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Abstract. The Swiss-type lathe is a specialized turning machine of Swiss-origin
with a wide range of applications across the precision machining industry. Its
unique features enable it to mass produce parts at high speeds and with high
precision. However, the complex non-symmetric structure of the machine tool
makes it particularly susceptible to the adverse effects of thermal influences. These
internal and external thermal influences cause an offset at the tool center point and
degrade the accuracy of the produced part. It is a common practice in Swiss-type
lathe machining for an operator to open the machine door during a production run
to exchange tools or inspect the produced part. Consequently, thermal boundary
conditions change rapidly when cooler ambient air enters the working space of
the machine tool and when the air heats up after the machine tool is restarted.
The machine tool exhibits short cool-down and warm-up cycles during which the
thermal errors change abruptly and can be challenging to compensate, as it is well
known in the machine tool industry. This work develops a novel methodology
based on artificial intelligence that compensates thermal errors associated with
sudden boundary condition changes. The results show that thermal error residual
peaks associated with a machine tool door opening are significantly attenuated
and the peak-to-peak thermal error of the Swiss-type lathe is reduced.
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1 Introduction

Customers of the machine tool industry demand increasingly precise machines to manu-
facture their productswith tight tolerances in themicrometer range. To enable production
of such demanding specifications, continual advances in precision of machine tools are
required. Machine tools are susceptible to a range of error sources, of which up to 70%
can be attributed to thermal influences, as reported by Mayr et al. [1]. Internal and exter-
nal thermal influences act on machine tools, cause an offset of the tool center point
(TCP) and degrade workpiece accuracy. Most common internal influences are due to
heat generated in electrical components such as motors, due to mechanical friction in
bearings, ballscrews and gearboxes, and due to the cutting process. External influences
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are typically the environment and personal radiations. These are summarized in the ther-
mal chain of causes fromWegener et al. [2]. To reduce the undesirable impact of thermal
effects, options are to thermally stabilizemachine tools via cooling and/or to compensate
the machine tool via correcting the NC-axes or tool position. Due to the rising necessity
to reduce energy consumption, thermal compensation is an increasingly sought-after
solution, as reported by Wegener et al. [3]. As opposed to a resource-based approach, it
is a knowledge-based approach, and a crucial step in the direction of increasing energy
efficiency.

Two approaches to thermal compensation are generally distinguished: physics-based
and data-based. The physics-based approach describes the deformation of the machine
tool by differential equations. Physics-based models compute temperature dependent
displacements at discrete points of the machine tool, typically via finite elements. To
reduce the computational time, these models are coupled with model-order reduction
techniques, such as in thework of Hernández Becerro [4]. Physical models can further be
improved by parameter tuning based on on-machine measurements. Ihlenfeldt et al. [5]
performed a parameter analysis to determine the parameters with the highest impact on
the overall machine tool accuracy. The data-based approach is an alternative grey/black
box methodology that correlates relevant input and output variables. A wide range of
data-based models, from simple regression models to more advanced models such as
long short-termmemory neural networks, have been applied in the literature. Blaser et al.
[6] used ARX (AutoRegressive with eXogenous inputs) to develop a thermal adaptive
learning control approach for the compensation of rotary axes of a 5-axis machine tool.
This methodology was further improved by Zimmermann et al. [7] who addressed the
issue of adaptive input selection. The ARX model was also used by Horejš et al. [8] in
their investigation of the effects of fluid cooling systems, underlining the model’s suit-
ability for thermal compensation. Mareš et al. [9] proposed an approach to modelling
the thermal errors of a turning-milling centre based on ARX, tested three typical exper-
imental setups (drilling, milling, and turning) under load free conditions and applied
compensation offline. Fujishima et al. [10] proposed a deep learning approach to predict
thermal errors of a turning center under severe situations such as unexpected temperature
change or sensor failure. Ngoc et al. [11] applied LSTM to predict 10 geometric errors
of a 5-axis machine tool using the rotational B- and C- axes power information as inputs
to the model.

This work focuses on the thermal compensation of a Swiss-type lathe. A number
of features distinguish it from a 5-axis machine tool: it incorporates multiple TCPs on
tool holders and turrets, its headstock is moveable and facilitates workpiece movement
in the z-axis direction, it contains a bar-feeder, a guide bush, and in general a higher
number of axes. The lathe has a complex non-symmetric structure and is therefore
especially susceptible to thermal influences. Works on thermal compensation of Swiss-
type lathes are rare in literature. Ouerhani et al. [12] modelled the warm-up behavior of
a Tornos SwissNano4 with four different machine-learning models. A reduction of 90%
was reported, however, the thermal loads in the training and validation cases were very
similar.Wang et al. [13] used rough-set theory in combinationwith aCNN tomeasure the
spindle axial deformation but only on a very short time sample of one-hundred minutes.
A further investigation is thus clearly mandated.
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This publication is structured as follows: Sect. 2 explains the methodology applied
for thermal compensation, Sect. 3 introduces the experimental setup on the Swiss-type
lathe, Sect. 4 presents the results and Sect. 5 summarizes the work.

2 Methodology of Thermal Error Compensation

This work proposes the application of a novel stacked model for thermal error compen-
sation based on ARX and RFR (Random Forest Regression). Input data (temperatures)
are preprocessed via empirical mode decomposition to achieve a more stable model
performance.

2.1 Empirical Model Decomposition

Empirical Mode Decomposition (EMD) was proposed by Huang et al. [14] for the anal-
ysis of non-stationary time series. The purpose of EMD is to find an intuitive representa-
tion of the frequency content of complex dynamic signals, for which Fourier-transform
based methods are not suitable, due to their non-sinusoidal nature. EMD decomposes a
signal in the time domain into a number of temporally adaptive basis functions called
the Intrinsic Mode Functions (IMF) by using a ‘sift’ algorithm. As opposed to a Fourier
decomposition, IMFs usually have a variable amplitude and frequency, and the number
of IMF components is determined by a convergence to a stoppage criterion defined by a
limit of the standard deviation of two consecutive sifting results. The EMD algorithm is
used to remove noisy high-frequency components from data to improve the robustness
of the thermal compensation model.

EMD considers an input x(t), generates an upper envelope U (t) and lower envelope
L(t) based on the local extrema of x(t), and computes the mean valuem(t) as an average
of the upper and lower envelopes. The first iteration for the first IMF component is given
by:

x(t) − m10(t) = h10(t) (1)

The next iteration, where m11(t) is determined from h10(t):

h10(t) − m11(t) = h11(t) (2)

The generalized equation for the IMF component hik , where i is the ith IMF compo-
nent and k is the kth sifting operation is given by Eq. (3). The number of sifting operations
is determined by convergence to a stoppage criterion, also defined by Huang et al. [14].

hi(k−1) − mik = hik (3)
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2.2 Autoregressive Model with Exogenous Inputs (ARX)

The ARX model originates from the field of linear system identification; it is a linear
representation of a dynamic system in discrete time steps. ARX considers past and
present system inputs as well as past system outputs to compute the prediction for the
current systemoutput. Themodel structure is expressed by the following linear difference
equation, adapted from the work of Ljung [15]:

y(t) + a1y(t − 1) + · · · + anay(t − na) = b1u(t − 1) + · · · + bnbu(t − nb) (4)

y represents the model output (thermal error) and u the model input (e.g. temperature).
Themodel coefficients can be collected in the θ matrix and the time series of past outputs
and inputs in the matrix ϕ(t).

θ− = [
a1 a2 . . . ana b1 b2 . . . bnb

]
(5)

ϕ(t) = [−y(t − 1) . . . − y(t − na)u(t − 1) . . . u(t − nb)
]

(6)

Model parameters na and nb, i.e. orders of the autoregressive and exogenous parts
respectively, can be determined e.g. via partial autocorrelation function analysis. The
coefficient matrix θ can be calculated via least squares and the thermal error ŷ predicted:

θ̂ =
[∑N

i=1
ϕ−(t)ϕ−

T (t)

]−1 ∑N

i=1
ϕ−(t)y(t) (7)

ŷ = ϕT (t)θ̂ (8)

2.3 Random Forest Regression (RFR)

Random Forest Regression (RFR) is a supervised learning algorithm based on decision
trees that can be applied for both classification and regression tasks. RFR fits a multitude
of decision trees in training time (ensemble learning) on variously subsampled data
(bootstrapping) and returns the average prediction of individual trees. The original RFR
algorithm was first proposed by Tin Kam Ho in 1995 [16]. RFR is a versatile regression
algorithm with successful applications across various fields from medical diagnostics to
financial fraud detection.
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Fig. 1. Random Forest Regression model schematic.

The schematic of the RFR model is shown in Fig. 1. In the training process, each
regression tree is assigned a bootstrapped subset of the training data, thus generating N
new sets of training data, where N is the total number of trees in the model. N = 100 is
applied in this work. Feature sampling is also commonly performed, although here only
one feature, the smoothed door status signal, is used and therefore this feature is used
at every internal node. In this sense, the RFR model is similar to a bag of trees model.
The squared error is taken as the split criterion at every internal node. The output of the
model is the average of the values predicted by the N trees.

2.4 Stacked ARX-RFR Model for Thermal Compensation

The ARX-RFR model consists of a calibration phase in which model parameters are
calculated and a prediction phase in which the model is applied to compensate errors
without in-process error measurement. The model structure is shown in Fig. 2.
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Fig. 2. ARX-RFR model schematic for thermal error compensation.

The ARX model is trained with sifted temperature and thermal error data with a
time frequency of approximately five minutes. The list of all possible inputs of the ARX
model is specified in Table 1 in the next section. Specific inputs are chosen based on
knowledge of the machine tool behaviour. The output of the model is the thermal error,
for each thermal error a differently parametrized ARX model is constructed.

The inputs of the RFR model are the thermal error residual of the ARX prediction
and the smoothed machine door status signal with a time frequency of approximately
one minute. The smoothing is performed with a smoothing function shown in Eq. (9).

yt,smoothed = 1

1+ e−k(t0−t)
yt (9)

The machine door status signal yt is a binary signal, 0 when the door is closed and 1
when the door is open. t0 corresponds to the time at which a status change occurs, k = 1
when the door status changes from 0 to 1 and k = −1 when the door status changes
from 1 to 0. In the prediction phase the models are applied in a stacked manner, i.e. the
model predictions are added together.

3 Experimental Setup

3.1 Machine Tool and Measurement Equipment

The experimental machine tool is a Swiss-type lathe, whose kinematic chain can be
described as H[w-[S1’-Z1’ S2’-Y2’-Z2’-X2’]-b-[t X1-Y1-[t (S11)-t]]] according to the
notation outlined in ISO 10791-1:2015 [17]. Displacement probes are mounted on the
tool holder to measure errors in the X - and Y - axes directions, as shown in Fig. 3.
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Thermal errors are measured between the main spindle S1 and the tool holder. Twelve
temperature measurements are monitored, of which seven are from externally mounted
temperature sensors and five are from internal NC data, as summarized in Table 1.
Temperature sensors are also mounted directly on the tool holder, as shown in Fig. 3.

Fig. 3. Working space of the Swiss-type lathe. The tool holder can be equipped with turning,
drilling, and boring tools. Displacement probes and temperature sensors mounted on the tool
holder are shown.

For the X-axis compensation, sensors 1, 2, 6, 8, 11, 12 are chosen; for the Y-axis
compensation, sensors 1, 2, 6, 10, 11, 12 are chosen.

3.2 Model Calibration Phase

The ARX-RFR model is calibrated with a thermal load cycle of varying spindle and
driven tools motor speeds, rapid axes motions, and machine door openings. In this
manner, different thermal states of the machine are excited while thermal errors are
measured intermittently at a constant frequency of approximately five minutes. The
training cycle is shown in Fig. 4.

3.3 Thermal Test Piece

The ARX-RFR model is validated on a thermal test-piece shown in Fig. 5. The test-
piece has a varying diameter from 7 to 16 mm and a length of 28 mm. The cycle to
produce this part runs on the machine tool virtually, i.e. without any material cutting.
The influenceof heat thatwouldbe releasedduring theproductionof the real part, i.e.with
material cutting, is not considered in this work. The cycle per part lasts approximately
60 s: this corresponds to a typical industrial production on a Swiss-type lathe, in which
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Table 1. Temperature Sensors.

Sensor Number Name Type

1 Ambient External

2 Cutting oil External

3 Spindle cooling External

4 Machining area External

5 Tool holder 1 External

6 Tool holder 2 External

7 Tool holder 3 External

8 X-axis motor Internal

9 Z-axis motor Internal

10 Y-axis motor Internal

11 Spindle motor Internal

12 Driven tools motor Internal

Fig. 4. Spindle and driven tool speed profiles for the calibration of the ARX-RFR model. The
total duration of the data used for training is 80 h. The door of the machine tool is also opened
several times during the model calibration phase.

a manufacturing cycle for a single part can last around a minute. The production is
interrupted a number of times when the machine door is opened.

4 Results

EMD is applied to relevant temperature measurements with high frequency content
to improve the robustness of the ARX-RFR model. As an example, EMD analysis is
applied to the ambient temperature measurement. The machine tool is located in an
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Fig. 5. Thermal test-piece. A cycle corresponding to the thermal test-piece runs on the machine
but without any machining because tools are replaced by pneumatic probes.

air-conditioned hall with a set target temperature. However, the hall also has some non-
negligible heat losses resulting in an on/off behavior of the air-conditioning and therefore
a noisy ambient temperature measurement. This can be seen in the top graph in Fig. 6.
The noisy part corresponds to daytime and the decrease in temperature to nighttime
when the air-conditioning is turned off.

Fig. 6. Empiricalmode decomposition of the ambient temperature into the first five intrinsicmode
functions. The units of the y-axis are ºC with the IMF components centered around zero.



24 P. Kaftan et al.

The first IMF component has lowmagnitude and high frequency and can therefore be
removed. The ambient temperature measurement with the IMF-1 component removed
is shown in Fig. 7. Similar analysis is performed for other data where relevant.

Fig. 7. Plot of raw ambient temperature measurement and with IMF-1 component removed.

Figures 8 and 9 show results of the ARX-RFR compensation model compared to
only an ARXmodel, Fig. 8 the X-axis direction error and Fig. 9 the Y-axis direction. The
cycles correspond to the production of the thermal test piece. The yellow stripes indicate
the time during which the machine tool door is open and the black line the residual or
remaining thermal error.

Fig. 8. Left: ARX compensation model for the virtual production of the thermal test piece for the
X-axis direction. Right: ARX-RFR compensation model on the same data with a lower residual
thermal error (black).

The plots visually indicate that the residual thermal error is reduced more during
and after the machine tool door opening by the ARX-RFR model. The peak-to-peak
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residual errors and error reductions of the ARX-RFR and ARX models are summarized
in Tables 2 and 3. The peak-to-peak is defined as the absolute difference between the
maximum and minimum value of the plot. The root mean square residual errors and
error reductions are presented in Tables 4 and 5.

Table 2. Peak-to-peak residual errors of ARX and ARX-RFR models

Error Uncompensated ARX Residual ARX-RFR Residual

X-axis 19.0 µm 8.5 µm 5.9 µm

Y-axis 21.7 µm 4.1 µm 3.3 µm

Table 3. Peak-to-peak error reductions of ARX and ARX-RFR models

Error ARX reduction ARX-RFR reduction Improvement

X-axis 55% 69% 14%

Y-axis 81% 85% 4%

Table 4. Root-mean-square residual errors of ARX and ARX-RFR models

Error Uncompensated ARX Residual ARX-RFR Residual

X-axis 4.2 µm 1.8 µm 1.2 µm

Y-axis 17.1 µm 1.4 µm 0.6 µm

Table 5. Root-mean-square error reductions of ARX and ARX-RFR models

Error ARX reduction ARX-RFR reduction Improvement

X-axis 58% 70% 12%

Y-axis 92% 96% 4%
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Fig. 9. Left: ARX compensation model for the virtual production of the thermal test piece for the
Y-axis direction. Right: ARX-RFR compensation model on the same data with a lower residual
thermal error (black).

5 Conclusion

This work applies a new ARX-RFR thermal compensation model to the virtual produc-
tion of a thermal test piece interrupted by a number of door openings. Door openings can
occur during a production run for example when the working space needs to be cleaned
or when a part needs to be inspected. As a result, the working space conditions change
as cooler air enters and the precision of the machine tool degrades due to thermal errors.
TheARX-RFRmodel is compared to the well-knownARXmodel and it is demonstrated
that it performs more favorably for the case of a door opening.
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