
Chapter 2
Onboarding and Preliminary
Functionality Training

2.1 Preliminaries, Registration and Onboarding

Let us start with introducing the definition of a system, which is a part of the universe
that can be affected and/or monitored by KIS.ME. Consequently, KIS.ME can be
divided into two layers:

KIS.Device: hardware capable of performing the desired communication tasks
within the system,
KIS.MANAGER: software being a web platform used to affect and/or monitor the
system.

Having the system, it is possible to introduce its components, which are defined as
assets. They are physical parts of the system and are exemplified by KIS.Devices.

•> Unique resource name (URN)

Each KIS.Device is uniquely identified by the URN number, e.g.,

urn:rafi:sbox:9c65f93cbf2d.

Once assigned, it cannot be further modified.

Thus, an asset group is simply a set of assets. In the current release of KIS.ME,
KIS.Devices are divided into

KIS.BOX: a communication push-button box (see Fig. 2.1),
KIS.LIGHT: a communication signal lamp (see Fig. 2.2),
KIS.IO: an input/output communication box (see Fig. 2.3).

Let us start with defining two kinds of LED lights incorporated within each
KIS.Device (see Figs. 2.1 and 2.2):

Status LED: it exhibits the functional state of a KIS.Device and is defined in
Table2.1;

© The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33623-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-33623-2_2

20 2 Onboarding and Preliminary Functionality Training

Fig. 2.1 KIS.BOX

Fig. 2.2 KIS.LIGHT

Fig. 2.3 KIS.IO

2.1 Preliminaries, Registration and Onboarding 21

Table 2.1 Status LED colors and their meaning

Status LED color Meaning

Red Device is booting

Yellow Device is booted, no WiFi connection

Magenta Device is connected with WiFi but MQTT Port
check

Certificate check or NTP time-sync check
errors occurred

Blue Device is connected with WiFi, MQTT Port
check and certificate check were successful

No connection to KIS.MANAGER

Green Device is connected to KIS.MANAGER

Turquoise Update in progress

Flashing Magenta (2Hz) MQTT Port check failed

Flashing Magenta (1Hz) NTP time-sync check failed

Flashing Magenta (0.5Hz) Certificate check failed

Table 2.2 Predefined operational LED colors

Color RGB HEX code Integer value

Blue #0000FF 0

Turquoise #00FFFF 1

Black #000000 2

Green #00FF00 3

Magenta #FF00FF 4

Red #FF0000 5

White #FFFFFF 6

Yellow #FFFF00 7

Operational LED: it exhibits the individual operational state of a KIS.Device and
can be defined by the user using the set of colors provided in Table2.2.

Note that KIS.IO can be perceived as a simplified version of KIS.BOX with-
out buttons. Subsequently, a general KIS.ME framework overview can be intro-
duced, which is portrayed in Fig. 2.4. Subsequently let us proceed to introduce
KIS.Device functionalities. As can be observed in Fig. 2.4, each KIS.BOX can be
perceived as a human-machine interface (HMI) with two push-buttons, linked with
the KIS.MANAGER viaWiFi. Each pushbutton contains an operational LED, which
illuminates in an RGB color. However, for the sake of simplicity, the list of colors is
limited in KIS.MANAGER to those presented in Table2.2. Thus, they can be iden-
tified by either the RGB HEX code or an integer value. It should be also noted that
the black color is used to signify the fact that a corresponding operational LED is
not lit. Compared to the KIS.BOX, KIS.LIGHT has limited functionalities as its pri-

22 2 Onboarding and Preliminary Functionality Training

Fig. 2.4 General KIS.ME overview

Table 2.3 KIS.Device parameters

Name Value

Luminous element color RGB

Degree of protection IP65

WLAN standard IEEE 802.11 b/g/n 2.4GHz

Connection terminal M12 8-pin A-coded

Operating voltage 5 ± 10% V, 24 ± 20% V

GPIO 2 inputs/ 2 outputs

Table 2.4 M12 PIN specification

PIN 1 PIN 2 PIN 3 PIN 4 PIN 5 PIN 6 PIN 7 PIN 8

VCC
voltage

In 1 GND In 2 Out 1 Out 2 USB D+ USB D−

2.1 Preliminaries, Registration and Onboarding 23

Fig. 2.5 KIS.Device M12 connections

mary purpose is to be a signalling lamp with one operational LED only. Finally, the
essential technical parameters of KIS.Devices are given in Table2.3. It can be noted
that each KIS.Device is fed with an M12 8-pin A-coded connection terminal, while
the purpose of particular PINs is given in Table2.4. The operating voltages can be
either 5V or 24V. In the first case, a KIS.Devices are fed through USB, while in the
second one, the respective 24V voltage is fed through PINs 1 and 3. EachKIS.Device
possesses a general purpose input output (GPIO) interface, which is available while
using a 24V power supply only. As can be observed in Table2.4, GPIO is composed
of two digital inputs and two outputs. Thus, each KIS.Device enables attaining the
functionalities portrayed in Fig. 2.5, which can be further exploited in a large number
of practical applications. Finally, it should be noted that a full technical documen-
tation of KIS.Devices is available at https://kisme.rafi.de/en/. Having the hardware
layer provided, let us proceed to the software one. As can be observed in Fig. 2.4,
the main KIS.MANAGER features can be summarized as follows:

• System assets can be easily digitalized through digital twins of KIS.Devices.
• The system is divided into workspaces, i.e., selected parts of the system, which
inherit its desired set of assets.

• A graphical representation of the workspaces can be introduced using floorplans.
• Anasset’s behaviour can be affected andmonitored using theRule engine function-
ality, which makes it possible to implement functional IF-THEN rules governing
interactions between assets.

https://kisme.rafi.de/en/

24 2 Onboarding and Preliminary Functionality Training

• The behaviour of the system and the associated assets can be instantly moni-
tored using Datapoints, which correspond to possibly time-varying properties
of KIS.Devices. They can be also defined as exchanged variables between a
KIS.Device and KIS.MANAGER.

• Performance of the systemand the associated assets can be periodically determined
using Datapoint-based key performance indicators (KPIs).

• It allows defining users as human beings with granted access determined by mem-
bership to a given user group.

• System behaviour and performance can be visualized using a set of time-driven
plots and aggregated charts.

• E-mail notifications pertaining to system behaviour can be predefined and auto-
matically distributed.

• A high security level is attained with Message Queuing Telemetry Transport
(MQTT),which is a standardmessaging protocol for the IoT.Moreover, designated
certificates are used for secure authentication.

Having a general overview of both hardware and software functionalities, let us pro-
ceed toonboarding, i.e., the process of linkingKIS.Deviceswith theKIS.MANAGER.
However, a preliminary step towards onboarding is to register at theKIS.MANAGER,
which can be easily realized with https://kismanager.rafi.de. Once a user company
account is created, a compulsory checklist should be verified:

• a KIS.Device,
• an M12-to-USB cable (see Table2.4),
• a computer/tablet equipped with a web browser and a USB port,
• a company account with admin user rights (see Sect. 2.3),
• WLAN access with permission credentials.

After completing the compulsory checklist, one can perform the onboarding proce-
dure:
Step 1. Connection:

1. Plug-in KIS.Device to a PC/tablet using an M12-to-USB cable.
2. The KIS.Device status LED color should change from red into yellow (see

Table2.1).
3. The KIS.Device is available in the PC/tablet as a mass storage device.

Step 2. Authentication:

1. Open https://kisme.rafi.de/en/and go to the Onboarding link.
2. Enter your login and password pertaining to KIS.MANAGER admin rights.
3. Enter your designatedWiFi parameters: SSID, password andWLAN encryption

mode.
4. Click the save button to generate onboarding.zip containing WiFi parameters

and store it onto the PC/tablet.

Step 3. Upload onboarding.zip onto the KIS.Device visible as a mass storage device.

https://kismanager.rafi.de
https://kisme.rafi.de/en/

2.2 Hierarchical Structure: From Assets and Users to Workspaces 25

Step 4. Processing onboarding.zip:

1. In progress: the status LED starts to flash in yellow;
2. Completed: the status LED lights constantly in yellow.

Step 5: Onboarding completion:

1. Under an availableWiFi connection, the KIS.Device status LED should perform
the following cycle: Yellow → Magenta → Blue → Green (see Table2.1).

2. After refreshing the KIS.MANAGER, the new KIS.Device is available in Main
menu → Assets.

•> Changing WLAN

TheWLAN data, and hence theWiFi network, can be changed on demand by simply
repeating the above Step 1–Step 5 onboarding procedure.

•> Accessing the KIS.ME demo

It is possible to previewKIS.MEperformancewithout having your ownKIS.Devices.
For that purpose, a KIS.ME demo platform was designed, which can be accessed by
performing the following steps:

1. Go to https://kisme.rafi.de/en/#demo.
2. Access the KIS.ME demo with

• Username: demo.kisme@rafi.de.
• Password: Demo1234!.

2.2 Hierarchical Structure: From Assets and Users
to Workspaces

The objective of this section is to provide a general KIS.ME-based system structure
overview. For that purpose, let us introduce a suitable nomenclature:

User group: a set of users with a predefined KIS.MANAGER rights level,
Asset group: a set of assets,
Workspace: a selected part of the system, which inherits its desired set of assets.

From the above definitions, it is evident thatWorkspace andAsset group can be some-
how perceived as synonyms. Indeed, while going to Main menu → Asset groups,
one can see the viewwhich is portrayed in Fig. 2.6. Thus, all system assets associated

https://kisme.rafi.de/en/#demo

26 2 Onboarding and Preliminary Functionality Training

Fig. 2.6 Asset groups

with all KIS.Devices are contained in the inventory asset groupMy devices. KIS.ME,
which makes it possible to arrange five workspaces (see the column Definition in
Fig. 2.6) may inherit the assets contained in the inventory asset group.

•> Adding asset groups

The current licence model allows six asset groups, i.e., My inventory, Workspace
1–Workspace 5. In the prospective licence models, it will be possible to add new
groups.

Once Asset groups are defined, it is possible to proceed to User groups, which
can be reached through Main menu → User groups. As can be seen in the col-
umn Description in Fig. 2.7, there are four predefined user groups: Admin, Installer,
Operator and Observer, possessing various rights and permissions (see Sect. 2.3 for
details). Thus, a single user may belong to these groups, which strictly defines rights
and permissions. On the other hand, all five workspaces can also be perceived as user
groups.

•> User group membership

A single user may belong to multiple user groups, which define rights and permis-
sions. This also means that he can belong to multiple user groups associated with
workspaces, which clearly determine access to the desired asset groups.

2.2 Hierarchical Structure: From Assets and Users to Workspaces 27

Fig. 2.7 User groups

Fig. 2.8 KIS.ME
hierarchical structure

Finally, the KIS.ME hierarchical structure can be expressed using Fig. 2.8. Thus,
the objective of the subsequent section is to provide a concise overview pertaining
to rights and permissions acting inside this structure.

28 2 Onboarding and Preliminary Functionality Training

2.3 Rights and Permissions

Let us start with four predefined user groups (see Fig. 2.7), which are initially called
Admin, Installer,Operator andObserver. Their concise overview is given inTable2.5,
which uses the following nomenclature:

Access: the user has access to a given feature;
Add/delete: the user is able to add and/or deleted a given feature;
Manage: the user is able to manage the properties of a given feature;
View: the user is able to view a given feature.

•> Names and permissions of predefined user groups

It should be noted that the initial names of predefined user groups can be modified.
Alterations can be also performed with respect to their permissions (see Fig. 2.14).

2.3.1 User Management

The process of adding a user is very intuitive but requires access with admin rights
(see Table2.5). Under such a condition, adding a new users and assigning them the
desired rights boils down to the following steps:

1. Go to Main menu → User management → Users.
2. Push the Create new user button.
3. In theMaster data tab (see Fig. 2.9), provide e-mail, language (locale), time zone,

full name, and initial state.

•> Initial state

The Initial state field determines whether the new user must agree (terms of accep-
tance pending) to an end user license agreement or whether this can be omitted and
the user can be active immediately (Active).

4. In the User groups tab (see Fig. 2.10), push the Assign to User Groups button.
5. By selecting the desired checkboxes, assign a user to a predefined group

(Admin, Installer, Operator, Observer; cf. Table2.5) and to desired workspaces
(Fig. 2.11).

2.3 Rights and Permissions 29

Table 2.5 Rights of predefined user groups

Rights Admin Installer Operator Observer

Add/delete assets

Manage
permitted assets

x x

Access to all
asset groups

x x

Access to
permitted asset
groups

x x x x

Add/delete users x

Add/delete
dashboards

x x

Manage
permitted
dashboards

x x x

View permitted
dashboards

x x x x

Add/delete digital
twins

x x

Manage
permitted digital
twins

x x x

Add/delete CDPs
and/or KPIs

x x

View CDPs
and/or KPIs

x x x x

Add/delete e-mail
templates

x

Manage
permitted e-mail
templates

x

Add/delete rules
in rule engine

x x

Manage rules in
rule engine

x x

View rules in rule
engine

x x x x

30 2 Onboarding and Preliminary Functionality Training

Fig. 2.9 Creating a new
user: master data

•> Admin and workspaces

Irrespective of the workspaces being assigned, a user with admin rights has access
to all of them (see Table2.5).

6. After pushing the Save button, the user will receive an e-mail that contains a link
which enables providing a password.

Finally, anymodification pertaining to an existing user can be realized with the above
procedure. However, instead of Step 2, an existing user has to be selected from the
available user list.

2.3 Rights and Permissions 31

Fig. 2.10 Creating a new
user: user groups

Fig. 2.11 Assigning a user
to user groups

32 2 Onboarding and Preliminary Functionality Training

Fig. 2.12 User group data
sheet

2.3.2 User Groups and Workspace Management

Asmentioned in the preceding section, each user can belong to multiple user groups.
The permissions of a given user group to another one can also be freely defined.
Indeed, while going to Main menu → User management → User groups, one can
see the view portrayed in Fig. 2.7. Subsequently, by selecting any group, e.g., admin,
one can see the view shown in Fig. 2.12, which contains essential details about this
group. By selecting the Edit button , one can see the view presented in Fig. 2.13.
As can be observed, there are two tabs:

Info: it contains the name, description and other descriptive parameters of a group;
User Groups with Access Permissions: it pertains to the list of user groups for
which a given access group has access permission (see Fig. 2.14).

•> Assigning users to a group

It should be mentioned that by proceeding to Main menu → User management →
User Groups and then selecting a desired group, one can see the view portrayed in

Fig. 2.12. By pushing the Assigned Users button , it is also possible to edit the
user assignment.

2.4 Asset Management 33

Fig. 2.13 Editing a user
group: info

2.4 Asset Management

The objective of the preceding sections was to perform a suitable introduction to the
hierarchical KIS.ME structure along with the KIS.Device onboarding procedure. As
a result of performing onboarding on a set of assets, one can see a view similar to that
presented in Fig. 2.15. Indeed, it can be easily accessed with Main menu → Assets.
This sample view indicates that there are eightKIS.Devices, i.e., fourKIS.BOXes and

34 2 Onboarding and Preliminary Functionality Training

Fig. 2.14 Editing a user
group: user groups with
access permissions

four KIS.LIGHTs. It can be also immediately deduced (see the Connection column)
that, except for KIS.BOX 0 and KIS.LIGHT 3, all KIS.Devices are connected with
KIS.MANAGER via dedicated WiFi(s). Subsequently, by selecting a sample asset,
e.g., KIS.BOX 1, one can see the view presented in Fig. 2.16. The objective of the
subsequent part of this section is to perform essential asset management concerning

• changing the name of the asset,
• assigning the asset to asset groups,
• obtaining information about current status of an asset.

Let us start with the first task by pushing Data Sheet button . As a result, the view
presented in Fig. 2.17 is obtained. Subsequently, the Master Data edit button can
be used to change the name of the asset as shown in Fig. 2.18. Let us proceed to the
second task, which pertains to assigning KIS.BOX 1 to desired asset groups. For
that purpose, the Asset groups tab should be selected as shown in Fig. 2.19. Finally,

2.4 Asset Management 35

Fig. 2.15 Asset view

Fig. 2.16 Asset view: KIS.BOX 1

the assignment process reduces to pushing the Assign to Asset Groups button and
selecting the desired asset groups as depicted in Fig. 2.20. The process of unassigning
an asset from the asset group can be performed in a similar fashion. Indeed, it is
enough to check a desired checkbox and push the Unassign button.

36 2 Onboarding and Preliminary Functionality Training

Fig. 2.17 Data sheet of
KIS.BOX 1

2.4 Asset Management 37

Fig. 2.18 Changing the
asset name

•> Group relationship graph

The relationship between an asset and the associated asset groups can be easily
visualized. Indeed, in Fig. 2.17, one can find the Group relationship graph button ,
which can be used to visualize an associated graph. Such a sample graph is portrayed
in Fig. 2.21.

The last task pertains to obtaining information about detailed parameters of an

asset by pushing the Info button (see Fig. 2.16). The above parameters cover the
device information divided into the following groups:

38 2 Onboarding and Preliminary Functionality Training

Fig. 2.19 Asset and the
associated asset groups

Fig. 2.20 Assigning asset
groups

2.5 Dashboards and Widgets 39

Fig. 2.21 KIS.BOX 1:
group relationship graph

Hardware: type (KIS.BOX/KIS.LIGHT), part number, serial number, data matrix
code, MAC address, hardware revision,
Software: OS version, application version, microcontroller firmware version,
Network: WiFi SSID, WiFi signal strength, WiFi channel, IP address, subnet,
gateway,
Firmware update: a set of detailed parameters including the update status,
Certificate: the certificate expiration date of a KIS.Device.

2.5 Dashboards and Widgets

The view presented in Fig. 2.16 is divided in the so-called Dashboards, which are
defined as an overview pages for an asset and/or asset groups. Dashboards can be

managed by pushing the Edit dashboard button . After selecting this option, one
can perform one of the following tasks (see Fig. 2.22):

• add a new dashboard,
• design or edit an existing dashboard.

The first one is very intuitive and does not need any further explanation as it
reduces to providing the name of a new dashboard. As a result, the dashboard is
automatically created and displayed as a new tab in the asset view. Thus, let us
proceed to designing a dashboard. Each one is composed of widgets. A widget is
a component of the interface which makes it possible to perform a desired action.
There are nine available widget types, which can be characterized as follows (see
Fig. 2.23):

• Digital twin,
• Info,
• Datapoint Chart,
• Data Sheet,

40 2 Onboarding and Preliminary Functionality Training

Fig. 2.22 Dashboard design

Fig. 2.23 Asset: nine widgets

2.6 Digital Twin Design 41

• KPI Single Value,
• KPI Aggregated Chart,
• KPI Single Value Column,
• KPI Pie Chart,
• KPI Single Period Chart.

The first four widgets can be directly used for digitalization of KIS.Devices as
well as the monitoring and analysis of their behaviour. The remaining five widgets
require suitable prepossessing using KPIs, which are discussed in Sect. 4.1.2.

2.6 Digital Twin Design

The objective of this section is to introduce the Digital twin widget along with its
essential functionalities. The digital twin can be defined as a KIS.MANAGER-based
virtual counterpart of a KIS.Device, which is connected to the real one through dedi-
cated WiFi. A graphical representation of both KIS.Device digital twins is presented
in Fig. 2.24. Now, let us proceed to digital twin design. For that purpose it is necessary
to go to Main menu → Assets and select the desired asset, e.g., KIS.BOX 1. Subse-

quently, the Edit dashboard button should be used and then the Addwidget button
can be employed, resulting in the view portrayed in Fig. 2.23. Finally, the digital twin
design boils down to selecting an appropriate widget and applying the resulting dash-
board changes. This produces in the dashboard view presented in Fig. 2.25. The same
procedure can be performed for any KIS.LIGHT, e.g., KIS.LIGHT 1. As a result, the
digital twin presented in Fig. 2.26 is obtained. Irrespective of the KIS.Device being
used, it can be noticed that the actual values of both digital inputs (GPIO 3, GPIO
4) and outputs (GPIO 1 and GPIO 2) are given as well. In particular, a 0 binary state
is signified by Off while 1 is denoted by On. Moreover, their switching frequency,
expressed in mHz, can be observed as well. As detailed in Sect. 2.1, the possible
operational LED colors are limited to the ones provided in Table2.2. As shown in
Figs. 2.27–2.28, the digital twins allow changing the color of the operational LEDs
by simply selecting the desired one and then pressing the Set button. Note also that
a given operational LED may be flashing or blinking, which can be achieved via the
Flashing checkbox. It should be also noted that the digital twins display the current
state of the operational LEDs, which can evolve in various ways, e.g., due to the
appropriate rules implemented within Rule engine (see Sect. 2.9).

Time drive

Let us perform a simple change of theKIS.BOX1 state pertaining to its second button
operational LED color (cf. Button 2 in Fig. 2.28). It can be realized as follows:

1. Select the Button 2 color as blue.
2. Press the Set button.

42 2 Onboarding and Preliminary Functionality Training

Fig. 2.24 KIS.LIGHT and KIS.BOX digital twins

Fig. 2.25 Digital twin of KIS.BOX 1

Fig. 2.26 Digital twin of KIS.LIGHT 1

3. Wait a moment.
4. Select the Button 2 color as black.

After this simple procedure, one can press the Start time drive button . This allows
monitoring or reconstructing historical states of KIS.Devices, which can be realized
according to Fig. 2.29.

2.6 Digital Twin Design 43

Fig. 2.27 Changing the KIS.LIGHT operational LED color

Fig. 2.28 Changing the KIS.BOX operational LED color

44 2 Onboarding and Preliminary Functionality Training

Fig. 2.29 KIS.BOX 1 time drive

The objective of the preceding sections was to introduce the reader into essential
subjects related to asset and user management. The subsequent part aims at going
into details pertaining to the description of the current asset state using the concept
of Datapoints.

2.7 Datapoints: Plotting and Storing Data

Datapoints can be perceived as links between KIS.Devices and KIS.MANAGER.
They can be easily accessed through Main Menu → Assets → KIS.Device → Dat-
aPoints, and can be of different types, which are listed in Table2.6.

Table 2.6 Datapoint types

Type Description

Boolean A logical value, i.e., either true or false

Long An integer value, e.g., 24

Double A double precision floating point value, e.g.,
3.14

Text A character string, e.g., #0000FF

2.7 Datapoints: Plotting and Storing Data 45

•> Important

From the software engineering viewpoint, Datapoints can be perceived as read only
variables, which can be further processed and analysed. The only restrictions are the
following:

• Neither logical nor numerical operations on the Text type Datapoints are allowed,
and hence they can only be stored or visualized.

• No numerical operations can be performed on the Boolean type Datapoints; how-
ever, this limitation can be easily tackled with the If[] command (see A.16).

Datapoints are processed in real time (limited by the data transfer rate), and hence
their values depend on the current state of aKIS.Device.A full list ofDatapoints along
with their simple sample applications is provided in Appendix B. The evolution of
Datapoints can be easily observed by going to Main menu → Assets → KIS.Device

and thenpressing theDatapoints button .As a result, the viewpresented inFig. 2.30
is obtained. Subsequently, by selecting the desired Datapoints, their time evolution
can be graphically observed in a dedicated plot. This process is illustrated in Fig. 2.31.
A similar functionality can be directly obtained within the KIS.Device dashboard.

Indeed, by proceeding to the dashboard, i.e., by pressing the Dashboard button

and then the Edit dashboard one , it is possible to add one of the widgets (Add
widget button) presented in Fig. 2.23. Finally, to achieve the desired functionality,
a Datapoint Chart is incorporated within the dashboard. Its configuration requires
selecting a Datapoint (see Fig. 2.32), providing a headline of the figure as well as the
plotting interval. After this preliminary setup, one can proceed to defining the plot
options, which can be realized according to Fig. 2.33. Apart from these, one can set
the plot color as well as define the axis properties (cf. Fig. 2.34):

Show axis: enable/disable an axis;
Scale axis: an axis may have a limited range. That can be time-varying, which can
be realized by assigning a suitable Datapoint;
Show Min/Max: show minimum and maximum values of the data being plotted.

Apart from the above features, it is possible to define Thresholds over/below
which the plot color will be changed (see Fig. 2.34).

•> Multiple plots

The datapoint Chart widget allows presenting multiple plots, which can be individ-
ually managed using options and properties described in this section.

46 2 Onboarding and Preliminary Functionality Training

Fig. 2.30 KIS.BOX 1 datapoints

Fig. 2.31 KIS.BOX 1 datapoints’ trend

Fig. 2.32 Datapoint chart:
selecting a datapoint

2.7 Datapoints: Plotting and Storing Data 47

Plot style stairs linear shaded stairs shaded linear
Point style line circle square triangle
Line style solid dotted dash-dot dashed

Fig. 2.33 Datapoint chart: plot options and their interpretation

Fig. 2.34 Datapoint chart: axis and colors

48 2 Onboarding and Preliminary Functionality Training

Fig. 2.35 Datapoint chart:
an example

Practical example

The illustrative example being considered aims at realizing the following steps:

1. Go to the KIS.BOX 1 dashboard.
2. Add a new Datapoint Chart widget.
3. Select the button1ColorKpiDuration Datapoint.
4. Set the following plot options:

• Plot style: shaded stairs,
• Point style: circle,
• Lines style: solid.

5. Set the plotting interval to 10min.
6. Save the dashboard with the new widget.
7. Observe the current value of the Datapoint and verify it with Table2.2.
8. Wait a moment, change the KIS.BOX 1 operational LED color to blue, verify

the current value of the Datapoint and compare it with Table2.2.

The obtained results are shown in Fig. 2.35. Let us proceed to check the obtained
results with Table2.2. Initially, the KIS.BOX Button 1 operational LED color was
black, and hence one can see the line at the level of 2. Similarly, after a moment of
time, the color was set to blue, which corresponds to the 0-valued point.

•> Storing and analysing data

As shown in Fig. 2.36, additional features of the Datapoint Chart are as follows :

2.8 Let Us Go to Workspaces: An Introductory Example with the Floorplan Widget 49

Fig. 2.36 Datapoint chart:
storing and analysing data

Download CSV: the data can be stored as a CVS file, with the first column being
a time stamp and the remaining columns corresponding to the values of the asso-
ciated Datapoints;
Analyze in DP-App: this feature moves the user to the Datapoint view like the one
presented in Fig. 2.31.

2.8 Let Us Go to Workspaces: An Introductory Example
with the Floorplan Widget

The objective of this section is to introduce a crucial feature of asset groups concern-
ing the possibility of visualizing the system floorplan. It can be simply defined as
a graphical representation of the workshop. The floorplan is virtually implemented
within KIS.MANAGER using the Floorplan widget. To access it, it is necessary to
go to Main menu → Asset Groups, which results in the view presented in Fig. 2.37.
Subsequently, the desired asset group has to be selected, e.g., Workspace 1.

•> Floorplan vs. assets

The floorplan can only contain the assets which are assigned to a given group. For a
comprehensive description pertaining to asset management, the reader is referred to
Sect. 2.4. Alternatively, it is possible to perform this task directly from a workspace

by simply pushing the Assigned Assets button . Subsequently, the following steps
should be realized:

50 2 Onboarding and Preliminary Functionality Training

Fig. 2.37 Asset groups

1. Push the Edit assigned assets button .
2. Push the Add assets to this group button.
3. Select the desired assets and add them to the group.

Note that the process of removing assets from a group can be realized in an analogous
way.

After selecting the workspace, e.g., Workspace 1, one can see the view presented
in Fig. 2.38. Similarly as in Sect. 2.5, dashboards can be managed by pushing the

Edit Dashboard button . After selecting this option, it is necessary to push the
Add widget button, which results in the view presented in Fig. 2.39. However, the
resulting set of widgets is different than the one described in Sect. 2.5 (see Fig. 2.23).
Indeed, there are the following nine widgets:

• Floorplan,
• Datapoint Chart,
• Data Sheet,
• Aggregation,
• KPI Single Value,
• KPI Aggregated Chart,
• KPI Single Value Column,
• KPI Pie Chart,
• KPI Single Period Chart.

The first three widgets can be directly used for digitalization of asset groups as well
as the monitoring and analysis of their behaviour. The remaining five require suitable
prepossessing using KPIs, which are discussed in Sect. 4.1.2.

Let us start by selecting the Floorplan widget. This requires an appropriate graph-
ical representation of the real floorplan in the form of an SVG file. Such a kind of

2.8 Let Us Go to Workspaces: An Introductory Example with the Floorplan Widget 51

Fig. 2.38 Asset groups: workspace 1

Fig. 2.39 Workspace: nine widgets

52 2 Onboarding and Preliminary Functionality Training

Fig. 2.40 Floorplan widget: an initial configuration

files employs a two-dimensional vector graphic format created by the World Wide
Web Consortium. It expresses images with a text format that is based on XML.
There are plenty of free and commercial tools which can be used for preparing a
floormap using the SVG format. A good representative example is the freely avail-
able Inkscape package [1]. Having an SVG-based floorplan, it possible to use the
Floorplan widget. Its initial configuration reduces to providing a desired Headline
and the above-mentioned SVG image. As a result, the view portrayed in Fig. 2.40
is obtained. Subsequently, either all or selected assets can be introduced within the
floorplan. Let us proceed with selected assets. To perform this action, it is neces-
sary to use the Add widget button (cf. Fig. 2.40). The desired assets can be added as
depicted in Fig. 2.41. Finally, the assets (KIS.BOX1 andKIS.LIGHT 0) can be freely
located within the floorplan, which results in the dashboard presented in Fig. 2.42.

•> Asset group time drive

Similarly as in Sect. 2.6, it is possible monitor or reconstruct historical states of the
asset group. This can be easily realized by pressing the Start time drive button (cf.
Fig. 2.38).

2.8 Let Us Go to Workspaces: An Introductory Example with the Floorplan Widget 53

Fig. 2.41 Floorplan widget: adding assets

Fig. 2.42 Floorplan widget within the dashboard

54 2 Onboarding and Preliminary Functionality Training

2.9 Let Us Rule: Managing Rules Within a Workspace

A rule-based system can be perceived as a way of transforming a human expert’s
knowledge into an automated framework [2, 3]. For the purpose of KIS.ME,
such a framework is called Rule engine. On the other hand, it can be seen as a
KIS.MANAGER functionality, whichmakes it possible to implement IF-THEN rules
governing interactions between assets. Thus, the rule-based system can be simply
designed using a set of assets and a set of rules dictating their behaviour. In KIS.ME,
rules are exemplified as a set of IF-THEN statements labelled with a unique name:

rule name: IF antecedent THEN consequent. (2.1)

Generally, a rule may have multiple antecedents linked by or and/or or operators.
Similarly, it may have multiple consequences. For example,

rule 1: IF A is black and C is white or X is green THEN

A is white, B is black. (2.2)

Note that the antecedent of a rule possesses two parts:

1. a linguistic object (LO),
2. the value of the linguistic object.

The linguistic object is linked with its value through various operators, e.g., is, or
mathematical operators:≤,<, etc. Since KIS.ME operates on KIS.Devices, LOs can
be designed either with KIS.BOXes or KIS.LIGHTs, which yields the following:

KIS.Device | Status | Operating Mode: it expresses functional access of a KIS.
Device to WiFi and it can be either Online or Offline;
KIS.Device | GPIO | GPIO No: it corresponds to the logical status of a selected
GPIO, either On (High) or Off;
KIS.BOX | Button No | Button No Color: it expresses the color of the button oper-
ational LED, which can take a value from Table2.2 with an additional Boolean-
valued Flashing option;
KIS.LIGHT | LED | LED Color: it expresses the color of the operational LED,
which can take a value from Table2.2 with an additional Boolean-valued Flashing
option.

There are two operators linking LOs with their values:

EQUAL: checks if an LO has a given value;
NOT: checks if an LO does not have a given value.

Subsequently, a consequent can be defined as an Action, which can assign a value
to one of the above-listed LOs except for the first one, i.e., KIS.Device | Status
| Operating Mode. Another restriction is that only digital outputs can be set, i.e.,
KIS.Device | GPIO | GPIO 1 and KIS.Device | GPIO | GPIO 2. The above actions

2.9 Let Us Rule: Managing Rules Within a Workspace 55

should perceived as the ones acting on a device. An action can also be associated
with sending a predefined notification e-mail.

•> Notification templates

A predefined notification e-mail is based on a notification template. Such a template
can be defined by a user with admin rights (cf. Table2.5) by simply going to Main
menu → Portal Admin → Notification Templates. As a result, by using the Create
new notification template button , a notification template editor is obtained, which
is presented in Fig. 2.43. The crucial features of such a template are as follows:

Name: uniquely identifies a template within Rule engine actions;
Subject: stands for the title of a predefined e-mail;
Message: constitutes the body text of the predefined e-mail.

Both Subject and Message can be conveniently designed using a set of variables,
which can be accessed after pushing the Add variables... button. The meaning of the
crucial parameters should be interpreted as follows:

asset.name: the name of a KIS.Device,
asset.properties.type: either sBox or sLight,
event.key: EMAIL_ACTION,
event.timestamp?datetime: the date and time of an event.

Before proceeding to designing a sample rule, a set of suitable definitions has to
be provided:

Conditions: the set of antecedents merged with and/or operators,
Triggers: the set of antecedents merged with or operators,
Actions: the set of consequents.

Under the above definitions, triggers can be perceived as necessary conditions for
performing a Rule engine-based inference. Additionally, triggers can be formed with
all of the above-defined logistic objects. However, they can also use a linguistic object
associated with pressing the KIS.BOX button. Unlike conditions, triggers verify if
the value of a linguistic object has given instants, e.g., a button is pressed. Thus, a
full list of triggers for linguistic objects is formed by extending the above-defined
one with what follows:

KIS.BOX | Button No | Pressed: it expresses the fact of pressing the KIS.BOX
button.

Apart from the above functionalities, triggers have also optional settings:

after x times: the trigger is fired when a given value of a linguistic object has been
counted x times;

56 2 Onboarding and Preliminary Functionality Training

Fig. 2.43 Notification templates

Fig. 2.44 Sample trigger with optional settings

after x minutes: the trigger is fired after x minutes from the time when a given
value of a linguistic object has been recorded;
after x hours: the trigger is fired after x hours from the time when a given value of
a linguistic object has been recorded.

Figure2.44 shows a sample trigger, which is fired after pressing the KIS.BOX button
two times. It should be also pointed out that this kind of trigger has an internal
counter, which is automatically reset after reaching a given threshold. It can be also
reset manually after using the Trigger details link along with the Reset button (cf.
Fig. 2.45). Finally, let us note that such a manual reset is not available for the after x
minutes and after x hours optional settings.

2.9 Let Us Rule: Managing Rules Within a Workspace 57

Fig. 2.45 Trigger reset

Sample rule

The objective of this example is to define a rule which satisfies the following require-
ments:

Environment: It is defined with Workshop 1 as well as employs KIS.BOX 1 and
KIS.LIGHT 0.
Triggers: The triggers are associated with pressing KIS.BOX 1 Button 1 or
Button 2.
Conditions: The operational LED color of KIS.LIGHT 0 can be either black or
green and its status should be online.
Actions: The associated actions are as follows:

• change the operational LED color of KIS.LIGHT 0 to green;
• send a notification email to john.doe@controlintech.pl with the sub-
ject and title “Color change” while the body of the message being KIS.Device
color has changed.

Let us start with defining an email notification template by going to Main menu →
Portal Admins → Notification Templates. As has already been discussed, such a
template can be designed according to Fig. 2.46. Before proceeding to Rule engine
definitions, it can be observed that the above conditionsmay have a visible effect if the
KIS.LIGHT 0 operational LED color is either black or green. Thus, an appropriate
initial condition has to be imposed by going to Main menu → Assets, selecting
KIS.LIGHT 0 and using its digital twin to set an appropriate operational LED color
(Sect. 2.6). Under the above preliminary setup, triggers, conditions and actions can
be intuitively defined by pushing the Rule engine button (cf. Fig. 2.42). Subsequently,
the Create rule button should be used to open the Rule engine editor and provide the
required ingredients, i.e., the name of the rule, triggers, conditions and actions. As a
result, the view presented in Fig. 2.47 is obtained. After saving the rule, it is activated
and operates within KIS.ME.

58 2 Onboarding and Preliminary Functionality Training

Fig. 2.46 Notification template: “change color”

•> Rule interactions

As can be expected, each asset group/workspace has its own set of rules. However,
when sharing assets between workspaces, the users must be cautious about their
possible unappealing interactions.

2.10 State-Space Modelling

The objective of this section is to introduce the concept of the system state, which is
a set of variables that can be used to describe any past and future system behaviour.
Consequently, the system state-space is a space of admissible state values. Subse-
quently, the state-space model is defined as a set of rules which enables cyclical
transition between the consecutive states.

2.10 State-Space Modelling 59

Fig. 2.47 Sample rule

Traffic lights state-space model

To illustrate the concept of the state-space model, let us employ a traffic lights
example. In this case, the transition rules can be clearly visualized using Fig. 2.48.
The objective of the remaining part of this example is to attain a similar functionality
using KIS.ME. In particular, the following features should be achieved:

Environment: It is defined within Workshop 1 and employs KIS.BOX 1, hence
the traffic lights system presented in Fig. 2.48 is reduced to one KIS.BOX, which
changes the colors of its operational LEDs to mimic the behaviour of the traffic
lights system.
Triggers: A trigger is associated with pressing KIS.BOX 1 Button 2.
Conditions: The conditions are simply defined by the current state, which is one
of those presented in Table2.7;
Actions: The associated action is simply a consecutive state.

It should be noted that each state described in Table2.7 is uniquely defined, which
makes it possible to form the state-space model using a set of four rules. A sample
rule evolving the system from state 1 to state 2 is provided in Fig. 2.49. Moreover,

60 2 Onboarding and Preliminary Functionality Training

Fig. 2.48 Traffic lights

Table 2.7 KIS.BOX-based states

State KB operational LED 1 KB operational LED 2

1 Red Black

2 Red Yellow

3 Green Black

4 Green Yellow

Fig. 2.49 Sample traffic lights rule

the initialization of the system requires that KIS.BOX 1 operational LEDs be in one
of the quadruple of states defined in Table2.7. This can be easily achieved using the
KIS.BOX digital twin (see Sect. 2.6).

2.11 Mastering Rule Management: Completeness and Consistency 61

2.11 Mastering Rule Management: Completeness
and Consistency

The objective of the two preceding sections was to provide a concise introduction
into Rule engine design and the inference mechanism. However, for more complex
systems, the number of rules will proliferate. Thus, it is customary to have a tool
capable of checking their completeness and consistency. For that purpose, the cele-
brated decision table [2] is introduced. It operates on Boolean-valued conditions,
and hence it is beneficial to recall the essential logical operators provided in their
priority order:

¬ negation,
∧ conjunction,
∨ disjunction,

⇒ implication,
⇔ equivalence.

The behaviour of the above operators is explained in Fig. 2.50. It can be also observed
that the implication and equivalence can be expressed by

a ⇒ b can be calculated with ¬a ∨ b;
a ⇔ b can be obtained with (a ⇒ b) ∧ (b ⇒ a).

Therefore, a typical way of expressing a logical implication is IF a THEN b. Thus,
according to the truth table for a ⇒ b, if a is false then it does not matter what b is,
and hence the implication is true. Similarly, if a and b are true then the implication is
true as well. The last case, i.e., when a is true and b is false, can be explained using
the following example:

IF sin(z) = 0 THEN z = 0.

Such an implication is false as z = 0 is not the only value for which sin(z) = 0. Thus,
the implication which is true should be

IF sin(z) = 0 THEN z = kπ, with k being an integer value.

To summarize these preliminaries, two crucial definitions have to be provided:

Tautology: a statement that is true for every possible interpretation, e.g.,
(KIS.Box|Status|Operating Mode is Offline) or (KIS.Box|Status|Operating Mode
is Online);
Contradiction: a statement that is false for every possible interpretation, e.g.,
(KIS.Box|Status|OperatingMode is Offline) and (KIS.Box|Status|OperatingMode
is Online).

Indeed, it is obvious that in the first case the statement is always true as the KIS.BOX
status can be either Offline or Online. Contrarily, it is evident that the second state-

62 2 Onboarding and Preliminary Functionality Training

Fig. 2.50 Truth tables

ment is always false as the KIS.BOX status cannot be Offline and Online simultane-
ously. Thus, it is evident that one should avoid both cases while designing rules with
KIS.ME.

2.11.1 Transforming Conditions

A preliminary step for implementing a rule base is to collect all rules and check
if it is possible to simplify them. For that purpose, a standard set of transformation
strategies can be used:

double negation: ¬¬a = a,
commutativity of conjunction: a ∧ b = b ∧ a,
commutativity of disjunction: a ∨ b = b ∨ a,
associativity of conjunction: (a ∧ b) ∧ c = a ∧ (b ∧ c),
associativity of disjunction: (a ∨ b) ∨ c = a ∨ (b ∨ c),
distributivity of conjunction: (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),
distributivity of disjunction: (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c),
idempotency of conjunction: a ∧ a = a,
idempotency of disjunction: a ∨ a = a,
De Morgan’s law: ¬(a ∧ b) = ¬a ∨ ¬b,
De Morgan’s law: ¬(a ∨ b) = ¬a ∧ ¬b,
contraposition law: a → b = ¬b ⇒ ¬a.

Having the above strategies, one can simply associate logical variables with
antecedents (see Sect. 2.9). For that purpose, it is suggested to use the following
nomenclature:

a := LOs EQUAL Value, (2.3)

¬a := LOs NOT Value. (2.4)

Figure2.51 presents two sample antecedents which can be associated with a logi-
cal variable a and its negation ¬a. Having such variables, it is easy to write and
operate on conditions in a consistent way. Another important aspect pertains to an
appropriate use of parentheses. Indeed, due to the operators’ priority, a ∨ (b ∧ c) can

2.11 Mastering Rule Management: Completeness and Consistency 63

Fig. 2.51 Sample a (top) and ¬a (bottom)

Fig. 2.52 Sample a ∧ (b ∨ c) (a: top, b: middle, c: bottom)

Fig. 2.53 Implementation of ¬a ∨ ¬b

be simplified to a ∨ b ∧ c. Contrarily, a ∧ (b ∨ c) differs from a ∧ b ∨ c. This can
be clearly observed within Rule engine, which uses different right square brackets
for indicating appropriate priorities. Thus, a ∧ (b ∨ c) can be exemplified with the
conditions portrayed in Fig. 2.52.

Sample simplification

Let us suppose that there are two logical variables defined as

a := KIS.BOX 1| Button 1 | Button 1 Color EQUAL black,

b := KIS.BOX 1| Button 2 | Button 2 Color EQUAL green,

and an action must be performed when ¬(a ∧ b) (NAND operation) is true. Unfor-
tunately, such a condition is impossible to implement in Rule engine. However, it is
straightforward to observe that by applyingDeMorgan’s law it is possible to simplify
it into ¬a ∨ ¬b, which can be easily implemented in Rule engine (see Fig. 2.53).

64 2 Onboarding and Preliminary Functionality Training

Fig. 2.54 Logical expression simplification with Maxima

Table 2.8 Decision table

Condition/action r1 r2 · · · rk

Condition 1 c1,1 c1,2 · · · c1,k
Condition 2 c2,1 c2,2 · · · c1,k
.
.
.

.

.

.
.
.
. · · ·

.

.

.

Condition n cn,1 cn,2 · · · cn,k

Action 1 a1,1 a1,2 · · · a1,k
Action 2 a2,1 a2,2 · · · a2,k
.
.
.

.

.

.
.
.
. · · ·

.

.

.

Action m am,1 am,2 · · · am,k

•> Automatic simplification

There are several free and commercial packages which can be used for auto-
matic simplification of logical expressions. Maple [4] (package Logic, command
BooleanSimplify) and Maxima [5] (package logic, command
logic_simplify) are good representative examples of commercial and freely
available tools, respectively. Let us employ Maxima for the purpose of simplifying
the expression used in the preceding example, i.e., ¬(a ∧ b). The Maxima session
implementing this task is presented in Fig. 2.54.

To conclude this section, it should be pointed out that the rule

IF antecedent 1 OR antecedent 2 OR . . . antecedent n THEN Action(s) (2.5)

can be replaced by a set of n rules of the form

IF antecedent 1 THEN Action(s), (2.6)

...

IF antecedent n THEN Action(s). (2.7)

2.11 Mastering Rule Management: Completeness and Consistency 65

2.11.2 Decision Tables

The classical decision table [2, 3, 6, 7] is used to express k rules of the form

ri : IF Condition 1 and Condition 2, . . . and Condition n

THEN Action 1 and Action 2, . . . and Action m, i = 1, . . . , k, (2.8)

which can be presented using Table2.8. The internal horizontal line between con-
ditions is perceived as the and conjunction. Additionally, the double horizontal line
separates conditions and actions while the vertical ones distinguish the rules. Thus,
any rule ri can be easily reconstructed from Table2.8 to (2.8) by reading the column
corresponding to ri in a top-to-bottom order. The entries of the decision table with
respect to the conditions, i.e., ci, j , in Table2.8 are as follows:

T: if the condition must hold;
F: if the condition does not hold;
–: if the condition is ignored;

while for the actions ai, j we have

X: if the action has to be executed;
–: if the action has not to be executed.

A set of rules or a decision table have the following important features:

Redundancy: If there is a situation in which conditions of two rules with the same
actions hold, then they are called redundant ones.
Inconsistency: If there is a situation in which conditions of two rules with different
actions hold, then they are called inconsistent ones.
Completeness: For every situation there is a rule whose conditions will be satisfied.

Checking redundancy and inconsistency

Let us consider three conditions which have to be implemented using Rule engine
within Workshop 1 with KIS.BOX 1 and KIS.LIGHT 0:

Condition 1: KIS.BOX 1 | Button 1 |Button 1 Color is black;
Condition 2: KIS.BOX 1 | Button 2 |Button 2 Color is blue;
Condition 3: KIS.LIGHT 0 | LED Color | Color is green.

There are also two actions:

Action 1: KIS.LIGHT 0 | Set LED | LED Color | is black;
Action 2: KIS.LIGHT 0 | Set LED | LED Color | is blue.

Let us suppose that the above conditions and actions were used to implement three
rules, r1, r2 and r3, expressed in the form of the decision table detailed in Table2.9.
Let us consider a situation in which Condition 1 is T (true) while Condition 2 and

66 2 Onboarding and Preliminary Functionality Training

Table 2.9 Decision table with redundancy and inconsistency

Condition/Action r1 r2 r3

Condition 1 T – T

Condition 2 – F T

Condition 3 F F –

Action 1 X X –

Action 2 – – X

Table 2.10 Decision table with inconsistency

Condition/Action r11 r3

Condition 1 – T

Condition 2 – T

Condition 3 F –

Action 1 X –

Action 2 – X

Condition 3 are F (false). In such a case both rules r1 and r2 are active. Since they
have identical actions (Action 1), they are redundant, which means that they can
be merged into one equivalent rule r11 . The resulting decision table is presented in
Table2.10. Let us consider a situation in which Condition 1 and Condition 2 are T
(true) while Condition 3 is F (false). It can be easily observed that rules r11 and r3
are inconsistent because their condition sets are satisfied while they have different
sets of actions. The inconsistent rules denote the situation in which different things
may happen under the same circumstances. Indeed, two contradictory actions will
be initiated:

Action 1: KIS.LIGHT 0 | Set LED | LED Color | is black;
Action 2: KIS.LIGHT 0 | Set LED | LED Color | is blue.

To summarize, a simple rule reduction principle can stated as below.

•> Rule reduction principle

If there are two rules l and s with the same actions and identical condition entries
ci,l and ci,s except for c j,l �= c j,s , then they are replaced with a single new rule f
with a condition entry c j, f equal to “–”. Note that as “–” represents T/F, it should be
perceived as equal to both T and F.

2.11 Mastering Rule Management: Completeness and Consistency 67

Fig. 2.55 Rule r3 implemented within Rule engine

•> Implementing decision tables with Rule engine

Implementation of decision tables within Rule engine can be easily realized using
the following procedure:

1. Select the i-th rule.
2. Read the rule in order from top-to-bottom and perform the following translation:

• if an entry is equal to “T”, then introduce the condition using (2.3);
• if an entry is equal to “F”, then introduce the condition using (2.4);
• if an entry is equal to “–”, then ignore it.

As an example, let us consider rule r3 in Table2.10, which is exemplified in Fig. 2.55.

The above implementation strategy is applicable to a set of simple conditions
in the form of either (2.3) or (2.4) . However, it can be easily extended to more
advanced structures. On the other hand, the logical expressions can be simplified
using the strategies proposed in the preceding section (see, e.g., (2.5) and (2.7))
or transformed into conjunctive normal form (see, e.g., [2] for a comprehensive
explanation).

•> Rule base completeness

Having a way of checking the redundancy and consistency, it is possible to provide
a strategy for verifying the completeness of a set of rules. Since each condition
in a decision table (Table2.8) is a Boolean-valued one, this simply means that the
complete number of rules is equal to

k = 2n, (2.9)

68 2 Onboarding and Preliminary Functionality Training

where k is the total number of rules while n is the number of conditions (cf. (2.8)).
Thus, a rule should be defined for every possible situation. As an example, let us
consider the decision table presented in Table2.10. Thus, for three conditions one
can easily see that (2.9) implies that there should be k = 8 rules. Contrarily, there
are two rules in Table2.10. However, due to the use of “–”, rule r11 may have four
alternative forms:

r11 ∈
⎧
⎨

⎩

⎡

⎣
F
F
F

⎤

⎦ ,

⎡

⎣
T
T
F

⎤

⎦ ,

⎡

⎣
F
T
F

⎤

⎦ ,

⎡

⎣
T
F
F

⎤

⎦

⎫
⎬

⎭
,

while rule r2 has two alternative ones:

r2 ∈
⎧
⎨

⎩

⎡

⎣
T
T
F

⎤

⎦ ,

⎡

⎣
T
T
T

⎤

⎦

⎫
⎬

⎭
.

This clearly means that there are six rules and the decision table (Table2.10), and
hence the set of rules is incomplete. Thus, it is possible to verify (2.9) with

kr =
nr∑

i=1

2ni,− , (2.10)

where nr stands for the number of rules in Table2.8 while ni,− is the number of
instances of “–” in the i-th rule, i = 1, . . . nr . In the example presented in Table2.8,
one can easily identify what follows

• there are two rules nr = 2;
• there are two instances of “–” in rule r11 , which results in n1,− = 2;
• there is one “–” in rule r2, i.e., n2,− = 1;
• thus, (2.10) implies that kr = 22 + 21 = 6, which clearly means that kr < k and
the set of rules is incomplete.

It should be pointed out that there are situations in which rule base completeness
is not necessary. Indeed, if it is guaranteed that not all possible situations pertain to
input variables, and hence, conditions are possible, then the number of rules can be
smaller. Such a situation may occur during the state-space modelling presented in
Sect. 2.10. In such a case, the consecutive states are cyclically realized, which implies
appropriate rule order execution. Finally, it should be pointed out that triggers may
also have influence on the final number of rules. Indeed, they cause that some rules
are not fired for a given trigger setting.

2.12 Case Study: Trend Plotting and Performance Analysis 69

2.12 Case Study: Trend Plotting and Performance Analysis

The objective of the preceding three sections was to introduce Rule engine, which
makes it possible to bring a given system alive according to a predefined set of
rules. Having such features, it is possible to monitor KIS.Device performance with
Datapoints and the associated widgets described in Sect. 2.7. For that purpose, let
us reconsider the traffic lights example presented in Sect. 2.10. Let us start with
transforming Table2.7 into a decision table assuming that the initial state of the
system is (cf. Sect. 2.6)

KIS.BOX 1 | Button 1 |Button 1 Color is red;
KIS.BOX 1 | Button 2 |Button 2 Color is black.

By observing an obvious condition stating that an operational LED cannot have two
different colors simultaneously, the resulting decision table is given in Table2.11.
This implies that there is no need for implementing “F”-valued entries, which simpli-
fies the Rule engine structure. For Button 1 Color, T is equivalent to red while
F stands for green. Similarly, for Button 2 Color, T is equivalent to black while
F stands for yellow. It is straightforward to observed that there are two conditions,
and hence (2.9) implies that a complete set of rules should have four rules. This is
exactly the case. Moreover, the rules are consistent because each of them pertains
to a different set of actions. Finally, a Rule engine-based implementation of r1–r4 is
provided in Figs. 2.56, 2.57, 2.58 and 2.59. Having a fully functional system, it is
possible to design a dashboard containing

• a floorplan within Workshop 1 (cf. Sect. 2.8 for guidelines),
• a digital twin of KIS.BOX 1 implementing the traffic lights system,
• a Datapoint Chart widget containing two (cf. Sect. 2.7 for details) plots showing
the color of KIS.BOX first and second operational LEDs. This can be achieved
using

button1ColorKpiDuration,

button2ColorKpiDuration.

The resulting dashboard is presented in Fig. 2.60. Such a design allows intuitive
visualization and analysis of the behaviour of the traffic lights system. Indeed, the
plots in Fig. 2.61 correspond to the operational LED colors of the first (green) and the
second (yellow) buttons. As can be observed, both of them have two possible values
only, which can be recorded and analysed over a specified time period. In particular,
the green line switches between the red (5) and the green (3) level. Similarly, the
yellow line switches between black (2) and yellow (7).

70 2 Onboarding and Preliminary Functionality Training

Fig. 2.56 Traffic lights rule r1 implemented within rule engine

Fig. 2.57 Traffic lights rule r2 implemented within rule engine

Fig. 2.58 Traffic lights rule r3 implemented within rule engine

2.12 Case Study: Trend Plotting and Performance Analysis 71

Fig. 2.59 Traffic lights rule r4 implemented within rule engine

Fig. 2.60 Traffic lights dashboard

Fig. 2.61 Traffic lights datapoint chart

72 2 Onboarding and Preliminary Functionality Training

Table 2.11 Decision table for traffic lights

Condition/Action r1 r2 r3 r4

KIS.BOX 1 |
Button 1 |Button
1 Color

– – T F

KIS.BOX 1 |
Button 2 |Button
2 Color

T F F F

KIS.BOX 1 | Set
LED | Button 1
color is red

– – – X

KIS.BOX 1 | Set
LED | Button 1
color is green

– – X –

KIS.BOX 1 | Set
LED | Button 2
color is black

– X – –

KIS.BOX 1 | Set
LED | Button 2
color is yellow

X – – –

2.13 Training Exercises

The objective of this section is to provide a set of practical exercises which can be
used for validating the knowledge and skills gathered in this chapter. It is assumed
that the user realizing these exercises has appropriate rights and permissions. This
can be easily verified using Table2.5.

2.1 Asset onboarding and management

1. Check the availability/feasibility of the following points:

• a KIS.Device,
• an M12-to-USB cable (see Table2.4),
• a computer/tablet equipped with a web browser and a USB port,
• a company account with admin user rights (see Sect. 2.3),
• WLAN access with permission credentials.

2. Go to https://kismanager.rafi.de and log in with user company credentials.
3. Perform the onboarding procedure of KIS.Device according to the guidelines

presented in Sect. 2.1.
4. Depending on the KIS.Device type, change the name of the device to either

KIS.BOXYOURNAMEorKIS.LIGHTYOURNAME(seeSect. 2.4, Fig. 2.18).
5. Assign the KIS.Device to Workshop 1 and Workshop 2.

https://kismanager.rafi.de

2.13 Training Exercises 73

2.2 Creating a new user

Using an arbitrary e-mail address at your disposal, perform the following:

1. Create a user according to the guidelines presented in Sect. 2.3.1.
2. Give the new user installer rights (see Table2.3).
3. Assign the new user to Workspace 1 and Workspace 2.

2.3 Dashboard and digital twin design

Exercise requirements: The exercise requires access to one KIS.BOX and one
KIS.LIGHT. Proceed according to the following tasks:

1. Go to Main menu → Assets.
2. Select KIS.BOX, proceed to its dashboard and modify its name to “Sample

dashboard”.
3. Design a KIS.BOX digital twin.
4. Add Datapoint Chart to the dashboard capable of displaying Datapoints:

button1ColorKpiDuration,

button2ColorKpiDuration.

5. Using the digital twin, change arbitrarily the colors of both the first and the
second operational LEDs.

6. Record the behaviour in the Datapoint Chart and store it with a CSV file.
7. Open the CSV file in a MS Excel-like software and compare its content with

Table2.2.
8. Use the Time drive feature of the dashboard and observe KIS.BOX historical

behaviour.
9. Repeat, analogously, points 1–8 with KIS.LIGHT.

2.4 Floorplan widget

Exercise requirements: The exercise requires access to one KIS.BOX and one
KIS.LIGHT assigned to a selected workspace.

1. Prepare your own floorplan using vector graphic software (e.g., Inkscape [1])
and save it as an SVG file.

2. Add the Floorplan widget to Workspace and locate KIS.LIGHT and KIS.BOX
on it.

2.5 KIS.LIGHT ruling

Exercise requirements: completed Exc. 2.4.

1. Write a rule called rule b2r:

Triggers: KIS.LIGHT operational LED is black;
Conditions: KIS.LIGHT operational LED is black;
Actions: KIS.LIGHT operational LED is red.

74 2 Onboarding and Preliminary Functionality Training

2. Write a rule called rule r2b:

Triggers: KIS.LIGHT operational LED is red;
Conditions: KIS.LIGHT operational LED is red;
Actions: KIS.LIGHT operational LED is black.

3. Go to Main menu → Assets, select KIS.LIGHT.
4. Using the KIS.LIGHT digital twin, set its operational LED color to black.
5. Add aDatapoint Chart associatedwith KIS.LIGHT to theWorkspace dashboard,

and attach its plot to led1ColorKpiDuration.
6. Fill in the rest of Datapoint Chart configuration parameters in an arbitrary way.
7. Using the Zoom In/Out feature, observe the behaviour of the switching signal

within the last two minute.
8. What can you say about the switching frequency/period? Is it uniform?

2.6 KIS.LIGHT ruling continued

Exercise requirements: completed Exc. 2.5. Using a similar strategy like in Exc. 2.5,
perform the following:

1. Write a set of rules enabling KIS.LIGHT transition with consecutive states
described in Table2.2, i.e., Blue, Turquoise, Black, Green,Magenta, Red,White,
Yellow.

2. Using the Zoom In/Out feature, observe the behaviour of the switching signal
within the last two minutes.

3. What can you say about the transition periods?

2.7 KIS.BOX traffic lights

Exercise requirements: The exercise requires access to one KIS.BOX assigned to a
selected workspace.

1. Read and analyse the traffic light case study described in Sect. 2.12.
2. Build your own traffic light system according to the strategy described in

Sect. 2.12.
3. Analyse the transition periods. What can you say about them?

2.8 Rule simplification I

1. Analyse the rule transformation and simplification strategies presented in
Sect. 2.11.1; in particular, automatic simplification using the Maxima software,
which is presented in Fig. 2.54.

2. Install the freely available Maxima [5] software.
3. Repeat the automatic simplification process presented in Fig. 2.54.
4. Let a be a logical variable denoting the fact that KIS.BOX is online. Thus, ¬a

signifies the fact that it is offline:

• What can you say about a ∧ (¬a)?
• What can you say about a ∨ (¬a)?

2.13 Training Exercises 75

2.9 Rule simplification II

Exercise requirements:The exercise requires access to oneKIS.BOXandKIS.LIGHT
assigned to a selected workspace.

1. Let us define the following logical variables:

a := KIS.BOX | Button 1 |Button 1 Color EQUAL red,

b := KIS.BOX | Button 2 |Button 2 Color EQUAL black,

c := KIS.LIGHT | LED | LED Color EQUAL green.

2. Implement a rule with the following condition:

(a ∧ b ∧ c) ∨ (¬a) ∨ (a ∧ (¬b) ∧ c), (2.11)

taking as a trigger the pressing of the first KIS.BOX button event along with an
action:

Action: KIS.LIGHT 0 | Set LED | LED Color | is red.

Hint: Use Maxima to simplify the above logical expression.
3. What can you say about the usage of variable b?

2.10 Decision tables

Exercise requirements:The exercise requires access to oneKIS.BOXandKIS.LIGHT
assigned to a selected workspace.

1. Let us define three conditions:

Condition 1: KIS.BOX | Button 1 |Button 1 Color EQUAL red,

Condition 2: KIS.BOX | Button 2 |Button 2 Color EQUAL black,

Condition 3: KIS.LIGHT | LED | LED Color EQUAL green;

along with two actions:
Action 1: KIS.LIGHT 0 | Set LED | LED Color | is red;
Action 2: KIS.BOX | Set LED | Button 1 color | is blue;
and a trigger associated with pressing the first KIS.BOX button event.

2. The rules involving the above conditions and actions were initially developed
and described using the decision table given in Table2.12.

3. Simplify the decision table into a new one with four rules only.
4. Check completeness of the obtained decision table.
5. Implement the obtained decision table with Rule engine.

2.11 Battery assembly system

Exercise requirements: The exercise requires access to one KIS.BOX assigned to a
selected workspace.

76 2 Onboarding and Preliminary Functionality Training

Table 2.12 Initial decision table

Condition/
Action

r1 r2 r3 r4 r5 r6 r7 r8

Condition 1 T F T F T F T F

Condition 2 T T F T F F T F

Condition 3 T T F F T F F T

Action 1 – X – – – X – X

Action 2 X – X – X X X –

Table 2.13 KIS.BOX states

State KB Button 1 color KB Button 2 color Action

1 Blue Blue Can start

2 Red Blue Cell mounting

3 Green Blue Cell mounting
completed

4 Green Red Cell-controller linking

5 Green Green Mounting completed

1. Let us consider the battery system presented in Fig. 2.62.
Such a system undergoes manual assembly, which, in simplified form, can be
described by two tasks:

a. cell mounting,
b. controller linking.

Battery mounting should be realized according to the cyclically repeated states
described in Table2.13. Note that the initial state should be State 1.

2. Prepare and simplify a decision table pertaining to the states described in
Table2.13.

3. Check completeness and consistency of the obtained decision table.
4. Form a digital twin of KIS.BOX as well as an arbitrary floorplan containing

selected parts of Fig. 2.62 integrated with KIS.BOX.
5. Use the obtained decision table and implement it with Rule engine.
6. With theKIS.BOXdigital twin, set the initial KIS.BOX state to State 1 and check

if the system performs correctly (cf. Table2.13).
7. Add the Datapoint Chart widget to the Workspace dashboard, which makes it

possible to analyse the colors of the operational LEDs of both the first and the
second KIS.BOX button.

8. analyse both the historical and the current behaviour of the system. A hint: You
can also use the time drive feature of the dashboard.

2.14 Concluding Remarks 77

Fig. 2.62 Battery assembly

2.14 Concluding Remarks

The objective of this chapter was to provide a self-contained introduction to the
KIS.ME IoT platform. In particular, preliminary information about both the hard-
ware and software layers was introduced along with suitable operating procedures
for accessing KIS.MANAGER and onboarding the hardware layer. Subsequently,
a hierarchical KIS.ME structure was presented, which associates assets, users and
workspaces alongwith suitable rights and permissions. For that purpose, a systematic
set of guidelines concerning users, assets and workspace management was provided.
Such essential knowledge enabled introduction of dashboards and widgets, which
form the basis for the KIS.ME HMI interface. Concerning the widgets, particular
attention was focused on hardware digital twins as well as floorplans exemplifying
real life systems with an integrated set of assets. Such a couple was further extended
with the Datapoints chart enabling graphical visualization of system performance.
The rest of the chapter was devoted to system management using Rule engine. In
particular, it started with a concise introduction to the graphical rule building struc-
ture. Subsequently, a state-space modelling strategy was proposed, which guarantees
cyclical behaviour of the system. Finally, more advanced techniques for managing a
set of rules were introduced, which allow their simplification as well as completeness
and consistency verification. The chapter was concluded with a series of practical
exercises, which certify the knowledge provided within it.

78 2 Onboarding and Preliminary Functionality Training

References

1. Inkscape. https://inkscape.org/. Accessed 25 June 2021
2. A. Ligeza, Logical Foundations for Rule-Based Systems (Springer, Berlin, 2006)
3. C. Grosan, A. Abraham, Rule-based expert systems, in Intelligent Systems (Springer, Berlin,

2011), pp.149–185
4. Maple. https://www.maplesoft.com/. Accessed 15 July 2021
5. Maxima. https://maxima.sourceforge.io/. Accessed 15 July 2021
6. F. Alsolami, M. Azad, I. Chikalov, M. Moshkov, Decision and Inhibitory Trees and Rules for

Decision Tables with Many-valued Decisions (Springer, Berlin, 2019)
7. J.R.Metzner, B.H. Barnes,Decision Table Languages and Systems (Academic Press, NewYork,

2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://inkscape.org/
https://www.maplesoft.com/
https://maxima.sourceforge.io/
http://creativecommons.org/licenses/by/4.0/

	2 Onboarding and Preliminary Functionality Training
	2.1 Preliminaries, Registration and Onboarding
	2.2 Hierarchical Structure: From Assets and Users to Workspaces
	2.3 Rights and Permissions
	2.3.1 User Management
	2.3.2 User Groups and Workspace Management

	2.4 Asset Management
	2.5 Dashboards and Widgets
	2.6 Digital Twin Design
	2.7 Datapoints: Plotting and Storing Data
	2.8 Let Us Go to Workspaces: An Introductory Example with the Floorplan Widget
	2.9 Let Us Rule: Managing Rules Within a Workspace
	2.10 State-Space Modelling
	2.11 Mastering Rule Management: Completeness and Consistency
	2.11.1 Transforming Conditions
	2.11.2 Decision Tables

	2.12 Case Study: Trend Plotting and Performance Analysis
	2.13 Training Exercises
	2.14 Concluding Remarks
	References

