Skip to main content

Aberrant Mineral Deposition in Soft and Hard Tissues

  • Chapter
  • First Online:
Mechanisms of Mineralization of Vertebrate Skeletal and Dental Tissues

Abstract

The chapter highlights selected mineralization disorders and their effects on tissue function. Principal topics include dystrophic and heterotopic mineralization, microcalcifications associated with breast cancer, and defective mineralization attributed to mutations in extracellular proteins. The review of such aberrant tissue mineralization is presented to examine the premise that mineral deposition is dependent on environmental factors and requires a coordinated response of both cells and matrix components of vertebrate tissues. The importance of specific extracellular matrix proteins in abnormal mineralization is explored by assessing effects of mutations in collagen as well as other bone, dentin and enamel matrix genes. For example, mutation of the BMP activin receptor type 1 is considered as a cause of a genetic heterotopic disease, marked by endochondral bone formation in soft tissues. Mechanisms are elaborated by which certain intra- and extracellular proteins influence bone and tooth organization and mineralization. With respect to environmental influences, the relation of trauma and systemic disease on cell function and aberrant mineral deposition is discussed. In this case, soft tissue cells adopt an osteoblast-like phenotype and secrete intramembranous bone or a diffuse dystrophic mineral. Regarding microcalcifications commonly observed in blood vessels in breast tissue, mineral location and composition may affect cell function; the presence of these extracellular nanocrystals suggests a link to the fate of breast cancer cells and progression of tumorigenesis. Finally, the complex feedback and feedforward activities of vitamin D, FGF23 and PTH help regulate resorption and turnover in the BMU and prevent aberrant mineral precipitation in non-skeletal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virchow R. Cellular-Pathologie. In: Virchow R, Reinhardt BEH, editors. Archiv für pathologische Anatomie und Physiologie und fur klinische Medizin. 1855;13–14, translated by Rather LJ. Redwood City: Stanford University Press; 1938.

    Google Scholar 

  2. Levine MA. Pathological calcification and the mystery of Lot’s wife. Cell Cycle. 2015;14:3354–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Murphy WA Jr, Nedden Dz D, Gostner P, Knapp R, Recheis W, Seidler H. The iceman: discovery and imaging. Radiology. 2003;226:614–29.

    Article  PubMed  Google Scholar 

  4. Mönckeberg JG. Über die reine Mediaverkalkung der Extremitätenarterien und ihr Verhalten zur Arteriosklerose. Virchows Arch Pathol Anat Physiol Klin Med. 1903;171:141–67.

    Article  Google Scholar 

  5. Hardy K, Radini A, Buckley S, Blasco R, Copeland L, Burjachs F, et al. Diet and environment 1.2 million years ago revealed through analysis of dental calculus from Europe’s oldest hominin at Sima del Elefante, Spain. Naturwissenschaften. 2017;104:2.

    Article  PubMed  Google Scholar 

  6. Mandel ID, Gaffar A. Calculus revisited. A review. J Clin Periodontol. 1986;13:249–57.

    Article  CAS  PubMed  Google Scholar 

  7. Virchow R. Cellular pathology. As based upon physiological and pathological histology. Lecture XVI—atheromatous affection of arteries. Nutr Rev. 1889;47:23–5.

    Article  Google Scholar 

  8. Pettenazzo E, Deiwick M, Thiene G, Molin G, Glasmacher B, Martignago F, et al. Dynamic in vitro calcification of bioprosthetic porcine valves: evidence of apatite crystallization. J Thorac Cardiovasc Surg. 2001;121:500–9.

    Article  CAS  PubMed  Google Scholar 

  9. Wong TY, Wu CY, Martel J, Lin CW, Hsu FY, Ojcius DM, et al. Detection and characterization of mineralo-organic nanoparticles in human kidneys. Sci Rep. 2015;5:15272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cardoso L, Kelly-Arnold A, Maldonado N, Laudier D, Weinbaum S. Effect of tissue properties, shape and orientation of microcalcifications on vulnerable cap stability using different hyperelastic constitutive models. J Biomech. 2014;47:870–7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Neven E, Dauwe S, De Broe ME, D’Haese PC, Persy V. Endochondral bone formation is involved in media calcification in rats and in men. Kidney Int. 2007;72:574–81.

    Article  CAS  PubMed  Google Scholar 

  12. Hruska KA, Mathew S, Saab G. Bone morphogenetic proteins in vascular calcification. Circ Res. 2005;97:105–14.

    Article  CAS  PubMed  Google Scholar 

  13. Vattikuti R, Towler DA. Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab. 2004;286:E686–96.

    Article  CAS  PubMed  Google Scholar 

  14. Bobryshev YV, Killingsworth MC, Lord RS, Grabs AJ. Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture. J Cell Mol Med. 2008;12:2073–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24:1161–70.

    Article  CAS  PubMed  Google Scholar 

  16. Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R, et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001;89:1147–54.

    Article  CAS  PubMed  Google Scholar 

  17. Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008;117:2938–48.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brighton CT, Lorich DG, Kupcha R, Reilly TM, Jones AR, Woodbury RA II. The pericyte as a possible osteoblast progenitor cell. Clin Orthop Relat Res. 1992:287–99.

    Google Scholar 

  19. Caplan AI. All MSCs are pericytes? Cell Stem Cell. 2008;3:229–30.

    Article  CAS  PubMed  Google Scholar 

  20. Liu AC, Gotlieb AI. Characterization of cell motility in single heart valve interstitial cells in vitro. Histol Histopathol. 2007;22:873–82.

    CAS  PubMed  Google Scholar 

  21. Farrington-Rock C, Crofts NJ, Doherty MJ, Ashton BA, Griffin-Jones C, Canfield AE. Chondrogenic and adipogenic potential of microvascular pericytes. Circulation. 2004;110:2226–32.

    Article  CAS  PubMed  Google Scholar 

  22. Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, et al. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol. 2003;74:833–45.

    Article  CAS  PubMed  Google Scholar 

  23. Neven E, Persy V, Dauwe S, De Schutter T, De Broe ME, D’Haese PC. Chondrocyte rather than osteoblast conversion of vascular cells underlies medial calcification in uremic rats. Arterioscler Thromb Vasc Biol. 2010;30:1741–50.

    Article  CAS  PubMed  Google Scholar 

  24. Chen NX, Duan D, O’Neill KD, Wolisi GO, Koczman JJ, Laclair R, et al. The mechanisms of uremic serum-induced expression of bone matrix proteins in bovine vascular smooth muscle cells. Kidney Int. 2006;70:1046–53.

    Article  CAS  PubMed  Google Scholar 

  25. Ahrens M, Ankenbauer T, Schroder D, Hollnagel A, Mayer H, Gross G. Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol. 1993;12:871–80.

    Article  CAS  PubMed  Google Scholar 

  26. Towler DA, Bidder M, Latifi T, Coleman T, Semenkovich CF. Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice. J Biol Chem. 1998;273:30427–34.

    Article  CAS  PubMed  Google Scholar 

  27. Kang YH, Jin JS, Yi DW, Son SM. Bone morphogenetic protein-7 inhibits vascular calcification induced by high vitamin D in mice. Tohoku J Exp Med. 2010;221:299–307.

    Article  CAS  PubMed  Google Scholar 

  28. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108:17–29.

    Article  CAS  PubMed  Google Scholar 

  29. Wallin R, Wajih N, Greenwood GT, Sane DC. Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy. Med Res Rev. 2001;21:274–301.

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki A, Ghayor C, Guicheux J, Magne D, Quillard S, Kakita A, et al. Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells. J Bone Miner Res. 2006;21:674–83.

    Article  CAS  PubMed  Google Scholar 

  31. Frank DB, Abtahi A, Yamaguchi DJ, Manning S, Shyr Y, Pozzi A, et al. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res. 2005;97:496–504.

    Article  CAS  PubMed  Google Scholar 

  32. Scimeca M, Anemona L, Granaglia A, Bonfiglio R, Urbano N, Toschi N, et al. Plaque calcification is driven by different mechanisms of mineralization associated with specific cardiovascular risk factors. Nutr Metab Cardiovasc Dis. 2019;29:1330–6.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z, Jiang Y, Liu N, Ren L, Zhu Y, An Y, et al. Advanced glycation end-product Nε-carboxymethyl-lysine accelerates progression of atherosclerotic calcification in diabetes. Atherosclerosis. 2012;221:387–96.

    Article  CAS  PubMed  Google Scholar 

  34. Ren X, Shao H, Wei Q, Sun Z, Liu N. Advanced glycation end-products enhance calcification in vascular smooth muscle cells. J Int Med Res. 2009;37:847–54.

    Article  CAS  PubMed  Google Scholar 

  35. Verma N, Manna SK. Advanced glycation end products (AGE) potently induce autophagy through activation of RAF protein kinase and nuclear factor kappaB (NF-kappaB). J Biol Chem. 2016;291:1481–91.

    Article  CAS  PubMed  Google Scholar 

  36. Sartori R, Gregorevic P, Sandri M. TGFβ and BMP signaling in skeletal muscle: potential significance for muscle-related disease. Trends Endocrinol Metab. 2014;25:464–71.

    Article  CAS  PubMed  Google Scholar 

  37. O’Donnell CJ, Kavousi M, Smith AV, Kardia SL, Feitosa MF, Hwang SJ, et al. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124:2855–64.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jones GT, Tromp G, Kuivaniemi H, Gretarsdottir S, Baas AF, Giusti B, et al. Meta-analysis of genome-wide association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circ Res. 2017;120:341–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones GT, Bown MJ, Gretarsdottir S, Romaine SP, Helgadottir A, Yu G, et al. A sequence variant associated with sortilin-1 (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm. Hum Mol Genet. 2013;22:2941–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gu F, Crump CM, Thomas G. Trans-Golgi network sorting. Cell Mol Life Sci. 2001;58:1067–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carlo AS, Nykjaer A, Willnow TE. Sorting receptor sortilin-a culprit in cardiovascular and neurological diseases. J Mol Med (Berl). 2014;92:905–11.

    Article  CAS  PubMed  Google Scholar 

  42. Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J Clin Invest. 2016;126:1323–36.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Talbot H, Saada S, Naves T, Gallet PF, Fauchais AL, Jauberteau MO. Regulatory roles of Sortilin and SorLA in immune-related processes. Front Pharmacol. 2018;9:1507.

    Article  CAS  PubMed  Google Scholar 

  44. Andersen JL, Schroder TJ, Christensen S, Strandbygard D, Pallesen LT, Garcia-Alai MM, et al. Identification of the first small-molecule ligand of the neuronal receptor sortilin and structure determination of the receptor-ligand complex. Acta Crystallogr D Biol Crystallogr. 2014;70:451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iqbal F, Schlotter F, Becker-Greene D, Lupieri A, Goettsch C, Hutcheson JD, et al. Sortilin enhances fibrosis and calcification in aortic valve disease by inducing interstitial cell heterogeneity. Eur Heart J. 2023;44:885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Szatmari Z, Kis V, Lippai M, Hegedus K, Farago T, Lorincz P, et al. Rab11 facilitates cross-talk between autophagy and endosomal pathway through regulation of Hook localization. Mol Biol Cell. 2014;25:522–31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, Fisher EM, et al. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol. 2007;179:485–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Qian Y, Li L, Sun Z, Liu J, Yuan W, Wang Z. A multi-omics view of the complex mechanism of vascular calcification. Biomed Pharmacother. 2021;135:111192.

    Article  CAS  PubMed  Google Scholar 

  49. Mortensen MB, Kjolby M, Gunnersen S, Larsen JV, Palmfeldt J, Falk E, et al. Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis. J Clin Invest. 2014;124:5317–22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Patin G, Lettres choisies de Feu de M, Guy P. docteur en medecine Kessinger Legacy Reprints; 1692.

    Google Scholar 

  51. Eisenstein N, Stapley S, Grover L. Post-traumatic heterotopic ossification: an old problem in need of new solutions. J Orthop Res. 2018;36:1061–8.

    Article  PubMed  Google Scholar 

  52. Brackett EG. Care of the amputated in the United States. The Medical Department of the United States Army in the World War. 1927;XI:713–48.

    Google Scholar 

  53. Kaplan FS, Craver R, MacEwen GD, Gannon FH, Finkel G, Hahn G, et al. Progressive osseous heteroplasia: a distinct developmental disorder of heterotopic ossification. Two new case reports and follow-up of three previously reported cases. J Bone Joint Surg Am. 1994;76:425–36.

    Article  CAS  PubMed  Google Scholar 

  54. Kaplan FS, Shore EM. Progressive osseous heteroplasia. J Bone Miner Res. 2000;15:2084–94.

    Article  CAS  PubMed  Google Scholar 

  55. Shore EM, Kaplan FS. Inherited human diseases of heterotopic bone formation. Nat Rev Rheumatol. 2010;6:518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jensen LL, Halar E, Little JW, Brooke MM. Neurogenic heterotopic ossification. Am J Phys Med. 1987;66:351–63.

    CAS  PubMed  Google Scholar 

  57. Vanden Bossche L, Vanderstraeten G. Heterotopic ossification: a review. J Rehabil Med. 2005;37:129–36.

    Article  Google Scholar 

  58. Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet. 2006;38:525–7.

    Article  CAS  PubMed  Google Scholar 

  59. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–18.

    Article  PubMed  Google Scholar 

  60. Muñoz J, Akhavan NS, Mullins AP, Arjmandi BH. Macrophage polarization and osteoporosis: a review. Nutrients. 2020;12:2999.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Davies OG, Liu Y, Player DJ, Martin NRW, Grover LM, Lewis MP. Defining the balance between regeneration and pathological ossification in skeletal muscle following traumatic injury. Front Physiol. 2017;8:194.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rifas L. T-cell cytokine induction of BMP-2 regulates human mesenchymal stromal cell differentiation and mineralization. J Cell Biochem. 2006;98:706–14.

    Article  CAS  PubMed  Google Scholar 

  63. Kan C, Chen L, Hu Y, Ding N, Li Y, McGuire TL, et al. Gli1-labeled adult mesenchymal stem/progenitor cells and hedgehog signaling contribute to endochondral heterotopic ossification. Bone. 2018;109:71–9.

    Article  CAS  PubMed  Google Scholar 

  64. Kan C, Ding N, Yang J, Tan Z, McGuire TL, Lu H, et al. BMP-dependent, injury-induced stem cell niche as a mechanism of heterotopic ossification. Stem Cell Res Ther. 2019;10:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hashimoto N, Kiyono T, Wada MR, Umeda R, Goto Y, Nonaka I, et al. Osteogenic properties of human myogenic progenitor cells. Mech Dev. 2008;125:257–69.

    Article  CAS  PubMed  Google Scholar 

  66. Julien A, Perrin S, Martínez-Sarrà E, Kanagalingam A, Carvalho C, Luka M, et al. Skeletal stem/progenitor cells in periosteum and skeletal muscle share a common molecular response to bone injury. J Bone Miner Res. 2022;37:1545–61.

    Article  CAS  PubMed  Google Scholar 

  67. Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N. Generation of different fates from multipotent muscle stem cells. Development. 2002;129:2987–95.

    Article  CAS  PubMed  Google Scholar 

  68. Furmanik M, Chatrou M, van Gorp R, Akbulut A, Willems B, Schmidt H, et al. Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification. Circ Res. 2020;127:911–27.

    Article  CAS  PubMed  Google Scholar 

  69. Agarwal S, Loder S, Brownley C, Cholok D, Mangiavini L, Li J, et al. Inhibition of Hif1alpha prevents both trauma-induced and genetic heterotopic ossification. Proc Natl Acad Sci U S A. 2016;113:E338–47.

    Article  CAS  PubMed  Google Scholar 

  70. Bohner M, Maazouz Y, Ginebra MP, Habibovic P, Schoenecker JG, Seeherman H, et al. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater. 2022;145:1–24.

    Article  CAS  PubMed  Google Scholar 

  71. Wang YK, Sun WF, Liu XG, Deng J, Yan BE, Jiang WY, et al. Comparative study of serum levels of BMP-2 and heterotopic ossification in traumatic brain injury and fractures patients. Zhongguo Gu Shang. 2011;24:399–403.

    CAS  PubMed  Google Scholar 

  72. Setoguchi T, Yone K, Matsuoka E, Takenouchi H, Nakashima K, Sakou T, et al. Traumatic injury-induced BMP7 expression in the adult rat spinal cord. Brain Res. 2001;921:219–25.

    Article  CAS  PubMed  Google Scholar 

  73. Cui ZS, Zhao P, Jia CX, Liu HJ, Qi R, Cui JW, et al. Local expression and role of BMP-2/4 in injured spinal cord. Genet Mol Res. 2015;14:9109–17.

    Article  CAS  PubMed  Google Scholar 

  74. Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene. 2006;366:51–7.

    Article  CAS  PubMed  Google Scholar 

  75. Bakhshian Nik A, Hutcheson JD, Aikawa E. Extracellular vesicles as mediators of cardiovascular calcification. Front Cardiovasc Med. 2017;4:78.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cui L, Rashdan NA, Zhu D, Milne EM, Ajuh P, Milne G, et al. End stage renal disease-induced hypercalcemia may promote aortic valve calcification via Annexin VI enrichment of valve interstitial cell derived-matrix vesicles. J Cell Physiol. 2017;232:2985–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lees-Shepard JB, Goldhamer DJ. Stem cells and heterotopic ossification: lessons from animal models. Bone. 2018;109:178–86.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pignolo RJ, Baujat G, Brown MA, De Cunto C, Di Rocco M, Hsiao EC, et al. Natural history of fibrodysplasia ossificans progressiva: cross-sectional analysis of annotated baseline phenotypes. Orphanet J Rare Dis. 2019;14:98.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yadin D, Knaus P, Mueller TD. Structural insights into BMP receptors: specificity, activation and inhibition. Cytokine Growth Factor Rev. 2016;27:13–34.

    Article  CAS  PubMed  Google Scholar 

  80. Massagué J. TGFbeta signaling: receptors, transducers, and Mad proteins. Cell. 1996;85:947–50.

    Article  PubMed  Google Scholar 

  81. Zou H, Wieser R, Massagué J, Niswander L. Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev. 1997;11:2191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Knaus P, Sebald W. Cooperativity of binding epitopes and receptor chains in the BMP/TGFbeta superfamily. Biol Chem. 2001;382:1189–95.

    Article  CAS  PubMed  Google Scholar 

  83. Nohe A, Hassel S, Ehrlich M, Neubauer F, Sebald W, Henis YI, et al. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem. 2002;277:5330–8.

    Article  CAS  PubMed  Google Scholar 

  84. Sangadala S, Devereaux EJ, Presciutti SM, Boden SD, Willet NJ. FK506 induces ligand-independent activation of the bone morphogenetic protein pathway and osteogenesis. Int J Mol Sci. 2019;20:1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hino K, Horigome K, Nishio M, Komura S, Nagata S, Zhao C, et al. Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J Clin Invest. 2017;127:3339–52.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Machiya A, Tsukamoto S, Ohte S, Kuratani M, Fujimoto M, Kumagai K, et al. Effects of FKBP12 and type II BMP receptors on signal transduction by ALK2 activating mutations associated with genetic disorders. Bone. 2018;111:101–8.

    Article  CAS  PubMed  Google Scholar 

  87. Shimono K, Tung WE, Macolino C, Chi AH, Didizian JH, Mundy C, et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat Med. 2011;17:454–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kaplan J, Kaplan FS, Shore EM. Restoration of normal BMP signaling levels and osteogenic differentiation in FOP mesenchymal progenitor cells by mutant allele-specific targeting. Gene Ther. 2012;19:786–90.

    Article  CAS  PubMed  Google Scholar 

  89. Lv B, Li F, Han J, Fang J, Xu L, Sun C, et al. Hif-1α overexpression improves transplanted bone mesenchymal stem cells survival in rat MCAO stroke model. Front Mol Neurosci. 2017;10:80.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cosin-Roger J, Simmen S, Melhem H, Atrott K, Frey-Wagner I, Hausmann M, et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat Commun. 2017;8:98.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chen J, Long F. mTOR signaling in skeletal development and disease. Bone Res. 2018;6:1.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kaplan FS, Zeitlin L, Dunn SP, Benor S, Hagin D, Al Mukaddam M, et al. Acute and chronic rapamycin use in patients with Fibrodysplasia Ossificans Progressiva: a report of two cases. Bone. 2018;109:281–4.

    Article  PubMed  Google Scholar 

  93. Wentworth KL, Masharani U, Hsiao EC. Therapeutic advances for blocking heterotopic ossification in fibrodysplasia ossificans progressiva. Br J Clin Pharmacol. 2019;85:1180–7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Singha UK, Jiang Y, Yu S, Luo M, Lu Y, Zhang J, et al. Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J Cell Biochem. 2008;103:434–46.

    Article  CAS  PubMed  Google Scholar 

  95. Shimono K, Morrison TN, Tung WE, Chandraratna RA, Williams JA, Iwamoto M, et al. Inhibition of ectopic bone formation by a selective retinoic acid receptor alpha-agonist: a new therapy for heterotopic ossification? J Orthop Res. 2010;28:271–7.

    Article  CAS  PubMed  Google Scholar 

  96. Uchibe K, Son J, Larmour C, Pacifici M, Enomoto-Iwamoto M, Iwamoto M. Genetic and pharmacological inhibition of retinoic acid receptor γ function promotes endochondral bone formation. J Orthop Res. 2017;35:1096–105.

    Article  CAS  PubMed  Google Scholar 

  97. Sinha S, Uchibe K, Usami Y, Pacifici M, Iwamoto M. Effectiveness and mode of action of a combination therapy for heterotopic ossification with a retinoid agonist and an anti-inflammatory agent. Bone. 2016;90:59–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pacifici M. Hereditary multiple exostoses: are there new plausible treatment strategies? Expert Opin Orphan Drugs. 2018;6:385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lai KC, Slanetz PJ, Eisenberg RL. Linear breast calcifications. AJR Am J Roentgenol. 2012;199:W151–7.

    Article  PubMed  Google Scholar 

  100. Scott R, Stone N, Kendall C, Geraki K, Rogers K. Relationships between pathology and crystal structure in breast calcifications: an in situ X-ray diffraction study in histological sections. NPJ Breast Cancer. 2016;2:16029.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Nyante SJ, Lee SS, Benefield TS, Hoots TN, Henderson LM. The association between mammographic calcifications and breast cancer prognostic factors in a population-based registry cohort. Cancer. 2017;123:219–27.

    Article  CAS  PubMed  Google Scholar 

  102. Henrot P, Leroux A, Barlier C, Genin P. Breast microcalcifications: the lesions in anatomical pathology. Diagn Interv Imaging. 2014;95:141–52.

    Article  CAS  PubMed  Google Scholar 

  103. Frappart L, Boudeulle M, Boumendil J, Lin HC, Martinon I, Palayer C, et al. Structure and composition of microcalcifications in benign and malignant lesions of the breast: study by light microscopy, transmission and scanning electron microscopy, microprobe analysis, and X-ray diffraction. Hum Pathol. 1984;15:880–9.

    Article  CAS  PubMed  Google Scholar 

  104. Scimeca M, Giannini E, Antonacci C, Pistolese CA, Spagnoli LG, Bonanno E. Microcalcifications in breast cancer: an active phenomenon mediated by epithelial cells with mesenchymal characteristics. BMC Cancer. 2014;14:286.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gosling S, Scott R, Greenwood C, Bouzy P, Nallala J, Lyburn ID, et al. Calcification microstructure reflects breast tissue microenvironment. J Mammary Gland Biol Neoplasia. 2019;24:333–42.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Haka AS, Shafer-Peltier KE, Fitzmaurice M, Crowe J, Dasari RR, Feld MS. Diagnosing breast cancer by using Raman spectroscopy. Proc Natl Acad Sci U S A. 2005;102:12371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Scott R, Kendall C, Stone N, Rogers K. Elemental vs. phase composition of breast calcifications. Sci Rep. 2017;7:136.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wang J, Wang L, Fan Y. Adverse biological effect of TiO(2) and hydroxyapatite nanoparticles used in bone repair and replacement. Int J Mol Sci. 2016;17:798.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sun Y, Zeng XR, Wenger L, Cheung HS. Basic calcium phosphate crystals stimulate the endocytotic activity of cells--inhibition by anti-calcification agents. Biochem Biophys Res Commun. 2003;312:1053–9.

    Article  CAS  PubMed  Google Scholar 

  110. McCarthy GM, Augustine JA, Baldwin AS, Christopherson PA, Cheung HS, Westfall PR, et al. Molecular mechanism of basic calcium phosphate crystal-induced activation of human fibroblasts. Role of nuclear factor kappab, activator protein 1, and protein kinase c. J Biol Chem. 1998;273:35161–9.

    Article  CAS  PubMed  Google Scholar 

  111. Reuben PM, Brogley MA, Sun Y, Cheung HS. Molecular mechanism of the induction of metalloproteinases 1 and 3 in human fibroblasts by basic calcium phosphate crystals. Role of calcium-dependent protein kinase C alpha. J Biol Chem. 2002;277:15190–8.

    Article  CAS  PubMed  Google Scholar 

  112. Nguyen C, Lieberherr M, Bordat C, Velard F, Come D, Liote F, et al. Intracellular calcium oscillations in articular chondrocytes induced by basic calcium phosphate crystals lead to cartilage degradation. Osteoarthr Cartil. 2012;20:1399–408.

    Article  CAS  Google Scholar 

  113. Morgan MP, Cooke MM, Christopherson PA, Westfall PR, McCarthy GM. Calcium hydroxyapatite promotes mitogenesis and matrix metalloproteinase expression in human breast cancer cell lines. Mol Carcinog. 2001;32:111–7.

    Article  CAS  PubMed  Google Scholar 

  114. Xue Y, Chen Q, Sun J. Hydroxyapatite nanoparticle-induced mitochondrial energy metabolism impairment in liver cells: in vitro and in vivo studies. J Appl Toxicol. 2017;37:1004–16.

    Article  CAS  PubMed  Google Scholar 

  115. Ginestra A, La Placa MD, Saladino F, Cassara D, Nagase H, Vittorelli ML. The amount and proteolytic content of vesicles shed by human cancer cell lines correlates with their in vitro invasiveness. Anticancer Res. 1998;18:3433–7.

    CAS  PubMed  Google Scholar 

  116. Dolo V, Ginestra A, Cassara D, Ghersi G, Nagase H, Vittorelli ML. Shed membrane vesicles and selective localization of gelatinases and MMP-9/TIMP-1 complexes. Ann N Y Acad Sci. 1999;878:497–9.

    Article  CAS  PubMed  Google Scholar 

  117. Cox RF, Morgan MP. Microcalcifications in breast cancer: lessons from physiological mineralization. Bone. 2013;53:437–50.

    Article  CAS  PubMed  Google Scholar 

  118. Jin C, Frayssinet P, Pelker R, Cwirka D, Hu B, Vignery A, et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci U S A. 2011;108:14867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu J, Liao S, Diop-Frimpong B, Chen W, Goel S, Naxerova K, et al. TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci U S A. 2012;109:16618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Scimeca M, Bonfiglio R, Menichini E, Albonici L, Urbano N, De Caro MT, et al. Microcalcifications drive breast cancer occurrence and development by macrophage-mediated epithelial to mesenchymal transition. Int J Mol Sci. 2019;20:E5633.

    Article  Google Scholar 

  121. Liu F, Bloch N, Bhushan KR, De Grand AM, Tanaka E, Solazzo S, et al. Humoral bone morphogenetic protein 2 is sufficient for inducing breast cancer microcalcification. Mol Imaging. 2008;7:175–86.

    Article  CAS  PubMed  Google Scholar 

  122. Tan CC, Li GX, Tan LD, Du X, Li XQ, He R, et al. Breast cancer cells obtain an osteomimetic feature via epithelial-mesenchymal transition that have undergone BMP2/RUNX2 signaling pathway induction. Oncotarget. 2016;7:79688–705.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Li X, Lu W, Fu X, Zhang Y, Yang K, Zhong N, et al. BMP4 increases canonical transient receptor potential protein expression by activating p38 MAPK and ERK1/2 signaling pathways in pulmonary arterial smooth muscle cells. Am J Respir Cell Mol Biol. 2013;49:212–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Mandavilli S, Singh BB, Sahmoun AE. Serum calcium levels, TRPM7, TRPC1, microcalcifications, and breast cancer using breast imaging reporting and data system scores. Breast Cancer (Dove Med Press). 2012;2013:1–7.

    PubMed  Google Scholar 

  125. Azimi I, Roberts-Thomson SJ, Monteith GR. Calcium influx pathways in breast cancer: opportunities for pharmacological intervention. Br J Pharmacol. 2014;171:945–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Deliot N, Constantin B. Plasma membrane calcium channels in cancer: alterations and consequences for cell proliferation and migration. Biochim Biophys Acta. 2015;1848:2512–22.

    Article  CAS  PubMed  Google Scholar 

  127. Cross BM, Breitwieser GE, Reinhardt TA, Rao R. Cellular calcium dynamics in lactation and breast cancer: from physiology to pathology. Am J Physiol Cell Physiol. 2014;306:C515–26.

    Article  CAS  PubMed  Google Scholar 

  128. Bonavita E, Gentile S, Rubino M, Maina V, Papait R, Kunderfranco P, et al. PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell. 2015;160:700–14.

    Article  CAS  PubMed  Google Scholar 

  129. Grcevic D, Sironi M, Valentino S, Deban L, Cvija H, Inforzato A, et al. The long pentraxin 3 plays a role in bone turnover and repair. Front Immunol. 2018;9:417.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bonfiglio R, Scimeca M, Toschi N, Pistolese CA, Giannini E, Antonacci C, et al. Radiological, histological and chemical analysis of breast microcalcifications: diagnostic value and biological significance. J Mammary Gland Biol Neoplasia. 2018;23:89–99.

    Article  PubMed  Google Scholar 

  131. Smith JF, Shindel AW, Huang YC, Clavijo RI, Flechner L, Breyer BN, et al. Pentoxifylline treatment and penile calcifications in men with Peyronie’s disease. Asian J Androl. 2011;13:322–5.

    Article  CAS  PubMed  Google Scholar 

  132. Bellahcene A, Castronovo V. Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. Am J Pathol. 1995;146:95–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Talbot LJ, Mi Z, Bhattacharya SD, Kim V, Guo H, Kuo PC. Pharmacokinetic characterization of an RNA aptamer against osteopontin and demonstration of in vivo efficacy in reversing growth of human breast cancer cells. Surgery. 2011;150:224–30.

    Article  PubMed  Google Scholar 

  134. Shevde LA, Samant RS, Paik JC, Metge BJ, Chambers AF, Casey G, et al. Osteopontin knockdown suppresses tumorigenicity of human metastatic breast carcinoma, MDA-MB-435. Clin Exp Metastasis. 2006;23:123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dai J, Li B, Shi J, Peng L, Zhang D, Qian W, et al. A humanized anti-osteopontin antibody inhibits breast cancer growth and metastasis in vivo. Cancer Immunol Immunother. 2010;59:355–66.

    Article  CAS  PubMed  Google Scholar 

  136. Forlino A, Marini JC. Osteogenesis imperfecta. Lancet. 2016;387:1657–71.

    Article  CAS  PubMed  Google Scholar 

  137. Fidler AL, Boudko SP, Rokas A, Hudson BG. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution. J Cell Sci. 2018;131:jcs203950.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Marini JC, Cabral WA, Barnes AM, Chang W. Components of the collagen prolyl 3-hydroxylation complex are crucial for normal bone development. Cell Cycle. 2007;6:1675–81.

    Article  CAS  PubMed  Google Scholar 

  139. Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tauer JT, Robinson ME, Rauch F. Osteogenesis imperfecta: new perspectives from clinical and translational research. JBMR Plus. 2019;3:e10174.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bronheim R, Khan S, Carter E, Sandhaus RA, Raggio C. Scoliosis and cardiopulmonary outcomes in osteogenesis imperfecta patients. Spine (Phila Pa 1976). 2019;44:1057–63.

    Article  PubMed  Google Scholar 

  142. Byers PH, Belmont J, Black J, De Backer J, Frank M, Jeunemaitre X, et al. Diagnosis, natural history, and management in vascular Ehlers-Danlos syndrome. Am J Med Genet C Semin Med Genet. 2017;175:40–7.

    Article  PubMed  Google Scholar 

  143. Kuivaniemi H, Tromp G, Prockop DJ. Mutations in collagen genes: causes of rare and some common diseases in humans. FASEB J. 1991;5:2052–60.

    Article  CAS  PubMed  Google Scholar 

  144. Lim J, Grafe I, Alexander S, Lee B. Genetic causes and mechanisms of osteogenesis imperfecta. Bone. 2017;102:40–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chang SW, Shefelbine SJ, Buehler MJ. Structural and mechanical differences between collagen homo- and heterotrimers: relevance for the molecular origin of brittle bone disease. Biophys J. 2012;102:640–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Garibaldi N, Contento BM, Babini G, Morini J, Siciliani S, Biggiogera M, et al. Targeting cellular stress in vitro improves osteoblast homeostasis, matrix collagen content and mineralization in two murine models of osteogenesis imperfecta. Matrix Biol. 2021;98:1–20.

    Article  CAS  PubMed  Google Scholar 

  147. Sarathchandra P, Pope FM, Kayser MV, Ali SY. A light and electron microscopic study of osteogenesis imperfecta bone samples, with reference to collagen chemistry and clinical phenotype. J Pathol. 2000;192:385–95.

    Article  CAS  PubMed  Google Scholar 

  148. Nijhuis WH, Eastwood DM, Allgrove J, Hvid I, Weinans HH, Bank RA, et al. Current concepts in osteogenesis imperfecta: bone structure, biomechanics and medical management. J Child Orthop. 2019;13:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Vetter U, Weis MA, Morike M, Eanes ED, Eyre DR. Collagen crosslinks and mineral crystallinity in bone of patients with osteogenesis imperfecta. J Bone Miner Res. 1993;8:133–7.

    Article  CAS  PubMed  Google Scholar 

  150. Traub W, Arad T, Vetter U, Weiner S. Ultrastructural studies of bones from patients with osteogenesis imperfecta. Matrix Biol. 1994;14:337–45.

    Article  CAS  PubMed  Google Scholar 

  151. Landis WJ. Tomographic imaging of collagen-mineral interaction: implications for osteogenesis imperfecta. Connect Tissue Res. 1995;31:287–90.

    Article  CAS  PubMed  Google Scholar 

  152. Fratzl P, Paris O, Klaushofer K, Landis WJ. Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering. J Clin Invest. 1996;97:396–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Vanleene M, Porter A, Guillot PV, Boyde A, Oyen M, Shefelbine S. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone. 2012;50:1317–23.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D, et al. A single recurrent mutation in the 5′-UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet. 2012;91:343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J, et al. A mutation in the 5′-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet. 2012;91:349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Moffatt P, Gaumond MH, Salois P, Sellin K, Bessette MC, Godin E, et al. Bril: a novel bone-specific modulator of mineralization. J Bone Miner Res. 2008;23:1497–508.

    Article  CAS  PubMed  Google Scholar 

  157. Hanagata N, Li X, Morita H, Takemura T, Li J, Minowa T. Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice. J Bone Miner Metab. 2011;29:279–90.

    Article  CAS  PubMed  Google Scholar 

  158. Shapiro JR, Lietman C, Grover M, Lu JT, Nagamani SC, Dawson BC, et al. Phenotypic variability of osteogenesis imperfecta type V caused by an IFITM5 mutation. J Bone Miner Res. 2013;28:1523–30.

    Article  CAS  PubMed  Google Scholar 

  159. Dobrocky I, Seidl G, Grill F. MRI and CT features of hyperplastic callus in osteogenesis imperfecta tarda. Eur Radiol. 1999;9:665–8.

    Article  CAS  PubMed  Google Scholar 

  160. Besio R, Chow CW, Tonelli F, Marini JC, Forlino A. Bone biology: insights from osteogenesis imperfecta and related rare fragility syndromes. FEBS J. 2019;286:3033–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu Y, Wang J, Ma D, Lv F, Xu X, Xia W, et al. Osteogenesis imperfecta type V: genetic and clinical findings in eleven Chinese patients. Clin Chim Acta. 2016;462:201–9.

    Article  CAS  PubMed  Google Scholar 

  162. Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S, et al. Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet. 2007;39:359–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Fratzl-Zelman N, Morello R, Lee B, Rauch F, Glorieux FH, Misof BM, et al. CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone. 2010;46:820–6.

    Article  CAS  PubMed  Google Scholar 

  164. Ito S, Nagata K. Roles of the endoplasmic reticulum-resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J Biol Chem. 2019;294:2133–41.

    Article  CAS  PubMed  Google Scholar 

  165. Shaheen R, Alazami AM, Alshammari MJ, Faqeih E, Alhashmi N, Mousa N, et al. Study of autosomal recessive osteogenesis imperfecta in Arabia reveals a novel locus defined by TMEM38B mutation. J Med Genet. 2012;49:630–5.

    Article  CAS  PubMed  Google Scholar 

  166. Venturi E, Matyjaszkiewicz A, Pitt SJ, Tsaneva-Atanasova K, Nishi M, Yamazaki D, et al. TRIC-B channels display labile gating: evidence from the TRIC-A knockout mouse model. Pflugers Arch. 2013;465:1135–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Robinson C, Shore RC, Wood SR, Brookes SJ, Smith DA, Wright JT, et al. Subunit structures in hydroxyapatite crystal development in enamel: implications for amelogenesis imperfecta. Connect Tissue Res. 2003;44:65–71.

    Article  CAS  PubMed  Google Scholar 

  168. Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, et al. Amelogenesis imperfecta; genes, proteins, and pathways. Front Physiol. 2017;8:435.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kantaputra PN. Dentinogenesis imperfecta-associated syndromes. Am J Med Genet. 2001;104:75–8.

    Article  CAS  PubMed  Google Scholar 

  170. Napierala D, Sun Y, Maciejewska I, Bertin TK, Dawson B, D’Souza R, et al. Transcriptional repression of the Dspp gene leads to dentinogenesis imperfecta phenotype in Col1a1-Trps1 transgenic mice. J Bone Miner Res. 2012;27:1735–45.

    Article  CAS  PubMed  Google Scholar 

  171. Rocha CT, Nelson-Filho P, Silva LA, Assed S, Queiroz AM. Variation of dentin dysplasia type I: report of atypical findings in the permanent dentition. Braz Dent J. 2011;22:74–8.

    Article  PubMed  Google Scholar 

  172. Chen D, Li X, Lu F, Wang Y, Xiong F, Li Q. Dentin dysplasia type I-A dental disease with genetic heterogeneity. Oral Dis. 2019;25:439–46.

    Article  CAS  PubMed  Google Scholar 

  173. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126:5553–65.

    CAS  PubMed  Google Scholar 

  174. Sanchez-Duffhues G, Garcia de Vinuesa A, van de Pol V, Geerts ME, de Vries MR, Janson SG, et al. Inflammation induces endothelial-to-mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. J Pathol. 2019;247:333–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Li X, Yang HY, Giachelli CM. BMP-2 promotes phosphate uptake, phenotypic modulation, and calcification of human vascular smooth muscle cells. Atherosclerosis. 2008;199:271–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Abdelbaky A, Corsini E, Figueroa AL, Subramanian S, Fontanez S, Emami H, et al. Early aortic valve inflammation precedes calcification: a longitudinal FDG-PET/CT study. Atherosclerosis. 2015;238:165–72.

    Article  CAS  PubMed  Google Scholar 

  177. Tintut Y, Patel J, Territo M, Saini T, Parhami F, Demer LL. Monocyte/macrophage regulation of vascular calcification in vitro. Circulation. 2002;105:650–5.

    Article  CAS  PubMed  Google Scholar 

  178. Li R, Mittelstein D, Lee J, Fang K, Majumdar R, Tintut Y, et al. A dynamic model of calcific nodule destabilization in response to monocyte- and oxidized lipid-induced matrix metalloproteinases. Am J Physiol Cell Physiol. 2012;302:C658–65.

    Article  CAS  PubMed  Google Scholar 

  179. Liu X, Kang H, Shahnazari M, Kim H, Wang L, Larm O, et al. A novel mouse model of trauma induced heterotopic ossification. J Orthop Res. 2014;32:183–8.

    Article  CAS  PubMed  Google Scholar 

  180. Schmitt JM, Hwang K, Winn SR, Hollinger JO. Bone morphogenetic proteins: an update on basic biology and clinical relevance. J Orthop Res. 1999;17:269–78.

    Article  CAS  PubMed  Google Scholar 

  181. Jani P, Zhang H, Benson MD, Qin C. Noggin inhibition of mouse dentinogenesis. J Oral Biosci. 2020;62:72–9.

    Article  PubMed  Google Scholar 

  182. Suzuki HI. MicroRNA control of TGF-β signaling. Int J Mol Sci. 2018;19:1901.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833:3448–59.

    Article  CAS  PubMed  Google Scholar 

  184. Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011;36:30–8.

    Article  CAS  PubMed  Google Scholar 

  185. Li L, Tan J, Miao Y, Lei P, Zhang Q. ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol Neurobiol. 2015;35:615–21.

    Article  PubMed  Google Scholar 

  186. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol. 2006;8:1124–32.

    Article  CAS  PubMed  Google Scholar 

  187. Nollet M, Santucci-Darmanin S, Breuil V, Al-Sahlanee R, Cros C, Topi M, et al. Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy. 2014;10:1965–77.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Srinivas V. HIF-1 regulation of chondrocyte apoptosis: induction of the autophagic pathway. Autophagy. 2007;3:207–14.

    Article  CAS  PubMed  Google Scholar 

  189. Maeda S, Nobukuni T, Shimo-Onoda K, Hayashi K, Yone K, Komiya S, et al. Sortilin is upregulated during osteoblastic differentiation of mesenchymal stem cells and promotes extracellular matrix mineralization. J Cell Physiol. 2002;193:73–9.

    Article  CAS  PubMed  Google Scholar 

  190. Murphy CM, Duffy GP, Schindeler A, O’Brien FJ. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. J Biomed Mater Res A. 2016;104:291–304.

    Article  PubMed  Google Scholar 

  191. Tintut Y, Alfonso Z, Saini T, Radcliff K, Watson K, Bostrom K, et al. Multilineage potential of cells from the artery wall. Circulation. 2003;108:2505–10.

    Article  PubMed  Google Scholar 

  192. de Souza LE, Malta TM, Kashima Haddad S, Covas DT. Mesenchymal stem cells and pericytes: to what extent are they related? Stem Cells Dev. 2016;25:1843–52.

    Article  PubMed  Google Scholar 

  193. Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science. 1988;242:405–11.

    Article  CAS  PubMed  Google Scholar 

  194. Hu DP, Ferro F, Yang F, Taylor AJ, Chang W, Miclau T, et al. Cartilage to bone transformation during fracture healing is coordinated by the invading vasculature and induction of the core pluripotency genes. Development. 2017;144:221–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Merrell AJ, Stanger BZ. Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol. 2016;17:413–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Samavarchi-Tehrani P, Golipour A, David L, Sung HK, Beyer TA, Datti A, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell. 2010;7:64–77.

    Article  CAS  PubMed  Google Scholar 

  197. Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 2017;18:728–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Guo L, Zhou Y, Wang S, Wu Y. Epigenetic changes of mesenchymal stem cells in three-dimensional (3D) spheroids. J Cell Mol Med. 2014;18:2009–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–56.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res. 2012;318:1040–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Walker MD, Silverberg SJ. Primary hyperparathyroidism. Nat Rev Endocrinol. 2018;14:115–25.

    Article  CAS  PubMed  Google Scholar 

  202. Ketteler M, Westenfeld R, Schlieper G, Brandenburg V. Pathogenesis of vascular calcification in dialysis patients. Clin Exp Nephrol. 2005;9:265–70.

    Article  PubMed  Google Scholar 

  203. Gade PS, Tulamo R, Lee KW, Mut F, Ollikainen E, Chuang CY, et al. Calcification in human intracranial aneurysms is highly prevalent and displays both atherosclerotic and nonatherosclerotic types. Arterioscler Thromb Vasc Biol. 2019;39:2157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li Z, Zhao Z, Cai Z, Sun Y, Li L, Yao F, et al. Runx2 (Runt-related transcription factor 2)-mediated microcalcification is a novel pathological characteristic and potential mediator of abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2020;40:1352–69.

    Article  CAS  PubMed  Google Scholar 

  205. Vesely I, Barber JE, Ratliff NB. Tissue damage and calcification may be independent mechanisms of bioprosthetic heart valve failure. J Heart Valve Dis. 2001;10:471–7.

    CAS  PubMed  Google Scholar 

  206. Xue S, Zhao Q, Tai M, Li N, Liu Y. Correlation between breast ultrasound microcalcification and the prognosis of breast cancer. J Healthc Eng. 2021;2021:6835963.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Churchill W. Speech at the Lord Mayor’s luncheon. London: The Mansion House; 1942.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irving M. Shapiro .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shapiro, I.M., Landis, W.J. (2023). Aberrant Mineral Deposition in Soft and Hard Tissues. In: Mechanisms of Mineralization of Vertebrate Skeletal and Dental Tissues. Springer, Cham. https://doi.org/10.1007/978-3-031-34304-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34304-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34302-5

  • Online ISBN: 978-3-031-34304-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics