
 123

LN
BI

P 
47

5

24th International Conference on Agile Software Development 
XP 2023, Amsterdam, The Netherlands, June 13–16, 2023 
Proceedings

Agile Processes in Software 
Engineering and Extreme 
Programming

Christoph J. Stettina
Juan Garbajosa
Philippe Kruchten (Eds.)



Lecture Notes
in Business Information Processing 475

Series Editors
Wil van der Aalst , RWTH Aachen University, Aachen, Germany
Sudha Ram , University of Arizona, Tucson, AZ, USA
Michael Rosemann , Queensland University of Technology, Brisbane, QLD,
Australia
Clemens Szyperski, Microsoft Research, Redmond, WA, USA
Giancarlo Guizzardi , University of Twente, Enschede, The Netherlands

https://orcid.org/0000-0002-0955-6940
https://orcid.org/0000-0001-6053-1311
https://orcid.org/0000-0003-3303-2896
https://orcid.org/0000-0002-3452-553X


LNBIP reports state-of-the-art results in areas related to business information systems
and industrial application software development – timely, at a high level, and in both
printed and electronic form.

The type of material published includes

• Proceedings (published in time for the respective event)
• Postproceedings (consisting of thoroughly revised and/or extended final papers)
• Other edited monographs (such as, for example, project reports or invited volumes)
• Tutorials (coherently integrated collections of lectures given at advanced courses,

seminars, schools, etc.)
• Award-winning or exceptional theses

LNBIP is abstracted/indexed in DBLP, EI and Scopus. LNBIP volumes are also
submitted for the inclusion in ISI Proceedings.



Christoph J. Stettina · Juan Garbajosa ·
Philippe Kruchten
Editors

Agile Processes in Software
Engineering and Extreme
Programming
24th International Conference on Agile Software Development
XP 2023, Amsterdam, The Netherlands, June 13–16, 2023
Proceedings



Editors
Christoph J. Stettina
Leiden University
Leiden, The Netherlands

Philippe Kruchten
University of British Columbia
Vancouver, BC, Canada

Juan Garbajosa
Universidad Politécnica de Madrid
Madrid, Spain

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-031-33975-2 ISBN 978-3-031-33976-9 (eBook)
https://doi.org/10.1007/978-3-031-33976-9

© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7176-4521
https://orcid.org/0000-0003-1359-4867
https://orcid.org/0000-0003-0161-3485
https://doi.org/10.1007/978-3-031-33976-9
http://creativecommons.org/licenses/by/4.0/


Preface

It is with great pleasure that we introduce this volume of research proceedings of XP
2023, the 24th International Conference on Agile Software Development, organized on
June 13–16, 2023 in Amsterdam, the Netherlands.

The XP conference has become the premier conference to combine both research
and practice in the field of Agile software development, and beyond. It is a unique
forum where Agile researchers, practitioners, thought leaders, coaches, and trainers get
together to present and discuss their most recent innovations and research results.

The theme forXP2023was “WholeTeamSustainability”, amany-faceted themecen-
teringon the need to band together to solve the complexorganizational and environmental
challenges of our time.

This year the Research Papers track received 40 submissions. Based on a thorough
review process 12 papers – 11 full papers and 1 short paper – were accepted to be
presented at the conference.

The research proceedings of the XP 2023 conference showcase a wide range of
research topics related to Agile software development. The papers in this volume
cover various aspects of Agile software development, including: Sustainability, Engi-
neering, Transformation & Mindset, Organizational Agility and Design, Education &
Collaboration, as well as Team Stories, Customers, & Products.

We would like to extend our thanks to the authors of the papers in this volume for
their contributions to the field of Agile software development. We would also like to
thank the reviewers for their time and effort in ensuring the quality of the papers - as
well as all the speakers, sponsors, shepherds, chairs, and volunteers. Finally, we would
like to express our gratitude to the XP Conference Steering Committee and the Agile
Alliance for their ongoing support.

We hope that the research proceedings of the XP 2023 conference will serve as a
valuable resource for researchers, practitioners, and students interested in Agile software
development.

June 2023 Christoph J. Stettina
Juan Garbajosa

Philippe Kruchten



Organization

Conference Co-chairs

Wouter Lagerweij Lagerweij Consultancy, The Netherlands
Suzanne Lagerweij Lagerweij Consultancy, The Netherlands

Program Co-chairs

Christoph J. Stettina Leiden University/Centre for Innovation,
The Netherlands

Juan Garbajosa Universidad Politécnica de Madrid, Spain

Publication Chairs

Philippe Kruchten University of British Columbia, Canada
Peggy Gregory University of Glasgow, UK

Program Committee

Pekka Abrahamsson Tampere University, Finland
Steve Adolph Cprime, Canada
Ademar Aguiar University of Porto, Portugal
Scott Ambler SA+A, Canada
Craig Anslow Victoria University of Wellington, New Zealand
Leonor Barocca Open University, UK
Hubert Baumeister Technical University of Denmark, Denmark
Jan Bosch Chalmers University of Technology, Sweden
Frank Buschmann Siemens AG, Germany
Daniela N. Cruzes NTNU, Norway
Torgeir Dingsøyr Norwegian University of Science and Technology,

Norway
Yael Dubinsky Kinneret Academic College, Israel
Jutta Eckstein Independent, Germany
Henry Edison Blekinge Institute of Technology, Sweden
Ilenia Fronza Free University of Bozen-Bolzano, Italy



viii Organization

Juan Garbajosa Universidad Politécnica de Madrid, Spain
Alfredo Goldman University of São Paulo, Brazil
Peggy Gregory University of Glasgow, UK
Eduardo Guerra Free University of Bozen-Bolzano, Italy
Tomas Gustavsson Karlstads Universitet, Sweden
Helena Holmström Olsson University of Malmö, Sweden
Kiyoshi Honda Osaka Institute of Technology, Japan
Fabio Kon University of São Paulo, Brazil
Philippe Kruchten University of British Columbia, Canada
Thomas Kude University of Bamberg, Germany
Marco Kuhrmann Reutlingen University, Germany
Casper Lassenius Aalto University, Finland
Ville Leppänen University of Turku, Finland
Lech Madeyski Wroclaw University of Science and Technology,

Poland
Sabrina Marczak PUCRS, Brazil
Antonio Martini University of Oslo, Norway
Frank Maurer University of Calgary, Canada
Tommi Mikkonen University of Helsinki, Finland
Alok Mishra Atılım University, Turkey
Nils Brede Moe SINTEF, Norway
Parastoo Mohagheghi Norwegian Labour and Welfare Administration,

Norway
Jürgen Münch Reutlingen University, Germany
Anh Nguyen Duc University College of Southeast Norway, Norway
Tyron Offerman Leiden University, The Netherlands
Maria Paasivaara LUT University & Aalto University, Finland
Cécile Péraire Carnegie Mellon University, USA
Rafael Prikladnicki PUCRS, Brazil
Adam Przybylek Gdansk University of Technology, Poland
Pilar Rodríguez Universidad Politécnica de Madrid, Spain
Helen Sharp Open University, UK
Darja Šmite Blekinge Institute of Technology, Sweden
Simone Spiegler Monash University, Australia
Christoph J. Stettina Leiden University/Centre for Innovation,

The Netherlands
Viktoria Stray University of Oslo, Norway
John F. Tripp Clemson University, USA
Rini Van Solingen Delft University of Technology, The Netherlands
Joost Visser Leiden University, The Netherlands
Stefan Wagner University of Stuttgart, Germany
Xiaofeng Wang Free University of Bozen-Bolzano, Italy



Organization ix

Hironori Washizaki Waseda University, Japan
Agustin Yague Universidad Politécnica de Madrid, Spain

Additional Reviewers

Halimeh Agh University of Stuttgart, Germany
Pavel Nedvědický University of Stuttgart, Germany
Ana Moises de Souza Norwegian University of Science and Technology,

Norway
Eva Zimmermann University of Stuttgart, Germany

Steering Committee

Hubert Baumeister Technical University of Denmark, Denmark
François Coallier École de technologie supérieure, Canada
Jutta Eckstein Independent, Germany
Teresa Foster Agile Alliance, USA
Juan Garbajosa (Chair) Universidad Politécnica de Madrid, Spain
Peggy Gregory University of Glasgow, UK
Wouter Lagerweij Lagerweij Consultancy, The Netherlands
Casper Lassenius Aalto University, Finland
Maria Paasivaara LUT University & Aalto University, Finland
Viktoria Stray University of Oslo, Norway

Sponsoring Organization

Teresa Foster Agile Alliance, USA



Contents

Agile Practices

Integrating Issue Management Systems of Independently Developed
Software Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Sandro Speth, Uwe Breitenbücher, Niklas Krieger, Pia Wippermann,
and Steffen Becker

A Novel Technique to Assess Agile Systems for Stability . . . . . . . . . . . . . . . . . . . 20
Robert Healy, Tapajit Dey, Kieran Conboy, and Brian Fitzgerald

Overcoming Challenges of Virtual Scrum Teams: Lessons Learned
Through an Action Research Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Jedrzej Bablo, Bartosz Marcinkowski, and Adam Przybylek

Waste Self-reporting for Software Development Productivity Improvement . . . . 50
Marc Sallin, Martin Kropp, Craig Anslow, and Robert Biddle

A Lean Approach of Managing Technical Debt in Agile Software
Projects – A Proposal and Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Abdullah Aldaeej, Anh Nguyen-Duc, and Varun Gupta

An Empirical Study About the Instability and Uncertainty
of Non-functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Luiz Viviani, Eduardo Guerra, Jorge Melegati, and Xiaofeng Wang

Agile in the Large

Striving for Freedom in a Large-Scale Agile Environment
with an Entrepreneurial Mindset of a Product Owner . . . . . . . . . . . . . . . . . . . . . . . 97

Piret Niva, Maria Paasivaara, and Sami Hyrynsalmi

Sustaining Agility: Organizational Change, Factors and Theoretical Lenses . . . . 115
Leonor Barroca, Helen Sharp, Advait Deshpande, Peggy Gregory,
and Stavros Papadeas

The Role of Responsiveness to Change in Large Onboarding Campaigns . . . . . . 132
Darja Smite and Nils Brede Moe



xii Contents

Organizational Conflicts in the Adoption of Continuous Software
Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Eriks Klotins and Elliot Talbert-Goldstein

Data-Driven Development in Public Sector: How Agile Product Teams
Maneuver Data Privacy Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Astri Barbala, Tor Sporsem, and Viktoria Stray

Short Paper

Real-Life Water-Scrum-Fall: Insights from Large Companies in Czech
Republic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Michaela Křivánková and Daniel Remta

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193



Agile Practices



Integrating Issue Management Systems
of Independently Developed Software

Components

Sandro Speth1(B) , Uwe Breitenbücher2 , Niklas Krieger1 ,
Pia Wippermann1, and Steffen Becker1

1 Institute of Software Engineering, University of Stuttgart, Stuttgart, Germany
{Sandro.Speth,Niklas.Krieger,Pia.Wippermann,

Steffen.Becker}@iste.uni-stuttgart.de
2 Herman Hollerith Zentrum, Reutlingen University, Reutlingen, Germany

uwe.breitenbuecher@reutlingen-university.de

Abstract. Modern component-based architectural styles, e.g., microser-
vices, enable developing the components independently from each other.
However, this independence can result in problems when it comes to
managing issues, such as bugs, as developer teams can freely choose their
technology stacks, such as issue management systems (IMSs), e.g., Jira,
GitHub, or Redmine. In the case of a microservice architecture, if an
issue of a downstream microservice depends on an issue of an upstream
microservice, this must be both identified and communicated, and the
downstream service’s issues should link to its causing issue. However,
agile project management today requires efficient communication, which
is why more and more teams are communicating through comments in
the issues themselves. Unfortunately, IMSs are not integrated with each
other, thus, semantically linking these issues is not supported, and iden-
tifying such issue dependencies from different IMSs is time-consuming
and requires manual searching in multiple IMS technologies. This results
in many context switches and prevents developers from being focused
and getting things done. Therefore, in this paper, we present a concept
for seamlessly integrating different IMS technologies into each other and
providing a better architectural context. The concept is based on aug-
menting the websites of issue management systems through a browser
extension. We validate the approach with a prototypical implementation
for the Chrome browser. For evaluation, we conducted expert interviews,
which approved that the presented approach provides significant advan-
tages for managing issues of agile microservice architectures.

Keywords: Microservices · Issue management · Service engineering ·
Component-based architectures · Gropius · Browser extension

1 Introduction

The component-based architectural style, e.g., microservices, gained much atten-
tion since it enables the development of individual software components inde-
pendently from each other and composing them systematically to new sys-
tems [1]. Developing components independently has significant advantages, e.g.,
c© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 3–19, 2023.
https://doi.org/10.1007/978-3-031-33976-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_1&domain=pdf
http://orcid.org/0000-0002-9790-3702
http://orcid.org/0000-0002-8816-5541
http://orcid.org/0009-0007-7616-3155
http://orcid.org/0000-0002-4532-1460
https://doi.org/10.1007/978-3-031-33976-9_1


4 S. Speth et al.

microservices can be implemented in different programming languages by dif-
ferent teams [2]. However, this independence can also result in drawbacks when
it comes to managing issues [3], such as bug reports or feature requests. For
example, in microservice architectures, we can observe that often different issue
management systems are used for different microservices. Moreover, as soon as
an architecture includes 3rd-party services, such as SaaS offerings, or open-source
components, these, of course, have their own issue management systems, and it
is clear that not all services are developed by the same team. Therefore, it is
very unlikely that all components of a larger system use the same issue man-
agement system. Hence, different teams might use different issue management
systems (IMSs), e.g., Jira, GitHub, or Redmine [4]. In the following, we use
microservices as an example of independently developed components to make
the problem clear. For example, suppose a malfunction, anomaly, or failure of
a Checkout microservice actually results from a bug in an invoked Payment
microservice, e.g., missing parameters through a change violating the services
contract [5]. Figure 1 depicts such a scenario. In this case, the malfunction of
the Checkout microservice should be reported as an issue relating to its causing
bug of the Payment microservice, hence, allowing the developers of the Checkout
service to track the bug report’s status of the Payment service. Furthermore, the
Checkout service’s team should communicate the issue to the Payment service’s
developer team to resolve the issue. However, documenting and tracking such
cross-component issues is challenging [3], primarily since no issue management
system supports explicit relations to other issues managed by another issue man-
agement system as different IMSs are not integrated with each other. Thus, if
issues of microservices are managed by different tools, e.g., one microservice is
managed in Jira, the other in Redmine, it is not supported by any IMS to seman-
tically relate the issues with each other, which is often required to understand
the dependencies of issue propagations, e.g., because of cascading failures, and
how issues need to be solved. Furthermore, developers often communicate via
the issue’s comments and keeping track of the related issues results in switching
between the different issue management systems. This leads to many context
switches and, thus, ineffective communication and preventing the developers
from focused work. However, especially in modern agile processes like Scrum,
“getting things done” is a central value that is thereby hindered. Furthermore,
it is required to describe the dependency relation between the two issues while
putting them in their correct architectural context to prevent the developers
of Checkout microservice from trying to fix the malfunction separately, which is
problematic since another microservice causes it. Therefore, we require to bypass
the limitation of IMS boundaries and integrate their issues into each other, which
leads to our first research question:

RQ1: “How could different issue management systems such as Jira and
GitHub be seamlessly integrated to avoid context switches through additional
tooling?”

In addition, developers need an efficient solution to discover dependencies of
their own issue to issues in other issue management systems, as these are often



Integrating IMSs of Independently Developed Software Components 5

hidden in current systems only via natural language in the comments. This leads
us to our second research question:

RQ2: “How could developers in their own issue management system quickly
identify dependencies of their own issues on issues of other issue manage-
ment systems?”
For this reason, in this paper, we propose a concept that makes issues

from different issue management systems available in each other in an IMS-
independent way. The concept is based on seamlessly augmenting the websites of
issue management systems such as Jira, Redmine, or GitHub via Browser exten-
sions. In doing so, we use Gropius, which we developed in previous work [6,7], in
the extensions to synchronize issues and enable Gropius features, such as seman-
tic links in the IMS, that do not otherwise exist. Gropius is a standalone IMS
platform that enables issue management across the boundaries of every single
software component and their IMSs while putting the issues in their correct archi-
tectural context. However, while Gropius offers a top-down view of the entire
architecture and their issues as a separate tool, developers still require a seam-
less developer-specific view from inside a component in their usual issue manage-
ment systems without switching between IMSs. Therefore, our concept maps the
top-down view of the architecture to a developer-specific view of the architec-
ture from within a component. This hides unnecessary or disruptive information
from the developer and puts the focus on the developer’s own component and
the upstream or downstream components from it. Thus, if certain issues of a
component are shown, for example, in GitHub, associated issues that might be
managed by other issue management systems such as Jira are directly embed-
ded in the website of GitHub, which enables quickly recognizing dependencies
and navigating to other issues. Developers should therefore get their work done
faster and communicate more efficiently via the dependent issues’ comments
with other teams. We validated the practical feasibility of this Gropius Browser
Extension concept by a prototypical implementation for the Chrome browser
and GitHub as an exemplary issue management system. Moreover, we evaluated
the concept and the prototype through expert interviews. The experts approved
that the approach provides significant advantages for managing issues of indi-
vidual services in a component-based architecture, e.g., independently developed
microservices.

2 Fundamentals of Issue Management and Gropius

Today’s issue management systems (IMS), such as Jira or Redmine, allow
developers to document, manage and track issues, e.g., bug reports or feature
requests, for their projects, discuss the issues’ context with other developers,
and collaborate on them. Often, architectural design decisions are also discussed
in issues as they both influence each other. Therefore, issue management sys-
tems often act as the main tool to coordinate their work and become increas-
ingly central to every software development process as a hub for communication



6 S. Speth et al.

Order Service

Order fails #1331

CheckOut Service

Payment fails #13

depends on depends on

Payment Service

API Bug #14

issues managed in

Order
Service

CheckOut
Service

Payment
Service

issues managed in issues managed in

Fig. 1. Motivating scenario showing how bugs propagate through the architecture.

Fig. 2. Overview of the Gropius concept and architecture.

and collaboration [8]. Furthermore, issue management systems offer the possi-
bility for distributed negotiations required to resolve the issue [9]. However, in
modern software development, individually developed components typically use
their independent issue management systems. Therefore, linking an issue from
one IMS to another systems’ issue, e.g., for a dependency relation, is not directly
possible as traditional IMSs are restricted to their component’s boundaries. Nev-
ertheless, related issues should be linked amongst each other [8] in order to pro-
vide all helpful information required to resolve the issue and increase its qual-
ity [10]. Gropius attempts to remove this limitation and facilitate (1) synchro-
nization of issues across different issue management systems, and (2) relations
between those cross-component issues. In Gropius, each issue can be associated
with one or more components that together form the architecture of a software
system. Such a software system is represented in a project in Gropius, i.e., a
Gropius Project. In general, Gropius supports various kinds of components, e.g.,
microservices, libraries, and infrastructure. One goal of Gropius is to effectively
represent the impact of issues on the architecture and issue propagation, as well
as architectural dependencies between the components. For this reason, in the
Gropius Web UI, components of such a Gropius project are modeled in a UML



Integrating IMSs of Independently Developed Software Components 7

CheckOut Service

Payment fails

Payment Service

API Bug #14

extract issues

Gropius

CheckOut
Service

Payment
Service

…

issues managed in issues managed in

Ext Ext

depends on

extract issues
Add related

issues via extension

Fig. 3. Overview and architecture of the Gropius Browser Extension concept.

component diagram-like graph. Stakeholders with an overview of the entire soft-
ware system, e.g., a software architect, can create representations of components
and their provided interfaces in Gropius and connect them to model the archi-
tecture. Furthermore, each component in Gropius is either Gropius internal or
requires a URL to its actual IMS. Each component is attached with the issues
that affect that component. Through Gropius, developers can create relations
between issues of different components which are added to the issues. These
relations are graphically represented by arrows and collectively depicted in the
issue view metadata. To enable these cross-component issue features while lever-
aging the issues of the actual IMSs, Gropius acts as a wrapper over traditional
IMSs, such as GitHub or Jira, as depicted in Fig. 2 and offers a GraphQL API to
clients. Through specific adapters for the different IMSs, Gropius synchronizes
issues between the systems. Furthermore, Gropius keeps a copy of the issues,
especially for data that is not supported by the actual IMSs, such as cross-IMS
issue relations.

3 The Gropius Browser Extension Concept

This section presents the conceptual idea of the Gropius Browser Extension
(GBE) for integrating different issue management systems used by independently
developed software components. First, we give a brief overview of the concept in
Sect. 3.1. Afterwards, we explain the concept with regard to elicited requirements
in detail. Please note that while we use microservices as a common example for
independently developed software components, the GBE concept is not restricted



8 S. Speth et al.

to microservices but also enables other independently developed and includable
software projects, e.g., libraries or infrastructure components such as Kubernetes
and Docker. Therefore, we use the general term “component” for the remainder.

3.1 General Idea and Objectives

Figure 3 shows the general idea based on the motivating scenario. The main
objective is to enable cross-component issue management across different issue
management systems in a seamless manner using their standard websites in
a traditional way. The websites get seamlessly enriched by the extension with
information about related issues of dependent components in the architecture,
which are possibly managed by other issue management systems. This integra-
tion concept avoids two drawbacks of existing issue management approaches:
(i) First, relations between issues managed by different IMSs are typically doc-
umented using textual comments, which provides no systematic means and hin-
ders “browsing” them. (ii) Second, additional tooling, such as the Gropius Web
App, that enables cross-component issue management is not required for creat-
ing, relating, and managing issues, thus, reducing context switches of developers.

3.2 Overview and Architecture of the GBE

The Gropius Browser Extension is a plugin that runs in a web browser and
automatically manipulates the HTML DOM of shown websites, in our case, the
websites of issue management systems such as Jira or Redmine. The extension
connects to the Gropius backend, which contains information about issues in
different IMSs and also contains dependencies between them as well as other
metadata [6,7]. Thus, the Gropius backend acts here as a normalized store for
issues from different IMSs, which are automatically extracted and synchronized
by Gropius in a certain time interval.

The GBE has access to the DOM of the currently shown page of the issue
management system, from which it retrieves relevant context information, e.g.,
which issue is currently shown. Using this information, the GBE calls the Gropius
backend to fetch cross-component issue features for the current issue, e.g., related
issues and their respective components. This information is additionally injected
into the issue management system’s website by manipulating its HTML DOM,
hence, enabling Gropius functionality directly in the component’s issue manage-
ment system’s website following its look and feel. Thus, this provides a seamless
integration of the Gropius features into the regular work of developers as no
additional website or tool needs to be used to see issue relations, issues of other
components, etc. Especially, content based on different issue management sys-
tems can be integrated into the developer’s used issue management system.

In the following, we concretely describe the Gropius features that are inte-
grated using the GBE into the standard website of the issue management sys-
tems. Please note that we describe in this section only the concepts and provide
details on the technical implementation in Sect. 4, which describes our open-
source prototype of the Gropius Browser Extension.



Integrating IMSs of Independently Developed Software Components 9

3.3 Gropius Features Integrated in the Browser Extension

In this section, we describe the Gropius features and functionalities that are
integrated by the Gropius Browser Extension into the standard websites of issue
management systems and how they are realized in the presented architecture.

Browser Extension Feature 1: Creating Gropius Project. Before devel-
opers can use any Gropius features in the used IMS, they must create a project
in Gropius, add relevant components to this project, and specify the respective
issue management systems. This functionality is supported directly by the GBE
as otherwise the external Gropius Web App needs to be used, which would lead to
context-switches. Therefore, we integrated a feature to create a Gropius project
or to add an IMS’s project, e.g., a GitHub repository, to an existing project.
This way, developers can add microservices, libraries, and other components to
their Gropius project when browsing through the respective project of the IMS
used. Please note that the way this feature is shown and how it is triggered, e.g.,
through a button, is IMS-specific. Therefore, the browser extension will look and
feel slightly different for GitHub than for Jira and other systems.

Browser Extension Feature 2: Issue Dependencies and Architectural
Context. One main objective of the Gropius Browser Extension is to enrich an
issue currently shown in an issue management system’s website with additional
information regarding its dependencies to other issues. Especially if the related
issues belong to another component, the extension must provide the architectural
context in an understandable fashion in order to enable the developer to quickly
identify the impact and dependencies of the issue to other components and
their issues. Therefore, the GBE injects two kinds of additional information to
the issue view of an IMS: (1) the related issues of the same component and of
other components, and (2) an excerpt of the architecture graph that shows the
component of this issue and also all other components having issues to which
the currently shown issue relates to.

For the first kind of injected information, i.e., the list of related issues of
the same or other components, the Gropius Browser Extension shows for the
currently shown issue which components and other issues the shown issue directly
affects or is otherwise related to. To easily create relations between the current
issue viewed to other issues of the same or a different component, the Gropius
Browser Extension enables to add such relations directly in the issue view page of
the issue management system, thus, no further tooling is required. For example,
if developers create an issue for the own component and know that this issue
actually results from another component’s issue, i.e., has a dependency to it, they
are interested in directly adding the relation to the other issue in order to specify
the complete dependencies. Without the Gropius Browser Extension, developers
would have to add a text comment including the URL to the related issue of
a possibly different issue management system and write an explanation which
describes the semantics of the relation. Of course, text-based issue relations are



10 S. Speth et al.

only a workaround that tries to compensate this obviously missing feature to
link issues in different systems. On the other side, using the Gropius Browser
Extension, this problem is solved since relations to issues of the same component
or other components can be directly added in the issue’s view page including a
precise specification of the semantics of the relation, e.g., that the issue depends
on an issue of another component in another IMS.

In general, adding such relations are especially complex for issue management
systems that already allow semantic issue relations, for example GitLab’s Linked
issues or Redmine’s Related issues. While such issue management systems allow
relating issues within the same issue management system provider, relating issues
to other providers, e.g., issues of a GitHub repository, is impossible. Therefore,
the GBE enables integrating relations to issues of different issue management
system providers in the currently shown issue view.

The second kind of information the Gropius Browser Extension adds to an
issue’s view is an excerpt of the overall architecture of the system that shows
(a) the component of the currently shown issue as well as (b) all other compo-
nents having issues to which the shown issue relates. Thus, this provides a visual
overview of the architectural context and enables developers to quickly under-
stand the impacts and causes that the shown issue has, i.e., all dependencies.

Browser Extension Feature 3: Entire Architecture of the System. The
Gropius Browser Extension aims at enabling developers a quick overview of
issues and their relations to other issues of possibly other components in the
architecture. Therefore, the previously introduced Browser Extension Feature
2 enables to show an architectural excerpt that provides an overview of the
directly related issues and their respective components. However, this excerpt
only shows a part of the system’s architecture and often developers need to see
the entire architecture of the system in which the current component is used.
Therefore, the GBE enables to load the entire architecture of a system that
includes all components, their issues, and their dependencies into the currently
used issue management system’s website. Thus, developers can browse the entire
architecture and directly jump to the IMSs of other components by clicking on
the component in the graph or on one of its issues. In the latter case, a new tab
opens the other IMS and shows the clicked issue. This enables browsing through
the entire architecture of the system directly in the IMS and avoids that another
tool needs to be used by developers to inspect the overall system architecture.

Please note that a certain component and its issues can be part of multiple
different systems. For example, a component such as the Payment Service might
be used in our webshop motivation example but also in a car rental application
or other applications that require payment functionality. In this case, a certain
component would be part of multiple different system architectures which are
managed in Gropius as individual Gropius projects. Thus, one Gropius project
represents one system, describing its architecture, and listing all components
with the corresponding issues. Therefore, the Gropius Browser Extension enables



Integrating IMSs of Independently Developed Software Components 11

switching between Gropius projects in the issue management systems website
and then shows the architecture and all components of current selected project.

Browser Extension Feature 4: Create Issues for Other Components
Managed in Other Issue Management Systems. In many situations, a
bug in one component results from a bug in an invoked component. For example,
in the motivating scenario, the bug in the Payment Service’s API leads to an
issue in the CheckOut Service that depends on this API. Thus, if a developer
of the CheckOut Service detects that the checkout functionality does not work
correctly, the developer needs to report this as an issue for the CheckOut Service.
However, if the developer directly understands that the root cause of this bug
is the broken API of the Payment Service, maybe as a result of a failure root
cause analysis, also a bug should be created for the Payment Service and the two
issues should be linked, i.e., that the checkout bug results from the payment’s
API bug. Therefore, the Gropius Browser Extension supports creating issues
also for other components of the architecture directly in the issue’s view page
of the issue management system, even if the current IMS is different from the
IMS of the other component. Based on this feature, developers do not require to
open the other issue management system to report the causing issue. This is a
significant advantage since such a context switch requires the developers to first
orient themselves in the other issue management system.

4 Prototypical Validation

To validate the practical feasibility of the presented concept, we implemented a
prototype of the Gropius Browser Extension for the Google Chrome Browser.
The implementation is open source available1. Section 4.1 describes the technical
design of the prototype. Moreover, Sect. 4.2 shows how the implemented browser
extension for Chrome supports GitHub, i.e., how the extension interacts with
the Web UI of GitHub and how issues from other issue management systems are
embedded.

4.1 Technical Design of the Gropius Browser Extension for Chrome

The architecture of our Gropius Browser Extension is based on the web exten-
sions framework, which is an official W3C standard cross-browser architecture2

and supported by all popular desktop web browsers except for Safari.
Figure 4 depicts our prototype’s architecture for the Google Chrome browser.

Following the web extension framework, our prototype consists of three compo-
nents (1) background pages, (2) UI pages, and (3) content scripts. The extension
executes background pages as soon as loaded. Especially code that maintains
long-term state and operations, which should be independent of any website’s

1 https://doi.org/10.5281/zenodo.6810943.
2 https://browserext.github.io/browserext/#availability-csp-content.

https://doi.org/10.5281/zenodo.6810943
https://browserext.github.io/browserext/#availability-csp-content


12 S. Speth et al.

Fig. 4. Architecture of the Gropius Browser Extension prototype for Google Chrome.

or browser window’s lifetime, must be added as background pages. In the con-
text of our extension, the background scripts decide whether one of the content
scripts should be active, i.e., the content script for a GitHub issue view, if the
developer has opened the GitHub page. When clicking on the extension popup
button in Chrome’s upper right part, it offers UI elements and options for login
to Gropius to the user via the UI pages component, i.e., popup.js and popup.html.
While the background and UI pages can access the browser’s API, they cannot
interact with the issue management system’s website. In contrast, the content
scripts interact with the issue management system’s website, however, having
only limited access to the browser’s API. Therefore, content scripts run in the
context of the issue management system’s website, and the background and UI
pages run in the context of our GBE. Content scripts enable the way websites
are displayed to the user and their functionalities to be manipulated. In our
context, this means adding UI elements related to Gropius to the issue manage-
ment system’s website, thus, enhancing the issue management system’s website
with additional Gropius functionalities. For example, a button to add a new
related issue in the issue’s view, which opens a dialogue to add the relation, is
injected here. The communication between content scripts, background, and UI
pages works via messages. Therefore, components listen to other components’
messages and respond via the same channel. The extension interacts with the
Gropius backend via its provided GraphQL API to add or retrieve architectural
and Gropius project information, issues, and issue relations.

4.2 Implementation for GitHub and Case Study

We implemented our prototype in Vue.js, a progressive JavaScript framework
for web applications. For our prototype, we especially use the plugin “vue-cli-
plugin-browser-extension”, a third-party library for Vue that supports creating
extensions for popular browsers. For our prototype, we focus on Google Chrome
as web browser and the issue management system of GitHub. In the following,
we describe the prototype based on an extended version of the example scenario



Integrating IMSs of Independently Developed Software Components 13

Fig. 5. Browser screenshot of the Gropius Browser Extension prototype.

described in Sect. 1, i.e., the webshop application consisting of the (1) Order
Service, the (2) CheckOut Service, which is the service our development team
focuses on, and the (3) Payment Service.

The Checkout Service consumes the Payment Service’s API to handle the
payment of orders. The Checkout Service’s issues are managed in GitHub and
the other services in different IMSs. The prototype allows adding a GitHub
repository as a component to an existing Gropius project (cf. Feature 1). To add
a GitHub repository which is opened in the web browser to a Gropius project,
the extension injects a button in the sidebar of the repositories “Code” tab. After
modelling the provided interfaces and architectural dependencies in the Gropius
Web App, developers can add relations between issues of the CheckOut Service
and issues of the other components (cf. Feature 2). Figure 5 depicts an example
issue for the CheckOut Service, which describes a bug regarding checking out an
order. On top of the issue’s description, the GBE injects an architecture graph to
show the issue’s architectural context (cf. Feature 2 & 3). Our prototype injects
two additional metadata in the issue view’s sidebar above the assignees. The
“Active Gropius Projects” part allows switching the active Gropius project in
which the CheckOut service is included. In the example, the Gropius project
“Webshop” is selected as active. Therefore, the extension shows in the “Related
Issues” part related issues and their components in the context of this project
(cf. Feature 2). The icons next to the related issue’s titles indicate whether the
currently viewed issue depends on the related issue or causes it. Additionally,
the “Related Issues” part allows developers to add new relations to issues of



14 S. Speth et al.

Fig. 6. Steps for adding a related issue.

Fig. 7. Results of the evaluation for each question.

the same or different component or remove existing relations. As depicted in
Fig. 6, when adding new relations, the extension opens a dialogue frame where
a developer has first to select the component of the related issue and then select
the issue which should be related. Furthermore, instead of selecting an existing
issue, a developer can create new issues for the chosen component directly in the
issue’s view (cf. Feature 4).

5 Evaluation

We evaluated our concept based on a Goal Question Metric approach and
a prototype version of our software. We formulated the goal “enabling inte-
grated context-aware issue relationship management for independently managed



Integrating IMSs of Independently Developed Software Components 15

software systems”. Based on this, we derived questions evaluating the general
concept and how our prototype fulfills the goal. To answer the questions, we
conducted an expert survey. As the rating scale for the questions, we used five
interval points where the endpoints are named to match associated questions.
Therefore, the scale ranges from −2 over 0 to 2, where −2 means an entirely
negative evaluation, 0 is the neutral element, and 2 means an entirely positive
evaluation. Since our concept aims especially to improve the developers’ issue
management across multiple independently managed components, we consulted
eleven experienced industrial software developers from different small-sized to
big-sized companies in Germany and Canada. The participants worked between
3 and 15 years in developing component-based systems, during the last years
also focusing on microservices. Most of their roles are developer and software
architect. Furthermore, while developing, their components interacted with com-
ponents developed by other teams. We conducted the expert survey by hosting
interviews in which we showed the prototype version of the GBE and an example
architecture with issues to the participants. Afterwards, we provided them with
our questionnaire.

5.1 Results of the Expert Survey

This section describes the questions and the results of the survey.

(Q1) “How helpful is the main feature of the Gropius Browser Extension to
see related issues of other components?” The scale ranges here from not
helpful at all (−2) to very helpful (+2). In total, eight experts (73%) rated
(Q1) with +2 and three (27%) rated it with +1, which means that they
evaluated to see related issues of other components in a concise way as
very helpful.

(Q2) “How big do you estimate the time savings enabled by the Gropius Browser
Extension to find related issues of other components (compared to the com-
mon approach without the extension)?” The interviewees were asked to
rate this with a value ranging from very low (−2) to very high (+2).
Seven of the experts (64%) rated +2, four experts (36%) rated +1. Thus,
developers estimate that the extension may help saving time for finding
related issues.

(Q3) “How important do you consider the presented concept of the Gropius
Browser Extension for the development process of software and its opera-
tion?” The interviewees were asked to rate this with a value ranging from
not important at all (−2) to very important (+2). For (Q3), four experts
(36%) rated a +2 while seven experts (64%) stated the importance of our
concept for the development process with a +1. Signals that our concept
is generally important but not significantly required.

(Q4) “How well do you find the Gropius Browser Extension integrated into the
look and feel of GitHub?” The interviewees were asked to rate this with a
value ranging from not good at all (−2) to very good (+2). Overall, nine
experts (82%) evaluated the integrated look and feel of our prototype with



16 S. Speth et al.

+2, and two experts (18%) stated a +1, which strongly indicates that our
prototype seamlessly integrates into GitHub.

(Q5) “How high do you rate the chance that the Gropius Browser Extension will
be accepted in the industry?” The interviewees were asked to rate this with
a value ranging from very low (−2) to very high (+2). The acceptance of
our concept within the industry was evaluated as relatively high. However,
the results are well distributed between +2 and 0, i.e. five times (45%)
+2, four times (36%) +1, and two times (18%) 0. Therefore, not every
expert was convinced of acceptance in the industry.

(Q6) “How important do you consider the concept of cross-component issues for
the software engineering process of complex systems that consist of several
independent components?” The interviewees were asked to rate this with
a value ranging from not important at all (−2) to very important (+2).
For (Q6), ten experts (91%) rated the concept of cross-component issues
as very important, i.e., appointing a value of +2, and one expert (9%)
esteemed it as important with a value of +1.

(Q7) “How quickly can you recognize that the issue currently viewed has depen-
dencies on issues of other components?” The interviewees were asked to
rate this with a value ranging from very slow (−2) to very fast (+2). With
nine experts (82%) rated (Q2) with +2 and two experts (18%) rated a
+1, the average of +1.82 means that the experts could recognize depen-
dencies on issues other component’s issues very fast, thus, supporting the
usability.

(Q8) “How user friendly is editing and adding related issues?” The interviewees
were asked to rate this with a value ranging from not user friendly at
all (−2) to very user friendly (+2). Three experts (27%) judged the user
friendliness for editing and adding related issues with a +2 and eight (73%)
with a +1. Therefore, the average of +1.27 supports the user friendliness.

5.2 Summary of the Evaluation and Threats to Validity

To summarize, the feedback regarding our concept was very positive. Therefore,
our expert survey shows that a problem in managing cross-component issues in
complex software systems, such microservices, is seen, supporting some of the
challenges outlined by Mahmood et al. [3]. Often, ratings of +1 and below were
justified by the fact that there are more important tasks, especially regarding
the entire development process and operation. Additionally, our prototypical
implementation was rated very good. In particular, the immersive integration
and design to GitHub’s UI was frequently emphasized in debriefings. While our
concept provides one possible answer for our first research question, especially
the answers to question 7 support that integrating the dependency graph into the
traditional IMS’s UI and adding relations to other issues in a semantic clear way
enables efficient identification of the own issue’s dependencies, thus, answering
our second research question.

Please note that since we conducted an expert survey, the given answers
depend on personal opinions. Thus, the results are subjective, resulting in a



Integrating IMSs of Independently Developed Software Components 17

threat to internal validity and external validity regarding how representative
our surveyed group is [11]. Furthermore, there is a threat to construct validity if
the experts misunderstood some questions. However, these threats were solved
by allowing the intervewees to ask questions that were answered.

6 Related Work

There are several attempts for cross-component issue management. Various Red-
mine and Jira forums3 discuss how issues can be related to multiple IMS projects.
Proposed solutions are always limited to one IMS provider and are usually plu-
gins for the respective IMS providers instead of a provider-independent browser
extension. Issue tracking across the boundaries of an IMS provider is not enabled,
and is, therefore, not practical for our use case where components are devel-
oped independently and thus manage their issues in different IMS providers,
e.g., GitHub and Jira. Especially for Jira and GitHub, plugins exist that enable
approaches that support multiple IMS projects from the same provider. Syn-
chronization of issues across multiple Jira projects is enabled by the Jira plugin
Backbone Issue Sync4 and the Multi Project Picker5 Jira plugin removes the
restriction that an issue can only belong to one Jira project. For GitHub, there
is the plugin ZenHub6 which offers additional project management functionali-
ties. With ZenHub, issues are not restricted to one GitHub repository anymore.
However, ZenHub does not support linking GitHub issues to issues of other IMS
providers. Additionally, there are browser extensions for issue management in
Jira which aim at saving time, e.g., JIRA Assistant, Zephyr, JIRA Template
Injector, and Google to Jira. However, similar to the plugins above, none of the
extensions enables issue relations across different IMS projects or providers. We
followed with GropiusVSC, an IDE extension for Gropius, a similar approach
as we to reduce context-switches and improve a developer’s productivity [12].
GropiusVSC offers a developer for a selected component of a Gropius project
the list of issues and an issue view. The issue view shows the issues title, descrip-
tion, and related issues with their components. By clicking on a related issue of
another component, this component is automatically selected as active compo-
nent, and GropiusVSC shows the issue’s view. While GropiusVSC is helpful
during development time, a relevant part of a developer’s week consists of meet-
ings, e.g., Sprint Planning, or other occasions where developers work within the
actual issue tackers’ web pages, and, therefore, not sufficient alone. Hence, our
browser extension helps developers by integrating context-aware issue manage-
ment across a component’s boundary in the component-specific IMS.

3 http://bit.ly/3EdNU0g, https://bit.ly/Iuk3NrP, and https://bit.ly/3lKKv2n.
4 https://www.k15t.de/software/backbone-issue-sync-for-jira.
5 http://bit.ly/3xqofh5.
6 https://www.zenhub.com/.

http://bit.ly/3EdNU0g
https://bit.ly/Iuk3NrP
https://bit.ly/3lKKv2n
https://www.k15t.de/software/backbone-issue-sync-for-jira
http://bit.ly/3xqofh5
https://www.zenhub.com/


18 S. Speth et al.

7 Conclusion

The central objective of this work was that developers of a component could
manage cross-component issues in the context of the issue management sys-
tem they use. We achieved this by the Gropius Browser Extension concept that
seamlessly integrates various issue management systems via the Gropius back-
end. Our prototype has shown that the concept can be practically realized while
the conducted expert interviews in the evaluation confirm the relevance of the
approach. The main advantages of the approach are the reduction of developers’
context switches and the avoidance of a separate tool in the development pro-
cess to manage issues in different management systems. In future work, we will
extend our prototype for all common issue management systems, such as Jira.

References

1. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-oriented
Programming. Pearson Education (2002)

2. Nygard, M.: Release It!: Design and Deploy Production-Ready Software. Pragmatic
Bookshelf (2007)

3. Mahmood, S., Niazi, M., Hussain, A.: Identifying the challenges for managing
component-based development in global software development: preliminary results.
In: Science and Information Conference (SAI). IEEE 2015, pp. 933–938 (2015)

4. Speth, S.: Semi-automated cross-component issue management and impact analy-
sis. In: Proceedings of 2021 36th IEEE/ACM International Conference on Auto-
mated Software Engineering, IEEE, pp. 1090–1094 (November 2021)

5. Ramı́rez, F., Mera-Gómez, C., Bahsoon, R., Zhang, Y.: An empirical study on
microservice software development. SESoS/WDES 2021, 16–23 (2021)

6. Speth, Sandro, Breitenbücher, Uwe, Becker, Steffen: Gropius — a tool for managing
cross-component issues. In: Muccini, Henry, Avgeriou, Paris, Buhnova, Barbora,
Camara, Javier, Caporuscio, Mauro, Franzago, Mirco, Koziolek, Anne, Scandurra,
Patrizia, Trubiani, Catia, Weyns, Danny, Zdun, Uwe (eds.) ECSA 2020. CCIS,
vol. 1269, pp. 82–94. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59155-7 7

7. Speth, S., Becker, S., Breitenbücher, U.: Cross-component issue metamodel and
modelling language. In: Proceedings of the 11th International Conference on Cloud
Computing and Services Science, SciTePress, pp. 304–311 (May 2021)

8. Bertram, D., Voida, A., Greenberg, S., Walker, R.: Communication, collaboration,
and bugs: the social nature of issue tracking in small, collocated teams. In: Pro-
ceedings of the 2010 ACM Conference on Computer Supported Cooperative Work,
pp. 291–300 (2010)

9. Sandusky, R.J., Gasser, L.: Negotiation and the Coordination of Information and
Activity in Distributed Software Problem Management. In: Proceedings of the 2005
International ACM SIGGROUP Conference on Supporting Group Work, ACM, pp.
187–196 (2005)

10. Bettenburg, N., et al.: What makes a good bug report? In: Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
SIGSOFT 2008/FSE-16, pp. 308–318. ACM (2008)

https://doi.org/10.1007/978-3-030-59155-7_7
https://doi.org/10.1007/978-3-030-59155-7_7


Integrating IMSs of Independently Developed Software Components 19

11. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Emp. Softw. Eng. 14(2), 131–164 (2008)

12. Speth, S., Krieger, N., Breitenbücher, U., Becker, S.: Gropius-VSC: IDE support
for cross-component issue management. In: Companion Proceedings of the 15th
European Conference on Software Architecture, CEUR (October 2021)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


A Novel Technique to Assess Agile Systems
for Stability

Robert Healy1(B) , Tapajit Dey2 , Kieran Conboy3 , and Brian Fitzgerald2

1 Intive Ireland, 6th Floor O’Connell Bridge House, Dublin 2, Ireland
rob.healy@intive.com

2 Lero – The SFI Research Centre for Software, University of Limerick, Limerick, Ireland
3 School of Business and Economics, University of Galway, Galway, Ireland

Abstract. Agile systems, like the Kanban and Scrum frameworks, are built on
assumptions of sustainability and stability, however, there is little empirical evi-
dence on whether such systems are stable in practice or not. Therefore, in this
study we aim to inspect the stability of Agile systems by leveraging the concept
of stability described in Queueing Theory. We define a novel metric, the Stabil-
ity Metric, as a way of assessing queueing systems, especially Agile systems. We
inspect 926 Jira projects in 14 organizations with over 1.6 million product backlog
items using this metric. The analysis showed that 72.89% of these Jira projects
were not stable and stable systems, on average, had product backlog sizes 10 times
shorter than unstable ones. These results suggest that while the goal of Agile is
to create a sustainable, stable way of working, this is not guaranteed, and a bet-
ter understanding of systems and queues may be required to help design, create,
coach, and maintain optimal Agile systems.

Keywords: Agile · Queueing Theory · Stability · Jira · Backlogs

1 Introduction

The United Nations define sustainability as “meeting the needs of the present without
compromising the ability of future generations to meet their own needs” [1]. Agile
software development has existed at least since the 2001 Agile Manifesto, with many of
the frameworks predating the manifesto itself [2]. One of the principles of Agile is that
“Agile processes promote sustainable development. The sponsors, developers, and users
shouldbe able tomaintain a constant pace indefinitely” [3]. Twoof themost popularAgile
frameworks are Scrum and Kanban [2]. Both frameworks can be modelled as queuing
systems. In queueing systems, sustainability occurs under conditions of mathematical
stability [4]. In this paper, we present a novel approach by leveraging the concept of
stability to assess if Agile systems are stable and sustainable in practice as is commonly
assumed.

To measure the stability of Agile systems we used queueing theory to derive a new
metric, the Stability Metric (SM) to classify the performance of queues. We applied this
metric to 926 collections of Jira Projects (JPs), of Product Backlog Items (PBIs) from the

© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 20–33, 2023.
https://doi.org/10.1007/978-3-031-33976-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_2&domain=pdf
http://orcid.org/0000-0002-0598-9968
http://orcid.org/0000-0002-1379-8539
http://orcid.org/0000-0001-8260-4075
http://orcid.org/0000-0001-9193-2863
https://doi.org/10.1007/978-3-031-33976-9_2


A Novel Technique to Assess Agile Systems 21

more than 2.5 million records in the Public Jira Dataset [5]. The distribution of Stability
Metric across all JPs and the relationship between Stability Metric and product backlog
size and inter-service arrival time was extracted and analyzed.

The rest of the paper is organized as follows: In Sect. 2, we discuss and briefly present
the background and related concepts. We describe the research approach in Sect. 3 and
the results in Sect. 4. We provide further discussion about the results and its implications
in Sect. 5. Finally, we describe the limitations to our study in Sect. 6 and offer conclusions
in Sect. 7.

2 Background

2.1 Queueing Theory for Stable Queueing Systems

Queueing systems have been researched since Erlang’s work on telecommunications in
the early 20th century [6]. A queue forms in a service when demand for that service
exceeds supply [6] and one or more interconnected queues form a queueing system [4].
Each queue can be stable, unstable, or marginally stable [4]. A queue is considered stable
when theMarkov chain of all possible queuing states is ergodic in nature [4]. This means
that a stable queue must include the possibility of occasionally having no items in it.
Erlang defined the traffic intensity, ρ as the dimensionless ratio of the average arrival
rate, λ, to the average service rate, μ, where both λ and μ are measured in items per unit
time as shown in Eq. 1 [6].

ρ = λ

μ
(1)

In this case, the queue can be seen to be stable when the traffic intensity is less than one,
or when the service rate is greater than the arrival rate. In telephony systems, this allows
for the service rate to be fixed and the system is controlled by altering the arrival rate
to ensure that the system is stable. From Jackson’s Theorem for networks of queues we
know that a network of queues will be stable only when all the sub-queues within that
network are stable [4]. For this research we will model Agile frameworks as one or more
queues.

2.2 Modelling Agile Frameworks as Systems of Queues

Kupainen et al. [7] conducted a systematic literature review of 774 papers to identify
key metrics in use by Agile teams for planning, progress tracking, software quality
measurement, fixing software process problems, and motivating people. One of the
metrics for progress tracking they identified is Work-in-Progress (WIP) limits. WIP
extends from Little’s Law – an observation that in stable queues the amount of time
an item spends in a queue, W, is equal to the average number of items in the queue, L,
divided by the average arrival rate of items, λ [8]. Therefore, in theory, it is possible to
control the throughput of a stable Agile queue by simply enforcing a limit on the number
of WIP items by using Eq. 2 [8].

W = L

λ
(2)



22 R. Healy et al.

The Kanban framework is already constructed around the principles of queueing theory
[8]. A simple Kanban system, such as that shown in Fig. 1, is a queue with one or
more servers. The “Backlog” column represents the queue, the “In progress” column
represents the servers and the “Done” column represents items exiting the queue. Unlike
traditional queueing systems, the order of a Kanban backlog tends not to be a simple
First-In First-Out (FIFO) or Last-In First-Out (LIFO) queue and instead tends to be
dynamically re-ordered. Also, many real Kanban systems tend to have multiple columns
and swimlanes. A column usually represents an upstream or downstream service such as
“development” and “testing”. However, a column can also be a separate queue if items
are placed there without any action being performed on them. Examples of this include
“Ready for testing” or “Waiting / Blocked”. A swimlane is a horizontal division across
a Kanban board that often represents a separate class of service – e.g., a priority item.
Each swimlane may be considered as an independent queue.

Fig. 1. Sample Kanban board

The Scrum guide, on the other hand, defines two queues – a primary “product back-
log” that is managed and dynamically prioritized by the Product Owner and a “sprint
backlog” that is selected by the team at the sprint planning event, with items chosen from
the product backlog based on available capacity [9]. As a result of how items move from
product backlog to sprint backlog, standard Scrum systems tend to be more batched than
simple queues. However, the overall system still can be modelled as a simple queue if
the arrival and service rates are stochastic in nature and can be modelled using a Poisson
and exponential distribution respectively [4]. In practical terms, a stable Scrum system,
like a stable Kanban system and like other similar stable Agile queueing systems, has
the advantage of being highly predictable. This happens when the team are, on average,
more than capable of delivering the work at least as fast as it is being requested of them.



A Novel Technique to Assess Agile Systems 23

3 Research Approach

With the theoretical foundation of the Queuing Theory in mind, the primary research
question we are addressing in this paper is: RQ: Are Agile systems stable from a queue-
ing perspective? To answer this question, we use a metric derived from the Queueing
theory called the Stability Metric, as described below, and analyze a Public Jira dataset
[5] containing 16 public Jira repositories involving 1822 Jira projects to determine if
those systems were stable.

3.1 Introducing the Stability Metric (SM)

For Agile queues, the arrival rate of items into a product backlog is often not within
the control of the team, or even the organization if customer-reported bugs are included.
However, the service rates can be controlled through teamdesign, scalingmultiple teams,
and training and coaching individual teammembers. Although queueing theory is known
in Agile literature and metrics such as cycle time and WIP limits exist [7, 8], typical
measures of queues as systems have not been used.We define a new term – the “Stability
Metric (SM)”, ψ, that is the inverse of the traffic intensity and is shown in Eq. 3.

ψ = μ

λ
(3)

The Stability Metric ranges from zero to infinity; values from zero to lower than one
indicates an unstable queue system, a value of one indicates a marginally stable system,
and values above one indicates stability. The Stability Metric has the advantage over
its predecessor, the “traffic intensity” metric, that the items that are within control are
focused on the numerator rather than the denominator so a positive change in ability
results in the Stability Metric growing. Unlike existing popular Agile metrics such as
“velocity” or “cycle time” [7], the StabilityMetric is not purely a laggingmetric. Instead,
we believe it may be used as both a diagnostic metric to understand why a system
is performing/underperforming and as a design tool to help organize teams and Agile
systems tomanage predicted workloads effectively.We use this metric to help us address
our research question.

3.2 Analyzing the Public Jira Dataset

Past studies of Agile systems have focused on contextual realism with case studies of
real software engineering teams, although these studies are typically not grounded in
theory [10]. Montgomery et al. [5] curated and published a dataset of the contents of the
16 public issue tracking systemswith 1822 Jira projects and 2.7million Product Backlog
Items (PBIs) all using the Atlassian Jira issue tracking tool, which they suggest is the
leading issue-tracking tool for Agile systems.We decided to analyze this dataset to make
the results as generalizable as possible. This dataset, however, is not very clean for our
purposes, i.e., it is hard to determine if individual Jira projects use any standard Agile
framework, or the degree to which Jira projects can be mapped to a framework. While
some parts of the dataset suggest an Agile implementation (e.g., the existence of User
Stories which is an XP concept that is often used in Scrum [2]), there are other parts of



24 R. Healy et al.

the dataset that suggest that it could be used by ITIL/traditional waterfall-type projects
(for instance, “Change Requests”) or helpdesk-type work such as “Support Request”.
We assumed that most or all the 2.7 million PBIs will be part of one or more queues and
that some of these queues are part of an Agile framework. Using data from the dataset
it is possible to calculate the arrival and service rates of each issue and calculate the
stability.

To analyze the Public Jira Dataset, we first downloaded it from its public repos-
itory and, following instructions from Montgomery et al. [5], restored it to a Mon-
goDB database. The dataset is organized into a set of 16 “repos” where each repo is
the extracted Jira information from one of the issue tracking systems. Using a Python
script, we extracted the following fields from each repo: Issue ID, Project Name, Issue
Type, Subtask Boolean, Assignee ID, Created Date/Time, Resolution Date/Time, Status
Name. We subsequently collated this data into a comma separated value (CSV) file for
each organization for each month between January 2002 and January 2022. These CSV
files were then combined into a Microsoft Excel file for all issues for each Jira repo.

The Jira repos are divided into “Projects” where Atlassian advise all issues related
to a product should be assigned to a Jira Project (JP) [11]. Only JPs with more than 30
issues were considered, this was to reduce skew caused by new/inactive/abandoned JPs
and allow the assumption of a normal distribution around the calculated mean as per the
central limit theorem. With that filtering criterion in mind, we removed the SecondLife
and Mindville repos as they had fewer than 30 issues each. For the remaining repos, all
the Epic issue types and Subtask issue types were filtered out to ensure the work was
approximately similarly sized. Epic issue types are used in Jira as “parents” of other ticket
types [12] and remain unresolved longer than other ticket types, potentially skewing
service rates. On the other hand, Subtask ticket types are used in Jira as “children”
of standard ticket types [13] and, as such, tend to be resolved in shorter periods, also
potentially skewing the data.

When team completes a PBI, it receives a resolution. Resolution types can be con-
figured per JP, but some default types exist [14]. There were 81 separate resolution types
across the JPs in the dataset. Of these only six denoted the delivery of a successful piece
of work. Table 1 lists them below. The other seventy-six resolution types denoted aban-
doning the queue before the team completed the PBI. We removed all PBIs with these
resolutions also.

Table 1. Top 6 successful resolution types.

Resolution Total PBIs Percentage of total resolved PBIs

Fixed 968080 41.9%

Done 371312 16.1%

Resolved 2904 0.1%

Deployed 136 0.0%

Fixed-Verified 116 0.0%

Delivered 102 0.0%



A Novel Technique to Assess Agile Systems 25

This resulted in 926 JPs with 1,633,166 PBIs between 2002 and 2022. 1,295,002
PBIs were successfully resolved by teams during that the sampling period. For each JP,
we calculated the arrival rate and service rate. We calculated the arrival rate, λ, for each
system, as per Eq. 4. We calculated the service rate, μ using Eq. 5. We calculated the
Stability Metric, ψ, as shown in Eq. 3, from these and the results were grouped into
Unstable (ψ < 1), Stable (ψ > 1), and Marginally Stable (ψ = 1).

λ = #tickets created that are unresolved or resolved successfully

(datetime of last ticket created − datetime of first ticket created)
(4)

μ = #tickets created that are resolved successfully

(datetime of last ticket resolved − datetime of first ticket resolved)
(5)

As stated in Sect. 2.1, a requirement of stability is for a queue to be a Markovian chain
with the property of ergodicity. In such a scenario, the size of the queue will eventually
and temporarily drop to zero. The dataset allowed us to evaluate how big queue/product
backlog was for each JP at the point where the data was captured. We calculated the
product backlog, LJP , by taking the total PBI’s that had arrived, AJP , and subtracting the
total PBI’s that has been resolved, ZJP , as per Eq. 6. We plotted these in relation to the
backlog size.

LJP = AJP − ZJP (6)

Finally, we devised a proxy test for Agility. Equation 7 shows the calculation for the
average inter-service time for each JP. Both Scrum and Kanban advocate for discretiza-
tion of work, breaking work into small parts and monitoring progress daily [2]. In Scrum
all PBI’s must fit into a timeboxed sprint that is commonly two weeks in duration but
can be any period up to a month in length [9]. Large epics and very small sub-tasks had
been filtered at an earlier stage, so this analysis acts as a gauge of how many JPs may
have contained Agile systems by measuring how many could not have fit in a Scrum
system. Systems with PBIs with durations of weeks, months or longer could indicate a
phased based “waterfall” approach.

tJP = 1

μJP
(7)

4 Results

In this section, we discuss the results of the analysis outlined above. First, we present the
stability distributions of all 926 relevant JPs in the Public Jira Dataset. Then we present
the relationship between the stability and backlog size. Finally, we show the data on
average inter-service time and demonstrate its relationship to stability.

4.1 Stability of JPs

Table 2 shows that nearly three-quarters, 72.89%, of JPs are unstable from a queueing
perspective, with around one quarter, 24.92%, appearing to be stable and the remaining



26 R. Healy et al.

Table 2. Stability Metrics of PBIs

Stability Stability metric, ψ JP count Percentage

Unstable 0.77 675 72.89%

Marginal 1.00 20 2.16%

Stable 1.80 231 24.92%

2.16% marginally stable. Figure 2 shows the distribution of stability across all JPs with
a clear tendency for JPs to cluster around marginal stability and a tendency for most to
be slightly unstable with 54.05% of all JPs being in the range 0.7–0.99.

Figure 2 also shows that there are outliers on both the upper and lower ends. At
the lower end, 2.04% of all JPs have an arrival rate more than ten times faster than the
service rate. For every PBI delivered by the people working on such a system, ten new
PBIs arrived at the same time, on average. At the upper end of the scale, 4.39% of JPs
result in workers involved there having nothing to do on the JP more than half of the
time, on average.

Fig. 2. Distribution of the Stability Metric across 926 JPs

Table 3 shows the proportion of stable and marginally stable JPs as a share of all
JPs. This shows that none of organizations have consistently stable systems. There does
not appear to be a relationship between the number of JPs per organization/repo and the
percentage of stable systems. However, 86% of organizations have at least one stable JP.

4.2 Stability and Backlog Size

When Montgomery et al. captured the Public Jira Dataset in 2022, 338,164 PBIs were
unresolved across 887 JPs. Table 4 shows the relationship between each level of stability



A Novel Technique to Assess Agile Systems 27

Table 3. Stable and marginally stable JPs for all Repos.

Repos Number of stable/marginally stable JPs Count of JPs Percentage

JFrog 0 6 0.0%

Sonatype 0 2 0.0%

Jira 2 26 7.7%

Mojang 1 8 12.5%

Qt 3 17 17.7%

JiraEcosystem 10 55 18.2%

Sakai 4 20 20.0%

MariaDB 2 9 22.2%

Apache 125 486 25.7%

MongoDB 8 27 29.6%

RedHat 65 198 32.8%

Hyperledger 7 18 38.9%

Spring 22 52 42.3%

IntelDAOS 1 2 50.0%

All JPs 250 926 27.0%

and the corresponding backlog size for all 926 JPs. It shows that the biggest backlog size
appears when the system is unstable – this makes sense as, by definition, the system is
unable to meet the demands being placed on it. The smallest backlog sizes occur when
the system is marginally stable. Again, this is logical, since for those systems, the time
spent waiting for a new piece of work to arrive is eliminated – there is minimal waste,
but the system is not overloaded. Systems with high stability may wait to accumulate
PBIs before addressing at high speed.

Table 4. Stability metrics and backlog sizes of PBIs.

Stability Mean stability metric, ψ Mean backlog size JP count

Unstable 0.77 455.39 675

Marginal 1.00 80.25 20

Stable 1.80 126.55 231

Figure 3 expands on Table 2 by illustrating the relationship between stability and
backlog sizes. A point to note is the significant ranges in backlog sizes which vary
between 0 and 18,956. Of these, the largest backlogs are an order of magnitude larger
than marginally stable or stable queues. 71% of all stable and marginally stable systems
have backlogs between 0 and 100 items in them. By contrast, 49% of all unstable systems
have backlogs of one hundred or more.



28 R. Healy et al.

0.001

0.01

0.1

1

10

100

1 10 100 1000 10000 100000

St
ab

ili
ty

Backlog Size

Stability vs Backlog Size

Fig. 3. Backlog size vs stability of all JPs, plotted on logarithmic axes.

4.3 Stability and Inter-service Times

Figure 4 shows the distribution of average inter-service times for all resolved PBIs. These
were calculated using Equation 7. 64% of PBIs are resolved within eleven calendar days
and that 88% are resolved within 31 calendar days. This indicates that some PBI’s may
have been used in an Agile system.

Fig. 4. Distribution of inter-service time



A Novel Technique to Assess Agile Systems 29

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000

St
ab

ili
ty

Inter-service me (days)

Stability vs Inter-service me

Fig. 5. Inter-service time vs stability of all JPs, plotted on logarithmic axes.

Figure 5 shows the relationship between inter-service time and stability. The outliers
on the lower right in this plot demonstrate that very unstable systems tend to have high
service times while the outliers on the upper left show that systems with very high
stability tend to have very fast service times. However, perhaps the most interesting
information on the plot is the broad range of inter-service times over which systems tend
to cluster around marginal stability. Over 33% of all JPs have stability in the range of 0.9
to 1.1. Of these, the service rates range from 0.08 days between PBIs resolved on average
to 161.58 days between PBIs resolved on average. This suggests that a wide array of
systems with different arrival rates, people, tools, technologies are all independently all
adapting processes to attempt to stabilize their systems. These results will be discussed
further in the Discussion section.

5 Discussion

The analysis of the 926 JPs of the Public JiraDataset illustrates that it is possible to extract
anonymous data from Jira projects and process it using a novel measure, the Stability
Metric to be able to infer the stability of the system. We illustrated the relationship to
backlog size for a large historic dataset with over 1.6 million items over a 20-year period.
The results show a strong tendency for the system to be unstable with 72.86% showing
this. These unstable systems have, by definition, growing backlogs and we also find that
they tend to have larger backlogs overall. Our results show that there is a discrepancy
between the assumed stability of Agile systems and the reality of how systems operate
in practice and seems to indicate that the assumption of sustainability associated with
the Agile process may not hold good in practice due to the systems’ lack of stability.

However, over half of all JPs are nearly stable, with 57.6% of all JPs are in the
range 0.8–1.2 so future research may investigate whether it is possible, or advisable, for



30 R. Healy et al.

systems to be adapted so they become more stable in nature. Of the 14 organizations
whose datawas analyzed, all but two had some systems either stable ormarginally stable,
(ψ ≥ 1). This means that although all organizations had some unstable systems, most
could make some systems stable. Further investigation of real teams using the stability
metric can help identify which techniques help teams achieve stable ways of working,
and whether these correlate with other metrics or measures of satisfaction.

An interesting result is the percentage of stable systems in the dataset – 27% of all
JPs analyzed were stable or marginally stable. From a practical perspective the tendency
towards a Stability Metric value of close to 1 makes sense as organizations that achieve
this can deliver work as needed, without having frequent idle resources. This finding
was supported by the analysis of the relationship between average backlog sizes and the
stability metric, with a tendency for significantly larger backlog sizes to correspond to
unstable systems. Whilst this is suggestive of a causal relationship between backlog size
and stability, this also will need to be tested with actual teams.

Another effect worth considering in further research is the impact the statistical
necessity of having no backlog has on system stability. A team with nothing to do is
likely to be assigned to other work by the management since their concern of using the
available manpower optimally conflicts with the conditions of having a mathematically
stable system where a team having no work is expected, and even required, to happen
periodically. In Scrum, a high-performing team with no carryover of work achieves this
to a degree every sprint but a Kanban team who have a continuous flow of work may
never eliminate work-in-progress and achieve a stable system. This calls into question
the applicability of Little’s Law which requires a stable system to be applicable. Further
research is needed to analyze real organizations to assess whether high utilization rates is
a higher priority than system performance, because this may suggest a business incentive
for not striving to achieve sustainable work systems.

Despite most JPs appearing to be close to stable where ψ ≈ 1, significant outliers do
exist where JPs had high levels of instability ψ < 0.1 and stability ψ > 2. Both outliers
are worth considering as neither are sustainable for the people performing the work nor
the organizations in which these systems exist. Where ψ < 0.1, the average arrival rate
is more than 10 times the average service rate. This is likely to be a stressful situation,
as demand outstrips supply and difficult choices will need to be continually made as to
which is the next most important piece of work. For systems whereψ > 2 this means that
the people involved in performing thework have nothing to do formore than half the time
on average. Neither outlier looks sustainable from a business or human perspective –
the business would under-perform compared to competitors and the developers might
suffer from burnout or boredom. Future research is needed to determine if these stability
metrics exist in Agile systems, as it is not possible to determine the precise conditions
from the data, but if substantiated, it would strongly reject a hypothesis of sustainable
ways of working as neither sponsor, developer nor user could be reasonably expected to
sustain unstable ways of working indefinitely.

5.1 Potential Application of this Metric

The Stability Metric is still under investigation and, as Sect. 6 describes, there remain
several limitations in the investigations to date. It may be useful to discuss potential



A Novel Technique to Assess Agile Systems 31

applications. This metric is adapted from existing measures from queueing theory but is
novel to analysis ofAgile systems. It is intended as a diagnostic tool to help predictability.
For all Agile systems it can help diagnose if the team is being under-loaded or over-
loaded and the degree to which this is occurring. This, in turn may help in overall
organizational design and establishing the appropriate number of teams for the volume
of work required.

On a more operational level, by shifting the duration over which the data is used
a comparison can easily be made between stability over a longer period and stability
in the recent past. This will provide information to the team and stakeholders on the
impact of continuous improvement initiatives. In Kanban systems, the Stability Metric
can be used to determine if the system is stable and if applying Little’s Law and limiting
WIP is a valid approach. It could be used on an overall system process flow and on any
sub-system within that flow to quantify and control process bottlenecks. In Scrum, it
could be an improvement on the current practice of “yesterday’s weather” to help teams
identify the target velocity required per sprint to achieve a stable product backlog based
on longer term “climatic” patterns of arrival and service rates. However, before we get
too excited about potential applications, we must recognize this research is ongoing and
list the limitations of the work to date.

6 Limitations

The use of a large dataset that crosses many organizations for a prolonged period offers
very good generalizability of findings, but it is at the payoff of contextual realism. The
main limitation of this work is that it is not knownwith 100% certainty if an organization
we studied used an Agile framework. The analysis of service rates shown in Fig. 4
suggests that the majority PBIs were discretized to fit within short cycles used in Scrum
and Kanban. Also, the use of Jira itself is suggestive of Scrum or Kanban approaches as
these are standard frameworks within the tool [16].

Another limitation of this study was the use of Jira Projects, JPs, as a collection of
PBIs that represent a queuing system. Jira can use a JP for this purpose but may also
slice the collections of PBIs within and across JPs to create queues for teams. Without
the specific details of what queue or queues are in use in a given organization it is not
possible to be certain of the stability of each. We have relied on Jackson’s Theorem for
queueing networks which dictates that a network of queues can only be stable if all sub-
queues in the network are stable [4]. This suggests that for JPs that displayed stability,
any sub-queues in that JP must have also been stable. The situation is more complicated
for unstable queueing networks; it is possible for a network to be unstable as long as
one or more of the sub-queues are unstable. Further investigation of real teams will be
needed to determine the prevalence of instability.

Methodologically, one limitation may arise in the fact that we used averages across
the entire JP. This potentially ignores temporal effects. A queue is a dynamic system and
may be temporarily stable or unstable. The degree to which stability fluctuates and root
causes should be investigated further, probably with real teams.

Finally, the study assumed that the data provided were accurate. Since the creation
and update of PBIs in Jira is a human activity there is likely to be variation in the accuracy



32 R. Healy et al.

of the data. For example, we assumed the work arrived in the queue at the point where
the PBI was created but it is plausible that sometimes a piece of work could be discussed
long before it is logged in Jira. Similarly, a ticket can be resolved only to find out the
resolution was insufficient, and more work is needed. Jira captures only the date of first
resolution [14]. We removed subtasks, Epics, and certain resolution types but these may
have been misclassified by the original user who was more interested in getting their
work done than data integrity. Further investigations will be required into the Public Jira
Dataset to analyze the accuracy of the data captured.

7 Conclusion

The research question considered whether Agile systems are stable from queueing per-
spective. A novel metric was developed to test this hypothesis and a large historic dataset
was used to test the Stability Metric. While it is not known howmany of the Jira Projects
sampled used Agile frameworks such as Scrum and Kanban, it is likely that many did.
Based on this assumption, the data presented show that systems are often unstable with
large and growing product backlogs. A potential cause of this is likely service rates that
are too slow for the individual queue. Further research is required to investigate in more
detail but based on this analysis it appears that Agile software development systems are
neither inherently stable nor sustainable from a human or business perspective but can,
under certain conditions, be made so.

References

1. United Nations:Sustainability. https://www.un.org/en/academic-impact/sustainability.
Accessed 5 Apr 2023

2. Measey, P., et al.: Agile Foundations: Principles, Practices and Frameworks, pp. 125–162.
BCS, Swindon (2015)

3. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9(8), 28–35 (2001)
4. Bose, S.: An Introduction to Queueing Systems. pp. 17–22. Kluwer Academic/Plenum, New

York (2002)
5. Montgomery, L., Luders, C., Maalej, W.: An alternative issue tracking dataset of public

Jira repositories. In: Proceedings of the 19th International Conference on Mining Software
Repositories, pp. 73–77 (2022). https://doi.org/10.1145/3524842.3528486

6. Kleinrock, L.: Queueing Systems, vol. 1, pp. 17–19. John Wiley & Sons, New York (1975)
7. Kupiainen, E., Mäntylä, M., Itkonen, J.: Using metrics in agile and lean software develop-

ment – a systematic literature review of industrial studies. Inf. Softw. Technol. 62, 143–163
(2015). https://doi.org/10.1016/j.infsof.2015.02.005

8. Vacanti, D.: Actionable Agile Metrics for Predictability, pp. 41–54. Actionable Agile Press,
LeanPub (2015)

9. Fuior, F.: Key elements for the success of the most popular Agile methods. Revista Română
de Informatică şi Automatică 29(4), 7–16, (2019). https://doi.org/10.33436/v29i4y201901

10. Conboy,K., Fitzgerald, B.: Toward a conceptual framework of agilemethods: a study of agility
in different disciplines. In: Proceedings of the 2004 ACM Workshop on Interdisciplinary
Software Engineering Research, pp. 37–44 (2004). https://doi.org/10.1145/1029997.1030005

11. What is a Jira Software Project. https://support.atlassian.com/jira-software-cloud/docs/what-
is-a-jira-software-project/. Accessed 5 Apr 2023

https://www.un.org/en/academic-impact/sustainability
https://doi.org/10.1145/3524842.3528486
https://doi.org/10.1016/j.infsof.2015.02.005
https://doi.org/10.33436/v29i4y201901
https://doi.org/10.1145/1029997.1030005
https://support.atlassian.com/jira-software-cloud/docs/what-is-a-jira-software-project/


A Novel Technique to Assess Agile Systems 33

12. What is an epic. https://support.atlassian.com/jira-software-cloud/docs/what-is-an-epic/.
Accessed 5 Apr 2023

13. Create an issue and a sub-task. https://support.atlassian.com/jira-software-cloud/docs/create-
an-issue-and-a-sub-task/. Accessed 5 Apr 2023

14. Defining resolution field values. https://confluence.atlassian.com/adminjiraserver/defining-
resolution-field-values-938847105.html/. Accessed 5 Apr 2023

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://support.atlassian.com/jira-software-cloud/docs/what-is-an-epic/
https://support.atlassian.com/jira-software-cloud/docs/create-an-issue-and-a-sub-task/
https://confluence.atlassian.com/adminjiraserver/defining-resolution-field-values-938847105.html/
http://creativecommons.org/licenses/by/4.0/


Overcoming Challenges of Virtual Scrum
Teams: Lessons Learned Through an Action

Research Study

Jedrzej Bablo1, Bartosz Marcinkowski2(B) , and Adam Przybylek3

1 Lufthansa Systems Poland, Grunwaldzka 415, 80-309 Gdansk, Poland
2 University of Gdansk, Bazynskiego 8, 80-309 Gdansk, Poland

bartosz.marcinkowski@ug.edu.pl
3 Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

Abstract. After the COVID-19 breakout, agile teams found themselves in situa-
tions that “pure agilists” and textbooks on agile methods had preferred to ignore.
Whereas agile mindsets helped them to quickly shift to remote work, mere virtual-
ization of agile practices often proved insufficient, and several challenges emerged.
This paper reports on an Action Research project carried out in Lufthansa Sys-
tems Poland with the aim of (1) revisiting their ad-hoc actions to adapt to remote
work; and (2) elaborating systematic solutions to maintain efficiency in such a
setting. With our assistance, the participating teams found measures to mitigate
issues posed by the new work environment. They devised an inter-team commu-
nication model to improve the effectiveness of information exchange that had
declined in the absence of spontaneous, face-to-face communication. Moreover,
they employed several other mitigation strategies, including working at least one
day per week in the office, keeping webcams on during online meetings, and
recapping meetings at the end of a session. Our study largely supports previous
findings indicating that Scrum can be effectively applied beyond its comfort zone
but also suggests that for adaptations to be successful and comprehensive, they
should be developed in a structured manner.

Keywords: Remote work ·Method tailoring · Agile Software development ·
Adaptation · Teamwork · Collaboration

1 Introduction

When COVID-19 swept over the world, many businesses were suddenly disrupted and
forced to make rapid changes to the workplace and work processes [1–3]. During these
turbulent times, organizational agility not only proved to be useful but also often made
the difference between success and failure. Not surprisingly, software houses and IT
departments, which had already adopted agile methods, coped quickly with the pan-
demic situation by virtualizing agile practices, digitizing agile artifacts, and sending
their employees to work from home [3–8]. Nevertheless, as team collocation is one of

© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 34–49, 2023.
https://doi.org/10.1007/978-3-031-33976-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_3&domain=pdf
http://orcid.org/0000-0002-7230-2978
http://orcid.org/0000-0002-8231-709X
https://doi.org/10.1007/978-3-031-33976-9_3


Overcoming Challenges of Virtual Scrum Teams 35

the pillars of agile software development [9], an ad-hoc transition to a remote environ-
ment challenged thewell-established approach to delivering product increments. Indeed,
many of the collaborative practices that used to depend on face-to-face communication
were rapidly disrupted [10, 11] in the new reality, even though remote communication
itself was to some extent commonly practiced before the pandemic [8, 12]. As a conse-
quence, a short-term drop in performance occurred immediately after the transition to a
remote environment [3, 13].

The phenomenon of the initial drop in performance is evidenced by the results of
three surveys conducted during the first months of the COVID-19 pandemic. In April
2020, Ralph et al. surveyed software developers who switched fromworking in an office
to working from home because of COVID-19 [14]. Based on 2225 responses that met the
inclusion criteria, the authors concluded that perceived productivity declined. Another
survey study conducted in Germany almost during the same time period and mainly
focused on managers and project management experts (with a total of 171 responses)
found a small perceived loss in productivity after switching to remote work [15]. The
decreased productivity due to the pandemicwas also reported byButt et al., who surveyed
over 250 software developers, team leaders, and project managers between April and
June 2020 [1].

As agile methods provide no guidelines for remote work, agile teams needed time
to come up with in-house solutions. Indeed, recent studies show that the performance of
agile teams has not permanently decreased [2, 4, 13]. Nonetheless, despite a significant
body of literature that focuses on switching to remote work and the resulting impacts on
agile teams (for review, see [6, 7]), only a few studies have examined how agile teams
may overcome the new challenges [14, 16, 17]. Furthermore, the mitigation strategies
and adjustments are quite diverse, suggesting that they depend on many factors and the
individual situation of the team (e.g., effects due to the maturity of the agile process
in use) [6]. Therefore, the agile community is responsible for elaborating and reporting
context-specific strategies and best practices for remote agile teams. In light of this
need, we report on an Action Research project carried out in Lufthansa Systems Poland
(1) to revisit their ad-hoc adaptations to remote work; and (2) to elaborate systematic
long-lasting solutions for maintaining efficiency in such settings. To guide our work, we
raised the following research questions:

RQ1: How did Scrum teams adapt their practices and processes due to the ad-hoc shift
to remote work?
RQ2: What are the advantages of remote work for Scrum team members?
RQ3: What new challenges are faced by virtual Scrum teams and their members?
RQ4: How can these challenges be mitigated?

Themain contribution of our research is twofold: (1) developingmitigation strategies
for Scrum teams to tackle challenges posed by remote working; and (2) enhancing
knowledge regarding agile software development in the post-COVID-19 era.



36 J. Bablo et al.

2 Method and Setting

The study followed the canonical action research (AR) within the field of software
engineering [18, 19]. It stretched over a six-month period, during which two AR cycles
were run. EachAR cycle had the following phases: Diagnosing, Action Planning, Action
Taking, Evaluating, and Specifying Learning. Table 1 shows how data was collected in
the different phases of AR cycles. The research process itself was hosted at Lufthansa
Systems Poland – a subsidiary founded in 1998 in Gdansk, Poland. Two teams namely
Covid-DI and Group App participated in the study. Their composition is summarized in
Table 2.Althoughboth teamsbelonged to the samebranch (i.e., theDigitalDeliveryLab),
where solutions supporting the Lufthansa Group’s digital infrastructure were developed,
they did not collaborate with each other. However, they used the same tools to create
test flight numbers and communicated with the team responsible for cloud infrastructure
and the Continuous Integration and Delivery (CI/CD) process. They also used Scrum
both before and after the transition to remote working.

Table 1. Data collection techniques.

AR phase Objective Technique Data source

Diagnosing Preliminary identification of
existing issues

Non-structured interview Team members

Confirming the issues
identified

Online survey

Action Taking Inspecting implemented
interventions

Participatory observation Researcher

Evaluating Assessing the interventions Online survey Team members

Discussing intervention
performance and collecting
recommendations

Focus group

TheCovid-DI teamhas developed a system that provides automation of the process of
verifying documents that are required for a flight. The system features microservices and
an internal web application. It receives a passenger’s data along with all the documents
provided by the passenger through a web application1 developed by another team. After
entering personal data and ticket number, the passenger is presentedwith a list of possible
combinations of documents to be sent to receive a positive verification.

The GroupApp team rolls out a mobile app for SWISS, Austrian, and Brussels Air-
lines (a single application with three visual overlays in accordance with the expectations
of the individual carriers belonging to the Lufthansa Group2). The application stores
flight information and enables an end user to review one’s trip details. It is a personal

1 Available at: https://www.lufthansa.com/ge/en/online-check-in.
2 A version customized for Austrian Airlines is available at: https://www.austrian.com/us/en/aus
trian-app.

https://www.lufthansa.com/ge/en/online-check-in
https://www.austrian.com/us/en/austrian-app


Overcoming Challenges of Virtual Scrum Teams 37

assistant that offers a real-time display of relevant travel information and keeps travel-
ers up to date with flight notifications. The app’s functionality covers mobile check-in,
changing or reserving a seat, and handling boarding passes.

Table 2. Professionals taking part in the study.

Covid-DI GroupApp

1 × Team Leader
1 × Product Owner
1 × Scrum Master
5 × Backend Developer
1 × Frontend Developer
1 × Junior Test Engineer
1 × Business Analyst
1 × System Architect

1 × Team Leader
1 × Product Owner
1 × Scrum Master
4 x Backend Developer
1 × Frontend Developer
1 × Test Engineer
1 × Business Analyst
1 × System Architect
1 × UX/UI Designer

3 Findings

3.1 The First Action Research Cycle

PerDiagnosing, we determined thatMicrosoft Teams had been established as the primary
videoconferencing platform after the transition to remote work. Usually, the Scrum
Master shared his screen presenting the Scrum board with the project backlog, current
user story, or tasks to be discussed at Daily Meetings or during Backlog Refinement.
Retrospectives were conducted using Timbo and TeamRetro tools for the Covid-DI and
the Group App teams, respectively. Sprint planning was achieved through the use of
screen sharing, and the PlanITPoker tool, which supports collective estimation with
Planning Poker [20, 21], was used for task estimation. Given its visualization-oriented
capabilities, both teams also introduced the online Miro whiteboard to facilitate various
types of meetings, brainstorming, discussions, etc.

As the Covid-DI team is concerned, a few significant changes were reported by
the Scrum Master compared to Scrum practices implemented in the on-site office envi-
ronment. Daily Scrum meetings became more static. Everyone presented their progress
without much thought to any discussion or exchange of information (whichwas an indis-
pensable part when hosting those in the office). Therefore, at the end of each meeting,
there was a moment to discuss ongoing problems, if any. Although, probably due to the
lack of visible feedback from the other teammembers, there was usually silence – which
was rare at office meetings. Another significant change was the introduction of two addi-
tional meetings. A non-mandatory Open Session meeting was to be held 3 times a week
(Monday, Wednesday, and Friday) for the development team and collaborating teams
or individuals. The meeting was created due to the need to pass information between
teams. The second meeting set up in the remote environment was Operation Weekly – a



38 J. Bablo et al.

meeting between developers and individual DevOps team members to discuss resource
and infrastructure issues. The regularity of Sprint Review meetings also deteriorated
relative to the on-site environment. In the remote mode, the meeting used to take place
every two to three sprints, and over time this regularity has diminished to an occasional
occurrence. In contrast, at the office Sprint Review was held every sprint, and it was sel-
dom canceled – only if a particular sprint did not produce any presentable Increment. In
the GroupApp project, the only change was to hold Sprint Review every second iteration
to save the development team’s time.

A survey fueled by prior non-structured interviews revealed both positive and neg-
ative feedback regarding Scrum performance in a remote environment (Table 3). The
main conclusions are as follows: (1) working from home hinders both communication
between teams and ad-hoc communication between team members; (2) teams’ commit-
ment is lower in a remote environment; (3) it becomes increasingly difficult to integrate
a new employee into a virtual team; and (4) being physically together in the open space
office favors the development of innovative solutions.

Table 3. Selected qualitative feedback – the first AR cycle.

Setting fit — “Remote: to pursue tasks. On-site: for creative work” [System Architect]
— “Working on-site is better when a project requires a lot of creativity and
innovation. Such a setting helps create more team involvement which is necessary
when there are a lot of unknowns. For more delivery-oriented projects or when there
are fewer unknowns and it’s easy to plan the work, the remote setting is convenient as
the tools currently available make managing work easy” [Developer]
— “On-site is better for coming up with something out-of-the-book; remote is better
for earning more from the project” [Developer]
— “Both methods of conducting Scrum have their advantages and disadvantages. A
lot depends on the project, its complexity, and the people involved. When a project is
developed by people from multiple locations, remote work gains more advantages. In
the case of a project developed by a team in a single location, physical collocation
can have a number of advantages. Of course, we must also take into account
individual characteristics of team members: some simply work better in the office,
others remotely” [Developer]

Communication
and maintaining
focus

— “When working remotely during meetings, I am able to prepare lunch or do some
exercises – albeit it is much harder for interpersonal contact” [Developer]
— “Certainly, the role of the Scrum master in terms of the ‘soft’ part is made more
difficult, because people – as a rule – prefer not to turn the cameras on. Muting the
microphone makes team members less willing to speak up; and even often by the time
they manage to turn on the microphone, the meeting has already moved on to another
topic. Without seeing the body language of others, it is difficult to determine what a
given member would prefer, how they feel, and what they actually think about a topic.
Meetings cease to be relaxed and become more focused on the work and the task. This
is nice at first, but in the long run, it erodes morale, and with that also the quality of
work/creativity. Bringing in new members is especially challenging. Established staff
may not see that much of a difference, while it is extraordinarily difficult for
newcomers to get acquainted with a project and feel like they are a part of the team”
[Scrum Master]

(continued)



Overcoming Challenges of Virtual Scrum Teams 39

Table 3. (continued)

Communication
and maintaining
focus (cont.)

— “I see such a benefit in remote work that I can attend a meeting and do something
else in parallel. Normally that would not be welcome. Remotely, what the eyes do not
see… Being co-located in the same office facilitates communication outside of the
process. You turn around in your chair, shout that something is not working, and a
discussion is swiftly established” [Developer]
—“Working in the office I have always spent half a day at meetings, and the time was
often wasted. Now, as the meeting moderately concerns me, I can do a task, at the
same time knowing what is being said there” [Developer]
—“On-site office environment: you want to do something, but someone asks if you are
going out for coffee. So the job rests. But during that coffee, there may be an
‘unplanned’ exchange of ideas and something interesting comes up. It is a toss-up. If I
were developing any sort of app of my own, I would definitely prefer the core team to
have direct contact. I myself somewhat nostalgically remember those ad-hoc
meetings, when you would gather with the team in a small cubicle: people armed only
with their brains and crayons to draw on the board – and we would work out an issue.
The best part of the job, as far as I am concerned, is gone now. I also get the
impression that we used to try to analyze an issue in-depth, consider various
possibilities, and finally choose the optimal solution. And now there is a ‘put it into
production ASAP’ policy in place” [System Architect]
— “On-site office environment: the team gets together and comes up with a solution.
Everyone then knows why it was done that way. Remotely: a person comes up with a
solution and presents it ostensibly for review. And the reviewer is actually busy with
something else (he/she has one’s tasks on the board) and most often just pats it down
because it is also inappropriate to say ‘do it completely differently’. So maybe it is
that the transition to remote has simply intensified this” [Developer]

Perceived
efficiency

— “I have a somewhat similar feeling that it is easier to stick to the schedule and
efficiency of meetings when Scrumming remotely” [Developer]
— “I have said again and again that there are too many meetings and that people are
invited who should not/do not want to be there. In fact, it is not an on-site/remote
Scrum problem, but if you cannot change this (and you simply cannot), it is easier to
cope with remotely (for me). In addition, all folks are by the computer. I can write to
someone and quickly find out from a given person about what and how. Also, it
depends on the person/project /team. I would gain nothing being on-site except the
stress of being stuck in traffic” [Developer]
— “It seems to me that working on-site makes less sense than working from home. My
main point is that better organization of work in remote mode is absolutely necessary,
so introducing such a mode significantly improves work, communication, and team
engagement. What I have not quite witnessed at the office, where it was more
perceived (at least from my observation) as redundancy of meetings… Because we
communicate all the time anyway” [Business Analyst]
— “I did not have a chance to work in an office environment, but in general I am sure
I am more efficient remotely (the fact is that I have decent working conditions at
home). In the office, there are a lot of distractions and I am just able to get more done
working remotely” [Developer]

The results of the Diagnosing phase prompted the research team to prioritize the
issue of improving team communication patterns within Action Planning. To this end,
communication patterns and practices used by the teams at that time were scrutinized. In
both cases, communication patterns used were akin to the decentralized Comcon model



40 J. Bablo et al.

(Fig. 1). In the Comcon everyone is free to communicate with the rest of the team [22].
Besides, cross-team information exchange was not governed by any rules; developers
contacted professionals from other teams asynchronously. This often led to multiple
repetitions of a given piece of information within the surveyed teams and sometimes
resulted in repeated queries to people from other teams.

Circle (decentralised) Comcon (decentralised) Star (centralised)

Y (centralised)

Chain (centralised)

Fig. 1. Team communication models [22].

To address the problem, teams were presented with three centralized models – Star,
Y, and Chain (Fig. 1). Upon discussion within the teams, it was agreed that internal
communication should remain free-form and become as direct as possible, as typical
for the Comcon model. However, cross-team communication should be handled by
designated individuals. A developer with the deepest knowledge in every team assumed
the role of Service Manager (SM) and was assigned the responsibility of aggregating
information from other teams and answering immediately teammates’ questions that
did not require third-party involvement. Henceforth, other developers were instructed to
pass on cross-team inquiries to the SM and avoid contacting collaborating teams on their
own. In order to improve decision-making at the cross-team level, it was also decided
that SMs would not forward inquiries directly to their counterparts from other teams, but
to the Project Manager instead – who was also able to answer some questions at once.
If necessary, it was the latter’s responsibility to gather information from other teams.
Thus, cross-team communication became aligned with the centralized Star model and
the overall communication model took on a hybrid form (Fig. 2).

In order to make the process of transferring information between teams more trans-
parent, documentation was proposed, describing who, on which team, is responsible for
which specific area, and to whom (if necessary) to direct specific questions. On top of
that, each team under study along with collaborating teams was advised to create an
extensive Q&A to keep question repetitions in check. To ensure a regular exchange of
information between teams, periodic meetings were stipulated for Service and Project
Managers. The meetings were designed as optional since there was not always a need
to pass information. That said, the calendar placeholder itself ensured that everyone
was available at the same time. Finally, separate channels on the MS Teams platform
(dedicated to specific areas of the project) were set up. One of those was to be used to
communicate internal information regarding merge requests and tasks awaiting review.



Overcoming Challenges of Virtual Scrum Teams 41

The other was dedicated to solving technical problems from a programming standpoint.
Unlike the former channel which did not have a clearly specified post structure, the
latter came with a template with several fields necessary for the inquirer to complete.
The fields included the JIRA task number, component, technology, and possible working
solutions.

team team

PM

SMSM

Fig. 2. Hybrid team communication solution.

Regarding the difficulties with integrating new employees, it was proposed to work
co-located in the office for one day a week. Such on-site workdays would allow for orga-
nizing most of the Scrum ceremonies as face-to-face meetings and taking advantage of
effective communication opportunities. Presenting stories to jointly work out solutions,
discussing the advantages and disadvantages of a given variant, fostering familiarity
between employees, and creating a positive team vibe contribute to the quality of the
end product. Teams were not forced to have a predetermined day of the week on which
they should come to the office. The decision on the chosen day was still in the hands of
the team and resulted from needs at a given time – which allowed the team to maintain
its autonomy. Lastly, although Diagnosing clearly pointed towards a decrease in team
engagement, due to the already broad scope of changes being planned to introduce, it
was decided to address this issue in the next AR cycle.

Action Taking spanned across three Sprints. After a total of six weeks, the
interventions were assessed. Evaluating gathered feedback on the following aspects
(Fig. 3):

Q1.1 – Appointing Service Managers to relay information improved communication
between teams;

Q1.2 – Setting up optionalmeetings betweenServiceManagers and the ProjectManager
improved knowledge sharing between teams;

Q1.3 – Establishing a new, explicit communication model that specifies with whom, in
what case to communicate improved communication efficiency;

Q1.4 – Introducing additional channels on the MS Teams platform dedicated to specific
areas of the project improved ad-hoc communication.



42 J. Bablo et al.

Q1.4

Q1.3

Q1.2

Q1.1

2 0 2 4 6 8 10

Covid-DI

2 0 2 4 6 8 10

GroupApp

Strongly Disagree Somewhat Disagree Neither Agree nor Disagree Somewhat Agree Strongly Agree

Fig. 3. Aggregated results of the evaluation survey conducted during the first AR cycle.

Eventually, given both the performance of both teams across the Sprints and the
feedback, Specifying Learning led to the following conclusions:

1. Establishing an explicit communicationmodel and appointing ServiceManagers
to relay information facilitate cross-team communication. The remote environ-
ment has almost deprived ad-hoc communication, which was done naturally in the
open space office environment (the proverbial “spin on the chair”). By implementing
clearly defined communication patterns and identifying the appropriate individuals
responsible for gathering and relaying external information, the teams were able to
communicate more efficiently. The new approach not only reduced the number of
questions that went unanswered for prolonged periods of time but also decreased
the number of developers that one had to disturb before reaching the developer who
actually knew the answer.

2. Joint meetings between Service Managers and the Project Manager improve
knowledge sharing. Providing a convenient time for all Service Managers to talk to
each other affects the overall awareness of the activities of the collaborating teams and
allows immediate decisions to be made on topics affecting their work. In addition, it
ensures that key stakeholders will have time to deal with issues affecting other teams,
which are very often set aside. A faster and more transparent flow of information
also ensures a reduction in possible errors resulting frommisunderstandings between
teams.

3. Introducing additional areas for specific types of information improves commu-
nication. One of the problems encountered in the remote environment was informa-
tion preservation and duplication. Establishing additional channels on the MS Teams
platform improved the response rate of teammates on specific issues and ensured that
the knowledge transferred was, to some extent, preserved.

3.2 The Second Action Research Cycle

Upon completing the intervention, it was decided that the following two-week sprint
should constitute a hiatus between the research cycles. This allowed both teams to
unwind from additional workflows (attending focus groups, completing surveys), and to
consolidate previously implemented solutions before the next cycle.



Overcoming Challenges of Virtual Scrum Teams 43

Although the discussion regarding Scrum’s deficiencies in the remote environment
and the extent to which the main issues have been addressed by the already implemented
measures proved to be vigorous, members of both teamsmostly agreed that the quality of
the meetings suffered in the remote environment, while the transparency of the teams’
work deteriorated. They supported this Diagnosis primarily by pointing out frequent
occurrences of silence during meetings (“as if no one knows who is supposed to speak
up now”), reduced interactions, and greater variability in the online meeting toolset used
(e.g., various applications for conducting retrospectives). The Covid-DI team consid-
ered Daily Scrum to be the most problematic meeting, whereas the Group App team
highlighted Sprint Retrospective. However, both teams specifically referenced both of
these ceremonies. In addition to the previously mentioned problems, participants also
hinted that Sprint Retrospective was getting overlong for them, and they were losing
interest in it. Several people felt that “retros were held for the sake of holding them”.
The aforementioned factors primarily caused a big decline in the amount of information
exchange.

Moreover, themajority of participants agreedwith the statement that regardless of the
ceremony, in the remote environment, they aremore likely tomiss significant information
and have to spend more time inquiring about the issues of specific people even just after
the meeting is over. Those with more seniority in the industry and experience working
in Scrum noted that the principles of the framework in a remote environment began to
deteriorate. They highlighted the increased number of meetings resulting from the need
for re-discussions, the failure to keep meetings within time constraints, the resulting
necessity to catch up on any suspended meetings, and conducting some ceremonies (e.g.
Sprint Retrospective) not in line with the Scrum Guide.

As further scrutiny confirmed an increase in the volume of information provided
while decreasing the number of tangible details, one of the measures proposed within
Action Planning was to keep webcams active during meetings. By observing someone’s
gestures or facial expressions, others can effectively assess whether a message has been
understood and whether the audience agrees with the statement made. On top of that,
to enhance the flow of conversations during meetings, individuals working in a quiet
environmentwere expected to keep theirmicrophones on to avoidwasting time unmuting
themselves. Oftentimes switching to the application window and hitting the unmute
button proved to take up enough time for the speaker to move on to the next topic,
resulting in disregarding any concerns from the team. Additionally, it was agreed to
allocate the last three minutes of a meeting to a brief summary. At the Daily Scrum,
Scrum Master was to recapitulate crucial information that had been given during the
meeting and to make sure that everyone had grasped it. During the Sprint Retrospective,
both the completed action points and newly established ones were to be recapped at the
end.

As for maintaining the principles of Scrum, i.e. transparency and self-organization,
it was decided to conduct Q&A-heavy single-day training sessions for both teams on the
Scrum framework. The training sessions, which were conducted by the Scrum Masters,
followed a uniform agenda consisting of the following: (1) an overview of various project
management methods; (2) the Agile Manifesto; (3) the Scrum framework, including its



44 J. Bablo et al.

principles, artifacts, ceremonies, roles, and strengths; (4) Scrum vs. SAFe; and (5) a
summary.

Notwithstanding the above, in order to address the issue of the lack of engagement,
which was identified in the first cycle but left unresolved, it was decided to introduce
workshops to better understand the project and the needs of the teams. The workshops
were held on-site, as an opportunity presented itself for the management to get to know
people working for a shorter time than the rest. During this time, meetings were held
with team leaders to convey the broad vision of the project. Professionals were given an
opportunity to express in what direction they would like to develop, what they like about
the project, and what is missing. Furthermore, even though it was not evaluated in the
first cycle due to a too-short time horizon, the rule of one working day in the office to
facilitate the onboarding process of newcomers and the socialization of team members
was maintained.

After another three Sprints of the Action Taking phase, the Evaluating phase took
place to determine whether the following actions had the desired effects (Fig. 4):

Q2.1 – Running workshops to discuss the project and the needs of the team increased
team engagement;

Q2.2 – Having the team co-located in the office once a week accelerated the integration
of newcomers;

Q2.3 – Creating a meeting summary facilitated retention of key aspects;
Q2.4 – turning on cameras and microphones during meetings improved signaling of

concerns and understanding of the information provided;
Q2.5 – Conducting Scrum training improved adherence to the established principles of

the framework.

Q2.5

Q2.4

Q2.3

Q2.2

Q2.1

2 0 2 4 6 8 10

Covid-DI

2 0 2 4 6 8 10

GroupApp

Strongly Disagree Somewhat Disagree Neither Agree nor Disagree Somewhat Agree Strongly Agree

Fig. 4. Aggregated results of the evaluation survey conducted during the second AR cycle.

The feedback was overwhelmingly positive. Thus, Specifying Learning phase
completed the intervention with the following lessons learned:

1. The way online meetings are conducted affects the effectiveness of communi-
cation. Keeping webcams switched on allows for more natural and nuanced com-
munication by enabling team members to observe each other’s reactions and body



Overcoming Challenges of Virtual Scrum Teams 45

language. This can enhance engagement, build trust, and foster a smoother exchange
of information. In addition, the introduction of a brief summary at the end of meetings
facilitates better recollection, which, in turn, leads to greater awareness among team
members of the issues at hand.

2. A better understanding of Scrum enhances the team’s ability to collaborate
effectively. A remote environment exposes dysfunctions within a team. Fixing the
Scrum process requires a comprehensive knowledge of the framework, which can be
obtained by participating in training sessions.

3. Workshops that discuss the project vision and the team’s needs have a positive
impact on team commitment. Such workshops provide a shared understanding of
the project and its context, foster team bonding, and encourage openness among
individuals.

4. Requiring workers to come to the office one day per week constitutes a healthy
compromise that balances work flexibility, employee integration, and collabora-
tion quality through in-person sessions. This practice not only enables most Scrum
ceremonies to be organized on-site but also fosters spontaneous conversations. During
such conversations, employees occasionally tend to move away from work-related
topics, which promotes the growth of social connections.

5. Not all members of an agile team necessarily have an agile mindset. Typically,
some developers are hesitant to exchange information or share knowledge, and this
attitude may persist regardless of the working environment. In fact, our prior research
[23] in an on-site environment revealed the same findings. However, in a remote
setting, this reluctance can further exacerbate communication and collaboration
challenges with these individuals.

4 Discussion

4.1 How Did Scrum Teams Adapt Their Practices and Processes Due
to the Ad-Hoc Shift to Remote Work?

Numerous studies have reported that to transition to remote work, agile teams imple-
mented virtualization of work using software tools [2, 5, 6, 8, 15]. Video conferencing
platforms such as Microsoft Teams and Zoom have enabled Scrum meetings to be con-
ducted remotely, while online whiteboard-based collaboration tools likeMiro andMural
have facilitated collaboration. It is not surprising that the ad-hoc shift to remote work
in the participating teams looked quite similar. Additionally, our teams have introduced
dedicated tools that incorporate collaborative games (proven successful in face-to-face
meetings [9, 23–25]) for effective Sprint Retrospective and Sprint Planning. Interest-
ingly, this approach stood out, as Neumann & Bogdanov [6] found in their SLR that
other teams relied solely on the chat functionality within video conferencing tools and,
consequently, lost the playful nature of their meetings. Additionally, one of our teams
implemented new types of meetings to coordinate work with collaborating teams.

4.2 What are the Advantages of Remote Work for Scrum Team Members?

Several advantages of remote work were highlighted by the participants of our study,
which can be categorized into two main groups: increased flexibility and improved pro-
ductivity. In fact, the latter may be an outcome of the former, as greater flexibility results



46 J. Bablo et al.

in happier developers, and empirical evidence from previous studies has shown that
happy developers are more productive [26]. With a work-from-home policy, software
engineers enjoy greater control over their work schedule, resulting in higher job satis-
faction and a better work-life balance. Accordingly, the majority of them would like to
continue working remotely, which indicates an improvement in their well-being. More-
over, remote work enables them to be more productive by reducing distractions and
interruptions while enhancing their ability to focus on the tasks at hand. Furthermore,
remote work saves time that would otherwise be spent on commuting. These findings
are in line with the results of several previous studies [3–5, 15, 27], some of which
even suggest that employees can no longer imagine switching to pure co-located work
[15]. Nonetheless, some authors have emphasized the negative aspects associated with
remote work. Ralph et al. found that the pandemic had a negative effect on developers’
well-being and productivity [14], while Butt et al. reported that the investigated team
members experienced increasedmental and physical stress [1]. Additionally, Griffin [17]
described the challenge of household distractions for agile team members working from
home. Finally, it was suggested that the work-life balance was disrupted by even more
blurred boundaries between work and life [7].

4.3 What New Challenges are Faced by Virtual Scrum Teams and Their
Members?

Despite the availability of various tools to support both synchronous and asynchronous
communication, the absence of face-to-face interaction introduced a lot of inefficiency
to the exchange of information and required the investigated teams to put extra effort
into collaboration. Additionally, many participants in our study noticed that remote
work hindered creativity since teammembers became less interconnected. Furthermore,
without regular in-person interactions, both teams experienced a significant decrease in
social exchange, which resulted in a reduced sense of team cohesion. These observa-
tions are consistent with the results of several previous studies [5–7, 16, 28]. Another
challenge that arose in a remote environment was the onboarding process of new team
members. This challenge encompassed both the need to assimilate newcomers into the
team dynamic, as well as to ensure their understanding of established processes, prac-
tices, and tools. Prior studies [3, 5, 6, 29] also observed this challenge. Finally, in both
participating teams the transparency of the team’s work deteriorated, requiring special
actions to restore it. This finding contradicts previous studies [2, 3, 5], which reported
that the overall transparency increased as a result of the digitization of artifacts and the
increased use of digital chat channels.

5 Conclusions

The COVID-19 pandemic revealed that many preconceptions about remote work were
misplaced. What is more, even though the pandemic is behind us, there is a global desire
to retain the flexibility of remote work. Our research confirms the numerous benefits of
remote work that have been identified in previous studies. Working from home allows
for increased employee comfort and greater personalization of one’s work environment,



Overcoming Challenges of Virtual Scrum Teams 47

creating opportunities to better align personal andprofessional needs.Moreover,working
remotely eliminates the time and expense associated with daily commuting to a physical
office. Nevertheless, the ad-hoc switch to remote work also presented challenges for
agile teams, such as a lack of proper communication and reduced team cohesion. In this
work, we report on an Action Research project in Lufthansa Systems Poland, where we
worked with two Scrum teams to systematically address challenges posed by the remote
environment. Our collaboration resulted in the following solutions:

– establishing an explicit communication model between collaborating teams;
– setting up optional meetings for representatives of collaborating teams and the Project

Manager;
– introducing one on-site workday per week;
– summarizing meetings at the end of the session;
– keeping webcams on during online meetings;
– establishing additional channels on the MS Teams platform to maintain knowledge;
– organizing occasional workshops to discuss the project vision and the team’s needs.

Our research not only demonstrates once again that Scrum is agile itself and thus
can be applied outside of its traditional boundaries (previously Scrum has its proved
flexibility in adapting to large-scale projects [30–33]) but also shows that Scrum in an
online environment does not lose its benefits.

The study has two main limitations. Firstly, the evaluation of the implemented solu-
tions was done subjectively. Secondly, there is a potential bias among study participants.
Employees who already hold the belief of working exclusively remotely may not have
viewed on-site meetings positively and could have disregarded their positive aspects.

References

1. Butt, S.A., Misra, S., Anjum, M.W., Hassan, S.A.: Agile project development issues during
COVID-19. In: Przybyłek, A., Miler, J., Poth, A., Riel, A. (eds.) LASD 2021. LNBIP, vol.
408, pp. 59–70. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67084-9_4

2. Marek, K., Wińska, E., Dąbrowski, W.: The state of agile software development teams during
the Covid-19 pandemic. In: Przybyłek, A., Miler, J., Poth, A., Riel, A. (eds.) LASD 2021.
LNBIP, vol. 408, pp. 24–39. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-670
84-9_2

3. Neumann, M., Bogdanov, Y., Lier, M., Baumann, L.: The Sars-Cov-2 pandemic and agile
methodologies in software development: a multiple case study in germany. In: Przybyłek, A.,
Miler, J., Poth, A., Riel, A. (eds.) LASD 2021. LNBIP, vol. 408, pp. 40–58. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-67084-9_3

4. Kettunen, P., Gustavsson, T., Laanti, M., Tjernsten, A., Mikkonen, T., Männistö, T.: Impacts
of COVID-19 Pandemic for software development in nordic companies – agility helps to
respond. In: Gregory, P., Kruchten, P. (eds.) XP 2021. LNBIP, vol. 426, pp. 33–41. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-88583-0_4

5. Neumann, M., Bogdanov, Y., Sager, S.: The Covid 19 pandemic and its effects on agile soft-
ware development. In: 5th International Conference on Software Engineering and Information
Management (ICSIM), pp. 51–60. ACM, New York, NY (2022). https://doi.org/10.1145/352
0084.3520093

https://doi.org/10.1007/978-3-030-67084-9_4
https://doi.org/10.1007/978-3-030-67084-9_2
https://doi.org/10.1007/978-3-030-67084-9_3
https://doi.org/10.1007/978-3-030-88583-0_4
https://doi.org/10.1145/3520084.3520093


48 J. Bablo et al.

6. Neumann, M., Bogdanov, Y.: The impact of Covid-19 on agile software development: a
systematic literature review. In: 55th Hawaii International Conference on System Sciences,
pp. 7350–7359. University of Hawai‘i, Mānoa, HI (2022). https://doi.org/10.24251/HICSS.
2022.882

7. Ozkan, N., Erdil, O., Gök, M.Ş: Agile teams working from home during the Covid-19 pan-
demic: a literature review on new advantages and challenges. In: Przybyłek, A., Jarzębowicz,
A., Luković, I., Ng, Y.Y. (eds.) LASD 2022. LNBIP, vol. 438, pp. 38–60. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-94238-0_3

8. Wang, X., Hubner, S.,Melegati, J. et al.: StartupDigi-Dojo: a digital space supporting practice
and research of startup remote work. In: International Conference on Software Business,
Bolzano, Italy (2022)

9. Ng, Y.Y., Skrodzki, J., Wawryk, M.: Playing the sprint retrospective: a replication study. In:
Przybyłek, A., Morales-Trujillo, M.E. (eds.) LASD/MIDI -2019. LNBIP, vol. 376, pp. 133–
141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37534-8_7

10. Smite, D., Mikalsen, M., Moe, N.B., Stray, V., Klotins, E.: From collaboration to solitude and
back: remote pair programming during COVID-19. In: Gregory, P., Lassenius, C., Wang, X.,
Kruchten, P. (eds.) XP 2021. LNBIP, vol. 419, pp. 3–18. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-78098-2_1

11. Matthies, C., Teusner R., Perscheid M.: Challenges (and Opportunities!) of a Remote Agile
Software Engineering Project Courseduring COVID-19. In: 55th Hawaii International Con-
ference on System Sciences, pp. 1–10. University of Hawai‘i, Mānoa, HI (2022). https://doi.
org/10.24251/HICSS.2022.113

12. Jarzębowicz,A., Sitko,N.:Communication anddocumentation practices in agile requirements
engineering: a survey in polish software industry. In: Wrycza, S., Maślankowski, J. (eds.)
SIGSAND/PLAIS 2019. LNBIP, vol. 359, pp. 147–158. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-29608-7_12

13. Connor, M., Conboy, K., Dennehy, D.: COVID-19 Affected remote workers: a temporal
analysis of information system development during the pandemic. J. Decis. Syst. 31(3), 207–
233 (2022). https://doi.org/10.1080/12460125.2020.1861772

14. Ralph, P., et al.: Pandemic programming. Empir. Softw. Eng. 25(6), 4927–4961 (2020). https://
doi.org/10.1007/s10664-020-09875-y

15. Schmidtner,M., Doering, C., Timinger, H.: Agileworking duringCOVID-19 pandemic. IEEE
Eng. Manag. Rev. 49(2), 18–32 (2021). https://doi.org/10.1109/EMR.2021.3069940

16. Da Camara, R., Marinho, M., Sampaio, S., Cadete, S.: How do agile software startups deal
with uncertainties by Covid-19 pandemic? Int. J. Softw. Eng. its Appl. 11(4), 15–34 (2020).
https://doi.org/10.5121/ijsea.2020.11402

17. Griffin, L.: Implementing lean principles in scrum to adapt to remote work in a Covid-19
impacted software team. In: Przybyłek, A., Miler, J., Poth, A., Riel, A. (eds.) LASD 2021.
LNBIP, vol. 408, pp. 177–184. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67084-9_11

18. Staron, M.: Action Research in Software Engineering. Springer International Publishing
(2020). https://doi.org/10.1007/978-3-030-32610-4

19. Marcinkowski,B.,Gawin,B.:A studyon the adaptive approach to technology-driven enhance-
ment of multi-scenario business processes. Inf. Technol. People 32(1), 118–146 (2019).
https://doi.org/10.1108/ITP-03-2018-0142

20. Butt, S.A., Ercan, T., Binsawad, M., et al.: Prediction based cost estimation technique in
agile development. Adv. Eng. Softw. 175, 103329 (2023). https://doi.org/10.1016/j.adveng
soft.2022.103329

21. Butt, S.A., Khalid, A., Ercan, T., et al.: A software-based cost estimation technique in scrum
using a developer’s expertise. Adv. Eng. Softw. 171, 103159 (2022). https://doi.org/10.1016/
j.advengsoft.2022.103159

https://doi.org/10.24251/HICSS.2022.882
https://doi.org/10.1007/978-3-030-94238-0_3
https://doi.org/10.1007/978-3-030-37534-8_7
https://doi.org/10.1007/978-3-030-78098-2_1
https://doi.org/10.24251/HICSS.2022.113
https://doi.org/10.1007/978-3-030-29608-7_12
https://doi.org/10.1080/12460125.2020.1861772
https://doi.org/10.1007/s10664-020-09875-y
https://doi.org/10.1109/EMR.2021.3069940
https://doi.org/10.5121/ijsea.2020.11402
https://doi.org/10.1007/978-3-030-67084-9_11
https://doi.org/10.1007/978-3-030-32610-4
https://doi.org/10.1108/ITP-03-2018-0142
https://doi.org/10.1016/j.advengsoft.2022.103329
https://doi.org/10.1016/j.advengsoft.2022.103159


Overcoming Challenges of Virtual Scrum Teams 49

22. Pennington, D.C.: The Social Psychology of Behavior in Small Groups, 1st edn.. Routledge
(2002). https://doi.org/10.4324/9781315787800

23. Przybyłek, A., Albecka, M., Springer, O., Kowalski, W.: Game-based Sprint retrospectives:
multiple action research. Empir. Softw. Eng. 27(1), 1–56 (2021). https://doi.org/10.1007/s10
664-021-10043-z

24. Wawryk, M., Ng, Y.Y.: Playing the Sprint Retrospective. In: 14th Federated Conference on
Computer Science and Information Systems (FedCSIS’19), Leipzig, Germany (2019). https://
doi.org/10.15439/2019F284

25. Mich, D., Ng, Y.Y.: Retrospective games in intel technology Poland. In: 15th Federated
Conference on Computer Science and Information Systems (FedCSIS’20), Sofia, Bulgaria
(2020). https://doi.org/10.15439/2020F62

26. Graziotin, D., Fagerholm, F., Wang, X., Abrahamsson, P.: What happens when software
developers are (Un) happy. J. Syst. Softw. 140, 32–47 (2018). https://doi.org/10.1016/j.jss.
2018.02.041

27. Russo, D., Hanel, P.H.P., Altnickel, S., van Berkel, N.: Predictors of well-being and produc-
tivity among software professionals during the COVID-19 pandemic – a longitudinal study.
Empir. Softw. Eng. 26(4), 1–63 (2021). https://doi.org/10.1007/s10664-021-09945-9

28. Deshpande, A., Sharp, H., Barroca, L., Gregory, P.: Remote working and collaboration in
agile teams. In: International Conference on Information Systems, Dublin, Ireland (2016)

29. Nolan, A., et al.: To work from home (WFH) or not to work from home? lessons learned by
software engineers during the COVID-19 pandemic. In: Yilmaz, M., Clarke, P., Messnarz, R.,
Reiner, M. (eds.) EuroSPI 2021. CCIS, vol. 1442, pp. 14–33. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-85521-5_2

30. Kowalczyk, M., Marcinkowski, B., Przybyłek, A.: Scaled agile framework. Dealing with
software process-related challenges of a financial group with the action research approach. J.
Softw. Evol. Process, 34(6), e2455 (2022). https://doi.org/10.1002/smr.2455

31. Kalenda, M., Hyna, P., Rossi, B.: Scaling agile in large organizations: practices, challenges,
and success factors. J. Softw. Evol. Process 30(10), e1954 (2018). https://doi.org/10.1002/
smr.19541

32. Buchalcevova, A., Dolezel, M.: Examining the Usage of Scaled Agile Methods in the Czech
Republic. In: 29th InternationalConference on InformationSystemsDevelopment (ISD2021),
Valencia, Spain (2021)

33. Joskowski, A., Przybyłek, A., Marcinkowski, B.: Scaling scrum with a customized nexus
framework: a report from a joint industry-academia research project. Softw.-Pract. Exp.
(2023). https://doi.org/10.1002/spe.3201

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.4324/9781315787800
https://doi.org/10.1007/s10664-021-10043-z
https://doi.org/10.15439/2019F284
https://doi.org/10.15439/2020F62
https://doi.org/10.1016/j.jss.2018.02.041
https://doi.org/10.1007/s10664-021-09945-9
https://doi.org/10.1007/978-3-030-85521-5_2
https://doi.org/10.1002/smr.2455
https://doi.org/10.1002/smr.19541
https://doi.org/10.1002/spe.3201
http://creativecommons.org/licenses/by/4.0/


Waste Self-reporting for Software
Development Productivity Improvement

Marc Sallin1(B), Martin Kropp1, Craig Anslow2, and Robert Biddle3

1 University of Applied Sciences Northwestern Switzerland, Windisch, Switzerland
marc.sallin@outlook.com, martin.kropp@fhnw.ch

2 Victoria University of Wellington, Wellington, New Zealand
craig.anslow@vuw.ac.nz

3 Carleton University, Ottawa, Canada

robert.biddle@carleton.ca

Abstract. Little research has been done on enabling software develop-
ment teams to self-report waste to assist in productivity improvement.
This study created a waste categorization and survey for teams to iden-
tify and quantify wasteful activities. Developers from a Swiss company
used the survey for three weeks. Participants found the survey helpful for
identifying waste but there was little evidence that self-reported waste
correlated with improved performance.

Keywords: Empirical · Software development · Productivity ·
Efficiency · Waste · Lean · Case Study

1 Introduction

Improving the productivity of software development teams is a natural and perpet-
ual goal for organizations. However, measuring the productivity of software devel-
opment teams has always been seen as inherently difficult. Productivity is deter-
mined as the ratio of an achieved output and the required input [1]. In software
development, the input mainly consists of the working time spent on development,
expressed as the cost of developing software. With the output, it is less clear: the
produced lines-of-code or number of implemented functions have shown not to be
suited to measure the output. Both quantity and quality of the output are hard to
define for software development and typically vary from project to project. There-
fore, there is no common approach yet to measure them [1]. As a consequence,
organizations often do not measure productivity at all and trust in their intuition
for optimization or adopt sub-optimal measurements, which can lead to even worse
decisions or wrong incentive behavior [2].

In this study, we investigate a new approach to improve software development
productivity. By definition, removing waste from a process improves productivity
[3]. Waste is referred to as “any activity that consumes resources but creates no
value for customers“[4]. However, waste is often not easy to identify, since it
can be hidden behind administrative tasks, multitasking, poor prioritization,
c© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 50–66, 2023.
https://doi.org/10.1007/978-3-031-33976-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-33976-9_4


Waste Self-reporting for Software Development Productivity Improvement 51

and invisible cognitive processes [5]. This is, among other reasons, why waste
identification and removal is typically approached through action research or
case studies. External personnel can help a team or an organization to identify
and remove waste [6–8], but this makes waste identification and quantification
expensive. For that reason it is often performed as a one-time intervention, and
lacking a sustainable effect on productivity improvement.

In this paper, we present a concept for a systematic yet lightweight self-
reporting of waste for software development teams to guide and measure pro-
ductivity improvement. We first developed a self-reporting tool for identifying
and reporting waste and explored in a study whether the amount of reported
wasted time is a reliable proxy to track productivity improvements in the long
term. More concretely, we wanted to examine the following research questions:

RQ1: Can a software development team identify and quantify waste
by using self-reporting? The self-reporting approach should present a good
balance between weight and completeness to not miss important waste. The
reporting itself should not be seen as waste but should help adding value in
a sense to help improve productivity.

RQ2: Is self-reported amount of waste correlated with software deliv-
ery performance? To use the amount of reported waste for tracking produc-
tivity improvement we expect it to decrease as a team improves its produc-
tivity. Based on the PE-Model [1] which describes performance as a broader
term including software productivity we use performance as a surrogate for
productivity. To collect first evidence for this assumption we look for a rela-
tionship between delivery performance [9] and reported waste.

2 Related Work

“Waste” or “Muda” (Japanese for waste) has its origin in the concept of lean
manufacturing. The core principle of “lean” is to eliminate non-value-adding
activities, which are defined as waste. Womack & Jones proposed lean following
his analysis of the Toyota Production System (TPS) [4]. TPS prioritizes waste
removal by creating a culture that pursues waste identification and elimination
in the entire production of a vehicle [3]. The process discerns three types of activ-
ities: activities that create value for the customer; activities that create no value
for the customer but are currently necessary to manufacture the product; and
activities that create no value for the customer, are unnecessary. These are con-
sidered waste and therefore should be removed immediately. Initially, the TPS
characterized seven types of waste [3], which later were extended with two more
waste types by Womack & Jones [4]. In their work about Lean Software Devel-
opment (LSD), Mary and Tom Poppendieck adapted lean and the TPS from
manufacturing to software development, and identified seven waste categories in
software development [10].

Identifying waste in software development seems easy only at first glance, by
potentially just observing it [5]. Some studies describe how researchers identified



52 M. Sallin et al.

and removed waste in software development teams or organizations [6–8]. All of
them included external personnel which helped with the identification. Several
studies have been conducted to identify and categorize waste. Sedano et al.
defined a taxonomy of waste consisting of nine categories [5]. Al-Baik & Miller
conducted action research to identify and eliminate waste in an IT organization
and defined ten types of waste [8]. All the studies we found identified waste with
a one-time intervention and applied methods with a lot of overhead, or which
needed external personnel. Deshmukh and Srivastava reviewed lean methodology
in software development [11], while Meyer et al. identified context switching as a
universal productivity killer [12,13]. Khodawandi categorized tasks as value add,
necessary non-value add, and obvious non-value add, but found that this was
not granular enough to identify wasteful activities [14]. Halkos and Bousinakis
discovered that stress reduces productivity and personal satisfaction increases it
[15].

Studies identified waste using Value Stream Mapping (VSM) [6,16–18], open
or semi-structured interviews [8,19–22], analyzed content (like retrospectives) [5],
conducted observations [5] or used questionnaires [20,22,23]. Al-Baik & Miller
used three questions per waste category to identify waste [8]. Ikonen et al. did
the same but used the categories defined by LSD [21]. Besker et al. investi-
gated the time wasted caused by technical debt. They let the participants fill
out a survey twice a week during seven weeks [22]. The study of Alahyari et
al. used open questions but offered no help for recall [19]. Several researchers
used directed questions to identify and recall waste; they derived the questions
based on the waste categories. Interestingly, the well-known tool to identify waste
in manufacturing, VSM, is criticized for being used in the software development
context. The fundamental critique is that manufacturing is fundamentally differ-
ent from software engineering. When applied in practice, participants state that
the results are obvious but it takes a lot of time to apply VSM [8,11,17]. While
there have been several approaches to capture waste in software development, all
of them suffered from being either one-time interactions or heavy-weight, which
reduced their sustainability. Our concept is to implement a light-weight app-
roach for waste self-reporting which could be done on a regular basis to improve
software productivity in a more sustainable way.

In recent years, the productivity aspect in software development has gained
more attraction with the adoption of DevOps [9]. Besides its organizational
influence, DevOps often is seen as promising to improve delivery speed, pro-
ductivity, and quality [24]. Wiedemann et al. found that only four key metrics
(FKM) differentiate between low, medium, high, and elite performers: lead time
for change, deployment frequency, time to restore service, and change failure
rate [9]. These metrics help organizations and teams to determine whether they
are improving the overall IT performance. They are strongly correlated with
well-known DevOps practices and hence known as DevOps metrics. However,
the productivity metrics are lagging measurements and do not directly suggest
any actions. Moreover, less mature teams need guidance to be able to improve
on these specific metrics.



Waste Self-reporting for Software Development Productivity Improvement 53

3 Research Method

We organized the study into three phases. In the first phase we analyzed and
summarized the existing literature, theories, and frameworks about waste clas-
sifications. Then, we gathered qualitative data from the research context by
performing focus group interviews with the developers from the company par-
ticipating in the main study. The result was a categorization of waste enriched
with context-specific elements and examples. In the second phase we addressed
RQ1 “Can a software development team identify and quantify waste by using
self-reporting?” and we developed a self-reporting survey and running the sur-
vey, using the waste categorizations from the preparation phase. We designed
the survey by analyzing recall studies and existing waste identification studies.
The survey was planned as a daily self-reporting survey for three weeks, includ-
ing questions about participant’s experience with it. Finally, the third phase
comprised the analysis phase, in which we analyzed the gathered data to answer
RQ2 “Is self-reported amount of waste correlated with software delivery perfor-
mance?” At the end of the reporting period, the participants were requested to
fill out an additional survey, in which we asked them about their software deliv-
ery performance. The software delivery performance was determined using the
productivity metrics suggested by Forsgren et al. [9]. Using statistical analysis,
we investigated if there was a correlation with the self-reported waste collected
during self-reporting survey.

The study was carried out in an IT department of a large company in Switzer-
land. The group consists of strategic divisions that operate in the core markets
of the company and affiliated function units. Function units support the group’s
management and strategic divisions with cross-cutting-concerns. In 2019 the IT
function unit had around 1200 full-time equivalent employees with about 330
software developers. The unit runs only projects for internal customers. The
function unit is divided into six departments. One of the departments is the
department for software development and consists of 25 teams, of which 15 are
software development teams. We included the software development department
in the study and looked for participants for the focus groups to collect waste
examples and to fill out the reporting. The resulting pool of potential partici-
pants consisted of 164 individuals, distributed over 15 teams. For self-reporting,
we invited the potential participants to attend the study by e-mail. 26 employees
responded to this e-mail and agreed to participate. These people represent 10
different teams from the development department. For the self-reporting (SR),
twenty-two participants were included in the data analysis. Among them were
two women and sixteen men, with ages between 21 and 58. Their highest degree
of education is shown in Table 3, Table 2 shows the experience, and Table 4 the
employment.

The focus groups (FG) aimed to get an exhaustive number of waste examples.
We decided the size of one focus group to be six people and to host one session per
group. Six participants per focus group and two sessions could represent twelve
of the fifteen teams. To select the candidates for the focus group, we used quota
sampling to ensure half of the candidates attending will also participate in self-



54 M. Sallin et al.

reporting and half will not. Moreover, we ensured that a team is represented by
at most one person. Four and five participants did finally attend. Two of them
were women, and the rest were men, with an average age of 35 years. Table 1
shows their experience and Table 3 their highest degree of education.

Table 1. Experience of focus group participants.a

Years Working for Swiss Post Experience Software Engineering Experience DevOps

Agile methodologies Experience

0–2 5 (56%) 1 (11%) 1 (11%) 5 (56%)

3–5 1 (11%) 2 (22%) 3 (33%) 3 (33%)

6–10 2 (22%) 1 (11%) 5 (56%) 0

11–15 1 (11%) 3 (33%) 0 0

≥16 0 2 (22%) 0 1 (11%)
aDue to rounding errors, the percentages may do not sum up to 100%.

Table 2. Experience of self-reporting participants. a

Years Working for Swiss Post Experience Experience Experience

Software Engineering Agile methodologies DevOps

0–2 8 (36%) 4 (18%) 5 (23%) 11 (50%)

3–5 6 (27%) 3 (14%) 8 (36%) 8 (36%)

6–10 2 (9%) 4 (18%) 9 (41%) 3 (14%)

11–15 4 (18%) 5 (23%) 0 0

≥16 2 (9%) 6 (27%) 0 0
aDue to rounding errors, the percentages may do not sum up to 100%.

Table 3. Highest degree of education
of all study participants. a

Degree of Education FG SR

Vocational Education 0 1 (6%)

Higher Education 3 (33%) 2 (11%)

Bachelor of Science/BSc 4 (44%) 10 (56%)

Master of Science/MSc 1 (11%) 3 (17%)

PhD 1 (11%) 2 (11%)
aDue to rounding errors, the
percentages may do not sum up to
100%.

Table 4. Employment of self-reporting
participants.a

Employment Number

100% 10 (56%)

90% 3 (17%)

80% 4 (22%)

70% 1 (6%)
aDue to rounding errors, the
percentages may do not sum up to
100%.

4 Classification of Software Development Waste

We first conducted a literature review to get an initial list of empirical-based
waste classifications along with examples. We then combined the found classi-
fications to get one classification list that covered all found examples. Finally,



Waste Self-reporting for Software Development Productivity Improvement 55

we held two focus group sessions to collect further examples of waste from the
company and verified that the classifications also covers those examples. Table 5
lists the twelve categories used to classify the waste examples from the literature
review and the examples collected during the focus group sessions.

For the literature review we used the keywords “software development”,
“software engineering” and “waste”. As suggested by Gusenbauer [25], we used
three search engines to retrieve literature: ACM Digital Library, ScienceDirect,
and Scopus. We found sixteen empirical and peer-reviewed studies which are
about waste in software engineering according to lean thinking. We extracted
105 unique examples of waste and found three studies [5,8,19], containing a cat-
egorization of waste. Out of the 105 examples, 85 could be assigned to a category
of Sedano et al. [5]. The remaining examples could be assigned to the category
“Management & organizational aspect” or “processes” from Alahyari et al. [19].
We merged those two categories as the processes are an organizational aspect.
We did not use the categorization of Al-Baik and Miller [8] because the study
context was a whole IT organization and not just software development.

To gather waste examples from the research context we conducted two focus
group sessions [26] with the topic “How do I waste my time?” As preparation, the
participants were introduced to the concept of waste by reading an instruction
document prepared by the research team. We assigned each example to a waste
category identified in the literature review. The examples which could not be
assigned to a category were analyzed to define possibly new categories.

The first focus group session generated 77 examples from which 68 did fit
into existing categories. The second session generated 90 examples, 63 could be
assigned directly. 28 of the not categorized examples were about doing manual
work which could have been done automatically. For example, “requesting for
firewall rule changes” or “requesting for new database infrastructure”. The par-
ticipants mentioned that those things need to be done by looking information
up and sending e-mails within the organization. Hence, we defined an additional
category, “manual work”, as “The cost of doing work manually which could be
automated”. The remaining eight examples without a category were related to
unreliable infrastructure and the resulting troubleshooting, the lack of respon-
sibility and doing things that are not related to the person’s job. While those
activities are necessary to reach the overall goal and hence not waste at a first
glance, they distract from performing the value-adding activities. For example,
troubleshooting infrastructure and platforms should not be a common concern
for development teams. Therefore, we introduced the custom category “other
duties” as “the cost of doing work which is supposed to be done by others.”

5 Waste Self-reporting Survey

The second phase comprised the development of a waste quantifiable survey
questionnaire, the execution of the survey over the planned period of time, and
a final retrospection survey, in which the participants reported about their expe-
rience with the waste self-reporting. To be able to quantify the reported waste,



56 M. Sallin et al.

we defined a measurement for each waste category together with its measure-
ment unit. The identified measurements with their units are shown in Table 5
for each category and are explained in the following.

Table 5. Waste Categories incl. Measurement. WC11 & WC12 are new.

ID Waste Category Measurement and Unit

WC1 Building the wrong feature or product [5] Customer confidence (Likert-Scale)

WC2 Mismanaging the backlog [5] Time spent (h) & Delay (h)

WC3 Rework [5] Time spent (h)

WC4 Unnecessarily complex solutions [5] Time spent (h)

WC5 Extraneous cognitive load [5] Time spent (h)

WC6 Psychological distress [5] Stress (numerical rating scale)

WC7 Waiting/multitasking [5] Delay (h) & Context Switches (count)

WC8 Knowledge loss [5] Time spent (h)

WC9 Ineffective communication [5] Time spent (h)

WC10 Management & organizational aspect [19] Time spent (h) & Delay (h)

WC11 Manual work (new category) Time spent (h) & Delay (h)

WC12 Other duties (new category) Time spent (h)

Time Spent: The time spent is how much active time is spent on a wasteful
task or activity. One example is the time spent doing rework. The time spent is
measured using the unit hour.
Delay Time: Activities in some categories do not require active working time
but cause delays. Delays are harmful because they increase the lead time. The
delay is measured in hours. Delay typically occurs in combination with other
observable measurements. An example is the waste category “Management &
Organizational aspects.” This category is quantifiable by time spent (e.g., filling
out a form for approval) and with delay (e.g., waiting for approval until one can
continue with the activity).
Stress Level: Psychological distress is subjective to people who experience it.
The Cohen Perceived Stress Scale (PSS) is widely used to measure the perceived
stress. But as it is time-consuming to report. Hence, we took inspiration from
pain measurement and decided to use a numerical rating scale (numerical rating
scale) to measure psychological distress. On the scale zero means not stressed at
all and ten extremely stressed.
Customer Confidence: Creating a feature that a customer does not need is a
waste of time. However, if it is already evident when the feature is created that
it is not needed, why is it built? In hindsight, “Building the wrong feature or
product” can be quantified by the time wasted to build something; but while
working on it, this may not be that clear. Hence, we decided to not measure it
with the time spent, but rather with the degree of confidence a participant has,
that they work on the right thing from a customer perspective with a five-point
Likert scale.



Waste Self-reporting for Software Development Productivity Improvement 57

Context Switches: The category “waiting/multitasking” can be measured by
“delay time” but also by counting context switches. Interruptions or waiting
which causes context switches come at a high-cost.

For the question creation, we considered several factors about how recall
works. Specific questions to capture any kind of waste in a certain category
possibly increases the accuracy. However, the participants report daily, and a
too detailed and long survey leads to reporting fatigue. To prevent reporting
fatigue, the number of questions must be minimized, and answering must be
fast. To cover all categories with their measurements sixteen questions would
be necessary. We excluded two categories and measurements from the survey,
which finally resulted in twelve survey questions related to the categories, plus
two additional open questions to get extra information.

We excluded the category “mismanaging the backlog” and a part of “wait-
ing/multitasking” from the survey. The category “mismanaging the backlog” is
very broad. It goes from “duplicated work” onto “imbalance between feature
work and bug fixing” to “not enough ready stories.” Mismanaging the backlog
will lead to inefficient and ineffective working manners, unnecessary time spent,
and delays. Measuring this in a daily or weekly survey seems not an adequate
approach for several reasons: a questionnaire with multiple questions would be
necessary to identify a certain degree of mismanagement of the backlog; ask-
ing those questions seems more a topic for sprint retrospectives, rather than in
short intervals. Waste of the category “waiting/multitasking” is observable at
different scales. For example, multitasking can mean switching every few min-
utes between different tasks or working on another project every few days. This
is similar for waiting. One can wait a few minutes for a build to complete or
wait weeks to get formal approval to continue a task. Other categories already
cover the aspects of the large scale. For the small scale, interruptions and context
switches could simply be counted and there is promising research with a focus
on automatically detecting and reducing harmful interruptions [13,27]. For those
reasons, the category “waiting/multitasking” is not explicitly considered in the
self-report survey.

We ended up with the following list of the questions asked in the survey.
Beside the twelve waste identification questions, we added two optional ques-
tions: one to get qualitative information about stress and one to be able to
discover waste which did not fit into our categorization.

1. How stressed did you feel today?
2. How much time did you spend on preventable rework?
3. How much time did you spend on manual or routine work?
4. How much delay (or expected delay) did you experience caused by missing

automation/self-service or processes?
5. How much time did you lose because of ineffective communication?
6. How much time did you spend for unnecessary

administrative/organizational demands?
7. How much delay (or expected) did you experience caused by administra-

tive/organizational demands?



58 M. Sallin et al.

8. How much time did you spend on activities which are not your duties?
9. How confident are you that you worked on the right things today from a

customer perspective?
10. How much time did you spend on unnecessary cognitive load?
11. How much time did you spend on unnecessarily complex solutions?
12. How much time did you spend because of knowledge which wasn’t available?
13. Extra: What caused you stress?
14. Extra: Were there wasteful activities which you couldn’t report because they

did not belong to a question?

6 Data Collection

The data collection was conducted in three steps.

a) An initial survey gathered participants’ demographics.
b) Then, we conducted the main survey, which went over three weeks to gather

information about waste. In addition, before we started the self-reporting,
two participants used the survey for two days and gave informal feedback.

c) We concluded the data collection with a final survey to assess the com-
pleteness of the daily reporting (participants stated the days on which they
deliberately did not report), to assess the usefulness of the survey tool, and
to collect the productivity metrics data (see Sect. 7 details).

The software delivery performance was measured using the productivity met-
rics as defined by Forsgren et al. [9] and was captured from the participants at
the end of self-reporting period. We took the questions and answer options from
the state of DevOps report survey conducted by DORA in 2021. The daily
reported waste was grouped by measurement and aggregated over the whole
reporting period. The aggregation was the daily average, and the measurements
were stress, time spent, delay, and customer. To get the productivity metrics
score, we assigned the answers for the productivity metrics questions to a pro-
portionally increasing score and summed them per participant. The answer “I
don’t know/NA” was rated with a score of zero. The worst answer (slowest/least
stable) was rated with one and so on. We excluded participants who did specify
“I don’t know/NA” for each productivity metrics question from the data set.

The participants were asked about their subjective experiences in the final
survey. We asked about three aspects of the self-reporting tool. First, if the survey
helped them to recall the encountered waste. Second, if it helped identify waste,
and third if the reported waste during the three-week period was representative
of their usual workdays. Additionally, we wanted to know if the participants
would be ready to attend repeated measurement periods.

7 Results

All 26 participants completed the initial survey. 22 completed at least three daily
surveys of the main survey. The final survey was completed by 21 participants.



Waste Self-reporting for Software Development Productivity Improvement 59

In total, 229 reports of the daily main survey were filled out. 14 out of the 22
participants filled out the survey 10 times or more over the three week period.
On average, a participant reported about 4.6h of wasted time per day. Rework
is the category that is reported to cause the most waste. Rework is responsi-
ble for 20% of the reported waste while the next category is other duties with
15%. For delay, one participant reported about 4 h of delay per day on average.
Administrative demand caused around 5× as much delay as missing automation.
In 26.5% of the time, the respondents were “completely confident” to work on
the right things from a customer’s perspective. 44.2% of the respondents were
“somewhat confident” and 21.9% “neutral.” Only 7.5% of the time, the respon-
dents were “somewhat insecure” or “completely insecure” to work on the right
things. Figure 1 shows the distribution. The reported stress score had a mean
of 2.3, a median of 2, a standard deviation of 2.3. The minimum was zero, and
the maximum was eight. The most significant stresses mentioned in free text
were meetings (9×), deadlines (8×), and interruptions caused by calls or paral-
lel tasks (4×). To further validate the categorization we gave the participants
the possibility to report examples of waste which they think did not fit into one
of the given categories. We found fitting categories for all eighteen examples.

Completely confident

Somewhat confident

Neutral

Somewhat insecure

Completely insecure

Percentage

0 10 20 30 40 50

Fig. 1. Confidence to work on the right things.

RQ1: Can a software development team identify and quantify waste
by using self-reporting? Figure 2 shows the analysis of the value of and expe-
rience with the self-reporting 76% of the participants found the survey helpful
for recalling encountered waste (S1). Only 5% disagreed with that statement,
and 19% were neutral about it. 38% agreed or strongly agreed that the sur-
vey helped to identifying waste, 48% were neutral, and 14% disagreed (S2). For
both questions, nobody strongly disagreed. 81% of the participants agreed or
strongly agreed that the reported waste during the three-week reporting period
was representative of their usual workdays. 43% of the participants were willing
to regularly do self-reporting, 33% expressed neutrality and only 24% disagreed
with this statement. Overall, these results suggest some reason for optimism
about the approach. The causes need exploration: perhaps the daily schedule
was too much, or motivation, or lack of confidence were factors.



60 M. Sallin et al.

Fig. 2. Value of the waste self-reporting survey. S1: Helpful for recall, S2: Helpful
in identifying waste, S3: Representative of usual experience, S4: Willingness to do
regularly.

RQ2: Is self-reported amount of waste correlated with software
delivery performance? 21 participants filled out the final survey with the
productivity metrics questions. We excluded four of them, because they have
chosen “I don’t know/NA” for every of the four productivity metrics questions.
We calculated the mean daily waste reported per measurement, per participant
and day. Time spent and delay are both given in mean hours per day. The par-
ticipants reported using radio-buttons and selected hour ranges. We used the
mean of the given range. For the time spent, it was possible to report more
than eight hours per day due to the survey design. We corrected for this by
adjusting two from a higher value than eight to eight. The Table 6 shows the
Spearman correlation coefficient of the measures time spent, delay, stress and
customer together with the productivity metrics. The measurements delay, time
spent and stress show a low correlation and are not statistically significant. A
visual inspection of the scatter plot does also not suggest any trends. We looked
at the correlation between the productivity metrics score and the twelve waste
categories without aggregating them as well but found no statistically significant
correlation. Between the productivity metrics and customer confidence there is
a statistically significant moderate correlation. Participants with lower produc-
tivity metrics reported a higher confidence to work on the right things from a
customer’s perspective.

Table 6. The Spearman correlation coefficient and p-value for productivity metrics
and waste.

Time spent Delay Stress Customer

ρ −0.038 −0.27 −0.3 0.63

p 0.89 0.32 0.24 0.007



Waste Self-reporting for Software Development Productivity Improvement 61

8 Discussion

RQ1: Can a software development team identify and quantify waste
by using self-reporting?
The self-reporting survey usage by developers indicated that it assisted the recall
and quantification of software development waste. We found the survey to be
less helpful in identifying new wasteful activities for the participants. We learned
that three weeks of self-reporting was enough to get a representative picture of
the usually encountered waste. The participants have shown a great willingness
that they would participate in self-reporting regularly.

The large majority of the participants found the survey very helpful for
recall and remembering encountered waste. This finding indicates that the cat-
egories and related questions are good in creating a stimulus for recalling the
already known waste but are not as good in helping participants to identify
waste they are not aware of. Identification of waste was found to be difficult by
other researchers already [5,28]. Another aspect we found was that almost half
of the participants did not fill out the daily survey at least once. This shows
that a non-negligible share of the participants did not follow the process despite
granular information upfront and regular customized reminders. Further data
analysis would be needed to evaluate the cause for this.

The shortcomings of identification of new waste may be solved by address-
ing the described question-substitution effect, by a conceptual change and by
providing better tooling. Due to the way cognition works, we consider providing
more explanations and examples together with each question as not a promising
approach. We suggest to adapt techniques of de-biasing such as asking more
detailed/specific questions, changing the wording of the same question, or using
nudges. However, this must be balanced with the goal of having a lightweight
tool that does not burden the participants. The conceptual change may be to
reverse the approach by not asking for wasteful activities per category but by
asking for all activities and identifying wasteful sub-activities. The idea is similar
to what Khodawandi did [14].

Using dedicated software can improve waste reporting reliability by provid-
ing support, guidance, and motivation to users. Possible elements were reliable
reminders, gamification and automation. PersonalAnalytics by Meyer et al. can
be a good starting point and could integrate the context-switch/interruption
category [13]. Existing tools like RescueTime and ManicTime can provide inspi-
ration. A tool could provide a list of activities for users to choose from, like Kho-
dawandi did, and ask specific questions about each activity to identify waste.
Each activity can have multiple wasteful aspects, and the questions should be
based on waste categories and examples from this study.
RQ2: Is self-reported amount of waste correlated with software deliv-
ery performance?
The overall results suggest that teams with high score in the productivity met-
rics do not report significantly less waste than teams that score low. A possi-
ble interpretation might be that a team that improves and reduces waste gets



62 M. Sallin et al.

more sensitive to waste, and hence the reported total numbers do not signif-
icantly change. That is because self-reporting waste remains subjective. This
would make the absolute and relative amount of waste an unusable indicator for
measuring productivity improvement. However, it could be that the productiv-
ity metrics score is not a good metric to represent the team performance. An
alternative explanation is that a well-performing team, according to productiv-
ity metrics does not suffer from less waste, e.g., for organizational reasons. Or
that the hypothesis only holds when looking at one team and not for comparing
teams. Additionally, respondents who chose “I do not know/NA” for every pro-
ductivity metrics question were excluded. But if they choose this option for one
of the questions this is rated with zero points, which distorts the data.

Previous research somewhat contradicts our findings. Brown et al. found that
a high amount of rework significantly differs between low, medium, and high
performers [29]. However, they define rework as a combination of unplanned
work and rework. Moreover, it is unclear how precise the estimations of their
respondents were and if they are comparable with self-reporting waste at regular
intervals as done in our study. In the state of DevOps report of 2018, Forsgren et
al. found that higher software delivery performances were less prone to burnout
[30]. This might be an indication that stress is reduced with a higher productiv-
ity metrics. However, it has to be considered that they compared with only three
clusters of teams while we used a linear scale. Other researchers have already
found that reducing waste can sometimes be straightforward [5] but also chal-
lenging when it is outside of the control of a team [31]; this is in line with the
possibility that even a mature team with high productivity metrics suffers from
organizational waste, like other teams with lower maturity.

8.1 Limitations

Construct Validity: The literature review comes with the limitation that it
is unsure if we included all relevant studies. We used the term “waste” to
retrieve articles. However, authors may have used another term in their studies
to describe the phenomena of waste.

Participants read a waste document before the focus group, including a cat-
egorization example by Sedano et al. [5]. This could have caused bias and made
it easier for participants to recall waste examples fitting into those categories.
The moderator’s questions could have influenced the direction of the discussion.

Besides the already mentioned threats to validity for the waste example gath-
ering, the limitations for the categorization are rooted in subjectivity. Due to
timing constraints and the kind of work, we did not do researcher triangulation.

Finally, we acknowledge a deeper issue that relates to our measures but also
the lean concept of “waste”: whether the categories identifies truly reflect waste
in the sense of resource allocation without value. Determining this would require
careful study of the decisions made by the organization and their outcomes.
Internal Validity: The amount of self-reported waste needs to be interpreted
with caution because, as with most survey designs, responses may have been
affected by the subjectivity of the respondents. The answer about the time was



Waste Self-reporting for Software Development Productivity Improvement 63

given as radio buttons with the span of two hours. This methodological decision
led to a loss of accuracy. Due to the pragmatic approach of self-reporting using
a survey, it was possible for participants to report more than eight hours of time
spent waste per day. They were advised to not report waste twice. Nevertheless,
we found participants which did not always follow this rule. We corrected for this
in the productivity metrics and waste correlation but not for the total reported
waste. Participants missed or skipped some daily reportings. Nevertheless, the
weeks with missing daily reports were included in the analysis because the visual
assessment did not show that missing data led to a systematic overestimation or
underestimation.

Though not relevant for the analysis, the following aspects have to be con-
sidered when interpreting the data. First, participants did not report during the
same three weeks. Second, they did not all have the same degree of employment.
Third, not all of them reported the whole three weeks but dropped out early. The
self-reporting behavior and the answers about the self-report experience, espe-
cially the willingness to do self-reporting regularly, need to be interpreted with
the consideration of selection bias. The invitation to participate in the study
contained the information that it would be necessary to fill out a questionnaire
every day and week.
External Validity: Despite reaching theoretical saturation for the categorization
of waste, it is rooted in qualitative research and can not be generalized for all
organizations. Another limitation lies in the low amount of data (sample size is
small) and the sampling (reporting weeks not equally distributed over the year).
Thus, the results of the applied statistical methods must also be interpreted with
caution. Besides the methodological limitations there is a conceptual limitation.
We acknowledge our approach will most likely not be able to reveil waste when
it is at the core of somebody’s job description but a holistic perspective is still
necessary [28].

9 Conclusion and Future Work

The developed categorization of waste covered all waste encountered by the
self-reporting participants, so appears to be a useful basis for future work in
this area. Many study participants indicated readiness to engage in self-reports
sessions regularly, though some expressed reservations, and in practice a number
of missed reports suggests a need to explore causes – perhaps survey frequency
and consequent fatigue. We speculate that the practicality of self-reporting could
be significantly improved with dedicated tooling.

We did not find a significant relationship between the amount of waste and
the productivity metrics. Hence, with this study we cannot provide evidence
that the self-reported amount of waste decreases with improved software delivery
performance. Nevertheless, we encourage doing further research and conducting
a larger and longitudinal study. Future research should especially consider the
limitations our study has illustrated and adjust the methodology accordingly.



64 M. Sallin et al.

More research is necessary to improve our approach, to validate our findings
and to be able to draw robust conclusions. We suggest conducting future research
regarding the following topics: 1) software development waste categorization
should be validated in other organizations. 2) investigate how to reduce the
self-reporting burden using dedicated tooling and automatic measurement. 3)
replicate this study and the statistical analysis with more candidates, while
addressing some of the limitations.

References

1. Wagner, S., Deissenboeck, F.: Defining productivity in software engineering. In:
Sadowski, C., Zimmerman, T. (eds.) Rethinking Productivity in Software Engi-
neering, Berkeley, CA, Apress (2019). ch. 4

2. Ko, A.J.: Why we should not measure productivity. In: Sadowski, C., Zimmerman,
T. (eds.) Rethinking Productivity in Software Engineering, Berkeley, CA, Apress
(2019). ch. 3

3. Coniam, F.: A study of the toyota production system from an industrial engineering
viewpoint. Manuf. Eng. 69(10), 14 (1990)

4. Womack, J.P., Jones, D.T.: Lean thinking-banish waste and create wealth in your
corporation. J. Oper. Res. Soc. 48(11), 1148 (1997)

5. Sedano, T., Ralph, P., Peraire, C.: Software development waste. In: Proceedings
- 2017 IEEE/ACM 39th International Conference on Software Engineering, ICSE
2017 (2017)

6. Mujtaba, S., Feldt, R., Petersen, K.: Waste and lead time reduction in a software
product customization process with value stream maps. In: Proceedings of the
Australian Software Engineering Conference, ASWEC (2010)

7. Bufon, M.T., Leal, A.G.: Method for identification of waste in the process of soft-
ware development in agile teams using lean and scrum. In: Uden, L., Ting, I.-H.,
Corchado, J.M. (eds.) KMO 2019. CCIS, vol. 1027, pp. 466–476. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-21451-7 40

8. Al-Baik, O., Miller, J.: Waste identification and elimination in information tech-
nology organizations. Empirical Softw. Engg. 19(6), 12 (2014)

9. Forsgren, N., Smith, D., Humble, J., Frazelle, J.: State of DevOps Report 2019.
Technical Report, DORA (2019)

10. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit
(The Agile Software Development Series). Addison-Wesley Professional, Boston
(2003)

11. Deshmukh, M., Srivastava, P.: Literature review of lean methodology and research
issues for identifying and eliminating waste in software development. In: Reddy,
A.N.R., Marla, D., Favorskaya, M.N., Satapathy, S.C. (eds.) Intelligent Manufac-
turing and Energy Sustainability. SIST, vol. 213, pp. 375–388. Springer, Singapore
(2021). https://doi.org/10.1007/978-981-33-4443-3 36

12. Meyer, A.N., Fritz, T., Murphy, G.C., Zimmermann, T.: Software developers’ per-
ceptions of productivity. In: Proceedings of the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, vol. 16–21, November 2014

13. Meyer, A.N., Fritz, T., Zimmermann, T.: Fitbit for developers: self-monitoring at
work. In: Sadowski, C., Zimmerman, T. (eds.) Rethinking Productivity in Software
Engineering, Berkeley, CA, Apress (2019). ch. 22

https://doi.org/10.1007/978-3-030-21451-7_40
https://doi.org/10.1007/978-981-33-4443-3_36


Waste Self-reporting for Software Development Productivity Improvement 65

14. Khodawandi, D.: Separating and quantifying value and waste to improve opera-
tional performance in software development. In: Proceedings of the 1st Interna-
tional Symposium on Business Modeling and Software Design (2011)

15. Halkos, G., Bousinakis, D.: The effect of stress and satisfaction on productivity.
Int. J. Prod. Perf. Manage. 59(5), 6 (2010)

16. Berrahal, W., Marghoubi, R.: Lean continuous improvement to information tech-
nology service management implementation: Projection of ITIL framwork. In: 2016
International Conference on Information Technology for Organizations Develop-
ment, IT4OD 2016 (2016)

17. Ali, N.B., Petersen, K., Schneider, K.: FLOW-assisted value stream mapping in
the early phases of large-scale software development. J. Syst. Softw. 111, 213–227
(2016)

18. Lehtonen, T., Kilamo, T., Suonsyrja, S., Mikkonen, T.: Continuous, lean, and
wasteless: minimizing lead time from development done to production use. In:
Proceedings - 42nd Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2016 (2016)

19. Alahyari, H., Gorschek, T., Svensson, R.B.: An exploratory study of waste in soft-
ware development organizations using agile or lean approaches: a multiple case
study at 14 organizations. Inf. Softw. Technol. 105, 78–94 (2019)

20. Bjarnason, E., Wnuk, K., Regnell, B.: Are you biting off more than you can chew? A
case study on causes and effects of overscoping in large-scale software engineering.
Inf. Softw. Technol. 54(10), 1107–1124 (2012)

21. Ikonen, M., Kettunen, P., Oza, N., Abrahamsson, P.: Exploring the sources of
waste in Kanban software development projects. In: Proceedings - 36th EUROMI-
CRO Conference on Software Engineering and Advanced Applications, SEAA 2010
(2010)

22. Besker, T., Martini, A., Bosch, J.: Software developer productivity loss due to
technical debt-a replication and extension study examining developers’ develop-
ment work. J. Syst. Softw. 156, 10 (2019)

23. Tuan, N.N., Thang, H.Q.: Combining maturity with agility - lessons learnt from a
case study. In: ACM International Conference Proceeding Series (2013)

24. Lwakatare, L.E., et al.: DevOps in practice: a multiple case study of five companies.
Inf. Softw. Technol. 114, 217–230 (2019)

25. Gusenbauer, M., Haddaway, N.R.: Which academic search systems are suitable
for systematic reviews or meta-analyses? Evaluating retrieval qualities of Google
Scholar, PubMed, and 26 other resources. Res. Synth. Methods 11(2), 3 (2020)

26. Kontio, J., Bragge, J., Lehtola, L.: The focus group method as an empirical tool
in software engineering. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to
Advanced Empirical Software Engineering, Springer, London, pp. 93–116 (2008).
https://doi.org/10.1007/978-1-84800-044-5 4

27. Züger, M., Meyer, A.N., Fritz, T., Shepherd, D.: Reducing interruptions at work
with FlowLight. In: Sadowski, C., Zimmerman, T. (eds.) Rethinking Productivity
in Software Engineering, Berkeley, CA, Apress (2019). ch. 23

28. Power, K., Conboy, K.: Impediments to flow: rethinking the lean concept of ‘Waste’
in modern software development. In: Cantone, G., Marchesi, M. (eds.) XP 2014.
LNBIP, vol. 179, pp. 203–217. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06862-6 14

https://doi.org/10.1007/978-1-84800-044-5_4
https://doi.org/10.1007/978-3-319-06862-6_14
https://doi.org/10.1007/978-3-319-06862-6_14


66 M. Sallin et al.

29. Brown, A., Forsgren, N., Humble, J., Kersten, N., Gene, K.: State of DevOps
Report 2016, Puppet + DORA, Technical Report (2016)

30. Forsgren, N., Kersten, M.: DevOps metrics. Commun. ACM 61(4), 3 (2018)
31. Rodŕıguez, P., Partanen, J., Kuvaja, P., Oivo, M.: Combining lean thinking and

agile methods for software development a case study of a finnish provider of wireless
embedded systems. In: Proceedings of the Annual Hawaii International Conference
on System Sciences (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


A Lean Approach of Managing Technical Debt
in Agile Software Projects – A Proposal

and Empirical Evaluation

Abdullah Aldaeej1(B), Anh Nguyen-Duc2, and Varun Gupta3

1 Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
aaaldaeej@iau.edu.sa

2 University of South Eastern Norway, Notodden, Norway
angu@usn.no

3 GISMA University of Applied Sciences, Potsdam, Germany
varun.gupta@gisma.com

Abstract. Technical Debt Management (TDM) includes activities such as identi-
fying, measuring, and prioritizing technical debt. It is mainly performed to proac-
tively mitigate the risk of losing the maintainability and evolvability of the soft-
ware product which results in reducing the team velocity. Despite the importance
of TDM, its adoption in software companies remain limited. Software companies
are witnessing high market demand and competition that make delivering cus-
tomer value outweighs the effort invested in TDM activities. Since the impacts of
technical debt are uncertain and evident only in the long run, it is more difficult
for companies with very limited resources to proactively spend their resources
on TDM. In this paper, we propose a lean approach to facilitate the adoption of
TDM in software companies with very limited resources. Based on this approach,
TDM is driven by project management metrics, such as team or sprint velocity,
and velocity variance. We conducted an initial evaluation of the concept of this
approach through a short survey of 43 software project/product managers. Most
of the survey respondents have a positive impression about our approach, which
will encourage us to proceed further using more robust empirical evaluation.

Keywords: Technical debt · Project management · Agile software
development · Sprint velocity

1 Introduction

Managing technical debt is reportedly non-trivial tasks for project managers and team
leaders in software development projects. Technical Debt (TD) is a metaphor for a
work-around technical solution that is not sustainable and requires future rework [1]. It
has been shown as an important phenomenon to expedite the development in the short
term in both large companies [2] and small and startup companies [3]. Technical Debt
Management (TDM) is a process that includes different activities such as identifying,
measuring, monitoring, prioritizing, and repaying TD. It has been adopted by some

© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 67–76, 2023.
https://doi.org/10.1007/978-3-031-33976-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-33976-9_5


68 A. Aldaeej et al.

large software companies, but at different levels of maturity [2, 4]. Although TDM is
important to proactively manage the risk of TD, it introduces extra activities to the
regular development which leads to extra costs [2, 5]. Consequently, many companies
(especially the ones with limited resources) would find TDM difficult to adopt as part
of their development process. Furthermore, it is difficult to identify and manage large
instances of TD items in agile software development [6].

Managing technical debt is not independent from other aspects of project manage-
ment and the project development life cycle. When it is managed, TD is often treated
as a task in the product backlog along with other tasks such as new features and bug
fixes. Measuring and prioritizing TD in the product backlog depends on the evaluation
of its negative impact on the product. Some negative impacts of TD has been found from
literature, for instance, delaying the delivery of releases [7], increasing the number of
maintenance activities [8], and reducing the team productivity [9]. However, knowing
the negative impact of TD is only one half of the story. Agile project managers need a
precise way of measuring this impact, to better communicate it to other stakeholders.

In agile projects, there are possibilities with using agile productivity metrics, such as
velocity, cycle time and takt time [10, 11] for measuring TD implications. Sprint velocity
is among the most common productivity metrics in agile projects that use Scrummethod
[10], by showing the number of tasks (i.e., story points) that the team can accomplish
in one sprint. Cycle time is defined as the amount of time that passed from when work
actually started to fulfilling the work [12]. Takt time is defined as the average time
interval between the start of development of two sequential software versions to meet
customer demand [13, 14]. This measure helps to identify if the software team can meet
the customer demand, exceeding the demand (over producing) or unable tomeet demand
(under producing). To the best of our knowledge, there is no study that connects the agile
team productivity metric with the TDM process.

In this paper,we propose a lean approach for TDMby incorporating the usage of agile
productivity metrics within the TDM process. This lean approach is used specifically for
TDMwithin the agile software developmentmethodology. In general, lean is an approach
that focusses on deliveringmaximumvaluewithminimumwaste. Our approach is “lean”
in a way that emphasizes on minimizing the effort and complexity of TDM, by focusing
on monitoring and addressing TD implications quantitatively. This can facilitate the
adoption of TDM by 1) providing a lightweight approach for TDM in agile software
projects, and 2) bridging the communication gap between technical and non-technical
people for decisions related to allocating resources for TDM. We conducted a short
survey of 43 software product and project managers to initially evaluate the concept of
our approach. The results reveal that most project managers foresee potential advantages
of our approach.

2 The Lean Technical Debt Management Process

2.1 The Management Approach

The proposed approach introduces a new paradigm of dealing with TD. Based on this
approach, TDM is driven by a popular metric in agile project management such as sprint
velocity. In addition to its usage for measuring the development velocity, we use this



A Lean Approach of Managing Technical Debt in Agile Software Projects 69

metric as a quantitative measure for TD implication. Since dealing with TD involves
high uncertainty about its future impacts (i.e., difficulty to measure TD interest), TDM
is proceeded based on a control threshold of the development velocity.

Our approach applies a lean mechanism that simplifies the way of dealing with TD.
It assumes that issues that directly affect the development velocity are considered TD
issues. This assumption is based on evidence from previous studies that TD can be
manifested in multiple aspects (beyond software code and architecture) such as process,
people, social [11, 15]. Also, TD related to process and people are found to be more
interested to project management practitioners [16]. In addition, the development speed
(i.e., delivery speed) is identified as the most common effect of TD [7].

Figure 1 shows our lean approach for TDM. It connects some project management
activities (PM layer) with TDM activities (TDM layer). At the PM layer, the agile
project managers monitor the team velocity at the end of each sprint using some metrics
(e.g., sprint velocity) which is usually available in the PM data. In addition, the project
managers need to establish control thresholds for the velocity that determine the optimal
velocity range.At the end of each sprint, the projectmanagers check the variance between
the actual and optimal sprint velocity. If the actual velocity is below the optimal, then
the project managers can measure the impact of such low velocity by calculating the
difference (i.e., TD interest). The following formulas are used to measure velocity and
TD interest:

Actual (V ) = Actual velocity of the current sprint (1)

Optimal (V ) = MD(optimal velocity range) (2)

Current (TDI) = Optimal (V )−Actual (V ) (3)

Future (TDI) = Current (TDI) ∗ # Planned release (4)

where V indicates Velocity, MD refers to Median, TDI stands for TD Interest, and # is
the Number of future released to be considered in the prediction.

Since our approach is driven by TD implication (which is measured using the devel-
opment velocity), It begins by measuring TD interest before identifying TD items. The
TD interest is precisely measured for the present as the difference between current and
optimal velocity (step 2.1 in Fig. 1). After that, the TD interest can be estimated in the
future considering the most recent TD interest and the number of future releases/sprints
that captures the future timeframe (step 2.2 in Fig. 1). This information can help project
managers to communicate with non-technical stakeholders (e.g., high management or
investors). It also supports decision making related to allocating resources for TDM. If
the non-technical stakeholders decided to spend resources for TDM, then the project
managers can begin the process of TDM (i.e., move to the TDM layer). If not, then the
project managers will remain on the PM layer and continue 1) monitoring the devel-
opment velocity, and 2) informing the non-technical stakeholders about the velocity
variance and its related TD impacts.

TDM layer includes the main TDM activities [4], which are proceeded after the
agreement to allocate resources for TDM. This layer includes some TDM activities



70 A. Aldaeej et al.

such as TD identification (step 3 in Fig. 1), TD measurement (step 4 in Fig. 1), TD
prioritization (step 5 in Fig. 1), and TD repayment (step 6 in Fig. 1). The TDM layer
is adopted from the TDM frameworks in [4, 17]. However, we eliminate activities such
as TD monitoring and TD prevention since our approach concentrates on monitoring
TD implications (not TD items). Also, our approach applies a different mindset for
TDM that is driven by a control threshold of TD implications (with less emphasis on
TD prevention). In the TDM layer, the project managers begin the TDM process by
identifying TD items which are (according to our approach) the causes that are directly
associated with the velocity reduction. Then, TD items are measured as the cost of fixing
each item (i.e., TD principal). After that, TD items can be prioritized based on their fixing
cost and their impact on the development velocity. Finally, TD repayment is performed
starting from TD items with highest priority.

Fig. 1. Lean TDM process

2.2 Use Scenarios

Table 1 shows an example of how the leanTDMapproach can be applied. In this example,
we classified the development velocity into three risk levels: low risk, moderate risk,
and high risk. The low-risk indicates the optimal speed range based on the company’s
goal. At this level (low risk), the team can confidently skip TDM. It means that it is not
efficient to allocate resources for TDM since no symptoms appears. When the speed is



A Lean Approach of Managing Technical Debt in Agile Software Projects 71

at the moderate-risk range, it is an indication for early TD symptoms. At the moderate
risk level, the team needs to keep non-technical stakeholders informed about this early
TD symptoms and their impact by calculating the TD interest as the difference between
current and optimal/planned speed. This high-level of measuring TD interest considers
the observed (fact) consequences of TD that is the gap in the development speed. In
case the optimal speed is determined based on a range of value, the median value of the
optimal range can be used to compare with the actual value.

In addition, the lean TDM approach can be used to provide a guidance (recommen-
dation) for decisions to allocate resources for TDM. For example, at optimal velocity
range, the recommendation would be spending resources on TDM is not mandated.
When reaching the moderate range, it is recommended to allocate resources for TDM,
but TD repayment is optional or can be partially implemented. At the low velocity, TD
repayment is needed. Based on this example, the team should not wait until reaching
the low velocity. But rather proactively informing the high management about TD con-
sequences when reaching the moderate range, using precise fact-based measures of TD
interest.

The example in Table 1 is used only to illustrate one way of applying our approach.
But it is flexibale for any context to select its own metric and control threshold for the
development velocity. At the end, the overall concept is the same that to have a common
control threshold for the development velocity that is applied within the team, and such
a threshold drives the TDM process and TD interest measurements.

Table 1. Lean TDM Approach at PM Layer – An Example.

The dev speed  Risk level 
Current TD 

interest 
Future TD 

interest 

Guidance for effective 
TDM resource alloca-

tion 

Optimal speed 

Low risk -- -- 

No resources should 
be spent on managing 
or repaying TD  

Moderately 
deteriorated speed 

Moderate risk Equation (3) Equation (4)

The team should 
allocate some re-
sources for managing 
TD 

Highly 
deteriorated speed 

High risk Equation (3) Equation (4) 

The team should 
allocate some re-
sources for managing 
and repaying TD 



72 A. Aldaeej et al.

3 Empirical Validation

To initially validate our proposed lean TDM approach, we surveyed 43 software
project/product managers from different software companies around the world. We tar-
geted software project/product managers because our approach focusses on the project
management activities. For example, seeking resources for the product from other stake-
holders is the main role for the project/product managers. Sampling of this population
was performed using convenience sampling method [18]. In addition, we recruited some
participants (22 out of 43) from a professional recruitment channel, which is Prolific1.

The survey instrument is available in our supplemental material2. It is a short survey
that primarily intended to communicate and get feedback about our lean TDM approach.
It consists of three sections. The first section presents a brief explanation about our idea to
participants, and shows a table that illustrates our idea. The second section includes some
questions that characterize the participants, such as company location, company size,
and years of experience in the project/productmanagement role. Finally, the third section
asked respondents to initially evaluate our idea based on three technology acceptance
metrics from TAM (Technology Acceptance Model) [13], which are perceived ease of
use, usefulness, andpredicted future use.Before disseminating the survey,wevalidate the
survey internally that each author read the survey’s questions and provide his feedback.
At the end, we conducted a consensus session where we discuss the comments and reach
consensus about the survey.

A total of 43 participants filled the survey. Figure 2 shows the characteristic of our
participants.Most of the participantsworks in companies in Europewith less than 5 years
of project management experience. In terms of company size, our participants work in
different sizes of company, but most of them in small companies.

Fig. 2. Characteristics of participant

Figure 3 summarizes the participants’ opinion on our proposed approach. It presents
their answers to the closed questions in the third section of the survey (TAM related
questions). On average 61.6% of the respondents perceived that the proposed approach
would be easy to use (strongly agree or agree). In assessing the usefulness, on average
79.05% of the respondents strongly agree or agree that the proposed approach would

1 https://prolific.co/.
2 https://bit.ly/3JCWQzy.

https://prolific.co/
https://bit.ly/3JCWQzy


A Lean Approach of Managing Technical Debt in Agile Software Projects 73

be useful for project managers. Finally, on average 54.7% of the respondents strongly
agree or agree that they will use the proposed approach in future to manage TD.

Fig. 3. Results of the initial evaluation to lean TDM approach

Some participants reported in the open question that the proposed approach is more
helpful for an organization with very limited resources. For example, small organiza-
tions or startups usually do not have dedicated quality assurance roles. This kind of
organization often relies on external support (e.g., consultancy agency) when such qual-
ity assurance is required. However, other participants were a bit skepticism as the actual
usefulness and ease of use could only be predicted after using the proposed process. The
dataset is available in our supplemental material3. In sum, this initial results provides
early insights into the potential usefulness of our approach by software project managers.

4 Discussions

Previous work proposed different TDM frameworks and strategies to encourage the use
of TDM in practice [19, 20]. Other studies introduced different techniques to support
software teams to perform specific TDM activities, such as TD identification [21], TD
measurement [22], TD prioritization [23]. However, most of the previous studies focus
on TDM from certain dimensions (e.g., code, design, and architecture, etc.). Since TD
is a multidimensional phenomenon, it can be difficult to have a framework that manages
all aspects of TD. What distinguish our paper from previous work is that it addresses the
multidimensionality of TD by increasing its level of abstraction. That we consider TD
as issues that are associated with the development speed. We think that this approach
can simplify the adoption of TDM in practice. It can also amplify the communication
bridge between TDM and agile PM activities.

3 https://bit.ly/3Y0PJ8J.

https://bit.ly/3Y0PJ8J


74 A. Aldaeej et al.

4.1 Threats to Validity

There are four main limitations in our approach. First, we assume that all issues con-
tributed to the reduction of development velocity are considered TD. Although this
assumption might simplify the adoption of TDM, it can introduce a risk of including
some issues not related to TD. To address this risk, we plan (in our future work) to add
a risk factor in our equation to account for this risk. Second, our approach depends on
existing metrics that are used to measure team velocity. We assume that project man-
agers have an existing metric in place related to team velocity. However, a metric such as
team/sprint velocity is found to be a common one in agile software project management
[10] which can minimize this threat in the agile software development context. Third,
the process of identifying TD items (step 3 in Fig. 1) depends on people experience and
how thoughtful they investigate the issues that cause the development speed reduction.
So, the quality of TD identification depends on people experience. Lastly, we recruited
some participants using Prolific, a professional channel for research participant recruit-
ment. Despite the limitation for its lack of explicit design, it has emerged as a viable and
cost-efficient option for researchers [24].

5 Conclusions

The application of TDM in practice remains limited especially in organizations with lim-
ited resources (i.e., those organizations that do not have amature quality assurance team).
In this paper, we proposed a lean approach to facilitate the adoption of TDM in such
organizations. Our approach introduces a new mindset for managing TD that is driven
by TD implications/symptoms (primarily the velocity of development). It introduces an
alternative way of measuring TD interest, which is based on fact-based consequences of
TD (i.e., the gap between the actual and planed development speed). We sent a short sur-
vey to software project/productmanagers to get their initial feedback about our approach.
The majority of them have positive expectations for our approach. For future work, we
plan to perform a longitudinal case study, which includes interviews at different points
of time, to empirically validate and refine our approach.

References

1. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and practice.
IEEE Softw. 29(6), 18–21 (2012). https://doi.org/10.1109/MS.2012.167

2. Martini, A., Besker, T., Bosch, J.: Technical debt tracking: current state of practice: a survey
and multiple case study in 15 large organizations. Sci. Comput. Program. 163, 42–61 (2018).
https://doi.org/10.1016/j.scico.2018.03.007

3. Cico, O., Souza, R., Jaccheri, L., Nguyen Duc, A., Machado, I.: Startups transitioning from
early to growth phase - a pilot study of technical debt perception. In: Klotins, E., Wnuk, K.
(eds.) ICSOB 2020. LNBIP, vol. 407, pp. 102–117. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-67292-8_8

4. Yli-Huumo, J., Maglyas, A., Smolander, K.: How do software development teams manage
technical debt? – an empirical study. J. Syst. Softw. 120, 195–218 (2016). https://doi.org/10.
1016/j.jss.2016.05.018

https://doi.org/10.1109/MS.2012.167
https://doi.org/10.1016/j.scico.2018.03.007
https://doi.org/10.1007/978-3-030-67292-8_8
https://doi.org/10.1016/j.jss.2016.05.018


A Lean Approach of Managing Technical Debt in Agile Software Projects 75

5. Guo, Y., Seaman, C., da Silva, F.Q.B.: Costs and obstacles encountered in technical debt
management – a case study. J. Syst. Softw. 120, 156–169 (2016). https://doi.org/10.1016/j.
jss.2016.07.008

6. Holvitie, J., et al.: Technical debt and agile software development practices and processes:
an industry practitioner survey. Inf. Softw. Technol. 96, 141–160 (2018). https://doi.org/10.
1016/j.infsof.2017.11.015

7. Ramač, R., et al.: Prevalence, common causes and effects of technical debt: Results from a
family of surveys with the IT industry. J. Syst. Softw. 184, 111114 (2022). https://doi.org/10.
1016/j.jss.2021.111114

8. Kruchten, P., Nord, R., Ozkaya, I.: Managing Technical debt - Reducing friction in software
development. in SEI Software Engineering. Pearson Education (2019)

9. Besker, T., Martini, A., Bosch, J.: Software developer productivity loss due to technical debt
- a replication and extension study examining developers’ development work. J. Syst. Softw.
(2019). https://doi.org/10.1016/j.jss.2019.06.004

10. Kupiainen, E., Mäntylä, M.V., Itkonen, J.: Using metrics in agile and lean software develop-
ment – a systematic literature review of industrial studies. Inf. Softw. Technol. 62, 143–163
(2015). https://doi.org/10.1016/j.infsof.2015.02.005

11. Malakuti, S., Heuschkel, J.: The need for holistic technical debt management across the value
stream: lessons learnt and open challenges. In: 2021 IEEE/ACM International Conference
on Technical Debt (TechDebt), pp. 109–113 (2021). https://doi.org/10.1109/TechDebt52882.
2021.00021

12. Budacu, E.N., Pocatilu, P.: Real time agile metrics for measuring team performance.
Informatica Economica 22(4) (2018)

13. Taghizadegan, S.: Design for lean/kaizen six sigma. In: Taghizadegan, S. (ed.) Essentials of
Lean Six Sigma, pp. 59–101, Butterworth-Heinemann, Burlington (2006). https://doi.org/10.
1016/B978-012370502-0/50008-4

14. Thollander, P., Karlsson, M., Rohdin, P., Wollin, J., Rosenqvist, J.: 14 - energy management
using lean. In: Thollander, P., Karlsson, M., Rohdin, P., Wollin, J., Rosenqvist, J. (eds.)
Introduction to Industrial Energy Efficiency, pp. 259–287. Academic Press (2020). https://
doi.org/10.1016/B978-0-12-817247-6.00014-6

15. Martini, A., Stray, V., Moe, N.B.: Technical-, social- and process debt in large-scale agile: an
exploratory case-study. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 112–119. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_14

16. Gomes, F., dos Santos, E.P., Freire, S.,Mendonça,M.,Mendes, T.S., Spínola, R.: Investigating
the point of view of project management practitioners on technical debt - a preliminary
study on stack exchange. In: 2022 IEEE/ACM International Conference on Technical Debt
(TechDebt), pp. 31–40 (2022). https://doi.org/10.1145/3524843.3528095

17. Seaman, C., Guo, Y.: Measuring and monitoring technical debt. In: Advances in Computers,
p. 22 (2011)

18. Baltes, S., Ralph, P.: Sampling in software engineering research: a critical review and
guidelines. Empir. Softw. Eng. 27(4), 94 (2022). https://doi.org/10.1007/s10664-021-10072-8

19. Nikolaidis, N., Zisis, D., Ampatzoglou, A., Chatzigeorgiou, A., Soudris, D.: Experience with
managing technical debt in scientific software development using the EXA2PRO framework.
IEEE Access 9, 72524–72534 (2021). https://doi.org/10.1109/ACCESS.2021.3079271

20. Wiese, M., Rachow, P., Riebisch, M., Schwarze, J.: Preventing technical debt with the TAP
framework for technical debt aware management. Inf. Softw. Technol. 148, 106926 (2022).
https://doi.org/10.1016/j.infsof.2022.106926

21. Tu, H., Menzies, T.: DebtFree: minimizing labeling cost in self-admitted technical debt iden-
tification using semi-supervised learning. Empir. Softw. Eng. 27(4), 80 (2022). https://doi.
org/10.1007/s10664-022-10121-w

https://doi.org/10.1016/j.jss.2016.07.008
https://doi.org/10.1016/j.infsof.2017.11.015
https://doi.org/10.1016/j.jss.2021.111114
https://doi.org/10.1016/j.jss.2019.06.004
https://doi.org/10.1016/j.infsof.2015.02.005
https://doi.org/10.1109/TechDebt52882.2021.00021
https://doi.org/10.1016/B978-012370502-0/50008-4
https://doi.org/10.1016/B978-0-12-817247-6.00014-6
https://doi.org/10.1007/978-3-030-30126-2_14
https://doi.org/10.1145/3524843.3528095
https://doi.org/10.1007/s10664-021-10072-8
https://doi.org/10.1109/ACCESS.2021.3079271
https://doi.org/10.1016/j.infsof.2022.106926
https://doi.org/10.1007/s10664-022-10121-w


76 A. Aldaeej et al.

22. Avgeriou, P., et al.: An overview and comparison of technical debt measurement tools. IEEE
Software (2020). https://doi.org/10.1109/MS.2020.3024958

23. Lenarduzzi, V., Besker, T., Taibi, D.,Martini, A., Fontana, F.A.: A systematic literature review
on technical debt prioritization: strategies, processes, factors, and tools. J. Syst. Softw. 171,
110827 (2021). https://doi.org/10.1016/j.jss.2020.110827

24. Palan, S., Schitter, C.: Prolific.ac—a subject pool for online experiments. J. Behav. Exp.
Financ. 17, 22–27 (2018). https://doi.org/10.1016/j.jbef.2017.12.004

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/MS.2020.3024958
https://doi.org/10.1016/j.jss.2020.110827
https://doi.org/10.1016/j.jbef.2017.12.004
http://creativecommons.org/licenses/by/4.0/


An Empirical Study About the Instability
and Uncertainty of Non-functional

Requirements

Luiz Viviani1 , Eduardo Guerra2 , Jorge Melegati2(B) ,
and Xiaofeng Wang2

1 Institute for Technological Research, São Paulo, Brazil
2 Free University of Bozen-Bolzano, Bolzano, Italy

{eduardo.guerra,jorge.melegati,xiaofeng.wang}@unibz.it

Abstract. Managing non-functional requirements (NFRs) has been a
challenge in software development for many years. These requirements
are typically used to make important architectural decisions early in
the project, which can be problematic if they are uncertain or unstable.
When this uncertainty is not considered when designing the software
architecture, changes are often costly and sometimes even unfeasible.
Some empirical studies on the subject have already been carried out,
but few have focused on the perspective of professionals with extensive
experience on the changes and uncertainties of NFRs. This work aims to
expand the understanding about the management, clarity and validation
of NFRs to fill this gap in the literature. To achieve this goal, a survey was
carried out with professionals to find out how NFRs were managed and
validated. For the research design, instead of generic questions, the ques-
tionnaire focused on some specific types of NFRs to induce participants
to recall and report concrete situations. As a result, 40 valid responses
were obtained, most from professionals with more than 10 years of expe-
rience. The results reveal that a significant number of NFRs were defined
after the delivery of software increments (more than 30%) and that revi-
sion and change occurred in about a third of the NFRs. Hence, this study
presents evidence that NFRs, as the functional ones, can also be uncer-
tain and change frequently, requiring agile approaches and techniques to
evolve the software architecture to consider this uncertainty.

Keywords: Non-functional requirements · quality attributes ·
software maintenance · software evolution · requirements engineering ·
empirical study

1 Introduction

Non-functional requirements (NFRs) are considered an important factor in soft-
ware architecture decisions. However, the most important architectural decisions
are usually made in the beginning of the project, even on agile projects [38],
when some NFRs are uncertain. Since changes in software architecture are often
expensive when its structure is not prepared to handle them, a late definition of
these requirements might represent a big risk for the project [24].
c© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 77–93, 2023.
https://doi.org/10.1007/978-3-031-33976-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_6&domain=pdf
http://orcid.org/0009-0007-3333-0283
http://orcid.org/0000-0001-5555-3487
http://orcid.org/0000-0003-1303-4173
http://orcid.org/0000-0001-8424-419X
https://doi.org/10.1007/978-3-031-33976-9_6


78 L. Viviani et al.

The uncertainty of functional requirements (FRs) is handled by agile methods
by using techniques that allow the code to be more easily changed, such as
TDD and refactoring [17]. During the early phases of software development, it is
common to see FRs being prioritized while NFRs are ignored or neglected until
later stages [6]. However, agile techniques, such as TDD and refactoring, might
not be enough for changes in NFRs, which can crosscut functionalities and affect
the entire system. Changing or introducing an NFR that is not compatible with
the current architecture might turn a software project into a failure [24].

Most NFRs are often handled ad-hoc during system testing, and software
engineers pay more attention to functional requirements that satisfies business
needs [29]. This neglect or late focus might affect the final product, as both FRs
and NFRs are necessary for the systems’ success [35]. Instability, uncertainty
and shallow focus on NFRs can result in high long-term maintenance costs [9].
Although the relevance of NFRs is widely accepted, the discourse and approaches
on how to deal with them are still dominated by how to differentiate them from
functional requirements [11,16]. Although more effort has been invested in satis-
fying NFRs [5], it seems that there is still an uneven emphasis on the importance
given to the system’s features and its quality requirements [15]. Understanding
when NFRs are defined and how they change during the project can provide
valuable evidence to guide software development, in particular, how the solution
design and architecture accommodate these changes.

Some empirical studies on NFRs are present in the literature, but few focus-
ing on professionals with large experience and high involvement in NFR man-
agement. The studies define or evaluate artifacts for the documentation of
NFRs [32], compare methodologies and practices of traditional and agile require-
ments engineering [1] or even propose new artifacts or automation in document
generation [30,32]. Other studies [20,24,26,34] aimed at identifying flaws in
NFRs definition and management, but they do not discuss the validation of
these NFRs, nor the impacts and difficulties caused by changes during develop-
ment.

This study aims to gather evidence on the late definition of NFRs, either
due to a lack of identification at the project start or due to later changes. That
evidence highlights the need for more agile approaches to deal with changes
and late identification of NFRs, since the ones used to handle changes in the
functional requirements do not consider that it might have a huge impact in
the software architecture. To achieve this goal, we conducted a survey with
professionals with experience managing NFRs. The questionnaire focused on
specific NFR types, stimulating participants to base their answers on concrete
situations rather than on general impressions. As a result, evidence was identified
of a relevant number of NFRs being defined after the start of the development
and changed in late-stages of development.

2 Background and Related Work

NFRs refer to system restrictions and the quality of their development and imple-
mentation, which is always related and connected to FRs [28]. The IEEE defines



An Empirical Study about the Instability and Uncertainty of NFRs 79

a non-functional requirement as “a software requirement that describes not what
the software will do, but how the software will do it” [19]. In other words, NFRs
are related to quality standards, as they describe the characteristics and needs
of software so that it is efficient and fits its purpose [22]. The International
Organization for Standardization (ISO) defines software quality as the level of
satisfaction with the stated and implied needs of the user [18]. Software quality
can be divided into two views: the first being that of “meeting specifications”
and the second being “satisfying the customer”, the latter means satisfying the
customer’s usage and consumption expectations, regardless of any measurable
characteristic [18]. NFRs can be related to both observable attributes, such as
performance, availability, and reliability of the system, as well as relative internal
characteristics, for example, maintainability and portability [14,16].

Since NFRs express objectives that may conflict with each other, these
requirements must be described as flexible goals. These conflicting objectives
lead to a need of refinement and negotiation to reach acceptable solutions [13].
According to Berntsson et al. [9], the perception of the importance and purpose
of an NFR may differ according to the professional’s role in software develop-
ment.

Several studies present the importance of NFRs to software project success.
For instance, when NFRs are incorrectly managed, software projects have a fail-
ure rate of 60% or more [6]. NFRs play a critical role during software life cycle,
and if defined or managed incorrectly, affect software maintainability, signifi-
cantly impacting deadlines and costs [13]. NFRs generally influence the system
architecture more than FRs [4,31], being key to ensuring a proper architecture.

Albeit their importance, NFRs receive less attention than their functional
counterpart, causing customer dissatisfaction and rework and impacting time
and cost [34]. This issue happens especially in projects employing agile meth-
ods [30], given these practices emphasis on functional aspects and lesser in doc-
umentation. The neglection of NFRs is a known issue for agile requirements
engineering [20]. This issue is linked to agile methods’ main characteristics of
accepting and absorbing changes during the project and a lack of information
at the beginning of the project for a proper upfront architecture [24]. However,
other agile approaches such as Scaled Agile Framework (SAFe) and Disciplined
Agile Delivery (DAD) have steps and procedures that aim to anticipate and
mitigate the risks associated with RNFs and their volatility [2,27].

Given the possibility of architectural changes, early decisions on architecture
in agile projects are encouraged [3,38,40]. This early definition contrasts with the
recurring changes in agile projects, especially in the NFRs, which mostly cause
impacts or revision in the architecture [24]. For instance, Ameller et. al [4] rein-
force the importance of continuous management of the NFRs, stating that the list
of NFRs of the project could never be considered complete even after the com-
pletion of development tasks. According to this work, this list should be evolved
and negotiated during all project development and maintenance phases. The
emphasis on continuously managing NFRs, reviewing and adapting the archi-
tecture to cope with possible impacts can be identified in the Sprint Zero of the



80 L. Viviani et al.

DAD [2] approach and in the Architectural Runway phases of the SAFe frame-
work [27], as well as all necessary adjustments for the proper testing strategy for
these requirements [2].

Some studies present evidence of the awareness about the importance of
NFRs, but without adequate focus on their management [10]. Other studies evi-
dence that lower importance is given to NFRs compared to FRs during software
development [36], which explains the significant deficits in the management of
NFRs, and how they are treated and prioritized. Only 40% of the NFRs are
measurably specified [4,31], which makes hard its verification and assessment.
The unified management of FRs and NFRs is defended by some studies, e.g., [8],
which describe them as orthogonal. Consequently, architectural decisions that
accommodate an FR may conflict with an NFR or vice versa.

3 Research Design

There is a lack of studies in the literature on the stability of NFRs, in particular,
on when and how often they are defined or modified. Thus, as the objective of
this study, we collected evidence from real projects on the definition and possible
modification of NFRs. For example, we tried to understand in which project steps
NFRs are defined and if they are modified in stages that lead to greater impact.
To guide the research, we proposed the following research questions:

RQ1 - How are NFRs defined in the software development process?
RQ2 - How do NFRs change and are updated during a software project?
RQ3 - How much does the approach for handling NFRs vary based on its type?

3.1 Methodology

To answer the research questions, we conducted a survey with professionals con-
sisting of questions about the occurrence of specific types of requirements in real
projects. The survey was designed to be answered by professionals with expe-
rience managing NFRs in software development projects. When answering the
questions, participants should report if they recall the presence of a particular
type of requirement in a project they had participated. In the case of a posi-
tive answer, a series of questions about this occurrence is presented, focusing on
understanding when it had been specified, if it had changed, and why it changed.

As a first validation step, a first version of the questionnaire was created
and reviewed by the authors and other invited collaborators. The survey was
refined and sent to five professionals as a pilot study. Based on feedback from
respondents, the demographic questions were improved, new options were added,
and examples of NFRs were used to make them easier to understand. The result
was the final version of the survey applied in the study. The participants from
the pilot study were invited to answer the questionnaire again.

As a dissemination strategy, the authors sent invitations for participation to
personal contacts, to software development email discussion groups and shared
them on social media. It was intended for more experienced professionals and



An Empirical Study about the Instability and Uncertainty of NFRs 81

that the estimated time to respond was 20min, but not many spontaneous
responses were received. Most participants were professionals with the target
audience’s profile, recruited through a direct invitation from one of the authors.
The described approach for convenience sampling aligns with some guidelines
from Rainer and Wohlin [33] to recruit credible participants.

We acknowledge that our sampling approach does not provide a representa-
tive sample (c.f. [7]). However, our goal could be stated as exploratory, i.e., look-
ing for evidence of problems regarding NFR management and not to describe,
for instance, how prevalent these problems are. We read and interpreted the
answers to the open questions considering the answers given to the multiple
choice questions, searching for any relevant complementary information.

3.2 Survey Design

Kitchenham and Pfleeger [23] suggest that the survey design must relate to
research objectives so that the data obtained and the analysis can answer the
questions defined for the study. We adopted a descriptive research design to
conduct a retrospective study, where participants report past events and cir-
cumstances to support the understanding and explanation of current phenom-
ena [23].

The questionnaire is available online1 and was organized into eleven steps:
(1) explanation of the research goals, presentation of the information about data
confidentiality, and request of participant’s consent; (2) presentation of the NFR
concept adopted in the study and a request to choose a project in which the
respondent participated as a reference for the following answers; (3) questions
about participant background and the company in which the project used as
a reference took place; (4) questions about the adopted practices for require-
ments engineering; (5–10) for each particular NFR type, a question regarding
the existence of that particular type, and, in case of a positive answer, additional
questions about it; (11) an optional open question about how NFR uncertainty
was handled in the reference project.

The second step was included to make sure that the participant chooses
a project as a reference for gathering data about a concrete experience. The
participant can only proceed after confirming that the choice was made. To avoid
misconceptions about the term “non-functional requirement”, a short description
was presented to the participant to agree for continuing.

In the third step, about the company, we asked the business segment and the
number of employees. About the participants, the survey asked which role they
played in the last five years (being able to select more than one option), years
of experience in software development, and self-evaluation about the knowledge
on NFRs. About the self-evaluation, five levels were defined (novice, advanced
beginner, competent, proficient, and expert) with a description describing the
expected expertise and knowledge for each. The fourth step assessed some infor-
mation about how the reference project handled NFRs. The participant answered

1 https://www.jmelegati.com/files/Survey-NFRs.pdf.

https://www.jmelegati.com/files/Survey-NFRs.pdf


82 L. Viviani et al.

about the level of influence different roles have in defining NFRs, and how often
these requirements were described in a more quantitative and measurable way
or using a more qualitative and abstract approach.

In steps 5–10, each section focused on a particular NFR type. The decision
to ask about specific NFRs was for the participants to recall a concrete past
experience in which they could answer the questions more precisely. Limiting to
six types enabled the exploration of different types of NFR without doing the
survey very long. The chosen NFRs were: response time, number of simultaneous
requests, scalability, flexibility, portability, and robustness. For each type, a defi-
nition and several concrete examples were provided to avoid misunderstandings.

If the respondent confirmed the presence of that type of NFR in the reference
project, the following multiple-choice questions were presented: (a) approach
used for NFR elicitation; (b) during each software development activity it was
elicited; (c) if it was reviewed or modified during the project; (d) in case of a
positive answer in the previous question, the reason it was reviewed or modified;
(e) the current adherence of the NFR to the current project state. Finalizing
each step, an optional open question asks details about the reported NFR.

The choice of these six specific types of NFRs can be considered a decision
in the study scope and was motivated by the authors’ individual experiences
in industry in the field of software architecture. In the discussions conducted
during the survey design, they pointed out that they had observed recurrent
changes and instability on these types of NFRs. We recognize that this choice
might introduce a bias in the study and we understand that the results should
be interpreted as restricted to them. However, the six NFR types represent
different kinds of quality attributes and cover relevant types of NFRs. Future
surveys might replicate this study with other NFRs and compare the results.

4 Results

The survey received 40 answers. The pilot was executed in December 2021, and
the survey received responses from April to June 2022. The following sections
describe the obtained results.

4.1 Participant and Company Profile

Among the 40 professionals who answered the survey, more than 50% said they
had worked in the last five years as a software architect or software engineer, and
almost 40% as a developer. Other roles receiving a significant number of answers
were researcher (20%), product manager (17%), and requirements analyst (17%).

The respondents fit the target profile based on the answers assessing their
professional experience. Figure 1 presents the distribution of the number of par-
ticipants according to their years of experience and their self-evaluation of their
expertise in handling NFRs in projects. Most answers came from experienced
professionals in the field.

The results revealed that projects used as a reference were developed in
companies from diverse segments, emphasizing the financial and e-commerce



An Empirical Study about the Instability and Uncertainty of NFRs 83

Fig. 1. Number of participants by years of experience and self-evaluated knowledge in
handling NFRs

branches, which together represent 43% of the companies. However, we also
received answers from 16 other segments, which received from one to three
answers (several informed in the “Other” option). About the company size, the
ones with more than 5000 employees add up to more than 56%. Since companies
with a range from 500 to 2000 employees were declared by 18%.

Figure 2 presents the distribution of the answers about the influence of dif-
ferent roles on NFRs definition. Architects, product managers, and developers
are among the roles with more significant influence. On the other hand, the ones
less influential were director/c-level, tester/QA, and final users. In the question
in which the respondents needed to classify from 1 to 5 how often they adopt a
qualitative versus a quantitative approach for NFR specification (where one was
always qualitative and five was always quantitative), the result was the following
distribution: 1 (10%), 2 (40%), 3 (23%), 4 (23%), and 5 (4%).

Fig. 2. Influence of Different Roles on NFRs

4.2 Answers About NFRs

As justified in the survey design, to obtain answers based on concrete situations
from real projects, the questions concentrated on six types of NFRs. Figure 3
presents the percentage of answers reported to have each NFR type present in
the reference project.



84 L. Viviani et al.

Fig. 3. Proportion of the projects in which the type of NFR was declared

For each NFR declared as present in the reference project, the survey asks
for information about the method used for elicitation, time of definition, con-
stancy during development, possible change motivators, and validation of project
adherence to the defined NFR. A general analysis of the NFRs present in the
study presents relevant information about the treatment and management of the
NFRs. To perform this analysis, each requirement reported independent was con-
sidered of its type, which resulted in 144 instances. To answer RQ1 and RQ2, we
considered these 144 instances together, and for RQ3 we compare the differences
between them.
Regarding the Elicitation Approach, as Shown in Figure 4, the elicitation
with stakeholders was the most mentioned (63%), which is a positive point since
user involvement is among the main success factors for projects [21]. The refer-
ence from other systems (39%), restrictions imposed by legacy systems (33%),
and regulation restrictions (28%) were also mentioned with significant frequency.
The second most cited approach was “based on professional experience” (47%),
even if systematically, this approach may be less suitable for requirements such as
response time and flexibility, as they would be based on experience, with possible
incompatibility with the actual requirements of the system. Other answers, such
as metrics collected in production (33%), problems found on the project (19%),
and complaints from users (32%), reveal that the elicitation was performed in
later stages.

Fig. 4. NFRs elicitation approach



An Empirical Study about the Instability and Uncertainty of NFRs 85

Figure 5 presents the answers during each activity the participants declared
that the NFR was defined. As expected, in most cases, the requirement was
elicited in the initial stages of design and analysis, however there are also answers
reporting moments after the software delivery.

Fig. 5. Activities in which NFRs were defined

When asked if the requirement changed or was reviewed during the project,
25% answered that it was reevaluated but not modified and 32% that it was
modified. Figure 6 presents the distribution of the answers about the drivers of
change in NFRs, in the instances in which a review or change was reported in
the previous question. In 87% of the cases, more than one reason was reported.
With a higher percentage, there were options revealing that requirement changes
were a reaction to something that happened in the system, such as changes in
architecture, behavior or tests in production. The options “technical evaluation”
and “regular review of requirements” represent more systematic approaches and
received a significant number of answers (25% and 24%, respectively).

Fig. 6. Driver of changes in NFRs

The final question about NFRs was if the current requirement state is accord-
ing to the system needs. To this question, 25% said that the requirement is
outdated, and 9% did not know.



86 L. Viviani et al.

5 Discussion

5.1 RQ1 - How are Non-functional Requirements Defined
in the Software Development Process?

Figure 5 presents the distribution of software development activities where the
NFRs were defined. The results show that 22% were determined during devel-
opment, and, for around 19%, their definition was reported to have happened
in activities typical in later stages, such as based on user feedback, monitoring
software in production, or testing. This result confirms that some requirements
are neglected during the initial phases of the project, being only introduced
when some event in the project points to that need. The literature reinforces the
importance of this definition at the beginning of the project for technology selec-
tion and choice of patterns [25]. One participant reported for response time: “the
requirement was not idealized in the conception or design, a performance was
expected, and during the tests we realized the need to include the requirement”.

Some participants mentioned bad consequences of a late identification of
requirements. For portability, one respondent mentioned that “due to its late
entry, it was adjusted and limited for having only a few capabilities”. This lim-
itation on implementing an NFR identified later was also reported regarding
flexibility. The current literature supports this result [1,34], highlighting possi-
ble negative consequences of NFR late definition.

Finding 1: A significant number, almost 1/3, of NFRs are not identified
at the beginning of the project.

The results show a great diversity of methods and techniques to elicit NFRs,
often in combination. The fact that in almost half (47%) of the cases professional
experience was reported as the approach used to define the requirement indicates
the absence of a systematic approach for NFR elicitation. The number of answers
that said the identification was based on problems found or user complaints also
evidence that this later identification brought bad consequences to the project.
For example, a respondent said “problems that emerge only at deploy time on
the client”. The work of Lauesen [26] points out this lack of fulfillment of the
requirements as a cause for project failures.

Finding 2: Almost 1/3 of NFRs are defined in response to problems found
on the project.

This elicitation deficit is also reflected in the number of NFRs that changed
later or are outdated to the system’s needs in production. According to the
results obtained, 34% of the requirements reported are not up to date with the
system in production, or its consistency is unknown. That is evidence that is
common to have NFRs neglected until the production stage. Indeed, a recent
study [37] pointed out not-clear and not-measurable NFRs as a problem in some
agile processes.



An Empirical Study about the Instability and Uncertainty of NFRs 87

This inconsistency with the system in production can also be explained by
unnecessary NFRs included at the beginning of the project, which were ignored
for not being important, but were not removed from the system requirements.
One participant stated that sometimes that is noticed only “when the technical
proof of its infeasibility or that it is something unnecessary”. In the same testi-
mony, it was also mentioned that “the costs presented to end users often make
them rethink whether something is really necessary”.

Finding 3: More than 1/3 of NFRs are identified in the project are out-
dated or have an unknown state to the system in production.

The answers about the qualitative versus quantitative approach for defining
NFRs might indicate one of the reasons for this deficit, revealing that a more
qualitative and non-objective way to define the requirements is frequently used.
That was confirmed by a developer whose answer to the survey stated that the
specification is deficient “often not knowing how to elaborate the artifacts as well
as the structure of the requirement text without objectivity”. Another participant
gave some examples of this lack of objectivity, mentioning “good response time”,
and “low cost for evolution”.

5.2 RQ2 - How Non-functional Requirements Change and are
Updated During a Software Project?

The responses to the survey revealed that around one-third of the NFRs changed
during the project. Considering the approach used for the requirement elicitation
described in the previous section, there are factors that could contribute to
changes in the NFRs due to flaws in its specification, like the usage of non-
systematic approaches and a qualitative and non-precise specification. Lack of
prioritization of NFRs is associated with rework and customer complaints [34].

Finding 4: The difficulty in dealing with the uncertainty and volatility of
NFRs results in reactive actions.

The reasons for changes or revisions of the NFRs are diverse, but there is
a strong relationship between the changes and the absence of a deeper analysis
of the real needs of the software. Absence or ineffective processes of continuous
management of NFRs, and strategies to anticipate and accommodate possible
changes [2,27] result in reactive actions and with impacts to the project [12].
Of the five most cited factors, only two result from a systematic assessment of
requirements, while the other three result from the demand for changes in the
architecture and behavior of the system in production. In addition to NFRs’
late elicitation, these results about the motivation of changes also evidence a
late validation of NFRs. Around 54% of the mentioned modifications occurred
only after analyzing the behavior or tests of the system in production, which
can add significant costs [12], and 35% required or were caused by architecture
review or system limitation.



88 L. Viviani et al.

Finding 5: A significant occurrence of changes on NFRs occurred after
analyzing the behavior of the system in production.

Several statements spontaneously written by the respondents point to the
impact of the changes of NFRs on the solution’s design and architecture, even
not having any question about it. As explicitly stated by one of them, changes
in NFRs “fundamentally change the design and architecture of a system”. One
respondent mentioned that the lack of visibility of the flexibility NFRs led to a
revision of the architecture to support a higher number of customers. Another
one mentioned that the system did not scale as it should, but it was in pro-
duction without many complaints from customers. About system reliability, one
mentioned that “due to the addition of new features and new error situations,
there came the need to change the requirements”. Because of that, the architec-
ture was modified, allowing more monitoring and failure recovery mechanisms.
Since architectural decisions are usually made in the beginning of the project [40]
and their implementation can be so interwoven in the code, changes might not
be feasible [38].

In the other direction, changes in the architecture might also cause a review
in NFRs. One respondent reported that after a change in the architecture “porta-
bility requirements (servers, platforms and database) have been revised”. The cost
to implement the NFR was also mentioned by another participant as relevant to
reconsider the requirement, revealing that some NFRs might be abandoned due
to trade-off analysis that give them up in exchange of some other factor.

Finding 6: Absence of a testing strategy makes it difficult to accommodate
and validate changes that cross-impact NFRs and architecture.

The close relationship between NFR and architecture results in managing and
planning properly to avoid major impacts [24]. In this way, it is essential to pay
attention to an adequate project testing strategy, anticipating and monitoring
changes to mitigate them and be prepared to accommodate them [2].

5.3 RQ3 - How Much the Approach for Handling NFRs Vary Based
on its Type?

For the previous research questions, we considered all the 144 reports from all
six NFR types targeted in the survey. To answer this one, we analyzed the
main differences between the answers given for each type. The first point to be
highlighted is the number of participants reporting each requirement. As shown
in Fig. 3, response time received the highest number of answers (75%), and the
simultaneous number of requests received the lowest (51%).

Regarding elicitation approaches, the two most mentioned in all types of
requirements were “elicitation with stakeholders” and “professional experience.”
Scalability and portability did not have any other elicitation method to be high-
lighted, but they were the ones with the higher number of answers that reported



An Empirical Study about the Instability and Uncertainty of NFRs 89

the elicitation with stakeholders, respectively 76% and 69%. For response time
and amount of simultaneous requests, which are easier to measure and observe
than the others, the reference from concurrent systems (respectively 54% and
47%) and measurements (respectively 46% and 58%) were mentioned more.
Complaints from users received a significantly higher number of occurrences
for response time (68%), which was more than double the overall percentage.
Finally, regulations and standards were mentioned more frequently for flexibil-
ity (38%) and restrictions from legacy systems for robustness (50%).

The following activities can be highlighted as being higher than the over-
all percentage: conception for portability (36%), analysis for scalability (20%),
design for flexibility (29%) and robustness (30%), and refinement for the amount
of simultaneous requests (26%). For response time, no activity alone received a
high number of answers, but it received most answers in activities more typical
of late project stages, such as development, tests, and user validation.

Finding 7: NFR identification might happen for different reasons depend-
ing on its type.

Regarding requirements changes, the NFR type that received less reviews or
changes was robustness (60% reporting no changes) while on the other extreme
were portability (36%) and amount of simultaneous requests (30%). Portability
was the most common to be reviewed but not changed (41%) and amount of
simultaneous requests the most changed one (45%).

The NFR types most affected by changes or revisions in the architecture
are scalability (45%), portability (44%) and flexibility (44%). While for response
time and robustness, there is not a specific driver that stands out, for the number
of simultaneous requests, the software behavior in production (41%) and exper-
iments/evaluations made by the technical team (47%) were the main drivers.

Finding 8: The most common drivers for change might be different for
each kind of NFR.

Although the survey revealed some common points to handling NFRs, each
type of requirement has its particularities. Based on that, suitable techniques for
elicitation and evaluating its suitability during the project should be employed
based on the target requirement. This result is aligned with another study [34]
that state that there no unique solution that will solve all requirements engi-
neering needs.

5.4 Threats to Validity

Empirical studies face certain validity threats which can be of construct, internal
validity, external validity and reliability [39]. Below, we describe the threats for
this study according to this classification and how we mitigated them.



90 L. Viviani et al.

Construct validity refers to ensuring correct operational measures for the
concepts (constructs) under study [39]. Since most of the questions regarded to
the description of real experiences from the respondents, threats in this regard
are limited. However, there is still a threat that respondents will not understand
the responses in the same way as the authors. To mitigate this issue, we carried
out a pilot to get feedback and perform some adjustments. Also regarding this
threat, the survey ask participants to answer based on a specific project, instead
of reporting a general experience.

Internal validity is associated with causal inference and happens when it
is believed that a certain condition is a consequence from a second condition
when, in reality, they are consequence of a third condition not considered in the
study [39]. Since this study is exploratory and it is not claiming the existence of
causal-effect relationships, this threat is reduced.

External validity is about generalizing the results to a large population [39].
As discussed in Sect. 3, this study has an exploratory goal and does not aim to
have a generalizable description of how NFRs are handled. The goal was to show
evidence of potential issues. Another point reinforcing external validity was the
fact that the study was directed to professionals with a specific profile without
previous definitions or suggestions, because the survey does not influence the
project chosen by professionals at the time of the answer. Besides that, as men-
tioned earlier, this study is restricted to six types of NFRs. We acknowledge
this limited scope however, by focusing on limited facets, we were able to col-
lect more precise answers from the respondents. Consequently, even though the
results should be understood as restricted to these types, they suggest the value
of further investigation of this research problem.

Reliability is related to the dependence of the data and results on the
researchers who performed the study [39]. To improve this aspect, we defined a
protocol, including a questionnaire and data analysis procedures. We also made
public the questionnaire to allow the replication of the study.

6 Conclusions

NFRs are essential aspects impacting the success of a software project. Although
some research focused on them, there was a lack of evidence related to changes
and their late definition. This paper presents a survey with experienced profes-
sionals on how NFRs were elicited and modified in concrete software projects to
fulfill this gap. We found a lack of a well-defined step for evaluating and review-
ing the NFRs, and a prevalence of changes in NFRs even in the late stages
of development. This evidence highlights the need for agile techniques to deal
with changes in NFRs, which can significantly impact the architecture if this
uncertainty is not considered to make it ready to change.

The limitations of this study include investigations of specific NFRs, chosen
to obtain more precise answers.

This limitation gives space for future studies directed to other NFRs. The
information obtained in the survey helped to understand existing issues in the



An Empirical Study about the Instability and Uncertainty of NFRs 91

management of NFRs in real projects, it was out of its scope to find the reasons
behind these issues. Future works could also delve into the relationship between
subjectivity in the definition of NFRs with the changes and real need for NFRs
in projects and investigate whether the project management model influences
the management quality of non-functional requirements during software devel-
opment.

References

1. Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements in large-scale dis-
tributed agile projects – a systematic literature review. In: Grünbacher, P., Perini,
A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 219–234. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0_17

2. Ambler, S., Lines, M.: Introduction to Disciplined Agile Delivery - Second Edition.
Project Management Institute, July 2020

3. Ambler, S.W.: Agile modeling. Wiley, Nashville (2002)
4. Ameller, D., Ayala, C., Cabot, J., Franch, X.: How do software architects consider

non-functional requirements: an exploratory study. In: IEEE (2012)
5. Ameller, D., Franch, X., Cabot, J.: Dealing with non-functional requirements in

model-driven development (2010)
6. Bajpai, V., Gorthi, R.P.: On non-functional requirements: a survey (2012)
7. Baltes, S., Ralph, P.: Sampling in software engineering research: a critical review

and guidelines (2022)
8. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI series

in software engineering, Addison-Wesley Educational, Boston, MA (2003)
9. Berntsson-Svensson, R., Gorschek, T., Regnell, B.: Quality requirements in prac-

tice: an interview study in requirements engineering for embedded systems. In:
REFSQ (2009)

10. Borg, A., Yong, A., Carlshamre, P., Sandahl, K.: The bad conscience of require-
ments engineering: an investigation in real-world treatment of non-functional
requirements. In: Third Conference on Software Engineering Research and Practice
in Sweden (SERPS 2003), Lund (2003)

11. Broy, M.: Rethinking functional requirements: A novel approach categorizing sys-
tem and software requirements, pp. 155–187. John Wiley & Sons, Insc., September
2018

12. Budiardjo, E.K., Wibowo, W.C., et al.: Non-functional requirements (NFR) iden-
tification method using FR characters based on ISO/IEC 25023. Int. J. Adv. Com-
put. Sci. Appl. (2021)

13. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Springer, New York (2012). https://doi.org/10.1007/978-1-
4615-5269-7

14. Dörr, J., Kerkow, D., Koenig, T., Olsson, T., Suzuki, T.: Non-functional require-
ments in industry - three case studies adopting an experience-based NFR method.
In: 13th IEEE International Conference on Requirements Engineering (RE’05)
(2005)

15. Eckhardt, J., Vogelsang, A., Fernández, D.M.: Are “non-functional” requirements
really non-functional? In: ACM (2016)

16. Glinz, M.: On non-functional requirements. In: 15th IEEE International Require-
ments Engineering Conference. IEEE, October 2007

https://doi.org/10.1007/978-3-319-54045-0_17
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1007/978-1-4615-5269-7


92 L. Viviani et al.

17. Guerra, E., Aniche, M.: Achieving quality on software design through test-driven
development. Elsevier (2016)

18. Hoyer, R., Hoyer, B.: What is quality? Quality Progress (2001)
19. IEEE: Standard glossary of software engineering terminology. Std 610.12 (1990)
20. Jarzebowicz, A., Weichbroth, P.: A qualitative study on non-functional require-

ments in agile software development. IEEE Access 9, 40458–40475 (2021)
21. Johnson, J., Mulder, H.: Factors of succes 2015 (2015)
22. Kirner, T.G., Davis, A.M.: Nonfunctional requirements of real-time systems. In:

Advances in Computers (1996)
23. Kitchenham, B.A., Pfleeger, S.L.: Principles of survey research part 2. In: ACM

SIGSOFT Software Engineering Notes (2002)
24. Knauss, E., Liebel, G., Schneider, K., Horkoff, J., Kasauli, R.: Quality requirements

in agile as a knowledge management problem: more than just-in-time (2017)
25. Kumar, D., Kumar, A., Singh, L.: Non-functional requirements elicitation in agile

base models. In: Webology (2022)
26. Lauesen, S.: IT project failures, causes and cures. In: IEEE Access (2020)
27. Leffingwell, D.: SAFe 4.5 reference guide. Addison-Wesley Educational, Boston,

MA, 2 edn., July 2018
28. Mijanur Rahman, M., Ripon, S.: Elicitation and modeling non-functional require-

ments - A POS Case Study. arXiv e-prints (2014)
29. Nguyen, Q.L.: Non-functional requirements analysis modeling for software product

lines. In: IEEE (2009)
30. Oriol, M., et al.: Data-driven and tool-supported elicitation of quality requirements

in agile companies (2020)
31. Pohl, K., Rupp, C.: Requirements engineering fundamentals. Rocky Nook (2015)
32. Rahy, S., Bass, J.M.: Managing non-functional requirements in agile software devel-

opment. IET Softw. 16(1), 60–72 (2021)
33. Rainer, A., Wohlin, C.: Recruiting credible participants for field studies in software

engineering research. Inf. Softw. Technol. 151, 107002 (2022)
34. Sherif, E., Helmy, W., Galal-Edeen, G.H.: Managing non-functional requirements

in agile software development. In: Gervasi, O., Murgante, B., Hendrix, E.M.T.,
Taniar, D., Apduhan, B.O. (eds.) Computational Science and Its Applications –
ICCSA 2022. ICCSA 2022. LNCS, vol. 13376, pp 205–216. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-10450-3_16

35. Slankas, J., Williams, L.A.: Automated extraction of non-functional requirements
in available documentation. In: 1st International Workshop on Natural Language
Analysis in Software Engineering (NaturaLiSE) (2013)

36. Svensson, R.B., et al.: Prioritization of quality requirements: State of practice in
eleven companies. In: IEEE (2011)

37. Wagner, S., Fernández, D.M., Felderer, M., Kalinowski, M.: Requirements engi-
neering practice and problems in agile projects: results from an survey (2016)

38. Waterman, M., Noble, J., Allan, G.: How much up-front? a grounded theory of
agile architecture (2015)

39. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Plan-
ning. In: Experimentation in Software Engineering, vol. 9783642290, pp. 89–116.
Springer, Berlin, Heidelberg (2012)

40. Yang, C., Liang, P., Avgeriou, P.: A systematic study on the combination of soft-
ware architecture and agile development. J. Syst. Softw. 11, 157–184 (2016)

https://doi.org/10.1007/978-3-031-10450-3_16


An Empirical Study about the Instability and Uncertainty of NFRs 93

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Agile in the Large



Striving for Freedom in a Large-Scale
Agile Environment

with an Entrepreneurial Mindset
of a Product Owner

Piret Niva(B), Maria Paasivaara, and Sami Hyrynsalmi

LUT University, Lahti, Finland
piret.niva@iki.fi, {maria.paasivaara,sami.hyrynsalmi}@lut.fi

Abstract. In a large-scale agile environment, a Product Owner receives
requests from many different directions. Freedom to influence the direc-
tion of the product and push ideas forward sometimes requires saying
“no”. This is a case study that has been made by interviewing several
Product Owners or people working in a Product Owner type of role. The
case company, which is a large financial organization, encourages Prod-
uct Owners to take responsibility by valuing an entrepreneurial mindset.
This research examines whether it is possible to exercise entrepreneurial
freedom in the Product Owner’s work, and how much freedom the Prod-
uct Owner has in the direction of the product, i.e. whether they have the
freedom to say “no”. A total of 18 Product Owners, and those in similar
roles, as well as managers from the case company, were interviewed. The
findings show that the role of the Product Owner needs to be clarified
in order to have more freedom to act. Prioritizing is difficult and saying
“no” is more difficult than desired. Product Owners find the urge for an
entrepreneurial attitude understandable, however, it does not seem to fit
perfectly into the everyday work life of a Product Owner in a large-scale
set-up. When the understanding of the role deepens, Product Owners
could have greater freedom to make their products successful.

Keywords: Product Owner · freedom · large-scale · Agile ·
entrepreneurial mindset · prioritization

1 Introduction

The Product Owner role is a reasonably new role and comes from Agile software
development. The name of the role refers to broad responsibility, for product
ownership. According to the Scrum Guide [20] a Product Owner is accountable
for maximizing the value of the product resulting from the work of the Scrum
Team. In addition, a Product Owner is accountable for effective Product Backlog
management [20]. Yet, there are undocumented requirements and organizational
pressures which also impact the work of the Product Owner. In a large-scale Agile
set-up the role needs to be scaled when several teams work for the same product
and one Product Owner is not enough [16]. In a large-scale context also many
c© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 97–114, 2023.
https://doi.org/10.1007/978-3-031-33976-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_7&domain=pdf
https://doi.org/10.1007/978-3-031-33976-9_7


98 P. Niva et al.

other roles and stakeholders exist and often bring requirements and pressure to
the Product Owner. Thus, a question arises: How freely can Product Owners
carry out their tasks and vision? Is the Product Owner role a fairytale?

The role of a Product Owner is more than taking care of the day-to-day
running of the workday. According to Kelly [12], the role of the Product Owner
brings little value if it is just backlog maintenance. The Product Owner should
understand the technology and software development, as well as be able to say
“no”, because the team cannot implement every idea [12].

Robert Frost was an American poet who once stated: “Freedom lies in being
bold” [10]. Freedom speaks to philosophers, poets, and business creators. This
study examines the freedom in the role of a Product Owner, especially how the
Product Owner handles requirements and ideas coming from many directions in
a large-scale Agile environment.

The Product Owner, who “owns” the product, can also be seen as a kind of
entrepreneur. Our case organization hoped that Product Owners could lead their
products with an entrepreneurial mindset. Therefore, this research explores how
an entrepreneurial mindset is realized among Product Owners in the large-scale
agile set-up of our case organization.

2 The Product Owner Role

The role of the Product Owner was introduced in the Scrum software develop-
ment framework in 1995 [20]. Originally, Scrum was designed originally for one
development team, with which one Product Owner would work. Nowadays, Agile
is used also in large companies and projects. In large-scale agile, there are often
many other stakeholders involved, and one product or service may have sev-
eral Product Owners. Besides, working with the development team, the Product
Owner may gather the requirements, communicate with the customers and even
market the product, at least within the company, while the external marketing
of a product is usually handled by marketing experts.

A symphony orchestra is a metaphor for how the Product Owner operates: a
symphony is conducted by a conductor. Software developers can be thought of as
symphony musicians. A symphony orchestra will certainly be able to play with-
out a conductor. However, while musicians can play without leadership, they
need to be in sync with others. The musicians make the choice to follow the
conductor. The conductor helps to synchronize and makes the performance con-
sistent. The conductor does not direct but orchestrates the symphony [22]. The
Product Owner has a similar role as the symphony conductor: The Product
Owner orchestrates the software development team. The developers (i.e. musi-
cians), act independently, but the Product Owner takes the development forward
in the direction which benefits the product (i.e. the music experience), which the
whole team provides.

A Product Owner must have the mandate to play his or her role. A Product
Owner collaborates within a network. Scrum does not place supervisory roles
above the Product Owner. However, companies have their own internal organi-
zational structures, and there may be more than one organizational model in



Striving for Freedom 99

use. Kelly’s [12] statement is a good starting point for considering how to own
a product: “In the real world, managers report to owners. So surely Product
Managers should report to Product Owners?”.

The financial sector, where the case organization operates, is controlled, e.g.,
by regulations and social responsibility. Therefore its’ operations are monitored
by external agencies. The organization creates the boundaries for the Product
Owner’s role, and the level of freedom for the Product Owner, e.g., what the
Product Owner can decide on his or her own, and when he or she can say “yes”
to new requirements. For example, an entrepreneur is free to decide how to spend
his or her time. This study investigates when the Product Owner feels free to
say “no”.

A Product Owner should not be a committee, she or he is one person [20].
Although, in the end, Product Owners are accountable, they may share the
responsibility. For a Product Owner to succeed in work, an organization must
respect the decisions made by the person in this role. The Product Owner role
is also used by companies that may use a software development method other
than Scrum, such as Kanban. Many of the Agile scaling frameworks, like the
Scaled Agile Framework (SAFe) [19] and Large-Scale Scrum (LeSS) [21] have
the Product Owner role. However, the role of a Product Owner is still largely
implemented as Scrum states it.

Agility needs to be defined at an early stage in the organization so that all
parties implementing it understand and are motivated by the goals. Develop-
ers’ autonomy is one challenge as autonomy is difficult to maintain when the
scale gets larger [4]. Software development is a people-to-people collaboration
that seeks the same direction. This is one of the reasons why companies try new
frameworks and customize them to their own needs. The Product Owner is not
sitting in an ivory tower, but the role needs to collaborate [18]. An entrepreneur
can make many decisions independently, however, the Product Owner is a role
within the organization, and thus it does not have the same operating environ-
ment. The Product Owner acts as an interface between the stakeholders and the
development team; the Product Owner represents stakeholders and communi-
cates their needs in software development, and product creation [9]. Manifesto
for Agile Software Development emphasizes responding to change, rather than
complying with the plan [1]. Thus, the work of a Product Owner is expected to
include elements that allow this role and the whole team to respond to changes.

Usually, Agile teams are small, five to nine-person teams [11]. When Agile
is implemented in software development organizations with at least six teams
or 50 or more people working on the same product, it can be called large-scale
Agile [7]. This large-scale set-up causes complications, as often the basic Scrum
set-up with one team working with one product guided by one Product Owner
does not exist, but also the Product Owner role needs to be scaled and Product
Owners need to collaborate inside the same product [16], which might impact on
the experienced freedom and the entrepreneurial mindset of a Product Owner.
The rest of the paper explores the experienced freedom and the entrepreneurial
mindset of Product Owners in large-scale Agile.



100 P. Niva et al.

3 Research Method

We chose case study [24] as the research method for this study, as it is suitable
for exploring a new phenomenon. Interviewees from the case organization were
chosen by purposeful sampling [17], which resulted in a diverse sample of Product
Owners.

3.1 Research Questions

As a Product Owner is accountable for effective Product Backlog management
[20], one of the crucial aspects of the work is the prioritization of requirements.
The first research question (RQ1) explores the freedom Product Owners expe-
rience in their work, and how they can control their operating environment
by saying “no” while prioritizing requirements and giving direction for product
development.

In our case company, there is a desire for the Product Owners to have an
entrepreneurial mindset while striving for the success of their products. The
second research question (RQ2) delves deep into whether the Product Owners
feel that an entrepreneurial mindset is a good goal and how they themselves
perceive their work from that viewpoint.

– RQ1: How does the Product Owner say no?
– RQ2: What is the entrepreneurial mindset of the Product Owner?

3.2 Case Organisation

The case company is a Finnish financial company that has development units in a
few large cities in Finland. 4500 ICT professionals work indirectly in the Develop-
ment & Technologies organization of the case company, of which 1100 are directly
employed. Some of the interviewees belong to the Business organization of the case
company. In the past, the company’s software development worked largely accord-
ing to the Scaled Agile Framework (SAFe) with a very large-scale Agile set-up. In
early 2019, the entire company reshaped its organization to become more Agile
by creating a new Agile culture. The case company sought to learn from Spotify’s
tribal model and use it as a template. The financial sector has much stricter regula-
tions than Spotify, an audio streaming provider, which has much more freedom to
implement its platform. Thus, the case company modified its organization based
on ideas from the Spotify model, and adopted, e.g., tribes.

In the case company, software development is mainly internal: development
of new products, channels, and systems (e.g., applications, SaaS, interfaces, and
core systems), or integration of purchased products. The developed systems are
used for internal needs or by their customers. The portfolio is extensive, with
accounts, payments, and insurance being its core business. The team size for
the interviewed Product Owners in the case company was typically around 10
people, the smallest team size being four people and the largest thirty. Inter-
team shared resources increased team size by an average of about three people.
Usually, one Product Owner worked with one team. For those Product Owners,
who had multiple teams, the total number of people in teams was several dozen.



Striving for Freedom 101

Table 1. Interviewees

Interviewee ID Educational background Organization in case company Length

H1 Business Development and Technologies 41 min

H2 Technology Development and Technologies 82 min

H3 Business Development and Technologies 56 min

H4 Technology Business 66 min

H5 Technology Development and Technologies 78 min

H6 Business Business 60 min

H7 Business Development and Technologies 58 min

H8 Technology Development and Technologies 62 min

H9 Business Development and Technologies 42 min

H10 Business Business 65 min

H11 Technology Development and Technologies 62 min

H12 Technology Business 76 min

H13 Technology Development and Technologies 54 min

H14 Technology Business 64 min

H15 Business Business 59 min

H16 Business Development and Technologies 53 min

H17 Business Business 54 min

H18 Technology Development and Technologies 71 min

3.3 Data Collection and Analysis

This case study explores a current phenomenon with empirical qualitative meth-
ods. Answering questions of how is a known strength of qualitative interviewing
[2].

An advantage of interviews as a source of evidence is that they can focus
directly on the research questions. Interviews are also useful for finding cause-
and-effect relationships [23]. Semi-structured interviews were chosen as the main
data collection method as it was desired to dive deep and explore a new topic.

All 18 interviews1 were conducted in Finnish and transcribed, while citations
were translated into English. The average interview duration was 61 min. The
identifiers and the durations are reported in Table 1. Three interviews out of 18
were initial interviews, which were organized with managers and directors in Aug
2021. These interviews collected a deeper understanding of the case company and
focused our research. The rest of the interviews with Product Owners and similar
roles took place from September to October 2021.

Twelve of the interviewees were Product Owners and Senior Product Own-
ers, two directors, one Expert Product Owner, one Business Developer, one
Business Lead, and one Competence Lead. Senior Product Owners differ from

1 The interview questions can be found at https://doi.org/10.6084/m9.figshare.
22087310.v1.

https://doi.org/10.6084/m9.figshare.22087310.v1
https://doi.org/10.6084/m9.figshare.22087310.v1


102 P. Niva et al.

Product Owners in the amount of experience. Expert Product Owners have even
additional expertise according to the company’s internal criteria, while Business
Developers are entirely business oriented and often seen as equal to Product
Owners. Of the 18 persons interviewed, half had technology as their educational
background, while the remaining nine had business education. The interviewees
were collected from two different internal organizations and mainly from two dif-
ferent tribes. We sought persons with solid expertise of product ownership, Agile
or long experience in the case company. There were interviewees from several
tribes, but some of the interviewees were sought from a certain tribe, because it
was known that the tribe had expressed more challenges related to the Product
Owner role and organization’s practices for product ownership. Seven intervie-
wees were from Tribe 1, four interviewees from Tribe 2, and seven interviews
were conducted from case company’s other tribes.

Traditional case study researchers have not sought a tabula rasa as a basis
but have given room for analysis to evolve. A distinguishing feature has been the
focus on the context and rich description of the phenomenon [8]. The ambition
of this research was to allow room for an increase in perceptions of the role of
Product Owners.

A benefit of online interviews is an efficient use of human resources, when
participants are located geologically apart [14], as in this study. The interviews
were conducted remotely as video meetings in Microsoft Teams. In three out of
the 18 interviews, the call was conducted without a video image due to the wish
of the interviewee.

The transcribed interviews were coded and themed2 by the first author using
a qualitative data analysis tool, Nvivo. With open coding, the codes emerged
from the data and were grouped under higher-level themes. A total of 927 men-
tions were coded. For example, under the theme “entrepreneurship”, with 59
mentions, were the codes: pros of entrepreneurship, cons of entrepreneurship,
mindset, and rewards. The coded excerpts were carefully read and analyzed,
and the main points were extracted as the results.

The results were validated by presenting them in a feedback meeting orga-
nized within the case company. An invitation to the feedback discussion was sent
to over two hundred people, including all interviewees, and 28 persons partici-
pated.

4 Results

4.1 RQ1: How Does the Product Owner Say No?

In an entrepreneur’s own company, the entrepreneur exercises supreme decision-
making power, which offers freedom. This study deepens understanding of the
concept of freedom by examining how a Product Owner can control the focus
of product development by saying “no”. The prioritized desires are usually new

2 coding and thematization can be found at https://doi.org/10.6084/m9.figshare.
22434190.

https://doi.org/10.6084/m9.figshare.22434190
https://doi.org/10.6084/m9.figshare.22434190


Striving for Freedom 103

functionalities. When it comes to a large company that uses large-scale agile, like
this case company, requests come to the Product Owner from many directions,
and sometimes it is difficult for the Product Owner to say “no”.

Production Problems: There are situations concerning the operation and the
future of the entire company, such as sudden production problems, which require
quick prioritization of the repairing work. For example, a production problem
that stops payment traffic is always prioritized above everything else. In these
cases, the Product Owner serves the best possible way, and freedom is not exer-
cised in any other way than prioritizing quick repairs.

“If there is no production disruption... So to speak, to it [production problem] the
Product Owner cannot say “no”. If it is in our context, the fact that services are
up, so of course, that is always at the top of the list. But then to other parties or
demands, the Product Owner can say “no” if there is a reason for it.” — H4

Company-Wide Objectives: There are company-wide objectives with a lot
of dependencies, over which the Product Owners do not have full influencing
power. The highest objectives concerning the entire case company do not come as
prioritized. Thus Product Owners feel that decisions trickle down too low in the
organization: Sometimes the Agile model was felt unnecessarily decentralizing
decision-making.

“It is a bit like that, maybe the kind of Achilles heel of such an Agile, self-steering
model, that it can kind of trickle down unnecessarily low the decisions about what
to do and what not to do. Yes, there could be such optimization of resources at a
higher level, and then giving more clearly that this is what we want.” — H15

To Whom Can the Product Owner Say “No”? When the interviewed
Product Owners were asked, who they can say “no” to, then seven out of 15
interviewees (excluding the first three initial interviews) replied that they can
say “no” to anyone, but the answer came with laughter. The physical reac-
tion was similar for each interviewee. 47% of interviewed Product Owners said,
accompanied by laughter, that they can say “no” to anyone in the organization.
However, the Product Owner’s own disbelief was manifested in the stir of laugh-
ter. Thus, they were not quite behind this opinion. They especially felt that when
a superior, higher in the organization’s hierarchy, has greater decision-making
power, it is difficult to give a negative or opposite opinion.

“Not really to anyone. To the supervisor, you can’t really say “no”, it must be
expressed differently in that situation.” — H17

“I tried to say “no” to my supervisor in some project, but the supervisor stated
that it just has to be done. And then we did it [says the interviewee with a resentful
sneer]. I think we would need to be able to say “no” if it is justified.” — H6

Some of the interviewed Product Owners felt that they had a set of peers,
e.g., other Product Owners, with whom they can have an equal say.



104 P. Niva et al.

Organizational Hierarchy: The Product Owner has people above him or her
in the organizational hierarchy. If the Product Owner wants to make changes, in
the current model, the message must be taken up one step at a time. In this case,
the next step in advancing a cause or a vision may be a business owner, followed
by tribal leadership, one or two higher superiors, and finally the leader of the
entire company. At every step, a new role takes the message forward. In this case,
each step acts as an interpreter. The risk is that the perception of a product’s
needs or capabilities will shape along the way. Technical issues are interpreted in
the business language in different ways by different people. Misunderstandings
or message-modifying summaries are generated. Although the Product Owner
takes the message up a certain hierarchy, the common supervisor of the people
on these stairs, and the Product Owner, may be far away from each other in the
organization’s hierarchy. That is, not everyone above the Product Owner in the
organization chart is superior to each other.

Saying “no” can be equally difficult for the superiors of the Product Owners.
However, it does not help if the next step in the organization is facing the same
dilemma.

“Basically, the higher you go in an organization, the harder it gets, in a way you’ll
have a sort of view, that you always have to respect and think about the position of
the supervisor and his supervisor and his supervisor. But under certain conditions,
you can say “no” to them. It is basically [a situation] where you can at least ask
why you say that.” — H15

“In a way that... ”This kind of functionality has to be done right now”. It may
be that the Product Owner sees that it has no value. But since the Product Owner
can’t directly tell it to him or her, and then the person above the Product Owner
doesn’t dare to say it up there, then it kind of doesn’t help anything.” — H8

The companies have intentionally created hierarchies, but hierarchies should
also be viewed in terms of how those could be enabling factors of product devel-
opment.

The Ways “No” is Said: Figure 1 shows the ways in which the interviewees felt
that the Product Owner could say “no”. Usually, the Product Owner handled
the situations through discussion. To a certain point, the way to say “no” is
to discuss. Communication skills are strongly emphasized in the work of the
Product Owner. Although progress in the negotiation also depends on the goals
of the participants of the discussion.

“[When visions are at intersection] I feel that I have been able to communicate
quite well the direction where we are going here [...] Sometimes there has been
something smaller [requests], that has been said to be really important to get. Then
I have pointed out that okay we will deliver, but please understand that this will
then cause a delay in these other features.” — H15

After discussion, the item might be taken into the backlog and prioritized
according to its necessity or urgency. Some of the interviewees felt that they
were under pressure from the business side, that the tasks had to be taken into



Striving for Freedom 105

Fig. 1. Ways for the Product Owner to say no.

the backlog, even though the Product Owner did not think they were reasonable
choices for the product as a whole, and thus might prioritize the items low.
There is a risk that the item may be left in the backlog for a long time. While
negotiating, a Product Owner sometimes has to say “yes” instead of “no”, so
that the negotiation partner treats the ideas with an open mind and returns the
favor by also saying “yes”. However, not all decisions can be traded.

Gathering opinions behind the Product Owner’s opinion is another way of
saying “no”. The Product Owner gathers a few agreeing experts to a meeting
to justify his or her own opinion. In this case, the Product Owner’s opinion was
perceived to have more power, and a stigmatizing choice to oppose did not apply
to the Product Owner anymore.

“If you’re in a situation, where you can’t really get ahead between the two of you,
then maybe you can take a few people or the issue owner, and look at the whole
thing together. Then it will always be easier to make that decision and the big lines
when more than one opinion agrees.” — H4

Dictating Culture and Not Understanding Agile: Some interviewees felt
that saying “no” is not constructive because the Product Owner does not have
enough to say and the role is walked all over. In that case, the Product Owner
would need help from the roles higher up in the hierarchy to say “no”, but these
higher roles might not take a position on behalf of the Product Owner for their
own reasons, e.g., because of conflicting goals or opinions.

“We have such a culture, that top management can dictate. That “this is done like
this” and no one can say anything about it. No one dares to say to top management.
If we talk about that top management, the Product Owner is so far away from that,
that he or she has no chance of saying anything up there. It would require that in
a way our Business Leads and tribal leadership, would say “no”.” — H8



106 P. Niva et al.

“If I would want to take a position on the orders which are coming from Business
Leads and question that model, then yes, I feel like I can say “no”. But I know it
is not far-reaching, because there are such strong personalities, that it comes back
pretty quickly as a boomerang. It is not constructive, at least in that tribe. That
kind of conversation cannot be discussed in a constructive spirit. Although I can
say “no”, it doesn’t make sense in that environment.” — H9

Some interviewees had unpleasant experiences of how opinions and know-
how can be walked over. Shouting at meetings crosses boundaries that would
not generally be wanted to be crossed. When the Product Owner’s role is not
understood, some may abuse their power and customers might not get the best
possible version of the product.

“It should not be this HiPPO-style: that the Highest Paid Person decides. We make
these products for customers. Through it, we reflect on those outcomes. But that’s
it. This is often a matter of making compromises.” — H11

Several Product Owners felt that there are situations when the business has
not understood the Agile way of operating and walks all over the Product Owner.

“If you say “no” too many times, and even if you justify it by the fact of moving
to this Agile model, when you say enough “no”, you will be blacklisted. If you say
once or two say so, you may not be blacklisted. It sometimes resembles some junior
high school frankly. There, really, in some group meetings, the volumes may rise,
and swear words are thrown. You don’t want to go along with that intentionally
when you know what will follow. I prefer to swallow my disappointment and say
that this is how it is done here.” — H9

The Product Owner Role Needs Clarification: Several interviewees felt
that Agile was not fully understood and the Agile roles would need clarification
from a higher level of management. While transitioning to large-scale Agile the
roles were defined in the internal intranet. However, this was felt insufficient.
Especially the Product Owner role would need clarification: how the role is seen,
how it is positioned, and what kind of power and freedom the Product Owner
has. If the Product Owner is to lead the product, then he or she should be able
to make decisions and show the direction.

“There must also be decision-making ability and not everything can be discussed
in the Swedish style until the end or endlessly. But it is good to go through things.
Then, if there are differences of opinion on which direction to take, then, of course,
the role of the Product Owner is to make decisions and, in a way, show direction.”

— H4

The interviewees felt that it is difficult to be responsible for the success of
a product if its direction is not determined by the person responsible for it.
It emerged also from the director-level interviews that, the Product Owner is
expected to resist by saying “no”, to hold the side of the product and that
way make it better, but in practice that turned out to be difficult. Finally, a
clarification was wanted on how IT and business should work together, in an
Agile way.



Striving for Freedom 107

4.2 RQ2: What is the Entrepreneurial Mindset of the Product
Owner?

The case company emphasized how an entrepreneurial mindset could benefit
the work of Product Owners. Any small and large company can create its own
products. An entrepreneur “owns” his or her own company’s products and takes
them forward so that it will be a reasonable business, justified by its technological
solutions and created customer value.

The decision-makers of the case company expressed in the interviews that
they wanted to encourage the Product Owners to have an entrepreneurial mind-
set. They hoped that the Product Owners would take ownership of the product,
that the entrepreneurial mindset would help them to outline and plan the prod-
uct, and finally, by taking responsibility the Product Owners would have also
more freedom. This mindset was expected to benefit the company.

Our interviews revealed that there were still many blockers on the way and
room for improvement in the support structures enabling the entrepreneurial
mindset. The case company could benefit from giving more opportunities and
freedom so that the Product Owners would get to show their full capability
and skills. The aspects of an entrepreneurial mindset in the case company are
described in Fig. 2.

Fig. 2. Pros and blockers of an entrepreneurial mindset.



108 P. Niva et al.

Attitude Towards the Entrepreneurial Mindset: The interviewed Product
Owners were motivated and committed to their work and felt that they could
use their skills in this role. 39% of the interviewees raised positive issues about
the entrepreneurial mindset, while 56% raised negative issues.

Entrepreneurship was felt to be largely about being able to build something
new from scratch.

“As an entrepreneur, if and when you get to build a completely new service from
scratch, I think that is more entrepreneurial” — H6

Even when the interviewees felt that the case company had not given Product
Owners an opportunity to be entrepreneurial, an entrepreneurial mindset was
perceived as a good goal within the company.

“I don’t know how to rationalize [entrepreneurship as a goal], but yes you have to
be truly independent and forward-looking in the best possible way relative to your
own product or area.” — H7

“Absolutely! And this [entrepreneurial attitude] is one element that I personally
love above everything else.” — H1

“I see that those are my stuff, I own those, and I have to take that forward. And
that’s clear. But I think it is a pretty natural pattern of thought. That’s how it
should be for everyone, though. [...] When it comes to entrepreneurship, I might
feel it is a little different than what it really is in a bigger company like this. It is
more of a sphere of thought that you need to be entrepreneurial here maybe, but
the activities might be a little different nonetheless.” — H13

Regarding the Product Owner’s motivation and goals, an interviewee pre-
sented an analogy of a sports hobby. An entrepreneurial mindset can mean the
same as taking responsibility in a sports team or in a goal-oriented sport. The
athlete is always able to invest in his or her own development with independent
decisions.

“I find the analogy more from the world of team sports, than from entrepreneurship.
And yet the goal in both is the same, that we are just super committed and striving
to achieve the goals.” — H18

Challenges Regarding the Entrepreneurial Mindset: Although the
requirements of an entrepreneurial mindset were understood, our interviewees
reported many factors why a Product Owner could not be entrepreneurial in
our case company: 1) The Product Owners could not create their own vision
for the product but had to implement what the business wanted. 2) In a large-
scale Agile setup there were a lot of dependencies across the organization, thus
decisions could not be independent. 3) The budget and resources were decided
elsewhere in the organization and the Product Owners did not even have much
to say on how to use the budget. Next, each of these challenges is discussed.

Implementing What Business Wants: An entrepreneur creates a vision for
his or her product, which the interviewed Product Owners felt they did not have



Striving for Freedom 109

a possibility to do. Instead, new features came from elsewhere, from the business
side, thus it was felt that the Product Owner was losing the opportunity for an
entrepreneurial mindset. Instead, the Product Owner was just implementing
what the business wanted. Whereas an entrepreneur would own the product and
could decide the direction.

“I feel like I work as an IT team coordinator and a responsible person, but not
as an entrepreneur. I feel that an entrepreneur should be creating that vision, and
there should be possibilities to make an impact vertically, not just horizontally. It
[the work of Product Owners] completely lacks the aspect of effect vertically. That’s
why I don’t think there’s anything left of entrepreneurship in it, just crumbs.”

— H9

“When it comes to just queuing up what comes from business as an input, that is
not entrepreneurial. Or I don’t know, ditch excavation can also be entrepreneurial,
you can start a business for that too.” — H2

If the Product Owner is seen more as a performer of tasks than as an orches-
trator of the whole, then product ownership and thus entrepreneurship will not
materialize.

Dependencies: In the large-scale setup of the case company the team of each
Product Owner was seen as just part of a puzzle - it had a lot of dependencies
on other teams and other parts of the organization. Thus, the Product Owner
did not have the possibility to make decisions independently.

“But on the other hand, then, you can’t just be an entrepreneur [in this role]
who makes decisions completely independently, but there are a lot of dependencies,
which, in a way, then drops away the other side of the entrepreneurship, that is,
the maneuver space.” — H14

In addition, the Product Owner was not responsible for the whole, but just
part of the work done for the product. For example, the maintenance did not
belong to the Product Owner’s area. Thus, the current model was not seen as
supporting the entrepreneurial mindset.

“Everyone probably wants to act like that [with an entrepreneurial mindset], and
everyone wants to look like it works. But an entrepreneurial attitude means that
you really own your product and are serious about getting that better and more
profitable. We have thrown out maintenance from products elsewhere. And then
things related to the user experience are in pretty bad shape overall. And then we
are required to do 120% of the work time new features, so try to be entrepreneurial
there! [...] It may be that people are like fooling themselves with it, but in this model
where we are now, it does not work. We don’t really have product ownership,
we don’t have product management. Then when we have them, then we can be
entrepreneurial.” — H2

One of the dependencies mentioned was house-level policies posed for all
employees. As an example, an interviewee gave the remote work policy. It was
hoped that Product Owners would be able to influence the amount of remote



110 P. Niva et al.

work they do. It would be difficult to see the environment as entrepreneurial
if the employer dictates how much the employee or team is allowed to work
remotely.

“But then there are still certain house-level policies, in terms of practices or others,
so that for example, I am looking forward with great interest to how strict the
policies will be for us to come back to the office [after the pandemic]. [...] When
you have the freedom to choose where you work, then you will have a certain
responsibility to do the work. Because then there’s kind of no one watching all
the time. In my opinion, entrepreneurship is based on that. That you have that
freedom, but then you also have that responsibility.” — H8

Budget and Resources Coming Elsewhere: It was felt that when the bud-
get and resources come from elsewhere, it is difficult for the Product Owner
to be entrepreneurial. Although an entrepreneur may not have even the same
budget available as a Product Owner in a large-scale Agile company, at least
entrepreneurs have more freedom to decide how to use the budget.

“For that operation to be entrepreneurial here [in my team], in a way, this little
team would be my own boutique... We are not there. Yes, it would take quite a few
things. One would be the budget. Also, I also really should have an influence on
things like resourcing.” — H10

Monthly Salary Creates Safety: Several of the interviewed Product Own-
ers from the case company felt that they are employees in a large-scale Agile
environment with a monthly salary, which creates job security that they liked.

“And in this context, that work is done for the employer.” — H4

Making the environment more entrepreneurial would run the risk that
employees would no longer feel so safe, and the focus would be on the potential
negative aspects of entrepreneurship, such as job and salary insecurity.

“I’ve always thought I wouldn’t want to be an entrepreneur, in a way, that safe job
is a pretty important thing to me.” — H17

“Entrepreneurship means that you are a 24/7 entrepreneur, and, in a way, the
workday does not end. Even though I personally feel that my workday does not end
when I end the day, I’m still available after that if needed. But it’s kind of like I’m
not responsible for being available 24/7.” — H18

Thus secure job was seen as a positive aspect of the current situation in the
case company.



Striving for Freedom 111

4.3 Validation

A feedback meeting was held at the case company to validate the results of the
analysis. The participants shared their opinions on the results, i.e. their views
on the validity of the results. Eight participants (commenter IDs V1-V8) gave
comments: they recognized the areas for development and the problems. The
only concern raised in the discussion was that if the tribes of the interviewees
are very different from each other, then the results of the study might be bundled
together into a too-generic outcome. However, the purpose of this study was to
obtain versatile data from different parts of the company. The results that this
research underlined were perceived as identifiable.

“It was very delightful to see that the experiences I have myself were reflected in
this presentation. I think you have at least got into this presentation very well,
how this world looks like from my point of view. [...] That is, there has been a
slight debate in our tribe about who makes those decisions. One view there is that
business tells us what to do, and the job of Development and Technologies is to do
as we are told or do, i.e., what the business says.” — V2

The commenters felt that there were still difficulties in implementing an Agile
culture. For example, features for products were ordered, rather than discussed
and decided together.

“I feel like we are still pretty strong in there, what was being said, that features are
being ordered.” — V4

When considering the freedom of the Product Owner, the interviewees felt
that the current resourcing and budgeting model does not quite support Product
Owners to try out new ideas. Instead, resources are devoted to what is planned
from the business side.

5 Discussion and Conclusions

Central to the development of modern capitalism has been the idea of free-
dom [6]. In this paper, we studied the freedom of the Product Owner role in
a large-scale Agile organization regarding two aspects: how a Product Owner
can influence the direction of the product by saying ”no”, and whether Prod-
uct Owners have an entrepreneurial mindset. To our knowledge, this is the first
study exploring these topics.

An entrepreneurial mindset is perceived as important in engineering, and
scholars emphasize the importance of creativity in science-oriented careers [5].
Prior knowledge is important for an entrepreneur to recognize an opportunity. An
entrepreneur is able to create a venture when an opportunity has been identified
[13]. The Product Owner creates products. An entrepreneurial mindset can be
thought of as proactive and saying “no” as reactive. In this study, we found
that the organization’s hierarchy and budget create boundaries within which



112 P. Niva et al.

the Product Owner can say “yes”. However, the Product Owner needs to set
limits and make room in the backlog for new opportunities by saying “no”.

How Does the Product Owner Say No? The interviewed Product Owners
claimed they can say “no” to anyone, but the results showed the uncertainty
behind this claim: In reality, they were not able to freely scope their products in
this large-scale Agile setup. Instead, their superiors and business people could
walk all over the Product Owners’ vision. Results revealed that Product Owners
preferred handling the conflicting scoping decisions through discussion, instead of
directly saying “no”. This could result in taking items to the backlog against the
Product Owner’s vision, and in that case, aiming to prioritize those items low.
Gathering support from persons having the same scoping opinion was another
option to keep unwanted items out of the product scope.

The role of the Product Owner and its’ decision-making power was unclear
in this large-scale Agile setup and would need clarification. Many felt that the
organization lacked a proper understanding of Agile. The findings showed that
the Product Owner role in a large-scale Agile organization may not be realized
according to the Scrum guide [20].

What is the Entrepreneurial Mindset of the Product Owner? The
underlying human predisposition of entrepreneurship to try or pursue persis-
tently entrepreneurship is determined by different models [3]. Giving freedom
improves organizational agility, and freedom empowers employees to act inde-
pendently and in a self-coordinated way, as entrepreneurs do [15]. Thus, our case
organization encouraged the Product Owners to take responsibility by valuing
an entrepreneurial mindset. The interviewed Product Owners found this goal
understandable, however, they reported many blockers that prevented reach-
ing the mindset: 1) The Product Owners could not create their own vision for
the product but had to implement what the business wanted. 2) In a large-
scale Agile setup there were a lot of dependencies across the organization, thus
decisions could not be independent. 3) The budget and resources were decided
elsewhere in the organization and the Product Owners did not even have much
to say on how to use the budget.

Product Owners are expected to lead the product to success. This study
shows that the Product Owners perceive the entrepreneurial mindset to some
level as a utopia in a large-scale Agile setup. It was felt to be more important
that the Product Owner could make independent decisions.

Limitations of this study include the following: We interviewed 18 persons
from a large-scale organization, thus we could triangulate the answers among the
interviewees. However, we could not cover all Product Owners in the company,
thus, some viewpoints might be missing. This is a single case study. To increase
generalizability to other similar organizations, we aimed to provide a rich context
description. However, studying several case organizations would have provided
better possibilities to generalize.

Future research could dig deeper into how the Product Owner’s freedom could
be concretized in a large-scale Agile environment. We encourage researchers to



Striving for Freedom 113

perform similar case studies in other large-scale organizations to study how the
freedom of the Product Owners is realized and what the implications are.

References

1. Beck, K., et al.: Manifesto for Agile Software Development (2001). https://
agilemanifesto.org/

2. Brinkmann, S.: Qualitative Interviewing: Understanding Qualitative Research.
Oxford University Press, Oxford (2013)

3. Burke, A.E., FitzRoy, F.R., Nolan, M.A.: What makes a die-hard entrepreneur?
Beyond the ‘employee or entrepreneur’ dichotomy. Small Bus. Econ. 31(2), 93
(2008). https://doi.org/10.1007/s11187-007-9086-6

4. Conboy, K., Carroll, N.: Implementing large-scale agile frameworks: challenges and
recommendations. IEEE Softw. 36(2), 44–50 (2019)

5. Daspit, J.J., Fox, C.J., Findley, S.K.: Entrepreneurial mindset: an integrated def-
inition, a review of current insights, and directions for future research. J. Small
Bus. Manag. 61(1), 12–44 (2023). https://doi.org/10.1080/00472778.2021.1907583

6. Dierksmeier, C., Pirson, M.: The modern corporation and the idea of freedom.
Philos. Manag. 9, 5–25 (2010). https://doi.org/10.5840/pom2010932

7. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

8. Dyer Jr, W.G., Wilkins, A.L.: Better stories, not better constructs, to generate bet-
ter theory: a rejoinder to Eisenhardt. Acad. Manag. Rev. 16(3), 613–619 (1991).
https://doi.org/10.5465/AMR.1991.4279492. https://search.ebscohost.com/login.
aspx?direct=true&db=bth&AN=4279492&site=ehost-live. Publisher: Academy of
Management

9. Felderer, M., Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro, F., Win-
kler, D. (eds.): PROFES 2017. LNCS, vol. 10611. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69926-4

10. Frost, R.: Television: Men of Faith by Philip Hamburger. The New Yorker, pp.
167–169, December 1952

11. Jyothi, V.E., Rao, K.N.: Effective implementation of agile practices. Int. J. Adv.
Comput. Sci. Appl. 2(3) (2011)

12. Kelly, A.: The Art of Agile Product Ownership. Springer, Heidelberg (2019).
https://doi.org/10.1007/978-1-4842-5168-3

13. Kuratko, D.F., Fisher, G., Audretsch, D.B.: Unraveling the entrepreneurial mind-
set. Small Bus. Econ. 57(4), 1681–1691 (2020). https://doi.org/10.1007/s11187-
020-00372-6

14. Musselwhite, K., Cuff, L., McGregor, L., King, K.M.: The telephone interview is an
effective method of data collection in clinical nursing research: a discussion paper.
Int. J. Nurs. Stud. 44(6), 1064–1070 (2007). https://doi.org/10.1016/j.ijnurstu.
2006.05.014. https://linkinghub.elsevier.com/retrieve/pii/S0020748906001672

15. Nobles, B., Staley, P.: Freedom-based management. MLAB Labnotes (2009).
http://www.42projects.org/docs/FreedomBasedManagement.pdf

16. Paasivaara, M., Heikkilä, V.T., Lassenius, C.: Experiences in scaling the product
owner role in large-scale globally distributed scrum. In: 2012 IEEE Seventh Inter-
national Conference on Global Software Engineering, pp. 174–178. IEEE (2012)

https://agilemanifesto.org/
https://agilemanifesto.org/
https://doi.org/10.1007/s11187-007-9086-6
https://doi.org/10.1080/00472778.2021.1907583
https://doi.org/10.5840/pom2010932
https://doi.org/10.5465/AMR.1991.4279492
https://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=4279492&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=4279492&site=ehost-live
https://doi.org/10.1007/978-3-319-69926-4
https://doi.org/10.1007/978-3-319-69926-4
https://doi.org/10.1007/978-1-4842-5168-3
https://doi.org/10.1007/s11187-020-00372-6
https://doi.org/10.1007/s11187-020-00372-6
https://doi.org/10.1016/j.ijnurstu.2006.05.014
https://doi.org/10.1016/j.ijnurstu.2006.05.014
https://linkinghub.elsevier.com/retrieve/pii/S0020748906001672
http://www.42projects.org/docs/FreedomBasedManagement.pdf


114 P. Niva et al.

17. Patton, M.Q.: Qualitative Research & Evaluation Methods: Integrating Theory
and Practice. Sage Publications, Thousand Oaks (2014)

18. Saddington, P.: Scaling agile product ownership through team alignment and opti-
mization: a story of epic proportions. In: 2012 Agile Conference, pp. 123–130. IEEE
(2012)

19. Scaled Agile Inc.: Homepage: Scaled Agile Framework (2021). https://www.
scaledagileframework.com/

20. Schwaber, K., Sutherland, J.: The Scrum Guide (2020). https://scrumguides.org/
scrum-guide.html

21. The LeSS Company B.V.: Area Product Owner. https://less.works/less/less-huge/
area-product-owner

22. Tiwana, A.: Platform Ecosystems: Aligning Architecture, Governance, and Strat-
egy. Newnes (2013)

23. Yin, R.: A review of case study research: design and methods. In: Applied Social
Research Methods, vol. 5, p. 219. SAGE Publications Ltd., January 2003. Journal:
Applied Social Research Methods

24. Yin, R.K.: Case Study Research and Applications: Design and Methods, 6th edn.
SAGE Publications, Los Angeles (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://www.scaledagileframework.com/
https://www.scaledagileframework.com/
https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html
https://less.works/less/less-huge/area-product-owner
https://less.works/less/less-huge/area-product-owner
http://creativecommons.org/licenses/by/4.0/


Sustaining Agility: Organizational Change,
Factors and Theoretical Lenses

Leonor Barroca1(B), Helen Sharp1, Advait Deshpande1, Peggy Gregory2,
and Stavros Papadeas3

1 The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
leonor.barroca@open.ac.uk

2 University of Central Lancashire, Preston, UK
3 The Business Agility Institute, New York, USA

Abstract. Agile organizations have to deal regularly with change and at the same
time adapt to sustain agility. In this paper, we present an initial study to identify
factors considered when changes need to be made to sustain agility. We used a
novel data collection approach, critical decision method (CDM), and investigated
three theoretical lenses, paradox theory, situation awareness and shared mental
models, to explore the kind of practical consequences they help to uncover. This
paper presents the findings of this initial study together with reflections on the data
collection method and the three theoretical lenses. Three key dimensions relevant
to sustaining agility emerge from the use of these theoretical lenses: teams vs
organization; understanding the environment vs the impact of change internally;
and understanding “now” vs looking into the future.

Keywords: Sustaining · agility · change

1 Introduction

Agile methods have been practiced for many years, and the challenges agile practitioners
face have evolved over time. Initial concerns focused on how to adopt agile software
development, and later, on how agile can be scaled to large IT projects [1].More recently,
challenges have moved towards business agility transformation [2], and how to remain
agile in the long term [3, 4]. This paper focuses on this last concern, which we refer to
as “sustaining agile”, i.e. the continuous process of maintaining and improving agility
within an organization.

An organization that has transformed to agility, or in which only some part(s) of it
have adopted agile practices may face different issues around sustaining agile [2] than
one that has been agile from its inception. An organization that has adopted agileworking
from its inception may find the question of how to sustain agile puzzling because a key
characteristic of agility is continuous adaptation and improvement, and one of the agile
principles refers to sustainable pace: “The sponsors, developers, and users should be
able to maintain a constant pace indefinitely”. However, by sustaining agile we are not
referring to the continuous ongoing flexible adaptation of agile work but to how agile
organizations deal with potentially disruptive change, yet continue to be agile.

© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 115–131, 2023.
https://doi.org/10.1007/978-3-031-33976-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-33976-9_8


116 L. Barroca et al.

Studies on organizational change tend to be long term, involving many participants
and huge amounts of data collection and analysis. On the other hand, short interview
studies can be limited in their depth of insight. To overcome these extremes, we set
out to explore a different data collection approach, and to investigate the theoretical
frameworks that might shed light on the question of how organizations sustain agility
through disruptive change.We alsowanted to identify concrete factors, specific examples
and practical recommendations that practitioners demand [5]. To that end, we have
conducted an initial study to identify factors considered when an organization needed
to put effort into sustaining agility. We used a novel data collection approach, critical
decision method (CDM) [6], and investigated three theoretical lenses, paradox theory
[7], situation awareness [8] and sharedmental models, [9] to explore the kind of practical
consequences they help to uncover. This paper presents the findings of this initial study
together with reflections on the data collection method and the three theoretical lenses;
it contributes to the research on sustaining agile by identifying an initial set of factors
considered when changes need to be made, and by proposing a data collection approach
that focuses on real practice and is more targeted than the typical longitudinal studies.

The next section surveys literature in sustainability, resilience and organizational
change. Section 3 describes the study design and Sect. 4 presents its results. Three
theoretical lenses and their ability to generate concrete insights are considered in Sect. 5.
Section 6 presents lessons learned from this initial study and concludes the paper.

2 Related Literature

The term ‘sustainability’ is used in a wide range of contexts. It is nowadays commonly
associated with the UN’s sustainable development goals [10] where it is defined as
“meeting the needs of the present without compromising the ability of future generations
to meet their own needs”. However, a more general definition of sustainability is “the
ability to be maintained at a certain rate or level” [11]. This more general definition is
reflected in the literature on organizational change [12–15] and in software engineering
literature focused on sustaining agile [16–18].

Buchanan et al. [12] reviewed studies on sustaining organizational change and
defined it as “the process through which new working methods, performance goals and
improvement trajectories are maintained for a period appropriate to a given context.”
They proposed a provisional model for the processes influencing sustainability but the
studies they reviewed focus onfinancial, political, and contextual factors affecting change
rather than agile concerns such as customer focus, adaptability to uncertain environments
and team empowerment. Holbeche [13], on the other hand, focuses on organizational
agility. For this author, organizational agility is the “capacity to respond, adapt quickly
and thrive in the changing environment”, and a resiliently agile organization has:

• “an organizational culture and structure that facilitates change within the context of
the situation that it faces;

• staff who are willing and able to give of their best – in a sustainable way; and



Sustaining Agility: Organizational Change, Factors and Theoretical Lenses 117

• a learningmindset in themainstreambusiness and underlying lean and agile processes
and routines to drive innovation.”

This view resonates strongly with our notion of “sustaining agile”. In another work,
Holbeche [14, p.54] lists the activities needed in the quest for business agility, gathering
them into a circular model with 4 quadrants: agile strategizing, operations, linkages and
people practices; at the centre and underlying everything are agile people and culture.
But both [13] and [14] fail to address how organizational agility may be sustained. More
recently, Miceli et al. [15] propose that sustainability and resilience are distinct but
interdependent and that agility supports an organization in building resilience. However,
they observe that research has still to identify the factors that are considered in the
process of maintaining an organization’s agility.

So although there is a growing interest in agility within the organizational change
literature, we found no studies that investigate how organizations sustain their agility.

There have been some investigations into sustaining agile within software engineer-
ing literature, but they are limited. Senapathi and Srinivasan [16] view sustaining agile
with regards to the six stages presented in Rogers’ diffusion of innovation theory [19].
They see sustainability from a change management point of view and consider it as the
post-adoptive stages where a change is accepted, routinised and infused into an organi-
zation. In this case, agile is being used, it becomes a normal activity, and it penetrates
deeply and widely in the organization. Sedano et al. [17] investigate sustainability on
the agile development team level. They define sustainable software development as the
“ability and propensity of a software development team to mitigate the negative effects
of major disruptions, especially team churn, on its productivity and effectiveness”. Bar-
roca et al. [18], report on what practitioners thought agile sustainability meant. Four
themes emerged from this study: being completely agile (whole organisation, mind-
set, and principles); being independent (learning and self-sufficiency); being focused
on business value and need (user/customer need, value, business need, and appropriate
use); and being consistent across time (sustainable pace, and leadership and appropriate
technical skills).

Today this is still an under-researched area with little in-depth study of agile sus-
tainability. We therefore formulated our research question as: ‘What factors do IT
organizations consider when making changes to sustain agile?’.

3 Study Design

The overall framework chosen for this initial study is the critical decisionmethod (CDM)
[20]. This approach uses multi-pass retrospection in which the same event is described
more than once, but with differing levels of detail. It is an extension to the critical
incident technique [21] to investigate how decisions are made in real situations. It has
been used to research team decision-making [8], emergency ambulance control [22],
and software flaws [23]; it is an interview method aimed at eliciting specific concrete
experiences rather than idealized accounts. CDM’s anchoring in concrete experiences
makes it appropriate for our focus on specific factors and practical insights; it allowed
us to have a more targeted focus in data collection than that provided by longitudinal



118 L. Barroca et al.

studies, while also providing the specificity that it can be hard to get from standard
interview studies.

Participants were asked to identify “examples of particularly significant changes they
needed to make in order to sustain agility”. More specifically, they identified a change
that they believed was relevant to agile sustainability, described it and explained how it
was effected. The CDM technique has not, to our knowledge, been applied to this kind
of situation before. The study gained ethical approval from the relevant committee of
one of our universities.

3.1 The Case Study: AgileCo

We sought a software development company that had experience of needing to make
changes to their business in order to preserve their agility, and we were introduced to
AgileCo through our collaborationwith theAgile Business Consortium and the Business
Agility Institute. AgileCo is a large video game developer with players all over the
world. The company has been player-focused since their formation, and it is a desire to
remain customer-centered that drives them, rather than an explicit need to sustain agility.
But “to be customer-centric we have to be agile” (CTO). At the time of the study the
organization employed around 3000 people and had 20 offices around the world.Most of
their developers are also gamers themselves. Development takes place through iterations,
with releases every 2 weeks. Each team is empowered to choose whichever approach
they prefer (Kanban, Scrum, etc.), led by a delivery leader who is in charge of delivering
the product and is also an agile expert supporting the team to work in the best agile way
for them. This autonomy extended to how best to form teams, when to integrate teams,
split teams or form new ones. This flexibility and the delivery-led structure extended
to other parts of the business such as finance and HR where delivery leaders were also
deployed. The company has a strong focus on education and all employees are taught
the basics of agility from the moment they join the company.

AgileCo formed in the early 2010s. In the first 10 years they developed and main-
tained only one game and then the business decided to diversify and develop multiple
games. Themove tomultiple games demanded the centralization of functions common to
the different games, such as registration, but key decisions such as release cycles and fea-
ture development remained with the teams. This led to a situation in which development
activities had to be co-ordinated more closely; teams were encouraged to release their
games when ready rather than staggering them. This had implications for co-ordination
and prioritization of centralized development. Moving to a multiple-game organization
was a strategic decision taken in response to the changing external environment and was
intended to maintain business value for the organization and its users, the players. At
this time, the organization had highly distributed and empowered teams that knew, and
had total ownership of, what they had to do.

This is the context within which we interviewed our participants.



Sustaining Agility: Organizational Change, Factors and Theoretical Lenses 119

3.2 Data Gathering

AgileCowere approached initially by our collaborators. Following a virtual introduction
we interviewed the company’s CTO who put us in touch with further interviewees who
were more closely involved in relevant business changes.

The CTO interview elicited the company’s background and was used to produce the
description above. Our second interviewee had overall responsibility for two relevant
business changes. Subsequently, our second interviewee recommended our third and
fourth interviewees. Overall, we performed six interviews, four of which followed the
CDM structure described above. The questions used during the CDM cycles are in
Table 1. Note that the participants identified what constituted business change and that
none of the questions ask directly about the factors considered during this experience.
The second interview uncovered two changes, and the subsequent four interviews sought
further detail and different perspectives on these two changes. Interviewswere conducted
and recorded through Microsoft Teams, and then transcribed.

Table 1. Prompting questions asked during the CDM cycles.

Topic Question

Cues & Knowledge Why did you choose this example to share with us?

Analogues Is this a typical example?

Goals What were you trying to achieve at the time?

Options Did you try different resolutions (or is this a linear process)?

Basis of Choice How was this resolution selected/other resolutions rejected?
Were any rules or heuristics being followed?

Experience What training, knowledge, or information did you draw on?

Decision-Making Were you under any time pressure?
How long did it take?

Aiding Did you seek any help?

Reflection/Impact Today What impact did this resolution have?
If a key feature of the situation had been different, would it have
made a difference to your decision?

3.3 Data Analysis

Data gathering resulted in six hours of transcribed interview data. Analysis was based
onWong’s [24] CDM analysis guidance, specifically using the thematic approach. First,
descriptions of the two changes identified by interviewees were extracted. Then the
specific examples of these changeswere examined.Using a reflexive thematic analysis as
described byBraun andClarke [25], factors that the interviewees regarded as important in
effecting the business changes were identified. Throughout, our aim was to characterize
the situation from their point of view.



120 L. Barroca et al.

Three researchers were involved in the analysis, independently identifying themes
and then discussing them. The findings were reported back to the organization for
member checking and it was agreed that they reflected their experiences.

4 Study Results

The two changes identified were both in the context of changing from being a single-
game company to a multiple-game company: changing the work system to balance
individual team and central organization concerns; and prioritizing items proposed by
senior managers of the organization. The first emphasizes agility closer to the coal face
(the middle/lower layers of activity), while the second emphasizes agility at the higher
levels of strategic value.

4.1 Changing the Work System

Changes to the work system were triggered from within the organization itself because
of the need for centralization of some functions. The diversity of tools being used by
the teams (spreadsheets, Jira, Favro, Kanban) made it difficult for progress towards
milestones to be visualised. So, they decided to introduce a newwork system that allowed
work to be tracked centrally, and be a single point for measuring progress. The process
to define this new system was slow, and was carried out in collaboration with the teams,
bringing them along and avoiding creating overheads to their work.

The challenge to sustaining agility in making this change is summarized as: “not
disrupting things at the coal face but still reap[ing] some benefits of predictability at the
top” and the main aim was “finding the balance between empowering their [the teams’]
agility and their best practices and giving the <…> large organization value”.

To make this change successfully the organization had to find “the pivot from indi-
vidual teams owning and doing whatever they want into more of a web of collaboration
between teams and discovering what that means and not having to argue from first prin-
ciples that centralization is evil or wrongheaded every time an optimization is tried to
be made for efficiency”. As an agile organization, being light touch and respectful of the
autonomy of the teams was a factor that underlined any decisions taken: “we are here
as more of a choreographer, or an orchestra leader to help you reveal the strengths of
the things you’re building and engender the conversations to happen”.

4.2 Improving Prioritisation

The second change concerned how the organization prioritized work items coming from
seniormanagement, and integrated them into the development teams’work. The example
provided byour participantswas that the company received an external demand regarding
their compliance with a new regulation. This demand needed to be prioritized against
other work at the organizational level. The compliance request came in when the teams
were “6 to 9 months away from launching 3 to 4 major games”.

To respond to this external request, they broke it down into discovery chunks so it
wasn’t “all or nothing” but became a set of tractable scenarios to assess and prioritize



Sustaining Agility: Organizational Change, Factors and Theoretical Lenses 121

value: “make smaller pieces of value or smaller avoidance of pain”; “the discussion
quickly boiled down to [..] what is the most clear value”; “we would cycle through
those [..] topics until [..] we had an alignment on an absolute rank of [..] priorities”.
The change was to approach the problem from a discovery perspective.

4.3 The Factors Considered

To answer our research question we looked for the main factors that were taken into
account when making these changes.

The themes that emerged from the analysis of data around the first change were
about prioritization, and negotiation of common work (“we turn over all the asks and
centrally [..] we do a prioritization”; “we now broker discussions between the people
that asked for the work”; “it’s very much a combination of a bottom-up and a top-down
negotiation that happens”). The organization had to find a way that did not disturb the
teams, was light touch, and also brought the teams along (“we saw it as a choreography
of behaviours”).

For the second change, responding to external events by the top of the organization
led to work breakdown; this needed to take into account business value, users and risk to
the organization. “born a prioritization system [..] pull all the work and all the asks[..]by
engaging in this central ritual, this central overheadwhich gets us no value to the players
and no output from your teams the value you get is stability.”

Achieving business value and stability through prioritisation was a slow process
requiring negotiation of commonwork and brokering discussions across the organization
(“focusing on choreographing all the work towards a single purpose”; “So in this way
we, kind of slowly and iteratively, pulled detail out from the depths of teams, and teams
of teams and started to reveal those and have discussions. In doing so, we slowly evolved
standards, [..], and in that waywe didn’t come in, and just say ‘thou shalt fill out this form
with all this detail and then we’ll disappear into our ivory tower and tell the customer
what’s going on”).

Having these conversations eventually led to a state where there was alignment,
knowability and transparency across teams that could support predictability for central
business (“finding the balance between empowering their agility and their best practices
and giving the [..] large organization value“; “the value in an organization is not the
number of great ideas it has, it’s ability to win all those and make sure only the most
valuable ideas actually come down to the teams [..] so giving visibility into that and
enforcing the right conversations far enough ahead in the executive team”; “going back
to the balance of value versus predictability, what we were trying to do is negotiate for
the internal customer, the game team, and align[..] on what were the major chunks of
things they needed”).

The themes identified from analysing the whole data set are shown in Table 2.
Some of these factors resonate with the themes identified by practitioners when asked
about sustaining agile [18], e.g. the focus on business value and user need, and being
independent in the sense of respecting teams’ autonomy. Other factors relate specifically
to the agile philosophy, e.g. being lightweight and encouraging discussion. Yet others
consider the organization as a whole and the need to maintain a common goal, e.g.
predictability and alignment.



122 L. Barroca et al.

The results highlight three perspectives that AgileCo took when making changes
to sustain agility: an organization-wide perspective; an awareness of the external envi-
ronment; and, an understanding of how external changes affect its agile teams. But
sustaining agile is complex and this kind of analysis does not provide practical guidance
and so we sought to extend our interpretation by investigating theoretical lenses.

Table 2. Factors considered when making changes to sustain agility

Factor Quotes

Users and business value Business value “the work system balancing
value versus predictability”

Knowing users/players
(importance of players)

“AgileCo is a very player focused
company, and anything that
leaves some of our players out,
no matter how small a slice of the
overall pie they might be, is
something we take to heart and
definitely want to solve”

Risk Risk “so the outcome was we aligned
we will accept the risk, we
understood the risk”

Not disturb the teams Reduce pain/overhead “value is two things right,
avoiding pain and adding
goodness”
“we would lighten that overhead”

Not disrupt coal face while also
having predictability

“…game ABC can have some
predictability about …”

Maintain autonomy “allowed them to have varying
work systems”
“allowing that total ownership to
continue to flourish”

Predictability Predictability for central
business

“pivot from highly agile to highly
knowable state”
“so that we could be more
predictable”
“but also gave us predictability
and an ability to have a
conversation”

Transparency “Transparent in that it is like the
work itself radiates obviousness “

(continued)



Sustaining Agility: Organizational Change, Factors and Theoretical Lenses 123

Table 2. (continued)

Factor Quotes

Knowability “knowability is about the kind of
ease of transitioning into, like, a
new team member or a new team
joins and someone points and
says this is the system we use
that they just kind of melt into it
without, you know, with ease.”

Alignment “Are we aligned with our
customers”
“we would cycle through those
topics until the room felt we had
an alignment”

Collaboration Negotiation of common work “the purpose of this ritual that we
engage in quarterly is quite
frankly to have those discussions
to reveal all of that opinion and
try and piece together a path
forward and in that way”

Conversation/discussion “we would have this
conversation” …“very good
discussions are ensuing”
“while it was a very rich
conversation”

Prioritisation “<was> born a prioritization
system [..] pull all the work and
all the asks[..]by engaging in this
central ritual, this central
overhead which gets us no value
to the players and no output from
your teams the value you get is
stability

Breakdown “gives us a richer understanding
and a better breakdown of the
work.”

(continued)



124 L. Barroca et al.

Table 2. (continued)

Factor Quotes

Light touch Lightweight “So we started very lightweight”

Choreograph not direct “We saw it as a choreography of
behaviours, hey if you have
concern this is how you express
it, so we discuss it, if you have
completed your work, this is how
you mark it so that it appears in
the system, if we need to engage
with the customer and we feel
there is a gap in their acceptance,
or in a set of features that we
think solves their ask, this is how
we engage in that discussion.”
“focusing on choreographing all
the work towards a single
purpose”; “we are here as more
of a choreographer, or an
orchestra leader to help you
reveal the strengths of the things
you’re building and engender the
conversations”

5 Discussion: Three Theoretical Lenses

We consider three theoretical frameworks that reflect the three perspectives identified in
our study, and explorewhether theymay help extract practical insights from our findings:
paradox theory, situation awareness and shared mental models. These three were chosen
as they have been used in previous studies of agility, and because they resonate with the
changes AgileCo undertook, and the factors they considered.

Paradox theory [7] helps organizations to navigate the complexities of decision-
making in the context of everyday contradictions. It has been used to understand the ten-
sions encountered in organizational transformation to agility [2] – an organization-wide
perspective. Situation awareness is “the perception of the elements in the environment
within a volume of time and space, the comprehension of their meaning and the pro-
jection of their status in the near future” [26] – which helps organizations understand
the external environment and how it may affect them. Shared mental models “are team
members’ shared, organized understandings and mental representation of knowledge
about key elements of the team’s work environment” [27] – this provides an internal
view of the impact of change and how external changes affect agile teams. Each of these
lenses is explored in more depth below.



Sustaining Agility: Organizational Change, Factors and Theoretical Lenses 125

5.1 Balances and Paradox Theory

Strode et al. [2] argue that the tensions organizations faced in agile transformations are
dilemmas (i.e. choices) that needed to be addressed at the beginning of a transforma-
tion, and paradoxes [7] that persisted beyond transformation and need to be balanced
continually. The authors identified 13 tensions from three case studies, and suggested
questions that leaders should answer to address these tensions. Paradoxes need attention
and ongoing negotiation as part of the continuous improvement of the organization, and
hence will be at the core of efforts to sustain agility.

Balances and Paradoxes in AgileCo
The two changes reported by AgileCo and the factors they considered characterise
ongoing paradoxes in their desire to sustain agility.

The first change, the introduction of a newwork system, resonates, in particular, with
the paradox ‘Distributed authority vs macro-level goals’ as identified by Strode et al.
[2]. AgileCo, when changing the work system, was faced with the question of ‘how do
we guarantee the teams feel empowered and yet understand the organization’s goals?’.
Their way of addressing this tension was to balance not disturbing the teams and being
light touch with achieving predictability for the organization; this was achieved through
collaboration and choreography, putting together quarterly meetings and being explicit
about not wanting to disturb the teams.

The second change does not resonate so clearlywith any of the paradoxes highlighted
in Strode et al. [2]. Instead, it is an example of balancing business-as-usual and business
value with the need to address an external demand.We suggest that this is a new paradox
that was not encountered in the cases studied in Strode et al. [2]. AgileCo was faced with
the question: ‘how do we keep our core business without ignoring unexpected external
regulatory requests?’. They addressed this by breaking down the external request into
discovery chunks that could be tractable and prioritized.

Using balances and paradoxes allowed us to confirm and extend by one the paradoxes
and associated questions suggested in Strode et al. [2]. Using this lens to explore sustain-
ing agility, gives an organization-wide perspective in the identification and understanding
of paradoxes related to sustaining agility, and associated questions.

5.2 Situation Awareness (SA)

SA has been used to understand performance under difficult conditions [8], especially
operational contexts such as piloting aircrafts, air traffic control, power plants, advanced
manufacturing and medicine, where awareness of context is crucial for the tasks to be
performed. Endsley [26] defines models for SA in a dynamic decision making context;
SA is separate from decision making and consists of “perception of elements in the
current situation, comprehension of current situation and projection of future status”.
[28].

Several extensions to SA have been proposed. While SA focuses on individuals,
Team Situation Awareness (TSA) extends SA to include the situation awareness of other
team members and the whole team, and shared SA extends awareness across teams [28,



126 L. Barroca et al.

29]. Distributed SA [30] takes a socio-technical view and considers how systems may
also have situation awareness.

Situation Awareness in AgileCo
SA is about the cognitive processes followed prior to decision taking. The context of an
agile organization may seem very different from the critical contexts within which SA is
typically applied; however, there was a high level of SA in understanding how to sustain
agile in the face of change, in particular, in sensing the risk and in focusing on users and
business value; in particular, knowing users/players is a strong value for AgileCo and its
team members, most of whom are also users/players.

In the context of agile, and of AgileCo, the extensions to SA are particularly relevant
as they highlight the interdependence and importance of SA between team members,
between teams and across the organization. This was particularly the case when dealing
with alignment, predictability and transparency in AgileCo; with all teams being aware
of the priorities of others, and being aware of the organization’s goals and how their
priorities fitted with these goals. Both of AgileCo’s changes relate to a move from
team situation awareness to inter-team and distributed situation awareness. Within an
agile team, situation awareness is maintained through various mechanisms including
Scrum board, stand-ups and collective ownership [31]. Inter-team knowledge sharing
can be supported through similar mechanisms to a degree [32] but AgileCo faced larger
scale issues and needed to make collective decisions. In their case, distributed situation
awareness needed to be established so that sensible decisions could bemade. This relates
in particular to the factors predictability and collaboration. However, SA pertains “in the
moment” or over a timescale that is finite. For example “DSA can be defined as activated
knowledge for a specific task within a system”[30]. In AgileCo, and for other situations
of agile sustainability, this would have to be embedded in order to keep the awareness
up-to-date and relevant.

Researchers have been looking into what helps develop TSA and shared SA; Bolstad
and Endsley [33] mention “requirements, devices, mechanisms and processes”. For
AgileCo, as an agile organisation, these were present; team members were made aware
of information needed by others through predictability and transparency (requirements),
“devices” such as communication and collaboration were also present as were effective
team processes. One mechanism they mention, shared mental models, is discussed next.
TSA and shared SA are important in sustaining agile, in having a good perception
of the external environment. Using this lens to explore the factors being considered
during change may help organizations determine how well they are supporting situation
awareness in their bid to sustain agility.

5.3 Shared Mental Models

Shared mental models theory [9] explains how teams adapt to change and cope with
changing demands [34] when they develop shared mental models. Schmidt et al. [27]
use teamadaptation theory [35] – “(1) assess situations appropriately and build a coherent
understanding of a new situation, (2) adjust their plans accordingly, (3) coordinate their
work to fit the new situation, and (4) learn by evaluating their effectiveness” – to propose



Sustaining Agility: Organizational Change, Factors and Theoretical Lenses 127

that “team adaptation is positively related to a high sharedness of teammembers’ mental
models.”.

Shared Mental Models in AgileCo
Theway teams are empowered, autonomous and effective inAgileCo indicates that there
is a high level of understanding and sharing amongst team members both regarding the
tasks undertaken and the way the teams are organized.

The factors considered when dealing with the two changes made to sustain agility,
indicate the importance of sharedmentalmodels at the team level, for example, the imper-
ative to not disturb the teams indicates a shared understanding of how the teams are struc-
tured as being effective. The factors consideredduring these changes highlight that shared
mental models also needed to stretch across teams; for example, negotiation of common
work, conversation/discussion under collaboration, as well as alignment, knowability,
transparency, and predictability for central business to guarantee predictability for the
organization. These are important ingredients in achieving a shared understanding [9,
27].

It is also worth noting that, in AgileCo, negotiation and discussions happened both
within the work system but outside it too. Shared understanding was supported in the
processes and technical context but also needed to extend to the business context. This
negotiation outside the work system relates to “articulation work” defined by Strauss
as “the specifics of putting together tasks, task sequences, task clusters – even aligning
larger units such as lines of work and sub-projects – in the service of work flow” [36].

With shared mental models consideration of sustaining agile needs to go beyond
their original focus on individuals and teams, and focus on the wider organization and
across teams. Using this lens to explore the factors being considered during change may
help organizations ensure that shared mental model practices are supported both within
teams and across the organization, hence leading to better shared understanding.

Figure 1 summarises the three theoretical frameworks and how they support different
perspectives in sustaining agile.

Fig. 1. The three theoretical frameworks support different perspectives in sustaining agility



128 L. Barroca et al.

6 Conclusions

Limitations
A key methodological issue for CDM studies relates to how closely the interviewee
was engaged in the events described. In our study, the first interviewee was responsible
for deciding the change needed, and in designing the new work system. S/he also was
involved closely in prioritization improvement. In this sense s/he personally experienced
the decision-making. The other two interviewees provided different perspectives on the
situation and were also personally involved in the development of and working within
the resulting system.

The data was collected by the two first authors, who also carried out the analysis and
discussed it with the research team. The findings of this study have been presented and
discussed with key members of the participating team.

This is an initial study focusing on one agile organization and the factors considered
when it needed to sustain agility. The data collected and the conclusions drawn directly
from it are therefore limited. But our aim was to trial a different data collection approach
and analysis frameworks that could be used to research this phenomenon.We usedCDM,
a novel approach to data collection, and investigated how three theoretical lenses may be
used to interpret the resulting data to uncover deeper insights and practical consequences.
Our intention was exploratory aiming to identify possible ways for further research in
an area that has not been widely researched.

Lessons Learned
In this work we used CDM as the data collection framework together with thematic
analysis to identify factors that organizations consider when making changes to sustain
agility. We then explored three theoretical lenses to see what kind of insights they may
yield when interpreting the findings.

UsingCDMsupported our goal of finding the detail and specific examples of changes
that AgileCo had to make. The multi-pass retrospection approach elicited detail, but was
challenging to apply because of the perceived repetition from our participants. Although
the questions targeted different aspects of the change at different times in the enquiry the
same issues were visited repeatedly. Interviewing people from different roles provided
different perspectives on the same events. We would recommend others to use this
approach, but encourage them to train interviewers and prepare interviewees for the
cyclical nature of the interrogation.

A thematic analysis identified factors that were being considered during changes
needed to sustain agility, and based on this, we identified three potential theoretical
lenses to extend our findings further. For each of these we have demonstrated the kind of
practical insights that could be extracted from the data. These frameworks illuminated
three key dimensions relevant to sustaining agility: teams vs organization, understanding
the environment vs understanding how to deal with its impact inside the organization;
and understanding the now vs looking into the future.

Based on this initial study we believe that approaching an investigation of sustaining
agile in this way can yield interesting and practical results.



Sustaining Agility: Organizational Change, Factors and Theoretical Lenses 129

Acknowledgments. We would like to thank our participants. We would like to acknowledge the
funding from Agile Business Consortium and the support by the Business Agility Institute. We
would also like to thank Diane Strode with whomwe had fruitful discussions about the theoretical
lenses chosen.

References

1. Freudenberg, S., Sharp, H.: The top 10 burning research questions from practitioners. IEEE
Softw. 27(5), 8–9 (2010)

2. Strode, D., Sharp, H., Barroca, L., Gregory, P., Taylor, K.: Tensions in organizations
transforming to agility. IEEE Trans. Eng. Manag. 69(6), 3572–3583 (2022)

3. Gregory, P., Barroca, L., Sharp, H., Deshpande, A., Taylor, K.: The challenges that challenge:
engaging with agile practitioners’ concerns. Inf. Softw. Technol. 75 (2016)

4. Gregory, P., Strode, D.E., Sharp, H., Barroca, L.: An onboarding model for integrating
newcomers into agile project teams. Inf. Softw. Technol. 143, 106792 (2021)

5. Shull, F.: Who needs evidence, anyway? IEEE Softw. 24(5), 10–11 (2007)
6. Hoffman, R.R., Crandall, B., Shadbolt, N.: Use of the Critical Decision Method to elicit

expert knowledge: a case study in the methodology of cognitive task analysis. Hum. Factors
40, 254–276 (1998)

7. Smith, W.K., Lewis, M.W.: Toward a theory of paradox: a dynamic equilibrium model of
organizing. Acad. Manag. Rev. 36(2), 381–403 (2011)

8. Klein, G.: Analysis of situation awareness from critical incident reports. In: Endsley, M.R.,
Garland, D. (eds.) Situation Awareness Analysis and Measurement, pp. 51–72. Lawrence
Erlbaum Associates, Mahwah (2000)

9. Yu, X., Petter, T.: Understanding agile software development practices using shared mental
models theory. Inf. Softw. Technol. 56(8), 911–921 (2014)

10. United Nations. Sustainable Development Goals. https://sdgs.un.org. Accessed 3 Apr 2023
11. OED. Oxford English Dictionary. https://www.oed.com. Accessed 3 Apr 2023
12. Buchanan, T., et al.: No going back: a review of the literature on sustaining organizational

change. Int. J. Manag. Rev. 7(3), 189–205 (2005)
13. Holbeche, L.: Organisational effectiveness and agility. J. Organ. Eff. 5(4), 302–313 (2018)
14. Holbeche, L.: The Agile Organization: How to Build an Engaged, Innovative and Resilient

Business, 2nd edn. Kogan Page (2018)
15. Miceli, A., Hagen, B., Riccardi, M., Sotti, F., Settembre-Blundo, D.: Thriving, not just

surviving in changing times: how sustainability, agility and digitalization intertwine with
organizational resilience. Sustainability 13(4) (2021)

16. Senapathi, M., Srinivasan, A.: Sustained agile usage: a systematic literature review. In: Pro-
ceedings of the 17th International Conference on Evaluation and Assessment in Software
Engineering - EASE 2013, p. 119. ACM Press, New York (2013). https://doi.org/10.1145/
2460999.2461016

17. Sedano, T., Ralph, P., Péraire, C.: Sustainable software development through overlapping
pair rotation. In: Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 19:1–19:10 (2016)

18. Barroca, L., Gregory, P., Kuusinen, K., Sharp, H., AlQaisi, R.: Sustaining agile beyond adop-
tion. In: Proceedings - 44th Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2018, Prague (2018)

19. Rogers, E.: Diffusion of Innovations, 5th edn. Simon and Schuster (2010)

https://sdgs.un.org
https://www.oed.com
https://doi.org/10.1145/2460999.2461016


130 L. Barroca et al.

20. Crandall, B., Klein, G., Hoffman, R.: Working Minds: A Practitioner’s Guide to Cognitive
Task Analysis. The MIT Press, Cambridge (2006)

21. Flanagan, J.C.: The critical incident technique. Psychol. Bull. 51(4) (1954)
22. Wong, B.L.W., Blandford, A.: Situation awareness and its implications for human-systems

interaction. In: Apperley, M. (ed.) Proceedings of the Australian Conference on Computer-
Human Interaction (OzCHI 2001), Perth, pp. 181–186 (2001)

23. Lopez, T., Petre,M., Nuseibeh, B.: Getting at ephemeral flaws. In: 5th InternationalWorkshop
on Co-operative and Human Aspects of Software Engineering (CHASE), pp. 90–92 (2012).
https://doi.org/10.1109/CHASE.2012.6223030

24. Wong, B.L.W.: Critical decision method data analysis. In: Diaper, D., Neville, S. (eds.) The
Handbook of Task Analysis for Human-Computer Interaction. Lawrence ErlbaumAssociates
(2003)

25. Braun,V., Clarke,V.:Using thematic analysis in psychology.Qual. Res. Psychol. 3(2), 77–101
(2006)

26. Endsley, M.R.: Theoretical underpinnings of situation awareness: a critical review. In: End-
sley, M.R., Garland, D.J. (eds.) Situation Awareness Analysis and Measurement, pp. 23–48.
Lawrence Erlbaum Associates, Mahwah (2000)

27. Schmidt, C., Kude, T., Heinzl, A., Mithas, S.: How agile practices influence the performance
of software development teams: the role of shared mental models and backup. In: Thirty Fifth
International Conference on Information Systems, Aukland (2014)

28. She, M., Li, Z.: Team situation awareness: a review of definitions and conceptual models.
In: Harris, D. (ed.) EPCE 2017. LNCS (LNAI), vol. 10275, pp. 406–415. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-58472-0_31

29. Salmon, P.M., et al.: What really is going on? Review of situation awareness models for
individuals and teams. Theor. Issues Ergon. Sci. 9(4), 297–323 (2008)

30. Stanton, N.A., Stewart, R., Harris, D., Houghton, R.J., Baber, C., McMaster, R.: Distributed
situation awareness in dynamic systems: theoretical development and application of an
ergonomics methodology. Ergonomics 49, 1288–1311 (2006)

31. Sharp, H., Robinson, H.: A distributed cognition account of mature XP teams. In: Abra-
hamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044, pp. 1–10. Springer,
Heidelberg (2006). https://doi.org/10.1007/11774129_1

32. Santos, V., Goldman, A., de Souza, C.R.B.: Fostering effective inter-team knowledge sharing
in agile software development. Empir. Softw. Eng. 20(4), 1006–1051 (2014). https://doi.org/
10.1007/s10664-014-9307-y

33. Bolstad, C.A., Endsley, M.R.: The effect of task load and shared displays on team situation
awareness. Proc. Hum. Factors Ergon. Soc. Annual Meet. 44(1) (2000)

34. Mathieu, J.E., Heffner, T.S., Goodwin, G.F., Salas, E., Cannon-Bowers, J.A.: The influence
of shared mental models on team process and performance. J. Appl. Psychol. 85(2), 273–283
(2000)

https://doi.org/10.1109/CHASE.2012.6223030
https://doi.org/10.1007/978-3-319-58472-0_31
https://doi.org/10.1007/11774129_1
https://doi.org/10.1007/s10664-014-9307-y


Sustaining Agility: Organizational Change, Factors and Theoretical Lenses 131

35. Burke, C.S., Stagl, K.C., Salas, E., Pierce, L., Kendall, D.: Understanding team adaptation: a
conceptual analysis and model. J. Appl. Psychol. 91(6), 1189–1207 (2006)

36. Strauss, A.: The articulation of project work: an organizational process. Sociol. Q. 29(2),
163–178 (1988)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


The Role of Responsiveness to Change in Large
Onboarding Campaigns

Darja Smite1,2(B) and Nils Brede Moe1,2

1 Blekinge Institute of Technology, Karlskrona, Sweden
darja.smite@bth.se, nils.b.moe@sintef.no

2 SINTEF Digital, Trondheim, Norway

Abstract. Onboarding is a process of organizational socialization of the new
hires, that includes recruitment, orientation, training, coaching and support.While
onboarding individuals into an organization is a rather straightforward task, little is
known about 1) onboarding hundreds of developers and 2) doing it on a distance
in outsourcing situations. Furthermore, the subject of sustainable growth with
respect to organizational capabilities and culture is often overlooked. This paper
reports findings from an exploratory multi-case study of two large onboarding
campaigns. We collected empirical data from interviews, retrospectives, onboard-
ing documentation and onsite visits. Based on the empirical study, onboarding
hundreds of software engineers in a complex agile product development environ-
ment which lacks documentation and puts high demands on engineers’ knowledge
and skills is a challenging and costly endeavor. To save the costs and for practical
reasons, large-scale onboarding is organized in batches with the first batch trained
onsite, and the later batches trained internally. We report challenges faced in the
two cases and discuss possible solutions. One core finding is that a good plan com-
bined with the organizational agility, i.e., the responsiveness to change, together
with organizational maturity determined the success of organizational scaling.
The presented cases contribute to the scarce research on knowledge transfer and
onboarding in a large-scale agile context.

Keywords: Onboarding · Scaling · Training · Teams · Large-Scale Agile ·
Software Engineering · Empirical · Case study · Sustainable Organizational
Growth

1 Introduction

To satisfy the need for new features and services at a faster speed, agile software com-
panies face the need to scale their development capacity. However, organizational scal-
ing carries a number of challenges. The first challenge occurs when a company needs
to scale fast. Since employing many competent engineers with technical and domain
expertise might be difficult and costly, many opt for university graduates and junior
engineers instead considerably lowering the competence level and diluting the organi-
zational culture, which also negatively impacts overall performance and quality. The
second challenge relates to the difficulty of employing local engineers [1]. As a result,

© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 132–148, 2023.
https://doi.org/10.1007/978-3-031-33976-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_9&domain=pdf
http://orcid.org/0000-0003-1744-3118
http://orcid.org/0000-0003-2669-0778
https://doi.org/10.1007/978-3-031-33976-9_9


The Role of Responsiveness to Change in Large Onboarding Campaigns 133

many companies “scale out” by either teaming up with external suppliers nationally and
internationally or globalizing via acquisitions and setting up own subsidiaries. However,
barriers such as domain complexity, differences in processes and even in the use of
agile processes (e.g., timeboxed vs. flow-based development), and employee turnover
all create challenges when scaling out [2]. Further, cultural barriers have been found to
be impediments to agile software development practices [3]. One particular significant
factor leading to success when scaling is effective onboarding [4, 5].

Onboarding is the process of supporting new employees regarding their social and
performance adjustment to their new job [4]. It is also known as organizational social-
ization. In software development companies, onboarding of new developers happens to
replace retired developers, to replace developers who left or will leave, to replace exist-
ing developers who changes roles, to offload existing developers or increase capacity,
or to incorporate new people with unique expertise who bring new ideas and thus help
a company to innovate [5].

Traditionally recruitment has been studied as a process that happens within corporate
boundaries. The meaning of the “onboarding” process is thus commonly related to
facilitating the transition of the newcomers from being organizational outsiders to being
insiders [6]. Onboarding can also happen in a project or a team by relocating already
employed staff. Large emphasis in traditional onboarding is put on the social integration
into a team and ensuring mentoring and support from teammates. When onboading an
individual to replace a teammember who retires, takes up a new role within the company
or leaves the company, training is often performed by the person who is to be replaced, or
by immediate teammates. Onboarding in general is a well-researched field with studies
of diverse type of professions [4, 7–10], and some empirical studies about onboarding
newcomers in software companies [5, 11–13] as well as recent interest in the context of
agile software development [14].

Large-scale agile involves hundreds of engineers and tens of teams spread not only
geographically but also across legal boundaries of a firm. Onboarding in such contexts
may thus require recruiting and socializing engineers at a remote subsidiary or at a
sub-contractor, which is obviously a challenging endeavor. The reasons for this are
twofold. First, newcomers need to be integrated not only into the boundaries of the
subsidiary or the outsourcing supplier, but also into the assignment or the project led
by the organization. Second, all recruitment and onboarding activities typically happen
on a distance, which is not a straightforward task with little available knowledge on the
topic [5].

In this paper, we present two empirical cases of large onboarding campaigns in the
context of global agile software engineering and discuss the practices that can facili-
tate the onboarding. Our research is driven by the following question: What are the
strategies for large onboarding campaigns?

2 Background

Onboarding models suggest that organizational socialization usually starts with recruit-
ment and continues with orientation, training, coaching and support [4]. While the
recruitment and orientation can be viewed as an entrance to the company, training focuses



134 D. Smite and N. B. Moe

on the readiness of the newcomers for the particular job within the boundaries of, e.g.,
an assignment, or a team. Similarly, training is given to existing company employees,
when they are transferred to new assignments within the company. Coaching and sup-
port are common means to help employees climb up their learning curve and improve
performance. Just like agile coaches, engineering coaches paired with new hires target
performance strategies by coaching to improve work processes, and by teaching new
techniques and providing technical guidance [15]. Training as well as coaching and sup-
port during the onboarding process are the two well-researched areas that in the area
of software engineering are primarily researched in open-source projects [13, 16–18].
Further, research shows that providing support to new hires plays even a more prominent
role in onboarding success, than training [13].

Success of onboarding is often associated with the extent to which an organization
succeeds to ensure that new employees possess different knowledge and skills [4]:

• Basic legal and policy-related rules and regulations,
• Understanding of their new jobs,
• Grasping organizational norms and culture,
• Establishing the necessary interpersonal relationships and information networks.

Social integration has recently gained attention. Onboarding is said to be more suc-
cessful when the assimilation and integration of the new hires at the new job is assisted
through educating them about the cultural norms, clarifying the expectations, helping
to recognize formal and informal channels and assisting the integration into established
communities [4, 9, 19]. Strong social connections are also said to improve productivity
long-term [20]. In addition, in an agile environment the new hires might need to also
adjust their behavior to the agile values and undergo a mindset change [14].

The emphasis, formality and duration of the different onboarding functions, may
differ in different recruitment situations. For example, the job specificity and the entry
competence of a newcomer may require less or more training, mentoring and support.
Similarly, previous experience and expertise, whether specific for the job, related and
or even unrelated may determine the amount of orientation and training [21]. Further,
the amount of the simultaneous new hires plays an important role in determining how
onboarding is organized. Large recruitment companies in agile companies tend to have
more formalized onboarding functions, ensure extensive training and dedicated men-
toring and support [5]. However, little is known about the practical aspects of large
onboarding campaigns, especially in agile and global software engineering contexts.

3 Methodology

In this paper, we report our findings from an exploratory multi-case study of GlobCo
and its collaboration partners. GlobCo is a large international company headquartered in
NorthernEurope that develops awide range of software-intensive products and solutions,
including generic software products offered to an open market and complex compound
systems with customized versions. Agile ways of working including Scrum have been
practiced since 2008, and as part of adopting agile methods, communities of practice
(CoPs) were introduced early. The company has been globally distributed for a long



The Role of Responsiveness to Change in Large Onboarding Campaigns 135

time with many own sites across the world, and a network of external vendors. Here,
we study two cases of large onboarding campaigns in outsourcing assignments for their
two different vendors, namely Case A with ConsultCo from Poland, and Case B with
SupplyCo fromCroatia. All company names are pseudonyms to preserve confidentiality.

Our case study is a part of a larger study, the main focus of which is on scaling orga-
nizational efforts in agile companies. In the large study, we have researched individual
onboarding cases of different size and in different contexts, including vendor switching
[22] and knowledge transfer. The cases selected for the present study are all cases of
onboarding hundreds of software engineers.

Our study follows the guidelines of the case study design proposed by Yin [23].
Our unit of analysis, the “case”, is the onboarding of new software engineers at the
outsourcing supplier side in the context of a client-supplier assignment. The goal of our
exploratory study is to find out what is happening, seeking new insights, and generating
recommendations based on the state-of-the-practice [24].

Table 1. Overview of the cases and data collection activities.

Case Company Interviews Onsite visits Documentation

Case A
Onboarding of 150
engineers in 3
batches

GlobCo, Sweden
and Canada

5 individual
interviews

No Assignment
specification,
follow up
assessments and
progress reports

ConsultCo,
Poland 1

2 individual
interviews,
retrospective (9
engineers and
managers; 1,5h),
group interview (7
engineers; 1h)

Yes

ConsultCo,
Poland 2

2 individual
interviews,
retrospective (6
engineers; 1,5h),
group interview (4
engineers; 1,5h)

Yes

Case B
Onboarding of 200
engineers in 3
batches

GlobCo, Poland 6 individual
interviews

No Assignment
specification

SupplyCo,
Croatia

3 individual
interviews,
retrospective (9
engineers; 1,5h),
group interview (7
engineers and
managers; 3h)

Yes



136 D. Smite and N. B. Moe

3.1 Data Collection

Our exploratory research is qualitative in nature. The data collected to answer our
research question was collected through qualitative interviews involving individuals
and groups and onsite observations (see Table 1 for details). We performed twenty-two
semi-structured interviews with twenty-seven interviewees in total across all cases. The
interviewees were selected by the companies and were set to represent the key roles in
the onboarding campaigns. In both cases, we have interviewed the assignment owner
from GlobCo, and two to seven representatives from the vendor companies. During the
interviews, we asked the interviewees to recall the events of the transfer, and reflect
on what went well, what did not go that well, and what recommendations could they
give for future transition projects. All individual interviews were 45–60 min long, con-
ducted via Skype for Business teleconferencing tool, while the group interviews and
retrospectives varied in duration (see Table 1), organized at the outsourcing suppliers
onsite in Poland and Croatia. Individual interviews were recorded with the consent of
the interviewees using AudioNote (special software tool for recording and note-taking)
while group sessions were led by one researcher and closed to live-transcribed by the
second researcher. Some group sessions were organized as a retrospective session (see
Table 1). To elicit the relevant problems, we chose to use an exercise where participants
discuss issues that need to be dropped, added, kept or improved (DAKI). This exercise
is suitable when there are many participants and issues. We then facilitated a discussion
of the most urgent items by using the Lean Coffee technique.

In addition to the qualitative data, we received transition project documentation,
containing detailed assignment specifications and knowledge transfer documentation.
Assignment specifications were used to understand the assignment details, parties
involved, and the amount of the work being transferred. Detailed transfer plans and
personnel profiles were used to assess the scope of each onboarding project and associ-
ated activities. Travel plans were used to check which onboarding activities were carried
out in co-location and how many people were given this opportunity. Progress reports
were used to elicit the challenges and obstacles, as well as the carried mitigation actions
reported during the onboarding campaigns.

3.2 Data Analysis

The data analysis was organized in iterations. The preliminary data analysis was per-
formedupon the data collection. The interviewprotocolwas used to capture the responses
through simultaneous notetaking [25]. These initial “jottings” and summaries were later
expanded based on the audio recordings whenever necessary. During the next stage, we
used the preliminary coding to draft the case histories, which focused on the factors
that hindered and factors that facilitated onboarding. We used an initial set of categories
based on the risk factors identified in earlier research on knowledge transfer [26], adding
new factor that emerged in the analysis. The case histories were then sent for validation
to GlobCo’s outsourcing partners, ConsultCo and SupplyCo, and later presented and
discussed with the representatives from the client organization, GlobCo. Finally, we cre-
ated the narratives (presented in Sects. 4.1 and 4.2) by revisiting the interview transcripts



The Role of Responsiveness to Change in Large Onboarding Campaigns 137

Fig. 1. Onboarding activities organized in three batches in Case A and Case B.

and notes from the group interviews and retrospectives, as well as the onboarding docu-
mentation. To explain what was going on during the onboarding, we also reconstructed
the onboarding activities (Fig. 1). To provide the traces between our interpretation of the
events and the data, we illustrate the core findings with transcribed quotations from the
interviewees or the in-vivo notes taken during the group interviews and retrospectives.

3.3 Limitations and Threats to Validity

Asany case study research, our studyhas several limitations [23].Ourfindings are subject
to interviewee bias, which we addressed by involving interviewees from all participat-
ing companies (data triangulation) and using progress reports (method triangulation).
To increase the reliability and avoid false interpretations, we sent the draft of our report
for review by key informants. Our study is also strongly bounded by the context of
the studied companies (company sizes, size of the onboarding campaigns, outsourcing
relationships involved) and the employed onboarding approach (three batches with rela-
tively aggressive schedules), limiting the generalizability of the findings [23]. To support
the readers in judging the applicability of our findings in their contexts, we detailed the
case descriptions as much as possible. We believe that the findings can be of particular
interest for managers involved in large-scale software development of complex legacy
products facing the need for onboarding large numbers of engineers.



138 D. Smite and N. B. Moe

4 Insights into Large Onboarding Campaigns

4.1 Case A: Onboarding 150 Engineers

In ConsultCo, we studied a large recruitment and onboarding campaign for the new
assignment by GlobCo that required 300 engineers to be onboarded as a replacement for
the GlobCo internal engineers in Sweden, Canada and China. ConsultCo bid contained
an offer of 170 engineers in China and 150 engineers in Sweden (the latter is the focus
of our study). However, due to recruitment difficulties, ConsultCo could only hire 20
engineers in three different sites in Sweden while the vast majority (130 engineers) were
hired in two subsidiaries in Poland.

Due to the scale of the assignment (150 engineers), the onboarding was organized in
batches (see Fig. 1 – Case A), because organizing onsite on-the-job training for so many
engineers simultaneously was regarded as practically impossible. The first onboarding
cycle started with a 2-months long preparation and a period of self-study, followed by
the onsite training phase, and coaching and support. The supplier company tried recruit
experienced engineers from a GlobCo’s competitor, who were later said to have much
faster onboarding. Unfortunately, only half of the people could travel for the onsite
training, so there were groups of engineers learning from the video recordings.

The training and knowledge transfer was kicked-off with a four-day long program
in Sweden, and further activities were organized on-site in either Sweden or Canada.
Admittedly, the GlobCo engineers were working under much stress and market pressure
and could not dedicate due attention to the trainees. In retrospect, the time dedicated
for onsite training was also regarded as insufficient. The reasons were threefold. First,
the onboarding schedule generally was very aggressive (5,5 months for the first batch
and 3 months for each of the following batches) due to large market pressure. Second,
the product concerned was recognized as “extremely complex” with very large product
areas and hardware and software architecture differing from competing products in
the same area. Therefore, the threshold for learning the product was very high and
the learning curve for understanding the system end-to-end was estimated to take 1–
2 years. Even becoming at least somewhat productive according to the newly onboarded
ConsultCo engineerswas said to take 6–12months. Finally, the productwas insufficiently
documented, especially concerning the legacy parts and new functionality. Besides, some
materialwas outdated, resulting in the false feeling of obtaining knowledge.As described
by an engineer:

“[A colleague], who newly graduated from the university, was talking about this
shock. Hewas reading thematerial and looking through presentations in the begin-
ning, and he said [the company] has a lot of material and documentation, but there
were twomain challenges. First, the language [the company] has [includes] a lot of
abbreviations. […] And he had a hard time understanding the material. And then
the second challenge was the outdated material. […] He read it and he thought he
has gained a lot of information. And then later when he saw the code he saw that
the code differed.”

Another engineer explained the challenge of understanding the product:



The Role of Responsiveness to Change in Large Onboarding Campaigns 139

“My feeling is that still the best source is the code itself. […] But there are still
millions of lines of code. So it’s not possible to read the whole code”.

And another engineer estimates the time it takes for individual exploration:

“It takes 1 hour for an experienced guy, but you need 1-2 weeks to figure it out on
your own”.

Nonetheless,GlobCo expected that by the end of the first onboarding cycle, engineers
from the first batch will be able to further introduce and train the new teams locally with
a minimum support from the original engineers in GlobCo.

In the following batches, several changes were made in the onboarding program.
First, the self-study phase was skipped. Although the live trainings have been recorded,
watching the trainings was not a popular learning activity. As an engineer explained:
“People did not like reading material and watching videos for 2 months”. Instead, the
self-study parts of the training occurred in parallel with the integration in the teams
and were based on the customized material adjusted to the local needs created by the
engineers from the first batch. As an engineer explained:

“In the next few months we prepared a checklist including mandatory training
steps every new project member has to go through in order to get the knowl-
edge because a lot of people that are joining our project don’t have any [domain]
background… There were some materials created during our internal trainings
especially recorded trainings in Polish. It is always a little bit easier to work in
your native language when talking about complex things”.

Integration in the teams was organized by splitting the teams onboarded in the first
batch (e.g. 10 teams of 5) and creating twice as many teams in the second batch (e.g.,
20 teams of 5), and further increasing the number of teams in the third batch (e.g., 30
teams of 5). However, this meant that half of the engineers from the first batch had to
change roles or product areas they worked with, resulting in the training efforts partially
wasted. As an engineer explains:

“In fact, some of the people who went to Canada or Sweden spent time on learning
one area and then they were moved to another area. The area they received the
knowledge about [during onsite training] didn’t really match the features that they
have received. […] People had to be spread somehow. […] I don’t know if we
really could have avoided that”.

This was one of the reasons why competence build-up was slower than expected and
the level of experience in some areas was notably low, as noted in the progress reports.
Besides, the very lack of direct knowledge transfer from the original developers in this
case had a prominent impact, as an engineer describes:

“We can compare what type of onboarding [a colleague’s name who was trained
onsite] received and others who have watched the presentations. More should be
sent for onsite training, but not necessarily all.”



140 D. Smite and N. B. Moe

Onboarding in Case A had a mixed success. Despite good cooperation, initial enthu-
siasm and motivation to engage from the SupplyCo side, GlobCo did not have the time
to organize efficient onsite training and upon the completion of the onboarding the
speed of execution, delivery quality and ability to take full responsibility for assigned
tasks was below expectations. There were other factors that contributed to this too. For
example, ConsultCo organization in Poland was relatively new and thus did not have
a safety net of colleagues that could support the newly recruited batches. Besides, the
management acknowledged that the very complexity of the assignment from the start
was underestimated and employed too many inexperienced people without the domain
and process-related knowledge, or prior experience with working for GlobCo. Due to
the large scale of the recruitment campaign, ConsultCo focused primarily on ramping
up the number of engineers compromising on the competence front. Finally, the long
periods of low productivity and other typical career changes led to a substantial amount
of resignations causing significant damage on the capability front.

4.2 Case B: Onboarding 200 Engineers

In SupplyCo, we studied a large recruitment and onboarding campaign for the new
assignment by GlobCo. Prior to the studied assignment, SupplyCo had extensive expe-
riences in collaboration with GlobCo and thus had existing experience with their ways
of working. The assignment overall was related to continuous development and mainte-
nance of a very large and complex system, which had already involved over 1000 engi-
neers from six different organizations and was said to take time to learn. The new assign-
ment required onboarding of 200 engineers, which was similarly to Case A organized
in three batches (see Fig. 1 - Case B).

The schedule chosen for the onboardingwas rather aggressive due tomarket pressure
(4–5 months for each batch and one year for the entire scaling). To ensure successful
onboarding, SupplyCo’s decided to organize onsite training at GlobCo in Poland for
the first batch and put forward a group of highly-experienced inhouse engineers with
related expertise and the right attitude – “not shy to push and motivated to get into
work”, who can put 110% effort to secure performance. Knowledge transfer started with
the general presentations prepared by the client organization, but quickly shifted to real
tasks and close integration into the teams of original engineers at the client site, whenever
possible. A product owner who did not join a Polish team compares experiences with
his colleagues:

“A decision was made that the second team [of trainees] will split and join the
existing Polish teams and they will work together with the Polish guys and try to
learn as much as possible […] And at the end, it turned out, I think, that those guys
learned much more than the guys in my team that consisted of only the Croatian
guys. That was the learning that guys that were part of the mixed teams learned
much more than the guys that were left to learn on their own through support”.

This is echoed by an experienced engineer:

“Some developers were integrated in different Polish teams, but my team was
assigned a new feature. We could ask for help, but we did not have a person



The Role of Responsiveness to Change in Large Onboarding Campaigns 141

in Poland and zero experience. We had someone to talk to, but that person was
not working on the same feature. There is a steeper learning curve when you are
integrated in teams”.

To maximize the learning, some engineers rotated from team to team to be exposed
to different parts of the product and different points in the lifecycle of a task. At the
end of each day, the SupplyCo engineers organized daily stand up meetings to share
their experiences (what have one learned) and follow up on any emerging issues (what
challenges one faced). The first batch was deliberately assembled by fast learners who
were expected to pass their knowledge to further batches. Besides, their competence has
helped to overcome the challenges faced during the knowledge transfer, as engineers at
the client organization had themselves limited experiences, as they have been onboarded
into the assignment 1–2 years prior to the scaling endeavor. The challenge in Case B
was similarly to Case A the product itself. As an engineer describes:

“There’s quite a lot to learn. That’s the biggest challenge, to learn the product.
And it is still a big problem. After 7-8 months, we are still learning the product”.

Due to onsite training being “a big investment”, as recognized by the GlobCo stake-
holders, the second and third batches have been onboarded by the representatives from
the first batch at the supplier site. However, onsite training was also available for engi-
neers in the other two batches, on request. At the end of the first onboarding cycle,
the management ran a retrospective to improve the onboarding for the following two
batches. For example, there was a need to have a more personal onboarding, and so
the joint orientation phase was replaced with the tailored self-study period adjusted for
different roles, product areas and personal experiences. As a manager said:

“Not all are going through the same path and pace”.

Further, engineers from the first batch created learning guides for different learning
groups (with a detailed agenda), video-recordings and detailed mind maps with the
necessary competences and skills reused for the following batches.An engineer explains:

“Later we actually created some presentations and made maps and also created
learning tasks so that you can show people how to go through a task and then
discuss after they tried to learn all what is needed in order to work. And one month
later [the following batch] actually start to work with the team”.

SupplyCo’s training philosophy is described by a manager as follows:

“With documentation it’s not possible to address everything, so you need to figure
out what are the crucial things. Then learning methods are also very important.
Learningmethods […]must build confidence. […] So, depending on the setup […]
it’s going to be on-the-job training, different tasks within the team or individually”.

Onboarding in Case B has been regarded as successful. All interviewed GlobCo rep-
resentativesmentioned good preparation, very good communication between the parties,
and experienced people nominated by the supplier as the key success factors. SupplyCo



142 D. Smite and N. B. Moe

further describes that they were able to find employees with prior experience of working
on GlobCo assignments, and thus ensure process and domain knowledge. The company
acted as a safety net, which was not the case for ConsultCo, a relatively new com-
pany with many inexperienced new hires. Besides, SupplyCo have shown exceptional
motivation to receive the assignment and demonstrate their capabilities.

4.3 Cross-Case Analysis: Challenges of Onboarding Hundreds of Engineers

In this sub-section, we report the top five challenges particular for the large onboarding
campaigns and the helpful strategies emerging from the two cases.

Challenge 1: A Large Onboarding Campaign is a Large Investment. Recruitment
and onboarding of hundreds of software engineers in both cases required enormous
practical and financial support. Despite the awareness that the best knowledge transfer
is organized through on-the-job onsite training, GlobCo could not arrange hundreds of
desks andworkstations to accommodate all engineers in their premises. Even recruitment
of so many engineers can be challenging, as experienced by ConsultCo in Case A.
Besides, since the suppliers in our cases were situated on a distance, flying everybody
for onsite training required substantial budget resources.

Helpful Strategies: To avoid high costs and impracticalities of onsite training for hun-
dreds of developers, companies can organize onboarding in batches. In this approach,
the first batch is formed by highly competent and fast learning engineers and sent for
onsite knowledge transfer. Upon completion of their onboarding, the first batch shall be
able to support onboarding of the following batches.

Challenge 2: Multiple-Batch Onboarding by Splitting Dilutes the Accumulated
Competence. The batch-based scaling in our cases was organized by splitting. In Fig. 2,
we illustrate the onboarding of 54 engineers in three batches, where the first batch
comprises three teams trained by the original engineers, which are then split into halves
and then scaled with the second batch engineers. The splitting process repeats for the
third batch. Every new batch evidently lowers the overall level of experience in the
team. If repeating the process each team will have just one engineer trained onsite by the
original engineers in the fourth cycle, and after the fifth cycle some teams will not have
any engineers trained onsite. In Case B, the third batch consisted of as many developers
as in the previous two batches, which resulted in having teams without any first batch
engineers. A young engineer from the third batch in Case B explained:

“None of our team members had [domain] experience, none of the team members
worked here. We were a team with only new persons. It is not a good practice,
although we had a good solution to this – everybody had contacts [with experts]
and we had a buddy team somehow. But better to have a mix [of competent and
new people].

Helpful Strategies: Splitting teams to mix the competent and new people is a useful
practice, but with some limitations. When splitting results in not having enough compe-
tent people on the team, companies may try pairing the new teams with a “Buddy team”



The Role of Responsiveness to Change in Large Onboarding Campaigns 143

or a “Sister team”, who then provide the necessary mentoring and support. Buddy teams
were practiced in Case A during the onsite training, as described by a manager:

“It’s when [the client company] teams work very close with new teams in
[SupplyCo], instead of having 1:1 developer to developer relationship.”

Our results also clearly show that there is no one recipe for team formation and
that the decisions shall consider 1) the new hires’ competence levels, 2) the product
area selected for onboarding, and 3) the competence levels of the existing teams. Case B
representatives mentioned that their strategies varied from extending some teams (which
required having smaller teams in the beginning), splitting some teams (especially in the
areas that require many engineers), and forming some new teams (especially in the areas
that were not covered by the training for the first batch).

Fig. 2. An example of the onboarding of ~ 50 engineers organized in three batches by splitting.

Challenge 3: Multiple-Batch Onboarding by Splitting can Result in Ill-suited
Onboarding Efforts. The success of scaling by splitting depends on the tasks that
the onboarded teams receive. The onboarding program of the first batch could not possi-
bly cover the whole system, and thus onboarding was done on selected areas. Naturally,
when splitting the initially formed teams, some engineers had to work on something they
have not been trained for. As a result, these engineers perceived their training at least
partially as a waste. However, as a manager from Case B explained, even when having
a good plan, the problem is not always possible to avoid due to changes:

“We had to onboard 200+ people. Can we take half of the product first? That
was our plan. But reality was completely different. Once you start [the training],
[the scope] starts changing, because the [operational] need is there (points in one



144 D. Smite and N. B. Moe

direction), then the need is there (points in another direction), then the need is
there (points in the third direction). So, you need to adjust.”

Helpful Strategies: One way to address this challenge is to follow Case B example
and offer on demand onsite training, for all in the first batch and some in the subse-
quent batches. Another strategy was to ensure that the self-study parts of the training
occurred in parallel with the integration in the teams to make the training relevant (Case
A). Alternatively, companies may also consider not forming the teams too early and
instead assigning engineers from the first batch to cover all product areas, taking into
consideration the additional resources planned in the subsequent batches (in the example
on Fig. 2, this would require forming nine pairs of two in the first batch or having more
teams in the first batch and fewer later).

Challenge 4: Poor Onboarding Experiences may Result in New Hires
Leaving. When onboarding employees into a complex software product with poor or no
documentation, and especially when employing inexperienced engineers, it may result
in long periods of low productivity and confusion, in some cases leading to resignations.
In Case A, the resignations among already onboarded employees caused a loss of accu-
mulated experience and expertise. Attrition especially among those trained onsite has
devastating impacts since every individual plays an important role in their team, when
scaling by splitting the teams. As an engineer from Case A describes his experience:

“A funny situation: someone has made the configuration [of the testing environ-
ment]. But he has left, and now nobody knows how to configure it.”

Helpful Strategies: Countermeasures for the high levels of complexity and gaps in
documentation include recruiting competent engineers with domain and potentially even
process experience. This allows to form teams, inwhich inexperienced engineers are sup-
ported by more experienced engineers, ideally with prior engagement with the company.
As an engineer from Case B explains:

“We divide the teammixingmore experienced and less experienced people. That’s
how a lot of companies do this onboarding.”

Other helpful strategies identified in our two cases include on-the-job training, inte-
gration in or pairing with experienced teams for mentoring and support, on-demand
onsite training, and fostering shared learning within a team being onboarded through
regular daily synch sessions and retrospectives to improve onboarding experiences.

Challenge 5: Disproportional Organizational Growth During Large Onboarding
Campaigns can be Devastating. Turnover in Case A was caused not only by the
poor onboarding experience, but also for more typical reasons, including promotions,
relocation to other projects, personal reasons. Onboarding in Case B, in its turn, was
threatened by the turnover among the trainers on the client side, as a manager describes:

“Attrition can be on both sides. If on the client’s side, you are left without the
trainers. In [Case B] we had over 20% attrition. That was a problem.”

In both cases, the success of the onboarding depended on the ability of the companies
to respond to changes and compensate the loss or lack of competences primarily through



The Role of Responsiveness to Change in Large Onboarding Campaigns 145

relying on internal resources. Thiswas possible inCaseB, becauseSupplyCowas a rather
mature company, while this was a challenge in Case A, since ConsultCo was a relatively
new company and had few resources to help in this situation.

Helpful Strategies: The problem of rapid organizational growth was discussed among
the top managers in the group session at SupplyCo at length. The managers agreed that
employing toomany new engineers is not a good idea. According to amanager’s opinion,
recruitment efforts shall be proportional to the existing organization:

“You should aim for 33% impact [on the existing base]. For example, when 6 teams
are trained, you can then add 2 teams every 2 months. When teams [complete the
onboarding] then the new teams enter the preparation phase.”

And another manager explained:

“If we do not have a good competence breakdown figure and a large enough base,
we cannot speed up the scaling. Newcomers dilute the existing teams, but the rest
of the organization cannot help us a lot. We need more time to have the ability to
integrate the people in the organization”.

There seem to be a threshold for reasonable organizational growth, unique for each
organization and based on existing competence, resource availability and company size.

5 Concluding Discussion

In the previous sub-section, we described two stories of large onboarding campaigns.
With respect to our research question: What are the strategies for large onboarding
campaigns? We found that onboarding everyone at the same time is impractical and
instead agile companies should organize large onboarding campaigns in batches (see
Fig. 1). Further we know that effective onboarding of developers, especially in agile
environment where detailed documentation is not emphasized, is organized through on-
the-job onsite training [5, 14], however, in large-scale campaigns such a strategy is not
possible. The often-used strategy further is to scale by splitting the recently onboarded
teams (as shown in Fig. 2). However, the success of onboarding that puts engineers
through these onboarding cycles is mixed. A deeper cross-case analysis suggests that
the keys for successful large-scale onboarding are threefold.

1) A good initial plan. Companies shall have a good understanding of the complexity
of the assignment and critically assess their own capabilities in terms of organiza-
tional maturity and size as well as existing in-house competences. A good onboarding
plan for large campaigns includes a phase-based approach as suggested by related
research [4, 5, 12] and a multiple-batch breakdown, a novel contribution of our
study (see Fig. 2). Our findings shed light on the challenges and potential strategies
for organizing multiple-batch onboarding, which resonate with the findings from an



146 D. Smite and N. B. Moe

unprecedent, transformational growth (although not as rapid as in our cases) reported
by Kumar and Wallace [27]. Our results also suggest that the onboarding plan shall
contain context-appropriate programs to avoid wasted training efforts. The helpful
strategies included running self-study parts in parallel with on-the-job training (e.g.,
integration in the teams), which is consonant with existing research that emphasizes
the importance of early productive work and exposure to work-related practices and
ceremonies [5, 14]. Our findings contribute to existing research suggesting that men-
toring and support can be organized through a “buddy team” or a “sister team” [6, 12,
14]. Prior research shows that such approach reduces the problems of mentors being
unavailable for newcomers [14], and helps new teams to grow their social network,
which is essential in large-scale agile [31]. And yet, our study clearly shows that
following a plan will not take you far when changes arrive.

2) Responsiveness to change. Organizational agility, often seen as a key for success, is
the ability of firms to sense environmental change and respond appropriately [30]. In
our study, training targets shifted, recruitment got delayed, priorities of the ongoing
operations changed, unforeseen gaps in documentation were uncovered and people
started leaving. In both cases studied, supplier companies strived to learn from their
experiences and respond to the emerging changes. Among the helpful strategies
identified, many highlight the importance of constantly reevaluating the course of
the onboarding through arranging daily synch meetings and retrospectives, as well
as continuously improving the onboarding and training material. The importance
of integrating the agile learning practices into onboarding are also presented in the
model proposed by Gregory et al. [14]. Yet, our findings suggest that the ability to
respond to changes requires certain organizational maturity.

3) Organizational maturity. Our study shows that large onboarding campaigns
required certain organizational maturity and size to provide a safety net when the
changes emerged. This is also highlighted by related studies from large and mature
outsourcing suppliers who are able to address the challenges by relocating their key
engineers to prioritized projects and customers [28, 29]. Our study thus suggests that
large onboarding campaigns might not be for any company as the associated growth
shall be proportional to the company size.

Evidently, the three keys to success generate further questions: How much planning
should be built into the onboarding and scaling process? Howmuch shall an organization
invest into onsite training? Howmuch scaling is appropriate for an organization of a cer-
tain size? Like the tale of the guitar player askingBuddha howbest to tune his instrument,
we find the famous answer, “Not too tight, and not too loose”. A better understanding of
the thresholds for planning, investments into onsite training and organizational growth
is a valid direction for future research in this area.

Acknowledgements. We would like to thank the studied client company for their engagement in
our research, and especially for opening thedoors to their outsourcingpartners,which is uncommon
in outsourcing research studies. This research is partially funded by the ScaleWise project and the
Swedish Knowledge Foundation under the KK-Hög grant 2019/0087, and the Research Council
of Norway through the 10xTeams project (grant 309344).



The Role of Responsiveness to Change in Large Onboarding Campaigns 147

References

1. Carmel, E., Tjia, P.: Offshoring Information Technology: Sourcing and Outsourcing to a
Global Workforce. Cambridge University Press, Cambridge (2005)

2. Stray, V., Moe, N.B., Mikalsen, M., Hagen, E.: An empirical investigation of pull requests in
partially distributed BizDevOps teams. In: IEEE/ACM Joint 15th International Conference
on Software and System Processes (ICSSP) and 16th ACM/IEEE International Conference
on Global Software Engineering (ICGSE), pp. 110–119 (2021)

3. Šmite, D., Moe, N.B., Gonzalez-Huerta, J.: Overcoming cultural barriers to being agile in
distributed teams. Inf. Softw. Technol. 138, 106612 (2021)

4. Bauer, T.N.: Onboarding new employees: maximizing success. SHRM Found. (2011)
5. Britto, R., Cruzes, D., Šmite, D., Šāblis, A.: Onboarding software developers and teams in

globally distributed projects: a multi-case study. J. Softw. Evol. Process 30(4), e1921 (2018)
6. Buchanan, B.: Building organizational commitment: the socialization of managers in work

organizations. Adm. Sci. Q. 19(4), 533–546 (1974)
7. Klein, H.J., Polin, B., Leigh Sutton, K.: Specific onboarding practices for the socialization of

new employees. Int. J. Sel. Assess. 23(3), 263–283 (2015)
8. Lynch, K., Buckner-Hayden, G.: Reducing the new employee learning curve to improve

productivity. J. Healthc. Risk Manag. 29(3), 22–28 (2010)
9. Derven, M.: Onboarding, Association for talent and development (2008)
10. Gruman, J.A., Saks, A.M., Zweig, D.I.: Organizational socialization tactics and newcomer

proactive behaviors: an integrative study. J. Vocat. Behav. 69(1), 90–104 (2006)
11. Britto, R., Smite, D., Damm, L.-O.: Software architects in large-scale distributed projects: an

Ericsson case. IEEE Softw. 33(6), 48–55 (2016)
12. Moe, N.B., Stray, V., Goplen, M.R.: Studying onboarding in distributed software teams: a

case study and guidelines. In: Proceedings of the Evaluation and Assessment in Software
Engineering, pp. 150–159 (2020)

13. Sharma, G.G., Stol, K.J.: Exploring onboarding success, organizational fit, and turnover
intention of software professionals. J. Syst. Softw. 1(159), 110442 (2020)

14. Gregory, P., Strode, D.E., Sharp, H., Barroca, L.: An onboarding model for integrating
newcomers into agile project teams. Inf. Softw. Technol. 143, 106792 (2022)

15. Stray, V., Tkalich, A., Moe, N.B.: The Agile Coach Role: Coaching for Agile Performance
Impact (2021)

16. Fagerholm, F., Sanchez Guinea, A., Borenstein, J., Munch, J.: Onboarding in open source
projects. IEEE Softw. 31(6), 54–61 (2014)

17. Matturro, G., Fontán, C., Raschetti, F.: Soft skills in scrum teams a survey of the most valued
to have by product owners and scrum masters. In: International Conference on Software
Engineering and Knowledge Engineering, pp. 42–45 (2015)

18. Steinmacher, I., Conte, T.U., Treude, C., Gerosa,M.A.: Overcoming open source project entry
barriers with a portal for newcomers. In: Proceedings of the 38th International Conference
on Software Engineering, pp. 273–284 (2016)

19. Morrison,E.W.:Newcomers’ relationships: the role of social network ties during socialization.
Acad. Manag. J. 45(6), 1149–1160 (2002)

20. Casalnuovo, C., Vasilescu, B., Devanbu, P., Filkov, V.: Developer onboarding in GitHub: the
role of prior social links and language experience. In: ESEC/FSE, pp. 817–828 (2015)

21. Boh, W., Slaughter, S.A., Espinosa, J.A.: Learning from experience in software development:
a multilevel analysis. Manage. Sci. 53(8), 1315–1331 (2007)

22. Šmite, D., Moe, N.B.: Switching vendors: factors that matter when engineers onboard own
replacement. J. Softw. Syst. 169 (2020)



148 D. Smite and N. B. Moe

23. Yin, R.K.: Case Study Research and Applications: Design and Methods. SAGE Publications
Inc. (2017)

24. Robson, C., McCartan, K.: Real World Research, 4th edn. Wiley (2016)
25. Creswell, J.W.: Qualitative Inquiry and Research Design, 3rd edn. SAGE Publications Inc.

(2014)
26. Smite, D., Wohlin, C.: Strategies facilitating software product transfers. IEEE Softw. 28(5),

60–66 (2010)
27. Kumar, S., Wallace, C.: Patterns of identity and interaction in an agile community of prac-

tice. In: Proceedings of the International Workshop on Cooperative and Human Aspects of
Software Engineering, pp. 71–78 (2019)

28. Moe, N.B., Šmite, D., Hanssen, G.K., Barney, H.: From offshore outsourcing to insourcing
and partnerships: four failed outsourcing attempts. Empir. Softw. Eng. 19(5), 1225–1258
(2013). https://doi.org/10.1007/s10664-013-9272-x

29. Sabherwal, R.: The evolution of coordination in outsourced software development projects:
a comparison of client and vendor perspectives. Inf. Organ. 13(3), 153–202 (2003)

30. Gren, L., Lenberg, P.: Agility is responsiveness to change: an essential definition. In:
Proceedings of the Evaluation and Assessment in Software Engineering, pp. 348–353 (2020)

31. Moe, N.B., Olsson, H.H., Dingsøyr, T.: Trends in large-scale agile development: a summary
of the 4th workshop at XP2016. In: Proceedings of the Scientific Workshop Proceedings of
XP conference, pp. 1–4 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/s10664-013-9272-x
http://creativecommons.org/licenses/by/4.0/


Organizational Conflicts in the Adoption
of Continuous Software Engineering

Eriks Klotins1(B) and Elliot Talbert-Goldstein2,3

1 Software Engineering Research Lab (SERL), Blekinge Institute of Technology,
Karlskrona, Sweden

eriks.klotins@bth.se
2 Empirical and Applied Software Engineering Lab (EASEL),

University of Maryland, Baltimore County, USA
el3@umbc.edu

3 Bosserman Center for Conflict Resolution, Salisbury, USA

Abstract. Software is a critical component of nearly every product or
service. Improvements in software can lead to substantial competitive
advantages. At the same time, software and surrounding engineering
teams have become increasingly complex.

The adoption of continuous integration and delivery is a recent trend
to radically improve software release speed. However, its adoption is far
from straightforward. Specifically, rethinking processes, organizational
culture, ways of working, and business models require buy-in from diverse
stakeholders that may have conflicting objectives. Such situations are
explored by organizational conflict research.

This paper reports on early lessons from an ongoing research project
in continuous software engineering, specifically investigating adoption
challenges from an organizational conflict perspective. We identify cata-
lysts, symptoms, and outcomes of organizational conflicts hindering the
adoption process.

We conclude that predictable conflicts emerge when adopting contin-
uous engineering. Engineers, managers, and other teams can proactively
prepare for and allocate resources to resolve them. Proper analysis and
management can help avoid wasted time, impeding processes, and frus-
tration.

Keywords: Continuous Software Engineering · Organizational
conflicts · Change management

1 Introduction

In this paper, we report on an ongoing research project into the adoption of
continuous software engineering (CSE). Our focus is continuous integration and
delivery, however we also consider broader organizational implications, such as
planning and requirements on collaboration [6].

Continuous software engineering is a set of principles promoting rapid and
frequent delivery of incremental software updates and extensive use of feedback
to steer development [6]. Observing changes in product usage patterns due to
c© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 149–164, 2023.
https://doi.org/10.1007/978-3-031-33976-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_10&domain=pdf
https://doi.org/10.1007/978-3-031-33976-9_10


150 E. Klotins and E. Talbert-Goldstein

software changes informs engineers about the success of changes and support
further product decisions [7,11]. However, the key differentiating characteristic
of CSE is the immediate delivery of any changes by developers to the end-users.
This speed is achieved by extensive automation of build, test, integration, and
delivery steps and by removing organizational bottlenecks.

Companies aiming to improve their software engineering processes by adopt-
ing continuous engineering principles face major challenges. Partly, the chal-
lenges are associated with adopting new tools and technologies. However, earlier
studies suggest that the required organizational changes are the most significant
challenge by far [2,10,11].

Deeper organizational inefficiencies are unlikely to be solved with new tech-
nologies and automation tools. Specifically, misunderstandings, misalignment,
and sub-optimal organizational structures will limit the benefits of adopting
process automation [6,10].

Misalignment within and across organizations is addressed by organizational
conflict research. Foundational research on organizational conflict and software
engineering includes structural and interpersonal issues within and between orga-
nizations [1,8,12,15,21].

Studies of continuous integration and delivery primarily address social and
technological obstacles. Such as challenges associated with team members chang-
ing roles and learning new skills and tools. However, only some, if any, focus on
challenges establishing an efficient cross-organizational coordination and collab-
oration [3,5,13,14]

We aim to understand to what extent underlying organizational conflicts
hinder the adoption of CSE. We use three industrial cases to explore the adoption
challenges and symptoms pointing toward deeper organizational inefficiencies.

Our results suggest that common adoption challenges, such as stakeholder
resistance, restrictive processes, and organizational silos, can be explained by
underlying organizational conflict. We conclude that organizations need to
improve their conflict resolution approaches and advocate for continuous conflict
management as part of the adoption strategy.

2 Background and Related Work

2.1 Organizational Conflicts in Software Engineering

In its most basic form, an organizational conflict is a misunderstanding or dis-
agreement, real or perceived, around the needs, interests, and values of people
working together [9].

CSE is a cross-cutting phenomenon requiring cooperation between all parts of
an organization. The multitude of stakeholders and potential differences among
them create particular causes of conflicts that need to be explored in the context
of CSE [11,16].

The causes of organizational conflict can be broken out into six broad cate-
gories: task interdependence, goal incompatibility, ambiguous rules, differences



Conflicts in Continuous SE 151

in values and beliefs, resource scarcity, and ineffective communication [15]. These
causes manifest differently in different scenarios, and specific components become
more important for different types of conflicts.

Jehn [8] introduces an empirical typology of organizational conflicts. The
topology covers the negative and positive impacts of conflict and incorporates
both “management teams” and “production groups.” The three key types of
organizational conflict are task, relationship, and process. Task conflict occurs
when team members may disagree on how to perform work. The research indi-
cates moderate task conflict can be constructive and stimulate discussion of ideas
that help groups perform better and group productivity. However, relationship
conflict, where teams have chronic issues that lead members to be “negative, irri-
table, suspicious, and resentful,” have significant adverse effects on productivity.
Process conflict connects the two other types. Conflicts over process include how
tasks should be accomplished, who is responsible, and how to delegate responsi-
bility. Lower levels of process conflict were shown to limit the negative impacts
on a team’s performance. This tripartite typology has become a foundation for
analyzing team conflict, especially in software engineering.

Further studies have extended Jehn’s [8] work to include intergroup con-
flict [12,21]. In software engineering specifically, this typology has been applied
and empirically corroborated [9,21,22]. Enterprise software adoption research
includes social network analysis to evaluate the impact of the propagation of
intergroup conflict including issues with bureaucracy, interpersonal problems,
and conflicting corporate values [21].

Siddique et al. [20] investigates the causes, consequences, and mitigation
strategies of conflicts from the perspective of project managers. The causes
include concerns like the role and knowledge of the product owner or customer,
organizational hierarchy, bureaucracy, contracting and finances, and personal
egos. Consequences included problems with productivity, wasted time and dis-
tractions, poor decisions, and lack of communication. The research covered pos-
sible strategies for addressing conflict, focusing on root-cause analysis as the
primary means to resolve conflicts.

Power [17] introduces tools to study and remove impediments in Agile
projects using impediment impact diagrams. Impediments included categories
that comprised technical issues as well as interpersonal issues. The diagrams
allow team members to compare the benefits of implementing a specific effort to
remove an impact and the internal or external resources needed to do it.

Studying the types of conflicts that may occur during the adoption of CSE is
not a direct route. It is essential to look at conflicts in teams and organizations
generally and during organizational change. Additionally, it is helpful to narrow
the scope of possible conflicts to software engineering and Agile contexts, which
provide the foundations for CSE.



152 E. Klotins and E. Talbert-Goldstein

2.2 Continuous Software Engineering

Continuous software engineering originates from lean and agile principles. The
overarching goal of CSE is to ensure a continuous flow of software from its
inception to creating value for the user [6].

The continuous flow of software is achieved by delivering software in small
increments and automating integration, verification and delivery steps. Frequent
and small software deliveries creates an opportunity to gauge the success of the
update by collecting focused telemetry and feedback [7,11].

The benefits of CSE include the flexibility to react rapidly to new market
opportunities and leverage data-driven decision-making. An automated pipeline
allows engineers to focus on value-adding tasks and offload menial tasks to
automation [6,7]. The adoption process requires the organization to rethink
its ways of working, set specific goals, and promote continuous improvements
throughout the organization and its heterogeneous teams [10].

Implementing a CSE pipeline in an existing organization is a substan-
tial undertaking. Adopting new tools, automation, test data preparation, and
pipeline maintenance requires substantial investments. Furthermore, successful
adoption of CSE requires cross-cutting changes in the organization [2,11,16].
For instance, to support the rapid delivery of software updates, the decisions of
what to deliver need to be made rapidly. Fast planning has an upstream depen-
dency on flexible resource planning and organizational support. Delivery of fre-
quent updates requires buy-in from downstream stakeholders and customers.
Such changes may require renegotiating customer contracts and tailoring busi-
ness models [7,11].

Our work with several industrial partners highlights that aligning the goals of
different parts of an organization remains one of the key challenges in adopting
continuous engineering. Misalignment often stems from different interpretations
of the same goal. For example, improving efficiency may be interpreted by an
R&D department as delivering more new features. For operations, efficiency
may mean spending fewer resources on providing stable services. More frequent
software updates increase the risk of disrupting smooth operations and are at
odds with stability. In such situations, organizational conflicts may emerge and
hinder attempts to improve organizational performance [10].

3 Research Methodology

The aim of our research is to explore how organizational conflict research can
support organizations and practitioners in adopting CSE. To guide our study we
define the following research questions:

RQ1: What are symptoms of organizational conflict in the context of adopting
CSE?

Motivation: With this research question we want to explore to what extent dif-
ficulties in adopting CSE can be attributed to hidden and/or unaddressed orga-
nizational conflicts.



Conflicts in Continuous SE 153

RQ2: What are the root causes of identified symptoms from an organizational
conflict perspective?

Motivation: With this research question we want to explore the underlying causes
for organizational conflict and map them to conflict resolution strategies.

RQ3: What are the advantages of studying conflicts in CSE empirically?

Motivation: Most of research focuses on tooling and technical aspects of CI/CD.
However, a degree of organizational streamlining are required to enable end-to-
end automation. With this research question we aim to clarify how studying
organizational conflict can support adoption of CSE.

3.1 Research Approach

We conduct this study as part of an ongoing industry-academia research project
into adopting continuous software engineering in the industry. The project aims
to develop support for practitioners to adopt and benefit from CSE principles.

As part of the project, we conduct a multiple case study [18]. The studied
cases are established organizations with mature products already in the mar-
ket. The unit of analysis is the current software delivery process in developing
market-driven software-intensive products. Our primary data collection methods
are interviews, workshops, and seminars. Our analysis focused on the process,
identification of bottlenecks, and opportunities to improve the efficiency and
effectiveness of the software delivery process.

This paper is based on results from three partner organizations. We name
companies A, B, and C to maintain their anonymity. The work with these orga-
nizations was conducted between January 2022 - February 2023.

Company A is a large mobile telecommunications hardware and software
provider in Sweden. We were involved with a part of the organization develop-
ing business-critical software systems for mobile telecommunications operators.
Their software release process is based on a quarterly release cycle. To achieve
exceptional quality and compliance, the release process is concluded by a sign-
off stage involving many stakeholders representing trade compliance, security,
business, engineering, and customer representatives, among others.

Company B is an audio streaming services company based in Sweden. Their
offerings include mobile apps, services, and tools to bring musicians, audio con-
tent creators, and listeners together. Their organization is relatively new and
characterized by a flat structure, agility, and flexibility. Teams can release soft-
ware changes within hours. However, coordinating large and cross-cutting efforts
is challenging.

Company C is a mobile telecommunications operator in Scandinavia. Their offer-
ings consist of both consumer and business oriented mobile telecommunications
services. The organization also develops tools for internal business support. Inter-
nal efficiency and speed of getting software changes from an idea to production
are their major concerns.



154 E. Klotins and E. Talbert-Goldstein

4 Results

The first interview rounds focused on understanding how software development
and delivery process works and what known bottlenecks are. Later interview and
workshop rounds were focused on specific bottlenecks.

The interviews quickly revealed that all three organizations had already
implemented some degree of automation and attempted to streamline their engi-
neering processes. For instance, test, build, and integration automation was suc-
cessfully adopted and led to substantial perceived improvements. However, the
automation of development tasks is isolated in the development and testing stage
of the process, see Fig. 1.

1 Planning

2 Development & 
testing

3 Release & operation

4 Use & Feedback

Fig. 1. Overview of the key steps of CSE

Further interviews with companies A and C revealed that significant bottle-
necks to rapidly delivering changes occur after development is considered com-
pleted. That is, preparing and handing over completed software for release and
operations, see Fig. 1. Namely, the handover includes preparing documentation
to ensure knowledge transfer, seeking sign-offs from multiple stakeholders, and
verifying regulatory compliance, among other activities.

All our partner companies mentioned the intention to use product telemetry
and customer feedback to inform further product planning, see Steps 1 and 4 in
Fig. 1. However, access to customer environments and data can be problematic
due to security and privacy concerns, service level agreements, business risks, lack
of trust, or inadequate tooling to manage large volumes of data. Furthermore,
due to organizational silos and the lack of transparency, the existing data may
not be available to other stakeholders.

Further interviews and workshops revealed that the main obstacles to smooth
and continuous software delivery are misinterpreting organizational objectives,
leading to organizational silos and stakeholders protecting their interests. This
inter-team conflict manifested largely as issues with processes, and teams had
difficulty overcoming them. Conflicts like this are not unique to CSE. However,
some specific issues arise in understanding and addressing them that need to be
studied so that future organizations can address them more easily. It is possible
to address these conflicts through analysis and mitigation efforts to improve the
performance of CSE efforts.



Conflicts in Continuous SE 155

Further insights from work with companies led us to identify catalysts, symp-
toms, and outcomes associated with adopting continuous practices and unre-
solved organizational conflicts.

4.1 Catalysts of Organizational Conflict Hindering the Adoption
of CSE Principles

Catalysts do not necessarily lead to conflict or other issues, however, they are
mentioned as a context where issues are more likely to emerge.

Catalyst-I: Functional organizational structures emerge from how the organiza-
tion is built. Our interviewees pointed out that companies are often structured
around R&D, operations, sales, product planning, strategic management, and
customer support functions. In such organizations, each unit has a distinct func-
tion and objectives to fulfill. Any improvements are often limited to each func-
tion without considering a broader picture. A consequence of such structures
and local optimizations are organizational silos [19].

Companies A and C pointed out that a cross-cutting end-to-end software
delivery, see Fig. 1, requires the collaboration of multiple organizational func-
tions. Communication between the silos is often tricky due to a lack of context,
mismatching goals, and different specializations. Slow release cycles contribute to
lost knowledge and context. Due to issues like artificial boundaries, unspecified
goal alignment, or lack of oversight into potential issues, there is an increased
risk of conflict between the teams. As one interviewee from Company A put it:

“R&D teams have no idea of how their work is integrated and delivered to
customers. We often discover many issues late in the process and we have
to go back [to development] or try to find solutions on-the-fly.”

In Company B, the primary organizational unit is a cross-functional team.
Each team comprises a product manager, engineers, infrastructure and deliv-
ery specialists, data scientists, and other roles. Such a structure ensures that
the complete planning, development, delivery, and feedback collection cycle, see
Fig. 1, can be executed within one team. This structure keeps communication
distances small and minimizes cross-unit communication and coordination.

Catalyst-II: Inimical processes lead to sub-optimal organizational performance
due to lack of flexibility. We observe that organizations have a tendency to grow
their processes by adding more steps and including new stakeholders. Processes
become inflated due to over-complicated procedures with many stakeholders who
do not necessarily understand their role in the process or share the same goals.
At the same time, our industry partners report the need to become faster and
offer new types of software deliveries. Our interviewees shared their interest in
simplifying processes by removing activities and stakeholders. As one interviewee
put it:

“Our [inimical] process did not help us to catch the log4j issue. It only
delayed us in releasing the fix.”



156 E. Klotins and E. Talbert-Goldstein

Company-A pointed out that a process built for steady delivery of business-
critical software hinders rapid delivery of security updates or experimental fea-
tures. When the process and the involved stakeholders do not permit enough
room for flexibility, it leads to frustration and sub-optimal performance. More-
over, frustration leads stakeholders to seek shortcuts and use their influence
in the organization to get things done. Importantly, processes involving ad-hoc
negotiations between stakeholders are difficult to automate and streamline.

Catalyst-III: Gatekeeping managers have a role in halting a process until certain
conditions are met. They are often part of inimical processes (Catalyst-II). For
instance, a gatekeeper would be a senior manager signing off a release for delivery
to customers, a council scrutinizing reports to negotiate if the software meets
a quality threshold, and alike. While some level of gatekeeping is necessary, a
challenge arises when the gatekeeper lacks contextual knowledge and in-depth
understanding of the artifacts produced by the process.

As reported by Company A, the gatekeepers are often responsible for signing-
off many different artifacts. They have a limited capacity to have an in-depth
understanding of what they are signing off on. Getting the gatekeeper’s knowl-
edge to a sufficient level for an informed decision takes time and is impractical,
given the size and complexity of the software. Slow release cycles and paral-
lel processes lead to the lost context that needs refreshing every time. Hence,
the gatekeeper is unlikely to fulfill its function and hinder the pace of software
deliveries. As one interviewee put it:

“To get an approval, I need to book a meeting with 20 stakeholders. I send
them information upfront, but they do not read it in many cases. This
repeats every six months”

In Company B, the gatekeepers are primarily within the team responsible
for conducting the work. Thus, they have full contextual knowledge and under-
standing of the artifacts to make an informed decision.

Based on company comments, it did not appear that the experiences associ-
ated with gatekeeping were amicably resolved. Instead, process conflict defined
the interaction, where no side could agree on particular operations. Team mem-
bers who disagree with a set process are likely to become frustrated, and this
conflict can impact overall performance and lead to further conflicts between
people.

Catalyst-IV: Lack of Autonomy and Support for Conflict Resolution. The above
catalysts are exacerbated by the lack of autonomy and support for resolving
conflicts. Companies A, B, and C follow agile software engineering practices and
empower their engineers to make decisions to a certain degree. However, we
observe that organizational conflicts are likely to occur during the handover of
artifacts from one organizational unit to another.

Different organizational units may follow different principles and fall under
different managers. Thus, resolving any disputes may require an agreement
between the parties that they have the authority to resolve the conflict or requires



Conflicts in Continuous SE 157

taking several steps up the management chain. As illustrated by Company A,
different organizational units often have different objectives and are physically
located on different continents. The negotiations between organizational units
happen, however, they are repeated at every software delivery cycle, causing
delays and frustration. The involved parties need the authority to adjust their
ways of working. Companies B and C are smaller, and engineers have more
authority to adjust their ways of working. As Company B put it:

“We have the authority and the responsibility to do the right thing.”

In particular, team members, and project managers need to be adequately
empowered and trained to resolve interpersonal conflict. There will be nega-
tive impacts. In CSE efforts, the team manager may be able to negotiate over
particular deliverables and tasks, but issues with processes are less likely to be
managed effectively. Additionally, process conflicts are more likely to propagate
to other areas than lower-level task issues, leading to broader negative impacts.

4.2 Symptoms of Underlying Conflicts

Process analysis in Companies A, B, and C revealed a number of challenges hin-
dering rapid software delivery. In our study, these challenges emerged as symp-
toms of deeper challenges.

Notably, the adverse effects emerge as an overhead for every software delivery
cycle. Increasing the pace of software deliveries without optimizing the overhead
would compound the overhead and waste.

In our study, we identify the following symptoms of underlying organizational
conflicts:

Symptom-A: Repeated Negotiation Every Time an Activity or Process is Per-
formed. All partners mentioned that they depend on meetings to coordinate
work. However, interviewees from Company A described that they often have
meetings to renegotiate certain decisions every time a process is performed. Such
meetings take calendar time to schedule and require informing the stakeholders
about the decision context, and in many cases, add little value because the out-
come of the decision is expected to stay the same. Our interviewees mentioned
that they are used to a release sign-off meeting with about 20 stakeholders for-
mally approving a release. Such a process is acceptable with quarterly releases,
however, is impractical when the organization aims to achieve faster release
cycles.

Due to inimical processes (Catalyst-III) and the lack of autonomy (Catalyst-
IV), stakeholders cannot skip unnecessary negotiations. An individual project
or team member does not have the authority to change the process. Should
they attempt to do so, more conflict could erupt. In this scenario, the question
becomes “who is responsible for process improvement?” or “how do we achieve
trust in faster release cycles?.” A party such as a senior manager or project
sponsor must be empowered to arbitrate or oversee the removal of processes that
act as impediments for teams to change outdated procedures while maintaining
the autonomy of teams.



158 E. Klotins and E. Talbert-Goldstein

Symptom-B: Organizational Constraints Hindering Effective Work. The organi-
zational constraints arise from organizational structures, internal policies, lack
of transparency, and the lack of efficient mechanisms to adjust the constraints.
In its most severe case, organizational constraints manifest as competing silos.

Company B’s main organizational unit is a small, autonomous, cross-
functional team. Such a structure makes the organization very efficient in deliv-
ering work on a team level. However, coordinating the work of many autonomous
teams to deliver more extensive work is challenging. The challenge arises from
juggling different priorities on different levels. For instance, a team may be
required to support multiple other teams while delivering on their objectives.

Company A has a functional structure, and organizational units have dif-
ferent objectives and specializations. For instance, the responsibility to deliver
working software to customers is delegated to one final integration team. Other
teams provide software components and have a partial picture of how their com-
ponents will be integrated and used. Thus, they cannot make informed decisions
about their work.

A shared concern in Companies A and B is access to product and pro-
cess data. The process data is required to enable transparency of other teams’
progress and efficient work planning. Product usage data is required to infer cus-
tomer preferences and steer product development work. However, due to data
protection concerns, lack of tooling, and ad-hoc data collection methods, such
data is not freely available throughout the organizations.

Company B has an internal team and processes responsible for aggregating
data from various sources. However, due to differences in how teams plan their
work, there needs to be oversight of the current work progress and resource
availability. Company A has an overview of the work progress due to the central
planning function, however the data of how software is used is not shared across
organizational functions.

Symptom-C: Blocking Task Dependencies. Task dependency arises from the need
for multiple organizational units to collaborate and coordinate toward a common
goal. Challenges arise when one unit needs to wait until another completes its
part. Or when there is a gap between what one unit delivers and what another
expects.

In Company A, R&D task dependencies are minimized and well managed.
However, difficulties arise in coordination with software delivery, operations, and
sales units. Due to the complexity of software, bespoke versions delivered to
customers, and lack of transparency, the deliveries do not always match the
expectations. Filling the gaps requires substantial effort just before releasing
software to customers.

In Company B, teams can collaborate in different constellations. Coordinat-
ing and scheduling a large volume of tasks is a major challenge. The challenge
can be partly attributed to the lack of company wide task and resources tracking
system.



Conflicts in Continuous SE 159

Symptom-D: Utilization of Personal Contacts and Process Shortcuts. Inimical
processes (Catalyst-II) and difficulties in reaching consensus push stakeholders
to use their influence, networks, and process loopholes to accomplish their objec-
tives.

Several interviewees mentioned using personal relationships to reach out to
other stakeholders and influence them to behave in a certain way. We observe
that such behavior is more prevalent among more senior employees. At the same
time, more junior interviewees mentioned the difficulties of attaining the same
outcome through formal channels.

Another manifestation of this symptom is labeling artifacts in a certain way
to simplify the process. For instance, an interviewee mentioned labeling a major
update as a hot fix to avoid a lengthy, and in their view, pointless review process.

4.3 Outcomes from Unresolved Organizational Conflicts

Our partner companies report a number of negative outcomes associated with the
symptoms. Importantly, the outcomes become significant concerns when organi-
zations plan to speed up their release cycles and improve internal efficiency and
effectiveness.

Outcome-A: Wasted time. Leaping organizational boundaries, renegotiating the
same decisions, involving distant stakeholders in making critical decisions takes
time away from more value creating activities. The time is wasted every time a
process runs.

Outcome-B: Lack of flexibility. Inimical processes, dependency of personal net-
works to get things done, and lack of autonomy to resolve inefficiencies limits
the organizational ability to adapt to new market and business conditions.

Outcome-C: Frustration. Awareness of organizational inefficiencies lead to frus-
tration among stakeholders. In turn, frustration leads to reduced motivation,
increased turnover rate, and overall reduced organizational performance.

5 Discussion and Analysis

This research collected information broadly about adopting CSE in large com-
panies with multiple software products. The focus of the data collection was not
explicitly aimed at the conflict. Nevertheless, the insights touched upon conflicts
throughout the process and bore further investigation.

Our results show that adopting CSE is as much an organizational as it is
an engineering challenge. Thus, a study into CSE adoption must balance the
technical and social lines of inquiry.

Studying the organizational impediments to CSE adoption falls squarely in
the realm of the study of people and organizations, which managers must be
familiar with to be successful. The company’s experiences in these cases revealed
conflicts that organizations are likely to face when implementing CSE and Agile
methodologies, more broadly.



160 E. Klotins and E. Talbert-Goldstein

5.1 RQ1: What are Symptoms of Organizational Conflict
in the Context of Adopting CSE?

There are a number of organizational concerns to be addressed when adopting
CSE practices. We separate these concerns into catalysts and symptoms.

The catalysts are not problematic or cause conflict per se. However, our
results suggest that functional organizational structures (Catalyst-I), inimical,
die-hard processes (Catalyst-II), the culture of sign-offs (Catalyst-III), and the
lack of autonomy and support for conflict resolution (Catalyst-IV) create condi-
tions for conflicts to emerge.

Symptoms are signs of deeper issues. We identify that the culture of repeated
meetings and decisions with the same outcome (Symptom-A), organizational
“red tape” (Symptom-B), blocking task dependencies (Symptom-C), and the
utilization of process shortcuts (Symptom-D) signal a deeper conflict.

These results are well aligned with the state-of-the-art in CSE. For instance,
cross-functional teams, empowering engineers to decide on their ways of working,
and organizational transparency are prerequisites for the successful adoption of
CSE [7]. At the same time, the existing literature does not provide a deeper
insight on the organizational change management perspective [10,15]

5.2 RQ2: What are the Root Causes of Identified Symptoms
from an Organizational Conflict Perspective?

State-of-the-art management practices recognize several groups of factors con-
tributing to organizational conflict. These categories include issues caused by
task interdependence, goal incompatibility, ambiguous rules, differences in val-
ues and beliefs, resource scarcity, and ineffective communication [15].

We use the causes of organizational conflict to analyze insights from our
study. Under each cause for the organizational conflict, we list sub-causes men-
tioned by our interviewees, see Fig. 2.

Our observations match well with the state-of-the-art in organizational con-
flicts. However, conflict management has attracted little attention from CSE
community. Moreover, discussions with our partners reveal that the adoption of
CSE is treated mostly as an engineering problem with the focus on technical
aspects. Our findings demonstrate how including conflict management in the
CSE adoption strategy could alleviate some of the adoption challenges [16].

Software engineering and delivery of software-intensive products and services
are inherently collaborative. Thus, some degree of dependency and conflict is
inevitable, see C1.1 in Fig. 2. In Company A, cross-functional dependencies
are more common. However, in Company B, the team dependencies are more
common, thus conflicts occur on different levels.

Our interviews confirm that collaboration across organizational units indeed
causes friction, see C1.2 in Fig. 2. From Company A, we learn that well-
coordinated work in the R&D unit can solve many issues. At the same time,
the coordination does not extend beyond the functional R&D unit. This is a
potential cause of conflict.



Conflicts in Continuous SE 161

C1: Task interdependence C2: Di erences in values 
and beliefs

C6: Ambigous rules C5: Resource scarcity C4: Ine ective communication

C3: Incompatible goals

C4.1 Distant stakeholders

C4.2 Missing context

C4.3 Large number of 
stakeholders

Organizational 

CAUSES OUTCOMES

Wasted time

Frustration

C3.1 Misaligned, 

C3.2 Gatekeepers

C1.1 Organizational units 
depend on each other to 
deliver software

C6.1 Process loopholes

C6.2 Rules/constraints 
that can be negotiated

C1.2 Lack of company-
wide coordination C2.2 Culture

Fig. 2. Root-cause analysis of organizational conflicts in adopting continuous software
engineering.

Topics around poorly understood and misaligned organizational objectives
were discussed during our interviews, see C3.1, in Fig. 2. We conclude from the
interviews that setting multiple organization-wide goals with shared and clear
key performance indicators is challenging.

In Company A, the primary goal for a long time had been the quality of
services. Consequently, there is a rigorous quality assurance process. Recently,
the organization sought to increase delivery speed. This move requires rethinking
and streamlining the quality process. In particular, the gatekeepers, see C3.2.,
need to be replaced with an automated and scalable solution. At the same time,
the priorities of quality and speed are not shared, and some fears removing the
established process may lead to deteriorating product quality.

In Company B, the primary goal is delivery speed. The organization had
been optimized to deliver features to the market fast. At the same time, the
ability to track the market relevance of high-level updates is limited.

We observe that many stakeholders across organizational units cannot main-
tain the full context of the situation, coordinate and make efficient decisions.
Consequently, fault lines appear, and organizational conflicts emerge.

This challenge is most prevalent in Company A, where the key stakehold-
ers have a many-to-many mapping with the ongoing projects with long release
cycles. Thus, they cannot fully understand each project’s context.

The causes and effects of the conflicts we identified are directly related to the
shift to CSE. These issues may not arise in other business transformations and
require special attention in this context. How these conflicts manifest for dif-
ferent companies differs and depends on the legacy structures and processes, as
well as overarching culture and goals. Team members can be conscious of these
prospective issues and flag them should they appear. Managers can also be pre-



162 E. Klotins and E. Talbert-Goldstein

pared to address them based on best practices in order to maintain performance
and meet goals.

Initially, managers can take stock of the catalysts we identified here. These
represent the corporate structures that can lead to conflicts later on. Where
possible, leaders should prepare for CSE adoption by restructuring some of the
organization, or its processes at least, to address these root causes. At a min-
imum, engineering teams should be prepared to deal with the symptoms that
arise from these catalysts. Failing that, (for example, if you read this research
after starting a CSE change) team members should be aware of the symptoms
that are driven by the catalysts. If these symptoms arise, they can likely be
traced back to their root causes at the organizational level to seek solutions.
Performing a root cause analysis on symptoms not defined here could also reveal
new catalysts.

5.3 RQ3: What are the Advantages of Studying Conflicts in CSE
Empirically?

Studying the conflicts in CSE, including their symptoms and catalysts helps pre-
vent them, and also helps too maximize their positive outcomes when conflicts
inevitably occur. For instance, since some degree conflict in teams is healthy [8],
managers should reflect on them with their teams during reviews and retrospec-
tives, to celebrate the wins and encourage a positive discord. Embracing positive
conflict could be a driver for incremental organizational change.

Tracking the frequency of conflicts is also valuable. A lack of conflict may
indicate instability in a team or organization, since stakeholders may avoid rais-
ing disputes for fear of causing their group to crumble. Instead, observing a
manageable amount of healthy conflicts can help indicate team cohesiveness [4].
Managers should clue-in to task conflict that results in positive outcomes, and
raise a red flag when teams grow silent.

Lastly, the goals of adopting CSE are meant to close the gaps between the
business need for a software solution and its development, without negative
impacts to quality in the short- or long-term [7]. As with any Agile transfor-
mation, and for any project manager, removing obstacles is the key priority.
For CSE, those obstacles have been shown to surface as issues between people
more than from technical limitations. Just like change is inevitable, so too is
conflict. Organizations should thus prioritize management, and to some extent
welcome, disputes that arise during adoption of CSE, particularly between het-
erogeneous organizational units. This means, for example, facilitating dialogue
to focus disparate interests towards shared goals.

By systematically identifying, addressing conflicts that naturally occur, orga-
nizations can help ensure the success of a continuous pipeline of software that
meets the needs of customers, engineers, operations, and sales.



Conflicts in Continuous SE 163

6 Conclusions and Further Work

In this paper, we report preliminary results from an ongoing study on adopt-
ing CSE in three companies. Through interviews and workshops, we observed
challenges faced by different teams within each organization. The data regularly
included participant discussion of organizational conflicts, defined by differences
in the understanding of goals, needs, and interests between teams. Based on this
empirical information, we have identified catalysts, symptoms, and outcomes
associated with improperly managed organizational conflict that inhibits the
adoption of CSE. Unless it is addressed, organizational conflict can hinder the
implementation of a continuous software delivery pipeline and the surrounding
automation.

We conclude in this early work that analyzing organizational conflict, and
managing it constructively, are important parts of streamlining an organization
and realizing the benefits of CSE. We propose to recognize continuous conflict
management as an essential and cross-cutting activity in the toolbox of imple-
menting continuous integration and continuous delivery.

Further work should look to these underlying conflicts, their causes, and
their outcomes, as a starting point to identify further conflicts that may arise.
Quantitative studies could also be used to measure the frequency of such conflicts
and evaluate their impacts.

References

1. Afzalur Rahim, M.: Toward a theory of managing organizational conflict. Int. J.
Conflict Manag. 13(3), 206–235 (2002)

2. Chen, L.: Continuous delivery: overcoming adoption challenges. J. Syst. Softw.
128, 72–86 (2017)

3. Claps, G.G., Svensson, R.B., Aurum, A.: On the journey to continuous deployment:
technical and social challenges along the way. Inf. Softw. Technol. 57, 21–31 (2015)

4. Coser, L.A.: The Functions of Social Conflict, vol. 9. Routledge (1998)
5. Debbiche, A., Dienér, M., Berntsson Svensson, R.: Challenges when adopting con-

tinuous integration: a case study. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M.,
Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892,
pp. 17–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13835-0 2

6. Fitzgerald, B., Stol, K.-J.: Continuous software engineering and beyond: trends and
challenges. In: Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering, pp. 1–9 (2014)

7. Humble, J., Kim, G.: Accelerate: the science of lean software and devops: building
and scaling high performing technology organizations. IT Revolution (2018)

8. Jehn, K.A.: A qualitative analysis of conflict types and dimensions in organizational
groups. Adm. Sci. Q. 530–557 (1997)

9. Karn, J.S., Cowling, A.J.: Measuring the effect of conflict on software engineering
teams. Behav. Res. Methods 40, 582–589 (2008)

10. Klotins, E., Gorschek, T.: Continuous software engineering in the wild. In: Mendez,
D., Wimmer, M., Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2022. LNBIP,
vol. 439, pp. 3–12. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
04115-0 1

https://doi.org/10.1007/978-3-319-13835-0_2
https://doi.org/10.1007/978-3-031-04115-0_1
https://doi.org/10.1007/978-3-031-04115-0_1


164 E. Klotins and E. Talbert-Goldstein

11. Klotins, E., Gorschek, T., Sundelin, K., Falk, E.: Towards cost-benefit evaluation
for continuous software engineering activities. Empir. Softw. Eng. 27(6), 157 (2022)

12. Korsgaard, M.A., Soyoung Jeong, S., Mahony, D.M., Pitariu, A.H.: A multilevel
view of intragroup conflict. J. Manag. 34(6), 1222–1252 (2008)

13. Laukkanen, E., Itkonen, J., Lassenius, C.: Problems, causes and solutions when
adopting continuous delivery-a systematic literature review. Inf. Softw. Technol.
82, 55–79 (2017)

14. Laukkanen, E., Paasivaara, M., Arvonen, T.: Stakeholder perceptions of the adop-
tion of continuous integration-a case study. In: 2015 Agile Conference, pp. 11–20.
IEEE (2015)

15. Mitchell, D.E.: Causes of Organizational Conflict. Springer, Cham (2017)
16. Neely, S., Stolt, S.: Continuous delivery? easy! just change everything (well, maybe

it is not that easy). In: 2013 Agile Conference, pp. 121–128. IEEE (2013)
17. Power, K.: Impediment impact diagrams: understanding the impact of impedi-

ments in agile teams and organizations. In: 2014 Agile Conference, pp. 41–51.
IEEE (2014)

18. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

19. Serrat, O.: Bridging organizational silos. In: Knowledge Solutions: Tools, Methods,
and Approaches to Drive Organizational Performance, pp. 711–716 (2017)

20. Siddique, L., Hussein, B.A.: Grounded theory study of conflicts in Norwegian agile
software projects: the project managers’ perspective. J. Eng. Project Prod. Manag.
2, 120–135 (2016)

21. Williams, R.A.: Conflict propagation within large technology and software engi-
neering programmes: a multi-partner enterprise system implementation as case
study. IEEE Access 7, 167696–167713 (2019)

22. Zhang, X., Stafford, T.F., Hu, T., Dai, H.: Measuring task conflict and person
conflict in software testing. ACM Trans. Softw. Eng. Methodol. (TOSEM) 29(4),
1–19 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Data-Driven Development in Public Sector: How
Agile Product Teams Maneuver Data Privacy

Regulations

Astri Barbala1(B) , Tor Sporsem1 , and Viktoria Stray1,2

1 SINTEF Digital, 7034 Trondheim, Norway
{astri.barbala,tor.sporsem,viktoria.stray}@sintef.no

2 University of Oslo, 0373 Oslo, Norway

Abstract. Datafication processes, the ongoing strive for making organizations
data-driven, have in recent years entailed data-focused software projects and
more interdisciplinary teamwork. Simultaneously as agile product teams have
been directed towards increased use of data for software development, stronger
data protection regulations such as GDPR have further complexified the software
developer role, whose responsibilities and expectations now expand far beyond
mere coding. Seeking to develop an understanding of how data-intensive product
teams in the public sector maneuver the legal hurdles emerging in the wake of data
governance, this paper builds on 19 interviews with members of two agile product
teams in the Norwegian organizations NAV and Entur. Our findings indicate that
including a legal expert in the team can boost confidence in data handling practices
and avoid delays in deliveries, but it requires effort to synchronize and overcome
interdisciplinary barriers.

Keywords: Datafication · Data Protection · Data Management Regulations ·
GDPR Compliance · Agile Software Development · Collaboration ·
Coordination · Interdisciplinary Teams

1 Introduction

Over the last decade, European governments have looked to data-driven technology to
enable “the strategic use of data for productive, inclusive and trustworthy governance”
[1], meaning that data collection, storage, and sharing are playing increasingly central
roles in public administration. The quest for a datafied public sector is largely driven by a
vision of both empowered citizens and better andmore effective public services, entailing
reliable and secure software solutions built with agile methods. However, research has
shown that there are several multifaceted constraints involved in becoming data-driven,
both technical, organizational, political, and legal (see, e.g., [2–4]).

For software developers, the direct implication of datafication is that product teams
must own and manage data as part of their everyday practice, resulting from data mesh
structures and the move towards decentralized data storage [5] and democratization
of data [6]. Simultaneously, as data science has rapidly made its way into software

© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 165–180, 2023.
https://doi.org/10.1007/978-3-031-33976-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_11&domain=pdf
http://orcid.org/0000-0002-3087-3350
http://orcid.org/0000-0002-5230-7480
http://orcid.org/0000-0002-6032-2074
https://doi.org/10.1007/978-3-031-33976-9_11


166 A. Barbala et al.

development, agile public sector teams are expected tomaneuver new teamconstellations
and often ambiguous data management regulations.

A central issue for public sector organizations in the quest of becoming data-driven
entails overcoming juridical hurdles effectively and in accordance with applicable laws,
specifically to protect citizens’ private data. This paper seeks to gain an understanding
of how data-intensive public sector product teams can overcome these hurdles and how
scenarios can play out differently depending on the team composition; more specifically
whether the team includes a legal expert or not. It is well-established that the barriers
to the effectiveness of agile teams lie not only at the team level and leadership of the
team but also in the organizational and environmental contexts that directly affect team
success [7]. However, few empirical studies have to date zoomed in on how data privacy
laws affect the day-to-day work of software developers and the importance of team
composition and organization in that regard.

To address this gap in the literature, we studied two agile product teams in two
central public sector organizations in Norway, NAV and Entur, that were transition-
ing from centralized to distributed data management. “Product teams” are autonomous
teams with the cross-functional competence needed to provide the service or product
independently1. The two agile teams develop data-intensive products, meaning utilizing
user data in the software development process, and both software developers and team
members from other disciplines were interviewed. We chose to explore the following
research questions:

1) How are data privacy regulations affecting the day-to-day work of product teams?
2) What are the pros and cons of including a legal advisor as part of the team to overcome

juridical hurdles?

This paper is organized as follows: In Sect. 2, we introduce public sector datafication
and what it entails in the context of agile software engineering. We then explain the
increasing importance of juridical understandings for agile product teams, underlining
the direct impact data privacy regulations have on present-day software development.
Section 3 describes the context and methods before we present our findings in Sect. 4. In
Sect. 5, we discuss the main data privacy challenges for agile product teams and discuss
how these obstacles can be addressed moving forward. Section 6 concludes and suggests
future work.

2 Background

2.1 Defining Public Sector Datafication: Towards Decentralized Data
Management

Data has been viewed as the new oil, entailing that enormous value can be extracted
from refined data and that just like oil spills, “data spills” can cause tremendous damage
[8]. Within software engineering, datafication has also been regarded as an emerging

1 Both companies are heavily inspired by the Team Topologies book and use “product teams”
as synonyms to “stream-aligned teams”. See Skelton, M., & Pais, M. (2019). Team topologies:
organizing business and technology teams for fast flow. It Revolution.



Data-Driven Development in Public Sector 167

“trending topic” and an aspect of the field’s increasing focus on data [9–11]. Datafica-
tion can be defined as “the transformation of social action into online quantified data”
[12], and entails “the collective tools, technologies, and processes used to transform an
organization to a data-driven enterprise” [13].

Although much research has been conducted on public sector datafication in the last
few years in terms of policy implications and citizen rights and participation [4, 14–16],
there has to date been a lack of scholarly interest within the software engineering field for
discussing how datafication has affected software projects and the software developer
role. Systematic data about populations have been collected in the Nordic countries for
a long time, partly due to the development of welfare infrastructures [17]. Technology
researcher Jathan Sadowski [18] has stated that “data – and the accumulation of data – is
a core component of political economy in the 21st century”. Data is thus a potential
source of citizen insight and enormous capital and entails that public sector product
teams can be defined as particularly data-intensive [19].

In developing digital public services, such as online applications for filing tax returns
andunemployment benefits, theNorwegian public sector has increasingly turned towards
distributed data management models that are arguably more compatible with modern-
day agile software development [5]. Data mesh is defined by Zhamak Dehghani [20, 21]
as fulfilling four principles; namely 1) domain-oriented decentralized data ownership
and architecture, 2) seeing data as a product, 3) incorporating a self-serve data platform
and 4) a turn towards federated computational governance. The direct implication of data
mesh for software practitioners is that product teams gain more control and ownership
of the data deriving from the team’s designated application, in addition to increased
responsibility to share data with other teams. NAV and Entur have been public sector
pioneers in turning towards data mesh incorporation, which incentivized us to choose
teams from these organizations as our focus points for this study.

2.2 The Legal Aspect of Agile Teams: An Increasing Importance

In recent years, with the advent of data privacy regulations governing how best to collect,
store and utilize the value of data, maneuvering the oftentimes ambiguous and little
context-specific data management rules has become an increasing challenge for both
public and private sector software teams. User-centered laws such as the General Data
Protection Regulation (GDPR) launched by the European Union in 2018 have directly
affected European software development planning and implementation. As a member
of the European Economic Area (EEA), Norway is bound to the GDPR. Additionally,
Norwegian law has national adaptions that are tailored more directly to the country [22].

The new and stronger rules on data protection entail that people have more control
over their personal data, as well as giving businesses and organizations several obli-
gations in terms of carrying out data protection assessments and maintaining records.
These new responsibilities have led software development teams to look outside IT-
related professions to fill the emerging roles to become self-organizing [23]. Integrating
experts from other disciplines into IT teams to strengthen their agility and interdisci-
plinary competence is nothing new. However, it has become increasingly important in
recent years with more and more complex software projects and team compositions fur-
ther complicated by data science roles [24]. In addition, the turn to continuous software



168 A. Barbala et al.

deployment means that teams are increasingly expected to deliver faster and faster, going
from a couple of releases a year to several a day.

Ensuring compliancewith relevant regulations is a vital component of the continuous
integration strategy. As pointed out by Klotins et al. [25], regulatory practices are often
at odds with agile and continuous principles. Previous research has shown that adhering
to GDPR is burdensome for software developers due to both lack of support from insti-
tutions and clients, and inadequate online tools [26]. Although continuous compliance is
an established procedure within agile literature, there is a lack of empirical studies into
how this plays out in practice in data-driven software teams. This study thus seeks to add
new insights into how the compliance principle may create congestion in the continuous
delivery process due to a limited understanding of data usage legalities.

The importance of juridical competence for software teams has meant that IT depart-
ments have started implementing legal professionals into product teams, aiding software
developers in maneuvering the legal grey zones in datafication processes. Our present
study contrasts one team with another team that did not have a legal advisor available,
and we hence seek to provide unique insights in this regard. Although organizational
agility is critical to respond sufficiently to the challenges experienced by contemporary
software projects, team members with different backgrounds may have different norms
guiding them, often proving to be a hindrance to being an effective agile team [27].
Addressing this in the context of a product team incorporating a legal advisor, we also
offer novel empirical findings contributing to this literature in software engineering, as
this aspect is not discussed in any of the previous literature as presented in the present
section. Additionally, the paper adds to the state of the art in that the Norwegian public
sector (and especially NAV and Entur) has been a global pioneer regarding incorporating
new ideas about organizational architecture in software development, to date still largely
untheorized within empirical studies of public sector software engineering.

3 Method and Research Site

To answer the research questions, we utilized a qualitative case study design [28] to
tell the contrasting stories of two agile teams in NAV (Team Welfare) and Entur (Team
Travel). We chose these cases because both are public companies with a data mesh
strategy for becoming data-driven (i.e., decentralizing data ownership to product teams),
allowing us to compare two cases within similar contexts. TeamWelfare included a legal
advisor, which Team Travel did not. We wanted to explore differences in overcoming
privacy issues in the two teams and the collaboration between developers and team
members with legal expertise. Our goal was to shed light on the challenges faced in
the pursuit of becoming a data-driven public sector. Specifically, how to establish and
maintain legal standards and procedures for effective data handling.

We kept an exploratory approach as we did not set out to test any specific theory or
hypothesis [29]. Further, we hold an interpretive view in this study, comprehending the
world and its truths as subjective realities [30]. As per Yin’s [28] approach to case study
research, case studies are not intended to be statistically generalized, and this can thus
be said to be a limitation of case studies and qualitative studies in general. However, the
study can be analytically generalized as it establishes an approach to studying software



Data-Driven Development in Public Sector 169

developers’ struggles in maneuvering data protection regulations, an ongoing challenge
applicable to software teams worldwide.

Case Descriptions
Both teams apply the four core concepts of Agile: Incrementally designing the software
through iterations, instituting ceremonies for inspecting and adapting the product and
development process, responding to change collectively, and continuously involving
their users [31]. They are structured as typical agile teams with a Team Lead, Product
Owner, and team members like developers, testers, and UX designers. Team members
were both juniors and seniors, holding between 1–25 years of experience.

Team Travel (12 members) develops and runs an app where travelers can search
travel routes and buy tickets across transportation modes like buses, trams, trains, sub-
ways, ferries, scooters, and city bikes. They are part of Entur, a public company that
provides a digital infrastructure to the Norwegian public transport system. For example,
components like payment solutions that travel companies can include in their services,
thus relieving them from developing a payment solution themselves. Entur has more
than 100 developers organized into 20 development teams, and each team is responsible
for a specific part of the digital infrastructure. The teams are described as autonomous,
meaning they choose freely how they solve their tasks and rely on development meth-
ods. Teams include front-end and back-end developers, designers, and product owners.
Entur is inspired by the thoughts behind data mesh [21] and is building a data platform
where development teams can publish the data they produce. However, the teams are
themselves seen as owners of the data.

Team Welfare develops digital applications used by citizens in need of applying for
benefits related to special conditions in life. The new web-based application service is
replacing a partly paper-based system. The national welfare administration – NAV – is
Norway’s largest governmental agency, responsible for distributing 1/3 of the federal
budget.NAVhas 2000 employees, almost 400 product developers, and 150 product teams
organized in 10 product areas. NAV has been at the forefront of working towards becom-
ing data-driven and experimenting with the potential of data utilization. By employing
over half of the 800 developers, they went from being dependent on large consultancy
companies to being in charge themselves. Insourcing was an essential strategic measure
in moving towards a DevOps mindset and going from a few releases a year to more
than 1500 a week. NAV is moving towards a decentralized data management model [5]
heavily inspired by data mesh [21] which imposes ownership for data that applications
produce on the product teams.

Research Strategy
We collected data in two rounds of interviews (see Fig. 1). We encountered the privacy
issue during the first round of interviews in Team Travel. These interviews were part of
a study of development teams’ coordination strategies and were reported in a previous
paper [32]. Then we explored if privacy issues were also relevant for NAV by interview-
ingmembers from different teams and eventually found TeamWelfare. The first round of
interviews revealed the practical problems of data privacy and gave us an understanding
of the context. In the second round, we studied both Team Welfare and Travel’s prac-
tices for managing data and privacy issues. Interviews were recorded, transcribed, and



170 A. Barbala et al.

coded open-ended using the tool NVivo to identify and structure common codes into
larger constructs [33]. Coding and memoing were conducted according to the Constant
Comparison Method [34].

To answer the research questions and gain a deep understanding of how data privacy
regulations affected the teams’ day-to-day operations, we used interviews to pursue
detailed stories and descriptions from our respondents. Interviewing allowed us to probe
into why privacy regulations changed their way of working and how. As this topic has
increasingly become more and more relevant because the teams started collecting new
forms of user data in the last couple of years, it is still a novel and emerging topic for
most team members. Interviewing allowed us a window into their ongoing reflections,
and it sparked new thoughts in the respondents. This enabled us to compare different
perspectives and reflections.

We also analyzed applicable documents like the team’s strategy documents and
Norway’s Digitalization Strategy [35] to explore the research questions thoroughly. For
instance, Team Welfare’s strategy documents described their team purpose, goals, and
development philosophy.

6 interviews

4 interviews in Team 
Travel (Entur)

3 interviews in Team

in NAV
Nov 22

Welfare (NAV) 

Nov 21– April 22 Sept 22 – Nov 22 Dec 22

2022 2023

Fig. 1. Timeline for data collection of this study

4 Findings

We found that the two teams encountered the challenge of assessing if data is sensitive
in three situations, namely when collecting, sharing, and storing data. These challenges,
however, played out differently due to one central aspect: In seeing their developers’
continuous challenges in maneuvering juridical regulations, Team Welfare had met this
obstacle by employing a legal advisor assisting both Team Welfare and their “sister
team” that worked on another part of the application solution. The two different teams
were separate product teams, but still in the same NAV unit, only divided in terms of the
different product responsibilities. The legal advisor was particularly engaged in issues
dealing with privacy laws and data privacy consequences in their communication with
other teams in NAV. Typically, the dialogues took place on Slack, where the different
teams exchanged questions, thoughts, and experiences.

However, Team Travel did not have a legal advisor available. They had to evaluate
the challenges of data handling independently or seek juridical assistance elsewhere.
The following maps out the various challenges public sector product teams encounter
regarding data rules and regulations, and the contrasting experiences the two teams
reported in this regard.



Data-Driven Development in Public Sector 171

4.1 Collecting Data

As outlined in Sect. 2.1, collecting various data about the public is a central part of the
Norwegian welfare system, and in the quest for a data-driven public sector part of this
responsibility now falls on the software teams developing the new solutions.

A central concern in that regard had become an often-occurring obstacle for Team
Travel, who struggled to assess what data they were allowed to gather, resulting in a
“better safe than sorry” mentality. “We just want to do it right, which limits us [in what
data we collect],” one developer explained. For example, they did not know if they could
gather device IDs from user logs and avoided this by gathering user numbers instead.
However, only those users who make a purchase or log into their account hold a user
number, meaning the team missed out on data from many users. This case describes
how collecting data felt risky, and the team accepted lower data quality to lower the risk.
There were also other issues; the effort of interpreting privacy regulations was seen as
too high risk, and they instead decided to leave the data uncollected.

The wide variety of possible privacy issues developers must consider when gathering
data can be described through a question from one of Team Travel’s users. “A user asked
if it was possible for us to identify someone who frequently searched for travel routes
from an address to a hospital. In a way, this now becomes sensitive data.” This was
beyond what the team imagined they would have to consider and revealed the additional
workload data impedes the development work in form of assessing privacy regulations.

4.2 Sharing Data

A central incentive for organizations to become data-driven is the enormous potential
and value-creation in data sharing. The Norwegian digitalization strategy 2019–2025
words it as “[w]e must share and reuse more public data, and we must ensure that
regulations are digitalization friendly” [35]. For public administrations, data-sharing
initiatives are in theory particularly seen as vital for creating common welfare solutions
that function across administrative sectors. In practice, however, sharing data also entails
major obstacles for software product teams responsible for creating such data- sharing
solutions.

The product owner of TeamWelfare explained that what they can share and in what
way they share it was an ongoing conversation in the team, especially when they wanted
to share historical data with the managers at the various local welfare centers with the
incentive of helping them foresee future requests: “That’s when a lot of legal stuff came
up. If they can dig into this, then they can get down to the individual level. In small
cases, you can actually locate which user it is, because there may not be that many
with the specific needs within a small geographical area”. This issue was echoed by
a Team Welfare developer who referred to what they used as a rule of thumb, namely
how data sharing does not abide by data privacy rules if fewer than five people are
identified in the material. This “entanglement problem” was especially significant in
smaller municipalities where few people applied for the same kinds of aid.

Simultaneously, the teams did not want to own more data than necessary because
they did not want to be responsible for it. Gathering data implies a risk of leakage; the
more data a team “owns,” the greater the risk. They rather relied on tapping into other



172 A. Barbala et al.

teams’ data than gathering it themselves.“There is a greater risk of leaking sensitive data
if it is stored in many places and spread out,” one developer in Team Travel explained.
Tapping into other teams’ data implies a willingness to share. Teams then must assess
what data they are allowed to share and with whom. “We talk to other teams to get the
data from them [instead of gathering it ourselves] to avoid spreading [ownership of]
the data around,” the developer continued. The uncertainty resulted in hesitation, which
led to time delays. It may take months from issuing a sharing request until the data is
shared.

A developer in Team Welfare described how owning data was adding extra burden.
They often received data requests and had to assess if they could share the data. Requests
typically came from other teams that needed business data to develop their own software
and managers that used business data to steer resources. “But we somehow have to
assess this all the time, arewe allowed to share [the data] with them?” a developer asked,
illustrating their struggles. This was a new problem for the product team.When data was
centralized, someone else made this decision; typically, the central data warehouse team.
Now, every product team must interpret privacy rules to determine if sharing complies
with privacy laws. “Who is responsible if you share data with someone and they share
it further? Is it the people who originally produced the data or is it the consumer?”
the developer continued. To find answers, they must interpret privacy regulations, which
made teams anxious. “I am terrified of a newspaper headline on an individual’s sensitive
data being leaked. That would be a disaster,” the developer said. Hesitation seems to be
the result, delaying any team that requests data.

Guidelines and instructions are made to support the teams in assessments. How-
ever, guidelines are made generic to comply with various domains and contexts. Thus,
interpretation is still necessary, which maintains the hesitance of developers. Luckily for
TeamWelfare, they had a legal advisor supporting them inmaking these decisions, short-
ening the time from request to sharing. In contrast, Team Travel was stuck in a world of
uncertainty for every incoming request resulting in time-demanding discussions. These
findings correspond with NAV’s Current Situation Analysis report from October 2021,
where one of the central challenges identifiedmoving forward into becoming data-driven
was connected to the sharing of data: “Regulations prevent data sharing and collabo-
ration. The possibility of increased data access and automation is limited by GDPR
regulations, other legislations, and system barriers within NAV, between agencies and
other actors. This also makes the data quality too poor.”

4.3 Storing Data

The Norwegian digital strategy for the public sector states that “[o]pen public data shall
bemade available for reuse for developing new services and value creation in the business
sector.” This digitalization incentive is yet another aspect of the datafication process that
directly creates increased responsibility for public sector software teams.

For instance, Team Travel struggled to conclude if using Google Analytics complied
with privacy regulations. Google Analytics supports teams in gathering and visualizing
user metrics (i.e., how many clicks on a button) but requires the data to be uploaded to
Google’s cloud service. Privacy regulations require specific types of data to be stored
within Europe, and Team Travel was in doubt if Google stored data on US servers too.



Data-Driven Development in Public Sector 173

“Even though the new Google Analytics 4 is supposed to be much more compliant and
such, we don’t really trust it,” a developer said. They sought answers from theNorwegian
Data Protection Authority who told them that they do not consider individual cases,
leaving Team Travel in limbo. “Until we find an alternative tool, we don’t utilize the
user metrics.”

Searching for alternative tools is easier said than done. Data that initially seem
harmless can be deceitful when combined with a cloud service. A developer in Team
Travel explained that GoogleAnalytics collects cookies on user datawhich they combine
with cookies from other services and build a profile on the user to target advertisement.
Thismeans that seemingly harmless and anonymoususermetrics turn out to be a potential
privacy issue. Team Travel had been searching for alternative tools for more than nine
months, with no apparent solution in sight.

In contrast, Team Welfare felt safe in using their Big Query-based (Google Cloud
service) in-house service for visualizing user metrics. They did not have to consider if
the service was compliant because legal experts had already approved it. Team Welfare
still had to consider privacy regulations when uploading data, like Team Travel, but their
legal advisor supported them. The big difference between Team Welfare and Travel
was that the legal advisor in Team Welfare sat close to the domain, meaning they knew
what data user metrics entail in software engineering. Thus, they were willing to give
guidelines on individual cases and take on shared responsibility for uploading the data.

In addition, the laws and regulations for storing data also entail that software teams
must meet requirements for continuously storing and documenting their data usage,
and formally document decision processes behind their practices. However, evaluating
whether the data can be labeled as sensitive is an ongoing challenge. Oftentimes, if data
is considered harmless and only needed for small decisions and not big deliveries, such
evaluations will not be formally archived, but rather “hidden” in informal conversations
onSlack orTeams.Underlining the difficulties in evaluating the sensitive or non-sensitive
nature of data in the context of storing work logs, the Team Welfare legal advisor said:
“I’m not always quite sure when wemust document what. […] So it’s a challenge coming
in from outside, from another place in the world, in a way, and into agile development.”

4.4 Legal Advisor: A Highway to Autonomy for Data-Intensive Teams?

Although both Team Welfare and Travel encountered various difficulties navigating the
different data privacy regulations in their day-to-day work, it was clear that Team Travel
experiencedmore deep-rooted issues, such as not utilizing usermetrics due to insufficient
legal support. However, inserting a legal advisor into a product teammay also come with
its own set of challenges. We identified two somewhat intertwined causes of friction in
that regard: namely, team synchronizing and interdisciplinary understandings.

Regarding team synchronizing, one central issue was that all the interviewed mem-
bers on TeamWelfare used various communication channels to stay in contact with other
team members, other NAV teams and different user groups. Among the most utilized
platforms were Teams, Slack and NAV’s internal communication channel for reporting
issues, and they had established various group chats with different work topics on the
different platforms. Not only did this make it hard to keep track of whom they had talked
to and on which channel about which issues; it also made it difficult to track whether



174 A. Barbala et al.

they had documented their data processing according to the rules for how this should be
done correctly.

The use of different communication platforms seemed connected to the preferences
of people fromdifferent disciplinary backgrounds. For instance, Slackwas a central com-
munication channel for the technical parts of the team [see 36], whereas the communica-
tion with the different case workers took place in closed groups on Teams. Although this
point refers to the inclusion of team members from different backgrounds more gener-
ally, it was particularly noticeable for TeamWelfare, likely due to their team composition
being more wide-ranging in terms of interdisciplinary backgrounds.

Additionally, several Team Welfare members pointed out the importance of how
synchronizing the team was a longitudinal process, particularly when the team was
of an interdisciplinary nature. In the context of the legal advisor, this meant that this
person would need to spend a significant amount of time with the team to observe and
understand their challenges and everyday practices to truly graspwhere assistancewould
be necessary for the team to operate as efficiently as possible.Wewill discuss this finding
closer in the subsequent section.

In agile software engineering literature, it is well established that there are various
barriers to be overcome in interdisciplinary teams for them to become autonomous. That
mutual adjustments were challenging was especially articulated by the Team Welfare
legal advisor, who said: “I think [adjustment] is a very big challenge in working inter-
disciplinary, as we do in the interdisciplinary teams. It’s because we come from different
environments. We bring with us very different experiences and knowledge, but we also
use words very differently. […] Then it turns out that we mean very different things
when we use the same term”. The legal advisor mentioned “authorization” and “con-
sent” as often-occurring words, two terms that are central in many contexts related to
data handling and storing. They may however have differing connotations for different
disciplines.

Although Team Welfare had integrated a legal advisor as part of their team and this
person often sat next to the developers when trying to iron out juridical hurdles, the legal
advisor seemed to have little understanding of how much the data regulations impacted
the developers’ day-to-day tasks. It was clear that the legal advisor seemed to believe the
developers solely care about effective technical solutions, not societal responsibility:

There is a very basic thought I get from time to time, that we bring in developers
who think it is exciting to work with an idea that ‘we can just make a shopping
cart’ where they can sort of get to pick the things they want. And then, the reality
is far from that […] It is, after all, an administrative responsibility that lies at the
bottom of everything we do, which must be communicated from scratch.

The legal advisor thus doubted the software developers’ ability to grasp the larger
picture of their work, which seemed far from the developers’ own stories in that regard.
As aTeamWelfare developer put it:“[Juridical issues] is something that everyone should
be aware of, it is not like you should always think that this is something that the lawyers on
the team handle and are responsible for. Everyone must consciously evaluate what kind
of data we store, whether we have the right to handle that data, whether we really need
to check the legal basis more carefully before we do anything.” However, it was also



Data-Driven Development in Public Sector 175

evident that with proper team synchronizing came mutual adjustments and increased
interdisciplinary understandings throughout the entire product team-user chain. And
despite the various challenges with data regulations and usage, the TeamWelfare product
owner underlined the importance of not being blindsided by the juridical hurdles, always
keeping in mind how data actually promotes the development of software products: “I
really think that the most important aspect with data for us is knowing that it is the right
product that we are making, and somehow finding confirmation of that and seeing that
it provides the value that our project is meant to have”. The same team’s legal advisor
concluded: “For me, I think the keyword is interdisciplinary understanding. At least,
that is a keyword for developing good solutions.”

5 Discussion and Implications for Practice

With public sector organizations globally being in the midst of data-driven “transforma-
tion journeys” [37], inevitably, both the software developer role and the composition of
product teams are changing rapidly. We here return to our research questions: How are
data privacy regulations affecting the day-to-day work of product teams? And what are
the pros and cons of including a legal advisor as part of the team to overcome juridi-
cal hurdles? In answering these, we discuss the direct implications datafication has on
interdisciplinary agile product teams’ practices, focusing first on how laws regulating
data collection, sharing, and storing data expand and complexify software developers’
responsibilities.

Data work has not traditionally been a part of the software developer role. Amidst
the quest towards becoming data-driven, organizations – both public and private – have
added new areas of competence to the developer profession – as well as new liabilities:
Carefully considering ethical and juridical aspects of using data now permeate software
developers’ day-to-day tasks, and for both teams being responsible for data had become
a burden as much as a realm of possibility. Although decentralizing data storage, in
theory, gives product teams more control and the ability to self-organize, the context-
dependent and ambiguous laws regulating data collection, storage and sharing meant
that the potential value-creation of data brought about ambivalent feelings for the teams.

To realize the potential benefits of datafication in the public sector, data needs to
directly reflect the public. However, knowing that any minor misuse of personal data
could lead to newspaper headlines, developers are forced to settle for fewer data and
data of lesser quality than optimal to avoid breaking potential privacy regulations. Conse-
quently, the teams are forced to make decisions and deliver continuous updates based on
a skewed picture of their users, i.e., the Norwegian public. Ultimately, the organizations
risk investing huge resources in becoming data-driven only to make the day-to-day tasks
of developers more demanding and create a false impression of being driven by “real
world” data. This corresponds to and adds further layers to the findings of Broomfield
and Reutter [14] whose “search for the citizen” in data-driven public administrations
find that civil society tends to be obscured in the data and reduced to passive users in
datafied public administrations.

Another vital finding in this respect is that the classification of data as either “private”
or “sensitive” is not straightforward in a data-intensive software development context.



176 A. Barbala et al.

As the teams pointed out, when faced with large amounts of data that were seemingly
risk-free, they oftentimes found themselves in a situation where the combination of
these data in fact created potential data privacy violation issues. As the study of data
democratization is in its early phase [6], more studies are needed here both in order to
find better ways of classifying data and in terms of empirical studies on software teams’
experiences with data classification.

Zooming in on such situations in the teams we studied, our findings suggest that
the team working closely with a legal advisor was better equipped for responding to
data privacy regulations. And although there were also challenges involved with insert-
ing a team member whose responsibility was the juridical side of data-driven software
development, Team Welfare had slowly but surely developed tactics to make the team
more autonomous. For instance, the legal advisor underlined the importance of being
“close by” the technical sides of the teams to “grasp” the issues when they emerged, an
understanding that was shared by the whole team.

Interestingly, the Team Welfare legal advisor saw it as a large responsibility to edu-
cate the technologists about the rules and regulations they must operate within. This
responsibility, however, was also well-engrained into the minds of the developers. So,
despite the interdisciplinary nature of the team, the understanding of others’ ethical
responsibility regarding data handling was not communicated that well between the
group members from different disciplines, perhaps due to the different terms used by
the various disciplines.

Another important point we draw from the findings in this regard is that it is not
enough for the legal advisor to join the team for short sessions now and then: It takes
time to synchronize the interdisciplinary teams to be as autonomous as possible and for
the legal advisor to develop a contextual understanding of the data product teams and
their day-to-day practices and challenges. Several informants pointed out how the teams
must “mature together” over a longer period of time.

Our study shows that there likely are many benefits of including a legal advisor
in data-intensive product teams, as it undoubtedly makes them more confident in their
day-to-day data handling practices. However, as previous studies also have pointed to
[23], expanding software development teams and including new, formal roles beyond the
technical team requires much effort in synchronizing and overcoming interdisciplinary
barriers. The additional financial costs of including legal experts must also be examined.
We find, however, that the costs of not having continuous access to a legal advisor can
likely be much larger, considering that the outcome may be week-long – perhaps even
month-long – delays in deliveries, as well as mishandling user data. This especially
holds true for organizations managing large amounts of data that are difficult to evaluate
as sensitive or not, and the stakes are high in terms of potential misuse of the data
in question. We thus especially recommend such teams to consider the possibility of
including a legal expert as part of the team.

6 Conclusion and Recommendations for Future Work

The increasing regulations and complexities around datafication processes have
expanded the responsibilities and expectations of software developers. To understand
how agile teams deal with privacy regulations when becoming data-driven, we investi-
gated two agile product teams. One team had a legal advisor as one of the teammembers,



Data-Driven Development in Public Sector 177

and one team did not, keeping this expertise outside the team. Both teams struggled with
knowing which data they were allowed to collect and share. We found that having a legal
advisor on the team shortened the time to solve privacy issues. The team without this
role had time-demanding discussions within the team, and experienced uncertainty and
hesitation to act, which resulted in privacy issues taking months to solve. While it was
beneficial to have a legal advisor, challenges included coordination and syncing issues
among the team members. For example, because they were from different domains,
they had different preferences for communication tools (the technical team members
preferred to communicate on Slack). Coming from different backgrounds also meant
that they had different understandings of terms (e.g., the term “authorization”), which
potentially could lead to misunderstandings in the team.

With both public and private sector software projects focusing increasingly on the
possibilities of data-driven development, it is vital that also the software engineering
research field reflects this impending paradigm shift. Future work should hence monitor
closely how datafication affects software developers and their increasingly interdisci-
plinary teams to pinpoint the implications these changes have on day-to-day practices.
Further studies are especially needed addressing how the principle of continuous com-
pliance can create significant hurdles for software development and how this best can
be overcome for teams also in various parts of the private sector.

As this study addresses only two teamswithin theNorwegian public sector, it is hence
limited in the sense that it cannot be generalized to other contexts. We thus recommend
future work to address these issues with a quantitative or mixed-methods approach, that
can show a broader scope of how software developers and product teams tackle data
protection regulations. Additionally, as digitalization processes also take place outside
Western societies, however receiving considerably less academic attention, future studies
addressing how software developers across the democratic world are seeking ways to
tackle these issues would be especially welcoming for broadening the scholarship.

Acknowledgments. We wish to thank NAV, Entur and the informants for willingly sharing their
experiences. Also, we thank Knowit AS and the Norwegian Research Council for funding the
research (grant number 321477).

References

1. van Ooijen, C., Ubaldi, B., Welby, B.: A data-driven public sector: enabling the strategic use
of data for productive, inclusive and trustworthy governance. OECD, Paris,May 2019. https://
doi.org/10.1787/09ab162c-en.

2. Andreassen, R., Kaun, A., Nikunen, K.: Fostering the data welfare state: a Nordic perspective
on datafication. Nord. Rev. 42(2), 207–223 (2021). https://doi.org/10.2478/nor-2021-0051

3. Dencik, L., Kaun, A.: Datafication and the welfare state. Glob. Perspect. 1(1) (2020). https://
doi.org/10.1525/gp.2020.12912

4. Reutter, L.: Constraining context: situating datafication in public administration. New Media
Soc. 24(4), 903–921 (2022). https://doi.org/10.1177/14614448221079029

https://doi.org/10.1787/09ab162c-en
https://doi.org/10.2478/nor-2021-0051
https://doi.org/10.1525/gp.2020.12912
https://doi.org/10.1177/14614448221079029


178 A. Barbala et al.

5. Vestues, K., Hanssen, G.K.,Mikalsen,M., Buan, T.A., Conboy, K.: Agile data management in
NAV: a case study. In: Stray, V., Stol, K.J., Paasivaara, M., Kruchten, P. (eds.) Agile Processes
in Software Engineering and Extreme Programming, pp. 220–235. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-08169-9_14

6. Kashyap, B., Shinghal, K.: Data democratisation: the evolution of informed decisions (2019).
https://doi.org/10.13140/RG.2.2.33103.51361

7. Stray, V., Moe, N.B., Hoda, R.: Autonomous agile teams: challenges and future directions for
research. In: Proceedings of the 19th International Conference on Agile Software Develop-
ment: Companion, Porto Portugal, pp. 1–5, May 2018. https://doi.org/10.1145/3234152.323
4182

8. Hirsch, D.D.: The glass house effect: big data, the new oil, and the power of analogy. Big
Data 66

9. Klotins, E., Peretz-Andersson, E.: The unified perspective of digital transformation and con-
tinuous software engineering. In: 2022 IEEE/ACM International Workshop on Software-
Intensive Business (IWSiB), pp. 75–82, May 2022. https://doi.org/10.1145/3524614.352
8626

10. Jahns, V.: Data fabric and datafication. ACM SIGSOFT Softw. Eng. Notes 47(4), 30–31
(2022). https://doi.org/10.1145/3561846.3561854

11. Fernández-Rovira, C., Valdés, J.Á., Molleví, G., Nicolas-Sans, R.: The digital transformation
of business. Towards the datafication of the relationship with customers. Technol. Forecast.
Soc. Change 162, 120339 (2021). https://doi.org/10.1016/j.techfore.2020.120339

12. van Dijck, J.: Datafication, dataism and dataveillance: big data between scientific paradigm
and ideology. Surveill. Soc. 12(2), 197–208 (2014). https://doi.org/10.24908/ss.v12i2.4776

13. What is Datafication? Definition from Techopedia.com. http://www.techopedia.com/defini
tion/30203/datafication. Accessed 03 Feb 2023

14. Broomfield, H., Reutter, L.: In search of the citizen in the datafication of public adminis-
tration. Big Data Soc. 9(1), 20539517221089304 (2022). https://doi.org/10.1177/205395172
21089302

15. Misuraca, G., Van, N.C.: AI Watch - Artificial Intelligence in public services. JRC Publica-
tions Repository (2020). https://publications.jrc.ec.europa.eu/repository/handle/JRC120399.
Accessed 03 Feb 2023

16. Ruppert, E., Isin, E., Bigo, D.: Data politics. Big Data Soc. 4(2), 2053951717717749 (2017).
https://doi.org/10.1177/2053951717717749

17. Tupasela, A., Snell, K., Tarkkala, H.: The Nordic data imaginary. Big Data Soc. 7(1),
2053951720907107 (2020). https://doi.org/10.1177/2053951720907107

18. Sadowski, J.: When data is capital: datafication, accumulation, and extraction. Big Data Soc.
6(1), 2053951718820549 (2019). https://doi.org/10.1177/2053951718820549

19. Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and
Maintainable Systems: Kleppmann, Martin: 9781449373320: Amazon.com: Books. https://
www.amazon.com/Designing-Data-Intensive-Applications-Reliable-Maintainable/dp/144
9373321. Accessed 03 Feb 2023

20. Dehghani, Z.: Data Mesh: Delivering Data-Driven Value at Scale, 1st edn. Beijing Boston
Farnham Sebastopol Tokyo: O’Reilly Media (2022)

21. Data Mesh Principles and Logical Architecture. martinfowler.com. https://martinfowler.com/
articles/data-mesh-principles.html. Accessed 03 Feb 2023

22. Frontpage. Datatilsynet. https://www.datatilsynet.no/en/. Accessed 03 Feb 2023
23. Moe, N.B., Stray, V., Hoda, R.: Trends and updated research agenda for autonomous agile

teams: a summary of the second international workshop at XP2019. In: Hoda, R. (ed.) Agile
Processes in Software Engineering and Extreme Programming, pp. 13–19. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-30126-2_2

https://doi.org/10.1007/978-3-031-08169-9_14
https://doi.org/10.13140/RG.2.2.33103.51361
https://doi.org/10.1145/3234152.3234182
https://doi.org/10.1145/3524614.3528626
https://doi.org/10.1145/3561846.3561854
https://doi.org/10.1016/j.techfore.2020.120339
https://doi.org/10.24908/ss.v12i2.4776
http://www.techopedia.com/definition/30203/datafication
https://doi.org/10.1177/20539517221089302
https://publications.jrc.ec.europa.eu/repository/handle/JRC120399
https://doi.org/10.1177/2053951717717749
https://doi.org/10.1177/2053951720907107
https://doi.org/10.1177/2053951718820549
https://www.amazon.com/Designing-Data-Intensive-Applications-Reliable-Maintainable/dp/1449373321
https://martinfowler.com/articles/data-mesh-principles.html
https://www.datatilsynet.no/en/
https://doi.org/10.1007/978-3-030-30126-2_2


Data-Driven Development in Public Sector 179

24. Hukkelberg, I., Berntzen, M.: Exploring the challenges of integrating data science roles in
agile autonomous teams. In: Hoda, R. (ed.) XP 2019. LNBIP, vol. 364, pp. 37–45. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30126-2_5

25. Klotins, E., Gorschek, T., Sundelin, K., Falk, E.: Towards cost-benefit evaluation for contin-
uous software engineering activities. Empir. Softw. Eng. 27(6), 157 (2022). https://doi.org/
10.1007/s10664-022-10191-w

26. Alhazmi, A., Arachchilage, N.A.G.: I’m all ears! Listening to software developers on putting
GDPR principles into software development practice. Pers. Ubiquit. Comput. 25(5), 879–892
(2021). https://doi.org/10.1007/s00779-021-01544-1

27. Stray, V., Fægri, T.E., Moe, N.B.: Exploring norms in agile software teams. In: Abrahamsson,
P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen, T. (eds.) Product-
Focused Software Process Improvement, pp. 458–467. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49094-6_31

28. Yin, R.K.: Applications of Case Study Research. SAGE (2011)
29. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in soft-

ware engineering. Empir. Softw. Eng. 14(2), 131 (2008). https://doi.org/10.1007/s10664-008-
9102-8

30. Oates, B.J.: Researching information systems and computing. Sage (2005)
31. Baham, C., Hirschheim, R.: Issues, challenges, and a proposed theoretical core of agile

software development research. Inf. Syst. J. 32(1), 103–129 (2022)
32. Sporsem, T., Moe, N.B.: Coordination Strategies When Working from Anywhere: A Case

Study of Two Agile Teams. arXiv, 08 April 2022. https://doi.org/10.48550/arXiv.2204.03978
33. TechnischeUniversitätMünchen et al.: Grounded theorymethodology in information systems

research. MIS Q. 41(3), 685–701 (2017). https://doi.org/10.25300/MISQ/2017/41.3.02
34. Seaman, C.B.: Qualitative methods in empirical studies of software engineering. IEEE Trans.

Softw. Eng. 25(4), 557–572 (1999). https://doi.org/10.1109/32.799955
35. K. moderniseringsdepartementet: Én digital offentlig sektor: Digitaliseringsstrategi for

offentlig sektor 2019–2025. Regjeringen.no, 14 June 2019. https://www.regjeringen.no/no/
tema/statlig-forvaltning/ikt-politikk/digitaliseringsstrategi-for-offentlig-sektor/id2612415/.
Accessed 06 Feb 2023

36. Stray, V., Moe, N.B., Noroozi, M.: Slack me if you can! Using enterprise social networking
tools in virtual agile teams. In: 2019ACM/IEEE14th InternationalConference onGlobal Soft-
ware Engineering (ICGSE), pp. 111–121 May 2019. https://doi.org/10.1109/ICGSE.2019.
00031

37. Stettina, C.J., van Els, V., Croonenberg, J., Visser, J.: The impact of agile transformations
on organizational performance: a survey of teams, programs and portfolios. In: Gregory, P.,
Lassenius, C., Wang, X., Kruchten, P. (eds.) XP 2021. LNBIP, vol. 419, pp. 86–102. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-78098-2_6

https://doi.org/10.1007/978-3-030-30126-2_5
https://doi.org/10.1007/s10664-022-10191-w
https://doi.org/10.1007/s00779-021-01544-1
https://doi.org/10.1007/978-3-319-49094-6_31
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.48550/arXiv.2204.03978
https://doi.org/10.25300/MISQ/2017/41.3.02
https://doi.org/10.1109/32.799955
https://www.regjeringen.no/no/tema/statlig-forvaltning/ikt-politikk/digitaliseringsstrategi-for-offentlig-sektor/id2612415/
https://doi.org/10.1109/ICGSE.2019.00031
https://doi.org/10.1007/978-3-030-78098-2_6


180 A. Barbala et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Short Paper



Real-Life Water-Scrum-Fall: Insights
from Large Companies in Czech Republic

Michaela Křivánková and Daniel Remta(B)

Prague University of Economics and Business, Prague, Czech Republic
xremd03@vse.cz

Abstract. Background. A combination of traditional and agile methodologies
into so-called “hybrid approaches” are today’s reality. The intention is to attempt
maximization of benefits from both approaches. Water-Scrum-Fall is a method-
ology for hybrid approaches. However, there are no specific guidelines described
for Water-Scrum-Fall.Aim. Explore and describe the reality of Water-Scrum-Fall
in selected large companies in the Czech market.Method. Exploratory multiple-
case study – four companies, eight participants. Semi-structured interviews and
thematic analysis. Results. Insights into real-life Water-Scrum-Fall including
involved roles, associated events, and typically created artifacts. Conclusion. In
examined companies, modified agile methodologies are used as part of Water-
Scrum-Fall, while their benefits are not fully unlocked due to poor implementa-
tions. However, project success rate is high. Hybrid approaches still require rig-
orous analysis before the development is started, which strongly limits the agility
in the following development phase. Customer involvement or feedback loop is
omitted in the development process. We accompany poor implementations with
the unpreparedness of companies to fully adopt Agile, and missing senior roles,
like scrum masters, to educate teams and organizations in proper agile practices.

Keywords: Water-Scrum-Fall · Hybrid Methodologies · Agile

1 Introduction

In almost every project, some type of methodology or combination of methodologies
is followed, although we may not be aware of it [1]. A methodology is a structured
approach to solving a problem [2].

In software development, two types of methodologies are mainly used – traditional
and Agile [3]. Traditional (or rigorous) methodologies are often voluminous and are
based on the assumption that the processes involved in building an IS/ICT can be
described, planned, managed and measured – one of the most widely used traditional
methodologies is Waterfall [4], where one phase needs to be finished before moving to
another phase.Agilemethodologies, where several phases run at the same time, are based
on unpredictability and responsiveness to rapidly changing requirements. Therefore, the
main difference between these methodologies is in the ability to adapt to changes [4].

Many companies are using the so called “hybrid approach” to maximize benefits
from both methodologies [5]. Kuhrmann et al. [6] defined the hybrid approach as any

© The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, pp. 183–192, 2023.
https://doi.org/10.1007/978-3-031-33976-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33976-9_12&domain=pdf
http://orcid.org/0000-0003-4470-8505
http://orcid.org/0000-0002-1086-7156
https://doi.org/10.1007/978-3-031-33976-9_12


184 M. Křivánková and D. Remta

combination of Agile and traditional approaches that an organizational unit adopts and
adapts to its own needs.

One of these hybrid approaches is the Water-Scrum-Fall described by West [7].
There are no specific guidelines for Water-Scrum-Fall, so the implementation of the
methodology itself can vary from company to company. Furthermore, organizations
often end with following Water-Scrum-Fall unintentionally without recognizing it [7].

The aim of our research was to describe the reality ofWater-Scrum-Fall. We focused
on large corporate companies (withmore than 5000 employees) within the Czechmarket
that are more inclined to use this approach [6]. In this paper, the following research
questions are addressed: 1) What does Water-Scrum-Fall phases consist of in selected
companies in the Czech market? 2) Which roles are part of theWater-Scrum-Fall phases
in selected companies in the Czech market?

Our research helps to shape the definition of Water-Scum-Fall and brings real-life
examples. Additionally, our research can help organizations with adoption of the hybrid-
approaches that improve the agility of organizations [9].

2 Related Work

In this section we present related literature that represent the current state of art. The
intention is to introduce the reader into the context and the current state of art.

Kuhrmann et al. [6] focused on development approaches used in practice and triggers
for hybrid approaches. Kuhrmann et al. [6] described that large and very large companies
as well as start-ups tend to use hybrid methodologies for better risk management. The
reasoning behind the change to hybrid methodologies can have various drivers [8].
Hartman et al. [9] described that companies are using hybrid methodologies as a step
towards agile organization.

Studies [6, 8, 10] are discussing how companies that switched to using hybrid
methodology reached similar results. The methodology was developed, adapted and
improved over time and based on gained experience. Only around 20% of companies
switched to hybrid methodologies based on a plan and newly created processes [6, 8].

Water-Scrum-Fall is a term that was coined by West [7]. West described the three
phases of Water-Scrum-Fall. The first (Water) and third phase (Fall) are based on the
Waterfall model [11]. In Water - upstream project planning takes place, and plans for
time, budget, and scope management are set up. Additionally, user requirements and
system requirements are created. Next, the development phase (Scrum) is based on
Scrum [12]. In Scrum phase – design, development and implementation is done in
iterative steps by the development team. Fall - when the development team has imple-
mented all requirements, the solution is delivered using the traditional procedure based
on establishing quality control gates to reduce the frequency of software releases [7].

Reiff and Schlegel [13] describedWater-Scrum-Fall as a good introduction for com-
panies that have been using the traditional approach and are now moving towards Agile.
They concluded that organizations with well-structured processes with systematic mile-
stones are suitable for the implementation of a hybrid approach. The maximization of
project success was mentioned as one of the main advantages.



Real-Life Water-Scrum-Fall 185

Butgereit [14] discussed five lessons learned during the implementation of Water-
Scrum-Fall for a project in SouthAfrica. These lessonswere incorporated in the interview
guide for our research.

In the research conducted by PMI [15], about 20% of respondents stated that they
are using hybrid methodologies. Menčík et al. [16] focused on the state of Agile in the
Czech Republic, in which 16 companies out of 209 marked the combination ofWaterfall
and Scrum as their used methodology. However, the primary focus of the study [16] was
on Agile adoption.

Overall, there is little known about the real-life implementations of Water-Scrum-
Fall, and calls for additional empirical research were made [8, 13].

3 Research Method

This section describes study context, data collection process, and analysis. Our studywas
based on an exploratory multiple-case study [17]. Eight interviews in four companies
were conducted, and the results were analyzed using thematic analysis.

Context. For the selection of participants, purposive snowballing sampling was used
[18]. Snowball sampling involves asking participants for recommendations of acquain-
tances whomight qualify for participation, leading to “referral chains”. The snowballing
gave us access to four companies and 8 participants. Each company has over 5000
employees and belongs to highly-regulated sectors.

All companies were using Waterfall before including Agile practices, which moved
them to a currently prevailing hybrid approach. CompanyA has been using this approach
for approximately 7 years, company B for 4 years, and companies C and D for over
3 years.

During the study, in companies A, B, and D participants were involved with small
projects and sub-projects of a bigger product. In company C participants worked on
continuous product development. A, B, and D had the teams fluid, always rebuild around
specific project. The team from company C was stable. We were not able to get many
insights to the current projects the participants were involved with, but for A and B
process automation was mentioned. The team from C was working on implementation
of the changes to better comply with GDPR. When interviewing participants from the
same company, people from different roles or departments and teams were selected. The
background of each participant is presented in Table 1.

Data Collection. Interview Protocol was created per [19] and used to guide the semi-
structured interview. For the interviews, each participant was first asked about their
background and context. Then, seven main themes were defined, each consisting of
questions adhering to their sub-themes.

An overview of the main themes and their sub-themes is given below in Table 2.
Interviewswere done through the video conferencing toolsGoogleMeet orMicrosoft

Teams, recorded, and transcribed verbatim. The interview lengths ranged from 23 to 50
min.



186 M. Křivánková and D. Remta

Table 1. Participants in the study

Participant ID Company Sector Position

P1 A Biotechnology company Team leader

P2 A Biotechnology company Team leader

P3 A Biotechnology company Developer

P4 B Energy company Project manager

P5 B Energy company Team leader

P6 C Services for carriers Project manager

P7 C Services for carriers Scrum Master

P8 D Bank Project manager

Table 2. Themes for interview

Theme name Sub-themes

Size, duration Size of teams, Scope of projects (duration)

“Water” Project planning, Requirements collection

Scrum Roles, Sprint planning, Sprint length, Daily stand-ups, Sprint review,
Retrospective, Documentation

“Fall” Method of project continuation, Length of deployment, Follow-up
meetings with business

Project success rate Percentage success rate, Role of methodology in success rate

Evaluation Advantages, Disadvantages

Future Plans to change the methodology

Data Analysis. Thematic analysis [20] was used to analyze the data. The transcripts
were subsequently coded in QDA Miner Lite. First, the central themes were chosen,
of which there are seven in total. The identified central themes were: Size, Duration;
“Water”, Scrum, “Fall”, Project success rate, Evaluation, and Future. Next, for each
central theme we identified sub-themes. Sub-themes emerged during the data analysis.
The themes and sub-themes are described in Table 3.



Real-Life Water-Scrum-Fall 187

Table 3. Thematic analysis themes and identified sub-themes

Theme Identified sub-themes

Size, duration Size of teams, Scope of projects (duration)

“Water” Project planning, Requirements collection, Pre-project documentation

Scrum Project manager as Scrum master, The length of Sprints, Daily-stand-ups,
Omitted retrospective, Failure to fulfill Product Owner role,
Mis-alignment between business and IT, Roles in development team

“Fall” Project acceptation, The length and frequency of deployment, Method of
project continuation, Follow-up meetings with business

Project success rate High success rate, User resistance

Evaluation Disadvantages of Waterfall part, Disadvantages of Scrum part,
Advantages of Waterfall part, Advantages of Scrum part, Limitations in
agile approach

Future Transition to SAFe, Transition to agile

4 Results

In this section, we present distillate for each investigated theme, supported by evidence
gathered during the interviews in the form of quotations. Every quote is referenced to
the corresponding participant from Table 1. All the interviewees confirmed that their
organizations attempted to become agile. None of the interviewees explicitly said that
they are following Water-Scrum-Fall. However, the results showed that Water-Scrum-
Fall was the reality.

Size, Duration. The duration of projects varied from 3 months to a few years. On
average, the projects are about 6 months long. “Year is probably the longest time, but
usually six months is optimal.” [P1] The teams are rather small and usually consisted of
5 people in order to maintain easy communication. “The less people, the better. Ideally,
we’re talking about maybe a team of five people.” [P5]

“Water”. After project initiation, requirement gatherings usually take up to 3 months.
“It can be anywhere from one to three months.” [P8] Roles such as customer, analyst and
architect are involved.“So first the business brief is written, then it goes to the analyst and
architect.” [P4] There is always at least one document that is created that contains very
detailed specifications of the software to be developed, including flowcharts and server
specifications. “[…] there has to be a document that is called the Business Specification
and Solution Blueprint, and it actually describes what exactly needs to be done, in great
detail.” [P8]

Scrum. The development follows the Scrum methodology [12], which is being locally
modified. Often the project manager is involved, acting as both project manager and
Scrum Master. “[…] so we do not have a Scrum Master. Basically I do it, because I do
the meetings, but otherwise I don’t really do anything physical in terms of projects.” [P1]
The customer acts as the Product Owner, a role that is not always followed correctly.



188 M. Křivánková and D. Remta

“The role that we struggle with a little bit is Product Owner, often he is formally defined,
but people are still learning how to use it.” [P2] The development team consists of
analysts, testers and developers, “[…] we also have Subject Matter Experts, which is
somewhere between a tester and an analyst.” [P6]

The largest modifications can be observed in Scrum events, especially inDaily stand-
ups and retrospectives. Daily stand-ups vary in their length, and most importantly, they
are not always done on a daily basis. “We have stand-ups once every two days - Monday,
Wednesday, Friday - and it lasts about 30 min.” [P6] As for retrospectives, if the team
does not feel the need to conduct them, or if there is not enough feedback, they are often
skipped or dealt with in other events, such as during the daily stand-up. “We don’t have
a retrospective, probably we haven’t even noticed the need to have one yet.” [P3]

“Fall”. Documentation is usually written after the software (or at least the first version)
is developed, and is usually created by updating the detailed specification document that
was prepared during the Analysis phase. “[…] of course not everything will be created at
the moment when it should be created, but at the latest during the phase Administrative
Close it will be finished.” [P2] There is always some sort of user acceptance before
deployment; in some cases, the acceptance is based on acceptance criteria, and in other
cases the acceptance is done by the Product Owner. As far as the timing of deployment is
concerned, usually the development team itself can’t influence the timing. In all selected
companies there are explicit “release windows” when deployment can happen. Release
windows are set by the Release Manager. “The releases are company-wide, so they’re
once a month, meaning it’s not after every sprint.” [P7]

Project Success Rate. In selected companies, projects are considered very successful.
P4, P2 and P8 stated that almost 100% of their projects are delivered on time and on
budget; however, these attributes are moved by change requests, so the latest deadline
is often different to the originally-expected one. Additionally, a certain user resistance
was encountered. Users try to use the new solution minimally or avoid using the solution
completely. “Users tend to boycott anything new.” [P3]

Evaluation. One of the disadvantages is that a large change can affect the entire project
plan. “When the projects are for a year, it’s very hard to hit a specific month if you have
a change that wasn’t planned for.” [P5] Another disadvantage was connected to the
mindset associated with Agile – people involved in projects were not able to be self-
organized. “They have to be proactive. There are high demands on human qualities.”
[P1] Participants articulated the unpreparedness for change in the company as a whole.
“That organization has to be ready for it, and our organization as a whole is not ready
for it. […] we have a methodology for that, but it just doesn’t work 100%.” [P4] Yet,
the teams seemed to benefit from the introduction of the Scrum phase. “[…] it’s more
fun and more lively, more active, if I see some results in 14 days.” [P7]

Future. All companies in the study are using Water-Scrum-Fall, except for company
C, which is already switching towards the agile way of working. However, the transition
phase was described as “painful” and “chaotic” by both participants P6 and P7. In
company A, we observed an approach which could be called Water-SAFe-Fall. There
were many projects with approximately 100 people involved. Company A wants to



Real-Life Water-Scrum-Fall 189

transform to an agile company using SAFe, but the structure and culture are not prepared
for the transformation yet. “So I think there is still a big pitfall and a big piece of work
that especially the big corporations have to do, and that is to prepare the culture, the
mentality of that big environment so that agile can work in it.” [P2] Companies B and
D are not planning to change current methodology anytime soon.

4.1 Roles, Events, Artifacts in Water-Scrum-Fall

Based on the conducted interviews, we have enhanced the Water-Scrum-Fall figure
presented by Reiff and Schlegel [13] with discovered roles, events and artifacts. The
result is visible in Fig. 1. Additionally, we have added the “Post-completion” phase, as
all the participants mentioned team participation in increased support after the release.
Furthermore, in this phase the teams are gathering feedback for their solutions. “[…]
after they are using the product for some time we come and ask “Are you happy with the
solution, do you need anything more?” [P2] The intention is to identify “[…] if there is
a need to change anything, or support the change anyhow, so that the solution could be
used correctly” [P3]. In case changes are needed, the process has to be restarted from
the Water phase.

Fig. 1. Reality of Water-Scrum-Fall

5 Discussion

Gathering insights into Scrum-Water-Fall from large companies in the Czech Republic,
we collected a data set containing qualitative data from four large companies through
interviews with eight participants.

The examined companies tend to move towards agile methodologies. Aligned with
Hartman et al. [9] findings, companies mix traditional approaches with agile method-
ologies as the first step towards an agile organization. Generally, the hybrid model was
very similar in all companies. We saw the difference in the Scrum phase where tailoring
of the Scrum roles and events occurred.



190 M. Křivánková and D. Remta

Participants reported struggles with combining traditional detailed up-front planning
and detailed analysis [4] with the ability to adapt to changes, which is connected with
Agile [4]. “[…] there has to be a document that is called the Business Specification
and Solution Blueprint, and it actually describes what exactly needs to be done, in great
detail.” [P8] The specification “Water” phase is followed by the actual development
“Scrum” phase. Teams are following modified versions of Scrum [12]. The focus on
team synchronization (daily stand-ups) and continuous improvement (retrospectives) is
minimized or omitted. “We don’t have a retrospective, probably we haven’t even noticed
the need to have one yet.” [P3] None of the participants mentioned sprint reviews, close
collaboration with the customers, or another feedback loop to be happening during the
development phase. Some form of acceptance testing is conducted only at the end of
development during the “Fall” phase, and the actual feedback from end-users is gathered
in the Post-completion phase.

The poor Scrum implementations suggest that respective teams haven’t been prop-
erly familiarized with or educated about the ideas and benefits of agile methodologies.
Still, even the partial implementation seemed to bring positive effects on the team. We
accompany poor implementations with missing senior roles, like scrum masters, to edu-
cate teams and organizations in proper agile practices. “[…] so we do not have a Scrum
Master. Basically I do it, because I do the meetings, but otherwise I don’t really do
anything physical in terms of projects.” [P1].

West’s [7] assertion that Water-Scrum-Fall is a reality for many organizations today,
whether intentionally or unintentionally, was confirmed in our research. Similarly the
results confirmed improvement in project success rate, described as one of the benefits of
hybrid approaches in [13]. However, participants considered only delivery on time and
on budget as the success factors. The evaluation of the solution usefulness is typically
happening in the post-completion phase, and for potential changes theWater-Scrum-Fall
has to be restarted. This limits the agility in the software development.

All examined organizations come from domains that are subject to regulations and
domain standards. These constraints often force them to work in a way that is not
purely agile butmay require traditional processes. Hence,Water-Scrum-Fall could be the
answer. Still, it seems that companies would like to achieve additional benefits reported
with agile approaches but are not willing to perform big changes [6]. “That organization
has to be ready for it, and our organization as a whole is not ready for it. […] we have
a methodology for that, but it just doesn’t work 100%.” [P4] The discovered reality of
Water-Scrum-Fall suggests that organizations just bring in some of the prescribed events
and roles from Scrum [12], but tailor the methodology to fit their existing approaches,
which results in the similar Water-Scrum-Fall as before.

Conclusion. Our study revealed that Water-Scrum-Fall was a reality in the examined
organizations and described the content of phases and roles in large companies in the
Czech Republic. Modified agile methodologies are used in Water-Scrum-Fall. Hybrid
approaches still require rigorous analysis before the development is started, which
strongly limits the agility in following development. Customer involvement or feed-
back loop is omitted in the development process. We accompany poor implementations



Real-Life Water-Scrum-Fall 191

with the unpreparedness of companies to fully adopt Agile and missing senior roles, like
scrum masters, to educate teams and organizations in proper agile practices.

Limitations. The general limitation of qualitative research is difficulty in generalizing.
Additionally, our sample was influenced by snowball sampling, which basically located
a source of potential participants who are convenient in their proximity and willingness
to participate. Still, it brings in-depth view of the research area. Our study was conducted
only in companies participating in the Czech market, therefore, it may be impacted by
local bias. Despite the limited number of participants, we believe that our study provides
valuable insights into real-life Water-Scrum-Fall implementations.

Future Work. More empirical research is needed to confirm findings from this study
in different environments, companies of different sizes, and from various sectors.

Acknowledgment. This work was supported by an internal grant funding scheme (F4/35/2022)
administered by the Prague University of Economics and Business.

References

1. Charvat, J.: Project Management Methodologies: Selecting, Implementing and Supporting
Methodologies and Processes for Projects. Wiley (2003)

2. OECD: OECD Glossary of Statistical Terms - Methodology Definition (2001). https://stats.
oecd.org/glossary/detail.asp?ID=1652. Accessed 6 Feb 2023

3. Grove, C.: Project Management &AgileMethodologies. https://www.cprime.com/resources/
blog/project-management-agile-methodologies/. Accessed 6 Feb 2023

4. Javanmard, M., Alian, M.: Comparison between agile and traditional software development
methodologies. Sci. J. (CSJ) 36 (2015)

5. Reiff, J., Schlegel, D.: Hybrid project management – a systematic literature review. Int. J. Inf.
Syst. Proj. Manag. 10, 45–63 (2022)

6. Kuhrmann, M., et al.: Hybrid Software and system development in practice: waterfall, scrum,
and beyond. In: ICSSP (2017)

7. West, D.: Water-Scrum-Fall Is The Reality of Agile for Most Organizations Today. Forrester
(2011)

8. Kuhrmann, M., et al.: Hybrid software development approaches in practice: a European
perspective. IEEE Softw. 36, 20–31 (2019)

9. Hartman, B., et al.: What is Hybrid Agile, Anyway? https://www.agilealliance.org/what-is-
hybrid-agile-anyway/. Accessed 6 Feb 2023

10. Linders, B.: Delivering Software with Water-Scrum-Fall. https://www.infoq.com/articles/del
ivering-software-water-scrum-fall// Accessed 6 Feb 2023

11. Royce, W.W.: Managing the development of large software systems. In: Proceedings, IEEE
WESCON (1970)

12. Schwaber, K., Sutherland, J.: Scrum Guide. https://scrumguides.org/scrum-guide.html.
Accessed 6 Feb 2023

13. Reiff, J., Schlegel, D.: Hybrid project management – a systematic literature review. Int. J. Inf.
Syst. Proj. Manag. 10(2), 45–63 (2022)

https://stats.oecd.org/glossary/detail.asp?ID=1652
https://www.cprime.com/resources/blog/project-management-agile-methodologies/
https://www.agilealliance.org/what-is-hybrid-agile-anyway/
https://www.infoq.com/articles/delivering-software-water-scrum-fall/
https://scrumguides.org/scrum-guide.html


192 M. Křivánková and D. Remta

14. Butgereit, L.: Five lessons learned using water-scrum-fall in South Africe. In: Proceedings of
the 2018 International Conference on Multidisciplinary Research (2021)

15. PMI: Pulse of the Profession 2017. https://www.pmi.org/learning/thought-leadership/pulse/
pulse-of-the-profession-2017. Accessed 6 Feb 2023

16. Menčík, M., Buchalcevová, A., Doležel, M., Koudelka, J.: Kvantitativní průzkum stavu
využívání agilních přístupů pro dodávku softwaru v České republice. (2019)

17. Yin, R.K.: Case Study Research: Design and Methods. SAGE (2009)
18. Robinson, O.C.: Sampling in interview-based qualitative research: a theoretical and practical

guide. Qual. Res. Psychol. 11(1), 25–41 (2014)
19. Kallio, H., Pietilä, A.-M., Johnson,M., Kangasniemi, M.: Systematic methodological review:

developing a framework for a qualitative semi-structured interview guide. J. Adv. Nurs. 72,
2954–2965 (2016)

20. Guest, G., MacQueen, K.M., Namey, E.E.: Applied Thematic Analysis. Sage Publications
(2012)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.pmi.org/learning/thought-leadership/pulse/pulse-of-the-profession-2017
http://creativecommons.org/licenses/by/4.0/


Author Index

A
Aldaeej, Abdullah 67
Anslow, Craig 50

B
Bablo, Jedrzej 34
Barbala, Astri 165
Barroca, Leonor 115
Becker, Steffen 3
Biddle, Robert 50
Breitenbücher, Uwe 3

C
Conboy, Kieran 20

D
Deshpande, Advait 115
Dey, Tapajit 20

F
Fitzgerald, Brian 20

G
Gregory, Peggy 115
Guerra, Eduardo 77
Gupta, Varun 67

H
Healy, Robert 20
Hyrynsalmi, Sami 97

K
Klotins, Eriks 149
Krieger, Niklas 3
Křivánková, Michaela 183
Kropp, Martin 50

M
Marcinkowski, Bartosz 34
Melegati, Jorge 77
Moe, Nils Brede 132

N
Nguyen-Duc, Anh 67
Niva, Piret 97

P
Paasivaara, Maria 97
Papadeas, Stavros 115
Przybylek, Adam 34

R
Remta, Daniel 183

S
Sallin, Marc 50
Sharp, Helen 115
Smite, Darja 132
Speth, Sandro 3
Sporsem, Tor 165
Stray, Viktoria 165

T
Talbert-Goldstein, Elliot 149

V
Viviani, Luiz 77

W
Wang, Xiaofeng 77
Wippermann, Pia 3

© The Editor(s) (if applicable) and The Author(s) 2023
C. J. Stettina et al. (Eds.): XP 2023, LNBIP 475, p. 193, 2023.
https://doi.org/10.1007/978-3-031-33976-9

https://doi.org/10.1007/978-3-031-33976-9

	 Preface
	 Organization
	 Contents
	Agile Practices
	Integrating Issue Management Systems of Independently Developed Software Components
	1 Introduction
	2 Fundamentals of Issue Management and Gropius
	3 The Gropius Browser Extension Concept
	3.1 General Idea and Objectives
	3.2 Overview and Architecture of the GBE
	3.3 Gropius Features Integrated in the Browser Extension

	4 Prototypical Validation
	4.1 Technical Design of the Gropius Browser Extension for Chrome
	4.2 Implementation for GitHub and Case Study

	5 Evaluation
	5.1 Results of the Expert Survey
	5.2 Summary of the Evaluation and Threats to Validity

	6 Related Work
	7 Conclusion
	References

	A Novel Technique to Assess Agile Systems for Stability
	1 Introduction
	2 Background
	2.1 Queueing Theory for Stable Queueing Systems
	2.2 Modelling Agile Frameworks as Systems of Queues

	3 Research Approach
	3.1 Introducing the Stability Metric (SM)
	3.2 Analyzing the Public Jira Dataset

	4 Results
	4.1 Stability of JPs
	4.2 Stability and Backlog Size
	4.3 Stability and Inter-service Times

	5 Discussion
	5.1 Potential Application of this Metric

	6 Limitations
	7 Conclusion
	References

	Overcoming Challenges of Virtual Scrum Teams: Lessons Learned Through an Action Research Study
	1 Introduction
	2 Method and Setting
	3 Findings
	3.1 The First Action Research Cycle
	3.2 The Second Action Research Cycle

	4 Discussion
	4.1 How Did Scrum Teams Adapt Their Practices and Processes Due to the Ad-Hoc Shift to Remote Work?
	4.2 What are the Advantages of Remote Work for Scrum Team Members?
	4.3 What New Challenges are Faced by Virtual Scrum Teams and Their Members?

	5 Conclusions
	References

	Waste Self-reporting for Software Development Productivity Improvement
	1 Introduction
	2 Related Work
	3 Research Method
	4 Classification of Software Development Waste
	5 Waste Self-reporting Survey
	6 Data Collection
	7 Results
	8 Discussion
	8.1 Limitations

	9 Conclusion and Future Work
	References

	A Lean Approach of Managing Technical Debt in Agile Software Projects – A Proposal and Empirical Evaluation
	1 Introduction
	2 The Lean Technical Debt Management Process
	2.1 The Management Approach
	2.2 Use Scenarios

	3 Empirical Validation
	4 Discussions
	4.1 Threats to Validity

	5 Conclusions
	References

	An Empirical Study About the Instability and Uncertainty of Non-functional Requirements
	1 Introduction
	2 Background and Related Work
	3 Research Design
	3.1 Methodology
	3.2 Survey Design

	4 Results
	4.1 Participant and Company Profile
	4.2 Answers About NFRs

	5 Discussion
	5.1 RQ1 - How are Non-functional Requirements Defined in the Software Development Process?
	5.2 RQ2 - How Non-functional Requirements Change and are Updated During a Software Project?
	5.3 RQ3 - How Much the Approach for Handling NFRs Vary Based on its Type?
	5.4 Threats to Validity

	6 Conclusions
	References

	Agile in the Large
	Striving for Freedom in a Large-Scale Agile Environment with an Entrepreneurial Mindset of a Product Owner
	1 Introduction
	2 The Product Owner Role
	3 Research Method
	3.1 Research Questions
	3.2 Case Organisation
	3.3 Data Collection and Analysis

	4 Results
	4.1 RQ1: How Does the Product Owner Say No?
	4.2 RQ2: What is the Entrepreneurial Mindset of the Product Owner?
	4.3 Validation

	5 Discussion and Conclusions
	References

	Sustaining Agility: Organizational Change, Factors and Theoretical Lenses
	1 Introduction
	2 Related Literature
	3 Study Design
	3.1 The Case Study: AgileCo
	3.2 Data Gathering
	3.3 Data Analysis

	4 Study Results
	4.1 Changing the Work System
	4.2 Improving Prioritisation
	4.3 The Factors Considered

	5 Discussion: Three Theoretical Lenses
	5.1 Balances and Paradox Theory
	5.2 Situation Awareness (SA)
	5.3 Shared Mental Models

	6 Conclusions
	References

	The Role of Responsiveness to Change in Large Onboarding Campaigns
	1 Introduction
	2 Background
	3 Methodology
	3.1 Data Collection
	3.2 Data Analysis
	3.3 Limitations and Threats to Validity

	4 Insights into Large Onboarding Campaigns
	4.1 Case A: Onboarding 150 Engineers
	4.2 Case B: Onboarding 200 Engineers
	4.3 Cross-Case Analysis: Challenges of Onboarding Hundreds of Engineers

	5 Concluding Discussion
	References

	Organizational Conflicts in the Adoption of Continuous Software Engineering
	1 Introduction
	2 Background and Related Work
	2.1 Organizational Conflicts in Software Engineering
	2.2 Continuous Software Engineering

	3 Research Methodology
	3.1 Research Approach

	4 Results
	4.1 Catalysts of Organizational Conflict Hindering the Adoption of CSE Principles
	4.2 Symptoms of Underlying Conflicts
	4.3 Outcomes from Unresolved Organizational Conflicts

	5 Discussion and Analysis
	5.1 RQ1: What are Symptoms of Organizational Conflict in the Context of Adopting CSE?
	5.2 RQ2: What are the Root Causes of Identified Symptoms from an Organizational Conflict Perspective?
	5.3 RQ3: What are the Advantages of Studying Conflicts in CSE Empirically?

	6 Conclusions and Further Work
	References

	Data-Driven Development in Public Sector: How Agile Product Teams Maneuver Data Privacy Regulations
	1 Introduction
	2 Background
	2.1 Defining Public Sector Datafication: Towards Decentralized Data Management
	2.2 The Legal Aspect of Agile Teams: An Increasing Importance

	3 Method and Research Site
	4 Findings
	4.1 Collecting Data
	4.2 Sharing Data
	4.3 Storing Data
	4.4 Legal Advisor: A Highway to Autonomy for Data-Intensive Teams?

	5 Discussion and Implications for Practice
	6 Conclusion and Recommendations for Future Work
	References

	Short Paper
	Real-Life Water-Scrum-Fall: Insights from Large Companies in Czech Republic
	1 Introduction
	2 Related Work
	3 Research Method
	4 Results
	4.1 Roles, Events, Artifacts in Water-Scrum-Fall

	5 Discussion
	References

	Author Index

