
Chapter 5
Mastering System Monitoring
and Control

5.1 Defining the Performance Cost Function and Its
Control

The objective of this section is to define the performance cost function for themultiple
point–single transporter system described in Sect. 3.3. The process starts with pro-
viding the availability of the transportation system. Subsequently, the performance
cost function is defined over a set of routs. Thus, the entire performance is related
with the sum of all cost functions divided by the total run time.

Let us start defining the work environment for the transporter operator:

Routes: The transporter operates within Workpsace 1 according to the routs pre-
sented in Fig. 5.3.
KIS.Device: The transporter operator uses KIS.BOX Transporter to signify the
start and finish of a given transportation task.
Route assignment: The route assignment is realized by the KIS.MANAGER oper-
ator, which is setting KIS.Box Transporter Button 1 operational LED color to the
one corresponding to the desired route.

•> System operators

It is important to stress the fact that there are two operators within the system:

KIS.MANAGER operator: A human being assigning a transport task within a
selected route and monitoring its realization.
Transporter operator: A human being physically realizing transportation tasks.

© The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2_5

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33623-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-33623-2_5

160 5 Mastering System Monitoring and Control

Table 5.1 Set of possible routes

Route Route color Points

1 Blue S2→A3→S1→A2→A1→S1→S2

2 Turquoise S1→A1→S1

3 Green S2→S1→A2→S1→S2

4 Magenta S2→A3→S2

5 Red S2→A3→S1→A2→S1→S2

6 Black Idle state

S: supermarket point, A: assembly point

Let us start with implementing a single route system, i.e., a blue one, and calcu-
lating transporter availability, which is defined as

Availability = Run time

Planned transportation time
, (5.1)

where the run time is the amount of time spent on the transportation whilst the
planned transportation time is obtained as follows:

Planned transportation time = Shift length − breaks (5.2)

and signifies the time span inwhich the transporter can be operational.As an example,
let us consider an eight-hour shift with a one-hour break, which gives

Planned transportation time = 480 − 60 = 420(min). (5.3)

As can be observed in Table5.1, the idle state corresponds to the time in which the
transporter is not realizing any transportation. However, before proceeding to the
implementation, let us define the transportation acknowledgement and realization
procedure:

1. TheKIS.MANAGER operator sets the color of the KIS.BOXTransporter Button
1 operational LED to the one corresponding to a desired route.

2. The transporter operator acknowledges and starts the transportation action by
pressing KIS.BOX Transporter Button 2.

3. The KIS.BOX Transporter Button 2 operational LED changes its color to the
same as the one of the KIS.BOX Transporter Button 1 operational LED.

4. The KIS.BOX Transporter Button 1 operational LED color is changed to black.
5. The transporter operator accomplishes the transportation and then presses

KIS.BOX Transporter Button 2.
6. The KIS.BOX Transporter Button 2 operational LED color is changed to black.

5.1 Defining the Performance Cost Function and Its Control 161

Fig. 5.1 Sample rule for acknowledging Route 1

Note that, after Step 4 of the above procedure, the KIS.MANAGER operator can
arrange a consecutive route by setting the KIS.BOXTransporter Button 1 operational
LED color. The implementation of Steps 1–4 can be realized with five rules like the
sample one for the blue route, which is given in Fig. 5.1. The rules for different
routes can be implemented in a similar way, and hence they are omitted. Finally,
the rule implementing Steps 6–7 is given in Fig. 5.2. It is also assumed that each
route has an associated ideal route time. These times should be perceived as optimal
performance goals on a given route (see Table5.2). Having these data, one can define
a performance cost function over the processing period:

J = 1

tr

nr∑

i=1

ni ti , (5.4)

where tr is the run time within the processing period, nr = 5 is the number of routes
(cf. Table5.2), ti is the ideal transportation time of the i-th route while ni is the
number of cycles on the i-th route. Thus, in the ideal case, this the above function
should be equal to 1, which signifies perfect performance of the transporter.

Let us start with the KPI which can be used for the calculation of (5.1) with
KIS.BOX Transporter. For that purpose, it is assumed that the planned transportation
time is equal to 420min (cf. 5.3):

162 5 Mastering System Monitoring and Control

Fig. 5.2 Rule for accomplishing the transportation action

Table 5.2 Routes and ideal route times

Route Route color Ideal route time (min)

1 Blue 11

2 Turquoise 4

3 Green 8

4 Magenta 3

5 Red 9

6 Black –

d=If[Not[x==2],Duration[x],0];

y=Sum[d]/60000/420;

where x is an alias name of button2ColorKpiDuration. Note that the KPI
starts with determining all durations for a non-idle state, which is equivalent to
the black color of the KIS.BOX Transporter Button 2 operational LED. To get a
fair assessment of (5.1), the results provided by the above KPI should be aggre-
gated within an eight-hour shift using the sum aggregation mechanism. This can be
achieved with the KPI Aggregated Chart, which can group the results in a selected
aggregation period, i.e., an hour or a day. An alternative approach is to calculate the
availability within a given processing period, which can be realized as follows:

5.1 Defining the Performance Cost Function and Its Control 163

Fig. 5.3 Floorplan with a set of routes

d=If[Not[x==2],Duration[x],0];

y=Sum[d]/Interval[];

Finally, an average availability can be calculated and visualized using KPI charts. Let
us proceed to the implementation of (5.4), which should be started with introducing
nr = 5 ideal transportation times (cf. Table5.2):

t1=11;

t2=4;

t3=8;

t4=3;

t5=9;

The next step boils down to calculating the number of cycles on a given route ni , i =
1, . . . , nr . For that purpose let us recall the numerical counterparts of colors, which
are given in Table 2.2. The implementation consists in calculating the number of
KIS.BOX Transporter Button 2 operational LED color changes. This can be realized
using led2ColorKpiwith an associated alias variable y. As a result, the KPI code
can be extended as follows:

t1=11;

t2=4;

t3=8;

t4=3;

t5=9;

164 5 Mastering System Monitoring and Control

n1=Sum[If[y==0,1,0]];

n2=Sum[If[y==1,1,0]];

n3=Sum[If[y==3,1,0]];

n4=Sum[If[y==4,1,0]];

n5=Sum[If[y==5,1,0]];

The last stage of the implementation is to calculate the run time tr and the current
value of the performance function (5.4):

t1=11;

t2=4;

t3=8;

t4=3;

t5=9;

n1=Sum[If[y==0,1,0]];

n2=Sum[If[y==1,1,0]];

n3=Sum[If[y==3,1,0]];

n4=Sum[If[y==4,1,0]];

n5=Sum[If[y==5,1,0]];

d=If[Not[x==2],Duration[x],0];

tr=Sum[d]/60000;

J=1/tr*(t1*n1+t2*n2+t3*n3+t4*n4+t5*n5);

Let us consider a sample transportation request sequence, which is presented in
Fig. 5.4. In particular, there are 15 transportation requests, which are ordered by the
KIS.MANAGERoperator using theKIS.BOXTransporter Button 1 operational LED
color (cf. Sect. 2.6). Association of a given route with the assembly stations (A1–A3)
is depicted as well. Using Table5.2 and Fig. 5.4, one easily see that there are four
cycles for route 1, three for route 2, three for route 3, three for route 4 and two for
route 5. The objective of the remaining part of this section is to show evolution of
the performance and availability of the implemented system, which was calculated
using the KPI Aggregated Chart grouped by the hour. Moreover,

• availability within a processing period, and
• the performance cost function

were also calculated for KPIs using a 60-min processing period. The obtained results
are given in Table5.3. As can be observed, 0.25 availability in the 5th hour is caused
by the scheduled 45-min break. A similar effect is also visible in the 17h due to a
15-min break. In most cases the performance function is close to its optimal level,
which is equal to 1. Note that both availability and the performance cost function
can be also interpreted in percents of their maximum respective rates. This can be
easily achieved by multiplying them by 100.

5.2 Monitoring the Product Rejection Rate 165

Fig. 5.4 Sample transportation request sequence

Table 5.3 Availability and performance cost function

Hour Availability Performance function

1 0.88 0.94

2 0.93 0.92

3 0.90 0.95

4 0.85 0.91

5 0.25 0.82

6 0.9 0.87

7 0.75 0.91

8 0.9 0.89

5.2 Monitoring the Product Rejection Rate

The objective of this section is to show a sample implementation and analysis con-
cerning two product rejection rate monitoring schemes. In both cases, it is assumed
that the number of tested products is not constant within the processing period. Let
us start with the first case, which is implemented using the following environment:

KIS.Device: The operator controlling the quality of produced items is equipped
with KIS.BOX, which is operating within Workspace 1.
Item rejection/acceptance: If an item is acceptable, then the operator pushes
KIS.BOX Button 1 while KIS.BOX Button 2 is pushed otherwise.

Let us start with implementing the KPIs for calculating

• the total number of tested items per processing period,
• the number of rejected items per processing period.

The implementation of the first KPI boils down to counting how many times both
KIS.BOX buttons were pushed, which can be performed as follows:

166 5 Mastering System Monitoring and Control

dpass=Sum[If[pass,1,0]];

dfail=Sum[If[fail,1,0]];

total=dpass+dfail;

wherepass andfail are aliases ofbutton1Pressed andbutton2Pressed,
respectively, while total stands for the total number of tested items. The imple-
mentation of the second KPI can be performed by suitably reducing the preceding
one, which yields

dfail=Sum[If[fail,1,0]];

Table5.4 presents the obtained results concerning 20 consecutive processing periods.
Note that in all cases the processing period was equal to one hour. From these results
it is evident that there are in total

N =
20∑

i=1

ni = 953 (5.5)

items, among which

Nr =
20∑

i=1

nr,i = 76 (5.6)

are of unacceptable quality, and hence they are rejected. Thus, the ratio between the
rejected and the total number of items can be obtained as follows:

p̄ = Nr

N
= 0.0797. (5.7)

This means that the rejection rate is around 8%.
The objective of the subsequent deliberations is to develop the p chart (cf.

Sect. 4.4.2), which can be used for statistical process control pertaining to the quality
of the manufactured items. Let us recall that the p chart is designed according to the
following principle:

Center line: p̄,
Upper control limit (UCL):

UCL = p̄ + 3σp = p̄ + 3

√
p̄(1 − p̄)

n
, (5.8)

Lower control limit (LCL):

LCL = p̄ − 3σp = p̄ + 3

√
p̄(1 − p̄)

n
. (5.9)

5.2 Monitoring the Product Rejection Rate 167

Table 5.4 Quality test results

i-th Processing period Rejected items (nr,i) Number of items (ni)

1 4 40

2 3 47

3 3 42

4 4 48

5 4 51

6 5 41

7 4 54

8 4 51

9 5 45

10 4 45

11 3 50

12 3 55

13 2 50

14 4 52

15 3 47

16 3 39

17 5 55

18 4 50

19 4 40

20 5 51

The main assumption concerning the above principle is that the total number of
samples is constant in each (i-th) processing period. Unfortunately, due to manual
testing, such an assumption is too restrictive. Thus, one way out of this problem is
to assume an average number of items per processing period. Another solution is
to calculate the LCL and the UCL for each processing period separately. The KPIs
calculating the UCL and the LCL for a varying n and p̄ are as follows:
UCL:

pbar=0.0797;

dpass=Sum[If[pass,1,0]];

dfail=Sum[If[fail,1,0]];

n=dpass+dfail;

sigmap=Power[pbar*(1-pbar)/n,0.5];

UCL=pabr+3*sigmap;

LCL:

pbar=0.0797;

168 5 Mastering System Monitoring and Control

Table 5.5 Quality test results

i th Processing
period

Rejected items Number of
items

p UCL LCL

1 4 47 0.0851 0.1982 0

2 3 32 0.0938 0.2233 0

3 3 48 0.0625 0.1970 0

4 7 57 0.1228 0.1873 0

5 3 43 0.0698 0.2036 0

6 5 46 0.1087 0.1995 0

dpass=Sum[If[pass,1,0]];

dfail=Sum[If[fail,1,0]];

n=dpass+dfail;

sigmap=Power[pbar*(1-pbar)/n,0.5];

LCL=Max[pabr-3*sigmap,0];

Note that the LCL cannot be lower than zero, and hence there is a need for using
the Max[] function. Finally, the center line (CL) is simply given by (5.7), which
implies the KPI below:

pbar=0.0797;

CL=Max[pbar,pbar];

while the monitored rejection rate p should be calculated using the following KPI:

dpass=Sum[If[pass,1,0]];

dfail=Sum[If[fail,1,0]];

n=dpass+dfail;

p=dfail/n;

To illustrate the UCL and LCL calculation according to (5.8)–(5.9), let us con-
sider a sample processing period in which n = 30. Thus, Eqs. (5.8)–(5.9) yield
UCL = 0.228 while LCL = max(−0.069, 0) = 0. Indeed, the rejection rate cannot
be negative, and hence the LCL is set to zero.

Finally, using a set of four developed KPIs, one can design the p chart. Thus,
according to the approach presented in Sect. 4.4.2, the above KPIs should be suitably
associated with the KPI Aggregated Chart. The obtained results are presented in
Fig. 5.5. For better illustration, the results are also gathered in Table5.5. As can be
observed, for the six processing periods being presented the ratio p oscillates around
the center line and does not exceed the control limits.

Let us proceed to the second case, i.e., an automatic quality control system. It uses
KIS.LIGHT as a communicationmeans between an automatic quality control system
and KIS.MANAGER. In particular, KIS.LIGHT Input 1 receives a false–true–false

5.2 Monitoring the Product Rejection Rate 169

Fig. 5.5 Chart p for manual quality control

Fig. 5.6 KIS.LIGHT Input 1

sequence when the controlled item satisfies the quality requirement. Otherwise, a
false–true–false sequence is sent to KIS.LIGHT Input 2. Figure5.6 presents a sample
KIS.LIGHT Input 1 sequence forming the basis for calculating the number of items
which pass the quality test. As in the manual case, let us start with implementing the
KPIs for calculating

• the total number of tested items per processing period,
• the number of rejected items per processing period.

Let us proceed to the implementation of the first KPI, which can be realized using the
RisingEdge command. It counts the number of false–true sequences, and hence
the KPI boils down to

170 5 Mastering System Monitoring and Control

dpass=RisingEdge[pass];

dfail=RisingEdge[fail];

total=dpass+dfail;

wherepass andfail are aliases ofinput1Status andinput2Statuswhile,
respectively, total stands for the total number of tested items. As previously, the
number of items which do not satisfy the quality test can be easily obtained with the
KPI as follows:

dfail=RisingEdge[fail];

Thus, the rejection rate p can be found:

dpass=RisingEdge[pass];

dfail=RisingEdge[fail];

n=dpass+dfail;

p=dfail/n;

Similarly as in the manual case, after 20 processing periods, the rejection rate was
calculated as p̄ = 0.098. Thismeans that the center line can be found as in themanual
case, but p̄ = 0.098 should be used instead. Finally, the control limits are determined
using KPIs implemented with
UCL:

pbar=0.098;

dpass=RisingEdge[pass];

dfail=RisingEdge[fail];

n=dpass+dfail;

sigmap=Power[pbar*(1-pbar)/n,0.5];

UCL=pabr+3*sigmap;

LCL:

pbar=0.098;

dpass=RisingEdge[pass];

dfail=RisingEdge[fail];

n=dpass+dfail;

sigmap=Power[pbar*(1-pbar)/n,0.5];

LCL=Max[pabr-3*sigmap,0];

Note that the presentation of the obtained results looks similar to that for the
manual case, and hence it is omitted.

5.3 Demerit System Control 171

5.3 Demerit System Control

The objective of the previous section was to describe a quality control system which
can be used for binary decisions concerning product quality, which can be either
defective or non-defective. In the quality control nomenclature [1, 2], a product is
perceived as a nonconforming one if it has one ormore defects. In the case of complex
products, several different kinds of defects may occur. It is, of course, evident that
they are not equally important and serious. Thus, a suitable classification method is
needed, which can handle severity of defects and weight them in a reasonable way.
A demerit system [1, 2] can be a good remedy for such a situation. Traditionally, in
such a system, there are four classes of defects:
Class A defect—very serious, due to which the product

• is not suitable for use;
• can fail in service and cannot be easily repaired;
• may cause a personal injury or a property damage.

Class B defect—serious, due to which the product

• will probably cause a Class A operating failure;
• will certainly cause less serious operating problems than the Class A one;
• will surely cause increased maintenance or a decreased lifetime.

Class C defect—moderately serious:

• will probably fail in service;
• may cause a problem less serious than a failure;
• will possibly have a reduced lifetime or increased maintenance costs;
• has a major defect in the finish, appearance or working quality.

Class D defect—minor, due to which the product

• will not fail in service;
• has a minor defect in the finish, appearance or working quality.

Let nA, nb, nc and nd represent respectively the number of Class A, B, C, D defects
within the sample of n products or units. The crucial assumption is that each class of
defects is independent and obeys Poison distribution [1, 2]. The expected number of
defects of each class is expressed by nμa , nμb, nμc and nμd , where μi denote the
expected defect per unit. Thus, the number of demerits is defined as

d = pana + pbnb + pcnc + pdnd , (5.10)

where pi > 0 stand for the class weight. A commonly used approach for selecting
these weight is pa = 100, pb = 50, pc = 10 and pd = 1. Note that these parameters
can be problem-specific, and hence they can be modified. The control limits for
(5.10) can be calculated as follows [1, 2]:
Center line (CL):

172 5 Mastering System Monitoring and Control

CL = n (paμa + pbμb + pcμc + pdμd) , (5.11)

Lower control limit (LCL):

LCL = CL − 3σd , (5.12)

Upper control limit (UCL):

UCL = CL + 3σd , (5.13)

where

σd =
√
n

(
p2aμa + p2bμb + p2cμc + p2dμd

)
. (5.14)

Calculation of sample demerit control limits

Let us consider a sample demerit control system with the parameters given in
Table5.6, along with a sample of n = 200 units. Thus, according to (5.12),

CL = 200 (100 × 0.001 + 50 × 0.0019 + 10 × 0.0194 + 1 × 0.01) = 79.8,

while (5.14) yields

σd =
√
200

(
1002 × 0.001 + 502 × 0.0019 + 102 × 0.0194 + 1 × 0.01

) = 57.793.

Finally, the LCL (5.12) and the UCL (5.13) are

LCL = 79.8 − 3 × 57.793 = −93.579,

UCL = 79.8 + 3 × 57.793 = 253.179.

Note that the negative LCL should be replaced with LCL = 0.

Table 5.6 Demerit control system parameters

Class pi μi

A 100 0.001
B 50 0.0019
C 10 0.0194
D 1 0.01

5.3 Demerit System Control 173

•> Significance of defect per unit

The above example forms the basis for developing a chart for assuring the control of
a given standard, which is shaped by μi . This represents the expected quality level,
which should take into account the economic balance between service requirements
and production costs. As a result, two unappealing situations can be distinguished:

• The quality is permanently over the standard, and hence it is probable that the
production is too expensive.

• The quality is permanently under the standard, and hence the cost of ser-
vice/maintenance could be high. This implies the need for additional economic
efforts for increasing the quality.

Under the above preliminaries, let us to proceed to the KIS.ME-based implemen-
tation. As in the previous section, it is possible to develop either a manual or an
automatic demerit quality control system. However, the discussion is limited to the
manual case, which employs three KIS.BOXes, i.e., KIS.BOX 1, KIS.BOX 2 and
KIS.BOX 3. Once a product quality check is performed, an appropriate KIS.BOX
button is pressed,which expresses the class of the product. Table5.7 presents the asso-
ciation of KIS.BOXes and the defect classes. Note that most products are defect-free,
and hence such a class has to be included as well. The resulting demerit system is
presented in Fig. 5.7. The objective of the subsequent part of this section is to pro-
vide KPIs capable of calculating (5.10)–(5.13). However, KPIs can be implemented
for a single KIS.Device exclusively. Thus, it is proposed to use appropriate rules,
which will be employed to feed the information about the pressed button to a single
KIS.BOX, i.e., KIS.BOX 3. Indeed, as can be observed in Table5.7, KIS.BOX 3
Button 2 is not used, and hence it will be employed for the communication purpose.
A complete set of communication rules is given in Table5.8. Figure5.8 presents an
implementation of the first rule of Table5.8. Having such a set of rules, it is possible
to proceed to the KPI implementation. Let us start with supplementary KPIs, which
can be used for calculating the number of products belonging to the classes presented
in Table5.7:
Class A:

nA=Sum[If[x==5,1,0]];

Class B:

nB=Sum[If[x==4,1,0]];

Class C:

nC=Sum[If[x==7,1,0]];

174 5 Mastering System Monitoring and Control

Table 5.7 KIS.BOX-based demerit quality control

Class KIS.BOX Button Color Color no.

A 2 1 Red 5

B 2 2 Magenta 4

C 1 1 Yellow 7

D 1 2 Blue 0

Defect-free 3 1 Green 3

Fig. 5.7 Floorplan of the
KIS.BOX-based demerit
system

Class D:

nD=Sum[If[x==0,1,0]];

Class defect-free:

nfree=Sum[If[y==3,1,0]];

where x and y are aliases of button1ColorKPI and button2ColorKPI
Datapoints of KIS.BOX 3. For the implementation of (5.10)–(5.13), sample quality
parameters are presented in Table5.6. Finally, the center line and control limits of
the demerit chart are given by the following KPIs:

5.3 Demerit System Control 175

Table 5.8 Demerit system rule base

Trigger Actions

KB 2 | Button 1 | pressed KB 3 | Button 2 | red

KB 3 | Button 2 | black

KB 2 | Button 2 | pressed KB 3 | Button 2 | magenta

KB 3 | Button 2 | black

KB 1 | Button 1 | pressed KB 3 | Button 2 | yellow

KB 3 | Button 2 | black

KB 1 | Button 2 | pressed KB 3 | Button 2 | blue

KB 3 | Button 2 | black

Fig. 5.8 Sample rule of the demerit control system

CL:

pa=100;

pb=50;

pc=10;

pd=1

muA=0.001;

muB=0.0019;

muC=0.0194;

muD=0.01;

nA=Sum[If[x==5,1,0]];

nB=Sum[If[x==4,1,0]];

nC=Sum[If[x==7,1,0]];

nD=Sum[If[x==0,1,0]];

nfree=Sum[If[y==3,1,0]];

n=nA+nB+nC+nD+nfree;

176 5 Mastering System Monitoring and Control

CL=n*(pa*muA+pb*muB+pc*muC+pd*muD);

LCL:

pa=100;

pb=50;

pc=10;

pd=1

muA=0.001;

muB=0.0019;

muC=0.0194;

muD=0.01;

nA=Sum[If[x==5,1,0]];

nB=Sum[If[x==4,1,0]];

nC=Sum[If[x==7,1,0]];

nD=Sum[If[x==0,1,0]];

nfree=Sum[If[y==3,1,0]];

n=nA+nB+nC+nD+nfree;

CL=n*(pa*muA+pb*muB+pc*muC+pd*muD);

sd=n*(Power[pa,2]*muA+Power[pb,2]*muB+

Power[pc,2]*muC+Power[pd,2]*muD);

sigmad=Power(sd,0.5);

LCL=Max[CL-3*sigmad,0];

UCL:

pa=100;

pb=50;

pc=10;

pd=1

muA=0.001;

muB=0.0019;

muC=0.0194;

muD=0.01;

nA=Sum[If[x==5,1,0]];

nB=Sum[If[x==4,1,0]];

nC=Sum[If[x==7,1,0]];

nD=Sum[If[x==0,1,0]];

nfree=Sum[If[y==3,1,0]];

n=nA+nB+nC+nD+nfree;

CL=n*(pa*muA+pb*muB+pc*muC+pd*muD);

sd=n*(Power[pa,2]*muA+Power[pb,2]*muB+

Power[pc,2]*muC+Power[pd,2]*muD);

sigmad=Power(sd,0.5);

LCL=CL+3*sigmad;

5.4 Overall Equipment Effectiveness 177

Table 5.9 KPI-based calculation of quality control results

i-th
Processing
period

na nb nc nd Defect-free n

1 0 2 2 1 185 190

2 0 0 3 3 224 230

3 0 0 7 0 193 200

4 0 1 2 2 235 240

5 0 1 6 1 191 199

6 0 0 5 3 178 186

Table 5.10 Numerical data of the demerit chart

i-th Processing
period

d CL LCL UCL

1 121 75.8100 0 244.7982

2 33 91.7700 0 277.6974

3 70 79.8000 0 253.1782

4 72 95.7600 0 285.6863

5 111 79.4010 0 252.3452

6 53 74.2140 0 241.4139

The developed demerit system was validated using a one-hour processing period.
First, the supplementary KPIs were employed to determine the number of products
belonging to the classes defined in Table5.7. The obtained results are presented
in Table5.9. Let us proceed to the results concerning the demerit chart, which are
shaped by the monitored demerit number d. It should evolve around the center line
(CL) and should be bounded by the control limits. The obtained results are presented
in Table5.10 and visualized using the KPI Aggregated Chart, which is portrayed
in Fig. 5.9. The results clearly indicate that the monitored process is in the state of
control.

5.4 Overall Equipment Effectiveness

The main objective of this section is to show how to use KIS.ME for calculating the
performance of given equipment. The discussion starts with recalling the concept
of overall equipment effectiveness (OEE) [3, 4], which can be perceived as a key
measurement tool for assessing both productivity and efficiency. As indicated in [4],

178 5 Mastering System Monitoring and Control

Fig. 5.9 Demerit chart for manual quality control

OEE is a hierarchy ofmeasures that exhibit how efficiently amanufacturing operation
is performed. This indicator is stated in a very general form, and hence it makes it
possible to perform an efficient comparison betweenmanufacturing units in different
departments, organizations, etc. The core features of OEE are as follows [3, 4]:

• identification of equipment potential;
• identification and tracking of the losses;
• identification of opportunities for increasing equipment performance.

As a result, OEE can be used for

• increasing productivity,
• decreasing the overall cost,
• increasing the awareness about equipment productivity,
• extending the equipment operational life time.

The crucial components of OEE are the following: availability:

A = tP − tS
tP

= tR
tP

, (5.15)

where tP is a planned production time, tS stands for the unplanned stop or downtime,
while tR signifies the run time.

5.4 Overall Equipment Effectiveness 179

Performance:

P = ti n p

tP − tS
= ti n p

tR
, (5.16)

where ti is the ideal single part manufacturing time and np stands for the total number
of manufactured parts, i.e., both defective and defect-free ones. Quality:

Q = np − nd
n p

= ng
n p

, (5.17)

where nd and ng stand for the number of defective and defect-free parts, respectively.
Finally, the OEE indicator is simply given by

OEE = A × P × Q. (5.18)

The objective of the remaining part of this section is to show how to employ KIS.ME
for calculatingOEE. It can also be expressed in percents, which can be easily attained
by multiplying (5.15)–(5.17) by 100. Note that a world class value of OEE should
be at the level of 85% or higher. Let us also note that the calculation of planned
production time obeys

tP = tA − tB, (5.19)

where tA and tB stand for the available and planned break times.

Sample OEE calculation

Let us consider an example equipment, which is characterized by the parame-
ters given in Table5.11. According to (5.19), the planned production time tP =
tA − tB = 390[min]. This implies that A = tP−tS

tP
= 350

390 = 0.897 or 89.7%. Subse-
quently, the performance can be calculated with (5.16), which is equal to P = 0.952
or 95.2%. The quality is obtained with (5.17), which is equal to Q = 0.99 or
99%, equivalently. Finally, OEE can be calculated according to (5.18), which gives
OEE = 0.845 or 84.5%.

Table 5.11 Sample production equipment parameters

Parameter Value
tA 420 (min)
tB 30 (min)
tS 40 (min)
ti

1
60 (min)

n p 20000 (items)
nd 200 (items)

180 5 Mastering System Monitoring and Control

Fig. 5.10 KIS.ME-based OEE data gathering scheme

Before proceeding to the OEE implementation, a KIS.ME infrastructure has to
be defined. In particular, it should allow identification and measurement of

• the unplanned downtime tS and its cause,
• the total number of manufactured parts np,
• the number of defective parts nd .

The employed infrastructure is portrayed in Fig. 5.10. As can be observed, the sys-
tem has automatic quality control, which is connected with KIS.BOX digital inputs.
The quality control system is actually the same as the one presented in Sect. 5.2, but
KIS.BOX is used instead of KIS.LIGHT. Indeed, it employs KIS.BOX as a commu-
nication means between an automatic quality control system and KIS.MANAGER.
In particular, KIS.BOX Input 1 receives a false–true–false sequence when the con-
trolled item satisfies the quality requirement. Otherwise, a false–true–false sequence
is sent toKIS.BOX Input 2. A sample sequence is presented in Fig. 5.6. Subsequently,
note that the KIS.BOX Button 2 operational LED color is initially set to green using
the KIS.BOX digital twin (cf. Sect. 2.6). This is a normal operation of the equipment.

Let us proceed to the identification of the cause of downtime. First, it is assumed
that the equipment operator makes a decision about the current downtime state of the
equipment, which may exhibit one of the modes given in Table5.12. In particular,
the state-space model concept (cf. Sect. 2.10) is utilized to change the color of the
KIS.BOXButton 1 operational LED according to Table5.12. This operation depends
on the trigger which is related to pressing KIB.BOX Button 1. Once an appropriate
color is selected, the equipment operator acknowledges the current state by pressing
KIS.BOX Button 2. As a result, its operational LED color is changed into that of
the KIS.BOX Button 1 operational LED. Thus, any alteration of the equipment state
should be realized in the same way. Note also that one can freely modify or extend
the states proposed in Table5.12.

Let us proceed to the KPI implementation. First, availability has to be calculated
according to (5.15). For that purpose it is necessary to assume that the planned
production time tP is given. Thus, let tA = 420(min) and tp = 390(min). As a result,
the KPI calculating availability within a selected processing period is given by

5.4 Overall Equipment Effectiveness 181

Table 5.12 Run and downtime states

State Color Color no.

Run Green 3

Equipment breakdown Red 5

Setup and adjustment Blue 0

Minor breakdowns Yellow 7

Planned break Magenta 4

tp=390;

tr=Sum[If[x == 3,Duration[x],0]]/60000;

A=tr/tp;

where x is an alias of the button1ColorKpiDuration Datapoint. Finally, to
assess the quality, the KPI calculation results should be aggregated with KPI charts
using the SUM aggregation method (see, e.g., Sect. 4.3.2) and the tA aggregation
period. Using a similar way of implementation, one can formulate KPIs calculating
the sums of downtimes:

Equipment breakdown:dred=Sum[If[x == 5,Duration[x],0]]/60000;
Setup andadjustment:dblue=Sum[If[x == 0,Duration[x],0]]/60000;
Minor breakdowns:dyellow=Sum[If[x == 7,Duration[x],0]]/60000;

as well as the occurrence number of such states:

Equipment breakdown: nred=Sum[If[x == 5,1,0]];
Setup and adjustment: nblue=Sum[If[x == 0,1,0]];
Minor breakdowns: nyellow=Sum[If[x == 7,1,0]];

Let us proceed to performance calculation (5.16). The KPI calculating local perfor-
mance within the j-th processing period, i.e.,

Pj = ti n p, j

tR, j
, (5.20)

can be derived using (with ti = 1[min])

ti=1;

ng=RisingEdge[y];

nd=RisingEdge[z];

np=nd+ng;

tr=Sum[If[x == 3,Duration[x],0]]/60000;

Pj=ti*np/tr;

where x , y and z are aliases ofbutton1ColorKpiDuration, input1Status
and input2Status, respectively. Having k processing periods, one can aggregate

182 5 Mastering System Monitoring and Control

the results of the above KPI. Unfortunately, there is no aggregation which makes it
possible to determine total performance (5.16). A good remedy to such a problem is
to define two separated KPIs:

Ideal manufacturing time of the np parts:

ti=1;

ng=RisingEdge[y];

nd=RisingEdge[z];

np=nd+ng;

tideal=ti*np;

Run time tR :

tr=Sum[If[x == 3,Duration[x],0]]/60000;

and observe their relation using theKPI Pie Chart with the SUMaggregationmethod.
Similar issues are encountered while calculating quality with (5.17). Indeed, local
quality within the j-th processing period, i.e.,

Q j = ng, j
nP, j

, (5.21)

can be calculated with

ng=RisingEdge[y];

nd=RisingEdge[z];

np=nd+ng;

Qj=ng/np;

Similarly, as the global quality (5.17) cannot be directly calculated, a good remedy
is to define two separate KPIs:

Number of defect-free parts ng: ng=RisingEdge[y];
Number of parts np:

ng=RisingEdge[y];

nd=RisingEdge[z];

np=nd+ng;

and observe their relation using theKPI Pie Chart with the SUMaggregationmethod.
Finally, the determination of OEE can be realized directly. Indeed, by substituting
(5.15)–(5.17) to (5.18), one can observe that

OEE = ti ng
tp

, (5.22)

5.5 Training Exercises 183

which can be directly obtained with the following KPI:

ti=1;

tp=390;

ng=RisingEdge[y];

OEE=ti*ng/tp;

Finally, OEE can be visualized and aggregated (with the SUM method) using a
selected KPI chart.

5.5 Training Exercises

5.1 Small transportation system
Exercise requirements: The exercise requires access to one KIS.BOX.

1. Let us consider two transportation routes:

Route red:

Rr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] , (5.23)

Route green:

Rg = [A, B,C, D, E, F,G, H, I, J] . (5.24)

2. Each route is going through 10 points, which can be perceived as the virtual
supermarkets and assembly stations.

3. Each virtual transportation task is realized in the following way:

Step 0: set i = 1;
Step 1: write the i-th name of the transportation point on a paper sheet (e.g.,
A);
Step 2: perform virtual transportation by waiting a suitable period of time;
Step 3: set i = i + 1. If i > 10, then STOP, else go to Step 1.

4. The ideal transportation times for the first and second route are tr = 11
60 (min)

and tg = 13
60 (min).

5. Using the approach presented in Sect. 5.1, implement two rules for acknowledg-
ing the transportation tasks (cf. Fig. 5.1).

6. Implement the KPI counting the number of transportation tasks nr realized
through Rr .

7. Implement the KPI counting the number of transportation tasks ng realized
through Rg;

8. Implement the KPI calculating the performance of the transportation system
within a processing period, which is expressed by

184 5 Mastering System Monitoring and Control

J = 1

tp

(
nr tr + ngtg

)
, (5.25)

where tp is the processing period. (Hint: Use Interval[] command with
transforming its value from milliseconds to minutes);

9. Implement theKPI calculating the availability of the transportation systemwithin
a processing period:

A = tr
tp

, (5.26)

where tr stands for the run time, i.e., the duration sum for which the KIS.BOX
Button 2 operational LED is not black.

10. Use arbitrary KPI charts to present the obtained results of (5.25) .
11. By using the KIS.BOX digital twin, i.e., by setting the color of the KIS.BOX

Button 1 operational LED, repeat cyclically the following route assignment:

Rg, Rg, Rr , Rr , Rr , Rg, Rr , Rg, Rg (5.27)

and realize each transportation task according to Step 3.
12. What can you say about the obtained values of (5.25) and (5.26)?

5.2 Manual quality control
Exercise requirements: The exercise requires access to one KIS.BOX.

1. Implement the manual quality control system presented in Sect. 5.2.
2. Use the Datapoint chart to visualize the system’s behaviour.
3. Implement the KPI calculating the number of items which pass the quality con-

trol.
4. Implement theKPI calculating the number of itemswhich fail the quality control.
5. Implement the KPI determining the total number of tested items.
6. Using the KPI Pie Chart, visualize the relation between the fail/pass items.
7. Perform a virtual quality control action by writing consecutive natural numbers

on a sheet of paper. If a number can be divided by 10, then press KIS.BOX
Button 2 (fail), else press KIS.BOX Button 2 (passed).

8. Determine the ratio between the number of rejected and all items p̄.
9. Using (5.8)–(5.9), calculate the lower and upper control limits of the p chart.

5.3 Virtual production system with quality control
Exercise requirements: The exercise requires access to one KIS.LIGHT.

1. Using Rule engine, implement a state-space model (cf. Sect. 2.10) which
will cyclically change the KIS.LIGHT operational LED color according to
Table5.13.

2. Using the KIS.LIGHT digital twin (cf. Sect. 2.6), initialize its operational LED
color to be equivalent to the run state (green color).

5.5 Training Exercises 185

Table 5.13 Run and downtime states of the virtual production system

State Color Color No. State period (min)

Run Green 3 50

Equipment breakdown Red 5 10

Setup and adjustment Blue 0 5

Minor breakdown Yellow 7 2

Planned break Magenta 4 1

3. Using the Datapoint Chart, visualize the performance of the system.
4. Using Rule engine, implement a rule mechanism which during the run state

(green color) will, every minute, change KIS.LIGHT digital output 1 according
to the false–true–false sequence.

5. Using the Datapoint Chart, visualize KIS.LIGHT digital output 1.
6. Using Rule engine, implement a rule mechanism which during the run state

(green color) will, every minute, change KIS.LIGHT digital output 1 according
to the false–true–false sequence;

7. Using the Datapoint Chart, visualize KIS.LIGHT digital output 1.
8. Using Rule engine, implement a rule mechanism which during the run state

(green color) will, every 45min, change KIS.LIGHT digital output 2 according
to the false–true–false sequence.

9. Using the Datapoint Chart, visualize KIS.LIGHT digital output 2.
10. let us imagine that each false–true–false sequence on KIS.LIGHT digital input

1 corresponds to a good item while the same sequence on KIS.LIGHT digital
input 2 signifies a failed one.What can you say about FPY?What is the expected
value of FPY?

5.4 Overall equipment efficiency of the virtual production system
Exercise requirements: The exercise requires access to one KIS.LIGHT and com-
pletion of Exc. 5.3.

1. Implement the p chart for the quality control system;
2. Select the production system available time tA, and use Table5.13 to calculate

the overall planned break time tB within tA.
3. Calculate the planned production time tP .
4. Select a uniform processing period for all KPIs, e.g., one hour, implemented in

this exercise.
5. Implement KPIs calculating the sum of durations corresponding to all individual

states given in Table5.13.
6. Visualize the KPI results obtained in the preceding point using the KPI Pie Chart

with the SUM aggregation method.
7. Implement KPIs calculating the occurrence number of individual downtime

states, i.e., equipment breakdown, setup and adjustment, minor breakdowns.

186 5 Mastering System Monitoring and Control

8. Visualize the KPI results obtained in the preceding point using the KPI Single
Period Chart with the SUM aggregation method.

9. Implement theKPI calculating the availability of the system (5.15), and visualize
the obtained results using the KPI Pie Chart with the SUM aggregation method.

10. Implement two KPIs calculating the number of defective nd and defect-free ng
items.

11. Visualize the KPI results obtained in the preceding point using the KPI Pie Chart
with the SUM aggregation method.

12. Implement the KPI calculating the total number of manufacture items nP and
visualize the obtained results using KPI Aggregated Chart with the SUM aggre-
gation method.

13. Analyse the results obtained in the preceding step and determine an ideal (almost
impossible to achieve) manufacturing time of a single time ti .

14. Implement two KPIs calculating an ideal manufacturing time of nP items and
the actual run time tR .

15. Visualize the KPI results obtained in the preceding point using the KPI Pie Chart
with the SUM aggregation method.

16. Implement the KPI calculating the overall equipment efficiency (5.18) and visu-
alize the obtained results using the KPI Single Period Chart.

5.6 Concluding Remarks

The main objective of this chapter was to utilize the methods and tools described in
the preceding parts for designing a practical set of process monitoring and control
schemes. All of them are relatively easy to implement and enable intuitive control of
the monitored system. The chapter opened with a transportation system that operates
on a set of routes. First, it was shown how to communicate the desired transportation
actions between KIS.MANAGER and transporter operators. The second objective
was to develop suitable measures for assessing the performance of the transportation
system. For that purpose, the concept of an ideal rout time was introduced, which
forms the basis for the performance cost function. Thus, with appropriate control of
the transportation system, one can optimize this function. Additionally, the proposed
function is very easy to interpret as its value for the optimal control is equal to 1,
which can be perceived as 100% performance. The proposed approach also allows
determining the availability of the transportation system, which can be used as an
additional measure for performance improvements. The second process which was
introduced in this chapter pertains to a quality control system, which can be either
manual or automatic. Irrespective of the selected method, it was shown how to deter-
mine a set of suitable statistical measures along with the p chart. Such a quality
control system is capable of making binary quality decisions about the product being
controlled. Thus, to overcome this restriction, a demerit quality control system was
introduced. It allows indicating various defect classes, and hence, instead of control-
ling the rejecting rate, it is proposed to monitor the so-called demerit number. For

References 187

that purpose, the demerit chart was developed, which provides effective measures
for controlling the quality of manufactured products. The last process monitoring
strategy aimed at calculating and visualizing overall equipment efficiency, which
is widely perceived as a key measurement tool for assessing both productivity and
efficiency. In particular, it was shown how to efficiently observe availability, perfor-
mance, and quality of a given manufacturing equipment. Finally, the chapter was
summarized with a set of training exercises, which can be considered the master
level test concerning KIS.ME-oriented skills.

References

1. L.A. Jones, W.H. Woodall, M.D. Conerly, Exact properties of demerit control charts. J. Qual.
Tech. 31(2), 207–216 (1999)

2. D.C. Montgomery, Introduction to Statistical Quality Control (Wiley, London, 2020)
3. R.C. Hansen, Overall Equipment Effectiveness: A Powerful Production/Maintenance Tool for

Increased Profits (Industrial Press Inc., New York, 2001)
4. D.H. Stamatis, The OEE Primer: Understanding Overall Equipment Effectiveness, Reliability,

and Maintainability (CRC Press, Boca Raton, 2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	5 Mastering System Monitoring and Control
	5.1 Defining the Performance Cost Function and Its Control
	5.2 Monitoring the Product Rejection Rate
	5.3 Demerit System Control
	5.4 Overall Equipment Effectiveness
	5.5 Training Exercises
	5.6 Concluding Remarks
	References

