
Chapter 7
KIS.API: Towards External
Communication

7.1 Introduction to KIS.API

KIS.API is defined as a particular instance of REST API [1–3], which is designed
for the purpose of unified and convenient communication with KIS.Devices and the
associated environment operating within KIS.MANAGER.

The crucial components of KIS.API are the resources, which can be defined in
a very broad sense. In fact, anything having a name can be perceived as a resource,
e.g., a user, a workspace, an asset, etc. The crucial information associated with a
resource pertains to the service being realized, i.e., the transfer of data as well as the
associated actions. A general structure of the resource is given in Table7.1 [1].

Let us start with the . As an example, one can consider a KIS.Device, which can
characterized by, e.g.,

• an ID,
• a name,
• a URN,
• associated asset group (workspace) IDs,

while its possible representation can be given in an intuitive JSON [1] form:

{

"id": 10102,

"urn": "urn:rafi:sbox:9c65f93cbed6",

"name": "KIS.BOX 9C65F93CBED6",

"assetGroupIDs": [

9757,

9758

]

}

© The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2_7

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33623-2_7&domain=pdf
https://doi.org/10.1007/978-3-031-33623-2_7

212 7 KIS.API: Towards External Communication

Table 7.1 A typical structure of a resource

Property Description

Representation The way and structure of the data representation, e.g., JSON, XML

Identifier A URL that refers to a specific resource at any time

Metadata The content type, modification time, etc

Control data Any data identifying the status of a resource, e.g., last modification date

Table 7.2 KIS.API actions HTTP verb Action

GET Access a resource in a read-only way

POST Send a new resource

PUT Update a resource

DELETE Delete a resource

Table 7.3 KIS.API response Status code Description

200 Successful response

204 No content returned

400 Bad request structure

404 Unsuccessful response

Now let us proceed to the resource identifier, which provides a unique way to identify
the resource at any time instance. In other words, it should provide a full and unique
path to the resource. Since the REST structure is based on HTTP, a sample path can
look as follows:

https://api.kisme.com/kisapi/v1/assets/assetUrn,

which uniquely identifies a given KIS.Device using its URN. Having a resource
identifier, one can proceed to realize some actions with it. A general set of verbs,
which defines specific actions, is given in Table7.2. Finally, an important standard
that is inherited by REST from HTTP pertains to the status code. The most com-
mon status codes are given in Table7.3. Under the above preliminary information,
one can proceed to the registration and authorization of a new KIS.API user using
KIS.MANGER.

7.1.1 User Registration and Authorization

The primary objective of this part is to define a new KIS.API user along with an
appropriate credentials. The process starts with selecting the Main menu → Portal

7.1 Introduction to KIS.API 213

Fig. 7.1 Defining KIS.API credentials

admin and then pressing the KIS.API icon . Subsequently, a new KIS.API user
can be created with . The process is fully automatic and the only information
required is to provide a user description, i.e., a name. A sample KIS.API credentials
generation process is presented in Fig. 7.1. As a sample, a KIS.API access control
triplex is obtained, which can be summarized as follows:

• the client ID,
• the API key,
• the baseUrl.

Note that baseUrl is simply the base resource identifier detailed in the preceding
section, i.e.,

https://api.kisme.com/kisapi/v1/

The objective of the subsequent sections is to provide a concise introduction to
KIS.API. Thus, to simplify this process, the Postman (https://www.postman.com/)
application is employed. It is a dedicated platform for building and using APIs. In
other words, Postman can be perceived as an HTTP client for testing web services,
which makes it easy to test APIs by providing a simple interface for issuing API
requests and viewing responses. The Postman registration and configuration process
is very intuitive, and hence it is omitted. The subsequent step is to proceed to the
KIS.API documentation (https://docs.kisme.com) and then select Run are Postman
button. As a result, KIS.API collection is loaded into the Postman workspace. The
final step is to provide the above definedKIS.API credentials using . This process is
illustrated in Fig. 7.2. As of that moment, all KIS.API commands can be accessed and
tested using the intuitive Postman graphical user interface. This process boils down to
selecting an appropriate option and then sending a desired request to KIS.API. Thus,
the objective is to provide a concise review of all available KIS.API functionalities.

https://www.postman.com/
https://docs.kisme.com

214 7 KIS.API: Towards External Communication

Fig. 7.2 Postman configuration with KIS.API credentials

7.2 Essential Functionalities

The objective of this section is to provide essential KIS.API functionalities. This
starts from access to assets being simply KIS.Devices, users and asset groups up to
the related Datapoints. Finally, a set of recipes concerning an access to calculated
Datapoints and KPIs is provided.

7.2.1 Obtaining Information About Asset Groups, Assets
and Users

As introduced in Chap. 2, KIS.Devices constitute the core KIS.ME components.
Thus, knowing all of them, along with their membership to particular asset groups
(see Chap. 2), is of paramount importance. Table7.4 presents the list of all available
KIS.API requests concerning assets along with the designated actions. As can be
observed, most requests require additional path variables:

• assetUrn: directly printed on an asset (KIS.Device) and can be retrieved through
request no. 1 from Table7.4 or through KIS.MANAGER;

• assetgroupId: can be retrieved through the request no. 1 in Table7.5.

The response pertaining to the request detailed in Table7.4may contain the following
parameters:

ID: the asset identifier,
URN: the asset URN,
name: the name of the asset,
isOnline: the asset isOnline Datapoint value,
hardware: information about the asset hardware,
software: information about the asset software,
certificate: information about the asset certificate,
network: information about the asset network,
firmwareUpdate: information about the asset firmware updates,

7.2 Essential Functionalities 215

Table 7.4 List of possible requests associated with an asset

No. Verb Path Action

1 GET baseUrl/assets Obtain a list of all assets

2 GET baseUrl/assets/assetUrn Obtain the asset device information

3 PUT baseUrl/assets/assetUrn Update the name of the asset

4 PUT baseUrl/assets/assetUrn/assetgroupId/
assetgroups

Add the asset to an asset group

5 DEL baseUrl/assets/assetUrn/assetgroupId/
assetgroups

Remove the asset from an asset group

Table 7.5 List of possible requests associated with an asset group

No. Verb Path Action

1 GET baseUrl/assetgroups Obtain a list of all asset groups

2 GET baseUrl/assetgroups/assetgroupId Obtain the asset group information

3 PUT baseUrl/assetgroups/assetgroupId Update the asset group information

assetGroupIDs: an array containing numerical values of the asset groups associated
with the asset.

Note thatmost of the above features canbedirectly accessed throughKIS.MANAGER
by selecting Main menu → Assets and then choosing a desired asset. Subsequently,

the information about the asset can be retrieved by pressing (see Fig. 2.16).
Having all the above information, let us proceed to two simple examples of using

the discussed requests.

Obtaining a list of assets

This example concerns a response to the request no. 1 listed in Table7.4. As a result,
the following JSON structure can be obtained:

]

{

"id": 10102,

"urn": "urn:rafi:sbox:9c65f93cbed6",

"name": "KIS.BOX 9C65F93CBED6",

"assetGroupIDs": [

9757,

9758

]

},

{

"id": 10153,

216 7 KIS.API: Towards External Communication

"urn": "urn:rafi:sbox:9c65f93cbeb8",

"name": "KIS.BOX 9C65F93CBEB8",

"assetGroupIDs": [

9757,

9758

]

}

]

As can be observed, the response contains information about two KIS.BOXes, which
are assigned to two asset groups (9757 and 9758).

Removing an asset from the asset group

This example concerns a response to the request no. 5 listed in Table7.4. Let us
consider the first asset (KIS.BOX) given in the preceding example. Its URN is
urn:rafi:sbox:9c65f93cbed6, and it is assigned to two asset groups 9757
and 9758. The objective is to remove it from the asset group 9757, and hence the
assetgroupId parameter should be set to 9757. As a result, the following JSON struc-
ture can be obtained:

{

"message": "The operation is in conflict with the

relationship constraint ’assetsMustBeMemberOfInventory’",

"code": 409

}

which simply means that it is impossible to remove an asset from the list of all
available assets (see Table 2.5 for a comprehensive explanation). Thus, let us change
the assetgroupId parameter to 9758 (the second available asset group). As a result,
the following JSON structure is obtained:

{

"id": 10102,

"urn": "urn:rafi:sbox:9c65f93cbed6",

"name": "KIS.BOX 9C65F93CBED6",

"assetGroupIDs": [

9757

],

"isOnline": false,

"hardware": {

},

"software": {

7.2 Essential Functionalities 217

},

"certificate": {

},

"network": {

},

"firmwareUpdate": {

}

}

As can be observed, the assignment of this asset to the asset group 9758was removed.

Let us proceed to the asset groups for which the available request list is given
in Table7.5. As can be observed, most requests require an additional parameter
assetgroupId, which can be retrieved through the request no. 1 in Table7.5. The
response pertaining to the request detailed in Table7.5 may contain the following
parameters:

ID: the asset group identifier,
assetIDs: an array containing numerical values of asset IDs associated with the
asset group,
name: the name of the asset,
isOnline: the asset isOnline Datapoint value,
description: a detailed description of the asset group,
name: the name of the asset group.

Let us proceed to two simple examples explaining the application of the above
requests.

Obtaining a list of asset groups

This example concerns a response to the request no. 1 listed in Table7.5. As a result,
the following JSON structure can be obtained:

[

{

"id": 9757,

"name": "My Devices",

"assetIds": [

10102,

10153

]

},

{

"id": 9758,

218 7 KIS.API: Towards External Communication

"name": "Workspace 1",

"assetIds": [

10153

]

}

]

As can be observed, the response contains information about two asset groups and
the assets associated with them (IDs: 10102, 10153).

Updating the asset group description

This example concerns a response to the request no. 3 listed in Table7.5. Let us
provide a new description of Workspace 1 (ID 9758) in the JSON form:

{

"name": "Workspace 1",

"description": "Main Workspace"

}

In the case of the Postman application, to provide such a description one should go
to the Body tab of the request and enter the above JSON structure. As a result, the
following JSON structure can be obtained:

{

"id": 9758,

"name": "Workspace 1",

"assetIds": [

10153

],

"description": "Main Workspace"

}

Having access to assets and the associated asset groups, let us proceed to the
user management functionalities, which are listed in Table7.6. As can be observed
in Table7.6, requests no. 2 and 3 require an additional path parameter called
accountNumber. Note that in KIS.MANAGER the user is identified by its name
and email. Thus, at least one of these parameters should be known while realizing
the request no. 1 in Table7.6. Thus, the obtained response can be used to obtain the
associated accountNumber.

7.2 Essential Functionalities 219

Table 7.6 List of possible requests associated with users

No. Verb Path Action

1 GET baseUrl/users Obtain a list of all users

2 GET baseUrl/users/accountNumber Obtain user information

3 DEL baseUrl/users/accountNumber Delete a user

Displaying all users and their accountNumber

This example pertains to realisation of the request no. 1 in Table7.6. As a result, the
following JSON structure can be obtained:

[

{

"name": "Jack Cactus",

"email": "j.cactus@controlintech.pl",

"accountNumber": "3d5997bb-f6ee-4681-8adf-0ce7366e2964"

},

{

"name": "Hans Wurst",

"email": "h.wurst@controlintech.pl",

"accountNumber": "4f4009c2-1a7b-4531-b780-702a19cd62a1"

}

]

The structure contains information about two users and their associated
accountNumber.

Deleting a user

The JSON structure obtained in the preceding example contains information about
two users. The objective of the current example is to delete the user identified:

"accountNumber": "3d5997bb-f6ee-4681-8adf-0ce7366e2964"

For that purpose, the above number has to be provided as a path parameter in the
Postman application.Note that, after sending a request toKIS.API, no JSONstructure
is received (cf. code 204 in Table7.3).

220 7 KIS.API: Towards External Communication

Table 7.7 List of possible requests associated with Datapoints

No. Verb Path Action

1 GET BaseUrl/assets/assetUrn/
datapointDefinitions

Obtain a list of Datapoints

2 GET BaseUrl/assets/assetUrn/
datapointDefinitions/datapointValues

Obtain Datapoint values

7.2.2 Accessing Data Through Datapoints

The objective of this point is to provide a way of accessing the data associated with
Datapoints. For a comprehensive description of Datapoints, the reader is referred
to Sect. 2.7 and Appendix. B. The possible requests associated with Datapoints are
provided in Table7.7. It should be also noted that the above requests require the
following path parameters:

• assetUrn: directly printed on an asset (KIS.Device), can be retrieved through the
request no. 1 from Table7.4 or through KIS.MANAGER;

• datapointDefinition: the Datapoint name, e.g., button1Pressed.

Additionally, request no. 2 in Table7.7 can be executed with the following query
parameters:

• from: an ISO timestamp indicating a lower bound of the required time range;
• to: an ISO timestamp indicating an upper bound of the required time range;
• limit: a maximum number of required Datapoint values.

Note that it is not compulsory to use all of the above-listed query parameters simul-
taneously. For example, the limit parameter can be employed as a standalone
one.

Obtaining a list of Datapoints

The example is concerned with the request no. 1 in Table7.7. As a result of using
it, a full list of Datapoints along with their types is returned. A sample form of such
a couple is given as follows:

{

"name": "button2Pressed",

"datatype": "BOOLEAN"

}

7.2 Essential Functionalities 221

Obtaining five recent Datapoint values

For the purpose of this example, a set of two rules is implemented (see Sect. 2.9 for
more details), i.e.,

1. If the KB Button1 operational LED color is black, then the KB Button 1 opera-
tional LED color is red.

2. If the KB Button 1 operational LED color is red, then the KB operational LED
color is black.

Thus, the purpose of the above rules is to switch the KB Button1 operational LED
color from red to black (no illumination) and vice versa. This means that the result-
ing effect should be the KB Button 1 operational LED blinking in red. However,
to achieve such an effect, the KB Button 1 operational LED color should be initi-
ated using its digital twin (see Sect. 2.6) by setting the above color to either black
or red. Subsequently, the path parameters should be defined, i.e., assetUrn and
datapointDefinition. The latter one is set to button1ColorKpi. Finally,
the query parameter limit is set to five. As a result, a JSON structure is obtained
containing the five recent values of the indicated Datapoint:

[

{

"timestamp": "2022-08-30T11:50:07.478Z",

"value": "2"

},

{

"timestamp": "2022-08-30T11:50:06.478Z",

"value": "5"

},

{

"timestamp": "2022-08-30T11:50:05.524Z",

"value": "2"

},

{

"timestamp": "2022-08-30T11:50:04.712Z",

"value": "5"

},

{

"timestamp": "2022-08-30T11:50:03.649Z",

"value": "2"

}

]

The recorded Datapoint values simply indicate that the KB Button 1 operational
LED changes its color from red (5) to black (2) and vice versa. As can be observed,

222 7 KIS.API: Towards External Communication

the switching process takes more or less one second. However, this time is data
transfer-dependent, and hence its is not uniform.

Obtaining five recent Datapoint values from a given time frame

The objective of this example is to focus on the reader attention to ISO data-time
format, which is given, e.g., by

2022-08-30T14:02:07.478Z

Its construction is obvious: however, it contains characters which are not permitted
in a URL construction, i.e. ‘.’, which should be simply replaced by its equivalent
equal to ‘%3A’, yielding

2022-08-30T14%3A02%3A07.478Z

Thus, by setting the from query parameter according to the above form one can
obtain:

[

{

"timestamp": "2022-08-30T14:02:32.304Z",

"value": "5"

},

{

"timestamp": "2022-08-30T14:02:31.304Z",

"value": "2"

},

{

"timestamp": "2022-08-30T14:02:30.336Z",

"value": "5"

},

{

"timestamp": "2022-08-30T14:02:29.507Z",

"value": "2"

},

{

"timestamp": "2022-08-30T14:02:28.475Z",

"value": "5"

}

]

7.2 Essential Functionalities 223

7.2.3 KPIs and Calculated Datapoints

This section constitutes a continuation of the preceding one. Indeed, CDPs and KPIs
(see Sect. 4.1.2 and Appendices A and B) employ Datapoints as a basis for forming
desired answers pertaining to the system state and performance. The CDP requests
are similar to those for Datapoints (see Table7.7), and they are presented in Table7.8.
It should be also noted that the above requests require the following path parameters:

• assetUrn: directly printed on an asset (KIS.Device), can be retrieved through the
request no. 1 from Table7.4 or through KIS.MANAGER;

• calaculatedDatapointDefinition: CDP name, e.g., kg2lb.

Additionally, the request no. 2 in Table7.8 can be executed with the following query
parameters:

• from: an ISO timestamp indicating a lower bound of the required time range;
• to: an ISO timestamp indicated an upper bound of the required time range;
• limit: a maximum number of required CDP values.

Now, let us proceed to KPI requests available through KIS.API. They are given in
Table7.9, and it is not surprising that they are similar to those presented in Table7.8.
Additionally, they path parameters are given by

• assetUrn: directly printed on an asset (KIS.Device), can be retrieved through
request no. 1 from Table7.4 or through KIS.MANAGER;

• kpiDefinition: the CDP name, e.g., kg2lb.

Unlike Datapoints and CDP, the KPI request no. 2 (see Table7.9) has to be executed
with the following query parameters:

• from: an ISO timestamp indicating a lower bound of the required time range;
• to: an ISO timestamp indicate an upper bound of the required time range.

Table 7.8 List of possible requests associated with CDPs

No. Verb Path Action

1 GET baseUrl/assets/assetUrn/
calculatedDatapointDefinitions

Obtain a list of CDPs

2 GET baseUrl/assets/assetUrn/

calculatedDatapointDefinition/
calculatedDatapointValues

Obtain CDP values

Table 7.9 List of possible requests associated with KPIs

No. Verb Path Action

1 GET baseUrl/assets/assetUrn/kpiDefinitions Obtain a list of KPIs

2 GET baseUrl/assets/assetUrn/kpiDefinition/
kpiValues

Obtain KPI values

224 7 KIS.API: Towards External Communication

Accessing the list of KPIs

Let us continue with the example presented in Sect. 7.2.2 pertaining to a KIS.BOX
associated with two rules. These two rules perform cyclically one after the other.
The first one change the KIS.BOX Button 1 operational LED color from black to
red while the second one realizes an opposite situation. It is assumed that no KPIs
are defined for this KIS.BOX (see Sect. 4.1.2 for a detailed tutorial on KPIs). Thus,
let us define the KPI counting the entire time period for which the above mentioned
color is red. For that purpose, the following KPI is implemented:

y = Round[Sum[If[x == 5, Duration[x], 0]]/1000];

where x stands for the button1ColorKpiDuration Datapoint while the num-
ber five signifies the red color (see Table 2.2). Finally, let us assume that this KPI
is named KBButton1red while its processing period is set to 15min. Having the
above KPI, let us proceed to performing the request no. 1 in Table7.9. As a result,
the following JSON structure is obtained:

[

{

"name": "KBButton1Red"

}

]

Accessing KPI values

Let us continue with the above example. Now, the task is to obtain KBButton1red
(path parameter kpiDefinition) values within the time period defined by the
parameters ‘from’ and ‘to’ given by

2022-08-31T08:02:50.046Z

2022-08-31T12:22:50.046Z

which, as discussed in Sect. 7.2.2, are formatted according to

2022-08-31T08%3A02%3A50.046Z

2022-08-31T12%3A22%3A50.046Z

7.2 Essential Functionalities 225

As a result, the following JSON structure is obtained:

{

"to": "2022-08-31T12:22:50.046Z",

"from": "2022-08-31T08:02:50.046Z",

"values": [

447,

443,

448,

447,

451,

451,

448,

451,

450,

453,

447,

454

]

}

It can be easily observed that there are 12 values corresponding to 15-minute pro-
cessing periods. It is also straightforward to observe that 15min are equivalent to
900s. Thus, it is evident that all the above-presented values should oscillate around
450s, which is actually the case.

Accessing data from CDPs

The last task of this point concerns obtaining an information about predefined
CDPs as well as finding their values. For that purpose, it is assumed that no CDPs
are defined. Moreover, the preceding example is continued. Thus, a new CDP is
defined according to the approach presented in Sect. 4.1.1 with x equivalent to
button1ColorKpiDuration Datapoints. The developed CDP aims at bound-
ing the minimum numerical value of x to 3, which represents the green color (see
Sect. 2.6). As a result, the following simple implementation is obtained:

z=If[x<3,3,x];

while CDP itself is named KBmaxcolorCDP. Let us start with the request no. 1
in Table7.8, which pertains to obtaining a list of all available CDPs. As a result of
using it, the following JSON structure is arrived at:

226 7 KIS.API: Towards External Communication

[

{

"name": "KBmaxcolorCDP",

"datatype": "DOUBLE"

}

]

which contains the existing CDP names as well as their data types. Having the CDP
name, let us proceed to obtaining its values. In fact this process is identical to the
one presented in Sect. 7.2.2. According to the adjustment performed in the preceding
examples, x can have the values representing either the red or the black color, i.e.,
x = 5 or x = 2 (cf. Table 2.2). The request No. 2 in Table7.8 is executed with the
query parameter limit only, which is equal to 10. As a result, the following JSON
structure is obtained, which provides the desired results:

[

{

"timestamp": "2022-09-02T10:45:22.804Z",

"value": "5"

},

{

"timestamp": "2022-09-02T10:45:22.335Z",

"value": "3"

},

{

"timestamp": "2022-09-02T10:45:21.554Z",

"value": "5"

},

{

"timestamp": "2022-09-02T10:45:20.929Z",

"value": "3"

},

{

"timestamp": "2022-09-02T10:45:20.054Z",

"value": "5"

}

]

7.2 Essential Functionalities 227

Table 7.10 List of possible requests associated with rules

No. Verb Path Action

1 GET baseUrl/rules Obtain a list of rules

2 GET baseUrl/rules/ruleId/assetgroupId Obtain a rule info

7.2.4 Accessing Information About Rules

Rules (cf. Sect. 2.9) constitute the last component which can be accessed through
KIS.API. The currently possible requests are provided in Table7.10.

Additionally, the request no. 2 in Table7.10 should be executed with the following
path parameters:

• ruleId: the rule identification number which can be retrieved through the request
no. 1 from Table7.10.

• assetgroupId: asset group identification.

The parameters that can be accessed through the process of executing these requests
are

• name: the name of the rule provided in KIS.MANGER Rule engine;
• enabledAPI: a logical property stating if it is possible to trigger the rule from an
external application using KIS.API.

Obtaining information about rules

The objective of this example is to show how to access information about rules. Let
us start with the request no. 1 in Table7.10, which does not require any path or query
parameters while its execution results in the following JSON structure:

[

{

"name": "rblack2red",

"assetGroupId": 9758,

"id": "b92080c3-55aa-410e-a417-9efe90637515",

"enabledAPI": false

},

{

"name": "rred2black",

"assetGroupId": 9758,

"id": "62124944-a606-4b80-b906-94d6d5ae8d38",

"enabledAPI": false

}

]

228 7 KIS.API: Towards External Communication

Contrarily, having assetGroupId and id signifying the rule, one can obtain the
name of the rule and the logical property enabledAPI. Indeed, by using them as
the path parameters and then executing the request no. 2 in Table7.10, one can arrive
at the following JSON structure:

{

"name": "rblack2red",

"assetGroupId": 9758,

"id": "b92080c3-55aa-410e-a417-9efe90637515",

"enabledAPI": false

}

7.2.5 Triggering Rules from External Applications

The objective of this section is to introduce a very important feature of KIS.API,
which makes it possible to trigger a rule from an external application. However,
as mentioned in Sect. 7.2.4, such an operation is possible for the rules having the
enabledAPI property set to the logical truth. For example, the rule considered at
the end of Sect. 7.2.4 should have the following JSON structure:

{

"name": "rblack2red",

"assetGroupId": 9758,

"id": "b92080c3-55aa-410e-a417-9efe90637515",

"enabledAPI": true

}

Note that the modification of the enabledAPI property is possible through
KIS.MANGER only. For that purpose, one should use the Main menu → Asset
groups and then select an appropriate asset group. Subsequently, by going to Rule
engine and selecting the desired rule, one can see the property editor called API inte-
gration, which is presented in Fig. 7.3. As can be observed, there is another property,
which is calledWebsocket-Action. However, it will be discussed in Sect. 7.5. Finally,
the rule triggering request is described in Table7.11.

Table 7.11 a requests associated with a rule trigger

No. Verb Path Action

1 POST baseUrl/rules/RuleId/assetgroupId/Trigger trigger a rule

7.3 KIS.API in Practice 229

Fig. 7.3 Setting
enabledAPIproperty

7.3 KIS.API in Practice

The purpose of Sect. 7.2 was to introduce to the reader the essential functionali-
ties concerning KIS.API. All of them were carefully described while their practical
usagewas explainedwith the Postman (https://www.postman.com/) application. The
objective of this section is to provide practical guidelines concerning KIS.API appli-
cation using some popular software. Indeed, the software selection being used in
this section is not accidental. The first candidate is employed widely both in the
industry for presenting various kinds of data in tabular order. The second one is
commonly used for research, analysis, development and deployment of new practi-
cal concepts based on data gathered from a given system. Thus, these two popular
software instances are

• Microsoft Excel (https://www.microsoft.com),
• MathWorks Matlab (https://www.mathworks.com/).

Both of them have several different and freely-available counterparts, which can
provide similar functionalities. Thus, the objective of the subsequent point is to
provide a short practical tutorial on feeding MS Excel and Matlab with KIS.ME
data. Although the current section is restricted to MS Excel and Matlab, the reader
possessing the knowledge about the KIS.ME essential functionalities can integrate it
with more advanced and dedicated software. An enterprise resource planning system
can be a good example of such software (see, e.g., SAP and its API functionalities
at https://api.sap.com/).

7.3.1 Feeding MS Excel with KIS.ME Data

Starting with MS Excel 2013 it is possible access any REST API using the so-called
power query. Thus, the entire recipe for accessing data from KIS.API boils down the
following steps:

1. Select and push the from Web power query icon.
2. Provide the URL associated with the desired request.

https://www.postman.com/
https://www.microsoft.com
https://www.mathworks.com/
https://api.sap.com/

230 7 KIS.API: Towards External Communication

Fig. 7.4 Result of a KIS.API request in MS Excel

Fig. 7.5 Result of a KIS.API request presented as a table

3. Use advanced options to provide appropriate headers, i.e., X-CLIENT-ID and
X-API-KEY (see Fig. 7.1).

4. Perform the desired data request.

Obtaining a list of all rules

The objective of this example is to obtain a list of all rules present inKIS.MANAGER
Rule engine. According to Sect. 7.2.4, a URL should be defined as follows:

baseUrl/rules

while the required headers may have the following structure:

X-API-KEY 2b84bd4de38b4e92bb7bb283364477e1

X-CLIENT-ID 708ce7cc-fd57-416d-991f-f68704385c22

Finally, the desired data request is performed and the obtained result is given in
Fig. 7.4. As can be observed, there are three records, which simply correspond
to three different rules. To make the obtained result more transparent, the option
Convert to Table can be used used, which after suitable expansion yields the
view presented in Fig. 7.5.

7.3 KIS.API in Practice 231

Fig. 7.6 Result of a
KIS.API request in Matlab

7.3.2 Feeding Matlab with KIS.ME Data

The objective of this section is to show how to realise the KIS.API GET request with
MATLAB. The entire process boils down to the following steps:

1. Provide the URL associated with the desired request.
2. Define the weboptions structure HeaderFields containing the returned

content type, X-CLIENT-ID and X-API-KEY.
3. Define optional query parameters.
4. Execute webread to obtain data associated with the desired request:

data=webread(URL,web_options,query_parameters)

Accessing Datapoint values

The primary objective of this example is to obtain twenty recent values of the
button1ColorKpi Datapoint of KIS.BOX defined by a given URN. For that
purpose the example introduced in Sect. 7.2 is utilized. Let us start with defining
an appropriate URL according to Sect. 7.2.2 (Table7.7), which can be realized as
follows:

baseUrl=’https://api.kisme.com/kisapi/v1’;

assetUrn=’urn:rafi:sbox:9c65f93cbed6’;

DPdef=’button1ColorKpi’;

finalUrl=strcat(baseUrl,’assets/’,assetUrn,+’/’,DPdef,

’/datapointValues’);

232 7 KIS.API: Towards External Communication

Subsequently, the weboptions structure with HeaderFields is defined:

opt=weboptions;

content={’Content-Type’ ’application/json’};

client={’X-CLIENT-ID’ ’708ce7cc-fd57-416d-991f-f68704385c22’};

key={’X-API-KEY’ ’2b84bd4de38b4e92bb7bb283364477e1’};

opt.HeaderFields=[content;client;key];

Finally, webread can be executed:

data=webread(finalUrl,opt,’limit’,’20’);

However, the current example, apart from retrieving data, extracts the values and
occurrence times of the KIS.API data. Moreover, such a request is repeated every
second and the obtained results are suitably visualized. Such a time-driven loop is
repeated until a user presses any key. The code realizing all the above mentioned
operations is given as follows:

clc; clear; close all;

baseUrl=’https://api.kisme.com/kisapi/v1’;

assetUrn=’urn:rafi:sbox:9c65f93cbed6’;

DPdef=’button1ColorKpi’;

finalUrl=strcat(baseUrl,’assets/’,assetUrn,+’/’,DPdef,

’/datapointValues’);

opt=weboptions;

content={’Content-Type’ ’application/json’};

client=

{’X-CLIENT-ID’ ’708ce7cc-fd57-416d-991f-f68704385c22’};

key={’X-API-KEY’ ’2b84bd4de38b4e92bb7bb283364477e1’};

opt.HeaderFields=[content;client;key];

h = figure(1);

while isempty(get(h,’CurrentCharacter’));

data=webread(finalUrl,opt,’limit’,’20’);

values=[cellfun(@str2num,{data.value})];

ind=find(values>7);

values(ind)=[];

times=datetime({data.timestamp},’InputFormat’,

’uuuu-MM-dd’’T’’HH:mm:ss.SSSZ’,’TimeZone’,’UTC’);

times(ind)=[];

stairs(times,values,’LineWidth’,2);

xlabel(’Time’);

ylabel(DPdef);

ylim([0 8]);

pause(1);

end;

7.4 Triggering Rules from MATLAB 233

The obtained results are given in Fig. 7.6. As can be observed, the value of
button1ColorKpi Datapoints is switched between black (2) and red (5) col-
ors.

Remark 7.1 The example presented in this point corresponds to the so-called polling
procedure in which KIS.API requests are repeated every single second. This process
is, of course, inefficient as it is executed irrespective of the fact of having newKIS.API
data. Indeed, even if there is no new data, the request is still executed. To settle this
unappealing phenomenon, KIS.ME provides the so-called websockets, which are
discussed in Sect. 7.5.

7.4 Triggering Rules from MATLAB

The objective of this section is to show how to realize a KIS.API POST request with
Matlab. For that purpose, an example with triggering the rule is engaged. Generally,
the entire process boils down to the following steps:

1. Provide the URL associated with the desired request.
2. Define the weboptions structure HeaderFields containing the returned

content type, X-CLIENT-ID and X-API-KEY.
3. Define optional request parameters.
4. Execute webread to obtain the data associated with the desired request:

data=webwrite(URL,web_options,request_parameters)

Triggering a rule from MATLAB

The objective of this example is to showhow to triggerKIS.ME rule fromMATLAB.
For that purpose, let us define a new rule. This rule has no triggers or conditions
defined in KIS.MANGER. It aims at switching the KIS.BOX Button 2 operational
LED color to yellow. Thus, there is only one action which performs the above task.
Subsequently, API Integration (see Fig. 7.3) is used to set theenabledAPI property
by activating the API-Trigger active option. The remaining information required to
formulate the rule triggering request reduces to collecting

Rule ID: 13fcb514-9fe7-44a9-9802-3d972b0fee8a,
Asset group ID: 9758.

234 7 KIS.API: Towards External Communication

Having the above information, it is possible to formulate the triggering request
according to Table7.11. Finally, the resulting code is given as follows:

clc; clear; close all;

baseUrl=’https://api.kisme.com/kisapi/v1’;

ruleID=’13fcb514-9fe7-44a9-9802-3d972b0fee8a’;

assetgroupId=’9758’;

addpath=’rules/’;

finalUrl=strcat(baseUrl,addpath,ruleID,+’/’,assetgroupId,

’/trigger’);

opt=weboptions;

content={’Content-Type’ ’application/json’};

client=

{’X-CLIENT-ID’ ’708ce7cc-fd57-416d-991f-f68704385c22’};

key={’X-API-KEY’ ’2b84bd4de38b4e92bb7bb283364477e1’};

opt.HeaderFields=[content;client;key];

data=webwrite(finalUrl,opt);

7.5 Websockets

In spite of an incontestable appeal of the communication strategies presented in the
preceding part of this chapter, they frequently suffer from the lack of efficiency. This
is particularly the case when there is a need for observing the changes in system
behaviour expressed in the evolution of Datapoints associated with KIS.Devices.
Indeed, such a problemwas already discussed in Sect. 7.3.2. The example considered
in the preceding section concerned the so-called polling procedure, inwhichKIS.API
requests are repeated every single second. This process is, of course, inefficient as it
is executed irrespective of the fact of having new KIS.API data. Indeed, even if there
is no new data, the request is still executed. To settle this unappealing phenomenon,
KIS.ME provides the so-called websockets, which are discussed in this section.

7.5.1 Brief Introduction to Websockets

Websocket [4] can be defined as a communication protocol, which permits bidirec-
tional communication between the client and the web server. In a most common case,
if a browser visits a web page, then an HTTP request is sent to the associated server.
Subsequently, the web server replies by sending the response to the web browser.
A similar strategy was realized in the preceding part of this chapter while using a
different kind of applications, i.e., POSTMAN, MS Excel and Matlab. Thus, as was

7.5 Websockets 235

shown in Sect. 7.3.2, if the application wants to receive recently released data, then
it must constantly, e.g., every second, send a request to the server. This corresponds
to the situation in which the user constantly refreshes the page within the browser.
This is also the reason why HTTP is a half duplex, which denotes the fact that the
traffic flows in a single direction at a time:

• the client releases a request to the server (one direction);
• the server replies to the request (one direction).

Therefore, it is an obvious fact that it is not an elegant solution, widely called polling.
It is defined as a regularly timed synchronous call inwhich the client releases a request
to the server to check if there is any new data available. Such requests are realized
using regular time intervals, and the client receives a response irrespective of the
availability of the new data. Thus, if there is no new data, then the server replies with
a negative response and the connection closes. Hence, polling can be efficient when
an exact time interval concerning the release of the new data is known. Unfortunately,
as has already been mentioned, KIS.ME is used to model a discrete event system in
which the occurrence time of events is not equally distributed over a time horizon.
Another communication strategy is called long polling. In this case, the client sends
request to the server and opens a connection within some time period. If the server
has no new data, then it holds the request and connection open until it has a new data
for the client (or a predefined timeout is reached). An alternative communication
strategy is called streaming. In this case, the client sends a request to the sever,
which maintains an open response that is continually updated. The connection can
be open permanently or until a predefined timeout is reached. Note that the server
never indicates the completion of the HTTP response, and hence the connection is
open continuously.

In order to eliminate the above issues, the concept of websocket was introduced.
The websocket is by nature a bidirectional full duplex and single-socket connection.
While using it, a single HTTP request is required to open a websocket connection.
An appealing property of websocket is that it reuses the same connection in both
ways, i.e., client–server and server–client. Owing to the fact that the server can send
messages as they are available, the overall latency is reduced. Contrarily to polling,
websocket communication is based on a single request, i.e., it is not necessary to
wait for another request (along with headers, request parameters, etc.). A concise
summary of using the websocket can be formulated as follows:

• it makes real-time communication much more efficient;
• it enables a simpler Web-based communication between the client and server;
• it is a network protocol that enables developing other standard protocols on top of
it;

• it overcomes the drawbacks of HTTP with respect to real-time communication.

Similarly to HTTP and HTTPS, the websocket defines two URI schemes, namely,
ws and wss, which correspond to standard and encrypted communication between
the client and the server. The wss (Websocket Secure) URI scheme corresponds to
the websocket connection over transport layer security (TLS). Note that TLS is also

236 7 KIS.API: Towards External Communication

known as SSL (Secure Socket Layer). Thus, the same security mechanism is used as
the one employed for HTTPS. This means that while constructing websockets one
should use a URL of either the ws:// or wss:// form.

7.5.2 Obtaining a KIS.ME URI and Identifiers

The objective of this point is to show how to retrieve aURI and an identifier necessary
to construct a websocket. The first step on the way towards the above objective is to
select the data of interest, which can be the following:

• Datapoints: one canobtain real-timedata corresponding toDatapoints or calculated
Datapoints (see Sects. 2.5 and 4.1.1) of an asset;

• KPIs: one can obtain data corresponding to KPIs (see Sects. 2.5 and 4.1.1) of
an asset, which are calculated every 15min assuming that the new underlying
Datapoint values are available;

• Rules: one can obtain data associated with the triggered rules.

Thus, the required preliminary data is associated with the property subscribeTo,
which may have the following values:

• datapoint,
• kpi,
• rule.

Subsequently, Datapoints and KPIs require a single or a list of assetIds (see
Sect. 7.2) while rules require assetGroupIds. Finally, all these properties form
a JSON data structure, which may look as follows:

{

"assetIds": [

37,

66

],

"assetGroupIds": [

43,

6

],

"subscribeTo": "datapoint"

}

Having the above data along with KIS.API credentials (see Sect.7.1.1), one can
perform a POST request according to Table7.12. As a result, the following JSON
structure can be obtained:

7.5 Websockets 237

Table 7.12 Requests of subscribing/unsubscribing to a websocket

No. Verb Path Action

1 POST baseUrl/websockets Subscribe to websocket

1 DEL baseUrl/websockets Unsubscribe from a websocket

{

"subscriptionUris": [

"wss:///pubsub.api.kisme.com/

6d574a1f-4c37-4ab4-9fa6-86fb74a66375"

],

"subscriptionId": "6d574a1f-4c37-4ab4-9fa6-86fb74a66375"

}

Analogously, the DEL request will unsubscribe from the websocket.

7.5.3 Brief Introduction to STOMP

Messaging [4] stands for an architecture associated with sending asynchronous mes-
sages between independent components. Such an appealing property makes it pos-
sible to develop relatively loosely coupled systems. The crucial components of mes-
saging are the message broker and the client. In particular, the former can perform
such actions:

• accepting connections of the clients,
• sending messages to the clients,
• distributing messages among the clients.

Note that the broker can also handle such operations as authorization, message
encryption, etc. Thus, if clients are connected to the broker, then they can send
messages to the broker as well as receive message distributed by the broker. Such
a strategy is called publish/subscribe. Therefore, if a message broker publishes a
number of messages, then the client can subscribe to either all or a subset of these
messages. STOMP (simple text-oriented messaging protocol) is a good represen-
tative example of such a publish/subscribe protocol. Its layering relation with the
websocket as well as with other protocols is detailed in Fig. 7.7. STOMP was also
employed for the communication purposes within KIS.ME. Indeed, the websocket
fits very well to a standard messaging architecture, in which there could be a large
volume of potential messages distributed at high rates from the broker to the client. A
good example is a client subscribing toDatapoints of an asset (see Sect. 7.5.2). Due to
the relatively large number of Datapoints as well as their possible high rate of change,

238 7 KIS.API: Towards External Communication

Fig. 7.7 STOMP over a
websocket

Your Applications

HTTP

TCP (or TLS/TCP)

STOMP

WebSocket

receiving messages in real-time as well as with low latency is extremely important
for the final performance of the entire application. STOMP is a very simple proto-
col, which resembles HTTP in its appearance. Each frame consists of a command,
headers, etc. STOMP messages can represent any text or binary data. For further
information about STOMP, the reader is referred to the STOMP protocol specifica-
tion [5]. Additionally, STOMP [5] provides the so-called heart-beating mechanism,
which can optionally be employed to verify the healthiness of the underlying TCP
connection and to ensure that the remote end is still alive and kicking. Generally,
it is defined by two integer values, separated by a comma. The first one represents
outgoing heart-beats from the sender:

• 0 signifies the fact that it cannot send heart-beats;
• otherwise it is the smallest number of milliseconds between heart-beats that it can
guarantee.

The second one represents incoming heart-beats, i.e., what sender would like to
obtain:

• 0—stands for the fact that it does not want to receive heart-beats;
• otherwise it is the desired number of milliseconds between heart-beats that it can
guarantee.

Note that enabling heart-beating is possible by adding a suitable heart-beating header
during the beginning of the STOMP session, i.e., to CONNECT [5].

7.5.4 Sample Websocket Implementations

The objective of this section is to provide guidelines for practical implementation
of KIS.ME-based websockets. In particular, the NODE.js [1] environment, which
employs a widely employed JavaScript (JS) programming language is used. This
section is composed of two examples, which aim at

7.5 Websockets 239

1. reading KIS.ME data using STOMP over websocket,
2. enhancing the above example with a local Web server employed for publishing

KIS.ME data.

Moreover, it is assumed that the reader has essential knowledge regarding NODE.js.

Reading KIS.ME data using STOMP over a websocket

Let us start with providing suitable credentials and parameters, which will be located
in the .env file:

SERVER_URL="https://api.kisme.com/kisapi/v1/websockets"

API_KEY="2b84bd4de38b4e92bb7bb283364477e1"

CLIENT_ID="708ce7cc-fd57-416d-991f-f68704385c22"

ASSET_ID="10102"

ASSET_GROUP_ID="9758"

For the purpose of further implementations, the following modules are required:

dotenv: loads environment variables from the .env file into process.env
structure;
websocket: implements the websocket protocol;
webstomp-client: provides a STOMP client for Web browsers and NODE.js
through websockets;
axios: is a promise-based HTTP client for the Web browser and NODE.js.

Note that the application of the abovemodules is not compulsory and there are several
counterparts which can be employed instead. Moreover, their documentation can be
easily found at https://www.npmjs.com. After such a preliminary step, it is possible
to define suitable request headers and options, which are given as follows:

const options = {

method: "POST",

url: process.env.SERVER_URL,

headers: {

"X-API-KEY": process.env.API_KEY,

"X-CLIENT-ID": process.env.CLIENT_ID,

"Content-Type": "application/json",},

data: JSON.stringify({

assetIds: [parseInt(process.env.ASSET_ID)],

assetGroupIds: [parseInt(process.env.ASSET_GROUP_ID)],

subscribeTo: "datapoint",

}),

};

while the underlying POST request concerns subscription to a websocket (see
Sect. 7.5.2). Thus, the objective is to obtain (cf. subscribeTo) the values of

https://www.npmjs.com

240 7 KIS.API: Towards External Communication

Datapoints and calculated Datapoints of KIS.Devices associated with assetIds
and assetGroupIds. Note that the last property is not compulsory for obtain-
ing Datapoint values. Subsequently, let us assume that both incoming and outgoing
heart-beating is set to 1000 ms. Having all the above ingredients, the final code is
developed, which is mostly included in the getSubscriptionId function:

require("dotenv").config();

const WebSocket = require("websocket").w3cwebsocket,

webstomp = require("webstomp-client");

const axios = require("axios");

const heartbeat = 1000;

const getSubscriptionId = () => {

const options = {

method: "POST",

url: process.env.SERVER_URL,

headers: {

"X-API-KEY": process.env.API_KEY,

"X-CLIENT-ID": process.env.CLIENT_ID,

"Content-Type": "application/json",},

data: JSON.stringify({

assetIds: [parseInt(process.env.ASSET_ID)],

assetGroupIds: [parseInt(process.env.ASSET_GROUP_ID)],

subscribeTo: "datapoint",

}),

};

axios(options)

.then(function (response) {

const subscriptionId=response.data.subscriptionId;

const Server=

response.data.subscriptionUris[0].replace("///","//");

const socket = new WebSocket(Server, null);

const stomp = webstomp.over(socket, {

heartbeat: {incoming: heartbeat, outgoing: heartbeat},

protocols: [’v12.stomp’],

});

stomp.connect(

{host: Server},

function () {

stomp.subscribe(‘/topic/${subscriptionId}‘,

function (message) {

const data = JSON.parse(message.body);

console.log("Message data",data.info);

});

},

);

7.5 Websockets 241

})

.catch(function (error) {

console.log(error);

})

.finally(function () {

// always executed

});

};

getSubscriptionId();

The example considered is a continuation of the ones exploited in this chapter for
which theKIS.BOX (assetIds=10102) Button 1 operational LED color switches
between red and black. The aboveKIS.BOXhas also associated calculated Datapoint
and KPI. After running the above code, one can observe that message.body
contains the JSON structure, which may look as follows:

{"jsontype":"centersightEvent",

"type":"datapointValuesReceived",

"nodeId":10102,"timestamp":"2022-10-06T10:47:47.833Z",

"info":{"key":"button1Color","value":"#000000",

"timestamp":"2022-10-06T10:47:47.833Z"}}

The above JSON structure is self-explained and it can be easily observed that it
contains the info property, which covers another JSON structure involving

key: the name of the (calculated) Datapoint,
value: the value of the (calculated) Datapoint,
timestamp: the timestamp associated with the value of the (calculated) Datapoint,

and hence, this structure is directly displayed in the console. Note that the above
code can be easily adapted to the remaining possible settings of subscribeTo,
i.e., kpi and rule. However, such an implementation is left out to be featured an
exercise listed in the last section of this chapter.

•> Getting information about the rules

Contrarily, to KPIs and Datapoints, rules are directly associated with asset groups.
Indeed, there are designed within each asset group. This implies the necessity of a
reduced subscription data:

242 7 KIS.API: Towards External Communication

{

assetGroupIds: [parseInt(process.env.ASSET_GROUP_ID)],

subscribeTo: "rule",

}

while assetIds is excluded.

Publishing KIS.ME data with a local Web server

The objective of this example is to extend the proceeding one in such a way as to
provide the following functionalities:

• feeding the selected Datapoint data to another bi-directional third party API,
• a frontend displaying the selected Datapoint data obtained from the above API.

Let us start with selecting an API. Since the purpose of the example is to collect
the data in the form of a JSON structure containing three properties (key, value and
timestamp) the list of possible candidates is rather long. Thus, due to relative usage
simplicity, the Pusher API was selected (https://pusher.com/). As was the case with
KIS.API, the first step is to register with Pusher and then collect the list of credentials
(App keys). A sample list of Pusher credentials is given as follows:

app_id = "1482901"

key = "8e17772867a31d055131"

secret = "b2632afdbd8419d40bf1"

cluster = "eu"

Thus, let us extend the .env file with the above data, which yields

SERVER_URL="https://api.kisme.com/kisapi/v1"

API_KEY="2b84bd4de38b4e92bb7bb283364477e1"

CLIENT_ID="708ce7cc-fd57-416d-991f-f68704385c22"

ASSET_ID="10102"

ASSET_GROUP_ID="9758"

app_id = "1482901"

key = "8e17772867a31d055131"

secret = "b2632afdbd8419d40bf1"

cluster = "eu"

Having the above information, let us simply extend the code from the previous
example with a list of commands creating a Pusher instance:

https://pusher.com/

7.5 Websockets 243

const Pusher = require("pusher");

const pusher = new Pusher({

appId: "1482901",

key: process.env.key,

secret: process.env.secret,

cluster: process.env.cluster,

});

Now let us assume that the Datapoint of interest is called button1ColorKpi
Duration (see Appendix. B for its description). Thus, the transfer of Datapoint
values to the Pusher API reduces to the following:

if (data.info.key=="button1ColorKpiDuration")

pusher.trigger("b1ColorKpiDuration", "b1ColorKpiDuration",

{

value: JSON.stringify(data.info),

});

where b1ColorKpiDuration signifies both the so-called channel and event (see
https://www.npmjs.com/package/pusher for a detailed explanation). The preparation
of the backend concludes with including the code for the local Web server. For that
purpose the express module is used, which can be simply characterized as a
lightweight NODE.js Web server. The entire code reduces to adding the following
lines:

const express = require("express");

const app = express();

app.use(express.static(__dirname + ’/public’));

app.listen(3000, () => {

console.log("Server running on: http://localhost:3000/");

});

which are responsible for creating an express Web server that will run on port
3000 and will communicate with server static files located in the public direc-
tory. Finally, the entire backend code can be implemented as follows:

require("dotenv").config();

const WebSocket = require("websocket").w3cwebsocket,

webstomp = require("webstomp-client");

const axios = require("axios");

const Pusher = require("pusher");

const pusher = new Pusher({

appId: "1482901",

key: process.env.key,

secret: process.env.secret,

https://www.npmjs.com/package/pusher

244 7 KIS.API: Towards External Communication

cluster: process.env.cluster,

});

const heartbeat = 1000;

const getSubscriptionId = () => {

const options = {

method: "POST",

url: process.env.SERVER_URL,

headers: {

"X-API-KEY": process.env.API_KEY,

"X-CLIENT-ID": process.env.CLIENT_ID,

"Content-Type": "application/json",},

data: JSON.stringify({

assetIds: [parseInt(process.env.ASSET_ID)],

assetGroupIds: [parseInt(process.env.ASSET_GROUP_ID)],

subscribeTo: "datapoint",

}),

};

axios(options)

.then(function (response) {

const subscriptionId=response.data.subscriptionId;

const Server=

response.data.subscriptionUris[0].replace("///","//");

const socket = new WebSocket(Server, null);

const stomp = webstomp.over(socket, {

heartbeat: {incoming: heartbeat, outgoing: heartbeat},

protocols: [’v12.stomp’],

});

stomp.connect(

{host: Server},

function () {

stomp.subscribe(‘/topic/${subscriptionId}‘,

function (message) {

const data = JSON.parse(message.body);

if (data.info.key=="button1ColorKpiDuration")

pusher.trigger("b1ColorKpiDuration",

"b1ColorKpiDuration",

{

value: JSON.stringify(data.info),

});

});

},

);

})

.catch(function (error) {

console.log(error);

7.5 Websockets 245

})

.finally(function () {

// always executed

});

};

getSubscriptionId();

const express = require("express");

const app = express();

app.use(express.static(__dirname + ’/public’));

app.listen(3000, () => {

console.log("Server running on: http://localhost:3000/");

});

Let us proceed to the frontend development by creating thepublic directory and the
index.html file inside it. The presentation of Datapoint values will be reduced to
showing its consecutive values in the form of a plot. For that purpose the well known
plotly is employed. Thus, the entire frontend reduces to the following code:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="content-type" content="text/html;

charset=UTF-8" />

<script src="https://cdn.plot.ly/plotly-latest.min.js">

</script>

<script src="https://js.pusher.com/7.2.0/pusher.min.js">

</script>

</head>

<body>

<div id="chart"></div>

<script>

Pusher.logToConsole = true;

var my_plot = {

y: [],

mode: ’lines+markers’,

name: ’hv’,

line: {shape: ’hv’},

type: ’scatter’,

};

Plotly.newPlot(’chart’, [my_plot]);

const pusher = new Pusher(

"8e17772867a31d055131", // Replace with your ’key’

{ cluster: "eu", }

);

const channel = pusher.subscribe("b1ColorKpiDuration");

246 7 KIS.API: Towards External Communication

Fig. 7.8 Plotting datapoint
values with a local Web
server

var cnt=0;

var width_graph_window=23;

channel.bind("b1ColorKpiDuration", (data) => {

const obj=JSON.parse(data.value);

Plotly.extendTraces(’chart’, {y:[[obj.value]]}, [0]);

cnt++;

if(cnt > width_graph_window)

Plotly.relayout(’chart’, {

xaxis:

{ range: [cnt-width_graph_window, cnt] }

});

});

</script>

</body>

</html>

The main part of the code starts with creating an empty plot located in the chart
section of the HTML document (newPlot). Subsequently, a new Pusher instance
is created with the above-defined credentials named key and cluster. This enables
forming a new channel b1ColorKpiDuration. Finally, the channel.bind
command is responsible for receiving cyclically arriving Datapoint values. It also
invokes the extendTrace command, which updates the existing plot with the new
data. Note that the plot is restricted to presenting 23 most up to date values, which
requires appropriate scaling realized with the relayout command. The graphical
result obtained after running the entire application, i.e. the one presented in the
browser, is given in Fig. 7.8.

7.6 Training Exercises 247

7.6 Training Exercises

7.1 Obtaining a list of assets

1. Obtain a JSON structure containing all KIS.Devices which are at your disposal.
2. Find all assets which are on-line.

7.2 Obtaining a list of asset groups

1. Obtain a JSON structure containing all asset groups.
2. Modify the name and description of a selected asset group.

7.3 Obtaining a list of users

1. Obtain a JSON structure containing all users and determine their account
Number.

2. Obtain a user and determine the above JSON structure once again.
3. Delete the added user.

7.4 Obtaining a list of Datapoints and CDPs

1. Select a KIS.Device and determine its URN.
2. Obtain a JSON structure containing a list of all Datapoints.
3. Determine a list of CDPs.

7.5 Obtaining values of Datapoints and CDPs

1. Choose a KIS.Device and write a set of rules transferring automatically and
cyclically its selected operational LED within a state-space: red, yellow, green.

2. Obtain a JSON structure containing a list of 10 recent values of Datapoints cor-
responding to the numerical values of the operational LED’s colors.

3. Prepare CDP converting the numerical values of the operational LED’s colors in
such a way so that red corresponds to 0, yellow is signified by 1, while green
yields 2.

4. Obtain a JSON structure containing a list of 10 recent values of the above CDP.

7.6 Obtaining values of KPIs

1. Continue Exercise 7.5 by implementing KPIs calculating mean times of each
state, i.e., red, yellow and green.

2. Obtain a JSON structure containing all KPIs.
3. Obtain a JSON structure containing a list of 10 recent values of the above KPIs.

7.7 Obtaining information about rules

1. Continue Exercise 7.5 and display the information about rules used for color state
transitions.

2. Import the information about the rules to MS Excel or any compatible software.

248 7 KIS.API: Towards External Communication

7.8 Triggering rules from an external application

1. Select a KIS.LIGHT.
2. Prepare two rules with API-Trigger active (see Fig. 7.3):

• GoRed: with an action setting the KIS.LIGHT operational LED color to red;
• GoGreen: with an action setting the KIS.LIGHT operational LED color to red;

3. Develop a Matlab (you can also use OCTAVE or Pyton) program, which will
trigger these rules every second one after the other.

7.9 Websocket implementation

1. Continue Exercise 7.5 and develop websocket-based application according to the
scheme presented in Sect. 7.5.4.

2. Use the above-developed software to get information about the triggered rules
and KPI calculation. Hint: use the subscribeTo property.

7.10 Websocket implementation

1. Continue Exercise 7.9 and extend it according to Sect. 7.5.4 in order to get a local
web server employed for presenting selected Datapoint values.

2. On the frontend side (index.html) implement a functionality calculating the
total accumulated time of the red color state, i.e., the overal time in which the
operational LED color is red.

7.7 Concluding Remarks

The aim of this section was to provide an overview of KIS.API functionalities. It was
demonstrated that the software provides an effective way for communicating with
external applications. In particular, the chapter started with KIS.API user registration
and goes through KIS.API essential functionalities. These functionalities are strictly
linked with the content of the preceding chapter. Indeed, it is shown how to prepare
request for accessing the information about assets, asset groups, users, Datapoints,
CDPs, KPIs as well as the rules. The crucial functionality, which makes KIS.API a
fully bidirectional framework is the ability of triggering the rules from external appli-
cations. In particular, it was shown how to trigger such rules from Matlab, which is
one of themost popular development tools inmodern engineering. The last part of the
chapterwas devoted to the development of efficientwebsocket-based communication
framework, which utilizes STOMP messaging architecture. Indeed, the websocket
is an excellent for providing an efficient asynchronous bidirectional communication.
It was also demonstrated how to prepare a local Web server for publishing Data-
point values. This crucially example clearly shows that with KIS.API there is an
infinite spectrum of possible external extensions of KIS.ME. Finally, the chapter is
summarized with a set of training exercises, which verify KIS.API-oriented skills.

References 249

References

1. F. Doglio. Pro REST API Development with Node.js (Apress, Berkeley, 2015)
2. A. Tamboli, Build Your Own IoT Platform (Springer, Berlin, 2019)
3. S. Patni, Pro RESTful APIs (Springer, Berlin, 2017)
4. V. Wang, F. Salim, P. Moskovits, The Definitive Guide to HTML5 WebSocket, vol. 1 (Springer,

New York, 2013)
5. Stomp. http://stomp.github.io/stomp-specification-1.2.html#Heart-beating. Accessed: 10 June

2022

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://stomp.github.io/stomp-specification-1.2.html#Heart-beating
http://creativecommons.org/licenses/by/4.0/

	7 KIS.API: Towards External Communication
	7.1 Introduction to KIS.API
	7.1.1 User Registration and Authorization

	7.2 Essential Functionalities
	7.2.1 Obtaining Information About Asset Groups, Assets and Users
	7.2.2 Accessing Data Through Datapoints
	7.2.3 KPIs and Calculated Datapoints
	7.2.4 Accessing Information About Rules
	7.2.5 Triggering Rules from External Applications

	7.3 KIS.API in Practice
	7.3.1 Feeding MS Excel with KIS.ME Data
	7.3.2 Feeding Matlab with KIS.ME Data

	7.4 Triggering Rules from MATLAB
	7.5 Websockets
	7.5.1 Brief Introduction to Websockets
	7.5.2 Obtaining a KIS.ME URI and Identifiers
	7.5.3 Brief Introduction to STOMP
	7.5.4 Sample Websocket Implementations

	7.6 Training Exercises
	7.7 Concluding Remarks
	References

