q

Check for
updates

A Novel Technique to Assess Agile Systems
for Stability

Robert Healy! ™ @, Tapajit Dey?®, Kieran Conboy? @, and Brian Fitzgerald?

! Intive Ireland, 6th Floor O’Connell Bridge House, Dublin 2, Ireland
rob.healy@intive.com
2 Lero — The SFI Research Centre for Software, University of Limerick, Limerick, Ireland
3 School of Business and Economics, University of Galway, Galway, Ireland

Abstract. Agile systems, like the Kanban and Scrum frameworks, are built on
assumptions of sustainability and stability, however, there is little empirical evi-
dence on whether such systems are stable in practice or not. Therefore, in this
study we aim to inspect the stability of Agile systems by leveraging the concept
of stability described in Queueing Theory. We define a novel metric, the Stabil-
ity Metric, as a way of assessing queueing systems, especially Agile systems. We
inspect 926 Jira projects in 14 organizations with over 1.6 million product backlog
items using this metric. The analysis showed that 72.89% of these Jira projects
were not stable and stable systems, on average, had product backlog sizes 10 times
shorter than unstable ones. These results suggest that while the goal of Agile is
to create a sustainable, stable way of working, this is not guaranteed, and a bet-
ter understanding of systems and queues may be required to help design, create,
coach, and maintain optimal Agile systems.

Keywords: Agile - Queueing Theory - Stability - Jira - Backlogs

1 Introduction

The United Nations define sustainability as “meeting the needs of the present without
compromising the ability of future generations to meet their own needs” [1]. Agile
software development has existed at least since the 2001 Agile Manifesto, with many of
the frameworks predating the manifesto itself [2]. One of the principles of Agile is that
“Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely” [3]. Two of the most popular Agile
frameworks are Scrum and Kanban [2]. Both frameworks can be modelled as queuing
systems. In queueing systems, sustainability occurs under conditions of mathematical
stability [4]. In this paper, we present a novel approach by leveraging the concept of
stability to assess if Agile systems are stable and sustainable in practice as is commonly
assumed.

To measure the stability of Agile systems we used queueing theory to derive a new
metric, the Stability Metric (SM) to classify the performance of queues. We applied this
metric to 926 collections of Jira Projects (JPs), of Product Backlog Items (PBIs) from the

© The Author(s) 2023
C.J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 20-33, 2023.
https://doi.org/10.1007/978-3-031-33976-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_2&domain=pdf
http://orcid.org/0000-0002-0598-9968
http://orcid.org/0000-0002-1379-8539
http://orcid.org/0000-0001-8260-4075
http://orcid.org/0000-0001-9193-2863
https://doi.org/10.1007/978-3-031-33976-9_2

A Novel Technique to Assess Agile Systems 21

more than 2.5 million records in the Public Jira Dataset [5]. The distribution of Stability
Metric across all JPs and the relationship between Stability Metric and product backlog
size and inter-service arrival time was extracted and analyzed.

The rest of the paper is organized as follows: In Sect. 2, we discuss and briefly present
the background and related concepts. We describe the research approach in Sect. 3 and
the results in Sect. 4. We provide further discussion about the results and its implications
in Sect. 5. Finally, we describe the limitations to our study in Sect. 6 and offer conclusions
in Sect. 7.

2 Background

2.1 Queueing Theory for Stable Queueing Systems

Queueing systems have been researched since Erlang’s work on telecommunications in
the early 20" century [6]. A queue forms in a service when demand for that service
exceeds supply [6] and one or more interconnected queues form a queueing system [4].
Each queue can be stable, unstable, or marginally stable [4]. A queue is considered stable
when the Markov chain of all possible queuing states is ergodic in nature [4]. This means
that a stable queue must include the possibility of occasionally having no items in it.
Erlang defined the traffic intensity, p as the dimensionless ratio of the average arrival
rate, \, to the average service rate, |1, where both A and . are measured in items per unit
time as shown in Eq. 1 [6].

p= (D

A
"
In this case, the queue can be seen to be stable when the traffic intensity is less than one,
or when the service rate is greater than the arrival rate. In telephony systems, this allows
for the service rate to be fixed and the system is controlled by altering the arrival rate
to ensure that the system is stable. From Jackson’s Theorem for networks of queues we
know that a network of queues will be stable only when all the sub-queues within that
network are stable [4]. For this research we will model Agile frameworks as one or more
queues.

2.2 Modelling Agile Frameworks as Systems of Queues

Kupainen et al. [7] conducted a systematic literature review of 774 papers to identify
key metrics in use by Agile teams for planning, progress tracking, software quality
measurement, fixing software process problems, and motivating people. One of the
metrics for progress tracking they identified is Work-in-Progress (WIP) limits. WIP
extends from Little’s Law — an observation that in stable queues the amount of time
an item spends in a queue, W, is equal to the average number of items in the queue, L,
divided by the average arrival rate of items, A [8]. Therefore, in theory, it is possible to
control the throughput of a stable Agile queue by simply enforcing a limit on the number
of WIP items by using Eq. 2 [8].

W =

L 2
% ()

22 R. Healy et al.

The Kanban framework is already constructed around the principles of queueing theory
[8]. A simple Kanban system, such as that shown in Fig. 1, is a queue with one or
more servers. The “Backlog” column represents the queue, the “In progress” column
represents the servers and the “Done” column represents items exiting the queue. Unlike
traditional queueing systems, the order of a Kanban backlog tends not to be a simple
First-In First-Out (FIFO) or Last-In First-Out (LIFO) queue and instead tends to be
dynamically re-ordered. Also, many real Kanban systems tend to have multiple columns
and swimlanes. A column usually represents an upstream or downstream service such as
“development” and “testing”. However, a column can also be a separate queue if items
are placed there without any action being performed on them. Examples of this include
“Ready for testing” or “Waiting / Blocked”. A swimlane is a horizontal division across
a Kanban board that often represents a separate class of service — e.g., a priority item.
Each swimlane may be considered as an independent queue.

Backlog In progress Done

L

—

Fig. 1. Sample Kanban board

The Scrum guide, on the other hand, defines two queues — a primary “product back-
log” that is managed and dynamically prioritized by the Product Owner and a “sprint
backlog” that is selected by the team at the sprint planning event, with items chosen from
the product backlog based on available capacity [9]. As a result of how items move from
product backlog to sprint backlog, standard Scrum systems tend to be more batched than
simple queues. However, the overall system still can be modelled as a simple queue if
the arrival and service rates are stochastic in nature and can be modelled using a Poisson
and exponential distribution respectively [4]. In practical terms, a stable Scrum system,
like a stable Kanban system and like other similar stable Agile queueing systems, has
the advantage of being highly predictable. This happens when the team are, on average,
more than capable of delivering the work at least as fast as it is being requested of them.

A Novel Technique to Assess Agile Systems 23
3 Research Approach

With the theoretical foundation of the Queuing Theory in mind, the primary research
question we are addressing in this paper is: RQ: Are Agile systems stable from a queue-
ing perspective? To answer this question, we use a metric derived from the Queueing
theory called the Stability Metric, as described below, and analyze a Public Jira dataset
[5] containing 16 public Jira repositories involving 1822 Jira projects to determine if
those systems were stable.

3.1 Introducing the Stability Metric (SM)

For Agile queues, the arrival rate of items into a product backlog is often not within
the control of the team, or even the organization if customer-reported bugs are included.
However, the service rates can be controlled through team design, scaling multiple teams,
and training and coaching individual team members. Although queueing theory is known
in Agile literature and metrics such as cycle time and WIP limits exist [7, 8], typical
measures of queues as systems have not been used. We define a new term — the “Stability
Metric (SM)”, W, that is the inverse of the traffic intensity and is shown in Eq. 3.

_
V=7 3)

The Stability Metric ranges from zero to infinity; values from zero to lower than one
indicates an unstable queue system, a value of one indicates a marginally stable system,
and values above one indicates stability. The Stability Metric has the advantage over
its predecessor, the “traffic intensity” metric, that the items that are within control are
focused on the numerator rather than the denominator so a positive change in ability
results in the Stability Metric growing. Unlike existing popular Agile metrics such as
“velocity” or “cycle time” [7], the Stability Metric is not purely a lagging metric. Instead,
we believe it may be used as both a diagnostic metric to understand why a system
is performing/underperforming and as a design tool to help organize teams and Agile
systems to manage predicted workloads effectively. We use this metric to help us address
our research question.

3.2 Analyzing the Public Jira Dataset

Past studies of Agile systems have focused on contextual realism with case studies of
real software engineering teams, although these studies are typically not grounded in
theory [10]. Montgomery et al. [5] curated and published a dataset of the contents of the
16 public issue tracking systems with 1822 Jira projects and 2.7 million Product Backlog
Items (PBIs) all using the Atlassian Jira issue tracking tool, which they suggest is the
leading issue-tracking tool for Agile systems. We decided to analyze this dataset to make
the results as generalizable as possible. This dataset, however, is not very clean for our
purposes, i.e., it is hard to determine if individual Jira projects use any standard Agile
framework, or the degree to which Jira projects can be mapped to a framework. While
some parts of the dataset suggest an Agile implementation (e.g., the existence of User
Stories which is an XP concept that is often used in Scrum [2]), there are other parts of

24 R. Healy et al.

the dataset that suggest that it could be used by ITIL/traditional waterfall-type projects
(for instance, “Change Requests”) or helpdesk-type work such as “Support Request”.
We assumed that most or all the 2.7 million PBIs will be part of one or more queues and
that some of these queues are part of an Agile framework. Using data from the dataset
it is possible to calculate the arrival and service rates of each issue and calculate the
stability.

To analyze the Public Jira Dataset, we first downloaded it from its public repos-
itory and, following instructions from Montgomery et al. [5], restored it to a Mon-
goDB database. The dataset is organized into a set of 16 “repos” where each repo is
the extracted Jira information from one of the issue tracking systems. Using a Python
script, we extracted the following fields from each repo: Issue ID, Project Name, Issue
Type, Subtask Boolean, Assignee ID, Created Date/Time, Resolution Date/Time, Status
Name. We subsequently collated this data into a comma separated value (CSV) file for
each organization for each month between January 2002 and January 2022. These CSV
files were then combined into a Microsoft Excel file for all issues for each Jira repo.

The Jira repos are divided into “Projects” where Atlassian advise all issues related
to a product should be assigned to a Jira Project (JP) [11]. Only JPs with more than 30
issues were considered, this was to reduce skew caused by new/inactive/abandoned JPs
and allow the assumption of a normal distribution around the calculated mean as per the
central limit theorem. With that filtering criterion in mind, we removed the SecondLife
and Mindpville repos as they had fewer than 30 issues each. For the remaining repos, all
the Epic issue types and Subtask issue types were filtered out to ensure the work was
approximately similarly sized. Epic issue types are used in Jira as “parents” of other ticket
types [12] and remain unresolved longer than other ticket types, potentially skewing
service rates. On the other hand, Subtask ticket types are used in Jira as “children”
of standard ticket types [13] and, as such, tend to be resolved in shorter periods, also
potentially skewing the data.

When team completes a PBI, it receives a resolution. Resolution types can be con-
figured per JP, but some default types exist [14]. There were 81 separate resolution types
across the JPs in the dataset. Of these only six denoted the delivery of a successful piece
of work. Table 1 lists them below. The other seventy-six resolution types denoted aban-
doning the queue before the team completed the PBI. We removed all PBIs with these
resolutions also.

Table 1. Top 6 successful resolution types.

Resolution Total PBIs Percentage of total resolved PBIs
Fixed 968080 41.9%
Done 371312 16.1%
Resolved 2904 0.1%
Deployed 136 0.0%
Fixed- Verified 116 0.0%
Delivered 102 0.0%

A Novel Technique to Assess Agile Systems 25

This resulted in 926 JPs with 1,633,166 PBIs between 2002 and 2022. 1,295,002
PBIs were successfully resolved by teams during that the sampling period. For each JP,
we calculated the arrival rate and service rate. We calculated the arrival rate, A, for each
system, as per Eq. 4. We calculated the service rate, L using Eq. 5. We calculated the
Stability Metric, Vs, as shown in Eq. 3, from these and the results were grouped into
Unstable (I < 1), Stable (¥ > 1), and Marginally Stable ({ = 1).

#tickets created that are unresolved or resolved successfully
"~ (datetime of last ticket created — datetime of first ticket created)

“4)

#tickets created that are resolved successfully
" (datetime of last ticket resolved — datetime of first ticket resolved)

2 &)
As stated in Sect. 2.1, a requirement of stability is for a queue to be a Markovian chain
with the property of ergodicity. In such a scenario, the size of the queue will eventually
and temporarily drop to zero. The dataset allowed us to evaluate how big queue/product
backlog was for each JP at the point where the data was captured. We calculated the
product backlog, L;p, by taking the total PBI’s that had arrived, A;p, and subtracting the
total PBI’s that has been resolved, Zjp, as per Eq. 6. We plotted these in relation to the
backlog size.

Lip =Ajp —Zsp (6)

Finally, we devised a proxy test for Agility. Equation 7 shows the calculation for the
average inter-service time for each JP. Both Scrum and Kanban advocate for discretiza-
tion of work, breaking work into small parts and monitoring progress daily [2]. In Scrum
all PBI’s must fit into a timeboxed sprint that is commonly two weeks in duration but
can be any period up to a month in length [9]. Large epics and very small sub-tasks had
been filtered at an earlier stage, so this analysis acts as a gauge of how many JPs may
have contained Agile systems by measuring how many could not have fit in a Scrum
system. Systems with PBIs with durations of weeks, months or longer could indicate a
phased based “waterfall” approach.

tp = — (N

4 Results

In this section, we discuss the results of the analysis outlined above. First, we present the
stability distributions of all 926 relevant JPs in the Public Jira Dataset. Then we present
the relationship between the stability and backlog size. Finally, we show the data on
average inter-service time and demonstrate its relationship to stability.

4.1 Stability of JPs

Table 2 shows that nearly three-quarters, 72.89%, of JPs are unstable from a queueing
perspective, with around one quarter, 24.92%, appearing to be stable and the remaining

26 R. Healy et al.

Table 2. Stability Metrics of PBIs

Stability Stability metric, Vs JP count Percentage
Unstable 0.77 675 72.89%
Marginal 1.00 20 2.16%
Stable 1.80 231 24.92%

2.16% marginally stable. Figure 2 shows the distribution of stability across all JPs with
a clear tendency for JPs to cluster around marginal stability and a tendency for most to
be slightly unstable with 54.05% of all JPs being in the range 0.7-0.99.

Figure 2 also shows that there are outliers on both the upper and lower ends. At
the lower end, 2.04% of all JPs have an arrival rate more than ten times faster than the
service rate. For every PBI delivered by the people working on such a system, ten new
PBIs arrived at the same time, on average. At the upper end of the scale, 4.39% of JPs
result in workers involved there having nothing to do on the JP more than half of the
time, on average.

Stability Distribution Chart

250
200
= 150
3
< 100 I
D- -.l I.--—— [|
Il o e R I
\I'DDDDDDDDQ\'—C-—NHA-—!H-—N?’-—CQ"
o e e S or ek o . S St et Qo Tt ot ot e B |
p_D‘D_DDGDD :‘i:}-:_':’—“':'-‘_

Stability Metric

Fig. 2. Distribution of the Stability Metric across 926 JPs

Table 3 shows the proportion of stable and marginally stable JPs as a share of all
JPs. This shows that none of organizations have consistently stable systems. There does
not appear to be a relationship between the number of JPs per organization/repo and the
percentage of stable systems. However, 86% of organizations have at least one stable JP.

4.2 Stability and Backlog Size

When Montgomery et al. captured the Public Jira Dataset in 2022, 338,164 PBIs were
unresolved across 887 JPs. Table 4 shows the relationship between each level of stability

A Novel Technique to Assess Agile Systems 27

Table 3. Stable and marginally stable JPs for all Repos.

Repos Number of stable/marginally stable JPs Count of JPs Percentage
JFrog 0 6 0.0%
Sonatype 0 2 0.0%
Jira 2 26 7.7%
Mojang 1 8 12.5%
Qt 3 17 17.7%
JiraEcosystem 10 55 18.2%
Sakai 4 20 20.0%
MariaDB 2 9 22.2%
Apache 125 486 25.7%
MongoDB 8 27 29.6%
RedHat 65 198 32.8%
Hyperledger 7 18 38.9%
Spring 22 52 42.3%
Inte]DAOS 1 2 50.0%
All JPs 250 926 27.0%

and the corresponding backlog size for all 926 JPs. It shows that the biggest backlog size
appears when the system is unstable — this makes sense as, by definition, the system is
unable to meet the demands being placed on it. The smallest backlog sizes occur when
the system is marginally stable. Again, this is logical, since for those systems, the time
spent waiting for a new piece of work to arrive is eliminated — there is minimal waste,
but the system is not overloaded. Systems with high stability may wait to accumulate
PBIs before addressing at high speed.

Table 4. Stability metrics and backlog sizes of PBIs.

Stability Mean stability metric, | Mean backlog size JP count
Unstable 0.77 455.39 675
Marginal 1.00 80.25 20
Stable 1.80 126.55 231

Figure 3 expands on Table 2 by illustrating the relationship between stability and
backlog sizes. A point to note is the significant ranges in backlog sizes which vary
between 0 and 18,956. Of these, the largest backlogs are an order of magnitude larger
than marginally stable or stable queues. 71% of all stable and marginally stable systems
have backlogs between 0 and 100 items in them. By contrast, 49% of all unstable systems
have backlogs of one hundred or more.

28 R. Healy et al.

Stability vs Backlog Size

100 °
[]
10

2 10 °
._rau
= 0.1
) ® [) ‘

0.01 e

0.001

1 10 100 1000 10000 100000
Backlog Size

Fig. 3. Backlog size vs stability of all JPs, plotted on logarithmic axes.

4.3 Stability and Inter-service Times

Figure 4 shows the distribution of average inter-service times for all resolved PBIs. These
were calculated using Equation 7. 64% of PBIs are resolved within eleven calendar days
and that 88% are resolved within 31 calendar days. This indicates that some PBI’s may
have been used in an Agile system.

Inter-Service Time Distribution Chart

500
450

350
300
250
200
150
100

50

Count

(1,11] (21,31] (41, 51) (61, 71] (81,91]
<1 (11,21 (31, 41] 51, 61] (71,81 >91

Inter-service time (Calendar cays)

Fig. 4. Distribution of inter-service time

A Novel Technique to Assess Agile Systems 29

Stability vs Inter-service time

100

[]
{]
10
z °e
o) (] Y
S 0.1 ‘f)
) . o @
“Het e
) o ©
0.01 ®
0.001
0.01 0.1 1 10 100 1000

Inter-service time (days)

Fig. 5. Inter-service time vs stability of all JPs, plotted on logarithmic axes.

Figure 5 shows the relationship between inter-service time and stability. The outliers
on the lower right in this plot demonstrate that very unstable systems tend to have high
service times while the outliers on the upper left show that systems with very high
stability tend to have very fast service times. However, perhaps the most interesting
information on the plot is the broad range of inter-service times over which systems tend
to cluster around marginal stability. Over 33% of all JPs have stability in the range of 0.9
to 1.1. Of these, the service rates range from 0.08 days between PBIs resolved on average
to 161.58 days between PBIs resolved on average. This suggests that a wide array of
systems with different arrival rates, people, tools, technologies are all independently all
adapting processes to attempt to stabilize their systems. These results will be discussed
further in the Discussion section.

5 Discussion

The analysis of the 926 JPs of the Public Jira Dataset illustrates that it is possible to extract
anonymous data from Jira projects and process it using a novel measure, the Stability
Metric to be able to infer the stability of the system. We illustrated the relationship to
backlog size for a large historic dataset with over 1.6 million items over a 20-year period.
The results show a strong tendency for the system to be unstable with 72.86% showing
this. These unstable systems have, by definition, growing backlogs and we also find that
they tend to have larger backlogs overall. Our results show that there is a discrepancy
between the assumed stability of Agile systems and the reality of how systems operate
in practice and seems to indicate that the assumption of sustainability associated with
the Agile process may not hold good in practice due to the systems’ lack of stability.
However, over half of all JPs are nearly stable, with 57.6% of all JPs are in the
range 0.8—1.2 so future research may investigate whether it is possible, or advisable, for

30 R. Healy et al.

systems to be adapted so they become more stable in nature. Of the 14 organizations
whose data was analyzed, all but two had some systems either stable or marginally stable,
(¥ > 1). This means that although all organizations had some unstable systems, most
could make some systems stable. Further investigation of real teams using the stability
metric can help identify which techniques help teams achieve stable ways of working,
and whether these correlate with other metrics or measures of satisfaction.

An interesting result is the percentage of stable systems in the dataset — 27% of all
JPs analyzed were stable or marginally stable. From a practical perspective the tendency
towards a Stability Metric value of close to 1 makes sense as organizations that achieve
this can deliver work as needed, without having frequent idle resources. This finding
was supported by the analysis of the relationship between average backlog sizes and the
stability metric, with a tendency for significantly larger backlog sizes to correspond to
unstable systems. Whilst this is suggestive of a causal relationship between backlog size
and stability, this also will need to be tested with actual teams.

Another effect worth considering in further research is the impact the statistical
necessity of having no backlog has on system stability. A team with nothing to do is
likely to be assigned to other work by the management since their concern of using the
available manpower optimally conflicts with the conditions of having a mathematically
stable system where a team having no work is expected, and even required, to happen
periodically. In Scrum, a high-performing team with no carryover of work achieves this
to a degree every sprint but a Kanban team who have a continuous flow of work may
never eliminate work-in-progress and achieve a stable system. This calls into question
the applicability of Little’s Law which requires a stable system to be applicable. Further
research is needed to analyze real organizations to assess whether high utilization rates is
a higher priority than system performance, because this may suggest a business incentive
for not striving to achieve sustainable work systems.

Despite most JPs appearing to be close to stable where 1\ ~ 1, significant outliers do
exist where JPs had high levels of instability {s < 0.1 and stability {r > 2. Both outliers
are worth considering as neither are sustainable for the people performing the work nor
the organizations in which these systems exist. Where 1\ < 0.1, the average arrival rate
is more than 10 times the average service rate. This is likely to be a stressful situation,
as demand outstrips supply and difficult choices will need to be continually made as to
which is the next most important piece of work. For systems where s > 2 this means that
the people involved in performing the work have nothing to do for more than half the time
on average. Neither outlier looks sustainable from a business or human perspective —
the business would under-perform compared to competitors and the developers might
suffer from burnout or boredom. Future research is needed to determine if these stability
metrics exist in Agile systems, as it is not possible to determine the precise conditions
from the data, but if substantiated, it would strongly reject a hypothesis of sustainable
ways of working as neither sponsor, developer nor user could be reasonably expected to
sustain unstable ways of working indefinitely.

5.1 Potential Application of this Metric

The Stability Metric is still under investigation and, as Sect. 6 describes, there remain
several limitations in the investigations to date. It may be useful to discuss potential

A Novel Technique to Assess Agile Systems 31

applications. This metric is adapted from existing measures from queueing theory but is
novel to analysis of Agile systems. Itis intended as a diagnostic tool to help predictability.
For all Agile systems it can help diagnose if the team is being under-loaded or over-
loaded and the degree to which this is occurring. This, in turn may help in overall
organizational design and establishing the appropriate number of teams for the volume
of work required.

On a more operational level, by shifting the duration over which the data is used
a comparison can easily be made between stability over a longer period and stability
in the recent past. This will provide information to the team and stakeholders on the
impact of continuous improvement initiatives. In Kanban systems, the Stability Metric
can be used to determine if the system is stable and if applying Little’s Law and limiting
WIP is a valid approach. It could be used on an overall system process flow and on any
sub-system within that flow to quantify and control process bottlenecks. In Scrum, it
could be an improvement on the current practice of “yesterday’s weather” to help teams
identify the target velocity required per sprint to achieve a stable product backlog based
on longer term “climatic” patterns of arrival and service rates. However, before we get
too excited about potential applications, we must recognize this research is ongoing and
list the limitations of the work to date.

6 Limitations

The use of a large dataset that crosses many organizations for a prolonged period offers
very good generalizability of findings, but it is at the payoff of contextual realism. The
main limitation of this work is that it is not known with 100% certainty if an organization
we studied used an Agile framework. The analysis of service rates shown in Fig. 4
suggests that the majority PBIs were discretized to fit within short cycles used in Scrum
and Kanban. Also, the use of Jira itself is suggestive of Scrum or Kanban approaches as
these are standard frameworks within the tool [16].

Another limitation of this study was the use of Jira Projects, JPs, as a collection of
PBIs that represent a queuing system. Jira can use a JP for this purpose but may also
slice the collections of PBIs within and across JPs to create queues for teams. Without
the specific details of what queue or queues are in use in a given organization it is not
possible to be certain of the stability of each. We have relied on Jackson’s Theorem for
queueing networks which dictates that a network of queues can only be stable if all sub-
queues in the network are stable [4]. This suggests that for JPs that displayed stability,
any sub-queues in that JP must have also been stable. The situation is more complicated
for unstable queueing networks; it is possible for a network to be unstable as long as
one or more of the sub-queues are unstable. Further investigation of real teams will be
needed to determine the prevalence of instability.

Methodologically, one limitation may arise in the fact that we used averages across
the entire JP. This potentially ignores temporal effects. A queue is a dynamic system and
may be temporarily stable or unstable. The degree to which stability fluctuates and root
causes should be investigated further, probably with real teams.

Finally, the study assumed that the data provided were accurate. Since the creation
and update of PBIs in Jira is a human activity there is likely to be variation in the accuracy

32 R. Healy et al.

of the data. For example, we assumed the work arrived in the queue at the point where
the PBI was created but it is plausible that sometimes a piece of work could be discussed
long before it is logged in Jira. Similarly, a ticket can be resolved only to find out the
resolution was insufficient, and more work is needed. Jira captures only the date of first
resolution [14]. We removed subtasks, Epics, and certain resolution types but these may
have been misclassified by the original user who was more interested in getting their
work done than data integrity. Further investigations will be required into the Public Jira
Dataset to analyze the accuracy of the data captured.

7 Conclusion

The research question considered whether Agile systems are stable from queueing per-
spective. A novel metric was developed to test this hypothesis and a large historic dataset
was used to test the Stability Metric. While it is not known how many of the Jira Projects
sampled used Agile frameworks such as Scrum and Kanban, it is likely that many did.
Based on this assumption, the data presented show that systems are often unstable with
large and growing product backlogs. A potential cause of this is likely service rates that
are too slow for the individual queue. Further research is required to investigate in more
detail but based on this analysis it appears that Agile software development systems are
neither inherently stable nor sustainable from a human or business perspective but can,
under certain conditions, be made so.

References

1. United Nations:Sustainability. https://www.un.org/en/academic-impact/sustainability.
Accessed 5 Apr 2023
2. Measey, P, et al.: Agile Foundations: Principles, Practices and Frameworks, pp. 125-162.
BCS, Swindon (2015)
3. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9(8), 28-35 (2001)
4. Bose, S.: An Introduction to Queueing Systems. pp. 17-22. Kluwer Academic/Plenum, New
York (2002)
5. Montgomery, L., Luders, C., Maalej, W.: An alternative issue tracking dataset of public
Jira repositories. In: Proceedings of the 19th International Conference on Mining Software
Repositories, pp. 73-77 (2022). https://doi.org/10.1145/3524842.3528486
Kleinrock, L.: Queueing Systems, vol. 1, pp. 17-19. John Wiley & Sons, New York (1975)
7. Kupiainen, E., Mintyld, M., Itkonen, J.: Using metrics in agile and lean software develop-
ment — a systematic literature review of industrial studies. Inf. Softw. Technol. 62, 143-163
(2015). https://doi.org/10.1016/j.infsof.2015.02.005
8. Vacanti, D.: Actionable Agile Metrics for Predictability, pp. 41-54. Actionable Agile Press,
LeanPub (2015)
9. Fuior, F.: Key elements for the success of the most popular Agile methods. Revista Roména
de Informatica si Automaticd 29(4), 7-16, (2019). https://doi.org/10.33436/v2914y201901
10. Conboy, K., Fitzgerald, B.: Toward a conceptual framework of agile methods: a study of agility
in different disciplines. In: Proceedings of the 2004 ACM Workshop on Interdisciplinary
Software Engineering Research, pp. 37-44 (2004). https://doi.org/10.1145/1029997.1030005
11. What is a Jira Software Project. https://support.atlassian.com/jira-software-cloud/docs/what-
is-a-jira-software-project/. Accessed 5 Apr 2023

a

https://www.un.org/en/academic-impact/sustainability
https://doi.org/10.1145/3524842.3528486
https://doi.org/10.1016/j.infsof.2015.02.005
https://doi.org/10.33436/v29i4y201901
https://doi.org/10.1145/1029997.1030005
https://support.atlassian.com/jira-software-cloud/docs/what-is-a-jira-software-project/

A Novel Technique to Assess Agile Systems 33

12. What is an epic. https://support.atlassian.com/jira-software-cloud/docs/what-is-an-epic/.
Accessed 5 Apr 2023

13. Create an issue and a sub-task. https://support.atlassian.com/jira-software-cloud/docs/create-
an-issue-and-a-sub-task/. Accessed 5 Apr 2023

14. Defining resolution field values. https://confluence.atlassian.com/adminjiraserver/defining-
resolution-field-values-938847105.html/. Accessed 5 Apr 2023

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://support.atlassian.com/jira-software-cloud/docs/what-is-an-epic/
https://support.atlassian.com/jira-software-cloud/docs/create-an-issue-and-a-sub-task/
https://confluence.atlassian.com/adminjiraserver/defining-resolution-field-values-938847105.html/
http://creativecommons.org/licenses/by/4.0/

	A Novel Technique to Assess Agile Systems for Stability
	1 Introduction
	2 Background
	2.1 Queueing Theory for Stable Queueing Systems
	2.2 Modelling Agile Frameworks as Systems of Queues

	3 Research Approach
	3.1 Introducing the Stability Metric (SM)
	3.2 Analyzing the Public Jira Dataset

	4 Results
	4.1 Stability of JPs
	4.2 Stability and Backlog Size
	4.3 Stability and Inter-service Times

	5 Discussion
	5.1 Potential Application of this Metric

	6 Limitations
	7 Conclusion
	References

