Skip to main content

CPAP, Bilevel, APAP, High and Low Loop Gain Syndromes

  • Chapter
  • First Online:
Atlas of Sleep Medicine
  • 555 Accesses

Abstract

Positive airway pressure therapy is a core skill in sleep medicine and laboratory practice. This area has seen significant changes since the first edition of the Atlas, including the following: (1) availability and increased familiarity with use and limitations of adaptive ventilation and average/intelligent volume assured pressure ventilation [1–3], (2) the recognition of high loop gain apnea (complex sleep apnea) through morphological and computational analysis of polysomnograms [4–9], (3) demonstrated investigative and clinical efficacy of low-concentration carbon dioxide (CO2) and acetazolamide as positive airway pressure adjuncts [10–15], (4) changes in the pressure profile delivered by clinical devices that attempt to maximize comfort and improve synchrony between the patient and the ventilator, (5) formal guidelines for titration of positive airway pressure and noninvasive ventilation from the American Academy of Sleep Medicine (AASM) [16], which, however, have not been updated as of 2023, and (6) formal recommendations for polysomnography in noninvasive ventilation practice from the SomnoNIV group [17–19]. This chapter will aim to provide complementary information using informative snapshots. Slightly edited summaries of the AASM guidelines are provided below as a starting point, supplemented by discussions of adaptive ventilation, volume assured ventilation, use of dead space, supplemental oxygen, pharmacological protocols, and opiate-induced sleep-disordered breathing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Javaheri S, Brown LK, Randerath WJ. Clinical applications of adaptive servoventilation devices: part 2. Chest. 2014;146:858–68.

    Article  PubMed  Google Scholar 

  2. Javaheri S, Brown LK, Randerath WJ. Positive airway pressure therapy with adaptive servoventilation: part 1: operational algorithms. Chest. 2014;146:514–23.

    Article  PubMed  Google Scholar 

  3. Randerath W, Schumann K, Treml M, et al. Adaptive servoventilation in clinical practice: beyond SERVE-HF? ERJ Open Res. 2017:3.

    Google Scholar 

  4. Thomas RJ, Terzano MG, Parrino L, Weiss JW. Obstructive sleep-disordered breathing with a dominant cyclic alternating pattern—a recognizable polysomnographic variant with practical clinical implications. Sleep. 2004;27:229–34.

    Article  PubMed  Google Scholar 

  5. Oppersma E, Ganglberger W, Sun H, Thomas RJ, Westover MB. Algorithm for automatic detection of self-similarity and prediction of residual central respiratory events during continuous positive airway pressure. Sleep. 2021;44:zsaa215.

    Article  PubMed  Google Scholar 

  6. Thomas RJ, Mietus JE, Peng CK, et al. Differentiating obstructive from central and complex sleep apnea using an automated electrocardiogram-based method. Sleep. 2007;30:1756–69.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Joosten SA, Landry SA, Wong AM, et al. Assessing the physiologic endotypes responsible for REM- and NREM-based OSA. Chest. 2021;159:1998–2007.

    Article  PubMed  Google Scholar 

  8. Sands SA, Edwards BA, Terrill PI, et al. Phenotyping pharyngeal pathophysiology using polysomnography in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2018;197:1187–97.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Terrill PI, Edwards BA, Nemati S, et al. Quantifying the ventilatory control contribution to sleep apnoea using polysomnography. Eur Respir J. 2015;45:408–18.

    Article  PubMed  Google Scholar 

  10. Gilmartin G, McGeehan B, Vigneault K, et al. Treatment of positive airway pressure treatment-associated respiratory instability with enhanced expiratory rebreathing space (EERS). J Clin Sleep Med. 2010;6:529–38.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thomas RJ, Daly RW, Weiss JW. Low-concentration carbon dioxide is an effective adjunct to positive airway pressure in the treatment of refractory mixed central and obstructive sleep-disordered breathing. Sleep. 2005;28:69–77.

    Article  PubMed  Google Scholar 

  12. Edwards BA, Connolly JG, Campana LM, et al. Acetazolamide attenuates the ventilatory response to arousal in patients with obstructive sleep apnea. Sleep. 2013;36:281–5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Javaheri S. Acetazolamide improves central sleep apnea in heart failure: a double-blind, prospective study. Am J Respir Crit Care Med. 2006;173:234–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ni YN, Yang H, Thomas RJ. The role of acetazolamide in sleep apnea at sea level: a systematic review and meta-analysis. J Clin Sleep Med. 2021;17:1295–304.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schmickl CN, Landry SA, Orr JE, et al. Acetazolamide for OSA and central sleep apnea: a comprehensive systematic review and meta-analysis. Chest. 2020;158:2632–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kushida CA, Chediak A, Berry RB, et al. Clinical guidelines for the manual titration of positive airway pressure in patients with obstructive sleep apnea. J Clin Sleep Med. 2008;4:157–71.

    Article  PubMed  Google Scholar 

  17. Gonzalez-Bermejo J, Perrin C, Janssens JP, et al. Proposal for a systematic analysis of polygraphy or polysomnography for identifying and scoring abnormal events occurring during non-invasive ventilation. Thorax. 2012;67:546–52.

    Article  CAS  PubMed  Google Scholar 

  18. Janssens JP, Borel JC, Pepin JL, Somno NIVG. Nocturnal monitoring of home non-invasive ventilation: the contribution of simple tools such as pulse oximetry, capnography, built-in ventilator software and autonomic markers of sleep fragmentation. Thorax. 2011;66:438–45.

    Article  PubMed  Google Scholar 

  19. Rabec C, Rodenstein D, Leger P, et al. Ventilator modes and settings during non-invasive ventilation: effects on respiratory events and implications for their identification. Thorax. 2011;66:170–8.

    Article  PubMed  Google Scholar 

  20. Alex RM, Sofer T, Azarbarzin A, et al. Within-night repeatability and long-term consistency of sleep apnea endotypes: the multi-ethnic study of atherosclerosis and osteoporotic fractures in men study. Sleep. 2022;45:zsac129.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Finnsson E, Olafsdottir GH, Loftsdottir DL, et al. A scalable method of determining physiological endotypes of sleep apnea from a polysomnographic sleep study. Sleep. 2021;44:zsaa168.

    Article  PubMed  Google Scholar 

  22. Camacho M, Song SA, Tolisano AM. Oral pressure therapy (winx) for obstructive sleep apnea: a meta-analysis updating the systematic review. Sleep Breath. 2016;20:1011–2.

    Article  PubMed  Google Scholar 

  23. Cheng CY, Chen CC, Lo MT, Guilleminault C, Lin CM. Evaluation of efficacy and safety of intraoral negative air pressure device in adults with obstructive sleep apnea in Taiwan. Sleep Med. 2021;81:163–8.

    Article  PubMed  Google Scholar 

  24. Nokes B, Baptista PM, de Apodaca PMR, et al. Transoral awake state neuromuscular electrical stimulation therapy for mild obstructive sleep apnea. Sleep Breath. 2022;27:527–34.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kram JA, Pelayo R. Variable negative external pressure-an alternative to continuous positive airway pressure for the treatment of obstructive sleep apnea: a pilot study. J Clin Sleep Med. 2022;18:305–14.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kram JA, Woidtke RV, Klein KB, Rose RM. Evaluation of continuous negative external pressure (cNEP) for the treatment of obstructive sleep apnea: a pilot study. J Clin Sleep Med. 2017;13:1009–12.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Berry RB, Chediak A, Brown LK, et al. Best clinical practices for the sleep center adjustment of noninvasive positive pressure ventilation (NPPV) in stable chronic alveolar hypoventilation syndromes. J Clin Sleep Med. 2010;6:491–509.

    Article  PubMed  Google Scholar 

  28. Franklin KA, Eriksson P, Sahlin C, Lundgren R. Reversal of central sleep apnea with oxygen. Chest. 1997;111:163–9.

    Article  CAS  PubMed  Google Scholar 

  29. Gold AR, Bleecker ER, Smith PL. A shift from central and mixed sleep apnea to obstructive sleep apnea resulting from low-flow oxygen. Am Rev Respir Dis. 1985;132:220–3.

    CAS  PubMed  Google Scholar 

  30. Nakao YM, Ueshima K, Yasuno S, Sasayama S. Effects of nocturnal oxygen therapy in patients with chronic heart failure and central sleep apnea: CHF-HOT study. Heart Vessels. 2016;31:165–72.

    Article  PubMed  Google Scholar 

  31. Sakakibara M, Sakata Y, Usui K, et al. Effectiveness of short-term treatment with nocturnal oxygen therapy for central sleep apnea in patients with congestive heart failure. J Cardiol. 2005;46:53–61.

    PubMed  Google Scholar 

  32. Yayan J, Rasche K. Treatment options for central sleep apnea: comparison of ventilator, oxygen, and drug therapies. Adv Exp Med Biol. 2016;905:79–86.

    Article  CAS  PubMed  Google Scholar 

  33. Ebben MR, Narizhnaya M, Segal AZ, Barone D, Krieger AC. A randomised controlled trial on the effect of mask choice on residual respiratory events with continuous positive airway pressure treatment. Sleep Med. 2014;15:619–24.

    Article  PubMed  Google Scholar 

  34. Genta PR, Kaminska M, Edwards BA, et al. The importance of mask selection on continuous positive airway pressure outcomes for obstructive sleep apnea. An official American Thoracic Society workshop report. Ann Am Thorac Soc. 2020;17:1177–85.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thomas RJ. Cyclic alternating pattern and positive airway pressure titration. Sleep Med. 2002;3:315–22.

    Article  PubMed  Google Scholar 

  36. Cao M, Javaheri S. Effects of chronic opioid use on sleep and wake. Sleep Med Clin. 2018;13:271–81.

    Article  PubMed  Google Scholar 

  37. Chowdhuri S, Javaheri S. Sleep disordered breathing caused by chronic opioid use: diverse manifestations and their management. Sleep Med Clin. 2017;12:573–86.

    Article  PubMed  Google Scholar 

  38. Javaheri S, Cao M. Chronic opioid use and sleep disorders. Sleep Med Clin. 2022;17:433–44.

    Article  PubMed  Google Scholar 

  39. Javaheri S, Harris N, Howard J, Chung E. Adaptive servoventilation for treatment of opioid-associated central sleep apnea. J Clin Sleep Med. 2014;10:637–43.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ferri R, Fulda S, Allen RP, et al. World Association of Sleep Medicine (WASM) 2016 standards for recording and scoring leg movements in polysomnograms developed by a joint task force from the International and the European Restless Legs Syndrome Study Groups (IRLSSG and EURLSSG). Sleep Med. 2016;26:86–95.

    Article  CAS  PubMed  Google Scholar 

  41. Chokroverty S, Bhat S, Gupta D. Respiratory-related leg movements vs periodic limb movements in sleep: a scoring conundrum. An editorial. Sleep Med. 2021;81:98–100.

    Article  PubMed  Google Scholar 

  42. Lee SA, Lee YS, Cho CW, Yang HR, Im K. Different scoring rules for respiratory event-related leg movements: effects on the prevalence of periodic limb movements during sleep and their association with depressive symptoms in patients with obstructive sleep apnea. Sleep Med. 2021;85:204–10.

    Article  PubMed  Google Scholar 

  43. Ferri R, DelRosso LM, Provini F, Stefani A, Walters AS, Picchietti DL. Scoring of large muscle group movements during sleep: an International Restless Legs Syndrome Study Group position statement. Sleep. 2021;44:zsab092.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Khayat RN, Xie A, Patel AK, Kaminski A, Skatrud JB. Cardiorespiratory effects of added dead space in patients with heart failure and central sleep apnea. Chest. 2003;123:1551–60.

    Article  PubMed  Google Scholar 

  45. Lovis A, De Riedmatten M, Greiner D, et al. Effect of added dead space on sleep disordered breathing at high altitude. Sleep Med. 2012;13:663–7.

    Article  CAS  PubMed  Google Scholar 

  46. Patrician A, Tymko MM, Caldwell HG, et al. The effect of an expiratory resistance mask with dead space on sleep, acute mountain sickness, cognition, and ventilatory acclimatization in normobaric hypoxia. High Alt Med Biol. 2019;20:61–70.

    Article  PubMed  Google Scholar 

  47. Xie A, Rankin F, Rutherford R, Bradley TD. Effects of inhaled CO2 and added dead space on idiopathic central sleep apnea. J Appl Physiol (1985). 1997;82:918–26.

    Article  CAS  PubMed  Google Scholar 

  48. Rastogi R, Badr MS, Ahmed A, Chowdhuri S. Amelioration of sleep-disordered breathing with supplemental oxygen in older adults. J Appl Physiol (1985). 2020;129:1441–50.

    Article  CAS  PubMed  Google Scholar 

  49. Shigemitsu M, Nishio K, Kusuyama T, Itoh S, Konno N, Katagiri T. Nocturnal oxygen therapy prevents progress of congestive heart failure with central sleep apnea. Int J Cardiol. 2007;115:354–60.

    Article  PubMed  Google Scholar 

  50. Friedman M, Hwang MS, Yalamanchali S, Pott T, Sidhu M, Joseph NJ. Provent therapy for obstructive sleep apnea: impact of nasal obstruction. Laryngoscope. 2016;126:254–9.

    Article  PubMed  Google Scholar 

  51. Riaz M, Certal V, Nigam G, et al. Nasal expiratory positive airway pressure devices (Provent) for OSA: a systematic review and meta-analysis. Sleep Disord. 2015;2015:734798.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Braga CW, Chen Q, Burschtin OE, Rapoport DM, Ayappa I. Changes in lung volume and upper airway using MRI during application of nasal expiratory positive airway pressure in patients with sleep-disordered breathing. J Appl Physiol (1985). 2011;111:1400–9.

    Article  CAS  PubMed  Google Scholar 

  53. Patel AV, Hwang D, Masdeu MJ, Chen GM, Rapoport DM, Ayappa I. Predictors of response to a nasal expiratory resistor device and its potential mechanisms of action for treatment of obstructive sleep apnea. J Clin Sleep Med. 2011;7:13–22.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sleeper G, Rashidi M, Strohl KP, et al. Comparison of expiratory pressures generated by four different EPAP devices in a laboratory bench setting. Sleep Med. 2022;96:87–92.

    Article  PubMed  Google Scholar 

  55. Brown LK. Acetazolamide for central sleep apnea: teaching an old drug new tricks? J Clin Sleep Med. 2021;17:1153–5.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kwok CT, Wong KC, Kwok CL, Lee SH, Yee KS. Treatment-emergent central sleep apnoea managed by CPAP with adjunctive acetazolamide: a case report. Respirol Case Rep. 2022;10:e0916.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ni YN, Thomas RJ. Acetazolamide for residual apnea and periodic breathing on continuous positive airway pressure therapy. Sleep Med. 2020;71:52–3.

    Article  PubMed  Google Scholar 

  58. Eskandari D, Zou D, Karimi M, Stenlof K, Grote L, Hedner J. Zonisamide reduces obstructive sleep apnoea: a randomised placebo-controlled study. Eur Respir J. 2014;44:140–9.

    Article  CAS  PubMed  Google Scholar 

  59. Gaisl T, Haile SR, Thiel S, Osswald M, Kohler M. Efficacy of pharmacotherapy for OSA in adults: a systematic review and network meta-analysis. Sleep Med Rev. 2019;46:74–86.

    Article  PubMed  Google Scholar 

  60. Westwood AJ, Vendrame M, Montouris G, Auerbach SH. Pearls & oysters: treatment of central sleep apnea with topiramate. Neurology. 2012;78:e97–9.

    Article  PubMed  Google Scholar 

  61. Hedner J, Stenlof K, Zou D, et al. A randomized controlled clinical trial exploring safety and tolerability of Sulthiame in sleep apnea. Am J Respir Crit Care Med. 2022;205:1461–9.

    Article  CAS  PubMed  Google Scholar 

  62. Giannoni A, Borrelli C, Mirizzi G, Richerson GB, Emdin M, Passino C. Benefit of buspirone on chemoreflex and central apnoeas in heart failure: a randomized controlled crossover trial. Eur J Heart Fail. 2021;23:312–20.

    Article  CAS  PubMed  Google Scholar 

  63. Sankri-Tarbichi AG, Grullon K, Badr MS. Effects of clonidine on breathing during sleep and susceptibility to central apnoea. Respir Physiol Neurobiol. 2013;185:356–61.

    Article  CAS  PubMed  Google Scholar 

  64. Chowdhuri S, Ghabsha A, Sinha P, Kadri M, Narula S, Badr MS. Treatment of central sleep apnea in U.S. veterans. J Clin Sleep Med. 2012;8:555–63.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Thomas .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Palatal myoclonus (see Fig. 53) (MP4 2162 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, R.J. (2023). CPAP, Bilevel, APAP, High and Low Loop Gain Syndromes. In: Thomas, R.J., Bhat, S., Chokroverty, S. (eds) Atlas of Sleep Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-34625-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34625-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34624-8

  • Online ISBN: 978-3-031-34625-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics