–213. https://doi.org/10.1097/IJG.0b013e3182071b92

    Article  PubMed  Google Scholar 

  101. Bengtsson B, Leske MC, Yang Z, Heijl A, EMGT Group (2008) Disc hemorrhages and treatment in the early manifest glaucoma trial. Ophthalmology 115(11):2044–2048. https://doi.org/10.1016/j.ophtha.2008.05.031

    Article  PubMed  Google Scholar 

  102. Martínez A, Sanchez-Salorio M (2010) Predictors for visual field progression and the effects of treatment with dorzolamide 2% or brinzolamide 1% each added to timolol 0.5% in primary open-angle glaucoma. Acta Ophthalmol 88(5):541–552. https://doi.org/10.1111/j.1755-3768.2009.01595.x

    Article  CAS  PubMed  Google Scholar 

  103. Actis AG, Versino E, Brogliatti B, Rolle T (2016) Risk factors for primary open angle glaucoma (POAG) progression: a study ruled in Torino. Open Ophthalmol J 10:129–139. Published 2016 Apr 29. https://doi.org/10.2174/1874364101610010129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Leske MC, Wu SY, Nemesure B, Hennis A (2002) Incident open-angle glaucoma and blood pressure. Arch Ophthalmol 120(7):954–959. https://doi.org/10.1001/archopht.120.7.954

    Article  PubMed  Google Scholar 

  105. Gugleta K (2009) Vaskuläre Risikofaktoren beim Glaukom - Diagnostik [Vascular risk factors in glaucoma - diagnostics]. Praxis 98(4):201–207. https://doi.org/10.1024/1661-8157.98.4.201

    Article  CAS  PubMed  Google Scholar 

  106. Memarzadeh F, Ying-Lai M, Chung J, Azen SP, Varma R, Los Angeles Latino Eye Study Group (2010) Blood pressure, perfusion pressure, and open-angle glaucoma: the Los Angeles Latino eye study. Invest Ophthalmol Vis Sci 51(6):2872–2877. https://doi.org/10.1167/iovs.08-2956

    Article  PubMed  PubMed Central  Google Scholar 

  107. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311(18):1901–1911. https://doi.org/10.1001/jama.2014.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ghahari E, Bowd C, Zangwill LM et al (2019) Association of macular and circumpapillary microvasculature with visual field sensitivity in advanced glaucoma. Am J Ophthalmol 204:51–61. https://doi.org/10.1016/j.ajo.2019.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hou H, Moghimi S, Zangwill LM et al (2020) Association between rates of retinal nerve fiber layer thinning after intraocular pressure-lowering procedures and disc hemorrhage. Ophthalmol Glaucoma 3(1):7–13. https://doi.org/10.1016/j.ogla.2019.11.002

    Article  PubMed  Google Scholar 

  110. Kamalipour A, Moghimi S, Hou H et al (2022) Multilayer macula vessel density and visual field progression in glaucoma. Am J Ophthalmol 237:193–203. https://doi.org/10.1016/j.ajo.2021.11.018

    Article  CAS  PubMed  Google Scholar 

  111. Kwon JM, Weinreb RN, Zangwill LM, Suh MH (2019) Parapapillary deep-layer microvasculature dropout and visual field progression in glaucoma. Am J Ophthalmol 200:65–75. https://doi.org/10.1016/j.ajo.2018.12.007

    Article  PubMed  Google Scholar 

  112. Li F, Lin F, Gao K et al (2022) Association of foveal avascular zone area with structural and functional progression in glaucoma patients. Br J Ophthalmol 106(9):1245–1251. https://doi.org/10.1136/bjophthalmol-2020-318065

    Article  PubMed  Google Scholar 

  113. Alm A, Bill A (1973) Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp Eye Res 15(1):15–29. https://doi.org/10.1016/0014-4835(73)90185-1

    Article  CAS  PubMed  Google Scholar 

  114. Lejoyeux, R., Benillouche, J., Ong, J., , et al. Choriocapillaris: fundamentals and advancements. Prog Retin Eye Res 2022;87:100997. https://doi.org/10.1016/j.preteyeres.2021.100997

    Article  PubMed  Google Scholar 

  115. Suh MH, Zangwill LM, Manalastas PI et al (2016) Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology 123(12):2509–2518. https://doi.org/10.1016/j.ophtha.2016.09.002

    Article  PubMed  Google Scholar 

  116. Lee SH, Kim TW, Lee EJ, Girard MJA, Mari JM (2020) Focal lamina cribrosa defects are not associated with steep lamina cribrosa curvature but with choroidal microvascular dropout. Sci Rep 10:6761. Published 2020 Apr 21. https://doi.org/10.1038/s41598-020-63681-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee EJ, Kim TW, Kim JA et al (2019) Elucidation of the strongest factors influencing rapid retinal nerve fiber layer thinning in glaucoma. Invest Ophthalmol Vis Sci 60(10):3343–3351. https://doi.org/10.1167/iovs.18-26519

    Article  PubMed  Google Scholar 

  118. Jo YH, Shin JW, Song MK, Won HJ, Kook MS (2021) Baseline choroidal microvasculature dropout as a predictor of subsequent visual field progression in open-angle glaucoma. J Glaucoma 30(8):672–681. https://doi.org/10.1097/IJG.0000000000001853

    Article  PubMed  Google Scholar 

  119. Lee EJ, Kim TW, Kim JA, Lee SH, Kim H (2022) Predictive modeling of long-term glaucoma progression based on initial ophthalmic data and optic nerve head characteristics. Transl Vis Sci Technol 11(10):24. https://doi.org/10.1167/tvst.11.10.24

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kim SH, Park KH (2006) The relationship between recurrent optic disc hemorrhage and glaucoma progression. Ophthalmology 113(4):598–602. https://doi.org/10.1016/j.ophtha.2005.12.018

    Article  PubMed  Google Scholar 

  121. Kurysheva NI, Shatalova EO (2022) Parafoveal vessel density dropout may predict glaucoma progression in the long-term follow up. J Ophthalmol Res 5:150–166

    Article  Google Scholar 

  122. JanuleviÄŤiene I, Ehrlich R, Siesky B, NedzelskienÄ— I, Harris A (2011) Evaluation of hemodynamic parameters as predictors of glaucoma progression. J Ophthalmol 2011:164320. https://doi.org/10.1155/2011/164320

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chen CL, Zhang A, Bojikian KD et al (2016) Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography. Invest Ophthalmol Vis Sci 57(9):OCT475–OCT485. https://doi.org/10.1167/iovs.15-18909

    Article  PubMed  PubMed Central  Google Scholar 

  124. Yarmohammadi A, Zangwill LM, Diniz-Filho A et al (2017) Peripapillary and macular vessel density in patients with glaucoma and single-Hemifield visual field defect. Ophthalmology 124(5):709–719. https://doi.org/10.1016/j.ophtha.2017.01.004

    Article  PubMed  Google Scholar 

  125. Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S (2018) OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol 256(8):1499–1508. https://doi.org/10.1007/s00417-018-3965-1

    Article  CAS  PubMed  Google Scholar 

  126. Moghimi S, Bowd C, Zangwill LM et al (2019) Measurement floors and dynamic ranges of OCT and OCT angiography in glaucoma. Ophthalmology 126(7):980–988. https://doi.org/10.1016/j.ophtha.2019.03.003

    Article  PubMed  Google Scholar 

  127. Rao HL, Pradhan ZS, Weinreb RN et al (2017) Relationship of optic nerve structure and function to peripapillary vessel density measurements of optical coherence tomography angiography in glaucoma. J Glaucoma 26(6):548–554. https://doi.org/10.1097/IJG.0000000000000670

    Article  PubMed  Google Scholar 

  128. Mwanza JC, Budenz DL, Warren JL et al (2015) Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma. Br J Ophthalmol 99(6):732–737. https://doi.org/10.1136/bjophthalmol-2014-305745

    Article  PubMed  Google Scholar 

  129. Belghith A, Medeiros FA, Bowd C et al (2016) Structural change can be detected in advanced-glaucoma eyes. Invest Ophthalmol Vis Sci 57(9):OCT511–OCT518. https://doi.org/10.1167/iovs.15-18929

    Article  PubMed  PubMed Central  Google Scholar 

  130. HollĂł G (2019) Peripapillary capillary vessel density progression in advanced glaucoma: a case report. BMC Ophthalmol 19(1):2. Published 2019 Jan 5. https://doi.org/10.1186/s12886-018-1021-x

    Article  PubMed  PubMed Central  Google Scholar 

  131. In JH, Lee SY, Cho SH, Hong YJ (2018) Peripapillary vessel density reversal after trabeculectomy in glaucoma. J Ophthalmol 2018:8909714. Published 2018 Jun 26. https://doi.org/10.1155/2018/8909714

    Article  PubMed  PubMed Central  Google Scholar 

  132. Shin JW, Sung KR, Uhm KB et al (2017) Peripapillary microvascular improvement and lamina Cribrosa depth reduction after trabeculectomy in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 58(13):5993–5999. https://doi.org/10.1167/iovs.17-22787

    Article  PubMed  Google Scholar 

  133. HollĂł G (2017) Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma 26:e7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurysheva, N.I., Kim, V.Y., Kim, V.E. (2023). Does the Evaluation of Ocular Blood Supply Play a Role in Glaucoma Diagnostics and Prognosis of Progression?. In: Podbielska, H., Kapalla, M. (eds) Predictive, Preventive, and Personalised Medicine: From Bench to Bedside. Advances in Predictive, Preventive and Personalised Medicine, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-031-34884-6_18

Download citation

Publish with us

Policies and ethics