
Waste Self-reporting for Software
Development Productivity Improvement

Marc Sallin1(B), Martin Kropp1, Craig Anslow2, and Robert Biddle3

1 University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland
marc.sallin@outlook.com, martin.kropp@fhnw.ch

2 Victoria University of Wellington, Wellington, New Zealand
craig.anslow@vuw.ac.nz

3 Carleton University, Ottawa, Canada

robert.biddle@carleton.ca

Abstract. Little research has been done on enabling software develop-
ment teams to self-report waste to assist in productivity improvement.
This study created a waste categorization and survey for teams to iden-
tify and quantify wasteful activities. Developers from a Swiss company
used the survey for three weeks. Participants found the survey helpful for
identifying waste but there was little evidence that self-reported waste
correlated with improved performance.

Keywords: Empirical · Software development · Productivity ·
Efficiency · Waste · Lean · Case Study

1 Introduction

Improving the productivity of software development teams is a natural and perpet-
ual goal for organizations. However, measuring the productivity of software devel-
opment teams has always been seen as inherently difficult. Productivity is deter-
mined as the ratio of an achieved output and the required input [1]. In software
development, the input mainly consists of the working time spent on development,
expressed as the cost of developing software. With the output, it is less clear: the
produced lines-of-code or number of implemented functions have shown not to be
suited to measure the output. Both quantity and quality of the output are hard to
define for software development and typically vary from project to project. There-
fore, there is no common approach yet to measure them [1]. As a consequence,
organizations often do not measure productivity at all and trust in their intuition
for optimization or adopt sub-optimal measurements, which can lead to even worse
decisions or wrong incentive behavior [2].

In this study, we investigate a new approach to improve software development
productivity. By definition, removing waste from a process improves productivity
[3]. Waste is referred to as “any activity that consumes resources but creates no
value for customers“[4]. However, waste is often not easy to identify, since it
can be hidden behind administrative tasks, multitasking, poor prioritization,
c© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 50–66, 2023.
https://doi.org/10.1007/978-3-031-33976-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-33976-9_4


Waste Self-reporting for Software Development Productivity Improvement 51

and invisible cognitive processes [5]. This is, among other reasons, why waste
identification and removal is typically approached through action research or
case studies. External personnel can help a team or an organization to identify
and remove waste [6–8], but this makes waste identification and quantification
expensive. For that reason it is often performed as a one-time intervention, and
lacking a sustainable effect on productivity improvement.

In this paper, we present a concept for a systematic yet lightweight self-
reporting of waste for software development teams to guide and measure pro-
ductivity improvement. We first developed a self-reporting tool for identifying
and reporting waste and explored in a study whether the amount of reported
wasted time is a reliable proxy to track productivity improvements in the long
term. More concretely, we wanted to examine the following research questions:

RQ1: Can a software development team identify and quantify waste
by using self-reporting? The self-reporting approach should present a good
balance between weight and completeness to not miss important waste. The
reporting itself should not be seen as waste but should help adding value in
a sense to help improve productivity.

RQ2: Is self-reported amount of waste correlated with software deliv-
ery performance? To use the amount of reported waste for tracking produc-
tivity improvement we expect it to decrease as a team improves its produc-
tivity. Based on the PE-Model [1] which describes performance as a broader
term including software productivity we use performance as a surrogate for
productivity. To collect first evidence for this assumption we look for a rela-
tionship between delivery performance [9] and reported waste.

2 Related Work

“Waste” or “Muda” (Japanese for waste) has its origin in the concept of lean
manufacturing. The core principle of “lean” is to eliminate non-value-adding
activities, which are defined as waste. Womack & Jones proposed lean following
his analysis of the Toyota Production System (TPS) [4]. TPS prioritizes waste
removal by creating a culture that pursues waste identification and elimination
in the entire production of a vehicle [3]. The process discerns three types of activ-
ities: activities that create value for the customer; activities that create no value
for the customer but are currently necessary to manufacture the product; and
activities that create no value for the customer, are unnecessary. These are con-
sidered waste and therefore should be removed immediately. Initially, the TPS
characterized seven types of waste [3], which later were extended with two more
waste types by Womack & Jones [4]. In their work about Lean Software Devel-
opment (LSD), Mary and Tom Poppendieck adapted lean and the TPS from
manufacturing to software development, and identified seven waste categories in
software development [10].

Identifying waste in software development seems easy only at first glance, by
potentially just observing it [5]. Some studies describe how researchers identified



52 M. Sallin et al.

and removed waste in software development teams or organizations [6–8]. All of
them included external personnel which helped with the identification. Several
studies have been conducted to identify and categorize waste. Sedano et al.
defined a taxonomy of waste consisting of nine categories [5]. Al-Baik & Miller
conducted action research to identify and eliminate waste in an IT organization
and defined ten types of waste [8]. All the studies we found identified waste with
a one-time intervention and applied methods with a lot of overhead, or which
needed external personnel. Deshmukh and Srivastava reviewed lean methodology
in software development [11], while Meyer et al. identified context switching as a
universal productivity killer [12,13]. Khodawandi categorized tasks as value add,
necessary non-value add, and obvious non-value add, but found that this was
not granular enough to identify wasteful activities [14]. Halkos and Bousinakis
discovered that stress reduces productivity and personal satisfaction increases it
[15].

Studies identified waste using Value Stream Mapping (VSM) [6,16–18], open
or semi-structured interviews [8,19–22], analyzed content (like retrospectives) [5],
conducted observations [5] or used questionnaires [20,22,23]. Al-Baik & Miller
used three questions per waste category to identify waste [8]. Ikonen et al. did
the same but used the categories defined by LSD [21]. Besker et al. investi-
gated the time wasted caused by technical debt. They let the participants fill
out a survey twice a week during seven weeks [22]. The study of Alahyari et
al. used open questions but offered no help for recall [19]. Several researchers
used directed questions to identify and recall waste; they derived the questions
based on the waste categories. Interestingly, the well-known tool to identify waste
in manufacturing, VSM, is criticized for being used in the software development
context. The fundamental critique is that manufacturing is fundamentally differ-
ent from software engineering. When applied in practice, participants state that
the results are obvious but it takes a lot of time to apply VSM [8,11,17]. While
there have been several approaches to capture waste in software development, all
of them suffered from being either one-time interactions or heavy-weight, which
reduced their sustainability. Our concept is to implement a light-weight app-
roach for waste self-reporting which could be done on a regular basis to improve
software productivity in a more sustainable way.

In recent years, the productivity aspect in software development has gained
more attraction with the adoption of DevOps [9]. Besides its organizational
influence, DevOps often is seen as promising to improve delivery speed, pro-
ductivity, and quality [24]. Wiedemann et al. found that only four key metrics
(FKM) differentiate between low, medium, high, and elite performers: lead time
for change, deployment frequency, time to restore service, and change failure
rate [9]. These metrics help organizations and teams to determine whether they
are improving the overall IT performance. They are strongly correlated with
well-known DevOps practices and hence known as DevOps metrics. However,
the productivity metrics are lagging measurements and do not directly suggest
any actions. Moreover, less mature teams need guidance to be able to improve
on these specific metrics.



Waste Self-reporting for Software Development Productivity Improvement 53

3 Research Method

We organized the study into three phases. In the first phase we analyzed and
summarized the existing literature, theories, and frameworks about waste clas-
sifications. Then, we gathered qualitative data from the research context by
performing focus group interviews with the developers from the company par-
ticipating in the main study. The result was a categorization of waste enriched
with context-specific elements and examples. In the second phase we addressed
RQ1 “Can a software development team identify and quantify waste by using
self-reporting?” and we developed a self-reporting survey and running the sur-
vey, using the waste categorizations from the preparation phase. We designed
the survey by analyzing recall studies and existing waste identification studies.
The survey was planned as a daily self-reporting survey for three weeks, includ-
ing questions about participant’s experience with it. Finally, the third phase
comprised the analysis phase, in which we analyzed the gathered data to answer
RQ2 “Is self-reported amount of waste correlated with software delivery perfor-
mance?” At the end of the reporting period, the participants were requested to
fill out an additional survey, in which we asked them about their software deliv-
ery performance. The software delivery performance was determined using the
productivity metrics suggested by Forsgren et al. [9]. Using statistical analysis,
we investigated if there was a correlation with the self-reported waste collected
during self-reporting survey.

The study was carried out in an IT department of a large company in Switzer-
land. The group consists of strategic divisions that operate in the core markets
of the company and affiliated function units. Function units support the group’s
management and strategic divisions with cross-cutting-concerns. In 2019 the IT
function unit had around 1200 full-time equivalent employees with about 330
software developers. The unit runs only projects for internal customers. The
function unit is divided into six departments. One of the departments is the
department for software development and consists of 25 teams, of which 15 are
software development teams. We included the software development department
in the study and looked for participants for the focus groups to collect waste
examples and to fill out the reporting. The resulting pool of potential partici-
pants consisted of 164 individuals, distributed over 15 teams. For self-reporting,
we invited the potential participants to attend the study by e-mail. 26 employees
responded to this e-mail and agreed to participate. These people represent 10
different teams from the development department. For the self-reporting (SR),
twenty-two participants were included in the data analysis. Among them were
two women and sixteen men, with ages between 21 and 58. Their highest degree
of education is shown in Table 3, Table 2 shows the experience, and Table 4 the
employment.

The focus groups (FG) aimed to get an exhaustive number of waste examples.
We decided the size of one focus group to be six people and to host one session per
group. Six participants per focus group and two sessions could represent twelve
of the fifteen teams. To select the candidates for the focus group, we used quota
sampling to ensure half of the candidates attending will also participate in self-



54 M. Sallin et al.

reporting and half will not. Moreover, we ensured that a team is represented by
at most one person. Four and five participants did finally attend. Two of them
were women, and the rest were men, with an average age of 35 years. Table 1
shows their experience and Table 3 their highest degree of education.

Table 1. Experience of focus group participants.a

Years Working for Swiss Post Experience Software Engineering Experience DevOps

Agile methodologies Experience

0–2 5 (56%) 1 (11%) 1 (11%) 5 (56%)

3–5 1 (11%) 2 (22%) 3 (33%) 3 (33%)

6–10 2 (22%) 1 (11%) 5 (56%) 0

11–15 1 (11%) 3 (33%) 0 0

≥16 0 2 (22%) 0 1 (11%)
aDue to rounding errors, the percentages may do not sum up to 100%.

Table 2. Experience of self-reporting participants. a

Years Working for Swiss Post Experience Experience Experience

Software Engineering Agile methodologies DevOps

0–2 8 (36%) 4 (18%) 5 (23%) 11 (50%)

3–5 6 (27%) 3 (14%) 8 (36%) 8 (36%)

6–10 2 (9%) 4 (18%) 9 (41%) 3 (14%)

11–15 4 (18%) 5 (23%) 0 0

≥16 2 (9%) 6 (27%) 0 0
aDue to rounding errors, the percentages may do not sum up to 100%.

Table 3. Highest degree of education
of all study participants. a

Degree of Education FG SR

Vocational Education 0 1 (6%)

Higher Education 3 (33%) 2 (11%)

Bachelor of Science/BSc 4 (44%) 10 (56%)

Master of Science/MSc 1 (11%) 3 (17%)

PhD 1 (11%) 2 (11%)
aDue to rounding errors, the
percentages may do not sum up to
100%.

Table 4. Employment of self-reporting
participants.a

Employment Number

100% 10 (56%)

90% 3 (17%)

80% 4 (22%)

70% 1 (6%)
aDue to rounding errors, the
percentages may do not sum up to
100%.

4 Classification of Software Development Waste

We first conducted a literature review to get an initial list of empirical-based
waste classifications along with examples. We then combined the found classi-
fications to get one classification list that covered all found examples. Finally,



Waste Self-reporting for Software Development Productivity Improvement 55

we held two focus group sessions to collect further examples of waste from the
company and verified that the classifications also covers those examples. Table 5
lists the twelve categories used to classify the waste examples from the literature
review and the examples collected during the focus group sessions.

For the literature review we used the keywords “software development”,
“software engineering” and “waste”. As suggested by Gusenbauer [25], we used
three search engines to retrieve literature: ACM Digital Library, ScienceDirect,
and Scopus. We found sixteen empirical and peer-reviewed studies which are
about waste in software engineering according to lean thinking. We extracted
105 unique examples of waste and found three studies [5,8,19], containing a cat-
egorization of waste. Out of the 105 examples, 85 could be assigned to a category
of Sedano et al. [5]. The remaining examples could be assigned to the category
“Management & organizational aspect” or “processes” from Alahyari et al. [19].
We merged those two categories as the processes are an organizational aspect.
We did not use the categorization of Al-Baik and Miller [8] because the study
context was a whole IT organization and not just software development.

To gather waste examples from the research context we conducted two focus
group sessions [26] with the topic “How do I waste my time?” As preparation, the
participants were introduced to the concept of waste by reading an instruction
document prepared by the research team. We assigned each example to a waste
category identified in the literature review. The examples which could not be
assigned to a category were analyzed to define possibly new categories.

The first focus group session generated 77 examples from which 68 did fit
into existing categories. The second session generated 90 examples, 63 could be
assigned directly. 28 of the not categorized examples were about doing manual
work which could have been done automatically. For example, “requesting for
firewall rule changes” or “requesting for new database infrastructure”. The par-
ticipants mentioned that those things need to be done by looking information
up and sending e-mails within the organization. Hence, we defined an additional
category, “manual work”, as “The cost of doing work manually which could be
automated”. The remaining eight examples without a category were related to
unreliable infrastructure and the resulting troubleshooting, the lack of respon-
sibility and doing things that are not related to the person’s job. While those
activities are necessary to reach the overall goal and hence not waste at a first
glance, they distract from performing the value-adding activities. For example,
troubleshooting infrastructure and platforms should not be a common concern
for development teams. Therefore, we introduced the custom category “other
duties” as “the cost of doing work which is supposed to be done by others.”

5 Waste Self-reporting Survey

The second phase comprised the development of a waste quantifiable survey
questionnaire, the execution of the survey over the planned period of time, and
a final retrospection survey, in which the participants reported about their expe-
rience with the waste self-reporting. To be able to quantify the reported waste,



56 M. Sallin et al.

we defined a measurement for each waste category together with its measure-
ment unit. The identified measurements with their units are shown in Table 5
for each category and are explained in the following.

Table 5. Waste Categories incl. Measurement. WC11 & WC12 are new.

ID Waste Category Measurement and Unit

WC1 Building the wrong feature or product [5] Customer confidence (Likert-Scale)

WC2 Mismanaging the backlog [5] Time spent (h) & Delay (h)

WC3 Rework [5] Time spent (h)

WC4 Unnecessarily complex solutions [5] Time spent (h)

WC5 Extraneous cognitive load [5] Time spent (h)

WC6 Psychological distress [5] Stress (numerical rating scale)

WC7 Waiting/multitasking [5] Delay (h) & Context Switches (count)

WC8 Knowledge loss [5] Time spent (h)

WC9 Ineffective communication [5] Time spent (h)

WC10 Management & organizational aspect [19] Time spent (h) & Delay (h)

WC11 Manual work (new category) Time spent (h) & Delay (h)

WC12 Other duties (new category) Time spent (h)

Time Spent: The time spent is how much active time is spent on a wasteful
task or activity. One example is the time spent doing rework. The time spent is
measured using the unit hour.
Delay Time: Activities in some categories do not require active working time
but cause delays. Delays are harmful because they increase the lead time. The
delay is measured in hours. Delay typically occurs in combination with other
observable measurements. An example is the waste category “Management &
Organizational aspects.” This category is quantifiable by time spent (e.g., filling
out a form for approval) and with delay (e.g., waiting for approval until one can
continue with the activity).
Stress Level: Psychological distress is subjective to people who experience it.
The Cohen Perceived Stress Scale (PSS) is widely used to measure the perceived
stress. But as it is time-consuming to report. Hence, we took inspiration from
pain measurement and decided to use a numerical rating scale (numerical rating
scale) to measure psychological distress. On the scale zero means not stressed at
all and ten extremely stressed.
Customer Confidence: Creating a feature that a customer does not need is a
waste of time. However, if it is already evident when the feature is created that
it is not needed, why is it built? In hindsight, “Building the wrong feature or
product” can be quantified by the time wasted to build something; but while
working on it, this may not be that clear. Hence, we decided to not measure it
with the time spent, but rather with the degree of confidence a participant has,
that they work on the right thing from a customer perspective with a five-point
Likert scale.



Waste Self-reporting for Software Development Productivity Improvement 57

Context Switches: The category “waiting/multitasking” can be measured by
“delay time” but also by counting context switches. Interruptions or waiting
which causes context switches come at a high-cost.

For the question creation, we considered several factors about how recall
works. Specific questions to capture any kind of waste in a certain category
possibly increases the accuracy. However, the participants report daily, and a
too detailed and long survey leads to reporting fatigue. To prevent reporting
fatigue, the number of questions must be minimized, and answering must be
fast. To cover all categories with their measurements sixteen questions would
be necessary. We excluded two categories and measurements from the survey,
which finally resulted in twelve survey questions related to the categories, plus
two additional open questions to get extra information.

We excluded the category “mismanaging the backlog” and a part of “wait-
ing/multitasking” from the survey. The category “mismanaging the backlog” is
very broad. It goes from “duplicated work” onto “imbalance between feature
work and bug fixing” to “not enough ready stories.” Mismanaging the backlog
will lead to inefficient and ineffective working manners, unnecessary time spent,
and delays. Measuring this in a daily or weekly survey seems not an adequate
approach for several reasons: a questionnaire with multiple questions would be
necessary to identify a certain degree of mismanagement of the backlog; ask-
ing those questions seems more a topic for sprint retrospectives, rather than in
short intervals. Waste of the category “waiting/multitasking” is observable at
different scales. For example, multitasking can mean switching every few min-
utes between different tasks or working on another project every few days. This
is similar for waiting. One can wait a few minutes for a build to complete or
wait weeks to get formal approval to continue a task. Other categories already
cover the aspects of the large scale. For the small scale, interruptions and context
switches could simply be counted and there is promising research with a focus
on automatically detecting and reducing harmful interruptions [13,27]. For those
reasons, the category “waiting/multitasking” is not explicitly considered in the
self-report survey.

We ended up with the following list of the questions asked in the survey.
Beside the twelve waste identification questions, we added two optional ques-
tions: one to get qualitative information about stress and one to be able to
discover waste which did not fit into our categorization.

1. How stressed did you feel today?
2. How much time did you spend on preventable rework?
3. How much time did you spend on manual or routine work?
4. How much delay (or expected delay) did you experience caused by missing

automation/self-service or processes?
5. How much time did you lose because of ineffective communication?
6. How much time did you spend for unnecessary

administrative/organizational demands?
7. How much delay (or expected) did you experience caused by administra-

tive/organizational demands?



58 M. Sallin et al.

8. How much time did you spend on activities which are not your duties?
9. How confident are you that you worked on the right things today from a

customer perspective?
10. How much time did you spend on unnecessary cognitive load?
11. How much time did you spend on unnecessarily complex solutions?
12. How much time did you spend because of knowledge which wasn’t available?
13. Extra: What caused you stress?
14. Extra: Were there wasteful activities which you couldn’t report because they

did not belong to a question?

6 Data Collection

The data collection was conducted in three steps.

a) An initial survey gathered participants’ demographics.
b) Then, we conducted the main survey, which went over three weeks to gather

information about waste. In addition, before we started the self-reporting,
two participants used the survey for two days and gave informal feedback.

c) We concluded the data collection with a final survey to assess the com-
pleteness of the daily reporting (participants stated the days on which they
deliberately did not report), to assess the usefulness of the survey tool, and
to collect the productivity metrics data (see Sect. 7 details).

The software delivery performance was measured using the productivity met-
rics as defined by Forsgren et al. [9] and was captured from the participants at
the end of self-reporting period. We took the questions and answer options from
the state of DevOps report survey conducted by DORA in 2021. The daily
reported waste was grouped by measurement and aggregated over the whole
reporting period. The aggregation was the daily average, and the measurements
were stress, time spent, delay, and customer. To get the productivity metrics
score, we assigned the answers for the productivity metrics questions to a pro-
portionally increasing score and summed them per participant. The answer “I
don’t know/NA” was rated with a score of zero. The worst answer (slowest/least
stable) was rated with one and so on. We excluded participants who did specify
“I don’t know/NA” for each productivity metrics question from the data set.

The participants were asked about their subjective experiences in the final
survey. We asked about three aspects of the self-reporting tool. First, if the survey
helped them to recall the encountered waste. Second, if it helped identify waste,
and third if the reported waste during the three-week period was representative
of their usual workdays. Additionally, we wanted to know if the participants
would be ready to attend repeated measurement periods.

7 Results

All 26 participants completed the initial survey. 22 completed at least three daily
surveys of the main survey. The final survey was completed by 21 participants.



Waste Self-reporting for Software Development Productivity Improvement 59

In total, 229 reports of the daily main survey were filled out. 14 out of the 22
participants filled out the survey 10 times or more over the three week period.
On average, a participant reported about 4.6h of wasted time per day. Rework
is the category that is reported to cause the most waste. Rework is responsi-
ble for 20% of the reported waste while the next category is other duties with
15%. For delay, one participant reported about 4 h of delay per day on average.
Administrative demand caused around 5× as much delay as missing automation.
In 26.5% of the time, the respondents were “completely confident” to work on
the right things from a customer’s perspective. 44.2% of the respondents were
“somewhat confident” and 21.9% “neutral.” Only 7.5% of the time, the respon-
dents were “somewhat insecure” or “completely insecure” to work on the right
things. Figure 1 shows the distribution. The reported stress score had a mean
of 2.3, a median of 2, a standard deviation of 2.3. The minimum was zero, and
the maximum was eight. The most significant stresses mentioned in free text
were meetings (9×), deadlines (8×), and interruptions caused by calls or paral-
lel tasks (4×). To further validate the categorization we gave the participants
the possibility to report examples of waste which they think did not fit into one
of the given categories. We found fitting categories for all eighteen examples.

Completely confident

Somewhat confident

Neutral

Somewhat insecure

Completely insecure

Percentage

0 10 20 30 40 50

Fig. 1. Confidence to work on the right things.

RQ1: Can a software development team identify and quantify waste
by using self-reporting? Figure 2 shows the analysis of the value of and expe-
rience with the self-reporting 76% of the participants found the survey helpful
for recalling encountered waste (S1). Only 5% disagreed with that statement,
and 19% were neutral about it. 38% agreed or strongly agreed that the sur-
vey helped to identifying waste, 48% were neutral, and 14% disagreed (S2). For
both questions, nobody strongly disagreed. 81% of the participants agreed or
strongly agreed that the reported waste during the three-week reporting period
was representative of their usual workdays. 43% of the participants were willing
to regularly do self-reporting, 33% expressed neutrality and only 24% disagreed
with this statement. Overall, these results suggest some reason for optimism
about the approach. The causes need exploration: perhaps the daily schedule
was too much, or motivation, or lack of confidence were factors.



60 M. Sallin et al.

Fig. 2. Value of the waste self-reporting survey. S1: Helpful for recall, S2: Helpful
in identifying waste, S3: Representative of usual experience, S4: Willingness to do
regularly.

RQ2: Is self-reported amount of waste correlated with software
delivery performance? 21 participants filled out the final survey with the
productivity metrics questions. We excluded four of them, because they have
chosen “I don’t know/NA” for every of the four productivity metrics questions.
We calculated the mean daily waste reported per measurement, per participant
and day. Time spent and delay are both given in mean hours per day. The par-
ticipants reported using radio-buttons and selected hour ranges. We used the
mean of the given range. For the time spent, it was possible to report more
than eight hours per day due to the survey design. We corrected for this by
adjusting two from a higher value than eight to eight. The Table 6 shows the
Spearman correlation coefficient of the measures time spent, delay, stress and
customer together with the productivity metrics. The measurements delay, time
spent and stress show a low correlation and are not statistically significant. A
visual inspection of the scatter plot does also not suggest any trends. We looked
at the correlation between the productivity metrics score and the twelve waste
categories without aggregating them as well but found no statistically significant
correlation. Between the productivity metrics and customer confidence there is
a statistically significant moderate correlation. Participants with lower produc-
tivity metrics reported a higher confidence to work on the right things from a
customer’s perspective.

Table 6. The Spearman correlation coefficient and p-value for productivity metrics
and waste.

Time spent Delay Stress Customer

ρ −0.038 −0.27 −0.3 0.63

p 0.89 0.32 0.24 0.007



Waste Self-reporting for Software Development Productivity Improvement 61

8 Discussion

RQ1: Can a software development team identify and quantify waste
by using self-reporting?
The self-reporting survey usage by developers indicated that it assisted the recall
and quantification of software development waste. We found the survey to be
less helpful in identifying new wasteful activities for the participants. We learned
that three weeks of self-reporting was enough to get a representative picture of
the usually encountered waste. The participants have shown a great willingness
that they would participate in self-reporting regularly.

The large majority of the participants found the survey very helpful for
recall and remembering encountered waste. This finding indicates that the cat-
egories and related questions are good in creating a stimulus for recalling the
already known waste but are not as good in helping participants to identify
waste they are not aware of. Identification of waste was found to be difficult by
other researchers already [5,28]. Another aspect we found was that almost half
of the participants did not fill out the daily survey at least once. This shows
that a non-negligible share of the participants did not follow the process despite
granular information upfront and regular customized reminders. Further data
analysis would be needed to evaluate the cause for this.

The shortcomings of identification of new waste may be solved by address-
ing the described question-substitution effect, by a conceptual change and by
providing better tooling. Due to the way cognition works, we consider providing
more explanations and examples together with each question as not a promising
approach. We suggest to adapt techniques of de-biasing such as asking more
detailed/specific questions, changing the wording of the same question, or using
nudges. However, this must be balanced with the goal of having a lightweight
tool that does not burden the participants. The conceptual change may be to
reverse the approach by not asking for wasteful activities per category but by
asking for all activities and identifying wasteful sub-activities. The idea is similar
to what Khodawandi did [14].

Using dedicated software can improve waste reporting reliability by provid-
ing support, guidance, and motivation to users. Possible elements were reliable
reminders, gamification and automation. PersonalAnalytics by Meyer et al. can
be a good starting point and could integrate the context-switch/interruption
category [13]. Existing tools like RescueTime and ManicTime can provide inspi-
ration. A tool could provide a list of activities for users to choose from, like Kho-
dawandi did, and ask specific questions about each activity to identify waste.
Each activity can have multiple wasteful aspects, and the questions should be
based on waste categories and examples from this study.
RQ2: Is self-reported amount of waste correlated with software deliv-
ery performance?
The overall results suggest that teams with high score in the productivity met-
rics do not report significantly less waste than teams that score low. A possi-
ble interpretation might be that a team that improves and reduces waste gets



62 M. Sallin et al.

more sensitive to waste, and hence the reported total numbers do not signif-
icantly change. That is because self-reporting waste remains subjective. This
would make the absolute and relative amount of waste an unusable indicator for
measuring productivity improvement. However, it could be that the productiv-
ity metrics score is not a good metric to represent the team performance. An
alternative explanation is that a well-performing team, according to productiv-
ity metrics does not suffer from less waste, e.g., for organizational reasons. Or
that the hypothesis only holds when looking at one team and not for comparing
teams. Additionally, respondents who chose “I do not know/NA” for every pro-
ductivity metrics question were excluded. But if they choose this option for one
of the questions this is rated with zero points, which distorts the data.

Previous research somewhat contradicts our findings. Brown et al. found that
a high amount of rework significantly differs between low, medium, and high
performers [29]. However, they define rework as a combination of unplanned
work and rework. Moreover, it is unclear how precise the estimations of their
respondents were and if they are comparable with self-reporting waste at regular
intervals as done in our study. In the state of DevOps report of 2018, Forsgren et
al. found that higher software delivery performances were less prone to burnout
[30]. This might be an indication that stress is reduced with a higher productiv-
ity metrics. However, it has to be considered that they compared with only three
clusters of teams while we used a linear scale. Other researchers have already
found that reducing waste can sometimes be straightforward [5] but also chal-
lenging when it is outside of the control of a team [31]; this is in line with the
possibility that even a mature team with high productivity metrics suffers from
organizational waste, like other teams with lower maturity.

8.1 Limitations

Construct Validity: The literature review comes with the limitation that it
is unsure if we included all relevant studies. We used the term “waste” to
retrieve articles. However, authors may have used another term in their studies
to describe the phenomena of waste.

Participants read a waste document before the focus group, including a cat-
egorization example by Sedano et al. [5]. This could have caused bias and made
it easier for participants to recall waste examples fitting into those categories.
The moderator’s questions could have influenced the direction of the discussion.

Besides the already mentioned threats to validity for the waste example gath-
ering, the limitations for the categorization are rooted in subjectivity. Due to
timing constraints and the kind of work, we did not do researcher triangulation.

Finally, we acknowledge a deeper issue that relates to our measures but also
the lean concept of “waste”: whether the categories identifies truly reflect waste
in the sense of resource allocation without value. Determining this would require
careful study of the decisions made by the organization and their outcomes.
Internal Validity: The amount of self-reported waste needs to be interpreted
with caution because, as with most survey designs, responses may have been
affected by the subjectivity of the respondents. The answer about the time was



Waste Self-reporting for Software Development Productivity Improvement 63

given as radio buttons with the span of two hours. This methodological decision
led to a loss of accuracy. Due to the pragmatic approach of self-reporting using
a survey, it was possible for participants to report more than eight hours of time
spent waste per day. They were advised to not report waste twice. Nevertheless,
we found participants which did not always follow this rule. We corrected for this
in the productivity metrics and waste correlation but not for the total reported
waste. Participants missed or skipped some daily reportings. Nevertheless, the
weeks with missing daily reports were included in the analysis because the visual
assessment did not show that missing data led to a systematic overestimation or
underestimation.

Though not relevant for the analysis, the following aspects have to be con-
sidered when interpreting the data. First, participants did not report during the
same three weeks. Second, they did not all have the same degree of employment.
Third, not all of them reported the whole three weeks but dropped out early. The
self-reporting behavior and the answers about the self-report experience, espe-
cially the willingness to do self-reporting regularly, need to be interpreted with
the consideration of selection bias. The invitation to participate in the study
contained the information that it would be necessary to fill out a questionnaire
every day and week.
External Validity: Despite reaching theoretical saturation for the categorization
of waste, it is rooted in qualitative research and can not be generalized for all
organizations. Another limitation lies in the low amount of data (sample size is
small) and the sampling (reporting weeks not equally distributed over the year).
Thus, the results of the applied statistical methods must also be interpreted with
caution. Besides the methodological limitations there is a conceptual limitation.
We acknowledge our approach will most likely not be able to reveil waste when
it is at the core of somebody’s job description but a holistic perspective is still
necessary [28].

9 Conclusion and Future Work

The developed categorization of waste covered all waste encountered by the
self-reporting participants, so appears to be a useful basis for future work in
this area. Many study participants indicated readiness to engage in self-reports
sessions regularly, though some expressed reservations, and in practice a number
of missed reports suggests a need to explore causes – perhaps survey frequency
and consequent fatigue. We speculate that the practicality of self-reporting could
be significantly improved with dedicated tooling.

We did not find a significant relationship between the amount of waste and
the productivity metrics. Hence, with this study we cannot provide evidence
that the self-reported amount of waste decreases with improved software delivery
performance. Nevertheless, we encourage doing further research and conducting
a larger and longitudinal study. Future research should especially consider the
limitations our study has illustrated and adjust the methodology accordingly.



64 M. Sallin et al.

More research is necessary to improve our approach, to validate our findings
and to be able to draw robust conclusions. We suggest conducting future research
regarding the following topics: 1) software development waste categorization
should be validated in other organizations. 2) investigate how to reduce the
self-reporting burden using dedicated tooling and automatic measurement. 3)
replicate this study and the statistical analysis with more candidates, while
addressing some of the limitations.

References

1. Wagner, S., Deissenboeck, F.: Defining productivity in software engineering. In:
Sadowski, C., Zimmerman, T. (eds.) Rethinking Productivity in Software Engi-
neering, Berkeley, CA, Apress (2019). ch. 4

2. Ko, A.J.: Why we should not measure productivity. In: Sadowski, C., Zimmerman,
T. (eds.) Rethinking Productivity in Software Engineering, Berkeley, CA, Apress
(2019). ch. 3

3. Coniam, F.: A study of the toyota production system from an industrial engineering
viewpoint. Manuf. Eng. 69(10), 14 (1990)

4. Womack, J.P., Jones, D.T.: Lean thinking-banish waste and create wealth in your
corporation. J. Oper. Res. Soc. 48(11), 1148 (1997)

5. Sedano, T., Ralph, P., Peraire, C.: Software development waste. In: Proceedings
- 2017 IEEE/ACM 39th International Conference on Software Engineering, ICSE
2017 (2017)

6. Mujtaba, S., Feldt, R., Petersen, K.: Waste and lead time reduction in a software
product customization process with value stream maps. In: Proceedings of the
Australian Software Engineering Conference, ASWEC (2010)

7. Bufon, M.T., Leal, A.G.: Method for identification of waste in the process of soft-
ware development in agile teams using lean and scrum. In: Uden, L., Ting, I.-H.,
Corchado, J.M. (eds.) KMO 2019. CCIS, vol. 1027, pp. 466–476. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21451-7 40

8. Al-Baik, O., Miller, J.: Waste identification and elimination in information tech-
nology organizations. Empirical Softw. Engg. 19(6), 12 (2014)

9. Forsgren, N., Smith, D., Humble, J., Frazelle, J.: State of DevOps Report 2019.
Technical Report, DORA (2019)

10. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit
(The Agile Software Development Series). Addison-Wesley Professional, Boston
(2003)

11. Deshmukh, M., Srivastava, P.: Literature review of lean methodology and research
issues for identifying and eliminating waste in software development. In: Reddy,
A.N.R., Marla, D., Favorskaya, M.N., Satapathy, S.C. (eds.) Intelligent Manufac-
turing and Energy Sustainability. SIST, vol. 213, pp. 375–388. Springer, Singapore
(2021). https://doi.org/10.1007/978-981-33-4443-3 36

12. Meyer, A.N., Fritz, T., Murphy, G.C., Zimmermann, T.: Software developers’ per-
ceptions of productivity. In: Proceedings of the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, vol. 16–21, November 2014

13. Meyer, A.N., Fritz, T., Zimmermann, T.: Fitbit for developers: self-monitoring at
work. In: Sadowski, C., Zimmerman, T. (eds.) Rethinking Productivity in Software
Engineering, Berkeley, CA, Apress (2019). ch. 22

https://doi.org/10.1007/978-3-030-21451-7_40
https://doi.org/10.1007/978-981-33-4443-3_36


Waste Self-reporting for Software Development Productivity Improvement 65

14. Khodawandi, D.: Separating and quantifying value and waste to improve opera-
tional performance in software development. In: Proceedings of the 1st Interna-
tional Symposium on Business Modeling and Software Design (2011)

15. Halkos, G., Bousinakis, D.: The effect of stress and satisfaction on productivity.
Int. J. Prod. Perf. Manage. 59(5), 6 (2010)

16. Berrahal, W., Marghoubi, R.: Lean continuous improvement to information tech-
nology service management implementation: Projection of ITIL framwork. In: 2016
International Conference on Information Technology for Organizations Develop-
ment, IT4OD 2016 (2016)

17. Ali, N.B., Petersen, K., Schneider, K.: FLOW-assisted value stream mapping in
the early phases of large-scale software development. J. Syst. Softw. 111, 213–227
(2016)

18. Lehtonen, T., Kilamo, T., Suonsyrja, S., Mikkonen, T.: Continuous, lean, and
wasteless: minimizing lead time from development done to production use. In:
Proceedings - 42nd Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2016 (2016)

19. Alahyari, H., Gorschek, T., Svensson, R.B.: An exploratory study of waste in soft-
ware development organizations using agile or lean approaches: a multiple case
study at 14 organizations. Inf. Softw. Technol. 105, 78–94 (2019)

20. Bjarnason, E., Wnuk, K., Regnell, B.: Are you biting off more than you can chew? A
case study on causes and effects of overscoping in large-scale software engineering.
Inf. Softw. Technol. 54(10), 1107–1124 (2012)

21. Ikonen, M., Kettunen, P., Oza, N., Abrahamsson, P.: Exploring the sources of
waste in Kanban software development projects. In: Proceedings - 36th EUROMI-
CRO Conference on Software Engineering and Advanced Applications, SEAA 2010
(2010)

22. Besker, T., Martini, A., Bosch, J.: Software developer productivity loss due to
technical debt-a replication and extension study examining developers’ develop-
ment work. J. Syst. Softw. 156, 10 (2019)

23. Tuan, N.N., Thang, H.Q.: Combining maturity with agility - lessons learnt from a
case study. In: ACM International Conference Proceeding Series (2013)

24. Lwakatare, L.E., et al.: DevOps in practice: a multiple case study of five companies.
Inf. Softw. Technol. 114, 217–230 (2019)

25. Gusenbauer, M., Haddaway, N.R.: Which academic search systems are suitable
for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google
Scholar, PubMed, and 26 other resources. Res. Synth. Methods 11(2), 3 (2020)

26. Kontio, J., Bragge, J., Lehtola, L.: The focus group method as an empirical tool
in software engineering. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to
Advanced Empirical Software Engineering, Springer, London, pp. 93–116 (2008).
https://doi.org/10.1007/978-1-84800-044-5 4

27. Züger, M., Meyer, A.N., Fritz, T., Shepherd, D.: Reducing interruptions at work
with FlowLight. In: Sadowski, C., Zimmerman, T. (eds.) Rethinking Productivity
in Software Engineering, Berkeley, CA, Apress (2019). ch. 23

28. Power, K., Conboy, K.: Impediments to flow: rethinking the lean concept of ‘Waste’
in modern software development. In: Cantone, G., Marchesi, M. (eds.) XP 2014.
LNBIP, vol. 179, pp. 203–217. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06862-6 14

https://doi.org/10.1007/978-1-84800-044-5_4
https://doi.org/10.1007/978-3-319-06862-6_14
https://doi.org/10.1007/978-3-319-06862-6_14


66 M. Sallin et al.

29. Brown, A., Forsgren, N., Humble, J., Kersten, N., Gene, K.: State of DevOps
Report 2016, Puppet + DORA, Technical Report (2016)

30. Forsgren, N., Kersten, M.: DevOps metrics. Commun. ACM 61(4), 3 (2018)
31. Rodŕıguez, P., Partanen, J., Kuvaja, P., Oivo, M.: Combining lean thinking and

agile methods for software development a case study of a finnish provider of wireless
embedded systems. In: Proceedings of the Annual Hawaii International Conference
on System Sciences (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Waste Self-reporting for Software Development Productivity Improvement
	1 Introduction
	2 Related Work
	3 Research Method
	4 Classification of Software Development Waste
	5 Waste Self-reporting Survey
	6 Data Collection
	7 Results
	8 Discussion
	8.1 Limitations

	9 Conclusion and Future Work
	References




