
Studies in Systems, Decision and Control 476

Marcin Witczak
Lothar Seybold
Eric Bulach
Niko Maucher

Modern IoT
Onboarding
Platforms
for Advanced
Applications
A Practitioner’s Guide to KIS.ME

Studies in Systems, Decision and Control

Volume 476

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

The series “Studies in Systems, Decision and Control” (SSDC) covers both new
developments and advances, as well as the state of the art, in the various areas of
broadly perceived systems, decision making and control–quickly, up to date and
with a high quality. The intent is to cover the theory, applications, and perspec-
tives on the state of the art and future developments relevant to systems, decision
making, control, complex processes and related areas, as embedded in the fields
of engineering, computer science, physics, economics, social and life sciences, as
well as the paradigms and methodologies behind them. The series contains mono-
graphs, textbooks, lecture notes and edited volumes in systems, decision making
and control spanning the areas of Cyber-Physical Systems, Autonomous Systems,
Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biolog-
ical Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems,
Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems,
Robotics, Social Systems, Economic Systems and other. Of particular value to both
the contributors and the readership are the short publication timeframe and theworld-
wide distribution and exposure which enable both a wide and rapid dissemination of
research output.

Indexed by SCOPUS, DBLP, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

Marcin Witczak · Lothar Seybold · Eric Bulach ·
Niko Maucher

Modern IoT Onboarding
Platforms for Advanced
Applications
A Practitioner’s Guide to KIS.ME

Marcin Witczak
Institute of Control and Computation
Engineering
University of Zielona Góra
Zielona Góra, Poland

Eric Bulach
RAFI GmbH & Co. KG
Berg, Germany

Lothar Seybold
RAFI GmbH & Co. KG
Berg, Germany

Niko Maucher
RAFI GmbH & Co. KG
Berg, Germany

ISSN 2198-4182 ISSN 2198-4190 (electronic)
Studies in Systems, Decision and Control
ISBN 978-3-031-33622-5 ISBN 978-3-031-33623-2 (eBook)
https://doi.org/10.1007/978-3-031-33623-2

© The Editor(s) (if applicable) and The Author(s) 2023. This is an Open Access publication.

OpenAccess This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribu-
tion and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons license and indicate if changes were
made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-33623-2
http://creativecommons.org/licenses/by/4.0/

It always seems impossible until it is done.
Nelson Mandela

Preface

Constant cost pressure forces companies worldwide to work continuously on opti-
mizing internal processes, and hence, improve their overall effectiveness and perfor-
mance. However, to achieve such a challenging goal, the underlying processes have
to be measurable and transparent. This means that irrespective of the considered
area, i.e., production or logistics, a set of suitable measures has to be introduced.
In production companies, the real-time and automatic recording and displaying of
parameters related to quality, performance and availability are of paramount impor-
tance. Indeed, they enable optimization in manufacturing processes and automatic
calculation of overall equipment effectiveness (OEE) indicators. Another common
approach is to employ statistical process control (SPC), which makes it possible to
get a predictable behaviour of the manufacturing system and keep its crucial parame-
ters under the constrained control limits. Irrespective of the approach being used, the
resulting data can be used, e.g., to measure and analyse downtimes, bottlenecks and
other causes of inappropriate performance. As a result, a dedicated implementation
of the process optimization and efficiency improvements can be applied.

There is no doubt that digitalization solutions from Industry 4.0 and the Internet of
Things (IoT) can be perceived as excellent candidate strategies capable of handling
the above stated issues concerning measurements and transparency. However, IoT
tools themselves can provide appropriate data only while their efficient integra-
tion and application are possible using a dedicated onboarding platform only. To
settle this issue, the book undertakes the problem of modern IoT onboarding plat-
forms for the advanced applications pertaining to manufacturing and logistics. In
particular, instead of deliberating about a possible hypothetic platforms, an existing
and efficient one is employed, which is called KIS.ME. KIS.ME (Keep It Simple.
Manage Everything), is a complete IoT solution for a simple integration in manu-
facturing and logistics. It is composed of a set of hardware devices (KIS.BOX,
KIS.IO and KIS.LIGHT), which are intuitively integrated with the cloud platform
called KIS.MANAGER. Moreover, the entire platform is an open one, and hence,
it enables communication with external services using KIS.API architecture. The
application range of KIS.ME is extensive. This is due to the intuitive implementa-
tion and visualization of a user-defined KPIs (key performance indicators), which

vii

viii Preface

constitute effective optimization measures. Thus, the potential areas of application
of KIS.ME are, e.g., manufacturing, warehouse management and logistics. Indeed,
triggering and/or ordering various tasks can be immediately and efficiently imple-
mented with KIS.ME. Such an approach translates directly to the savings of the time
and energy.

The book starts with an introductory IoT overview related to its selected scope of
applications. Subsequently, a gradual introduction to KIS.ME platform is presented,
which constitutes the base for further advanced applications including logistics,
control and maintenance of various processes. Finally, the potential of KIS.API
communication framework is utilized for an efficient communication with external
services. The book contains also training exercises, which gradually introduce the
reader into the arcane details of KIS.ME.

Berg, Germany
October 2022

Marcin Witczak
Lothar Seybold

Eric Bulach
Niko Maucher

Contents

1 Introduction . 1
1.1 IoT Overview . 1

1.1.1 Logistics and Transportation . 1
1.1.2 Industrial Applications . 4
1.1.3 Agriculture and Environmental Applications 6
1.1.4 Hospitality and Leisure Industry Applications 7
1.1.5 Healthcare . 8

1.2 Where Does KIS.ME Go? . 9
1.3 Contents of the Book . 12
References . 13

2 Onboarding and Preliminary Functionality Training 19
2.1 Preliminaries, Registration and Onboarding 19
2.2 Hierarchical Structure: From Assets and Users to Workspaces . . . 25
2.3 Rights and Permissions . 28

2.3.1 User Management . 28
2.3.2 User Groups and Workspace Management 32

2.4 Asset Management . 33
2.5 Dashboards and Widgets . 39
2.6 Digital Twin Design . 41
2.7 Datapoints: Plotting and Storing Data . 44
2.8 Let Us Go to Workspaces: An Introductory Example

with the Floorplan Widget . 49
2.9 Let Us Rule: Managing Rules Within a Workspace 54
2.10 State-Space Modelling . 58
2.11 Mastering Rule Management: Completeness

and Consistency . 61
2.11.1 Transforming Conditions . 62
2.11.2 Decision Tables . 65

2.12 Case Study: Trend Plotting and Performance Analysis 69
2.13 Training Exercises . 72

ix

x Contents

2.14 Concluding Remarks . 77
References . 78

3 Towards Logistic Applications . 79
3.1 Access Control . 79

3.1.1 Managing a Small Warehouse . 89
3.2 Two Points–One Transporter . 93
3.3 Multiple Points–One Transporter . 95
3.4 Multiple Points–Multiple Transporters . 105
3.5 Visualizing the Performance of Logistic Applications 109
3.6 Training Exercises . 111
3.7 Concluding Remarks . 114
References . 115

4 Implementing and Using Essential Statistical Process Control 117
4.1 Data Processing Definitions . 117

4.1.1 Calculated Datapoints . 120
4.1.2 Key Performance Indicators . 125

4.2 Statistical Measures: Location and Variability 132
4.3 Understanding process performance with widgets:

A practical way to statistical control charts . 135
4.3.1 Single Value Column Chart . 140
4.3.2 Single Period and Pie Charts . 141
4.3.3 Aggregated Chart . 143

4.4 Control Charts: Comparison and Analysis . 145
4.4.1 Histograms . 146
4.4.2 Control Charts with Limits . 149

4.5 Practical Example Revisited . 152
4.6 Training Exercises . 155
4.7 Concluding Remarks . 158
References . 158

5 Mastering System Monitoring and Control . 159
5.1 Defining the Performance Cost Function and Its Control 159
5.2 Monitoring the Product Rejection Rate . 165
5.3 Demerit System Control . 171
5.4 Overall Equipment Effectiveness . 177
5.5 Training Exercises . 183
5.6 Concluding Remarks . 186
References . 187

6 Towards Advanced Applications . 189
6.1 Modelling Users and Their Interactions . 189

6.1.1 Assembly Process . 189
6.2 Transportation Process . 194
6.3 Integrating Workers Within a Semi-automatic Assembly

System . 199

Contents xi

6.4 Scheduling Transportation Actions . 202
6.4.1 Health-aware and Fault-Tolerant Transportation

Scheduling . 205
6.5 Training Exercise: Work Scheduling . 207
6.6 Concluding Remarks . 208
References . 208

7 KIS.API: Towards External Communication . 211
7.1 Introduction to KIS.API . 211

7.1.1 User Registration and Authorization 212
7.2 Essential Functionalities . 214

7.2.1 Obtaining Information About Asset Groups, Assets
and Users . 214

7.2.2 Accessing Data Through Datapoints 220
7.2.3 KPIs and Calculated Datapoints . 223
7.2.4 Accessing Information About Rules 227
7.2.5 Triggering Rules from External Applications 228

7.3 KIS.API in Practice . 229
7.3.1 Feeding MS Excel with KIS.ME Data 229
7.3.2 Feeding Matlab with KIS.ME Data 231

7.4 Triggering Rules from MATLAB . 233
7.5 Websockets . 234

7.5.1 Brief Introduction to Websockets . 234
7.5.2 Obtaining a KIS.ME URI and Identifiers 236
7.5.3 Brief Introduction to STOMP . 237
7.5.4 Sample Websocket Implementations 238

7.6 Training Exercises . 247
7.7 Concluding Remarks . 248
References . 249

Appendix A: KIS.ME Commands and Their Sample Applications 251

Appendix B: KIS.ME Datapoints and Their Sample Applications 269

Appendix C: Glossary . 277

Index . 279

Acronyms

3C Communication, computation and control
CDP Calculated Datapoint
CL Centre line
GPIO General-purpose input/output
HMI Human–machine interface
IIoT Industrial IoT
IoT Internet of Things
JIT Just-in-time
KB KIS.BOX
KD KIS.DEVICE
KIS.ME Keep It Simple. Manage Everything
KL KIS.LIGHT
KPI Key performance indicator
LCL Lower control limit
LO Linguistic object
MQTT Message queuing telemetry transport
OEE Overall equipment effectiveness
PLC Programmable logic controller
PP Processing period
RFID Radio-frequency identification
SCADA Supervisory control and data acquisition
SOC State of charge
SOH State of health
SOP Standard operating procedure
SSL Secure socket layer
STOMP Simple text-oriented messaging protocol
TLS Transport layer security
UCL Upper control limit
URI Uniform resource identifier
URN Unique resource name

xiii

Chapter 1
Introduction

1.1 IoT Overview

The Internet of things (IoT) [1–3] can be formulated as a system of mutually related
objects, computing devices, machines, animals, or people, which are equipped with
unique identifiers and the possibility of transferring data over a network without
the necessity of human-to-human or human-to-computer interactions. Thus, an IoT
system consists of connected assets, which can communicate and share information.

The IoT enables assets to observe and interact with the surrounding environment,
i.e., they can hear, see, “think” and perform the required actions while sharing infor-
mation and coordinating decisions. As a result, the IoT transforms the form of these
assets from traditional into a smart one. Such a transformation is realized with sev-
eral important technologies related but not limited to computing, embedded devices,
sensor networks, communication strategies as well as Internet protocols. Figure1.1
illustrates a general IoT structure. The development of the IoT field is persistently
stimulated by its application in several domains like the following:

• logistics and transportation [4–6],
• industrial [7–9, 9, 10],
• smart buildings [11],
• agriculture and environment [12–14],
• hospitality and leisure [15, 16],
• healthcare [17].

The objective of the subsequent sections is to briefly review application of the IoT
in selected areas. In particular, the review should be perceived as a radar of the main
trends rather than a complete state-of-the art analysis.

1.1.1 Logistics and Transportation

The section aims at providing a review of selected works concerning logistics and
transportation application. The concept of smart logistics [6] and the related tech-

© The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33623-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-33623-2_1

2 1 Introduction

Fig. 1.1 General IoT architecture

nology can be clearly visualized using Fig. 1.2. As in other areas, the number of IoT
applications is proliferating constantly. This can be clearly seen in the recent survey
papers [4–6]. Nevertheless, there are general application areas, which can be split
into the following categories:

• logistics and manufacturing optimization [18–24],
• vehicle status monitoring [25–27],
• cargo status monitoring [28, 29],
• driver monitoring [30–32],
• smart warehousing [33–36].

Thus, the objective of the remaining part of this section is to provide a concise
overview of the content of those papers. In particular, in [18], the authors show how
to integrate a cloud manufacturing infrastructure with the IoT. As a result, a multi-
level dynamic adaptation of a smart logistic synchronization control is attained.
The problem of optimizing manufacturing time and energy consumption within a
reasonable computing time is proposed in [19]. Such an effect is achieved with an
IoT infrastructure coupled with self-organizing configuration mechanisms as well
as the related data-driven models. An intelligent IoT-based dispatching platform is
proposed in [20]. It couples the IoT with a multi-objective optimization model and a
two-level optimization algorithm, which uses the celebrated Dijkstra strategy along
with an ant colony approach. A method integrating the blockchain with the IoT is
proposed in [21]. The paper shows two real-life examples, which tackle the design
and deployment of a logistic and transportation system. In [22], a logistic service
supply chain coupled with an IoT-based logistic/service, information and fund flow

1.1 IoT Overview 3

Fig. 1.2 Smart logistics components

is analysed. A decomposition strategy of a complex distribution network is presented
in [23]. This is attained by splitting it into smaller nodes, communicating via the IoT.
In particular, the IoT forms the basis for a digital twin of the real system, which
enables its efficient functioning. An IoT-based real-time sensing model of logistic
resources is proposed in [24]. It enables dynamic task distribution within a logistic
system.

Several interesting strategies are also proposed in the context of vehicle track-
ing and monitoring. Indeed, the IoT equipped with a combination of GPS and
GSM/GPRS technologies is used to transmit vehicle coordinates and store them
in a designated database [25]. The IoT is also employed to vehicle traffic congestion
monitoring and control [26]. This strategy allows providing the status and density
of the traffic, both of which are transmitted using the Bluetooth technology. Apart
from vehicle tracking, a cargo monitoring system is proposed in [28], where cargo
tracking is realized with real-time data gathering and suitable information process-

4 1 Introduction

ing. Another IoT-based intelligent cargo tracking system is presented in [27]. It
overcomes the unappealing effect of losing GPS signals in environments like dense
urban areas and underground tunnels. In particular, a combination of radio-frequency
identification and a global system for mobile communication is efficiently used to
overcome the difficulties with GPS. In [29], an intelligent cargo solution is pro-
posed, which adapts the IoT to spread information processing between mobile and
distributed devices. As a result, they are communicating with themselves as well
as with a dedicated platform. The services provided by this platform include cargo
localization, rerouting and condition monitoring without human intervention.

Another important aspect pertaining to the performance and safety of logistic
and transportation systems is human factors. Indeed, it is very important to monitor
driver behaviour in real-time. For that purpose, the work [30] proposes a fusion
of the IoT and fog computing. In this architecture, all of the driver’s influential,
environmental, and vehicle factors are analysed using multiple sensors. In [31], a
connected car architecture along with an IoT architecture is used for designing a
model for driver behaviour analysis. The strategy is implemented with embedded
devices, smartphones as well as a dedicated cloud service. A driver style assessment
system is presented in [32]. It uses a dedicated IoT to assess of the driving style using
vehicle measurements like speed, acceleration, jerking, engine rotational speed as
well as driving time.

The last group of logistic and transportation systems concernswarehousemanage-
ment aswell as related forklift performance. In [33], the authors propose an IoT-based
warehousemanagement systemwith advanced data analysis and computational intel-
ligence. The system aims at increasing productivity and picking accuracy, efficiency
as well as robustness to order variability. The work [34] proposes an IoT infrastruc-
ture which combines location information with warehouse working procedures. The
system uses a proactive tracking architecture employing the iBeacon tag technology
and the concept of distributed gateways. There are also several works dealing with
forklifts, e.g., [35, 36]. In the first one [35], a forklift is equipped with an RFID
transceiver, a pallet cage as well as electromagnetic field measurement. These can
then be used for various analytical deliberations. The second work [36] tackles the
problem of improving forklift dispatching and reducing a costs associated with the
delays of loading/unloading delivery trucks. For that purpose, forklifts are equipped
with sensor nodes that enable collecting such data as the forklifts’ physical location,
usage time, bumping/collision history, and the battery status. Finally, the informa-
tion acquired is combined with inventory information and fed into a sophisticated
stochastic learning system, which generates dispatching recommendations.

1.1.2 Industrial Applications

As in the case of logistics and transportation, the number of industrial IoT application
is also proliferating constantly. This can be clearly seen in the recent survey papers

1.1 IoT Overview 5

[7–10, 37]. Generally, industrial applications can be split into the following cate-
gories:

• users and system monitoring [38–42],
• programmable logic controllers (PLCs) [43, 44],
• supervisory control and data acquisition (SCADA) [45–49],
• mobile robots [50, 51],
• cyber-physical systems [51–53].

These application areas are rather evident as it is obvious that in any kind of industry
one can easily find PLCs and SCADA systems. Thus, in [43], a device called an
IoT-PLC is proposed, which can be perceived as a PLC tailored for Industry 4.0. The
crucial feature of this device include: regulatory control capabilities, fog-computing
functionalities such as filtering and field data storage, andmultiplewireless interfaces
managed independently. It also uses digital twins of real devices, and hence it can
transparently interact with the upper cloud level. As the IIoT can be be implemented
for critical infrastructures, while attacks on them may cause significant disruptions.
In [54], the authors developed a PLC and IoT-based indoor power line communi-
cation system. Subsequently, the work [44] investigates an approach for efficient
transmission of data between the PLC and cloud platforms.

As SCADA systems are commonly used to control IIoT, the authors of [45] inves-
tigate the results of attacking them and provide some general guidelines for security
improvement. In [47], a SCADA system which is based on an open source Thinger
platform is proposed. It incorporates IoT-oriented web services with the conventional
SCADA. The IoT infrastructure includes several sensors, e.g., current and voltage
ones, which are used for control purposes. In [48], the authors investigate security
and privacy of SCADA-based IoT critical infrastructures. In particular, a dedicate
toolbox is proposed, which can tackle the above issues in an efficient way. The tool-
box incorporates such functionalities as cryptography-based access to cloud services
using identity-based cryptography and signature schemes at the fog layer. A SCADA
system which integrates the IoT technology for real-time water quality monitoring is
proposed in [49]. The developed system can determine the contamination of water,
leakage in pipelines, and some crucial water parameters, e.g., temperature, flow,
color, etc. Subsequently, an IoT platform for real-time production performance anal-
ysis and exception diagnosis is proposed in [55]. As a result, a decision tree is used
for diagnosing exceptions and providing concise information about them.

Another industrial application concerns the development of widely understood
cyber-physical systems. In particular, in [56], the authors proposed a platform and
software architecture describing features like semantic device interoperability and
entity virtualization. This IoT-oriented strategy allows locating and selecting avail-
able resources and devices. A wireless senor network-based process automation
monitoring architecture is proposed in [41]. In the approach, the monitoring infor-
mation is shared in accordance with widely used management standards. In [52], a
cyber-physical systemwhich makes it possible to virtualize manufacturing resources
is proposed. In the work [57], the authors present an IoT architecture which trans-
lates unique identifiers of physical objects to concrete network addresses. As a result,

6 1 Introduction

information about an object, e.g. its status, location, etc., can be extracted. An IoT
architecture based on the OPC.NET specification which can be employed for both
industrial applications and smart buildings is proposed in [58]. A cyber-physical
architecture for the Industry 4.0-based power equipment detection system is proposed
in [51]. It integrates many kinds of technologies, including virtual instrumentation,
detection andmeasurement, mechanical and electrical devices, network communica-
tion and mobile clients. As a result, the cyber-physical system provides coordination
among networks and physical layers. This should be realized by a suitable symbiosis
of computation, communications and control (3C) technologies. The resulting 3C
framework can perform real-time sensing, control and diagnosis of complex indus-
trial systems [59].

Finally, an IoT system capable of localizing mobile robots is proposed in [50]. It
employs neural networks (see, e.g., [60, 61]) for image processing purposes. The
resulting mechanism uses the topological mapping method to gain orientation in the
explored environment.

1.1.3 Agriculture and Environmental Applications

The number of agriculture-oriented applications is also constantly increasing, and
hence their optimization with respect to various factors, e.g., water consumption or
soil quality, is of paramount importance. Apart from agriculture, we are currently
witnessing a significant development of green energy sources. In both, these fields,
the IoT technologies [12–14] play crucial roles in fostering their further development.
Indeed, the development areas can be roughly characterized of:

• energy management [62, 63],
• air monitoring [64, 65],
• soil monitoring [66],
• water monitoring [67, 68],
• plant monitoring [69],
• solar panels [62, 70],
• wind turbines [71–73].

In [74], the authors proposed solar tracking system, which eliminates the unappeal-
ing shading effect of nearby solar panels, which is encountered in instant positioning
of solar panels. They tackle this problem through the use of an IoT-based solution
deployed in solar panels, which increases solar energy harvesting efficiency. The
work [62] proposes a new energy management strategy for solar-powered devices
that intend to power the load directly from the solar cell. This strategy avoids convert-
ing and storing the energy, which eliminates losses. Concerning wind turbines, the
work [71] uses the IoT for monitoring their behaviour. The authors of [72] analyse
recent trends in the application of the IoT in energy generation, specifically in relation
to wind energy generation. They investigate potential uses of the IoT pertaining to its

1.1 IoT Overview 7

integration with energy generation systems, monitoring and control, as well as main-
tenance and prediction. The interesting work [73] proposes an 8×8 (64) IoT-based
wind farm platform which is built using miniaturized wind turbines with wireless
connectivity. Such an IoT grid can measure wind speed and wind direction, which
is necessary for optimal wind farm management. The work highlights the potential
of using an inexpensive wireless, battery-powered IoT rather than a data-logger that
has limited data storage and cannot be accessed remotely.

Concerning agricultural applications, an intelligent approach for efficient plant
irrigation is proposed in [70]. It utilizes the IoT and a set of sensors for recording
plants data as well as their watering requirements. The system is implemented with
a mobile phone, and hence it allows continuous monitoring and control of irrigation
efficiency. The work [63] proposes a framework for greenmobile crowd sensing. The
approach is designed in such a way that only a selected set of best performing sensors
is used, which allows significant energy savings. An IoT-based real-time microcli-
mate monitoring system is proposed in [64]. The system includes temperature and
relative humidity sensors, powered by solar panels. An environmental monitoring
system for apple orchards is presented in [65]. Subsequently, a framework for moni-
toring multi-layer soil temperature and moisture is proposed in [66]. The framework
consists of monitoring nodes, a gateway node and a system platform. The authors of
[67] propose an IoT solution for water quality assessment through the measurement
of conductivity, temperature, and turbidity. In [68], an IoT infrastructure is presented
which consists of sensor nodes providing hydrographic information. Finally, an IoT-
based water irrigation scheduling platform is proposed in [69]. In particular, the
authors develop a decision support system for irrigation scheduling of olive fields.

1.1.4 Hospitality and Leisure Industry Applications

Since the hospitality and leisure industry plays an important role in our lives, the IoT
technology also contributes actively to their permanent development [15, 16]. The
main trends can be summarized as follows (cf. Fig. 1.3):

• automatic check-in [75, 76],
• guest experience [16, 77, 78],
• cashless payment systems [79],
• security, privacy and ethical issues [80].

The paper [75] proposes a location recognition algorithm for automatic check-in
applications. It can be implemented with smartphones and integrated with a desig-
nated cloud platform. The system uses GPS and WiFi access points, which results
in a new strategy called a WiFi fingerprint. In [76], the authors propose a malicious
check-in defense scheme. They also use the concept of the WiFi fingerprint and
make it secure against in unpermitted access. Another improvement of the scheme
proposed in [75] is given [81]. The contribution enhances the existing strategy and

8 1 Introduction

Fig. 1.3 Trends in the
hospitality and leisure
industry

eliminates the need for using GPS. Another automatic vehicle check-in check-out
strategy is proposed in [82]. It eliminates the manual entry process and minimizes
the security personal effort by exploiting the image data of the vehicle number plate.
The work [77] highlights the application of a wristband (Disney’s MagicBand) that
serves in Disney World as a credit card, FastPass, hotel key, etc. The authors inves-
tigate the IoT impact on enhancing guest experience as well as to better understands
guest behaviour and needs. Another IoT cashless payment system for the hospitality
industry is proposed in [79]. Subsequently, in [78], the authors explore the influ-
ence of demographic factors (education, gender, age, etc.) on consumer attitudes and
intentions for using IoT in the hospitality industry. The work [83] proposes an IoT
architecture for the hospitality industry located in the so-called smart cities. Finally,
an IoT-based authentication system for a remote opening and closing door lock is
presented in [84].

1.1.5 Healthcare

Similarly as in the hospitality and leisure industry, the number of IoT applications
in healthcare is proliferating [17]. Generally, the applications can be split into two
groups:

• health parameters [85, 86],
• patient behaviour [87–90].

1.2 Where Does KIS.ME Go? 9

In particular, the work [85] proposes a new signal quality-aware IoT electrocar-
diogram telemetry system for continuous cardiac health monitoring. Similarly, IoT
electrocardiogram telemetry is used in [91, 92] analysis and classification pertaining
to heartbeat diagnosis. An IoT-based e-health monitoring system is proposed in [93].
An appealing property of this approach is that it aims at controlling temperature
raising caused by an on-body sensor, which affects skin comfort. An IoT system
monitoring cardiac arrhythmia is presented in [86]. Moreover, an IoT-based heart
rate monitoring system is proposed in [94].

Concerning patient behaviour, the authors of [87] propose an IoT device in the
form of wearable smart glasses, which are able to monitor eye blinks. In [88], a
healthcare digital twin of a patient is presented which utilizes the IoT technologies
and AI models to diagnose the state of health and provide a set of clinical questions
leading to thefinal diagnosis. The authors of [89] employ a footmovementmonitoring
strategy for detecting an early stage of the Alzheimer disease. Finally, the work [90]
proposes an IoT system which aims at enhancing speech-language capabilities of
patients with Parkinson’s disease.

1.2 Where Does KIS.ME Go?

Permanent cost pressure rises the need for a continuous optimization of internal pro-
cesses, and hence, improve their overall effectiveness and performance. To attain
such a challenging objective, the underlying processes have to be measurable and
transparent. This means that irrespective of the considered application area, a set
of suitable measures has to be introduced. Generally, the real-time and automatic
recording and displaying of parameters related to quality, performance and availabil-
ity are of paramount importance. Indeed, they enable optimization in manufacturing
processes and automatic calculation of OEE (overall equipment effectiveness) indi-
cators. Another common approach is to employ SPC (statistical process control),
which makes it possible to get a predictable behaviour of the manufacturing system
and keep its crucial parameters under the constrained control limits. Irrespective of
the approach being used, the resulting data can be used, e.g., to measure and analyse
downtimes, bottlenecks, and other causes of inappropriate performance. As a result,
a dedicated implementation of the process optimization and efficiency improvements
can applied.

There is no doubt that digitalization solutions from Industry 4.0 and the Internet of
Things (IoT) can be perceived as excellent candidate strategies capable of handling
the above stated issues concerning measurements and transparency. Such solutions
should be applicable for both humans and the machines. Even more, they should
integrate them to make their cooperation as efficient as possible.

Therefore, instead of deliberating about hypothetical IoT onboarding platforms
capable of handling the above stated challenges, an existing and efficient one is
employed within the framework of this book. The onboarding platform is called

10 1 Introduction

Fig. 1.4 KIS.ME:
Communicate, develop,
deploy, control

KIS.MEand the remaining part of this section answers all crucial questions pertaining
to its practical advanced applications.

KIS.ME (Keep It Simple.Manage Everything) is an IoT platform which was
designed under the light of the following sentence:

Digitization made easy:
It can be this easy to optimize your process and increase efficiency.

The justification of this sentence can be split into four crucial components (Fig. 1.4):

• communicate,
• develop,
• deploy,
• control.

Let us start by stating fundamental questions concerning communication:

1. How to communicate with human operators?
2. How to communicate with machines?

To answer these, it is assumed that the processes considered are discrete- event
ones [95, 96]. To make the discussion clearer, let us provide the definition of the
system state, which is a set of variables that can be used to describe the system’s past
and future behaviour. Thus, the discrete event system is a discrete-state, event-driven
one. This means that its state can only take discrete values from a possibly infinite
set. Moreover, its state evolution depends solely on the occurrence of discrete events
over time. In the IoT framework, events can be generated using both IoT devices and
the cloud platform connected with them. Under these preliminaries, one can quickly
figure out that buttons and lights are the most common communication tools used
by human operators. Contrarily, machines can be communicated through various
inputs and outputs located at their inlets and outlets, respectively. Thus, by finding a
common denominator between humans and machines, KIS.ME offers three devices:

KIS.BOX: a two-button box with digital inputs/outputs,
KIS.LIGHT: a signal lamp with digital inputs/outputs.
KIS.IO: an input/output communication box.

1.2 Where Does KIS.ME Go? 11

These KIS.Devices are communicated through WiFi and should be perceived
as a universal hardware inherently integrated with the cloud application called
KIS.MANAGER. Note that both devices can communicate discrete states through
both digital inputs/outputs or by illuminating colors with the buttons and a lamp.

Let us proceed to crucial questions pertaining to the development stage:

1. How to digitize existing or new processes in a possibly fast and effective way?
2. How to manage and interfere state transitions?
3. How to asses system behaviour and visualize its performance?
4. How to asses system effectiveness and performance predictability?

The answer to the first question is associated with preparing a KIS.Device instal-
lation scheme, i.e., it should be located in such a way as to provide appropriate
transition of the discrete state. This can be realized through colored lights or dig-
ital inputs/outputs of KIS.Devices. The second question is answered by the func-
tionalities of KIS.MANAGER. In particular, it can process the data gathered from
KIS.Devices and interact with them through the so-called Rule engine, which should
be perceived as a rule base shaping system behaviour. As for third question, it is nec-
essary to explain that the data from KIS.Devices is represented in KIS.MANAGER
with the so-called Datapoint. Each numerical or logical Datapoints can be visualized,
processed or analysed within a given period. As a result, key performance indicators
(KPIs) can be intuitively formulated using a predefined list of commands. Moreover,
system transparency can be settled with digital twins of KIS.Devices that can be
obtained in KIS.MANAGER. Additionally, digital twins can be located within the
floorplan, which is a virtual counterpart of the real system structure. To answer the
last question, appropriate KPIs and performance cost functions can be defined. They
can be used for the calculation of overall equipment efficiency (OEE) as well as
to form control charts to be used for observing and analysing system predictabil-
ity. Indeed, these control charts form the basis for statistical process control (SPC),
which is a commonly used tool for assessing system performance and predictability.

Usually the deployment stage can be a bottleneck on the way towards better per-
forming systems. Indeed, it frequently requires integration of hardware and software
provided by different manufacturers. As a result, a third party integrator is usually
needed, to make it possible to complete the deployment stage. KIS.ME provides
an integrated hardware/software platform, and hence the deployment stage is sig-
nificantly simplified and does not require extraordinary efforts or costs. In other
words, an optimally performed development stage yields smooth realization of the
deployment one.

The control stage addresses the following questions:

1. What is process availability?
2. What is process performance?
3. What is process quality?
4. Is the process in the statistical control state?
5. What are (if any) special cause process variations?

12 1 Introduction

KIS.ME provides all necessary and sufficient tools for assessing individual or com-
bined processes’ availability. This can be achieved with KPIs calculating an exact
run time of the associated equipment. Subsequently, it can be compared with the
planned time. Similarly, knowing an ideal process cycle time, a KPI can be imple-
mented calculating the total number of process cycles. Finally, by multiplying it by
the ideal process cycle time and then comparing the result with the run time one can
obtain process performance. Process quality can be measured in a binary way or with
multi-valued quality levels. In both cases KIS.ME can provide a suitable set of KPIs
capable of assessing process quality in an intuitive and efficient way.

To answer the last question we should clarify when the process in the statistical
control state. Namely, the process is in the state of control if it is subject to com-
mon cause variations only, which can be expected in any set of observations. These
common cause variations are predictable and limited, e.g., the discrepancy between
consecutive battery mounting times. Indeed, it varies in time but it is possible to
assess the range of its variability. Contrarily, special cause variations can be associ-
ated with unexpected and unappealing factors that impair process realization, e.g.,
an equipment fault, quality issues, human operator-related issues, etc. As a result, it
is said that the process is in the out-of-control state if it is subject to both common
and special cause variations. Thus, apart from the inevitable random and typical fluc-
tuations, other unappealing factors affect process parameters. All these factors can
be communicated to KIS.MANGER using KIS.Devices.

Although KIS.MEwas originally intended for logistic and industrial applications,
it can be applied to settle various tasks encountered in Industry 4.0 and beyond. Thus,
the objective of the subsequent part of this book is to introduce the reader into the
arcane details of KIS.ME.

1.3 Contents of the Book

The reminder of the book is divided into six chapters and two appendices. However,
the book can be generally divided into two parts. The first one introduces the KIS.ME
platform as a modern IoT onboarding one. The second one discusses theoretical
and practical aspects of applying such a platform for a wide spectrum of advanced
applications ranging from logistics and SPC to advanced process and transportation
scheduling algorithms. In particular, Chap. 2 introduces the reader into the KIS.ME
IoT platform and its hierarchical overview. It discusses also an intuitive concept of
Datapoints, which constitute the main source of knowledge about the current status
of an asset. It is also shown how to place assets inside workspaces and associate
with them a set of functional rules using Rule engine. In Chap. 3, a set of practi-
cal guidelines for implementing various logistics-oriented applications is presented.
This part starts with a crucial issue pertaining to access control using KIS.Devices
and external RFID readers. The remaining three sections deal with transportation
systems as well as their digitization and visualization. Subsequently, Chap. 4 aims at
introducing the concepts of calculated Datapoints and key performance indicators,

References 13

which form the basis of statistical process control. Having such tools, a set of wid-
get charts is introduced, which enable data visualization and analysis. Subsequently,
practical examples concerning the development of statistical control charts are pre-
sented. Chapter 5 aims at exploiting the methods and tools described in the preceding
parts to develop a set of selected process monitoring and control schemes. In par-
ticular, it starts with the transportation system, which operates on a set of selected
routes. To measure the performance of such a system, a suitable cost function is
introduced, which can be monitored and controlled by the designated supervisor.
Subsequently, quality control strategies are proposed and described in detail. The
last process monitoring strategy aims at calculating and visualizing overall equip-
ment efficiency, which is widely perceived as a key measurement tool for assessing
both productivity and efficiency. The objective of Chap. 6 is to provide a list of
selected potential applications of KIS.ME. They stem from scientific deliberations
of the authors and can be perceived as prospective proofs-of-concept, which can
be deployed in various industries. The chapter starts with modelling users and their
interactions, which include various important components, e.g., experience and per-
formance. The resulting models make it possible to schedule the work of human
operators in a reasonable and predictable way. The chapter discusses also the issues
of health-aware and fault-tolerant control and shows a general solution which can
overcome these important problems. Subsequently, the objective of Chap. 7 is to
provide a concise overview of KIS.API, which can be used for an effective commu-
nication with external applications.

All chapters are summarizedwith a set of exercises motivating the reader to obtain
further skills pertaining to practical applications of the modern IoT.

Finally, Appendix A provides a list of KIS.ME commands alongwith their sample
applications. Similarly, Appendix B surveys KIS.ME Datapoints along with their
example applications.

References

1. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things: a
survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials
17(4), 2347–2376 (2015)

2. D. Hanes, G. Salgueiro, P. Grossetete, R. Barton, J. Henry, IoT Fundamentals: Networking
Technologies, Protocols, and Use Cases for the Internet of Things (Cisco Press, Indianapolis,
2017)

3. R. Lohiya, A. Thakkar, Application Domains, Evaluation Datasets, and Research Challenges
of IoT: A Systematic Review. IEEE Internet of Things J. 8(11), 8774–8798 (2020)

4. H. Golpîra, S.A.R. Khan, S. Safaeipour, A review of logistics internet-of-things: current trends
and scope for future research. J. Indus. Inform. Integr. 22(6), 100194 (2021)

5. J. Wang, Z. Yang, Z. Wang. Intelligent logistics cost control based on 5G network and IoT
hardware system, inMicroprocessors and Microsystems (2020), p. 103476 (in Press)

6. Y. Song, F.R. Yu, L. Zhou, X. Yang, Z. He, Applications of the internet of things (IoT) in smart
logistics: a comprehensive survey. IEEE Internet of Things J. 8(6), 4250–4274 (2020)

14 1 Introduction

7. M. Younan, E.H. Houssein,M. Elhoseny, A.A. Ali, Challenges and recommended technologies
for the industrial internet of things: a comprehensive review. Measurement 151(2), 107198
(2020)

8. D.G.S. Pivoto, L.F.F. de Almeida, R. da Rosa Righi, J.J.P.C. Rodrigues, A.B. Lugli, and A.M.
Alberti. Cyber-physical systems architectures for industrial internet of things applications in
Industry 4.0: a literature review. J. Manuf. Syst. 58(1), 176–192 (2021)

9. Q. Wang, X. Zhu, Y. Ni, L. Gu, H. Zhu, Blockchain for the iot and industrial IoT: a review.
Internet of Things 10(6), 100081 (2020)

10. Y. Liao, E.F.R. Loures, F. Deschamps, Industrial internet of things: a systematic literature
review and insights. IEEE Internet of Things J. 5(6), 4515–4525 (2018)

11. A. Verma, S. Prakash, V. Srivastava, A. Kumar, SCh. Mukhopadhyay, Sensing, controlling,
and IoT infrastructure in smart building: a review. IEEE Sens. J. 19(20), 9036–9046 (2019)

12. O. Elijah, T.A. Rahman, I. Orikumhi, Ch.Y. Leow, M.N. Hindia, An overview of Internet of
Things (IoT) and data analytics in agriculture: benefits and challenges. IEEE Internet of Things
J. 5(5), 3758–3773 (2018)

13. C. Brewster, I. Roussaki, N. Kalatzis, K. Doolin, K. Ellis, IoT in agriculture: designing a
europe-wide large-scale pilot. IEEE Commun. Mag. 55(9), 26–33 (2017)

14. G. Bedi, G.K. Venayagamoorthy, R. Singh, R.R. Brooks, K.C. Wang, Review of internet of
things (IoT) in electric power and energy systems. IEEE Internet of Things J. 5(2), 847–870
(2018)

15. P. Kansakar, A. Munir, N. Shabani, Technology in the hospitality industry: prospects and
challenges. IEEE Consum. Electron. Mag. 8(3), 60–65 (2019)

16. J.R. Chang, M.Y. Chen, L.S. Chen, S.C. Tseng, Why customers don’t revisit in tourism and
hospitality industry? IEEE Access 7(10), 146588–146606 (2019)

17. M.H. Kashani, M. Madanipour, M. Nikravan, P. Asghari, E. Mahdipour, A systematic review
of iot in healthcare: applications, techniques, and trends. J. Netw. Comput. Appl. 192(10),
103164 (2021)

18. T. Qu, S.P. Lei, Z.Z. Wang, D.X. Nie, X. Chen, G.Q. Huang, IoT-based real-time production
logistics synchronization systemunder smart cloudmanufacturing. Int. J. Adv.Manuf. Technol.
84(5), 147–164 (2016)

19. Y. Zhang, Z. Guo, J. Lv, Y. Liu, A framework for smart production-logistics systems based on
CPS and industrial IoT. IEEE Trans. Indus. Inform. 14(9), 4019–4032 (2018)

20. W. Jianxin, K.L. Ming, Z. Yuanzhu, W. XiaoFeng, An intelligent logistics service system for
enhancing dispatching operations in an IoT environment. Transp. Res. Part E: Logist. Transp.
Rev. 135(3), 101886 (2020)

21. M. Humayun, N.Z. Jhanjhi, B. Hamid, G. Ahmed, Emerging smart logistics and transportation
using IoT and blockchain. IEEE Internet of Things Mag. 3(2), 58–62 (2020)

22. W. Liu, Z. Gao, Study on IoT based architecture of logistics service supply. Int. J. Grid Distrib.
Comput. 7(1), 169–178 (2014)

23. R. Nejc, V. Rok, C. Marko, P. Tomaz, D. Janez, Distributed logistics platform based on
blockchain and IoT. Procedia CIRP 81, 826–831 (2019)

24. L. Sichao, Z. Geng, W. Lihui, IoT-enabled dynamic optimisation for sustainable reverse logis-
tics. Procedia CIRP 69, 662–667, in 25th CIRP Life Cycle Engineering (LCE) Conference, 30
April–2 May 2018 (Denmark, Copenhagen, 2018)

25. S. Lee, G. Tewolde, J. Kwon. Design and implementation of vehicle tracking system using
GPS/GSM/GPRS technology and smartphone application, in IEEE World Forum on Internet
of Things (WF-IoT), Seoul, Korea, 6–8 Mar 2014 (IEEE, 2014), pp. 353–358

26. S. Sukode, S. Gite, Vehicle traffic congestion control & monitoring system in IoT. Int. J. Appl.
Eng. Res. 10(8), 19513–19523 (2015)

27. J. Prinsloo, R. Malekian, Accurate vehicle location system using RFID, an internet of things
approach. Sensors 16(6), 825 (2016)

28. L. Zhou, C.X. Lou, Intelligent cargo tracking system based on the Internet of Things, in
15th International Conference on Network-Based Information Systems, Melbourne, Australia
(2012), 26–28 Sept 2012, pp. 489–493

References 15

29. M. Forcolin, E. Fracasso, F. Tumanischvili, P. Lupieri. EURIDICE—IoT applied to logistics
using the intelligent cargo concept, in 17th International Conference on Concurrent Enterpris-
ing, Aachen, Germany (2011), 20–22 June 2011, pp. 1–9

30. M. Aazam, X. Fernando, Fog assisted driver behavior monitoring for intelligent transportation
system, in IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, Canada (2017),
24–27 Sept 2017, pp. 1–5

31. C. Boja, P. Paul, I. Bogdan, Service architecture for driver behavior analysis in an IoT vehicular
environment, in 15th International Conference on INFORMATICS in ECONOMY (IE 2016),
Education, Research & Business Technologies, Cluj-Napoca, Romania (2016), 2–3 June 2016,
pp. 2284–7472

32. B. Jachimczyk, D. Dziak, J. Czapla, P. Damps, W. Kulesza, IoT on-board system for driving
style assessment. Sensors 18(4), 1233 (2018)

33. C.K.M. Lee, Y. Lv, K.K.H. Ng,W. Ho, K.L. Choy, Design and application of internet of things-
based warehouse management system for smart logistics. Int. J. Prod. Res. 56(8), 2753–2768
(2018)

34. Z. Zhao, M. Zhang, C. Yang, J. Fang, G.Q. Huang, Distributed and collaborative proactive
tandem location tracking of vehicle products for warehouse operations. Comput. Indus. Eng.
125(11), 637–648 (2018)

35. J.Fl. Hoefinghoff, A. Jungk, W. Knop, L. Overmeyer. Using 3D field simulation for evaluating
uhf rfid systems on forklift trucks. IEEE Trans. Antennas Propag. 59(2), 689–691 (2011)

36. R.M. Estanjini, Y. Lin, K. Li, D. Guo, ICh. Paschalidis, Optimizing warehouse forklift dis-
patching using a sensor network and stochastic learning. IEEE Trans. Indus. Inform. 7(3),
476–486 (2011)

37. I. Butun, Industrial IoT (Springer, Berlin, 2020)
38. M. Witczak, B. Lipiec, M. Mrugalski, L. Seybold, Z. Banaszak. Fuzzy modelling and robust

fault-tolerant scheduling of cooperating forklifts, in 2020 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE) (IEEE, Glasgow, 2020), pp. 1–10

39. M. Witczak, Lo. Seybold, G. Bocewicz, M. Mrugalski, A. Gola, Z. Banaszak, A fuzzy logic
approach to remaining useful life control and scheduling of cooperating forklifts, in 2021 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE) (IEEE, Luxemburg, 2021), pp. 1–8

40. P. Majdzik, M. Witczak, B. Lipiec, Z. Banaszak, Integrated fault-tolerant control of assembly
and automated guided vehicle-based transportation layers. Int. J. Comput. Integr. Manuf. 1–18
(2021)

41. D. Raposo, A. Rodrigues, S. Sinche, J. Sá Silva, F. Boavida, Industrial IoT monitoring: tech-
nologies and architecture proposal. Sensors 18(10) (2018)

42. Zf openmatics. https://www.zf.com/products/en/connectivity/products_52107.html. Accessed
14 Sept 2021

43. J.Mellado, F.Núñez, inDesign of an IoT-PLC: a containerized programmable logical controller
for the Industry 4.0. J. Indus. Inform. Integr. 100250 (2021) (in press)

44. A. Gavlas, J. Zwierzyna, J. Koziorek, Possibilities of transfer process data from plc to cloud
platforms based on iot. IFAC-PapersOnLine 51(6), 156–161 (2018)

45. G. Falco, C. Caldera, H. Shrobe, IIoT cybersecurity risk modeling for SCADA systems. IEEE
Internet of Things J. 5(6), 4486–4495 (2018)

46. S. Samtani, S. Yu, H. Zhu, M. Patton, J. Matherly, H. Chen, Identifying SCADA systems and
their vulnerabilities on the internet of things: a text-mining approach. IEEE Intel. Syst. 33(2),
63–73 (2018)

47. L.O. Aghenta, M.T. Iqbal, Low-cost, open source IoT-based SCADA system design using
thinger IO and ESP32 thing. Electronics 8(8), 822 (2019)

48. T. Baker,M. Asim, Á.MacDermott, F. Iqbal, F. Kamoun, B. Shah, O. Alfandi,M. Hammoudeh,
A secure fog-based platform for SCADA-based IoT critical infrastructure. Softw. Pract. Exp.
50(5), 503–518 (2020)

49. K. Saravanan, E. Anusuya, R. Kumar, L.H. Son, Real-time water quality monitoring using
Internet of things in SCADA. Environ. Monit. Assess. 190(9), 1–16 (2018)

https://www.zf.com/products/en/connectivity/products_52107.html

16 1 Introduction

50. C. Dourado, P.P. Suane, Raul da Silva, V. da Nóbrega, A. Barros, A.K. Sangaiah, P. Rebouças
Filho, V. de Albuquerque. A new approach for mobile robot localization based on an online iot
system. Future Gener. Comput. Syst. 100(11), 859–881 (2019)

51. M. Yu, M. Zhu, G. Chen, J. Li, Z. Zhou, A cyber-physical architecture for Industry 4.0-based
power equipements detection system, in International Conference on Condition Monitoring
and Diagnosis (CMD), Xi’an, China (2016), 25–28 Sept 2016, pp. 782–785

52. W. Liu, J. Su. A solution of dynamic manufacturing resource aggregation in CPS, in 2011
6th IEEE Joint International Information Technology and Artificial Intelligence Conference,
Chongqing, China (2011), 20–22 Aug 2011, vol. 2, pp. 65–71

53. N. Jazdi. Cyber physical systems in the context of industry 4.0, in IEEE International Con-
ference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania (2014), 22–24
May 2014, pp. 1–4

54. M. Jani, P. Garg, A. Gupta, On the performance of a cooperative PLC-VLC indoor broadcasting
system consisting of mobile user nodes for IoT networks. IEEE Trans. Broadcast. 67(1), 289–
298 (2021)

55. Y. Zhang, W. Wang, N. Wu, Ch. Qian, Iot-enabled real-time production performance analysis
and exception diagnosis model. IEEE Trans. Autom. Sci. Eng. 13(3), 1318–1332 (2016)

56. D.Conzon, P.Brizzi, P.Kasinathan,C. Pastrone, F. Pramudianto, P.Cultrona, Industrial applica-
tion development exploiting IoT vision and model driven programming, in 18th International
Conference on Intelligence in Next Generation Networks, Paris, France (2015), 17–19 Feb
2015, pp. 168–175

57. K. Bill, A dns architecture for the internet of things: a case study in transport logistics. Procedia
Comput. Sci. 19, 594–601 (2013)

58. I. Ungurean, N.C. Gaitan, V.G. Gaitan. An IoT architecture for things from industrial environ-
ment, in 10th International Conference on Communications (COMM), Bucharest, Romania
(2014), 29–31 May 2014, pp. 1–4

59. H. Xu, J. Wu, J. Li, X. Lin, Deep reinforcement learning-based cybertwin architecture for 6G
IIoT: an integrated design of control, communication, and computing. IEEE Internet of Things
J. 8(22), 16337–16348 (2021)

60. M. Witczak, Modelling and Estimation Strategies for Fault Diagnosis of Non-linear Systems
(Springer, Berlin, 2007)

61. M. Witczak, Fault Diagnosis and Fault-Tolerant Control Strategies for Non-linear Systems:
Analytical and Soft Computing approaches (Springer International Publishing, Heidelberg,
2014)

62. Y. Wang, Y. Liu, C. Wang, Z. Li, X. Sheng, H.G. Lee, N. Chang, H. Yang, Storage-less and
converter-less photovoltaic energy harvesting with maximum power point tracking for internet
of things. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 35(2), 173–186 (2015)

63. M. Marjanović, L. Skorin-Kapov, K. Pripužić, A. Antonić, I.P. Žarko, Energy-aware and
quality-driven sensor management for green mobile crowd sensing. J. Network Comput. Appl.
59(1), 95–108 (2016)

64. N.Watthanawisuth, A. Tuantranont, T. Kerdcharoen. Microclimate real-time monitoring based
on zigbee sensor network, in IEEE SENSORS Conference, Christchurch, New Zealand (2009),
25–28 Oct 2009, pp. 1814–1818

65. S. Lu, M. Duan, P. Zhao, Y. Lang, X. Huang, GPRS-based environment monitoring system
and its application in apple production, in IEEE International Conference on Progress in
Informatics and Computing, Shanghai, China (2010), 10–12 Dec 2010, vol. 1, pp. 486–490

66. K. Chen, H. Zhang, T. Wu, J. Hu, C. Zhai, D. Wang, Design of monitoring system for multi-
layer soil temperature and moisture based on WSN, in International Conference on Wireless
Communication and Sensor Network, Wuhan, China (2014), 13–14 Dec 2015, pp. 425–430

67. O. Postolache, M. Pereira, P. Girão, Sensor network for environment monitoring: water quality
case study, in 4th Symposium on Environmental Instrumentation Measurement, Lecce. Italy
(2013), 3–4 June 2013, pp. 30–34

68. Y. Xijun, L. Limei, X. Lizhong, The application of wireless sensor network in the irrigation area
automatic system, in InternationalConference onNetworks Security,WirelessCommunications
and Trusted Computing, 25–26 Apr 2009, Wuhan, China (2009), vol. 1, pp. 21–24

References 17

69. M. A. Fourati, W. Chebbi, A. Kamoun, Development of a web-based weather station for irriga-
tion scheduling, in 3rd IEEE International Colloquium in Information Science and Technology
(CIST), Tetuan, Morocco (2014), pp. 37–42

70. M.S. Munir, I.S. Bajwa, M.A. Naeem, B. Ramzan, Design and implementation of an iot system
for smart energy consumption and smart irrigation in tunnel farming. Energies 11(12), 3427
(2018)

71. M.K. Singla, J. Gupta, P. Nijhawan, S. Ganguli, S.S. Rajest,Development of an efficient, cheap,
and flexible iot-based wind turbine emulator, in Business Intelligence for Enterprise Internet
of Things (Springer, Berlin, 2020), pp.225–231

72. S. Karad, R. Thakur, Efficient monitoring and control of wind energy conversion systems using
internet of things (IoT): a comprehensive review. Environ. Dev. Sustain. 23(2), 14197–14214
(2021)

73. B. Srbinovski, G. Conte, A.P. Morrison, P. Leahy, E. Popovici, ECO: an IoT platform for
wireless data collection, energy control and optimization of aminiaturizedwind turbine cluster:
power analysis and battery life estimation of iot platform. in IEEE International Conference
on Industrial Technology (ICIT), Toronto, Canada (2017), 22–25 Mar 2017, pp. 412–417

74. M. Yakut, N.B. Erturk, An IoT-based approach for optimal relative positioning of solar panel
arrays during backtracking. Comp. Stand. Interf. 80(3), 103568 (2022)

75. I. Bisio, F. Lavagetto, M. Marchese, A. Sciarrone, GPS/HPS-andWi-Fi fingerprint-based loca-
tion recognition for check-in applications over smartphones in cloud-based LBSs. IEEE Trans.
Multimed. 15(4), 858–869 (2013)

76. W. Li, Z. Su, K. Zhang, A. Benslimane, D. Fang, Defending malicious check-in using big data
analysis of indoor positioning system: an access point selection approach. IEEE Trans. Netw.
Sci. Eng. 7(4), 2642–2655 (2020)

77. A. Pizam, The Internet of things (IoT): the next challenge to the hospitality industry. Int. J.
Hosp. Manage. 100(62), 132–133 (2017)

78. A. Aluri, R. Palakurthi, The influence of demographic factors on consumer attitudes and inten-
tions to use RFID technologies in the US hotel industry. J. Hosp. Tour. Technol. 2(3), 188–203
(2011)

79. A.B. Ozturk, Customer acceptance of cashless payment systems in the hospitality industry. Int.
J. Contemp. Hosp. Manage. 28(4), 801–817 (2016)

80. S. Mercan, K. Akkaya, L. Cain, J. Thomas, Security, privacy and ethical concerns of iot imple-
mentations in hospitality domain, in, International Conferences on Internet of Things (iThings),
02–06 Nov 2020, Rhodes Island, Greece (2020), pp. 198–203

81. I. Bisio, Ch. Garibotto, F. Lavagetto, A. Sciarrone, Outdoor places of interest recognition using
WiFi fingerprints. IEEE Trans. Veh. Technol. 68(5), 5076–5086 (2019)

82. S. Tenzin, P. Dorji, B. Subba, T. Tobgay. Smart check-in check-out system for vehicles using
automatic number plate recognition, in 2020 11th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), Kharagpur, India (2020), 1–3 July
2020, pp. 1–6

83. P.Kansakar,A.Munir,N. Shabani,A fog-assisted architecture to support an evolving hospitality
industry in smart cities, in International Conference on Frontiers of Information Technology
(FIT), Islamabad, Pakistan (2018), 17–19 Dec 2018, pp. 59–64

84. J. Jeong, A study on the iot based smart door lock system, in Information Science and Appli-
cations (ICISA) (Springer, Berlin, 2016), pp.1307–1318

85. U. Satija, B. Ramkumar, M. Sabarimalai Manikandan. Real-time signal quality-aware ECG
telemetry system for IoT-based health care monitoring. IEEE Internet of Things J. 4(3), 815–
823 (2017)

86. E.Moghadas, J.Rezazadeh,R. Farahbakhsh,An IoTpatientmonitoringbasedon fog computing
and data mining: cardiac arrhythmia use case. Internet of Things 11(9), 100251 (2020)

87. A. Sciarrone, I. Bisio, C. Garibotto, F. Lavagetto, G.H. Staude, A. Knopp, Leveraging IoT
wearable technology towards early diagnosis of neurological diseases. IEEE J. Select. Areas
Commun. 39(2), 582–592 (2021)

18 1 Introduction

88. J. Zhang, L. Li, G. Lin, D. Fang, Y. Tai, J. Huang, Cyber resilience in healthcare digital twin
on lung cancer. IEEE Access 8(10), 201900–201913 (2020)

89. Ra. Varatharajan, G. Manogaran, M. Kumar Priyan, R. Sundarasekar, Wearable sensor devices
for early detection of alzheimer disease using dynamic time warping algorithm. Cluster Com-
put. 21(1), 681–690 (2018)

90. H. Dubey, J.C. Goldberg, M. Abtahi, L. Mahler, K. Mankodiya, Echowear: smartwatch tech-
nology for voice and speech treatments of patients with parkinson’s disease, in Proceedings of
the Conference on Wireless Health, Bethesda Maryland, USA, 14–16 Oct 2015, pp. 1–8

91. D.Azariadi,V.Tsoutsouras, S.Xydis,D. Soudris. ECGsignal analysis and arrhythmia detection
on IoT wearable medical devices, in 5th International Conference on Modern Circuits and
Systems Technologies (MOCAST), Thessaloniki, Greece, 12–14 May 2016 (2016), pp. 1–4

92. Z. Yang, Q. Zhou, L. Lei, K. Zheng, W. Xiang, An IoT-cloud based wearable ECG monitoring
system for smart healthcare. J. Med. Syst. 40(12), 1–11 (2016)

93. E. Selem, M. Fatehy, S.M. Abd El-Kader, H. Nassar, The (temperature heterogeneity energy)
aware routing protocol for iot health application. IEEE Access 7(2), 108957–108968 (2019)

94. V. Goel, S. Srivastava, D. Pandit, D. Tripathi, P. Goel, Heart rate monitoring system using finger
tip through IoT. Int. Res. J. Eng. Technol. 6(13), 1–4 (2018)

95. L. Seybold, M.Witczak, P. Majdzik, R. Stetter, Towards robust predictive fault-tolerant control
for a battery assembly system. Int. J. Appl. Math. Comput. Sci. 25(4), 849–862 (2015)

96. P. Majdzik, A. Akielaszek-Witczak, L. Seybold, R. Stetter, B. Mrugalska, A fault-tolerant
approach to the control of a battery assembly system. Control Eng. Pract. 55(10), 139–148
(2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 2
Onboarding and Preliminary
Functionality Training

2.1 Preliminaries, Registration and Onboarding

Let us start with introducing the definition of a system, which is a part of the universe
that can be affected and/or monitored by KIS.ME. Consequently, KIS.ME can be
divided into two layers:

KIS.Device: hardware capable of performing the desired communication tasks
within the system,
KIS.MANAGER: software being a web platform used to affect and/or monitor the
system.

Having the system, it is possible to introduce its components, which are defined as
assets. They are physical parts of the system and are exemplified by KIS.Devices.

•> Unique resource name (URN)

Each KIS.Device is uniquely identified by the URN number, e.g.,

urn:rafi:sbox:9c65f93cbf2d.

Once assigned, it cannot be further modified.

Thus, an asset group is simply a set of assets. In the current release of KIS.ME,
KIS.Devices are divided into

KIS.BOX: a communication push-button box (see Fig. 2.1),
KIS.LIGHT: a communication signal lamp (see Fig. 2.2),
KIS.IO: an input/output communication box (see Fig. 2.3).

Let us start with defining two kinds of LED lights incorporated within each
KIS.Device (see Figs. 2.1 and 2.2):

Status LED: it exhibits the functional state of a KIS.Device and is defined in
Table2.1;

© The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33623-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-33623-2_2

20 2 Onboarding and Preliminary Functionality Training

Fig. 2.1 KIS.BOX

Fig. 2.2 KIS.LIGHT

Fig. 2.3 KIS.IO

2.1 Preliminaries, Registration and Onboarding 21

Table 2.1 Status LED colors and their meaning

Status LED color Meaning

Red Device is booting

Yellow Device is booted, no WiFi connection

Magenta Device is connected with WiFi but MQTT Port
check

Certificate check or NTP time-sync check
errors occurred

Blue Device is connected with WiFi, MQTT Port
check and certificate check were successful

No connection to KIS.MANAGER

Green Device is connected to KIS.MANAGER

Turquoise Update in progress

Flashing Magenta (2Hz) MQTT Port check failed

Flashing Magenta (1Hz) NTP time-sync check failed

Flashing Magenta (0.5Hz) Certificate check failed

Table 2.2 Predefined operational LED colors

Color RGB HEX code Integer value

Blue #0000FF 0

Turquoise #00FFFF 1

Black #000000 2

Green #00FF00 3

Magenta #FF00FF 4

Red #FF0000 5

White #FFFFFF 6

Yellow #FFFF00 7

Operational LED: it exhibits the individual operational state of a KIS.Device and
can be defined by the user using the set of colors provided in Table2.2.

Note that KIS.IO can be perceived as a simplified version of KIS.BOX with-
out buttons. Subsequently, a general KIS.ME framework overview can be intro-
duced, which is portrayed in Fig. 2.4. Subsequently let us proceed to introduce
KIS.Device functionalities. As can be observed in Fig. 2.4, each KIS.BOX can be
perceived as a human-machine interface (HMI) with two push-buttons, linked with
the KIS.MANAGER viaWiFi. Each pushbutton contains an operational LED, which
illuminates in an RGB color. However, for the sake of simplicity, the list of colors is
limited in KIS.MANAGER to those presented in Table2.2. Thus, they can be iden-
tified by either the RGB HEX code or an integer value. It should be also noted that
the black color is used to signify the fact that a corresponding operational LED is
not lit. Compared to the KIS.BOX, KIS.LIGHT has limited functionalities as its pri-

22 2 Onboarding and Preliminary Functionality Training

Fig. 2.4 General KIS.ME overview

Table 2.3 KIS.Device parameters

Name Value

Luminous element color RGB

Degree of protection IP65

WLAN standard IEEE 802.11 b/g/n 2.4GHz

Connection terminal M12 8-pin A-coded

Operating voltage 5 ± 10% V, 24 ± 20% V

GPIO 2 inputs/ 2 outputs

Table 2.4 M12 PIN specification

PIN 1 PIN 2 PIN 3 PIN 4 PIN 5 PIN 6 PIN 7 PIN 8

VCC
voltage

In 1 GND In 2 Out 1 Out 2 USB D+ USB D−

2.1 Preliminaries, Registration and Onboarding 23

Fig. 2.5 KIS.Device M12 connections

mary purpose is to be a signalling lamp with one operational LED only. Finally, the
essential technical parameters of KIS.Devices are given in Table2.3. It can be noted
that each KIS.Device is fed with an M12 8-pin A-coded connection terminal, while
the purpose of particular PINs is given in Table2.4. The operating voltages can be
either 5V or 24V. In the first case, a KIS.Devices are fed through USB, while in the
second one, the respective 24V voltage is fed through PINs 1 and 3. EachKIS.Device
possesses a general purpose input output (GPIO) interface, which is available while
using a 24V power supply only. As can be observed in Table2.4, GPIO is composed
of two digital inputs and two outputs. Thus, each KIS.Device enables attaining the
functionalities portrayed in Fig. 2.5, which can be further exploited in a large number
of practical applications. Finally, it should be noted that a full technical documen-
tation of KIS.Devices is available at https://kisme.rafi.de/en/. Having the hardware
layer provided, let us proceed to the software one. As can be observed in Fig. 2.4,
the main KIS.MANAGER features can be summarized as follows:

• System assets can be easily digitalized through digital twins of KIS.Devices.
• The system is divided into workspaces, i.e., selected parts of the system, which
inherit its desired set of assets.

• A graphical representation of the workspaces can be introduced using floorplans.
• Anasset’s behaviour can be affected andmonitored using theRule engine function-
ality, which makes it possible to implement functional IF-THEN rules governing
interactions between assets.

https://kisme.rafi.de/en/

24 2 Onboarding and Preliminary Functionality Training

• The behaviour of the system and the associated assets can be instantly moni-
tored using Datapoints, which correspond to possibly time-varying properties
of KIS.Devices. They can be also defined as exchanged variables between a
KIS.Device and KIS.MANAGER.

• Performance of the systemand the associated assets can be periodically determined
using Datapoint-based key performance indicators (KPIs).

• It allows defining users as human beings with granted access determined by mem-
bership to a given user group.

• System behaviour and performance can be visualized using a set of time-driven
plots and aggregated charts.

• E-mail notifications pertaining to system behaviour can be predefined and auto-
matically distributed.

• A high security level is attained with Message Queuing Telemetry Transport
(MQTT),which is a standardmessaging protocol for the IoT.Moreover, designated
certificates are used for secure authentication.

Having a general overview of both hardware and software functionalities, let us pro-
ceed toonboarding, i.e., the process of linkingKIS.Deviceswith theKIS.MANAGER.
However, a preliminary step towards onboarding is to register at theKIS.MANAGER,
which can be easily realized with https://kismanager.rafi.de. Once a user company
account is created, a compulsory checklist should be verified:

• a KIS.Device,
• an M12-to-USB cable (see Table2.4),
• a computer/tablet equipped with a web browser and a USB port,
• a company account with admin user rights (see Sect. 2.3),
• WLAN access with permission credentials.

After completing the compulsory checklist, one can perform the onboarding proce-
dure:
Step 1. Connection:

1. Plug-in KIS.Device to a PC/tablet using an M12-to-USB cable.
2. The KIS.Device status LED color should change from red into yellow (see

Table2.1).
3. The KIS.Device is available in the PC/tablet as a mass storage device.

Step 2. Authentication:

1. Open https://kisme.rafi.de/en/and go to the Onboarding link.
2. Enter your login and password pertaining to KIS.MANAGER admin rights.
3. Enter your designatedWiFi parameters: SSID, password andWLAN encryption

mode.
4. Click the save button to generate onboarding.zip containing WiFi parameters

and store it onto the PC/tablet.

Step 3. Upload onboarding.zip onto the KIS.Device visible as a mass storage device.

https://kismanager.rafi.de
https://kisme.rafi.de/en/

2.2 Hierarchical Structure: From Assets and Users to Workspaces 25

Step 4. Processing onboarding.zip:

1. In progress: the status LED starts to flash in yellow;
2. Completed: the status LED lights constantly in yellow.

Step 5: Onboarding completion:

1. Under an availableWiFi connection, the KIS.Device status LED should perform
the following cycle: Yellow → Magenta → Blue → Green (see Table2.1).

2. After refreshing the KIS.MANAGER, the new KIS.Device is available in Main
menu → Assets.

•> Changing WLAN

TheWLAN data, and hence theWiFi network, can be changed on demand by simply
repeating the above Step 1–Step 5 onboarding procedure.

•> Accessing the KIS.ME demo

It is possible to previewKIS.MEperformancewithout having your ownKIS.Devices.
For that purpose, a KIS.ME demo platform was designed, which can be accessed by
performing the following steps:

1. Go to https://kisme.rafi.de/en/#demo.
2. Access the KIS.ME demo with

• Username: demo.kisme@rafi.de.
• Password: Demo1234!.

2.2 Hierarchical Structure: From Assets and Users
to Workspaces

The objective of this section is to provide a general KIS.ME-based system structure
overview. For that purpose, let us introduce a suitable nomenclature:

User group: a set of users with a predefined KIS.MANAGER rights level,
Asset group: a set of assets,
Workspace: a selected part of the system, which inherits its desired set of assets.

From the above definitions, it is evident thatWorkspace andAsset group can be some-
how perceived as synonyms. Indeed, while going to Main menu → Asset groups,
one can see the viewwhich is portrayed in Fig. 2.6. Thus, all system assets associated

https://kisme.rafi.de/en/#demo

26 2 Onboarding and Preliminary Functionality Training

Fig. 2.6 Asset groups

with all KIS.Devices are contained in the inventory asset groupMy devices. KIS.ME,
which makes it possible to arrange five workspaces (see the column Definition in
Fig. 2.6) may inherit the assets contained in the inventory asset group.

•> Adding asset groups

The current licence model allows six asset groups, i.e., My inventory, Workspace
1–Workspace 5. In the prospective licence models, it will be possible to add new
groups.

Once Asset groups are defined, it is possible to proceed to User groups, which
can be reached through Main menu → User groups. As can be seen in the col-
umn Description in Fig. 2.7, there are four predefined user groups: Admin, Installer,
Operator and Observer, possessing various rights and permissions (see Sect. 2.3 for
details). Thus, a single user may belong to these groups, which strictly defines rights
and permissions. On the other hand, all five workspaces can also be perceived as user
groups.

•> User group membership

A single user may belong to multiple user groups, which define rights and permis-
sions. This also means that he can belong to multiple user groups associated with
workspaces, which clearly determine access to the desired asset groups.

2.2 Hierarchical Structure: From Assets and Users to Workspaces 27

Fig. 2.7 User groups

Fig. 2.8 KIS.ME
hierarchical structure

Finally, the KIS.ME hierarchical structure can be expressed using Fig. 2.8. Thus,
the objective of the subsequent section is to provide a concise overview pertaining
to rights and permissions acting inside this structure.

28 2 Onboarding and Preliminary Functionality Training

2.3 Rights and Permissions

Let us start with four predefined user groups (see Fig. 2.7), which are initially called
Admin, Installer,Operator andObserver. Their concise overview is given inTable2.5,
which uses the following nomenclature:

Access: the user has access to a given feature;
Add/delete: the user is able to add and/or deleted a given feature;
Manage: the user is able to manage the properties of a given feature;
View: the user is able to view a given feature.

•> Names and permissions of predefined user groups

It should be noted that the initial names of predefined user groups can be modified.
Alterations can be also performed with respect to their permissions (see Fig. 2.14).

2.3.1 User Management

The process of adding a user is very intuitive but requires access with admin rights
(see Table2.5). Under such a condition, adding a new users and assigning them the
desired rights boils down to the following steps:

1. Go to Main menu → User management → Users.
2. Push the Create new user button.
3. In theMaster data tab (see Fig. 2.9), provide e-mail, language (locale), time zone,

full name, and initial state.

•> Initial state

The Initial state field determines whether the new user must agree (terms of accep-
tance pending) to an end user license agreement or whether this can be omitted and
the user can be active immediately (Active).

4. In the User groups tab (see Fig. 2.10), push the Assign to User Groups button.
5. By selecting the desired checkboxes, assign a user to a predefined group

(Admin, Installer, Operator, Observer; cf. Table2.5) and to desired workspaces
(Fig. 2.11).

2.3 Rights and Permissions 29

Table 2.5 Rights of predefined user groups

Rights Admin Installer Operator Observer

Add/delete assets

Manage
permitted assets

x x

Access to all
asset groups

x x

Access to
permitted asset
groups

x x x x

Add/delete users x

Add/delete
dashboards

x x

Manage
permitted
dashboards

x x x

View permitted
dashboards

x x x x

Add/delete digital
twins

x x

Manage
permitted digital
twins

x x x

Add/delete CDPs
and/or KPIs

x x

View CDPs
and/or KPIs

x x x x

Add/delete e-mail
templates

x

Manage
permitted e-mail
templates

x

Add/delete rules
in rule engine

x x

Manage rules in
rule engine

x x

View rules in rule
engine

x x x x

30 2 Onboarding and Preliminary Functionality Training

Fig. 2.9 Creating a new
user: master data

•> Admin and workspaces

Irrespective of the workspaces being assigned, a user with admin rights has access
to all of them (see Table2.5).

6. After pushing the Save button, the user will receive an e-mail that contains a link
which enables providing a password.

Finally, anymodification pertaining to an existing user can be realized with the above
procedure. However, instead of Step 2, an existing user has to be selected from the
available user list.

2.3 Rights and Permissions 31

Fig. 2.10 Creating a new
user: user groups

Fig. 2.11 Assigning a user
to user groups

32 2 Onboarding and Preliminary Functionality Training

Fig. 2.12 User group data
sheet

2.3.2 User Groups and Workspace Management

Asmentioned in the preceding section, each user can belong to multiple user groups.
The permissions of a given user group to another one can also be freely defined.
Indeed, while going to Main menu → User management → User groups, one can
see the view portrayed in Fig. 2.7. Subsequently, by selecting any group, e.g., admin,
one can see the view shown in Fig. 2.12, which contains essential details about this
group. By selecting the Edit button , one can see the view presented in Fig. 2.13.
As can be observed, there are two tabs:

Info: it contains the name, description and other descriptive parameters of a group;
User Groups with Access Permissions: it pertains to the list of user groups for
which a given access group has access permission (see Fig. 2.14).

•> Assigning users to a group

It should be mentioned that by proceeding to Main menu → User management →
User Groups and then selecting a desired group, one can see the view portrayed in

Fig. 2.12. By pushing the Assigned Users button , it is also possible to edit the
user assignment.

2.4 Asset Management 33

Fig. 2.13 Editing a user
group: info

2.4 Asset Management

The objective of the preceding sections was to perform a suitable introduction to the
hierarchical KIS.ME structure along with the KIS.Device onboarding procedure. As
a result of performing onboarding on a set of assets, one can see a view similar to that
presented in Fig. 2.15. Indeed, it can be easily accessed with Main menu → Assets.
This sample view indicates that there are eightKIS.Devices, i.e., fourKIS.BOXes and

34 2 Onboarding and Preliminary Functionality Training

Fig. 2.14 Editing a user
group: user groups with
access permissions

four KIS.LIGHTs. It can be also immediately deduced (see the Connection column)
that, except for KIS.BOX 0 and KIS.LIGHT 3, all KIS.Devices are connected with
KIS.MANAGER via dedicated WiFi(s). Subsequently, by selecting a sample asset,
e.g., KIS.BOX 1, one can see the view presented in Fig. 2.16. The objective of the
subsequent part of this section is to perform essential asset management concerning

• changing the name of the asset,
• assigning the asset to asset groups,
• obtaining information about current status of an asset.

Let us start with the first task by pushing Data Sheet button . As a result, the view
presented in Fig. 2.17 is obtained. Subsequently, the Master Data edit button can
be used to change the name of the asset as shown in Fig. 2.18. Let us proceed to the
second task, which pertains to assigning KIS.BOX 1 to desired asset groups. For
that purpose, the Asset groups tab should be selected as shown in Fig. 2.19. Finally,

2.4 Asset Management 35

Fig. 2.15 Asset view

Fig. 2.16 Asset view: KIS.BOX 1

the assignment process reduces to pushing the Assign to Asset Groups button and
selecting the desired asset groups as depicted in Fig. 2.20. The process of unassigning
an asset from the asset group can be performed in a similar fashion. Indeed, it is
enough to check a desired checkbox and push the Unassign button.

36 2 Onboarding and Preliminary Functionality Training

Fig. 2.17 Data sheet of
KIS.BOX 1

2.4 Asset Management 37

Fig. 2.18 Changing the
asset name

•> Group relationship graph

The relationship between an asset and the associated asset groups can be easily
visualized. Indeed, in Fig. 2.17, one can find the Group relationship graph button ,
which can be used to visualize an associated graph. Such a sample graph is portrayed
in Fig. 2.21.

The last task pertains to obtaining information about detailed parameters of an

asset by pushing the Info button (see Fig. 2.16). The above parameters cover the
device information divided into the following groups:

38 2 Onboarding and Preliminary Functionality Training

Fig. 2.19 Asset and the
associated asset groups

Fig. 2.20 Assigning asset
groups

2.5 Dashboards and Widgets 39

Fig. 2.21 KIS.BOX 1:
group relationship graph

Hardware: type (KIS.BOX/KIS.LIGHT), part number, serial number, data matrix
code, MAC address, hardware revision,
Software: OS version, application version, microcontroller firmware version,
Network: WiFi SSID, WiFi signal strength, WiFi channel, IP address, subnet,
gateway,
Firmware update: a set of detailed parameters including the update status,
Certificate: the certificate expiration date of a KIS.Device.

2.5 Dashboards and Widgets

The view presented in Fig. 2.16 is divided in the so-called Dashboards, which are
defined as an overview pages for an asset and/or asset groups. Dashboards can be

managed by pushing the Edit dashboard button . After selecting this option, one
can perform one of the following tasks (see Fig. 2.22):

• add a new dashboard,
• design or edit an existing dashboard.

The first one is very intuitive and does not need any further explanation as it
reduces to providing the name of a new dashboard. As a result, the dashboard is
automatically created and displayed as a new tab in the asset view. Thus, let us
proceed to designing a dashboard. Each one is composed of widgets. A widget is
a component of the interface which makes it possible to perform a desired action.
There are nine available widget types, which can be characterized as follows (see
Fig. 2.23):

• Digital twin,
• Info,
• Datapoint Chart,
• Data Sheet,

40 2 Onboarding and Preliminary Functionality Training

Fig. 2.22 Dashboard design

Fig. 2.23 Asset: nine widgets

2.6 Digital Twin Design 41

• KPI Single Value,
• KPI Aggregated Chart,
• KPI Single Value Column,
• KPI Pie Chart,
• KPI Single Period Chart.

The first four widgets can be directly used for digitalization of KIS.Devices as
well as the monitoring and analysis of their behaviour. The remaining five widgets
require suitable prepossessing using KPIs, which are discussed in Sect. 4.1.2.

2.6 Digital Twin Design

The objective of this section is to introduce the Digital twin widget along with its
essential functionalities. The digital twin can be defined as a KIS.MANAGER-based
virtual counterpart of a KIS.Device, which is connected to the real one through dedi-
cated WiFi. A graphical representation of both KIS.Device digital twins is presented
in Fig. 2.24. Now, let us proceed to digital twin design. For that purpose it is necessary
to go to Main menu → Assets and select the desired asset, e.g., KIS.BOX 1. Subse-

quently, the Edit dashboard button should be used and then the Addwidget button
can be employed, resulting in the view portrayed in Fig. 2.23. Finally, the digital twin
design boils down to selecting an appropriate widget and applying the resulting dash-
board changes. This produces in the dashboard view presented in Fig. 2.25. The same
procedure can be performed for any KIS.LIGHT, e.g., KIS.LIGHT 1. As a result, the
digital twin presented in Fig. 2.26 is obtained. Irrespective of the KIS.Device being
used, it can be noticed that the actual values of both digital inputs (GPIO 3, GPIO
4) and outputs (GPIO 1 and GPIO 2) are given as well. In particular, a 0 binary state
is signified by Off while 1 is denoted by On. Moreover, their switching frequency,
expressed in mHz, can be observed as well. As detailed in Sect. 2.1, the possible
operational LED colors are limited to the ones provided in Table2.2. As shown in
Figs. 2.27–2.28, the digital twins allow changing the color of the operational LEDs
by simply selecting the desired one and then pressing the Set button. Note also that
a given operational LED may be flashing or blinking, which can be achieved via the
Flashing checkbox. It should be also noted that the digital twins display the current
state of the operational LEDs, which can evolve in various ways, e.g., due to the
appropriate rules implemented within Rule engine (see Sect. 2.9).

Time drive

Let us perform a simple change of theKIS.BOX1 state pertaining to its second button
operational LED color (cf. Button 2 in Fig. 2.28). It can be realized as follows:

1. Select the Button 2 color as blue.
2. Press the Set button.

42 2 Onboarding and Preliminary Functionality Training

Fig. 2.24 KIS.LIGHT and KIS.BOX digital twins

Fig. 2.25 Digital twin of KIS.BOX 1

Fig. 2.26 Digital twin of KIS.LIGHT 1

3. Wait a moment.
4. Select the Button 2 color as black.

After this simple procedure, one can press the Start time drive button . This allows
monitoring or reconstructing historical states of KIS.Devices, which can be realized
according to Fig. 2.29.

2.6 Digital Twin Design 43

Fig. 2.27 Changing the KIS.LIGHT operational LED color

Fig. 2.28 Changing the KIS.BOX operational LED color

44 2 Onboarding and Preliminary Functionality Training

Fig. 2.29 KIS.BOX 1 time drive

The objective of the preceding sections was to introduce the reader into essential
subjects related to asset and user management. The subsequent part aims at going
into details pertaining to the description of the current asset state using the concept
of Datapoints.

2.7 Datapoints: Plotting and Storing Data

Datapoints can be perceived as links between KIS.Devices and KIS.MANAGER.
They can be easily accessed through Main Menu → Assets → KIS.Device → Dat-
aPoints, and can be of different types, which are listed in Table2.6.

Table 2.6 Datapoint types

Type Description

Boolean A logical value, i.e., either true or false

Long An integer value, e.g., 24

Double A double precision floating point value, e.g.,
3.14

Text A character string, e.g., #0000FF

2.7 Datapoints: Plotting and Storing Data 45

•> Important

From the software engineering viewpoint, Datapoints can be perceived as read only
variables, which can be further processed and analysed. The only restrictions are the
following:

• Neither logical nor numerical operations on the Text type Datapoints are allowed,
and hence they can only be stored or visualized.

• No numerical operations can be performed on the Boolean type Datapoints; how-
ever, this limitation can be easily tackled with the If[] command (see A.16).

Datapoints are processed in real time (limited by the data transfer rate), and hence
their values depend on the current state of aKIS.Device.A full list ofDatapoints along
with their simple sample applications is provided in Appendix B. The evolution of
Datapoints can be easily observed by going to Main menu → Assets → KIS.Device

and thenpressing theDatapoints button .As a result, the viewpresented inFig. 2.30
is obtained. Subsequently, by selecting the desired Datapoints, their time evolution
can be graphically observed in a dedicated plot. This process is illustrated in Fig. 2.31.
A similar functionality can be directly obtained within the KIS.Device dashboard.

Indeed, by proceeding to the dashboard, i.e., by pressing the Dashboard button

and then the Edit dashboard one , it is possible to add one of the widgets (Add
widget button) presented in Fig. 2.23. Finally, to achieve the desired functionality,
a Datapoint Chart is incorporated within the dashboard. Its configuration requires
selecting a Datapoint (see Fig. 2.32), providing a headline of the figure as well as the
plotting interval. After this preliminary setup, one can proceed to defining the plot
options, which can be realized according to Fig. 2.33. Apart from these, one can set
the plot color as well as define the axis properties (cf. Fig. 2.34):

Show axis: enable/disable an axis;
Scale axis: an axis may have a limited range. That can be time-varying, which can
be realized by assigning a suitable Datapoint;
Show Min/Max: show minimum and maximum values of the data being plotted.

Apart from the above features, it is possible to define Thresholds over/below
which the plot color will be changed (see Fig. 2.34).

•> Multiple plots

The datapoint Chart widget allows presenting multiple plots, which can be individ-
ually managed using options and properties described in this section.

46 2 Onboarding and Preliminary Functionality Training

Fig. 2.30 KIS.BOX 1 datapoints

Fig. 2.31 KIS.BOX 1 datapoints’ trend

Fig. 2.32 Datapoint chart:
selecting a datapoint

2.7 Datapoints: Plotting and Storing Data 47

Plot style stairs linear shaded stairs shaded linear
Point style line circle square triangle
Line style solid dotted dash-dot dashed

Fig. 2.33 Datapoint chart: plot options and their interpretation

Fig. 2.34 Datapoint chart: axis and colors

48 2 Onboarding and Preliminary Functionality Training

Fig. 2.35 Datapoint chart:
an example

Practical example

The illustrative example being considered aims at realizing the following steps:

1. Go to the KIS.BOX 1 dashboard.
2. Add a new Datapoint Chart widget.
3. Select the button1ColorKpiDuration Datapoint.
4. Set the following plot options:

• Plot style: shaded stairs,
• Point style: circle,
• Lines style: solid.

5. Set the plotting interval to 10min.
6. Save the dashboard with the new widget.
7. Observe the current value of the Datapoint and verify it with Table2.2.
8. Wait a moment, change the KIS.BOX 1 operational LED color to blue, verify

the current value of the Datapoint and compare it with Table2.2.

The obtained results are shown in Fig. 2.35. Let us proceed to check the obtained
results with Table2.2. Initially, the KIS.BOX Button 1 operational LED color was
black, and hence one can see the line at the level of 2. Similarly, after a moment of
time, the color was set to blue, which corresponds to the 0-valued point.

•> Storing and analysing data

As shown in Fig. 2.36, additional features of the Datapoint Chart are as follows :

2.8 Let Us Go to Workspaces: An Introductory Example with the Floorplan Widget 49

Fig. 2.36 Datapoint chart:
storing and analysing data

Download CSV: the data can be stored as a CVS file, with the first column being
a time stamp and the remaining columns corresponding to the values of the asso-
ciated Datapoints;
Analyze in DP-App: this feature moves the user to the Datapoint view like the one
presented in Fig. 2.31.

2.8 Let Us Go to Workspaces: An Introductory Example
with the Floorplan Widget

The objective of this section is to introduce a crucial feature of asset groups concern-
ing the possibility of visualizing the system floorplan. It can be simply defined as
a graphical representation of the workshop. The floorplan is virtually implemented
within KIS.MANAGER using the Floorplan widget. To access it, it is necessary to
go to Main menu → Asset Groups, which results in the view presented in Fig. 2.37.
Subsequently, the desired asset group has to be selected, e.g., Workspace 1.

•> Floorplan vs. assets

The floorplan can only contain the assets which are assigned to a given group. For a
comprehensive description pertaining to asset management, the reader is referred to
Sect. 2.4. Alternatively, it is possible to perform this task directly from a workspace

by simply pushing the Assigned Assets button . Subsequently, the following steps
should be realized:

50 2 Onboarding and Preliminary Functionality Training

Fig. 2.37 Asset groups

1. Push the Edit assigned assets button .
2. Push the Add assets to this group button.
3. Select the desired assets and add them to the group.

Note that the process of removing assets from a group can be realized in an analogous
way.

After selecting the workspace, e.g., Workspace 1, one can see the view presented
in Fig. 2.38. Similarly as in Sect. 2.5, dashboards can be managed by pushing the

Edit Dashboard button . After selecting this option, it is necessary to push the
Add widget button, which results in the view presented in Fig. 2.39. However, the
resulting set of widgets is different than the one described in Sect. 2.5 (see Fig. 2.23).
Indeed, there are the following nine widgets:

• Floorplan,
• Datapoint Chart,
• Data Sheet,
• Aggregation,
• KPI Single Value,
• KPI Aggregated Chart,
• KPI Single Value Column,
• KPI Pie Chart,
• KPI Single Period Chart.

The first three widgets can be directly used for digitalization of asset groups as well
as the monitoring and analysis of their behaviour. The remaining five require suitable
prepossessing using KPIs, which are discussed in Sect. 4.1.2.

Let us start by selecting the Floorplan widget. This requires an appropriate graph-
ical representation of the real floorplan in the form of an SVG file. Such a kind of

2.8 Let Us Go to Workspaces: An Introductory Example with the Floorplan Widget 51

Fig. 2.38 Asset groups: workspace 1

Fig. 2.39 Workspace: nine widgets

52 2 Onboarding and Preliminary Functionality Training

Fig. 2.40 Floorplan widget: an initial configuration

files employs a two-dimensional vector graphic format created by the World Wide
Web Consortium. It expresses images with a text format that is based on XML.
There are plenty of free and commercial tools which can be used for preparing a
floormap using the SVG format. A good representative example is the freely avail-
able Inkscape package [1]. Having an SVG-based floorplan, it possible to use the
Floorplan widget. Its initial configuration reduces to providing a desired Headline
and the above-mentioned SVG image. As a result, the view portrayed in Fig. 2.40
is obtained. Subsequently, either all or selected assets can be introduced within the
floorplan. Let us proceed with selected assets. To perform this action, it is neces-
sary to use the Add widget button (cf. Fig. 2.40). The desired assets can be added as
depicted in Fig. 2.41. Finally, the assets (KIS.BOX1 andKIS.LIGHT 0) can be freely
located within the floorplan, which results in the dashboard presented in Fig. 2.42.

•> Asset group time drive

Similarly as in Sect. 2.6, it is possible monitor or reconstruct historical states of the
asset group. This can be easily realized by pressing the Start time drive button (cf.
Fig. 2.38).

2.8 Let Us Go to Workspaces: An Introductory Example with the Floorplan Widget 53

Fig. 2.41 Floorplan widget: adding assets

Fig. 2.42 Floorplan widget within the dashboard

54 2 Onboarding and Preliminary Functionality Training

2.9 Let Us Rule: Managing Rules Within a Workspace

A rule-based system can be perceived as a way of transforming a human expert’s
knowledge into an automated framework [2, 3]. For the purpose of KIS.ME,
such a framework is called Rule engine. On the other hand, it can be seen as a
KIS.MANAGER functionality, whichmakes it possible to implement IF-THEN rules
governing interactions between assets. Thus, the rule-based system can be simply
designed using a set of assets and a set of rules dictating their behaviour. In KIS.ME,
rules are exemplified as a set of IF-THEN statements labelled with a unique name:

rule name: IF antecedent THEN consequent. (2.1)

Generally, a rule may have multiple antecedents linked by or and/or or operators.
Similarly, it may have multiple consequences. For example,

rule 1: IF A is black and C is white or X is green THEN

A is white, B is black. (2.2)

Note that the antecedent of a rule possesses two parts:

1. a linguistic object (LO),
2. the value of the linguistic object.

The linguistic object is linked with its value through various operators, e.g., is, or
mathematical operators:≤,<, etc. Since KIS.ME operates on KIS.Devices, LOs can
be designed either with KIS.BOXes or KIS.LIGHTs, which yields the following:

KIS.Device | Status | Operating Mode: it expresses functional access of a KIS.
Device to WiFi and it can be either Online or Offline;
KIS.Device | GPIO | GPIO No: it corresponds to the logical status of a selected
GPIO, either On (High) or Off;
KIS.BOX | Button No | Button No Color: it expresses the color of the button oper-
ational LED, which can take a value from Table2.2 with an additional Boolean-
valued Flashing option;
KIS.LIGHT | LED | LED Color: it expresses the color of the operational LED,
which can take a value from Table2.2 with an additional Boolean-valued Flashing
option.

There are two operators linking LOs with their values:

EQUAL: checks if an LO has a given value;
NOT: checks if an LO does not have a given value.

Subsequently, a consequent can be defined as an Action, which can assign a value
to one of the above-listed LOs except for the first one, i.e., KIS.Device | Status
| Operating Mode. Another restriction is that only digital outputs can be set, i.e.,
KIS.Device | GPIO | GPIO 1 and KIS.Device | GPIO | GPIO 2. The above actions

2.9 Let Us Rule: Managing Rules Within a Workspace 55

should perceived as the ones acting on a device. An action can also be associated
with sending a predefined notification e-mail.

•> Notification templates

A predefined notification e-mail is based on a notification template. Such a template
can be defined by a user with admin rights (cf. Table2.5) by simply going to Main
menu → Portal Admin → Notification Templates. As a result, by using the Create
new notification template button , a notification template editor is obtained, which
is presented in Fig. 2.43. The crucial features of such a template are as follows:

Name: uniquely identifies a template within Rule engine actions;
Subject: stands for the title of a predefined e-mail;
Message: constitutes the body text of the predefined e-mail.

Both Subject and Message can be conveniently designed using a set of variables,
which can be accessed after pushing the Add variables... button. The meaning of the
crucial parameters should be interpreted as follows:

asset.name: the name of a KIS.Device,
asset.properties.type: either sBox or sLight,
event.key: EMAIL_ACTION,
event.timestamp?datetime: the date and time of an event.

Before proceeding to designing a sample rule, a set of suitable definitions has to
be provided:

Conditions: the set of antecedents merged with and/or operators,
Triggers: the set of antecedents merged with or operators,
Actions: the set of consequents.

Under the above definitions, triggers can be perceived as necessary conditions for
performing a Rule engine-based inference. Additionally, triggers can be formed with
all of the above-defined logistic objects. However, they can also use a linguistic object
associated with pressing the KIS.BOX button. Unlike conditions, triggers verify if
the value of a linguistic object has given instants, e.g., a button is pressed. Thus, a
full list of triggers for linguistic objects is formed by extending the above-defined
one with what follows:

KIS.BOX | Button No | Pressed: it expresses the fact of pressing the KIS.BOX
button.

Apart from the above functionalities, triggers have also optional settings:

after x times: the trigger is fired when a given value of a linguistic object has been
counted x times;

56 2 Onboarding and Preliminary Functionality Training

Fig. 2.43 Notification templates

Fig. 2.44 Sample trigger with optional settings

after x minutes: the trigger is fired after x minutes from the time when a given
value of a linguistic object has been recorded;
after x hours: the trigger is fired after x hours from the time when a given value of
a linguistic object has been recorded.

Figure2.44 shows a sample trigger, which is fired after pressing the KIS.BOX button
two times. It should be also pointed out that this kind of trigger has an internal
counter, which is automatically reset after reaching a given threshold. It can be also
reset manually after using the Trigger details link along with the Reset button (cf.
Fig. 2.45). Finally, let us note that such a manual reset is not available for the after x
minutes and after x hours optional settings.

2.9 Let Us Rule: Managing Rules Within a Workspace 57

Fig. 2.45 Trigger reset

Sample rule

The objective of this example is to define a rule which satisfies the following require-
ments:

Environment: It is defined with Workshop 1 as well as employs KIS.BOX 1 and
KIS.LIGHT 0.
Triggers: The triggers are associated with pressing KIS.BOX 1 Button 1 or
Button 2.
Conditions: The operational LED color of KIS.LIGHT 0 can be either black or
green and its status should be online.
Actions: The associated actions are as follows:

• change the operational LED color of KIS.LIGHT 0 to green;
• send a notification email to john.doe@controlintech.pl with the sub-
ject and title “Color change” while the body of the message being KIS.Device
color has changed.

Let us start with defining an email notification template by going to Main menu →
Portal Admins → Notification Templates. As has already been discussed, such a
template can be designed according to Fig. 2.46. Before proceeding to Rule engine
definitions, it can be observed that the above conditionsmay have a visible effect if the
KIS.LIGHT 0 operational LED color is either black or green. Thus, an appropriate
initial condition has to be imposed by going to Main menu → Assets, selecting
KIS.LIGHT 0 and using its digital twin to set an appropriate operational LED color
(Sect. 2.6). Under the above preliminary setup, triggers, conditions and actions can
be intuitively defined by pushing the Rule engine button (cf. Fig. 2.42). Subsequently,
the Create rule button should be used to open the Rule engine editor and provide the
required ingredients, i.e., the name of the rule, triggers, conditions and actions. As a
result, the view presented in Fig. 2.47 is obtained. After saving the rule, it is activated
and operates within KIS.ME.

58 2 Onboarding and Preliminary Functionality Training

Fig. 2.46 Notification template: “change color”

•> Rule interactions

As can be expected, each asset group/workspace has its own set of rules. However,
when sharing assets between workspaces, the users must be cautious about their
possible unappealing interactions.

2.10 State-Space Modelling

The objective of this section is to introduce the concept of the system state, which is
a set of variables that can be used to describe any past and future system behaviour.
Consequently, the system state-space is a space of admissible state values. Subse-
quently, the state-space model is defined as a set of rules which enables cyclical
transition between the consecutive states.

2.10 State-Space Modelling 59

Fig. 2.47 Sample rule

Traffic lights state-space model

To illustrate the concept of the state-space model, let us employ a traffic lights
example. In this case, the transition rules can be clearly visualized using Fig. 2.48.
The objective of the remaining part of this example is to attain a similar functionality
using KIS.ME. In particular, the following features should be achieved:

Environment: It is defined within Workshop 1 and employs KIS.BOX 1, hence
the traffic lights system presented in Fig. 2.48 is reduced to one KIS.BOX, which
changes the colors of its operational LEDs to mimic the behaviour of the traffic
lights system.
Triggers: A trigger is associated with pressing KIS.BOX 1 Button 2.
Conditions: The conditions are simply defined by the current state, which is one
of those presented in Table2.7;
Actions: The associated action is simply a consecutive state.

It should be noted that each state described in Table2.7 is uniquely defined, which
makes it possible to form the state-space model using a set of four rules. A sample
rule evolving the system from state 1 to state 2 is provided in Fig. 2.49. Moreover,

60 2 Onboarding and Preliminary Functionality Training

Fig. 2.48 Traffic lights

Table 2.7 KIS.BOX-based states

State KB operational LED 1 KB operational LED 2

1 Red Black

2 Red Yellow

3 Green Black

4 Green Yellow

Fig. 2.49 Sample traffic lights rule

the initialization of the system requires that KIS.BOX 1 operational LEDs be in one
of the quadruple of states defined in Table2.7. This can be easily achieved using the
KIS.BOX digital twin (see Sect. 2.6).

2.11 Mastering Rule Management: Completeness and Consistency 61

2.11 Mastering Rule Management: Completeness
and Consistency

The objective of the two preceding sections was to provide a concise introduction
into Rule engine design and the inference mechanism. However, for more complex
systems, the number of rules will proliferate. Thus, it is customary to have a tool
capable of checking their completeness and consistency. For that purpose, the cele-
brated decision table [2] is introduced. It operates on Boolean-valued conditions,
and hence it is beneficial to recall the essential logical operators provided in their
priority order:

¬ negation,
∧ conjunction,
∨ disjunction,

⇒ implication,
⇔ equivalence.

The behaviour of the above operators is explained in Fig. 2.50. It can be also observed
that the implication and equivalence can be expressed by

a ⇒ b can be calculated with ¬a ∨ b;
a ⇔ b can be obtained with (a ⇒ b) ∧ (b ⇒ a).

Therefore, a typical way of expressing a logical implication is IF a THEN b. Thus,
according to the truth table for a ⇒ b, if a is false then it does not matter what b is,
and hence the implication is true. Similarly, if a and b are true then the implication is
true as well. The last case, i.e., when a is true and b is false, can be explained using
the following example:

IF sin(z) = 0 THEN z = 0.

Such an implication is false as z = 0 is not the only value for which sin(z) = 0. Thus,
the implication which is true should be

IF sin(z) = 0 THEN z = kπ, with k being an integer value.

To summarize these preliminaries, two crucial definitions have to be provided:

Tautology: a statement that is true for every possible interpretation, e.g.,
(KIS.Box|Status|Operating Mode is Offline) or (KIS.Box|Status|Operating Mode
is Online);
Contradiction: a statement that is false for every possible interpretation, e.g.,
(KIS.Box|Status|OperatingMode is Offline) and (KIS.Box|Status|OperatingMode
is Online).

Indeed, it is obvious that in the first case the statement is always true as the KIS.BOX
status can be either Offline or Online. Contrarily, it is evident that the second state-

62 2 Onboarding and Preliminary Functionality Training

Fig. 2.50 Truth tables

ment is always false as the KIS.BOX status cannot be Offline and Online simultane-
ously. Thus, it is evident that one should avoid both cases while designing rules with
KIS.ME.

2.11.1 Transforming Conditions

A preliminary step for implementing a rule base is to collect all rules and check
if it is possible to simplify them. For that purpose, a standard set of transformation
strategies can be used:

double negation: ¬¬a = a,
commutativity of conjunction: a ∧ b = b ∧ a,
commutativity of disjunction: a ∨ b = b ∨ a,
associativity of conjunction: (a ∧ b) ∧ c = a ∧ (b ∧ c),
associativity of disjunction: (a ∨ b) ∨ c = a ∨ (b ∨ c),
distributivity of conjunction: (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),
distributivity of disjunction: (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c),
idempotency of conjunction: a ∧ a = a,
idempotency of disjunction: a ∨ a = a,
De Morgan’s law: ¬(a ∧ b) = ¬a ∨ ¬b,
De Morgan’s law: ¬(a ∨ b) = ¬a ∧ ¬b,
contraposition law: a → b = ¬b ⇒ ¬a.

Having the above strategies, one can simply associate logical variables with
antecedents (see Sect. 2.9). For that purpose, it is suggested to use the following
nomenclature:

a := LOs EQUAL Value, (2.3)

¬a := LOs NOT Value. (2.4)

Figure2.51 presents two sample antecedents which can be associated with a logi-
cal variable a and its negation ¬a. Having such variables, it is easy to write and
operate on conditions in a consistent way. Another important aspect pertains to an
appropriate use of parentheses. Indeed, due to the operators’ priority, a ∨ (b ∧ c) can

2.11 Mastering Rule Management: Completeness and Consistency 63

Fig. 2.51 Sample a (top) and ¬a (bottom)

Fig. 2.52 Sample a ∧ (b ∨ c) (a: top, b: middle, c: bottom)

Fig. 2.53 Implementation of ¬a ∨ ¬b

be simplified to a ∨ b ∧ c. Contrarily, a ∧ (b ∨ c) differs from a ∧ b ∨ c. This can
be clearly observed within Rule engine, which uses different right square brackets
for indicating appropriate priorities. Thus, a ∧ (b ∨ c) can be exemplified with the
conditions portrayed in Fig. 2.52.

Sample simplification

Let us suppose that there are two logical variables defined as

a := KIS.BOX 1| Button 1 | Button 1 Color EQUAL black,

b := KIS.BOX 1| Button 2 | Button 2 Color EQUAL green,

and an action must be performed when ¬(a ∧ b) (NAND operation) is true. Unfor-
tunately, such a condition is impossible to implement in Rule engine. However, it is
straightforward to observe that by applyingDeMorgan’s law it is possible to simplify
it into ¬a ∨ ¬b, which can be easily implemented in Rule engine (see Fig. 2.53).

64 2 Onboarding and Preliminary Functionality Training

Fig. 2.54 Logical expression simplification with Maxima

Table 2.8 Decision table

Condition/action r1 r2 · · · rk

Condition 1 c1,1 c1,2 · · · c1,k
Condition 2 c2,1 c2,2 · · · c1,k
.
.
.

.

.

.
.
.
. · · ·

.

.

.

Condition n cn,1 cn,2 · · · cn,k

Action 1 a1,1 a1,2 · · · a1,k
Action 2 a2,1 a2,2 · · · a2,k
.
.
.

.

.

.
.
.
. · · ·

.

.

.

Action m am,1 am,2 · · · am,k

•> Automatic simplification

There are several free and commercial packages which can be used for auto-
matic simplification of logical expressions. Maple [4] (package Logic, command
BooleanSimplify) and Maxima [5] (package logic, command
logic_simplify) are good representative examples of commercial and freely
available tools, respectively. Let us employ Maxima for the purpose of simplifying
the expression used in the preceding example, i.e., ¬(a ∧ b). The Maxima session
implementing this task is presented in Fig. 2.54.

To conclude this section, it should be pointed out that the rule

IF antecedent 1 OR antecedent 2 OR . . . antecedent n THEN Action(s) (2.5)

can be replaced by a set of n rules of the form

IF antecedent 1 THEN Action(s), (2.6)

...

IF antecedent n THEN Action(s). (2.7)

2.11 Mastering Rule Management: Completeness and Consistency 65

2.11.2 Decision Tables

The classical decision table [2, 3, 6, 7] is used to express k rules of the form

ri : IF Condition 1 and Condition 2, . . . and Condition n

THEN Action 1 and Action 2, . . . and Action m, i = 1, . . . , k, (2.8)

which can be presented using Table2.8. The internal horizontal line between con-
ditions is perceived as the and conjunction. Additionally, the double horizontal line
separates conditions and actions while the vertical ones distinguish the rules. Thus,
any rule ri can be easily reconstructed from Table2.8 to (2.8) by reading the column
corresponding to ri in a top-to-bottom order. The entries of the decision table with
respect to the conditions, i.e., ci, j , in Table2.8 are as follows:

T: if the condition must hold;
F: if the condition does not hold;
–: if the condition is ignored;

while for the actions ai, j we have

X: if the action has to be executed;
–: if the action has not to be executed.

A set of rules or a decision table have the following important features:

Redundancy: If there is a situation in which conditions of two rules with the same
actions hold, then they are called redundant ones.
Inconsistency: If there is a situation in which conditions of two rules with different
actions hold, then they are called inconsistent ones.
Completeness: For every situation there is a rule whose conditions will be satisfied.

Checking redundancy and inconsistency

Let us consider three conditions which have to be implemented using Rule engine
within Workshop 1 with KIS.BOX 1 and KIS.LIGHT 0:

Condition 1: KIS.BOX 1 | Button 1 |Button 1 Color is black;
Condition 2: KIS.BOX 1 | Button 2 |Button 2 Color is blue;
Condition 3: KIS.LIGHT 0 | LED Color | Color is green.

There are also two actions:

Action 1: KIS.LIGHT 0 | Set LED | LED Color | is black;
Action 2: KIS.LIGHT 0 | Set LED | LED Color | is blue.

Let us suppose that the above conditions and actions were used to implement three
rules, r1, r2 and r3, expressed in the form of the decision table detailed in Table2.9.
Let us consider a situation in which Condition 1 is T (true) while Condition 2 and

66 2 Onboarding and Preliminary Functionality Training

Table 2.9 Decision table with redundancy and inconsistency

Condition/Action r1 r2 r3

Condition 1 T – T

Condition 2 – F T

Condition 3 F F –

Action 1 X X –

Action 2 – – X

Table 2.10 Decision table with inconsistency

Condition/Action r11 r3

Condition 1 – T

Condition 2 – T

Condition 3 F –

Action 1 X –

Action 2 – X

Condition 3 are F (false). In such a case both rules r1 and r2 are active. Since they
have identical actions (Action 1), they are redundant, which means that they can
be merged into one equivalent rule r11 . The resulting decision table is presented in
Table2.10. Let us consider a situation in which Condition 1 and Condition 2 are T
(true) while Condition 3 is F (false). It can be easily observed that rules r11 and r3
are inconsistent because their condition sets are satisfied while they have different
sets of actions. The inconsistent rules denote the situation in which different things
may happen under the same circumstances. Indeed, two contradictory actions will
be initiated:

Action 1: KIS.LIGHT 0 | Set LED | LED Color | is black;
Action 2: KIS.LIGHT 0 | Set LED | LED Color | is blue.

To summarize, a simple rule reduction principle can stated as below.

•> Rule reduction principle

If there are two rules l and s with the same actions and identical condition entries
ci,l and ci,s except for c j,l �= c j,s , then they are replaced with a single new rule f
with a condition entry c j, f equal to “–”. Note that as “–” represents T/F, it should be
perceived as equal to both T and F.

2.11 Mastering Rule Management: Completeness and Consistency 67

Fig. 2.55 Rule r3 implemented within Rule engine

•> Implementing decision tables with Rule engine

Implementation of decision tables within Rule engine can be easily realized using
the following procedure:

1. Select the i-th rule.
2. Read the rule in order from top-to-bottom and perform the following translation:

• if an entry is equal to “T”, then introduce the condition using (2.3);
• if an entry is equal to “F”, then introduce the condition using (2.4);
• if an entry is equal to “–”, then ignore it.

As an example, let us consider rule r3 in Table2.10, which is exemplified in Fig. 2.55.

The above implementation strategy is applicable to a set of simple conditions
in the form of either (2.3) or (2.4) . However, it can be easily extended to more
advanced structures. On the other hand, the logical expressions can be simplified
using the strategies proposed in the preceding section (see, e.g., (2.5) and (2.7))
or transformed into conjunctive normal form (see, e.g., [2] for a comprehensive
explanation).

•> Rule base completeness

Having a way of checking the redundancy and consistency, it is possible to provide
a strategy for verifying the completeness of a set of rules. Since each condition
in a decision table (Table2.8) is a Boolean-valued one, this simply means that the
complete number of rules is equal to

k = 2n, (2.9)

68 2 Onboarding and Preliminary Functionality Training

where k is the total number of rules while n is the number of conditions (cf. (2.8)).
Thus, a rule should be defined for every possible situation. As an example, let us
consider the decision table presented in Table2.10. Thus, for three conditions one
can easily see that (2.9) implies that there should be k = 8 rules. Contrarily, there
are two rules in Table2.10. However, due to the use of “–”, rule r11 may have four
alternative forms:

r11 ∈
⎧
⎨

⎩

⎡

⎣
F
F
F

⎤

⎦ ,

⎡

⎣
T
T
F

⎤

⎦ ,

⎡

⎣
F
T
F

⎤

⎦ ,

⎡

⎣
T
F
F

⎤

⎦

⎫
⎬

⎭
,

while rule r2 has two alternative ones:

r2 ∈
⎧
⎨

⎩

⎡

⎣
T
T
F

⎤

⎦ ,

⎡

⎣
T
T
T

⎤

⎦

⎫
⎬

⎭
.

This clearly means that there are six rules and the decision table (Table2.10), and
hence the set of rules is incomplete. Thus, it is possible to verify (2.9) with

kr =
nr∑

i=1

2ni,− , (2.10)

where nr stands for the number of rules in Table2.8 while ni,− is the number of
instances of “–” in the i-th rule, i = 1, . . . nr . In the example presented in Table2.8,
one can easily identify what follows

• there are two rules nr = 2;
• there are two instances of “–” in rule r11 , which results in n1,− = 2;
• there is one “–” in rule r2, i.e., n2,− = 1;
• thus, (2.10) implies that kr = 22 + 21 = 6, which clearly means that kr < k and
the set of rules is incomplete.

It should be pointed out that there are situations in which rule base completeness
is not necessary. Indeed, if it is guaranteed that not all possible situations pertain to
input variables, and hence, conditions are possible, then the number of rules can be
smaller. Such a situation may occur during the state-space modelling presented in
Sect. 2.10. In such a case, the consecutive states are cyclically realized, which implies
appropriate rule order execution. Finally, it should be pointed out that triggers may
also have influence on the final number of rules. Indeed, they cause that some rules
are not fired for a given trigger setting.

2.12 Case Study: Trend Plotting and Performance Analysis 69

2.12 Case Study: Trend Plotting and Performance Analysis

The objective of the preceding three sections was to introduce Rule engine, which
makes it possible to bring a given system alive according to a predefined set of
rules. Having such features, it is possible to monitor KIS.Device performance with
Datapoints and the associated widgets described in Sect. 2.7. For that purpose, let
us reconsider the traffic lights example presented in Sect. 2.10. Let us start with
transforming Table2.7 into a decision table assuming that the initial state of the
system is (cf. Sect. 2.6)

KIS.BOX 1 | Button 1 |Button 1 Color is red;
KIS.BOX 1 | Button 2 |Button 2 Color is black.

By observing an obvious condition stating that an operational LED cannot have two
different colors simultaneously, the resulting decision table is given in Table2.11.
This implies that there is no need for implementing “F”-valued entries, which simpli-
fies the Rule engine structure. For Button 1 Color, T is equivalent to red while
F stands for green. Similarly, for Button 2 Color, T is equivalent to black while
F stands for yellow. It is straightforward to observed that there are two conditions,
and hence (2.9) implies that a complete set of rules should have four rules. This is
exactly the case. Moreover, the rules are consistent because each of them pertains
to a different set of actions. Finally, a Rule engine-based implementation of r1–r4 is
provided in Figs. 2.56, 2.57, 2.58 and 2.59. Having a fully functional system, it is
possible to design a dashboard containing

• a floorplan within Workshop 1 (cf. Sect. 2.8 for guidelines),
• a digital twin of KIS.BOX 1 implementing the traffic lights system,
• a Datapoint Chart widget containing two (cf. Sect. 2.7 for details) plots showing
the color of KIS.BOX first and second operational LEDs. This can be achieved
using

button1ColorKpiDuration,

button2ColorKpiDuration.

The resulting dashboard is presented in Fig. 2.60. Such a design allows intuitive
visualization and analysis of the behaviour of the traffic lights system. Indeed, the
plots in Fig. 2.61 correspond to the operational LED colors of the first (green) and the
second (yellow) buttons. As can be observed, both of them have two possible values
only, which can be recorded and analysed over a specified time period. In particular,
the green line switches between the red (5) and the green (3) level. Similarly, the
yellow line switches between black (2) and yellow (7).

70 2 Onboarding and Preliminary Functionality Training

Fig. 2.56 Traffic lights rule r1 implemented within rule engine

Fig. 2.57 Traffic lights rule r2 implemented within rule engine

Fig. 2.58 Traffic lights rule r3 implemented within rule engine

2.12 Case Study: Trend Plotting and Performance Analysis 71

Fig. 2.59 Traffic lights rule r4 implemented within rule engine

Fig. 2.60 Traffic lights dashboard

Fig. 2.61 Traffic lights datapoint chart

72 2 Onboarding and Preliminary Functionality Training

Table 2.11 Decision table for traffic lights

Condition/Action r1 r2 r3 r4

KIS.BOX 1 |
Button 1 |Button
1 Color

– – T F

KIS.BOX 1 |
Button 2 |Button
2 Color

T F F F

KIS.BOX 1 | Set
LED | Button 1
color is red

– – – X

KIS.BOX 1 | Set
LED | Button 1
color is green

– – X –

KIS.BOX 1 | Set
LED | Button 2
color is black

– X – –

KIS.BOX 1 | Set
LED | Button 2
color is yellow

X – – –

2.13 Training Exercises

The objective of this section is to provide a set of practical exercises which can be
used for validating the knowledge and skills gathered in this chapter. It is assumed
that the user realizing these exercises has appropriate rights and permissions. This
can be easily verified using Table2.5.

2.1 Asset onboarding and management

1. Check the availability/feasibility of the following points:

• a KIS.Device,
• an M12-to-USB cable (see Table2.4),
• a computer/tablet equipped with a web browser and a USB port,
• a company account with admin user rights (see Sect. 2.3),
• WLAN access with permission credentials.

2. Go to https://kismanager.rafi.de and log in with user company credentials.
3. Perform the onboarding procedure of KIS.Device according to the guidelines

presented in Sect. 2.1.
4. Depending on the KIS.Device type, change the name of the device to either

KIS.BOXYOURNAMEorKIS.LIGHTYOURNAME(seeSect. 2.4, Fig. 2.18).
5. Assign the KIS.Device to Workshop 1 and Workshop 2.

https://kismanager.rafi.de

2.13 Training Exercises 73

2.2 Creating a new user

Using an arbitrary e-mail address at your disposal, perform the following:

1. Create a user according to the guidelines presented in Sect. 2.3.1.
2. Give the new user installer rights (see Table2.3).
3. Assign the new user to Workspace 1 and Workspace 2.

2.3 Dashboard and digital twin design

Exercise requirements: The exercise requires access to one KIS.BOX and one
KIS.LIGHT. Proceed according to the following tasks:

1. Go to Main menu → Assets.
2. Select KIS.BOX, proceed to its dashboard and modify its name to “Sample

dashboard”.
3. Design a KIS.BOX digital twin.
4. Add Datapoint Chart to the dashboard capable of displaying Datapoints:

button1ColorKpiDuration,

button2ColorKpiDuration.

5. Using the digital twin, change arbitrarily the colors of both the first and the
second operational LEDs.

6. Record the behaviour in the Datapoint Chart and store it with a CSV file.
7. Open the CSV file in a MS Excel-like software and compare its content with

Table2.2.
8. Use the Time drive feature of the dashboard and observe KIS.BOX historical

behaviour.
9. Repeat, analogously, points 1–8 with KIS.LIGHT.

2.4 Floorplan widget

Exercise requirements: The exercise requires access to one KIS.BOX and one
KIS.LIGHT assigned to a selected workspace.

1. Prepare your own floorplan using vector graphic software (e.g., Inkscape [1])
and save it as an SVG file.

2. Add the Floorplan widget to Workspace and locate KIS.LIGHT and KIS.BOX
on it.

2.5 KIS.LIGHT ruling

Exercise requirements: completed Exc. 2.4.

1. Write a rule called rule b2r:

Triggers: KIS.LIGHT operational LED is black;
Conditions: KIS.LIGHT operational LED is black;
Actions: KIS.LIGHT operational LED is red.

74 2 Onboarding and Preliminary Functionality Training

2. Write a rule called rule r2b:

Triggers: KIS.LIGHT operational LED is red;
Conditions: KIS.LIGHT operational LED is red;
Actions: KIS.LIGHT operational LED is black.

3. Go to Main menu → Assets, select KIS.LIGHT.
4. Using the KIS.LIGHT digital twin, set its operational LED color to black.
5. Add aDatapoint Chart associatedwith KIS.LIGHT to theWorkspace dashboard,

and attach its plot to led1ColorKpiDuration.
6. Fill in the rest of Datapoint Chart configuration parameters in an arbitrary way.
7. Using the Zoom In/Out feature, observe the behaviour of the switching signal

within the last two minute.
8. What can you say about the switching frequency/period? Is it uniform?

2.6 KIS.LIGHT ruling continued

Exercise requirements: completed Exc. 2.5. Using a similar strategy like in Exc. 2.5,
perform the following:

1. Write a set of rules enabling KIS.LIGHT transition with consecutive states
described in Table2.2, i.e., Blue, Turquoise, Black, Green,Magenta, Red,White,
Yellow.

2. Using the Zoom In/Out feature, observe the behaviour of the switching signal
within the last two minutes.

3. What can you say about the transition periods?

2.7 KIS.BOX traffic lights

Exercise requirements: The exercise requires access to one KIS.BOX assigned to a
selected workspace.

1. Read and analyse the traffic light case study described in Sect. 2.12.
2. Build your own traffic light system according to the strategy described in

Sect. 2.12.
3. Analyse the transition periods. What can you say about them?

2.8 Rule simplification I

1. Analyse the rule transformation and simplification strategies presented in
Sect. 2.11.1; in particular, automatic simplification using the Maxima software,
which is presented in Fig. 2.54.

2. Install the freely available Maxima [5] software.
3. Repeat the automatic simplification process presented in Fig. 2.54.
4. Let a be a logical variable denoting the fact that KIS.BOX is online. Thus, ¬a

signifies the fact that it is offline:

• What can you say about a ∧ (¬a)?
• What can you say about a ∨ (¬a)?

2.13 Training Exercises 75

2.9 Rule simplification II

Exercise requirements:The exercise requires access to oneKIS.BOXandKIS.LIGHT
assigned to a selected workspace.

1. Let us define the following logical variables:

a := KIS.BOX | Button 1 |Button 1 Color EQUAL red,

b := KIS.BOX | Button 2 |Button 2 Color EQUAL black,

c := KIS.LIGHT | LED | LED Color EQUAL green.

2. Implement a rule with the following condition:

(a ∧ b ∧ c) ∨ (¬a) ∨ (a ∧ (¬b) ∧ c), (2.11)

taking as a trigger the pressing of the first KIS.BOX button event along with an
action:

Action: KIS.LIGHT 0 | Set LED | LED Color | is red.

Hint: Use Maxima to simplify the above logical expression.
3. What can you say about the usage of variable b?

2.10 Decision tables

Exercise requirements:The exercise requires access to oneKIS.BOXandKIS.LIGHT
assigned to a selected workspace.

1. Let us define three conditions:

Condition 1: KIS.BOX | Button 1 |Button 1 Color EQUAL red,

Condition 2: KIS.BOX | Button 2 |Button 2 Color EQUAL black,

Condition 3: KIS.LIGHT | LED | LED Color EQUAL green;

along with two actions:
Action 1: KIS.LIGHT 0 | Set LED | LED Color | is red;
Action 2: KIS.BOX | Set LED | Button 1 color | is blue;
and a trigger associated with pressing the first KIS.BOX button event.

2. The rules involving the above conditions and actions were initially developed
and described using the decision table given in Table2.12.

3. Simplify the decision table into a new one with four rules only.
4. Check completeness of the obtained decision table.
5. Implement the obtained decision table with Rule engine.

2.11 Battery assembly system

Exercise requirements: The exercise requires access to one KIS.BOX assigned to a
selected workspace.

76 2 Onboarding and Preliminary Functionality Training

Table 2.12 Initial decision table

Condition/
Action

r1 r2 r3 r4 r5 r6 r7 r8

Condition 1 T F T F T F T F

Condition 2 T T F T F F T F

Condition 3 T T F F T F F T

Action 1 – X – – – X – X

Action 2 X – X – X X X –

Table 2.13 KIS.BOX states

State KB Button 1 color KB Button 2 color Action

1 Blue Blue Can start

2 Red Blue Cell mounting

3 Green Blue Cell mounting
completed

4 Green Red Cell-controller linking

5 Green Green Mounting completed

1. Let us consider the battery system presented in Fig. 2.62.
Such a system undergoes manual assembly, which, in simplified form, can be
described by two tasks:

a. cell mounting,
b. controller linking.

Battery mounting should be realized according to the cyclically repeated states
described in Table2.13. Note that the initial state should be State 1.

2. Prepare and simplify a decision table pertaining to the states described in
Table2.13.

3. Check completeness and consistency of the obtained decision table.
4. Form a digital twin of KIS.BOX as well as an arbitrary floorplan containing

selected parts of Fig. 2.62 integrated with KIS.BOX.
5. Use the obtained decision table and implement it with Rule engine.
6. With theKIS.BOXdigital twin, set the initial KIS.BOX state to State 1 and check

if the system performs correctly (cf. Table2.13).
7. Add the Datapoint Chart widget to the Workspace dashboard, which makes it

possible to analyse the colors of the operational LEDs of both the first and the
second KIS.BOX button.

8. analyse both the historical and the current behaviour of the system. A hint: You
can also use the time drive feature of the dashboard.

2.14 Concluding Remarks 77

Fig. 2.62 Battery assembly

2.14 Concluding Remarks

The objective of this chapter was to provide a self-contained introduction to the
KIS.ME IoT platform. In particular, preliminary information about both the hard-
ware and software layers was introduced along with suitable operating procedures
for accessing KIS.MANAGER and onboarding the hardware layer. Subsequently,
a hierarchical KIS.ME structure was presented, which associates assets, users and
workspaces alongwith suitable rights and permissions. For that purpose, a systematic
set of guidelines concerning users, assets and workspace management was provided.
Such essential knowledge enabled introduction of dashboards and widgets, which
form the basis for the KIS.ME HMI interface. Concerning the widgets, particular
attention was focused on hardware digital twins as well as floorplans exemplifying
real life systems with an integrated set of assets. Such a couple was further extended
with the Datapoints chart enabling graphical visualization of system performance.
The rest of the chapter was devoted to system management using Rule engine. In
particular, it started with a concise introduction to the graphical rule building struc-
ture. Subsequently, a state-space modelling strategy was proposed, which guarantees
cyclical behaviour of the system. Finally, more advanced techniques for managing a
set of rules were introduced, which allow their simplification as well as completeness
and consistency verification. The chapter was concluded with a series of practical
exercises, which certify the knowledge provided within it.

78 2 Onboarding and Preliminary Functionality Training

References

1. Inkscape. https://inkscape.org/. Accessed 25 June 2021
2. A. Ligeza, Logical Foundations for Rule-Based Systems (Springer, Berlin, 2006)
3. C. Grosan, A. Abraham, Rule-based expert systems, in Intelligent Systems (Springer, Berlin,

2011), pp.149–185
4. Maple. https://www.maplesoft.com/. Accessed 15 July 2021
5. Maxima. https://maxima.sourceforge.io/. Accessed 15 July 2021
6. F. Alsolami, M. Azad, I. Chikalov, M. Moshkov, Decision and Inhibitory Trees and Rules for

Decision Tables with Many-valued Decisions (Springer, Berlin, 2019)
7. J.R.Metzner, B.H. Barnes,Decision Table Languages and Systems (Academic Press, NewYork,

2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://inkscape.org/
https://www.maplesoft.com/
https://maxima.sourceforge.io/
http://creativecommons.org/licenses/by/4.0/

Chapter 3
Towards Logistic Applications

3.1 Access Control

Irrespective of the application being considered, one of the important features while
operating KIS.Devices is to guarantee the desired access control. This simply means
that one should provide means for preventing the situation in which persons with-
out appropriate access permissions operate KIS.BOXes installed in the system. In
other words, even if they touch the buttons of a given KIS.BOX, there should be no
effect associated with such an action. In this section, two kinds of access control are
considered:

General access control: each user with a granted permission is treated in the same
way in the system;
Individual access control: users with a granted permission are individually identi-
fied in the system.

Irrespective of the selected access control strategy, it is proposed to use the RFID
(radio-frequency identification) option as a user identification tool. However, before
proceeding to the details, let us provide an introductory example involving KIS.BOX
GPIO.

KIS.BOX with a photoelectric sensor

Let us consider a normally open photoelectric sensor, which is connected with
KIS.BOX according to the scheme presented in Fig. 3.1. There are several such
sensors with light-based binary switching properties. Similarly to KIS.BOX (see
Sect. 2.1), they also use an M12 connection as well as a 24V power supply. Such
a sensor works as relay, which simply changes the KIS.BOX digital input value
depending on the light condition. With a hardware infrastructure, it is possible to
implement sample rules reacting to the changes of the photoelectric sensor.

Environment: It is defined withinWorkshop 1 and employs KIS.BOX 1. There are
two rules which are determined using the settings presented below.

© The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2_3

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33623-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-33623-2_3

80 3 Towards Logistic Applications

Triggers: There are two rules and their triggers are associated with pressing either
KIS.BOX 1 Button 1 or KIS.BOX 2 Button 2.
Conditions: If the sensor is exposed to the light, then a logical false state (Off) of
Input 1 is obtained. Contrarily, if there is no light, then a logical true state (On) is
generated. Having this in mind, the idea is to equip the above-defined rules with
a preliminary condition associated with the logical false state (Off) of Input 1.
Additionally, the first rule will check if the KIS.BOX 1 operational LED 1 color
is red while the second one will verify if the KIS.BOX 1 operational LED 1 color
is blue.
Actions The action associated with the first rule causes that the KIS.BOX opera-
tional LED 1 color switches to blue. The second rule performs in a similar way,
but KIS.BOX1 operational LED 1 transforms into red.

Finally, it should be indicated that the initial state of KIS.BOX operational LED 1 is
red. This can be easily realized with the KIS.BOX 1 digital twin (cf. Sect. 2.6). The
implementation of the above-defined two rules is presented in Figs. 3.2 and 3.3. As
a result of the above hardware–software configuration, a useful light-based access
control system is developed. Indeed, if the photoelectric senor is not exposed to the
light, then no action is performed.

Fig. 3.1 KIS.BOX with a photoelectric sensor

Fig. 3.2 First rule for KIS.BOX with a photoelectric sensor

3.1 Access Control 81

Fig. 3.3 Second rule for KIS.BOX with a photoelectric sensor

Fig. 3.4 RAMO product line

Remark 3.1 The above system configuration can be adapted to a wide spectrum of
input devices and senors. For example, a RAMO product line can be efficiently used
for that purpose (see Fig. 3.4).

Following such a preliminary access control example, it is possible to go back to
access control with RFID readers. Irrespective of the access control strategy being

82 3 Towards Logistic Applications

Fig. 3.5 RFID-based access control scheme

Fig. 3.6 RFID-based access control scheme with feedback from KIS.MANAGER

used (general or individual), the general scheme of the proposed approach is given
in Fig. 3.5. It consists of a KIS.Device and an RFID reader including or associated
with a processing unit, which, after reading an appropriate RFID tag, may perform
the following commands:

Reset command: It sends a false (Off)–true (On)–false (Off) sequence to a
KIS.Device;
Identification command: It sends a desired series of false (Off)–true (On)–false
(Off) values, which identifies a user.

Let us start with the general access control strategy. The simplest approach which
can be employed in this case can be realized in a similar way as the one portrayed
in Fig. 3.5. If an appropriate RFID tag is recognized, then the RFID reader (possibly
equipped with a processing unit) simply sends an identification command consisting
of the following sequence: false–true–false (Off–On–Off). As a consequence, the
desired digital input state of the KIS.Device is changed–accordingly. The rest of the
configuration has to be realized in KIS.MANAGER. For that purpose, the digital
output of the KIS.Device can be employed, which alternates between true (On) and
false (Off). This corresponds to two possible situations, i.e., access granted (On) or
access denied (Off). An appealing property of such a solution is that, apart from
KIS.MANGER, information about the current access control status can be sent to
external hardware / software, which is visualized in Fig. 3.6.

3.1 Access Control 83

Access control with KIS.BOX

Let us consider the scheme presented in Fig. 3.6, with the KIS.Device being
KIS.BOX 1 operating within Workshop 1. Moreover, for the sake of communi-
cation purposes, digital Input 1 and Output 1 are utilized. For such a configuration,
the resulting access control rules are given in Figs. 3.7 and 3.8. Finally, any access
control-dependent rule can simply use KIS.BOX 1 Output 1 to identify the current
access control status. Note also that the above solution can also be easily realised
with KIS.LIGHT.

Fig. 3.7 Rule for granting access

Fig. 3.8 Rule for denying access

84 3 Towards Logistic Applications

Fig. 3.9 RFID-based individual access control scheme with feedback from KIS.MANAGER

Having a strategy for general access control, which is presented in Fig. 3.9, the
proposed individual access control obeys the following laws:

1. Each user has its own unique identification command, i.e., a predefined series of
true (On)–false (Off) values.

2. KIS.LIGHT is used for user identification purposes, i.e., each KIS.LIGHT oper-
ational LED color (apart from black) is used to identify a given user.

A natural constraint of such an approach is associated with the number of available
colors indicated in Table 2.2. Thus, if black is excluded, then there are seven colors
applicable. However, such a set of available users is usually sufficient for most
practical applications. On the other hand, this limitation can be easily tackled by
utilizing, e.g., two KIS.LIGHTs working together. Finally, the list of users along
with their identification colors and commands are given in Table3.1. Note that, for
the sake of simplicity, the On and Off states are denoted by 1 and 0, respectively.
Having all the above ingredients, let us provide the final operational procedure:

Step 0: The KIS.LIGHT operational LED color is set to black and Output 2 is true
(On).
Step 1: If the i-th user’s RFID tag is recognized and the selected KIS.LIGHT
Output 2 is true (On), then the RFID-based device sends sequentially the i-th
identification command to Input 1 according to the following procedure:

• the state of Input 1 is fed to Output 1;
• the KIS.LIGHT color is changed according to the currently received command
(cf. Table3.1);

• the state of Output 1 is read by the RFID-based device.

If a complete i th user identification command is received by the RFID-based device,
then go to Step 3.

Step 2: If i-th user RFID tag is recognized and the selected KIS.LIGHT 0 Output
2 is false (Off), then go to Step 3.

3.1 Access Control 85

Table 3.1 Predefined user
colors and commands

User Color Identification command

1 Blue 010

2 Turquoise 01010

3 Green 0101010

4 Magenta 010101010

5 Red 01010101010

6 White 0101010101010

7 Yellow 010101010101010

Step 3: The RFID-based device sends a reset command to KIS.LIGHT Input 2 and
then the status of Output 2 is changed to the opposite logical value. Moreover, if
Output 2 is true (On), then set the KIS.LIGH 0 operational LED color to black.

Let us start the analysis by noting that Step 0 is performed only once after completing
the design of the access control system. Similarly, as in the general access control
case, the proposed strategy alternates between two phases, which correspond to
granted and denied access. The alternation can be performed by authorized users
exclusively. Note also that the color assignment presented in Table3.1 can be freely
modified, while the identification commands should remain as proposed. This will
prevent ambiguities when identifying users.

KIS.LIGHT-based individual access control for three users

For presentation purposes, let us consider a set of three users presented in Table3.2.
The proposed strategy is to be implemented using KIS.LIGHT 0 operating within
Workshop 1. The implementation starts with Step 0, which pertains to the initial
KIS.LIGHT conditions:

• the KIS.LIGHT operational LED color is black;
• KIS.LIGHT digital Output 2 is Off.

Table 3.2 Three users’
colors and commands

User Color Integer value

1 Blue 010

2 Turquoise 01010

3 Green 0101010

86 3 Towards Logistic Applications

Fig. 3.10 Rule for transferring the on state between input 1 and output 1

Fig. 3.11 Rule for transferring the off state between input 1 and output 1

The above step is realized only once and can be easily performed using the
KIS.LIGHT digital twin (see Sect. 2.6) and/or a dedicated rule performing such
an action. Now, let us proceed to Step 1. The first point of this step pertains to trans-
ferring Input 1 to Output 1. This task is realized with the two rules presented in
Figs. 3.10 and 3.11. The second point of Step 1 concerns changing the KIS.LIGHT

3.1 Access Control 87

operational LED color according to the currently received identification sequence.
It is clear from Table3.2 that there should be three rules governing such a transition.
Thus, for a particular user, the transitions, i.e., answers to the identification command,
should be as follows:

User 1: Blue,
User 2: Blue→Turquoise,
User 3: Blue→Turquoise→Green.

To tackle this problem, the rules presented in Figs. 3.12, 3.13 and 3.14 are imple-
mented. Subsequently, the complete Step 2 is realized by the RFID-based device,
while by proceeding to Step 3 one can easily observe that the rules alternating the
logical state of Output 2 depending on Input 2 can be realized in an analogous way
as those presented in Figs. 3.7 and 3.8. Thus, they are simply omitted. Finally, by
proceeding to Step 3 one can observe that there is only one rule which has to be
carried out, i.e., if Output 2 is true (On), then set the KIS.LIGHT 0 operational LED
color to black. This rule is implemented according to Fig. 3.15. Its implementation
completes the entire design procedure and the individual access control scheme is
ready to use. Finally, it should be pointed out that the extension to seven users pre-
sented in Table3.1 is straightforward and requires four additional rules only, i.e.,
those for users 4–7.

Fig. 3.12 Rule for changing the KIS.LIGHT operational LED color from black to blue

88 3 Towards Logistic Applications

Fig. 3.13 Rule for changing the KIS.LIGHT operational LED color from blue to turquoise

Fig. 3.14 Rule for changing the KIS.LIGHT operational LED color from turquoise to green

3.1 Access Control 89

Fig. 3.15 Rule for changing the KIS.LIGHT 0 operational LED color to black

3.1.1 Managing a Small Warehouse

The warehouse management system design problem can be settled using different
approaches and strategies [1]. Irrespective of the hardware and software structure
being used, such systems aim at improving performance efficiency and minimizing
overall costs. Thus, one should find a balance between the expense of implementing
such warehouse management systems and the potential overall cost minimization.

The objective of this section is to provide guidelines for implementing a straight-
forward strategy for managing a small warehouse. Such warehouses are traditionally
divided into segmentswith shelves for storing dedicates items, e.g., products, compo-
nents, etc. Thus, it is assumed that, from the economical perspective, implementation
of a dedicated warehouse system is not justified. As a remedy, a simple KIS.ME strat-
egy is proposed, which integrates small warehouse shelves with KIS.MANAGER
with a straightforward KIS.BOX-based implementation. The proposed strategy is
based on the following general principles:

Capacity: Each shelf has the desired capacity of items.
Capacity levels: Each capacity is uniformly divided into levels.
Light levels: Each capacity level is associated with a given color, e.g., level 1:
green, level 2: yellow, level 3: red.

KIS.BOX implementation:

90 3 Towards Logistic Applications

• the KIS.BOX operational LED 1 color indicates light levels;
• KIS.BOX operational LED 2 is used for presetting a given level;
• KIS.BOX Trigger detail→Current count is used for precise control and resetting
of the current item count.

With the above preliminaries, it is possible to proceed to a simple yet illustrative
example.

Managing an item level within the shelf

The example is implemented within Workshop 1 with KIS.BOX 1. Let us consider
the item capacity levels presented in Table3.3. There, it is evident that, when there are
three or four items, then KIS.BOX 1 operational LED 1 should illuminate in green.
Similarly, if there are one or two items, thenKIS.BOX 1 operational LED 1 should be
yellow. Finally, the zero item level is indicated with red. The above functionality can
be implemented with just two rules, which are presented in Figs. 3.16 and 3.17. They
can be efficiently used for decreasing the item capacity with one KIS.BOX button
along with its operational LED, i.e., the KIS.BOX 1 Button 1 operational LED
color. The reverse, i.e., an increase in the item capacity level, can be realized with
KIS.BOX 1 Button 2. Thus, the overall performance of the system can be described
by extending Table3.3 with such a functionality, which yields Table3.4. This means
that the KIS.BOX Button 2 operational LED color indicates the capacity level which
is to the reached after refilling the shelf with two items and pressing KIS.BOXButton
2. Indeed, if the shelf is full, then it is impossible to add any item, and hence the
KIS.BOX Button 2 operational LED color is black, i.e., the KIS.BOX Button 2
operational LED is not lit. Two sample rules which can be used to achieve this goal
are presented in Figs. 3.18 and 3.19. An obvious limitation of the above strategy is
that an increase in the item level can be performed right after transferring from one
capacity level to another. For example, if the capacity level is 3 and one would like
to add two items, then the level should be 5, but not 4. However, all such ambiguities
can be resolved by using the above-described counter reset mechanism. It should be
also mentioned that the KIS.BOX initial state should be set according to Table3.4,
which corresponds to the actual item capacity level. This can be performed using the
digital twin described in Sect. 2.6. The final option which can be also implemented
pertains to alerting the user that the zero capacity level lasts too long, e.g., such an
item capacity level lasts longer than two minutes. This can be implemented with the
after x minutes optional settings, while the resulting rule is presented in Fig. 3.20.

Table 3.3 Shelf capacity management

Level Color Capacity
1 Green 3–4
2 Yellow 1–2
3 Red 0

3.1 Access Control 91

Fig. 3.16 Rule for changing the light level from green to yellow

Fig. 3.17 Rule for changing the light level from yellow to red

Table 3.4 Shelf capacity management

KB Button 1 LED KB Button 2 LED
Green Black
Yellow Green
Red Yellow

92 3 Towards Logistic Applications

Fig. 3.18 Rule for changing the light level from yellow to green

Fig. 3.19 Rule for changing the light level from green to black

3.2 Two Points–One Transporter 93

Fig. 3.20 Rule for warning about a zero item capacity with a flashing LED color

The above example can be extended to a larger number of capacity levels, which is
constrained by the sum of available colors (see Table 2.2). Moreover, the information
about the current status of the shelf can be further analyzed using KPIs, described in
Sect. 4.1.2.

3.2 Two Points–One Transporter

The practical use case being analysed in this section pertains to a two- point trans-
portation system equipped with one transporter only. This means that the transporter
performs the desired transport actions between these two points. It is assumed that the
transporter is a human-operated one, but no further details about its functionalities
are stated. Transportation points are signified by two colors. In the present use case,
green signifies the first point while red stands for the second one. Thus, KIS.Devices
being used for a complete implementation are summarized as follows:

• KIS.BOX Green: KIS.BOX associated with the green point,
• KIS.BOX Red: KIS.BOX associated with the red point,
• KIS.BOX Transporter: KIS.BOX associated with the transporter.

The above KIS.Devices are installed in Workshop 1 along with the floorplan pre-
sented in Fig. 3.21. Additionally, the black color signifies the fact that there is no need
for transportation. Under the above assumptions, the full list of transportation order
events is presented in Table3.5. This means that both KIS.BOXGreen and KIS.BOX
Red Button 1 operational LEDs are used to signify the transportation order accord-
ing to Table3.5. Finally, the ongoing transportation action is signified by the blue
color of the respective operational LED. As a result, a decision table is proposed,
which is presented in Table3.6. Thus, the system operates with six rules, r1 − r6, and
their triggers are given in Table3.7. Implementation of rules r1 − r3 is presented in
Figs. 3.22, 3.23 and 3.24. Rules r4 − r6 can be implemented analogously. Addition-
ally, KIS.BOX Green and KIS.BOX Red Button 2 are used for canceling the trans-
portation command. A sample implementation of this functionality for KIS.BOX

94 3 Towards Logistic Applications

Fig. 3.21 Two points–one transporter floorplan

Table 3.5 Possible transportation scenarios

Point 1 Point 2 KB 1 Button 1 LED KB 2 Button 1 LED

0 0 Black Black

1 0 Green Black

0 1 Black Red

1 1 Green Red

1: transport required, 0: no transportation need

Green is presented in Fig. 3.25. Finally, it should be noted that an initial condition
for all KIS.BOXes is that all their operational LED colors should be black. This can
be attained by using their digital twins (see Sect. 2.6). Having a complete system
with an initial condition, let us consider a sample transportation action:

1. A transportation request was generated within the green point by pressing the
KIS.BOX Green Button 1.

2. The KIS.BOX Green and KIS.BOX Transportation Button 1 operational LEDs
illuminate in green (see Fig. 3.21).

3. The transporter operator goes to the green point, takes the item(s) to be trans-
ported and starts the transportation action by pressing KIS.BOX Green Button
1.

4. The KIS.BOX Green and KIS.BOX Transportation Button 1 operational LEDs
illuminate in blue.

5. The transporter operator arrives at the red point, delivers the item(s) and pushes
KIS.BOX Transporter Button 1.

6. The KIS.BOX Green and KIS.BOX Transportation Button 1 operational LEDs’
color is black, i.e., they do not illuminate. The transportation action is finished.

Finally, it should be noted that another transportation event from the same point can
be started if the previous one has been accomplished.

3.3 Multiple Points–One Transporter 95

Table 3.6 Decision table for the two points–one transporter system

Condition/action r1 r2 r3 r4 r5 r6

KB green button 1 color is
black

T – – – – –

KB green button 1 color is
green

– T – – – –

KB transporter button 1
color is blue

– – T – – –

KB red button 1 color is
black

– – – T – –

KB red button 1 color is red – – – – T –

KB transporter button 2
color is blue

– – – – – T

KB green button 1 color is
green

X – – – – –

KB green button 1 color is
blue

– X – – – –

KB green button 1 color is
black

– – X – – –

KB transporter button 1
color is blue

– X – – – –

KB transporter button 1
color is green

X – – – – –

KB transporter button 1
color is black

– – X – – –

KB red button 1 color is
red

– – – X – –

KB red button 1 color is blue – – – – X –

KB red button 1 color is
black

– – – – – X

KB transporter button 2
color is blue

– – – – X –

KB transporter button 2
color is red

– – – X – –

KB transporter button 2
color is black

– – – – – X

3.3 Multiple Points–One Transporter

The objective of this section is to provide practical guidelines for implementing and
optimizing multiple points–one transporter logistic systems using KIS.ME. Such a
system is usually called a milk run one [2, 3] and comes from the dairy industry.
In particular, it covers a network in which all item supply/delivery requirements of
several transportation points are covered by one transporter, which visits all of them.

96 3 Towards Logistic Applications

Table 3.7 Triggers for rules r1 − r6
Condition/action r1 r2 r3 r4 r5 r6

KB green button 1 is pressed X X – – – –

KB transporter button 1 is
pressed

– – X – – –

KB transporter button 2 is
pressed

– – – – – X

KB red button 1 is pressed – – – X X –

Fig. 3.22 Rule r1 for the two points–one transporter system

Such a transporter operates within a predefined schedule, which is suitably spread
over the shift time. A crucial assumption behind the economical justification of such
a kind of systems is that each single point item load is smaller than the maximum
transporter load volume. Consequently, the milk run strategy is frequently employed
in internal plant logistics to transport, among others, items like

• raw materials,
• finished products,
• waste products.

According to the just-in-time (JIT) strategy [4, 5], the number of manufacturers
using the so-called supermarket concept is proliferating. Such supermarkets can be
perceived as decentralised storage areas spread over a floorplan. As a consequence,
they serve as storage places for parts required by the nearby assembly lines. Using
such a nomenclature, transportation points can be divided into

• assembly line stations;
• supermarket points.

3.3 Multiple Points–One Transporter 97

Fig. 3.23 Rule r2 for the two points–one transporter system

Fig. 3.24 Rule r3 for the two points–one transporter system

Thus, transporter operators deliver the desired parts, which are stored in designated
containers, to the assembly stations. Additionally, they collect empty containers from
the assembly stations and bring them back to the supermarket points. Typically,
such a process is realized with a fixed schedule and routes assigned to a given
transporter, which serves a selected part of the entire assembly system, i.e., a subset
of assembly stations. Such a process is accomplished by the return of the transporter
to the supermarket and preparation for the next milk run tour, i.e., refiling with new

98 3 Towards Logistic Applications

Fig. 3.25 Rule for canceling the transportation command for the green point

containers, etc. Thus, it is obvious that decentralized supermarkets, with storage
points spread over the floorplan, can provide more frequent and smaller packages of
parts. As a consequence, the inventory at assembly lines can be reduced, along with
the elimination of relatively long-travel deliveries from one central store. Irrespective
of the transportation strategy used, there are two unwanted situations which have to
be prevented by appropriate part delivery [6]:

Material shortage: This causes assembly stops resulting in an idle time;
Enlarged safety stocks: This causes space reduction around the assembly point as
well as increased inventory costs.

Furthermore, the container of parts may have an associated Kanban [7, 8] card
including all important information about them. These cards are used by the Kanban
system to provide permanent replacement of the consumed parts. In particular, the
inventory level of each part at every assembly station is associated with the so-called
Kanban number k. Thus, appropriate selection of k is crucial for preventing the
above listed unappealing situations, i.e., either material shortages or enlarged safety
stocks. There are several approaches which can be used to settle determination of k.
However, all of them involve some heuristics along with a kind of conservativeness.
As a representative example, let us recall the celebrated Toyota formula [9]:

3.3 Multiple Points–One Transporter 99

k ≥ CrTr (1 + S f)

K
, (3.1)

where

• Cr is the part consumption rate per unit time, which is a function of assembly line
efficiency;

• Tr is the replenishment lead time, which is a function dependent on handling
transporters as well as the delivery route being used;

• K is the container capacity, which depends on the part shape/weight/volume, etc.;
• S f is a safety factor expressing safety stock needs.

Irrespective of the replenishment strategy being used, the part consumption rate Cr ,
as well as the replenishment lead time Tr , is a time-varying parameter. Thus, the only
way to achieve an appropriate replenishment balance is to monitor these parameters
constantly.

The objective of the subsequent part of this section is to provide practical guide-
lines for implementing such strategies using KIS.ME. For the sake of simplicity,
the proposed solution involves one transporter only. However, such conservativeness
is to be eliminated in the subsequent section. As has already been mentioned, it
is assumed that each transportation action is started in the supermarket points and
aims at collecting the desired containers and transporting them to the assembly line
stations. Sample supermarkets, located at RAFI GmbH & Co. KG, are presented
in Figs. 3.26 and 3.27. As can be observed, they differ in their size as well as the
transporters being used. Finally, the process is accomplished by collecting empty
containers and bringing them back to the supermarket points.

Let us start with providing tools for measuring the container consumption rate. It
can be given in containers per time unit. One can also imagine a situation in which it
is expressed with a unified set of various container per time unit, which is required to
perform a desired assembly process. The proposed strategy is based on the following
general principles:

Maximum assembly point capacity: Each assembly station has a maximum level
of containers which can be stored for further processing.
Capacity levels: The maximum capacity is uniformly divided into levels.
Light levels: Each capacity level is associated with a given color, e.g., level 1:
green, level 2: yellow, level 3: red.

KIS.BOX implementation:

• the KIS.BOX operational LED 1 color indicates light levels;
• the KIS.BOX operational LED 2 is used for presetting a given level;
• KIS.BOX Trigger detail→Current count is used for precise control and resetting
of the current container count.

A sample KIS.BOX installed at the assembly system is presented in Fig. 3.28. Note
that the strategy is similar to the one used for managing a small warehouse presented
in Sect. 3.1.1. Thus, it will be revisited for the purpose of a simple yet illustrative
example presented in the sequel.

100 3 Towards Logistic Applications

Fig. 3.26 A sample large supermarket at RAFI GmbH & Co. KG

Fig. 3.27 Sample small supermarket at RAFI GmbH & Co. KG

3.3 Multiple Points–One Transporter 101

Fig. 3.28 Sample KIS.BOX
installed at the assembly
station

TheKIS.BOX installedwithin the transporter is used to provide information about
the selected transportation route being chosen. It is assumed that each route has an
associated color, which is before the transportation action by the transporter operator.
Thus, the general principles are as follows:

Route colors: Each route has an associate color, e.g., route 1: blue, route 2:
turquoise, etc.

KIS.BOX implementation:

• the KIS.BOX operational LED 1 color indicates the route;
• KIS.BOX Button 1 is used to select the desired route, i.e., its color;
• KIS.BOX Button 2 is used to start/stop the transportation action.

Container usage and replenishment

Let us consider the floorplan presented in Fig. 3.29, which contains

• two supermarket points (Supermarket 1 and Supermarket 2),
• three assembly points (Assembly 1, Assembly 2 and Assembly 3),
• one transporter.

Both the assembly stations and the transporter are equipped with KIS.BOXes, i.e.,
KIS.BOX Assembly 1, KIS.BOX Assembly 2, KIS.BOX Assembly 3, KIS.BOX
Transporter. Let us consider a sample assembly station, i.e., Assembly station 1,
equipped with KIS.BOX Assembly 1, along with the container capacity levels pre-
sented in Table3.8. From the table, it is evident that, when there are three or four
containers, thenKIS.BOXAssembly 1 operational LED1 should illuminate in green.
Similarly, if there is one or two, thenKIS.BOXAssembly 1 operational LED1 should
be yellow. Finally, the zero container level is indicated with red. The above function-
ality can be implemented with just two rules. These are identical to those presented
in Figs. 3.16 and 3.17, and hence they are omitted.

102 3 Towards Logistic Applications

Fig. 3.29 Floorplan for the one transporter–multiple points system

Table 3.8 Assembly station container capacity levels

Level Color Capacity
1 Green 3–4
2 Yellow 1–2
3 Red 0

The reverse, i.e., an increase in the container capacity level, can be realized with
KIS.BOX Assembly 1 Button 2. Thus, the overall performance of the system can be
described by extending Table3.8 with such a functionality, which yields Table3.9.
This means that the KIS.BOX Button 2 operational LED color indicates the capacity
level which is to be reached after refilling the storage place with two containers and
pressingKIS.BOXButton 2. Indeed, if the storage place is full, then it is impossible to
add any container, and hence the KIS.BOX Button 2 operational LED color is black,
i.e., the KIS.BOXButton 2 operational LED is not lit. The above functionality can be
also implemented with two rules, which are similar to those presented in Fig. 3.18.
Note also that the remaining system parameters are set in the same fashion as those
presented in Sect. 3.1.1.

Such an implementation should be performed for the remaining assembly stations.
Once it is completed, it is possible to analyse each assembly station’s efficiency with
respect to container usage per time unit. This is, however, the objective of Sect. 3.5.

Now, let us proceed to details concerning the relations between supermarkets and
assembly points. This pertains to the use of containers (sets of containers) from a

Table 3.9 Container capacity management

KB Button 1 LED KB Button 2 LED

Green Black

Yellow Green

Red Yellow

3.3 Multiple Points–One Transporter 103

Table 3.10 Relation between supermarket points and assembly stations

Assembly station Supermarket point 1 Supermarket point 2

1 x –

2 x x

3 – x

x signifies a functional relation

Table 3.11 Set of possible routes

Route Route color Points

1 Blue S2→A3→S1→A2→A1→S1→S2

2 Turquoise S1→A1→S1

3 Green S2→S1→A2→S1→S2

4 Magenta S2→A3→S2

5 Red S2→A3→S1→A2→S1→S2

6 Black Idle state

S: supermarket point, A: assembly point

given supermarket point by a given assembly station. Such a relation is detailed in
Table3.10. This, for example, means that the final product development in Assem-
bly station 2 requires a set of two containers, i.e., one from Supermarket point 1
and one from Supermarket point 2. This clearly means that Table3.10 determines
a set of possible routes from a supermarket point to an assembly station and back.
Indeed, there is not always a need to supply all assembly stations within a given trans-
portation cycle. Of course, there are plenty of possible replenishment strategies. For
example, one can start it when the associated KIS.BOX operational LED is yellow
(cf. Table3.8), which corresponds to having one to two containers (sets of various
containers) at a given assembly station. Irrespective of the criterion being used, a
set of feasible routes can be determined as the one presented in Table3.11. This set
can also be visualized in the floorplan, which is presented in Fig. 3.30. According
to Table3.11, Route 1 covers all available supermarkets and assembly points, while
Routes 2–5 can be perceived as its sub-routes. Thus, using them simply translates to
smaller overall transportation costs and greater availability of the transporter. Note
that the above set of routes is incomplete. However, it is sufficient for the illustration
purposes. Finally, the KIS.BOX transporter obeys the following rules:

Route selection: The operator is pressing KIS.BOX Transporter Button 1 to select
an appropriate route color. This is can be realized using a state-space model
described in Sect. 2.10 with the states given in Table3.11.
Transportation start/stop: After selecting an appropriate route the operator pushes
KIS.BOX Transporter Button 2 to indicate the start of the transportation action.
Once this action is accomplished, the operator pushes the button once again and
the KIS.BOX operational LED 1 color turns black (idle state, cf. Table3.11).

The implementation of the above functionality can be performed using similar mech-
anisms as those presented in the preceding sections, and hence it is not omitted here.

104 3 Towards Logistic Applications

Fig. 3.30 Floorplan with a set of routes

•> Transportation decision making

The transportation decisions are made based on container usage or the consumption
rate,which can be directly observed inKIS.MANAGER.Thus, there are a fewoptions
which can be used to perform appropriate decisions:

Transporter operator decision: The transporter operator is equipped with a mobile
device, which enables displaying the floorplan along with the current container
status of each assembly station. Using such knowledge the operator makes an
appropriate decision on his/her own.
KIS.MANAGER operator decision: Based on the current container status of each
assembly station, the KIS.MANAGER operator sends information to the trans-
porter operator concerning a subsequent transportation action. For example, this
can be realized

• by sending an e-mail notification to the transporter operator (see Sect. 2.9);
• by directly changing the KIS.BOX Transporter operational LED 1 color to the one
associated with the selected route.

Dedicated rule-based decision: The rule base in Rule engine can be extended
to automatically make the transportation decision. However, such an approach
requires a relatively large number of rules, and hence it is recommended for small
transportation systems only.
External software decision: The information about the current container status is
fed to the external software (e.g., manually or using GPIOs), which returns an
appropriate decision, further passed on to the transporter operator.

3.4 Multiple Points–Multiple Transporters 105

3.4 Multiple Points–Multiple Transporters

As can be deduced after analysing Fig. 3.30, the number of possible routes pro-
liferates substantially with that of both supermarkets and assembly stations. This
situation becomes even more complicated if assembly stations exhibit large effi-
ciency expressed in a significant container consumption rate. Such a situation makes
the transportation more intense, and hence a larger number of transporters should
be used. Thus, there are two possible strategies which can be employed for tackling
multiple transporters:

• all transporters operate in the same area;
• transporters are assigned to designated zones of the floorplan.

The first strategy requires external software, which is responsible for providing a real-
time schedule [10]. Such a software package should also take into account inevitable
transportation delays, which can be present in the system. As a result, the work of
transporters should be scheduled in so as to minimize the effect of such delays over
the course of time. Since the primary objective of this book is to provide a concise
guide to various applications of KIS.ME, the second strategy is to be utilised. Let us
start with providing a detailed description of the zones. The floorplan is represented
in two dimensions, which can be described with two variables, x and y. Thus, the
floorplan can be considered a two-dimensional colored grid. The maximum resolu-
tion in both dimensions x and y is equal to the number of colors present in Table 2.2,
i.e., eight. Thismeans that it is possible to define up to 8 × 8 = 64 zones (Table 3.12).

Each zone is uniquely identified by a couple of colors (x, y). For the purpose of
a further discussion, let us assume that the multiple transporter–multiple points sys-
tem is essentially based on the same KIS.ME-related strategy as the one presented in
Sect. 3.3. The only exception is that a set of routes is assigned to a set of zones. This
means that the route colors can be repeated in a different set of zones operated by
different transporters. The same situation pertains to assembly stations in different
zones, which may also have the same identification color. If transporters are assigned
to designated zones, then the concept of determining the current zone of the trans-
porter has to be provided as well. For that purpose, each transporter is to be equipped
with an additional KIS.BOX, which can be called KIS.BOX Transporter Zone. The
principles of such a KIS.BOX are as follows:

Table 3.12 Floorplan zones along with their identification color

x/y Blue Turquoise Black Green Magenta Red White Yellow

Blue

Turquoise

Black

Green

Magenta

Red

White

Yellow

106 3 Towards Logistic Applications

Identification of position x : The KIS.BOX Transporter Zone Button 1 operational
LED color signifies x coordinate of the current zone.
Identification of position y: The behaviour of the KIS.BOX Transporter Zone
Button 2 operational LED color signifies coordinate y of the current zone.

The behaviour of both Button 1 and Button 2 is implemented using the state-space
model principle as the one described in Sect. 2.10, while the triggers are associated
with pressing either Button 1 or Button 2. As a result, the current zone can be easily
set by the transporter operator using just two buttons of KIS.BOX Transporter Zone.

Sample multiple transporter system

In the example being considered, the entire floorplan is divided into 15 zones.
Each one is identified by a suitable color, i.e., x ∈ {blue, turquoise, black} and
y ∈ {blue, turquoise, black, green,magenta}. There are two transporters, and each
of them has an associated set of zones, which are covered by the black and red
borders presented in Fig. 3.31. As can be observed, KIS.BOX Transporter 1 Zone
indicates that the associated transporter is within the zone (blue,black). Similarly,
KIS.BOX Transporter 2 Zone signifies that the second transporter is within the zone
(black,green).

Fig. 3.31 Floorplan with zones and transporters

3.4 Multiple Points–Multiple Transporters 107

•> Physical zone identification

The implementation of the proposed approach requires appropriate physical zone
identification. This can be, for example, achieved by colored indicators on the borders
of each zone on a given route. This will enable the transporter operator to provide
appropriatemodification of the current zone usingKIS.BOXTransporter Zone. There
are, of course, several other approaches, e.g., indoorWiFi-based position estimation,
ZF Openmatics TAG Finder INDOOR [11], etc. Nevertheless, all of them inherit
one common drawback, i.e., they require a separate software platform and cannot be
integrated with KIS.MANAGER in a straightforward way.

Having sets of zones along with the associated transporters, it is possible to pro-
ceed to define positions of supermarkets and assembly points, which are depicted in
Fig. 3.32. In the black zone, it can be observed that Supermarkets 1 serves Assembly
points 1–3. In the red zone, it is assumed that Supermarkets 2–3 serve Assembly
point 4. Finally, Assembly point 5 is served by Supermarket 3 only. With the above
configuration, a set of routes for each set of zones can be provided. The resulting
set of routes is given in Tables 3.13 and 3.14 for the black and the red set of zones,
respectively. The resulting routes are portrayed in Fig. 3.33.

Fig. 3.32 Floorplan with zones, transporters and supermarket/assembly points

108 3 Towards Logistic Applications

Table 3.13 Set of routes for black zones

Route Route color Points
1 Blue S1→A1→A2→A3→S1
2 Turquoise S1→A1→A2→S1
3 Green S1→A3→A2→S1
4 Black Idle state
S: supermarket point, A: assembly point

Table 3.14 Set of routes for red zones

Route Route color Points
1 Blue S2→S3→A4→A5→S3→S2
2 Turquoise S2→S3→A4→S3→S2
3 Green S3→A5→S3
4 Black Idle state
S: supermarket point, A: assembly point

Fig. 3.33 Floorplan with feasible routes

3.5 Visualizing the Performance of Logistic Applications 109

Finally, it should be pointed out that the transportation decisions can be made in
a similar way as those explained in Sect. 3.3. However, in this case, the position of
each transporter is known, which may facilitate optimal transportation decisions.

3.5 Visualizing the Performance of Logistic Applications

Let us reconsider the two points–one transporter system detailed in Sect. 3.2. The
entire system operates within the floorplan presented in Fig. 3.21. The objective of
this section is to provide straightforward measures for calculating the performance
of such a system. For that purpose, let us assume that all KIS.BOXes, i.e., KIS.BOX
Green, KIS.BOX Red and KIS.BOX Transporter, are initialized in such a way that
all operational LEDs are black, i.e., they do not illuminate. Under such an initial
condition, reconsider the following transportation scenario:

1. A transportation request is generated within the green point by pressing KIS.BOX
Green Button 1.

2. The KIS.BOX Green and KIS.BOX Transportation Button 1 operational LEDs
illuminate in green (see Fig. 3.21).

3. The transporter operator goes to the green point, takes the item(s) to be transported
and starts the transportation action by pressing KIS.BOX Green Button 1.

4. The KIS.BOX Green and KIS.BOX Transportation Button 1 operational LEDs
illuminate in blue.

5. The transporter operator arrives at the red point, delivers the item(s) and pushes
KIS.BOX Transporter Button 1.

6. The KIS.BOX Green and KIS.BOX Transportation Button 1 operational LEDs’
color is black, i.e., they do not illuminate. The transportation action is accom-
plished.

The objective is to visualize and analyze

(A) The time between the transportation request and the start of transportation action,
(B) The time duration of the transportation action.

After analysing the above six-point transportation scenario, it can be concluded that

• the answer to point (A) can be obtained by measuring the time period for which
the KIS.BOX Green Button 1 operational LED remains green (numerical value 3,
see Table 2.2);

• similarly, the answer to point (B) can be obtained by measuring the time for which
the KIS.BOX Green Button 1 operational LED remains blue (numerical value 0),
i.e., the moment until it goes back to black (numerical value 2).

The above tasks can be conveniently realised using the Datapoint Chart, which can
be configured according to the approach presented in Sect. 2.12. Let us start with
introducing such a chart inWorkspace 1. Such a configuration canbe easily performed

110 3 Towards Logistic Applications

Fig. 3.34 Datapoint chart for the transportation system

using KIS.BOX Green button1ColorKpiDuration. This process is shown in
Fig. 3.34. With the chart, one can easily monitor each time measurement (A or B)
visually, as shown in Fig. 3.35. A precise quantitative analysis can also be performed
by downloading a CSV file using the Datapoint Chart. The content of the resulting
file is presented in Fig. 3.36. The file can be further processed in a number of external
computational packages, e.g., Matlab, Excel, etc. However, such data processing is
also possible in KIS.MANGER, but this is beyond the scope of this chapter. Indeed,
further details are provided in Chap. 4, where the concepts of KPIs are introduced
(see Sect. 4.1.2). Nevertheless, one can easily extract three states from Figs. 3.35 and
3.36, while the time duration between them constitutes an answer to the above stated
questions (A) and (B).

3.6 Training Exercises 111

Fig. 3.35 Visualization of transportation performance

Fig. 3.36 Content of the
CVS file

3.6 Training Exercises

3.1 Mounting and managing an external sensor
Exercise requirements: The exercise requires access to one KIS.BOX and a sensor,
e.g., a photoelectric one, compatible with anM12 connector and a 24V power supply.

1. Using a sensor at your disposal, implement the scheme presented in Fig. 3.1.
2. Depending on the sensor type, establish its potential application related to some

event counting, e.g., light on/off for a photoelectric sens.
3. Based on the application selected, prepare a suitable floorplan and place the

KIS.BOX digital twin within.
4. Use the Datapoint Chart (cf. Sect. 2.12) to visualize the system and observe its

current state.

3.2 Access control without RFID
Exercise requirements: The exercise requires access to one KIS.BOX and one
KIS.LIGHT.

1. Prepare a set of rules which will repeatedly change the color of the KIS.BOX
Button1operationalLEDaccording to the state sequence (cf.Sect. 2.10) presented
in Table3.15. Using the KIS.BOX digital twin, set the initial state to Stat 1.

112 3 Towards Logistic Applications

Table 3.15 Color transition

State KB Button LED color

1 Blue

2 Turquoise

3 Green

4 Black

2. Repeat the previous point for the KIS.BOX Button 2 operational LED;
3. Select an access-granting color configuration, e.g.,KIS.BOXButton 1 operational

LED is green and KIS.BOX Button 2 operational LED is blue;
4. Using the KIS.LIGHT digital twin, set its operational LED color to red, which

will signify that the access is denied.
5. Implement a rule which will change the KIS.LIGHT operational LED color to

green if an access-granting KIS.BOX Button color is set.
6. In the present exercise, the number of possible variations with repetitions equals

kn = 24 = 16, (3.2)

where n is the number of states (see Table3.15) and k is the number of KIS.BOX
buttons. Thus, using all possible eight colors (cf. Table 2.2), it is possible to have
256 configurations. Using the rule Optional settings, implement your own access
control mechanism with an additional Trigger counter setting.

3.3 Hotel floor warehouse
Exercise requirements: The exercise requires access to one KIS.BOX.

1. Let us consider a small warehouse located at a hotel floor. The warehouse serves
towels for ten rooms located at that floor.

2. Assuming that all rooms are fully occupied each day and each room requires two
towels a day, implement a triple-level (cf. Table3.3) towel control system like the
one presented in Sect. 3.1.1. This means that

• Red corresponds to the zero towel level;
• Yellow signifies the towel level which is sufficient for one day;
• Green stands for the towel level for two days;

3. Datapoint Chart and theKIS.BOXdigital twin (cf. Sects. 2.6 and 2.12) to visualize
the system and observe its current state.

3.4 Hotel two-floor warehouse
Exercise requirements: The exercise requires access to two KIS.BOXes,
e.g., KIS.BOX 1 and KIS.BOX 2.

1. Having a KIS.BOX 1 with an associated single floor towel warehouse implemen-
tation, perform an identical implementation for KIS.BOX 2. It will correspond
to another floor, which obeys the same rules like the previous one.

3.6 Training Exercises 113

2. Prepare a floorplan of these two floors and locate the KIS.BOX 1 and KIS.BOX
2 digital twins within it (cf. Sect. 2.6).

3. Use the Datapoint Chart (cf. Sect. 2.12) to visualize the system and observe its
current state.

3.5 Small warehouse with access control
Exercise requirements: The exercise requires access to two KIS.BOXes,
e.g., KIS.BOX 1 and KIS.BOX 2.

1. Extend the access control strategy developed in Exc. 3.2 by setting the KIS.BOX
1 digital output 1 to the On state when access is granted. The KIS.BOX digital
output 1 should beOffwhen access is denied. (Note: The exercise can be extended
by connecting the KIS.BOX 1 digital output 1 to real access control, e.g., an
electronic lock.)

2. Using KIS.BOX 2, implement a single-shelf small warehouse management sys-
tem according to the approach presented in Sect. 3.1.1 with an additional access
control feature developed in the preceding point.

3.6 Two points–one transporter revisited
Exercise requirements: The exercise requires access to three KIS.BOXes, e.g.,
KIS.BOX Point 1, and KIS.BOX Point 2 and KIS.BOX Transporter.

1. Implement the two points–one transporter system described in Sect. 3.2.
2. Implement Datapoint Chart visualizing the performance of the above system (see

Sect. 3.5).
3. Using a sheet of paper, prepare a fictitious transportation scenario with a set of

feasible transport orders and transportation times.
4. Perform the above scenario using the implemented KIS.ME-based transportation

monitoring system.

3.7 Digitalization of an assembly system
Exercise requirements: The exercise requires access to one KIS.BOX.

1. Let us consider a single container that is fed to the assembly system. In particular,
the container covers the following parts (digits):

C = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] . (3.3)

2. The assembly task boils down to writing down the subsequent digits from the
container. Thus, if all letters are used, then the container is empty and another
one can be processed assuming that it is available.

3. Employ a system capable of measuring assembly effectiveness, i.e., the time of
writing all letters from (3.3).

4. Use the three-stage container capacitymanagement system (seeSect. 3.3,Table3.9).

3.8 Digitalization of an assembly system continued
Exercise requirements: The exercise requires access to one KIS.BOX.

114 3 Towards Logistic Applications

1. Let us consider an assembly system which is fed with a set of two containers,
required for the assembly process. In particular, the first one is described by (3.3)
while the second one is given by

Cl = [a, b, c, d, e, f, g, h, i, j] . (3.4)

2. The assembly process boils down to writing a digit from container C and then a
corresponding letter from container Cl . If all digits and letters are used, then the
assembly is accomplished.

3. Use the assembly efficiency and container capacity management system devel-
oped in Exc. 3.7 for the assembly system being considered.

3.9 Monitoring transporters’ current position zone
Exercise requirements: The exercise requires twoKIS.BOXes, e.g., KIS.BOXTrans-
porter 1 Zone and KIS.BOX Transporter 2 Zone.

1. Let us consider the floorplan presented in Fig. 3.31.
2. Using the approach proposed in Sect. 3.4, implement a set of rules which make

it possible to indicate current position zones of Transporter 1 and Transporter 2.

3.7 Concluding Remarks

The objective of this chapter was to provide a set of tools which can be used for quick
design and integration of logistic applications. In particular, the chapter started with
extending KIS.Devices with RFID interfaces, which enable access control regarding
the assets beingmonitoredwithinKIS.MANAGER.Twokinds of access controlwere
introduced, namely, general and individual. Within the former, the users are treated
in the same way, i.e., each user having a suitable RFID tag is treated identically.
Contrarily, in the latter, each user is uniquely recognized by KIS.MANAGER, which
makes it possible to develop a tailored access control hierarchy. The rest of the
chapter was concerned with a logistic application. It started with a way of using
KIS.Devices for monitoring a small warehouse. Subsequently, a digitalization of one
transporter operating between two points was introduced and analysed. In particular,
a set decision table was presented, which handles all possible routes between these
two points. An alternative concept was introduced for one transporter operating
between multiple points. Each point was defined as an assembly station, which has
a certain capacity of containers with parts. Such a capacity is required to assure
an appropriate and efficient assembly flow. Thus, the task of the transporter was to
provide an appropriate container flow between container supermarkets and assembly
points. For that purpose, a KIS.ME-based optimization was proposed. Subsequently,
the concept was extended to multiple transporters operating in specified zones. Note
that each zone was uniquely identified using coordinates (x,y) translated into two
colors visible on KIS.BOX, identifying the current position of a transporter. Finally,
a set of training exercises was provided, which summarize the knowledge covered
within this chapter.

References 115

References

1. G. Richards, Warehouse Management: A Complete Guide to Improving Efficiency and Mini-
mizing Costs in the Modern Warehouse (Kogan Page Publishers, London, 2017)

2. M. Baudin, Lean Logistics: The Nuts and Bolts of DeliveringMaterials andGoods (CRCPress,
New York, 2005)

3. H.S. Kilic, M.B. Durmusoglu, M. Baskak, Classification and modeling for in-plant milk-run
distribution systems. Int. J. Adv. Manuf. Tech. 62(9), 1135–1146 (2012)

4. S. Emde, N. Boysen, Optimally locating in-house logistics areas to facilitate JIT-supply of
mixed-model assembly lines. Int. J. Prod. Econom. 135(1), 393–402 (2012)

5. S. Emde, N. Boysen, Optimally routing and scheduling tow trains for jit-supply ofmixed-model
assembly lines. Eur. J. Operat. Res. 217(2), 287–299 (2012)

6. M. Faccio, M. Gamberi, A. Persona, Kanban number optimisation in a supermarket warehouse
feeding a mixed-model assembly system. Int. J. Prod. Res. 51(10), 2997–3017 (2013)

7. Ch. Huang, A. Kusiak, Overview of Kanban systems. Int. J. Comput. Int. Manuf. 9(3), 169–189
(1996)

8. C.S. Kumar, R. Panneerselvam, Literature review of JIT-KANBAN system. Int. J. Adv. Manuf.
Technol. 32(3–4), 393–408 (2007)

9. Y. Sugimori, K. Kusunoki, F. Cho, S. Uchikawa, Toyota production system and Kanban system
materialization of just-in-time and respect-for-human system. Int. J. Prod. Res. 15(6), 553–564
(1977)

10. M. Witczak, P. Majdzik, R. Stetter, B. Lipiec, A fault-tolerant control strategy for multiple
automated guided vehicles. J. Manuf. Syst. 55(4), 56–68 (2020)

11. Zf openmatics. https://www.zf.com/products/en/connectivity/products_52107.html.
Accessed: 14 Sept 2021

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.zf.com/products/en/connectivity/products_52107.html
http://creativecommons.org/licenses/by/4.0/

Chapter 4
Implementing and Using Essential
Statistical Process Control

4.1 Data Processing Definitions

The objective of the preceding chapterswas to introduce essential features ofKIS.ME
(cf. Chap. 2) and provide a list of typical logistic use cases for which it can be
employed (cf. Chap. 3). Irrespective of the kind and structure of the system being
developed, it involves a number of KIS.Devices, which provide several Datapoints
(see Sect. 2.7). To make this chapter self-contained, let us recall that a Datapoint
is a read only variable, which corresponds to a possibly time-varying property of a
KIS.Device. It can be also defined as an exchanged value between theKIS.Device and
KIS.MANAGER. In the preceding chapters, Datapoints were employed for devel-
oping the rules governing system behaviour as well as to graphically visualize it
using Datapoint Charts. In this chapter, it will be shown how to process and analyse
Datapoints. Let us recall that they are updated based on events associated with their
current status. This means that, if the status of KIS.Devices changes, then an appro-
priate update message is sent to KIS.MANAGER. Having access to Datapoints, one
can process them further by using scripts prepared using the FLEX programming
language (see Appendix A). Such a processing procedure can be performed either
instantly (real time) or over a predefined processing period which can be set to either
15, 30 or 60min. For that purpose, let us introduce two definitions:

CalculatedDatapoints (CDPs): FLEX language-based scripts enabling instant pro-
cessing of Datapoints,
Key performance indicators (KPIs): FLEX language-based scripts enabling pro-
cessing of Datapoints over a predefined processing period.

The concept of CDPs is rather straightforward, and as a simple example one can
imagine a CDP script transforming frequency of KIS.BOX digital input from mHz
to an equivalent period, i.e., T = 1

f , where T stands for the period and f is the
frequency. Contrarily, the concept of KPIs requires further explanation. For that
purpose, let us consider principles for the calculation and analysis of KPIs, which are

© The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2_4

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33623-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-33623-2_4

118 4 Implementing and Using Essential Statistical Process Control

Fig. 4.1 Principles for the calculation and analysis of KPIs

presented in Fig. 4.1. It is possible to define a number of scripts performing a number
of calculations based on selected Datapoints (cf. Calculation 1 and Calculation 2
in Fig. 4.1). Such KPI scripts can, of course, be defined over different processing
periods while the results of the calculations are available at the and of such periods.
Finally, they can be displayed and analysed using various widgets (see Sect. 2.5).

KPI: An introductory aggregation example

Let us consider sample KPIs, which provide some calculation results every 15min.
Such a process is illustrated in Fig. 4.2. The results provided can be further aggregated
using various strategies. As can be observed, each KPI is calculated using 15-min
processing period. From the start of the process one can observe that there are four
such 15min processing time windows. This clearly means that sample aggregations
of the sum and average values of the calculation being considered can be summarized
in Table4.1.

The aggregation mechanism is to be clearly illustrated and explained in the sub-
sequent sections of this chapter.

Furthermore, FLEX language commands available in KIS.ME are divided into
five groups, which are given in Table4.2. As a final conclusion, it can be stated that
the Aggregations and Intervals commands are limited to KPIs only (see Appendix
A for a detailed explanation).

4.1 Data Processing Definitions 119

Fig. 4.2 Sample KPI aggregation calculations

Table 4.1 Evolution of a sample KPI as well as its sum and average aggregations

Processing time
window

KPI calculation result Sum Average

1 5 5 5

2 10 5 + 10 = 15 5+10
2 = 7.5

3 3 5 + 10 + 3 = 18 5+10+3
3 = 6

4 4 5 + 10 + 3 + 4 = 22 5+10+3+4
4 = 5.5

Table 4.2 KIS.ME FLEX language commands

Group name KPI CDPs

Aggregations YES NO

Intervals YES NO

Numeric YES YES

Comparison YES YES

Miscellaneous YES YES

120 4 Implementing and Using Essential Statistical Process Control

Fig. 4.3 Transition rule Green→Red for KIS.BOX Red

Fig. 4.4 Transition rule Red→Green for KIS.BOX Red

4.1.1 Calculated Datapoints

The objective of this section is to provide a practical example concerning the design of
sample CDPs. The example is implemented in Workshop 1 and uses KIS.BOX Red.
For illustrative purposes, two simple rules were implemented, which are presented in
Figs. 4.3 and 4.4. These two rules transfer KIS.BOX Red from one state to another.
These states correspond to either the green or the red color of the KIS.BOX Red
Button 1 operational LED. The same rules were implemented for KIS.the BOX Red
Button 2 operational LED, but they are omitted for brevity. In both cases, the rule
trigger is associated with pressing either the first or the second KIS.BOXRed button.
Finally, the initial states of are initialized using the KIS.BOX Red digital twin (cf.

4.1 Data Processing Definitions 121

Sect. 2.6), i.e., the corresponding operational LED colors are set to green. Let us
start with employing a sample command, which is called Counter and belongs to
the Miscellaneous group (cf. Appendix A.15). The syntax and the functionality of
the above command can be summarized as follows:

y = Counter[x, bp] (4.1)

and

if xc ≥ xp then y = xc − xp,

else y = bp + xc − xp, (4.2)

where x is a possibly varying value while xc, xp signify x at c > p time instances,
whilst bp stands for a possibly time-varying bias. Let us proceed to defining a CDP
employing such a command. For that purpose, KIS.BOX Red should be selected
from the available assets (Main menu→Assets). Subsequently, one should select the
KPI/Data processing button and use the Create blank option . As a result, a new
Data Processing Definition can be formulated as the one presented in Fig. 4.5. The
data processing definition was selected to be CDP and is called Counterdmo. Its
entire implementation boils down toy=Counter[x,0], with x being an input Dat-
apoint button1ColorKpiDuration. According to the above-described rules
(cf. Figures4.3 and 4.4), x may have two values only, i.e., 3 (green color) or 5 (red
color). Thus, according to (4.2),Counterdmo can return only two values, i.e., either
y = 5 − 3 = 2 (xc = 5, xp = 3) or y = 0 + 3 − 5 = −2 (xc = 3, xp = 5, bp = 0).
Thismeans thatCounterdmo simply calculates the difference between consecutive
values of x . To visualize this graphically, let us include theDatapoint Chart within the
KIS.BOX Red dashboard (see Sect. 2.7). The resulting plot is portrayed in Fig. 4.6.

Fig. 4.5 Implementation of the Counterdmo CDP

122 4 Implementing and Using Essential Statistical Process Control

Fig. 4.6 Variable x (red) and Counterdmo CDP calculation (green) for y = Counter[x, 0]

Trend
3.2

2.4

1.6

0.8

0

5

4.5

4

3.5

3

5

4.5

4

3.5

12:16:00 12:16:30 12:17:00 12:17:30 12:18:00 12:18:30 12:19:00 12:19:30 12:20:00 12:20:30 12:21:00 12:21:30
3

Fig. 4.7 Variable x (red) and Counterdmo CDP calculation (green) for y = Counter[x, x]

Finally, it is important to underline the fact that, if x remains unchanged during a
possible reconnection of the KIS.Device, then xp = xc, and hence y = 0 is obtained.
Let us proceed to a more advanced usage of the Counter command. Counterdmo
can be easily redefined with a new syntax, i.e., y=Counter[x,x]. According to
(4.2), Counterdmo can return only two values, i.e., either y = 5 − 3 = 2 (xc = 5,
xp = 3) or y = 5 + 3 − 5 = 3 (xc = 3, xp = 5, bp = 5). These results are visualized
in Fig. 4.7. Let us consider another command, which simply filters the data by perma-
nently returning the last value satisfying a given logical formula. For that purpose, let
us define another CDP, which will be called Filterdmo and will employ the following
syntax: y=Filter[Equal[x,3]] (or, equivalently, Filter[x==3]). If x can
be either 3 or 5, then after the first occurrence of 3 the answer of the Filterdmo CDP
remains at the level of 3 (see Fig. 4.8). It should be noted that the argument of the
Filter command can be any logical relation, e.g., x >= 3&&x <= 5.

4.1 Data Processing Definitions 123

Fig. 4.8 Variable x (red) and Filterdmo CDP calculation (green) for y = Filter[Equal[x, 3]]

Plotting workers’ idle state

Let us consider two workers performing identical works at a single assembly station.
Both of them use KIS.BOX Red to indicate two states:

Assembly in progress: exemplified by the red color of operational LEDs,
Idle: exemplified by the green color of operational LEDs.

This means that Worker 1 uses KIS.BOX Red Button 1 while Worker 2 uti-
lizes KIS.BOX Red Button 2. The rules for switching between assembly and idle
states are given in Figs. 4.3 and 4.4. The problem is to indicate the time in which
both workers are in idle state, i.e., the Button 1 and Button 2 operational LEDs
are green. Let us consider a CDP performing such an action, which is called
Idle and is given in Fig. 4.9. It uses input variables x and z, which are defined
with two KIS.BOX Red Datapoints, i.e., button1ColorKpiDuration and
button2ColorKpiDuration, respectively.The calculation involving suchvari-
ables utilizes the If[] command (cf. Appendix A). If both x and z equal 3, then the
KPI returns 1 and 0 otherwise. Note that 1 signifies the fact that both workers are in
idle state, while the opposite situation means that at least one of them is perform-
ing an assembly process. As a result, Figs. 4.10 and 4.11 present the state evolution
of Worker 1 and Worker 2. Finally, Fig. 4.12 clearly indicates the time periods for
which both workers are in idle state. In spite of the simplicity of the CDP, it may have
various practical applications, i.e., optimization of work distribution, part delivery
schedules, etc.

124 4 Implementing and Using Essential Statistical Process Control

Fig. 4.9 Idle CDP

0 3 3

0.25 3.5 3.5

0.75 4.5 4.5

0.5 4 4

1 5 5

17:22:00 17:23:00 17:24:00 17:25:00 17:25:3017:24:3017:23:3017:22:30 17:26:00

Trend

Fig. 4.10 States of Worker 1

17:22 17:23 17:24 17:25 17:26
0 3 3

0.25 3.5 3.5

0.75 4.5 4.5

0.5 4 4

1 5 5
Trend

Fig. 4.11 States of Worker 2

4.1 Data Processing Definitions 125

0 3 3

0.25 3.5 3.5

0.75 4.5 4.5

0.5 4 4

1 5 5

17:22:00 17:23:00 17:24:00 17:25:00 17:25:3017:24:3017:23:3017:22:30 17:26:00

Trend

Fig. 4.12 Evolution of the Idle CDP

The examples presented in this section are very simple and involve one- line
commands. There are, of course, no restrictions behind developing multiple-line
CDPs. Moreover, own variables can be used without any prior declarations, i.e., a
variable begins its lifetime after assigning to it a value, which is realized by the
following program:

Sample two-line code

MyVar=x+3;

OutVar=Counter[MyVar,0];

•> CDPs versus the Datapoint range

Note also that each CDP can operate with Datapoints of one KIS.Device only. It is
possible to include Datapoints from different KIS.Devices indirectly, i.e.,

• by using digital inputs of the KIS.Device for which the CDP is being developed;
• by Rule engine to transmit Datapoint values the different KIS.Devices to the one
for which the CDP is being developed.

Finally, let us recall that a complete list of the FLEX commands along with
representative examples is given in Appendix A.

4.1.2 Key Performance Indicators

As indicated in Figs. 4.1 and 4.2, the functional nature of KPIs is significantly differ-
ent than the one of CDPs. Indeed, CDPs process incoming data directly without any

126 4 Implementing and Using Essential Statistical Process Control

aggregation mechanisms, e.g., summation (cf. Figure4.2). Thus, the objective of this
section is to provide illustrative design examples pertaining to such aggregations as
well as working on data within predefined processing periods.

Introduction to KPI design

Let us consider a worker performing an assembly process (cf. Sect. 4.1.1). KIS.BOX
Red is used in this case to indicate two states:

Assembly in progress: exemplified by the red color of the KIS.BOX Red Button
1 operational LED,
Idle: exemplified by the green color of the KIS.BOX Red Button 1 operational
LED.

The rules governing transitions between these two states are given in Figs. 4.3 and
4.4. Similarly as in Sect. 4.1.1, one can also easily configure a Datapoint Chart
displaying the successive transitions between these two states, which simply includes
the values of the button1ColorKpiDuration Datapoint. The objective of this
introductory KPI example is to provide a periodic calculation of the number of
products being assembled. Thus, under a state transition strategy being used, the
KPI should periodically calculate the number of transitions of the KIS.BOX Red
Button 1 operational LED from red to green. To settle the KPI implementation,
the simple instruction y=Sum[If[x==3,1,0]] is used, where x stands for the
button1ColorKpi Datapoint (see Appendix B). The remaining KPI parameters
are as follows:

Processing period: 15min;
Processing start: the data of starting calculations of the KPI, which is 09/22/2021;
Starting hour: the starting hour is 14.00;
Initial value: no values from previous periods are taken into account.

A new KPI design can be initiated in the same way as that of a CDP, and hence the
resulting configuration window is given in Fig. 4.13, whilst the new KPI is called
Sumdmo. It should be noted that KPIs cannot be displayed with the Datapoint Chart.
This is caused by the fact that they should be aggregated using a desired operation
(cf. Fig. 4.2), which can be one of the following:

• SUM,
• MIN,
• MAX,
• AVERAGE.

Such an aggregation can be achieved with suitable widgets (Sect. 2.5), which will be
discussed in detail in Sect. 4.3. Following the approach described in Sect. 2.5, let us
introduce the Single Value KPI widget, which will accompany the Datapoint Chart
displaying the evolution of the button1ColorKpiDurationDatapoint. A sam-
ple configuration of the above widget is presented in Fig. 4.14. As can be observed,
the aggregation type is SUM. Moreover, the date range of interest is the current

4.1 Data Processing Definitions 127

Fig. 4.13 Implementation of the Sumdmo KPI

day. However, according to Fig. 4.13, the Sumdmo KPI begins its lifetime at 14.00.
Figure4.15 presents the obtained results, which were recorded during one hour. They
are summarized in Table4.3 and can be easily calculated using the Datapoint Chart,
i.e., the number of transitions from red to green (5–3). Thus, it is evident that the
SUM of KPI values is equal to 10 whilst the MIN and MAX are equal to 2. As a
consequence, the AVERAGE is equal to 2.5. Irrespective of the relative simplicity of
the example being considered, it may have several practical applications pertaining
to production/transportation flow and efficiency monitoring.

The objective of the remaining part of this section is to provide some template
KPIs along with their prospective applications, which pertains to

• monitoring task realization durations,
• counting the number of button presses,
• counting the number of assembled products per time unit,
• first pass yield (FPY), i.e., the ratio between outgoing and incoming process units.

Monitoring task realization durations

Let us reconsider a worker from the previous example, which is equipped with
KIS.BOX Red indicating its current working mode, i.e., either assembly or idle
periods. The first objective is to implement the KPI which will calculate the sum of
the assembly times within a 15-min processing period. Let us start with selecting
an appropriate Datapoint, which is simply button1ColorKpiDuration. Thus,
during the assembly process, it returns 5, which corresponds to the red color. This
means that the implementation of the KPI should boil down to the following steps:

128 4 Implementing and Using Essential Statistical Process Control

Fig. 4.14 Configuration of the single value KPI widget

15:00 15:0514:05
3

4

5

3.5

4.5

14:10 14:15 14:20 14:25 14:30 14:40 14:4014:35 14:45 14:55 15:10

Trend

Fig. 4.15 Sumdmo KPI aggregation

1. Determine assembly states within the processing periods along with their dura-
tions.

2. Sum all the above durations.
3. The durations are expressed in milliseconds, and hence they should be converted

to seconds and then rounded appropriately.

The implementation covering all the above steps is presented in Fig. 4.16, whilst
a detailed explanation behind each command is given in Appendix A. Note that

4.1 Data Processing Definitions 129

Table 4.3 Evolution of the Sumdmo KPI

Processing period (h) KPI value

14.00–14.15 2

14.15–14.30 2

14.30–14.45 2

14.45–15.00 4

Fig. 4.16 Implementation of the Duration KPI

the calculation of the Duration KPI is started at 12.00 and no values from previous
processing periods are taken into account. Let us proceed to the second objective,
which pertains to calculating

• the total sum of assembly durations for all processing periods,
• the total average of assembly durations for all processing periods,
• the minimum sum of assembly durations per processing period,
• the maximum sum of assembly durations per processing period.

As previously, the above tasks can be easily implemented by installing the KPI
Single Value widgets within the dashboard. Each of them should, of course, perform
a different aggregation, i.e., SUM, AVERAGE, MAX, and MIN. Finally, a sample
implementation alongwith the obtained results is presented in Fig. 4.17. Note that the
maximumsumof durations per a processing period canbe equal to 15 × 60 = 900[s],
which expresses the situation inwhich the assembly is permanently performed during
15min. Contrarily, theminimum sum of durations per processing period can be equal
to zero, which means that no assembly was performed within a processing period.

130 4 Implementing and Using Essential Statistical Process Control

12:3512:3012:2012:1012:0011:5011:4511:3511:30
3

4

5

3.5

4.5

11:40 12:1512:0512:55 12:25

Trend

Fig. 4.17 Duration KPI aggregations

Number of assembled products per time unit

The example being considered operates within the same infrastructure as the pre-
vious one. Let us imagine that each push of a button corresponds to one product
being assembled. Thus, let us start by selecting an appropriate Datapoint, which is
button1Pressed and has an alias name x within the KPI definition. This Data-
point operates in a very specific way, i.e., it stores the timestamps corresponding to
the beginning of pressing actions only. Thus, it is enough to calculate the number of
logical true values of x within the processing period. Subsequently, the accumulated
number of transitions has to be normalized over the time interval spent on realizing
a given task. The above-stated objective can be realized with the KPI given by the
following program:

Product per minute KPI

ProductSum = Sum[If[x,1,0]];

Productivity = Round[ProductSum / (Interval[] / 60000)];

The first line is responsible for calculating the number of products, i.e., the total
of KIS.BOX touches. The second one normalizes ProductSum over the respective
time interval. Finally, the achieved results are given in milliseconds, and hence they
have to be further normalized. Note also that the rounding operation is introduced to
get a result, which is an integer value.

4.1 Data Processing Definitions 131

First pass yield

Let us consider a conventional product quality check point. It has two digital outputs,
which are directly connectedwithKIS.BOXRed digital inputs. They provide a false–
true–false sequencewhen a products passes (Input 1) or fails (Input 2) the quality test.
Let us startwith noting that Input 1 and Input 2 are represented by twoDatapoints, i.e.,
input1Status and input2Status, respectively. Let us define two variables
which are to be associated with these Datapoints, i.e., passed and failed. Let us
recall that the percentage FPY is expressed by the ratio

FPY = p

p + f
× 100, (4.3)

where p and f stand for the number of failed and passed products, respectively.
Finally, the KPI implementing (4.3) is given by the following:

First pass yield KPI

NumberPassed = RisingEdge[passed];

NumberFailed = RisingEdge[failed];

Total = NumberPassed + NumberFailed;

FPY = If[Total>0,Round[NumberPassed/Total*100],0];

As in the previous example, the first two lines are responsible for calculating the
p and f underlying (4.3). Subsequently, the total sum of products being tested is
obtained. Finally, FPY is calculated according to (4.3) along with suitable rounding.

•> Sharing CDPs and KPIs

Using Main menu→Assets, and then selecting the desired KIS.Device, one can
choose KPI/Data processing . As a result, a full list of KPIs and CDPs defined for
this KIS.Device is displayed. Moreover, each of them can be shared with compatible
KIS.Devices of a designed asset group. For that purpose, the Share option should
be used and the desired asset group chosen, e.g., Workspace 1. Once the sharing
procedure is performed, the selected CDPs/KPIs are visible after using KPI/Data
processing within a designated asset group. However, sharing should be inter-
preted in such a way that a given CDP/KPI is inherited for all assets in a designated
asset group. Indeed, Datapoints used within the shared CDP/KPI are taken from the
inheriting KIS.Device instead of the original one.

132 4 Implementing and Using Essential Statistical Process Control

4.2 Statistical Measures: Location and Variability

The objective of this section is to introduce essential concepts of statistical pro-
cess control (SPC). However, before going into details, its is necessary to define a
process [1–3] as follows:

•> Process

A process is everything what is needed for transforming an input into an output for
a customer.

Thus, SPC can be perceived as a quality control method, which employs statistical
approaches to observe and control a process. This may result in keeping the desired
process efficiency, assembling the demanded number of products with a desired
quality, etc. This means that SPC deals with understanding and managing variability
associated with a given process. For that purpose, a process parameter, i.e., a quanti-
tative variable, which reflects the process quality must be selected. Irrespective of the
process parameter being observed and controlled, it obeys some distribution, which
has three crucial features:

• shape,
• central location,
• variability.

Concerning the shape, the most common approach is to assume that the process
parameter is normally distributed. Such a distribution is portrayed in Fig. 4.18. The
Central location can be briefly perceived as an expected process parameter value
whilst the variability signifies its spread around this value. Let us start with recalling
the crucial measure of location, which is simply the mean or average value given by
a well known formula:

x̄ = 1

n

n∑

i=1

xi , (4.4)

where xi is the i-th process parameter observation whilst n stands for the number
of observations and x̄ is the mean value. This measure can be easily calculated
by forming the KPI incorporating the Mean command (cf. Appendix A). Another
useful location measure is a median , which is the parameter value at which half
of the observations fall above and half below. However, KIS.ME does not provide
a direct command which can be used to calculate that. Fortunately, for that pur-
pose, percentiles, implemented with the Percentile command, can be efficiently
employed.

4.2 Statistical Measures: Location and Variability 133

Fig. 4.18 Process parameter
x versus its normal
distribution function f (x)
(to do)

•> Percentile

A percentile is simply defined as a statistical measure indicating the process param-
eter value below which a given percentage of observations in a group of observations
fall. Thus, the 50th percentile is the value below and over which 50% of the process
parameter observations can be found. As a result, the KPI calculating the median
value can be simply implemented as m=Percentile[x,50], where m stands
for the median whilst x is the set of observations being analysed. Note also that all
observations x are at or below the 100th percentile, i.e.,m=Percentile[x,100].

Let us proceed to variability measures. The most common ones are the standard
deviation, the variance and the range. The first of those is defined as

σ =
√∑n

i=1(xi − x̄)2

n − 1
, (4.5)

where σ signifies the standard deviation, which can be calculated by defining the
KPI involving sigma=Stdev[x]. The second variability measure is simply a
square of the first one, i.e., σ 2. Finally, the range is defined as the difference between
the maximum and minimum values of x ∈ X. Thus, the resulting KPI should be
implemented with range=Max[x,x]-Min[x,x]. Having measures of location
and variability, one can distinguished two possible SPC states of the process [1]:

Process in control: The process is in the state of control if it is subject to common
cause variations only, which can be expected in any set of observations X.
Process out of control The process is in the out-of-control state if it subject to both
common and special cause variations. Thus, apart from the inevitable random and
typical fluctuations, other unappealing factors affect process parameters.

A periodical evolution of a sample distribution of the process in control parameter is
presented in Fig. 4.19. Even if a given process parameter is at an unacceptable level,
e.g., FPY (4.3) is equal to 70%, one can be sure that such results can be expected
for the subsequent time periods. Indeed, when one says that the process is in control,

134 4 Implementing and Using Essential Statistical Process Control

Fig. 4.19 Periodical evolution of the process-in-control parameter distribution

Fig. 4.20 Periodical evolution of the process-out-of-control parameter distribution

then this does not mean that it is working perfectly, but simply that it is predictable or
periodically stable. Finally, improvements can be achieved by suitable rearrangement
or optimization of the process. This is, however, beyond the scope of this section.

If the process parameter distribution changes with each periodically collected set
of observations, then one has the process out of control. Such a situation is illustrated
in Fig. 4.20. In practice, several processes obey such periodical behaviour. Thus, it
is obvious that special cause variations should be identified and removed if possible.
Similarly, the influence of common cause variations can be removed by a suitable
analysis and improvement of the process.

Mean and standard deviation of assembly durations

Let us reconsider the example presented in Sect. 4.1.2 pertaining to monitor-
ing task realization durations. The worker realizing such tasks is equipped with
KIS.BOX Red indicating its current working mode, i.e., either assembly or idle
periods. The objective is to implement KPIs calculating the mean and standard
deviation of durations corresponding to the assembly mode. Moreover, the calcu-
lations should be realized within 15-min processing periods. As previously, the
button1ColorKpiDuration Datapoint is used for calculation purposes whilst
the results are visualized with the KPI Single Value widget. In particular, the widget
should provide the maximum of the mean and standard deviation obtained dur-
ing the last hour. The configuration of such a widget was described in Sect. 4.1.2,

4.3 Understanding process performance with widgets … 135

and hence it is omitted. Before going to the KPI implementation, let us also recall
that the KIS.BOX Red Button 1 operational LED is governed by two rules, which
change its color between red (assembly mode) and green (idle mode) with the trigger
associated with pressing the respective button. Thus, during the assembly process
the button1ColorKpiDuration Datapoint returns 5 (red color) and 3 (green
color). Let us proceed to the KPI implementation, which starts by defining x as an
alias name of the button1ColorKpiDurationDatapoint. As a result, the KPIs
calculating the mean and the standard deviation of the assembly durations are given
by the following programs:

Mean of assembly durations

t=If[x==5,Duration[x],0];

y=Round[Mean[Filter[t>0]]/1000];

Standard deviation of assembly durations

t=If[x==5,Duration[x],0];

y=Round[Stdev[Filter[t>0]]/1000];

Finally, a sample of the performance of the above KPIs is presented in Fig. 4.21.

Taking into account the discussion presented in this section, the results in Fig. 4.21
clearly show that the assembly process is realized with greater duration variability
(cf.Max standard deviation). This clearlymeans that such a process has to be suitably
improved to get more predictable and less variable results. For that purpose, a set of
widget control charts is to be introduced in the subsequent section.

4.3 Understanding process performance with widgets:
A practical way to statistical control charts

The objective of this section is to provide a practical guidance on using four widget
control charts:

• KPI Aggregated Chart;
• KPI Single Value Column;

136 4 Implementing and Using Essential Statistical Process Control

Fig. 4.21 Sample maximum mean and standard deviation of assembly durations

• KPI Pie Chart;
• KPI Single Period Chart.

They can by associated with any dashboard, which is located either in assets or asset
groups (cf. Sect. 2.5). The first option can be accessed viaMainmenu→Assets→Edit
dashboard→Addwidget, which results in the viewportrayed in Fig. 4.22. The second
option is to followMain menu→Asset groups and then select the desired workspace.
Subsequently, Edit dashboard→Add widget have to be chosen, which yield the view
presented in Fig. 4.23. Irrespective of the selected design approach, the quadruple of
control chart widgets possesses the same functionality, which is to be discussed in
the subsequent part of this section.

KIS.Device-based data generation

The control chart widgets being discussed in this section require data obtained with
Datapoints of a given KIS.Device. Thus, to perform a unified presentation of all
widgets, which can be easily reproduced, the following data generation approach is
proposed:

Environment: It is defined with Workspace 1 and the dashboard of KIS.BOX Red.
Triggers: The triggers are based on the KIS.BOX Red Button 1 operational LED
color, which can be either red or green. Additionally, each trigger is fired after one
minute.

4.3 Understanding process performance with widgets … 137

Fig. 4.22 KPI control charts within the asset dashboard

Actions: The associated actions are associated with changing the KIS.BOX Red
Button 1 operational LED to an opposite value.
Initial condition: The KIS.BOX Red Button 1 operational LED is initialized with
the associated digital twin (see Sect. 2.6), i.e., its color is set arbitrarily to either
green or red.

The above functionality can be easily implemented using two rules, which are pre-
sented in Figs. 4.24 and 4.25.As a result of employing these, cyclically (everyminute)
changing values of the button1ColorKpiDuration Datapoint are generated,
which are presented in Fig. 4.26. These data are to be used for statistical process-
ing and visualization using the control chart widgets. Although the data presented
in Fig. 4.26 looks like a uniform one with each cycle equal to one minute, there
are some small discrepancies between cycle durations. This is related to the wire-
less transmission between the KIS.Device and KIS.MANAGER. Such behaviour
is to be statistically analysed in the subsequent part of this section. This, however,
requires defining suitable KPIs. In particular, it is proposed to employ two KPIs
which will calculate mean values of the KIS.BOX Red Button 1 operational LED
color durations over a 15-min processing period. Since there are only two colors,
i.e., red and green, these KPIs are implemented as follows (with x being an alias of
button1ColorKpiDuration):

138 4 Implementing and Using Essential Statistical Process Control

Fig. 4.23 KPI control charts within the asset group dashboard

Fig. 4.24 First rule for KIS.BOX-based data generation

Mean of red color durations

t=If[x==5,Duration[x],0];

y=Round[Mean[Filter[t>0]]/1000];

4.3 Understanding process performance with widgets … 139

Fig. 4.25 Second rule for KIS.BOX-based data generation

Fig. 4.26 KIS.BOX-based data sequence

Mean of green color durations

t=If[x==3,Duration[x],0];

y=Round[Mean[Filter[t>0]]/1000];

140 4 Implementing and Using Essential Statistical Process Control

4.3.1 Single Value Column Chart

The objective of this section is to provide practical guidelines for using the KPI
Single Value Chart, which is simply a bar plot displaying an aggregated value of a
selected KPI within a specified aggregation period (cf. Figure4.2). This widget has
the following properties:

Headline: the widget name, displayed on it;
Label: the name of the bar plot;
KPI name: the selected KPI name;
Unit: the KPI unit, e.g., seconds [s];
Date range: the selected, possibly historical, date and time range, e.g., a working
shift;
Aggregation type: KPI values calculated within processing periods are aggregated
within the date range using one of the following aggregations: sum, average, max,
min (cf. Figure4.2);
Zones: color zones associating the value range of the bar plot with the selected
color.

Fig. 4.27 illustrates a sample bar plot. It displays the KPI values corresponding to
the mean KIS.BOX Red Button 1 operational LED green color durations. They are
aggregated using the average aggregation operator between 8:00–16:00 h on October
13th, 2021.

Fig. 4.27 Sample KPI
single value column chart

4.3 Understanding process performance with widgets … 141

4.3.2 Single Period and Pie Charts

The section aims at describing the way of using the KPI Single Period Chart, which is
a multiple bar plot displaying an aggregated value of selected KPIs within a specified
aggregation period (cf. Fig. 4.2). This widget has the following properties:

Headline: the widget name, displayed on it;
KPI name: the selected KPI names, whose values are used to form multiple bar
plots;
Label: the name of bar plot;
Color: the color associated with the bar plot;
Unit: the unit of the KPIs, e.g., seconds [s];
Date range: The selected, possibly historical, date and time range, e.g., a working
shift;
Aggregation type: KPI values calculated within processing periods are aggregated
within the date range using one of the following aggregations: sum, average, max,
min (cf. Figure4.2);
Stack KPI: Defines the display form of bars (either stacked or separated).

Figure4.28 presents a sample two bar plot. It displays two KPI values corresponding
to the mean KIS.BOX Red Button 1 operational LED durations of either the green
or red color states, respectively. They were aggregated using an average aggregation
operator between 8:00–16:00 h on October 13th, 2021. Note that the same single
period is used for all bar plots. Additionally, the units are defined, i.e., seconds
[s] are used as units. Finally, the stacked version of the above plot is presented in

Fig. 4.28 Sample KPI
single period chart

142 4 Implementing and Using Essential Statistical Process Control

Fig. 4.29 Sample KPI
single period chart with
stacked bar plots

Fig. 4.30 Sample KPI pie
chart

Fig. 4.29. Its appealing property is that it allows sum-based grouping of bar plots.
Except for the bar plots, KIS.MANAGER provides a KPI pie chart. Apart from the
Stack KPI, its properties are the same as those of the KPI Single Period Chart, but
instead of using multiple bars a pie-like plot is employed. In particular, pieces of pies
are proportional to the values of KPIs. As a result, the KPI pie chart counterpart of
Fig. 4.29 is presented in Fig. 4.30. As can be observed, the percentage proportions
between the pieces of the pie are displayed as well.

4.3 Understanding process performance with widgets … 143

4.3.3 Aggregated Chart

The objective of this section is to showhow to exploit themost advanced chartwidget,
i.e., the KPI Aggregated Chart. Contrarily to the charts presented in the preceding
section, this one performs aggregations, which are grouped within a selected time
period, e.g., every hour within a specified aggregation period. This widget has the
following properties:

Headline: the widget name, displayed on it;
KPI name: the selected KPI names, whose values are used to form multiple plots;
Label: the name of the plot;
Color: the color associated with the plot;
Unit: the KPI unit, e.g., seconds [s];
Date range: the selected, possibly historical, date and time range, e.g., a working
shift;
Aggregation type: KPI values calculated within processing periods are aggregated
within the date range using one of the following aggregations: sum, average, max,
min (cf. Figure4.2);
Stack KPI: defines the display form of the plot either stacked or separated.
Group by: the time spread between consecutive plots, e.g., one hour;
Combined y-axis: determines if either a single or separated y-axis is used for all
plots;
Display as: separately determines the style of the plots, i.e., a bar, a line or filled
triangles.

Figures4.31 and 4.35 present the evolution of KPIs calculating the averaged mean
durations of the KIS.BOX Red Button 1 operational LED, which can illuminate in

Fig. 4.31 Sample KPI aggregated chart

144 4 Implementing and Using Essential Statistical Process Control

Fig. 4.32 Sample KPI aggregated chart with stacked bars

Fig. 4.33 Sample KPI aggregated chart with a single y-axis

either green or red, grouped by one hour. In particular, Fig. 4.31 presents a bar plot
with individual y-axes. Figure4.32 portrays the same data but with stacked bars.
Subsequently, the data with a single y-axis is given in Fig. 4.33. Finally, Figs. 4.34
and 4.35 present the remaining plot options.

4.4 Control Charts: Comparison and Analysis 145

Fig. 4.34 Sample KPI aggregated chart with a line and bar plots

Fig. 4.35 Sample KPI aggregated chart with a line and filled triangle plots

4.4 Control Charts: Comparison and Analysis

As already mentioned in Sect. 4.2, SPC requires special measures to check if a given
process is in the statistical control state. Thus, if a variable shaping process perfor-
mance is described by the same distribution, then it is in the statistical control state.

The objective of this section is to introduce selected control charts, which are
statistical tools that can be used for monitoring the process. As a result, they can
provide suitable alerts pertaining to some disturbance acting on the process, leading
to its out-of-control state. Finally, based one such results, one can find and minimize
the disturbance cause.

146 4 Implementing and Using Essential Statistical Process Control

Fig. 4.36 Sample histogram

4.4.1 Histograms

A histogram can be perceived as a practical tool, which can be used for approximat-
ing the distribution of numerical data concerning a given variable (see Fig. 4.36). Its
design boils down to dividing the range of values into equal intervals and then deter-
mining how many values are in each intervals. Such non-overlapping consecutive
intervals of a variable are called bins. The most common approach is to assume that
such bins (intervals) have equal widths. KIS.MANGER does not support histograms
directly. Thus, the objective of this section is to provide a way of designing them.
This can be realized in the following steps:

Step 1: Find the minimum and maximum values of a variable x , i.e., xmin and xmax.
Step 2: Select the number k and width w of histogram bins and then determine the
bin ranges

x : xr,i+1 > x ≥ xr,i , (4.6)

xr,i = xmin + (i − 1)w, i = 1, . . . , k. (4.7)

4.4 Control Charts: Comparison and Analysis 147

Step 3: For each bin, implement a KPI counting the values which fall inside it:

Histogram bin calculation

y=Count[Filter[x<xr1 && x>=xr]];

where xr1 stands for xr,i+1 whilst xr signifies xr,i .

Step 3: Visualize the KPIs using the KPI Single Period Chart and select summation
as the aggregation method (see Sect. 4.3.2).

•> Grouping histograms

The above approach allows preparing histograms displaying data distribution inside
a selected aggregation. However, by replacing the KPI Single Period Chart with the
KPI Aggregated Chart (see Sect. 4.3.3), one can observe an evolution of the data
distribution grouped by a specified time period, i.e., an hour or a day.

Figure4.37 presents the histogram concerning red color durations of theKIS.BOX
Red operational LED. A sample bin of this histogram is implemented as follows:

t=If[x==3,Duration[x]/1000,0];

y=Count[Filter[t>=61 && t<62]];

Fig. 4.37 KPI single period
chart-based histogram

148 4 Implementing and Using Essential Statistical Process Control

Fig. 4.38 KPI aggregated chart-based evolving histogram

For the sake of presentational simplicity, the histogram has three bins only. An
evolving histogram, which is grouped by hours, is presented in Fig. 4.38.

•> Duration versus the processing period

Each KPI is periodically calculated within a given processing period, which can
be set at 15, 30 or 60min. Moreover, any KPI calculation is started at an full hour,
e.g., 9.00 h. Let us reconsider the process of changing the KIS.BOX Red operational
LED color every minute, i.e., after one minute the color is changed. Figure4.30
clearly shows that the mean values of the durations corresponding to either the red
or green color is not so close to 60s. The reason behind such a situation is presented
in Fig. 4.39. In this sample case, it can be observed that the KPI calculation ends at
10.00 h, and hence the last red color state duration (red corresponds to the numerical
5) is lower than 60s. Such cases, as well as similar ones, which may happen at
the beginning of the KPI calculation, have considerable influence on both the mean
and the standard deviation. One of possible remedies is to eliminate improbable
values using the Filter[] command and then calculate the mean and the standard
deviation. One can also use different measures, e.g., the proportion between the sum
of durations and the processing period time, which can be obtained with

s=Sum[If[x==5,Duration[x],0]]/Interval[];

Nevertheless, appropriate selection of the processing period is crucial for the cor-
rectness of the achieved results.

4.4 Control Charts: Comparison and Analysis 149

Fig. 4.39 Duration versus processing period

Fig. 4.40 Sample control
chart

4.4.2 Control Charts with Limits

The objective of this section is to introduce crucial control charts:

• x̄ : the mean-based chart,
• R: the range-based chart,
• p: the proportion-based chart.

There are, of course, plenty of different control charts. However, their presentation
is beyond the scope of this book, and hence the reader is referred to [1] for a compre-
hensive explanation. Irrespective of the control chart type, they are used to visualize
the evolution of some statistical measure against the so-called lower and upper con-
trol limits (LCLs and UCLs). Such a process is portrayed in Fig. 4.40. Apart from
the above limit one can observe the center line, which is plotted at the level of the
expected value of a given statistic. The only way to plot control charts in KIS.ME
is to use the KPI Aggregated Chart, which can group the displayed data within a
specified period, i.e., an hour or a day (cf. Sect. 4.3.3). Apart from the grouping

150 4 Implementing and Using Essential Statistical Process Control

period, it is suggested to select an appropriate KPI processing period, which should
be lower than the grouping one. Thus, by selecting the average aggregation method
in the KPI Aggregated Chart, the mean of a given statistics can be calculated. How-
ever, before proceeding to the practical implementation, let us provide calculation
rules for all above-listed charts. Let us start with the x̄ chart, for which the central
line ¯̄x can be estimated using the data from previous processing period or can be
assumed to be known. Subsequently, the control limits can be implemented with the
well known three standard deviations rule. For that purpose, is should be recalled that
the standard deviation of the mean is related to the standard deviation of the process
variable σ in the following way: σx̄ = σ/

√
n, were n is the sample size within the

processing period. Note that in usual conditions the σx̄ has to be estimated, which
can be realized using, e.g., one of the following formulas:

σ̂x̄ = 1

d1

s̄√
n
, (4.8)

σ̂x̄ = 1

d2

r̄√
n
, (4.9)

where

• s̄ is the mean standard deviation calculated over m processing periods;
• r̄ is the mean range calculated over m processing periods.

Moreover, d1 and d2 are known constants, which are given in Table4.4. This can, of
course, be realized under the assumption that the process is in the control state for a
set of m processing periods being considered. Thus, the x̄ chart can be summarized
as follows:

Center line: ¯̄x ,
UCL: ¯̄x + 3σ̂x̄ ,
LCL: ¯̄x − 3σ̂x̄ .

Using a similar line of reasoning, the R chart can be described:

Center line: r̄ ,
UCL: D4r̄ ,
LCL: D3r̄ ,

wheremr stands for the mean of the range of n measurements of the process variable
while D3 and D4 are known constants, which are given in Table4.4. Note that the
constants for larger n are available, e.g., in [1]. Let us proceed to the control charts
for proportions, which are widely known as p charts. One of the popular examples
of using the p chart is to visualize the ratio between the number of defective items
and their total (cf. 4.3). Similarly as in the previous cases, a natural candidate for the
central line is the mean p̄ proportion calculated over m processing periods. Let us
also recall that the process used for the calculation of p̄ has to be in the statistical
control state. Finally, the p chart can be summarized as follows:

4.4 Control Charts: Comparison and Analysis 151

Table 4.4 Constants for control chart design

n d1 d2 D3 D4

2 1.7725 1.1284 0.0000 3.2665

3 1.3820 1.6926 0.0000 2.5746

4 1.2533 2.0588 0.0000 2.2820

5 1.1894 2.3259 0.0000 2.1145

6 1.1512 2.5344 0.0000 2.0038

7 1.1259 2.7044 0.0757 1.9243

8 1.1078 2.8472 0.1362 1.8638

9 1.0942 2.9700 0.1840 1.8160

Center line: p̄,

UCL: p̄ + 3σp = p̄ + 3
√

p̄(1− p̄)
n ,

LCL: p̄ − 3σp = p̄ − 3
√

p̄(1− p̄)
n .

Having all necessary ingredients, let us proceed to the implementation of the above
control charts. We start with the x̄ chart. The variable being controlled is called x .
Thus, the x chart can be implemented using the following steps:

Step 1: Determine ¯̄x (used as xbar), set up a new KPI and give it the name
CLxbar, whilst its implementation is realized as follows:

CL=Max[xbar,xbar];

Step 2: Using either (4.8) or (4.9), determine σ̂x̄ (used as sigmax) and then set
up two KPIs (UCLxbar and LCLxbar). Implement the LCL and UCLKPIs with
the following programs:

UCL=Max[xbar+3*sigmax,xbar+3*sigmax];

LCL=Max[xbar-3*sigmax,xbar-3*sigmax];

Step 3: Set up a new KPI and give it the name mx, along with the implementation
shaped by

meanx=Mean[x];

Step 4:VisualizeCLxbar,LCLxbar,UCLxbar andmxwith theKPIAggregated
Chart.

The implementation of the R chart can be realized in a similar way:

Step 1: Determine r̄ (used as br), and then set up a new KPI and give it the name
CLR, whilst its implementation is realized as follows:

rbar=Max[br,br];

152 4 Implementing and Using Essential Statistical Process Control

Step 2: Set up two KPIs (UCLR and LCLR). Implement the LCL and UCL KPIs
with the following programs:

UCL=D4*Max[br,br];

LCL=D3*Max[br,br];

Step 3: Set up the newKPI and give it the name mr, along with the implementation
shaped by

meanr=Max[x,x]-Min[x,x];

Step 4: Visualize CLR, LCLR, UCLR and mr with the KPI Aggregated Chart.

Assuming that the variable p can be calculated, e.g., in a similar way as (4.3), the
implementation of the p chart boils down to the following:

Step 1: Determine p̄ (used as bp), set up a new KPI and give it the name CLp,
whilst its implementation is realized as follows:

clp=Max[bp,bp];

Step 2: Determine σp =
√

p̄(1− p̄)
n (used as sigmap) and set up two KPIs (UCLp

and LCLp). Implement the LCL and UCL KPIs with the following programs:
UCL=Max[bp+sigmap,bp+sigmap];

LCL=Max[bp-sigmap,bp-sigmap,0];

Step 3: Set up a new KPI and give it the name mp, along with the implementation
shaped by

meanp=p;

Step 4: Visualize CLp, LCLp, UCLp and mp with the KPI Aggregated Chart.

The objective of this sectionwas to provide recipes for calculating essential control
charts with KIS.ME. Note that it is mandatory to use aggregation functions inside a
KPI implementation. Thus, the Max[variable, variable] command is employed,
which in the case of a scalar variable returns simply its value.

4.5 Practical Example Revisited

Let us reconsider the data generation example introduced in Sect. 4.3. It pertains to
alternately changing the KIS.BOX Red operational LED color from green to red.
Each change is realize after one minute. The objective of this section is to provide
dedicated implementations which can be directly used for this particular case.

Let us start with the implementation of the x̄ chart. Using the historical data
from a set of processing periods, the mean ¯̄x = 61[s] and the mean range r̄ = 1.5[s]

4.5 Practical Example Revisited 153

Fig. 4.41 x̄ chart

were obtained. Thus, applying these values to (4.9) with n = 7 yields σx̄ = 0.547[s].
Having these values, four KIPs were implemented:
CLxbar:

xbar=61;

CL=Max[xbar,xbar];

UCLxbar:
xbar=61; sigmax=0.547;

UCL=Max[xbar+3*sigmax,xbar+3*sigmax];

LCLxbar:
xbar=61; sigmax=0.547;

LCL=Max[xbar-3*sigmax,xbar-3*sigmax];

mx:
d=If[x==5,Duration[x],0];

y=Mean[Filter[d>60000]]/1000;

The values of these KPIs are calculated with a 15-min processing period, whilst
the KPI Aggregated Chart is grouping and averaging their values every hour. The
resulting x̄ chart is presented in Fig. 4.41. As can be observed, the mean values (blue
line) are inside the control limits (red lines).

Let us proceed to the second chart, i.e., R. Using Table4.4 for n = 7 gives D3 =
0.0757 and D4 = 1.9249. Having these values, four KIPs were implemented:
CLR:

rbar=1.5;

CL=Max[rbar,rbar];

154 4 Implementing and Using Essential Statistical Process Control

Fig. 4.42 R chart

UCLR:
rbar=1.5;

CL=1.9249*Max[rbar,rbar];

LCLR:
rbar=1.5;

CL=0.0757*Max[rbar,rbar];

mr:
d=If[x==5,Duration[x],0];

b=Filter[d>60000]/1000;

y=Max[b,b]-Min[b,b];

The values of these KPIs are calculated with a 15-min processing period, whilst
the KPI Aggregated Chart is grouping and averaging their values every hour. The
resulting R chart is presented in Fig. 4.42. As can be observed, the mean range
fluctuates in a more intense way that the mean value. However, it is close to the mean
range (green line) and within the control limits (red lines).

Let us process to the last chart, i.e., p. The proportion being considered is defined
as the ratio between the sum of red color durations and that of both red and green
color durations. In this case, with 15-min processing period, one should expect (on
average) n = 15, which corresponds to changing the color every minute. As a result,
σp = 0.129 while p̄ = 0.5. Having these parameters, the implementation of the p
chart boils down to programming the following KPIs:
CLp:

pbar=0.5;

CL=Max[pbar,pbar];

4.6 Training Exercises 155

Fig. 4.43 p chart

UCLp:
pbar=0.5; sigmap=0.129;

UCL=Max[pbar+3*sigmap,pbar+3*sigmap];

LCLp:
pbar=0.5; sigmap=0.129;

LCL=Max[pbar-3*sigmap,pbar-3*sigmap];

mp:
dred=If[x==5,Duration[x],0];

yred=Sum[Filter[dred>60000]];

dgreen=If[x==3,Duration[x],0];

ygreen=Sum[Filter[dgreen>60000]];

y=yred/(ygreen+yred);

The values of these KPIs are calculated with a 15-min processing period, whilst
the KPI Aggregated Chart is grouping and averaging those every hour. The resulting
p chart is presented in Fig. 4.43.

As can be observed, the mean values (blue line) are inside the control limits (red
lines).

4.6 Training Exercises

4.1 KIS.Device data generation revisited
Exercise requirements: The exercise requires access to one KIS.LIGHT.

1. Similarly as in Sect. 4.3, implement a set of rules changing the KIS.LIGHT
operational LED color from red to green. Both periods should be equal to one
minute.

156 4 Implementing and Using Essential Statistical Process Control

2. Use the Datapoint chart to visualize KIS.LIGHT behaviour.
3. Initialize the KIS.LIGHT color using its digital twin (cf. Sect. 2.6).

4.2 Your own way of calculating the mean and the standard deviation
Exercise requirements: The exercise requires access to one KIS.LIGHT and com-
pletion of Exc. 4.1.

1. Without using Mean[] and Stdev[], according to (4.4) and (4.5), implement
your own KPIs calculating the mean and standard deviations of KIS.LIGHT
operational LED red color durations. Ensure also that all durations shorter than
60s are appropriately filtered and that the KPI processing period is equal to
15min.

2. Use the KPI Single Period Chart to visualize the maximum values of the imple-
mented KPIs within the selected aggregation period.

3. use the KPI Aggregated Chart to visualize the maximum values of the imple-
mented KPIs, which are grouped by the hour within the aggregation period.

4.3 Median assembly time
Exercise requirements: The exercise requires access to one KIS.BOX.

1. Let us consider a single container that is fed to the assembly system. In particular,
the container includes the following parts (digits):

C = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] . (4.10)

2. The assembly task boils down to writing down the subsequent digits from the
container. Thus, if all letters are used, then the container is empty and another
one can be processed assuming that it is available.

3. Implement a set of rules ensuring that the KIS.BOX Button 1 operational LED is
red during the assembly process and green otherwise. Associate triggers of these
rules with pressing KIS.BOX Button 1.

4. Implement a KPI providing information about median assembly time.
5. Use a set of selected widgets to visualize the obtained results.

4.4 Histograms
Exercise requirements: The exercise requires access to one KIS.LIGHT and com-
pletion of Exc. 4.1.

1. According to the approach presented in Sect. 4.4.1, implement KPIs calculating
10 equally sized histogram bins spread over the interval of [60, 65] seconds (use
a 15-min processing period).

2. Use the KPI Single Period Chart to visualize the histogram.
3. Use the KIS.LIGHT digital twin to interrupt the automatic color changing of the

KIS.LIGHT operational LED, i.e., hold its red color for one to three seconds from
time to time.

4. Analyze and explain the obtained results.

4.6 Training Exercises 157

4.5 Control charts
Exercise requirements: The exercise requires access to one KIS.LIGHT and com-
pletion of Exc. 4.4.

1. According to the approach presented in the Sect. 4.4.2, implement the x̄ and R
charts;.

2. Use the KIS.LIGHT digital twin to interrupt the automatic color changing of the
KIS.LIGHT operational LED, i.e., hold its red color for one to three seconds from
time to time.

3. Analyze and explain the obtained results.

4.6 Sharing KPIs
Exercise requirements: The exercise requires access to two KIS.LIGHTs (assigned
to the same workspace) and completion of Exc. 4.5.

1. Share all KPIs associated with the KIS.LIGH used in Exc. 4.5 with the second
KIS.LIGHT.

2. Implement the x̄ and R charts for the first and second KIS.LIGHT within their
common workspace.

3. Compare and analyze control charts of both KIS.LIGHTs.

4.7 CDP calculation: Idle working time
Exercise requirements: The exercise requires access to two KIS.BOXes (assigned to
the same workspace).

1. Let us reconsider two workers performing identical tasks at a single assembly
station. Both of them use KIS.BOX 1 to indicate two states:

Assembly in progress: Exemplified by the red color of operational LEDs,
Idle: Exemplified by the green color of operational LEDs.

Thismeans thatWorker 1 usesKIS.BOX1Button 1whileWorker 2 utilizesKIS.BOX
1 Button 2.

2. Implement the switching rules between assembly and idle states (cf. Figs. 4.3
and 4.4).

3. Repeat the above implementation for KIS.BOX 2, which is associated with a
second pair of workers.

4. Using the approach presented in Fig. 4.9, implement CDPs indicating the idle
state in each group.

5. For each worker group, i.e., each KIS.BOX, implement KPIs calculating the
mean and the median idle time along with its standard deviation over 15-min
processing periods.

6. Use a set of selected widgets to visualize and analyze the obtained results.

158 4 Implementing and Using Essential Statistical Process Control

4.7 Concluding Remarks

The preliminary objective of this chapter was to introduce the concepts of calculating
Datapoints and key performance indicators. Both of them can be used for processing
data, but in a completely different way. Indeed, CDPs do so in a static way without
taking data history into account. Contrarily, KPIs operate within specific processing
periods. This means that the entire processing period data set is used for calculating
the KPI value. For that purpose, aggregation functions can be used. The periodical
values of KPIs can be further aggregated within an arbitrary period. This can be
achieved with a set of various KPI chart widgets, which were carefully described. As
a result, essential statistical analysis can be realized with the well-known measures
of location and variability. Apart from these numerical values, it was also shown
how to implement histograms. The final part of the chapter discussed the concept
of control charts, which can be efficiently used to keep the process under statistical
control. The chapter was concluded with a set of training exercises, which validate
the knowledge gathered within it.

References

1. T. Stapenhurst, Mastering Statistical Process Control (Elsevier, Amsterdam, 2013)
2. D.C. Montgomery, Introduction to Statistical Quality Control (John Wiley & Sons, London,

2020)
3. J.S. Oakland, Statistical Process Control (Routledge, London, 2007)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 5
Mastering System Monitoring
and Control

5.1 Defining the Performance Cost Function and Its
Control

The objective of this section is to define the performance cost function for themultiple
point–single transporter system described in Sect. 3.3. The process starts with pro-
viding the availability of the transportation system. Subsequently, the performance
cost function is defined over a set of routs. Thus, the entire performance is related
with the sum of all cost functions divided by the total run time.

Let us start defining the work environment for the transporter operator:

Routes: The transporter operates within Workpsace 1 according to the routs pre-
sented in Fig. 5.3.
KIS.Device: The transporter operator uses KIS.BOX Transporter to signify the
start and finish of a given transportation task.
Route assignment: The route assignment is realized by the KIS.MANAGER oper-
ator, which is setting KIS.Box Transporter Button 1 operational LED color to the
one corresponding to the desired route.

•> System operators

It is important to stress the fact that there are two operators within the system:

KIS.MANAGER operator: A human being assigning a transport task within a
selected route and monitoring its realization.
Transporter operator: A human being physically realizing transportation tasks.

© The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2_5

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33623-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-33623-2_5

160 5 Mastering System Monitoring and Control

Table 5.1 Set of possible routes

Route Route color Points

1 Blue S2→A3→S1→A2→A1→S1→S2

2 Turquoise S1→A1→S1

3 Green S2→S1→A2→S1→S2

4 Magenta S2→A3→S2

5 Red S2→A3→S1→A2→S1→S2

6 Black Idle state

S: supermarket point, A: assembly point

Let us start with implementing a single route system, i.e., a blue one, and calcu-
lating transporter availability, which is defined as

Availability = Run time

Planned transportation time
, (5.1)

where the run time is the amount of time spent on the transportation whilst the
planned transportation time is obtained as follows:

Planned transportation time = Shift length − breaks (5.2)

and signifies the time span inwhich the transporter can be operational.As an example,
let us consider an eight-hour shift with a one-hour break, which gives

Planned transportation time = 480 − 60 = 420(min). (5.3)

As can be observed in Table5.1, the idle state corresponds to the time in which the
transporter is not realizing any transportation. However, before proceeding to the
implementation, let us define the transportation acknowledgement and realization
procedure:

1. TheKIS.MANAGER operator sets the color of the KIS.BOXTransporter Button
1 operational LED to the one corresponding to a desired route.

2. The transporter operator acknowledges and starts the transportation action by
pressing KIS.BOX Transporter Button 2.

3. The KIS.BOX Transporter Button 2 operational LED changes its color to the
same as the one of the KIS.BOX Transporter Button 1 operational LED.

4. The KIS.BOX Transporter Button 1 operational LED color is changed to black.
5. The transporter operator accomplishes the transportation and then presses

KIS.BOX Transporter Button 2.
6. The KIS.BOX Transporter Button 2 operational LED color is changed to black.

5.1 Defining the Performance Cost Function and Its Control 161

Fig. 5.1 Sample rule for acknowledging Route 1

Note that, after Step 4 of the above procedure, the KIS.MANAGER operator can
arrange a consecutive route by setting the KIS.BOXTransporter Button 1 operational
LED color. The implementation of Steps 1–4 can be realized with five rules like the
sample one for the blue route, which is given in Fig. 5.1. The rules for different
routes can be implemented in a similar way, and hence they are omitted. Finally,
the rule implementing Steps 6–7 is given in Fig. 5.2. It is also assumed that each
route has an associated ideal route time. These times should be perceived as optimal
performance goals on a given route (see Table5.2). Having these data, one can define
a performance cost function over the processing period:

J = 1

tr

nr∑

i=1

ni ti , (5.4)

where tr is the run time within the processing period, nr = 5 is the number of routes
(cf. Table5.2), ti is the ideal transportation time of the i-th route while ni is the
number of cycles on the i-th route. Thus, in the ideal case, this the above function
should be equal to 1, which signifies perfect performance of the transporter.

Let us start with the KPI which can be used for the calculation of (5.1) with
KIS.BOX Transporter. For that purpose, it is assumed that the planned transportation
time is equal to 420min (cf. 5.3):

162 5 Mastering System Monitoring and Control

Fig. 5.2 Rule for accomplishing the transportation action

Table 5.2 Routes and ideal route times

Route Route color Ideal route time (min)

1 Blue 11

2 Turquoise 4

3 Green 8

4 Magenta 3

5 Red 9

6 Black –

d=If[Not[x==2],Duration[x],0];

y=Sum[d]/60000/420;

where x is an alias name of button2ColorKpiDuration. Note that the KPI
starts with determining all durations for a non-idle state, which is equivalent to
the black color of the KIS.BOX Transporter Button 2 operational LED. To get a
fair assessment of (5.1), the results provided by the above KPI should be aggre-
gated within an eight-hour shift using the sum aggregation mechanism. This can be
achieved with the KPI Aggregated Chart, which can group the results in a selected
aggregation period, i.e., an hour or a day. An alternative approach is to calculate the
availability within a given processing period, which can be realized as follows:

5.1 Defining the Performance Cost Function and Its Control 163

Fig. 5.3 Floorplan with a set of routes

d=If[Not[x==2],Duration[x],0];

y=Sum[d]/Interval[];

Finally, an average availability can be calculated and visualized using KPI charts. Let
us proceed to the implementation of (5.4), which should be started with introducing
nr = 5 ideal transportation times (cf. Table5.2):

t1=11;

t2=4;

t3=8;

t4=3;

t5=9;

The next step boils down to calculating the number of cycles on a given route ni , i =
1, . . . , nr . For that purpose let us recall the numerical counterparts of colors, which
are given in Table 2.2. The implementation consists in calculating the number of
KIS.BOX Transporter Button 2 operational LED color changes. This can be realized
using led2ColorKpiwith an associated alias variable y. As a result, the KPI code
can be extended as follows:

t1=11;

t2=4;

t3=8;

t4=3;

t5=9;

164 5 Mastering System Monitoring and Control

n1=Sum[If[y==0,1,0]];

n2=Sum[If[y==1,1,0]];

n3=Sum[If[y==3,1,0]];

n4=Sum[If[y==4,1,0]];

n5=Sum[If[y==5,1,0]];

The last stage of the implementation is to calculate the run time tr and the current
value of the performance function (5.4):

t1=11;

t2=4;

t3=8;

t4=3;

t5=9;

n1=Sum[If[y==0,1,0]];

n2=Sum[If[y==1,1,0]];

n3=Sum[If[y==3,1,0]];

n4=Sum[If[y==4,1,0]];

n5=Sum[If[y==5,1,0]];

d=If[Not[x==2],Duration[x],0];

tr=Sum[d]/60000;

J=1/tr*(t1*n1+t2*n2+t3*n3+t4*n4+t5*n5);

Let us consider a sample transportation request sequence, which is presented in
Fig. 5.4. In particular, there are 15 transportation requests, which are ordered by the
KIS.MANAGERoperator using theKIS.BOXTransporter Button 1 operational LED
color (cf. Sect. 2.6). Association of a given route with the assembly stations (A1–A3)
is depicted as well. Using Table5.2 and Fig. 5.4, one easily see that there are four
cycles for route 1, three for route 2, three for route 3, three for route 4 and two for
route 5. The objective of the remaining part of this section is to show evolution of
the performance and availability of the implemented system, which was calculated
using the KPI Aggregated Chart grouped by the hour. Moreover,

• availability within a processing period, and
• the performance cost function

were also calculated for KPIs using a 60-min processing period. The obtained results
are given in Table5.3. As can be observed, 0.25 availability in the 5th hour is caused
by the scheduled 45-min break. A similar effect is also visible in the 17h due to a
15-min break. In most cases the performance function is close to its optimal level,
which is equal to 1. Note that both availability and the performance cost function
can be also interpreted in percents of their maximum respective rates. This can be
easily achieved by multiplying them by 100.

5.2 Monitoring the Product Rejection Rate 165

Fig. 5.4 Sample transportation request sequence

Table 5.3 Availability and performance cost function

Hour Availability Performance function

1 0.88 0.94

2 0.93 0.92

3 0.90 0.95

4 0.85 0.91

5 0.25 0.82

6 0.9 0.87

7 0.75 0.91

8 0.9 0.89

5.2 Monitoring the Product Rejection Rate

The objective of this section is to show a sample implementation and analysis con-
cerning two product rejection rate monitoring schemes. In both cases, it is assumed
that the number of tested products is not constant within the processing period. Let
us start with the first case, which is implemented using the following environment:

KIS.Device: The operator controlling the quality of produced items is equipped
with KIS.BOX, which is operating within Workspace 1.
Item rejection/acceptance: If an item is acceptable, then the operator pushes
KIS.BOX Button 1 while KIS.BOX Button 2 is pushed otherwise.

Let us start with implementing the KPIs for calculating

• the total number of tested items per processing period,
• the number of rejected items per processing period.

The implementation of the first KPI boils down to counting how many times both
KIS.BOX buttons were pushed, which can be performed as follows:

166 5 Mastering System Monitoring and Control

dpass=Sum[If[pass,1,0]];

dfail=Sum[If[fail,1,0]];

total=dpass+dfail;

wherepass andfail are aliases ofbutton1Pressed andbutton2Pressed,
respectively, while total stands for the total number of tested items. The imple-
mentation of the second KPI can be performed by suitably reducing the preceding
one, which yields

dfail=Sum[If[fail,1,0]];

Table5.4 presents the obtained results concerning 20 consecutive processing periods.
Note that in all cases the processing period was equal to one hour. From these results
it is evident that there are in total

N =
20∑

i=1

ni = 953 (5.5)

items, among which

Nr =
20∑

i=1

nr,i = 76 (5.6)

are of unacceptable quality, and hence they are rejected. Thus, the ratio between the
rejected and the total number of items can be obtained as follows:

p̄ = Nr

N
= 0.0797. (5.7)

This means that the rejection rate is around 8%.
The objective of the subsequent deliberations is to develop the p chart (cf.

Sect. 4.4.2), which can be used for statistical process control pertaining to the quality
of the manufactured items. Let us recall that the p chart is designed according to the
following principle:

Center line: p̄,
Upper control limit (UCL):

UCL = p̄ + 3σp = p̄ + 3

√
p̄(1 − p̄)

n
, (5.8)

Lower control limit (LCL):

LCL = p̄ − 3σp = p̄ + 3

√
p̄(1 − p̄)

n
. (5.9)

5.2 Monitoring the Product Rejection Rate 167

Table 5.4 Quality test results

i-th Processing period Rejected items (nr,i) Number of items (ni)

1 4 40

2 3 47

3 3 42

4 4 48

5 4 51

6 5 41

7 4 54

8 4 51

9 5 45

10 4 45

11 3 50

12 3 55

13 2 50

14 4 52

15 3 47

16 3 39

17 5 55

18 4 50

19 4 40

20 5 51

The main assumption concerning the above principle is that the total number of
samples is constant in each (i-th) processing period. Unfortunately, due to manual
testing, such an assumption is too restrictive. Thus, one way out of this problem is
to assume an average number of items per processing period. Another solution is
to calculate the LCL and the UCL for each processing period separately. The KPIs
calculating the UCL and the LCL for a varying n and p̄ are as follows:
UCL:

pbar=0.0797;

dpass=Sum[If[pass,1,0]];

dfail=Sum[If[fail,1,0]];

n=dpass+dfail;

sigmap=Power[pbar*(1-pbar)/n,0.5];

UCL=pabr+3*sigmap;

LCL:

pbar=0.0797;

168 5 Mastering System Monitoring and Control

Table 5.5 Quality test results

i th Processing
period

Rejected items Number of
items

p UCL LCL

1 4 47 0.0851 0.1982 0

2 3 32 0.0938 0.2233 0

3 3 48 0.0625 0.1970 0

4 7 57 0.1228 0.1873 0

5 3 43 0.0698 0.2036 0

6 5 46 0.1087 0.1995 0

dpass=Sum[If[pass,1,0]];

dfail=Sum[If[fail,1,0]];

n=dpass+dfail;

sigmap=Power[pbar*(1-pbar)/n,0.5];

LCL=Max[pabr-3*sigmap,0];

Note that the LCL cannot be lower than zero, and hence there is a need for using
the Max[] function. Finally, the center line (CL) is simply given by (5.7), which
implies the KPI below:

pbar=0.0797;

CL=Max[pbar,pbar];

while the monitored rejection rate p should be calculated using the following KPI:

dpass=Sum[If[pass,1,0]];

dfail=Sum[If[fail,1,0]];

n=dpass+dfail;

p=dfail/n;

To illustrate the UCL and LCL calculation according to (5.8)–(5.9), let us con-
sider a sample processing period in which n = 30. Thus, Eqs. (5.8)–(5.9) yield
UCL = 0.228 while LCL = max(−0.069, 0) = 0. Indeed, the rejection rate cannot
be negative, and hence the LCL is set to zero.

Finally, using a set of four developed KPIs, one can design the p chart. Thus,
according to the approach presented in Sect. 4.4.2, the above KPIs should be suitably
associated with the KPI Aggregated Chart. The obtained results are presented in
Fig. 5.5. For better illustration, the results are also gathered in Table5.5. As can be
observed, for the six processing periods being presented the ratio p oscillates around
the center line and does not exceed the control limits.

Let us proceed to the second case, i.e., an automatic quality control system. It uses
KIS.LIGHT as a communicationmeans between an automatic quality control system
and KIS.MANAGER. In particular, KIS.LIGHT Input 1 receives a false–true–false

5.2 Monitoring the Product Rejection Rate 169

Fig. 5.5 Chart p for manual quality control

Fig. 5.6 KIS.LIGHT Input 1

sequence when the controlled item satisfies the quality requirement. Otherwise, a
false–true–false sequence is sent to KIS.LIGHT Input 2. Figure5.6 presents a sample
KIS.LIGHT Input 1 sequence forming the basis for calculating the number of items
which pass the quality test. As in the manual case, let us start with implementing the
KPIs for calculating

• the total number of tested items per processing period,
• the number of rejected items per processing period.

Let us proceed to the implementation of the first KPI, which can be realized using the
RisingEdge command. It counts the number of false–true sequences, and hence
the KPI boils down to

170 5 Mastering System Monitoring and Control

dpass=RisingEdge[pass];

dfail=RisingEdge[fail];

total=dpass+dfail;

wherepass andfail are aliases ofinput1Status andinput2Statuswhile,
respectively, total stands for the total number of tested items. As previously, the
number of items which do not satisfy the quality test can be easily obtained with the
KPI as follows:

dfail=RisingEdge[fail];

Thus, the rejection rate p can be found:

dpass=RisingEdge[pass];

dfail=RisingEdge[fail];

n=dpass+dfail;

p=dfail/n;

Similarly as in the manual case, after 20 processing periods, the rejection rate was
calculated as p̄ = 0.098. Thismeans that the center line can be found as in themanual
case, but p̄ = 0.098 should be used instead. Finally, the control limits are determined
using KPIs implemented with
UCL:

pbar=0.098;

dpass=RisingEdge[pass];

dfail=RisingEdge[fail];

n=dpass+dfail;

sigmap=Power[pbar*(1-pbar)/n,0.5];

UCL=pabr+3*sigmap;

LCL:

pbar=0.098;

dpass=RisingEdge[pass];

dfail=RisingEdge[fail];

n=dpass+dfail;

sigmap=Power[pbar*(1-pbar)/n,0.5];

LCL=Max[pabr-3*sigmap,0];

Note that the presentation of the obtained results looks similar to that for the
manual case, and hence it is omitted.

5.3 Demerit System Control 171

5.3 Demerit System Control

The objective of the previous section was to describe a quality control system which
can be used for binary decisions concerning product quality, which can be either
defective or non-defective. In the quality control nomenclature [1, 2], a product is
perceived as a nonconforming one if it has one ormore defects. In the case of complex
products, several different kinds of defects may occur. It is, of course, evident that
they are not equally important and serious. Thus, a suitable classification method is
needed, which can handle severity of defects and weight them in a reasonable way.
A demerit system [1, 2] can be a good remedy for such a situation. Traditionally, in
such a system, there are four classes of defects:
Class A defect—very serious, due to which the product

• is not suitable for use;
• can fail in service and cannot be easily repaired;
• may cause a personal injury or a property damage.

Class B defect—serious, due to which the product

• will probably cause a Class A operating failure;
• will certainly cause less serious operating problems than the Class A one;
• will surely cause increased maintenance or a decreased lifetime.

Class C defect—moderately serious:

• will probably fail in service;
• may cause a problem less serious than a failure;
• will possibly have a reduced lifetime or increased maintenance costs;
• has a major defect in the finish, appearance or working quality.

Class D defect—minor, due to which the product

• will not fail in service;
• has a minor defect in the finish, appearance or working quality.

Let nA, nb, nc and nd represent respectively the number of Class A, B, C, D defects
within the sample of n products or units. The crucial assumption is that each class of
defects is independent and obeys Poison distribution [1, 2]. The expected number of
defects of each class is expressed by nμa , nμb, nμc and nμd , where μi denote the
expected defect per unit. Thus, the number of demerits is defined as

d = pana + pbnb + pcnc + pdnd , (5.10)

where pi > 0 stand for the class weight. A commonly used approach for selecting
these weight is pa = 100, pb = 50, pc = 10 and pd = 1. Note that these parameters
can be problem-specific, and hence they can be modified. The control limits for
(5.10) can be calculated as follows [1, 2]:
Center line (CL):

172 5 Mastering System Monitoring and Control

CL = n (paμa + pbμb + pcμc + pdμd) , (5.11)

Lower control limit (LCL):

LCL = CL − 3σd , (5.12)

Upper control limit (UCL):

UCL = CL + 3σd , (5.13)

where

σd =
√
n

(
p2aμa + p2bμb + p2cμc + p2dμd

)
. (5.14)

Calculation of sample demerit control limits

Let us consider a sample demerit control system with the parameters given in
Table5.6, along with a sample of n = 200 units. Thus, according to (5.12),

CL = 200 (100 × 0.001 + 50 × 0.0019 + 10 × 0.0194 + 1 × 0.01) = 79.8,

while (5.14) yields

σd =
√
200

(
1002 × 0.001 + 502 × 0.0019 + 102 × 0.0194 + 1 × 0.01

) = 57.793.

Finally, the LCL (5.12) and the UCL (5.13) are

LCL = 79.8 − 3 × 57.793 = −93.579,

UCL = 79.8 + 3 × 57.793 = 253.179.

Note that the negative LCL should be replaced with LCL = 0.

Table 5.6 Demerit control system parameters

Class pi μi

A 100 0.001
B 50 0.0019
C 10 0.0194
D 1 0.01

5.3 Demerit System Control 173

•> Significance of defect per unit

The above example forms the basis for developing a chart for assuring the control of
a given standard, which is shaped by μi . This represents the expected quality level,
which should take into account the economic balance between service requirements
and production costs. As a result, two unappealing situations can be distinguished:

• The quality is permanently over the standard, and hence it is probable that the
production is too expensive.

• The quality is permanently under the standard, and hence the cost of ser-
vice/maintenance could be high. This implies the need for additional economic
efforts for increasing the quality.

Under the above preliminaries, let us to proceed to the KIS.ME-based implemen-
tation. As in the previous section, it is possible to develop either a manual or an
automatic demerit quality control system. However, the discussion is limited to the
manual case, which employs three KIS.BOXes, i.e., KIS.BOX 1, KIS.BOX 2 and
KIS.BOX 3. Once a product quality check is performed, an appropriate KIS.BOX
button is pressed,which expresses the class of the product. Table5.7 presents the asso-
ciation of KIS.BOXes and the defect classes. Note that most products are defect-free,
and hence such a class has to be included as well. The resulting demerit system is
presented in Fig. 5.7. The objective of the subsequent part of this section is to pro-
vide KPIs capable of calculating (5.10)–(5.13). However, KPIs can be implemented
for a single KIS.Device exclusively. Thus, it is proposed to use appropriate rules,
which will be employed to feed the information about the pressed button to a single
KIS.BOX, i.e., KIS.BOX 3. Indeed, as can be observed in Table5.7, KIS.BOX 3
Button 2 is not used, and hence it will be employed for the communication purpose.
A complete set of communication rules is given in Table5.8. Figure5.8 presents an
implementation of the first rule of Table5.8. Having such a set of rules, it is possible
to proceed to the KPI implementation. Let us start with supplementary KPIs, which
can be used for calculating the number of products belonging to the classes presented
in Table5.7:
Class A:

nA=Sum[If[x==5,1,0]];

Class B:

nB=Sum[If[x==4,1,0]];

Class C:

nC=Sum[If[x==7,1,0]];

174 5 Mastering System Monitoring and Control

Table 5.7 KIS.BOX-based demerit quality control

Class KIS.BOX Button Color Color no.

A 2 1 Red 5

B 2 2 Magenta 4

C 1 1 Yellow 7

D 1 2 Blue 0

Defect-free 3 1 Green 3

Fig. 5.7 Floorplan of the
KIS.BOX-based demerit
system

Class D:

nD=Sum[If[x==0,1,0]];

Class defect-free:

nfree=Sum[If[y==3,1,0]];

where x and y are aliases of button1ColorKPI and button2ColorKPI
Datapoints of KIS.BOX 3. For the implementation of (5.10)–(5.13), sample quality
parameters are presented in Table5.6. Finally, the center line and control limits of
the demerit chart are given by the following KPIs:

5.3 Demerit System Control 175

Table 5.8 Demerit system rule base

Trigger Actions

KB 2 | Button 1 | pressed KB 3 | Button 2 | red

KB 3 | Button 2 | black

KB 2 | Button 2 | pressed KB 3 | Button 2 | magenta

KB 3 | Button 2 | black

KB 1 | Button 1 | pressed KB 3 | Button 2 | yellow

KB 3 | Button 2 | black

KB 1 | Button 2 | pressed KB 3 | Button 2 | blue

KB 3 | Button 2 | black

Fig. 5.8 Sample rule of the demerit control system

CL:

pa=100;

pb=50;

pc=10;

pd=1

muA=0.001;

muB=0.0019;

muC=0.0194;

muD=0.01;

nA=Sum[If[x==5,1,0]];

nB=Sum[If[x==4,1,0]];

nC=Sum[If[x==7,1,0]];

nD=Sum[If[x==0,1,0]];

nfree=Sum[If[y==3,1,0]];

n=nA+nB+nC+nD+nfree;

176 5 Mastering System Monitoring and Control

CL=n*(pa*muA+pb*muB+pc*muC+pd*muD);

LCL:

pa=100;

pb=50;

pc=10;

pd=1

muA=0.001;

muB=0.0019;

muC=0.0194;

muD=0.01;

nA=Sum[If[x==5,1,0]];

nB=Sum[If[x==4,1,0]];

nC=Sum[If[x==7,1,0]];

nD=Sum[If[x==0,1,0]];

nfree=Sum[If[y==3,1,0]];

n=nA+nB+nC+nD+nfree;

CL=n*(pa*muA+pb*muB+pc*muC+pd*muD);

sd=n*(Power[pa,2]*muA+Power[pb,2]*muB+

Power[pc,2]*muC+Power[pd,2]*muD);

sigmad=Power(sd,0.5);

LCL=Max[CL-3*sigmad,0];

UCL:

pa=100;

pb=50;

pc=10;

pd=1

muA=0.001;

muB=0.0019;

muC=0.0194;

muD=0.01;

nA=Sum[If[x==5,1,0]];

nB=Sum[If[x==4,1,0]];

nC=Sum[If[x==7,1,0]];

nD=Sum[If[x==0,1,0]];

nfree=Sum[If[y==3,1,0]];

n=nA+nB+nC+nD+nfree;

CL=n*(pa*muA+pb*muB+pc*muC+pd*muD);

sd=n*(Power[pa,2]*muA+Power[pb,2]*muB+

Power[pc,2]*muC+Power[pd,2]*muD);

sigmad=Power(sd,0.5);

LCL=CL+3*sigmad;

5.4 Overall Equipment Effectiveness 177

Table 5.9 KPI-based calculation of quality control results

i-th
Processing
period

na nb nc nd Defect-free n

1 0 2 2 1 185 190

2 0 0 3 3 224 230

3 0 0 7 0 193 200

4 0 1 2 2 235 240

5 0 1 6 1 191 199

6 0 0 5 3 178 186

Table 5.10 Numerical data of the demerit chart

i-th Processing
period

d CL LCL UCL

1 121 75.8100 0 244.7982

2 33 91.7700 0 277.6974

3 70 79.8000 0 253.1782

4 72 95.7600 0 285.6863

5 111 79.4010 0 252.3452

6 53 74.2140 0 241.4139

The developed demerit system was validated using a one-hour processing period.
First, the supplementary KPIs were employed to determine the number of products
belonging to the classes defined in Table5.7. The obtained results are presented
in Table5.9. Let us proceed to the results concerning the demerit chart, which are
shaped by the monitored demerit number d. It should evolve around the center line
(CL) and should be bounded by the control limits. The obtained results are presented
in Table5.10 and visualized using the KPI Aggregated Chart, which is portrayed
in Fig. 5.9. The results clearly indicate that the monitored process is in the state of
control.

5.4 Overall Equipment Effectiveness

The main objective of this section is to show how to use KIS.ME for calculating the
performance of given equipment. The discussion starts with recalling the concept
of overall equipment effectiveness (OEE) [3, 4], which can be perceived as a key
measurement tool for assessing both productivity and efficiency. As indicated in [4],

178 5 Mastering System Monitoring and Control

Fig. 5.9 Demerit chart for manual quality control

OEE is a hierarchy ofmeasures that exhibit how efficiently amanufacturing operation
is performed. This indicator is stated in a very general form, and hence it makes it
possible to perform an efficient comparison betweenmanufacturing units in different
departments, organizations, etc. The core features of OEE are as follows [3, 4]:

• identification of equipment potential;
• identification and tracking of the losses;
• identification of opportunities for increasing equipment performance.

As a result, OEE can be used for

• increasing productivity,
• decreasing the overall cost,
• increasing the awareness about equipment productivity,
• extending the equipment operational life time.

The crucial components of OEE are the following: availability:

A = tP − tS
tP

= tR
tP

, (5.15)

where tP is a planned production time, tS stands for the unplanned stop or downtime,
while tR signifies the run time.

5.4 Overall Equipment Effectiveness 179

Performance:

P = ti n p

tP − tS
= ti n p

tR
, (5.16)

where ti is the ideal single part manufacturing time and np stands for the total number
of manufactured parts, i.e., both defective and defect-free ones. Quality:

Q = np − nd
n p

= ng
n p

, (5.17)

where nd and ng stand for the number of defective and defect-free parts, respectively.
Finally, the OEE indicator is simply given by

OEE = A × P × Q. (5.18)

The objective of the remaining part of this section is to show how to employ KIS.ME
for calculatingOEE. It can also be expressed in percents, which can be easily attained
by multiplying (5.15)–(5.17) by 100. Note that a world class value of OEE should
be at the level of 85% or higher. Let us also note that the calculation of planned
production time obeys

tP = tA − tB, (5.19)

where tA and tB stand for the available and planned break times.

Sample OEE calculation

Let us consider an example equipment, which is characterized by the parame-
ters given in Table5.11. According to (5.19), the planned production time tP =
tA − tB = 390[min]. This implies that A = tP−tS

tP
= 350

390 = 0.897 or 89.7%. Subse-
quently, the performance can be calculated with (5.16), which is equal to P = 0.952
or 95.2%. The quality is obtained with (5.17), which is equal to Q = 0.99 or
99%, equivalently. Finally, OEE can be calculated according to (5.18), which gives
OEE = 0.845 or 84.5%.

Table 5.11 Sample production equipment parameters

Parameter Value
tA 420 (min)
tB 30 (min)
tS 40 (min)
ti

1
60 (min)

n p 20000 (items)
nd 200 (items)

180 5 Mastering System Monitoring and Control

Fig. 5.10 KIS.ME-based OEE data gathering scheme

Before proceeding to the OEE implementation, a KIS.ME infrastructure has to
be defined. In particular, it should allow identification and measurement of

• the unplanned downtime tS and its cause,
• the total number of manufactured parts np,
• the number of defective parts nd .

The employed infrastructure is portrayed in Fig. 5.10. As can be observed, the sys-
tem has automatic quality control, which is connected with KIS.BOX digital inputs.
The quality control system is actually the same as the one presented in Sect. 5.2, but
KIS.BOX is used instead of KIS.LIGHT. Indeed, it employs KIS.BOX as a commu-
nication means between an automatic quality control system and KIS.MANAGER.
In particular, KIS.BOX Input 1 receives a false–true–false sequence when the con-
trolled item satisfies the quality requirement. Otherwise, a false–true–false sequence
is sent toKIS.BOX Input 2. A sample sequence is presented in Fig. 5.6. Subsequently,
note that the KIS.BOX Button 2 operational LED color is initially set to green using
the KIS.BOX digital twin (cf. Sect. 2.6). This is a normal operation of the equipment.

Let us proceed to the identification of the cause of downtime. First, it is assumed
that the equipment operator makes a decision about the current downtime state of the
equipment, which may exhibit one of the modes given in Table5.12. In particular,
the state-space model concept (cf. Sect. 2.10) is utilized to change the color of the
KIS.BOXButton 1 operational LED according to Table5.12. This operation depends
on the trigger which is related to pressing KIB.BOX Button 1. Once an appropriate
color is selected, the equipment operator acknowledges the current state by pressing
KIS.BOX Button 2. As a result, its operational LED color is changed into that of
the KIS.BOX Button 1 operational LED. Thus, any alteration of the equipment state
should be realized in the same way. Note also that one can freely modify or extend
the states proposed in Table5.12.

Let us proceed to the KPI implementation. First, availability has to be calculated
according to (5.15). For that purpose it is necessary to assume that the planned
production time tP is given. Thus, let tA = 420(min) and tp = 390(min). As a result,
the KPI calculating availability within a selected processing period is given by

5.4 Overall Equipment Effectiveness 181

Table 5.12 Run and downtime states

State Color Color no.

Run Green 3

Equipment breakdown Red 5

Setup and adjustment Blue 0

Minor breakdowns Yellow 7

Planned break Magenta 4

tp=390;

tr=Sum[If[x == 3,Duration[x],0]]/60000;

A=tr/tp;

where x is an alias of the button1ColorKpiDuration Datapoint. Finally, to
assess the quality, the KPI calculation results should be aggregated with KPI charts
using the SUM aggregation method (see, e.g., Sect. 4.3.2) and the tA aggregation
period. Using a similar way of implementation, one can formulate KPIs calculating
the sums of downtimes:

Equipment breakdown:dred=Sum[If[x == 5,Duration[x],0]]/60000;
Setup andadjustment:dblue=Sum[If[x == 0,Duration[x],0]]/60000;
Minor breakdowns:dyellow=Sum[If[x == 7,Duration[x],0]]/60000;

as well as the occurrence number of such states:

Equipment breakdown: nred=Sum[If[x == 5,1,0]];
Setup and adjustment: nblue=Sum[If[x == 0,1,0]];
Minor breakdowns: nyellow=Sum[If[x == 7,1,0]];

Let us proceed to performance calculation (5.16). The KPI calculating local perfor-
mance within the j-th processing period, i.e.,

Pj = ti n p, j

tR, j
, (5.20)

can be derived using (with ti = 1[min])

ti=1;

ng=RisingEdge[y];

nd=RisingEdge[z];

np=nd+ng;

tr=Sum[If[x == 3,Duration[x],0]]/60000;

Pj=ti*np/tr;

where x , y and z are aliases ofbutton1ColorKpiDuration, input1Status
and input2Status, respectively. Having k processing periods, one can aggregate

182 5 Mastering System Monitoring and Control

the results of the above KPI. Unfortunately, there is no aggregation which makes it
possible to determine total performance (5.16). A good remedy to such a problem is
to define two separated KPIs:

Ideal manufacturing time of the np parts:

ti=1;

ng=RisingEdge[y];

nd=RisingEdge[z];

np=nd+ng;

tideal=ti*np;

Run time tR :

tr=Sum[If[x == 3,Duration[x],0]]/60000;

and observe their relation using theKPI Pie Chart with the SUMaggregationmethod.
Similar issues are encountered while calculating quality with (5.17). Indeed, local
quality within the j-th processing period, i.e.,

Q j = ng, j
nP, j

, (5.21)

can be calculated with

ng=RisingEdge[y];

nd=RisingEdge[z];

np=nd+ng;

Qj=ng/np;

Similarly, as the global quality (5.17) cannot be directly calculated, a good remedy
is to define two separate KPIs:

Number of defect-free parts ng: ng=RisingEdge[y];
Number of parts np:

ng=RisingEdge[y];

nd=RisingEdge[z];

np=nd+ng;

and observe their relation using theKPI Pie Chart with the SUMaggregationmethod.
Finally, the determination of OEE can be realized directly. Indeed, by substituting
(5.15)–(5.17) to (5.18), one can observe that

OEE = ti ng
tp

, (5.22)

5.5 Training Exercises 183

which can be directly obtained with the following KPI:

ti=1;

tp=390;

ng=RisingEdge[y];

OEE=ti*ng/tp;

Finally, OEE can be visualized and aggregated (with the SUM method) using a
selected KPI chart.

5.5 Training Exercises

5.1 Small transportation system
Exercise requirements: The exercise requires access to one KIS.BOX.

1. Let us consider two transportation routes:

Route red:

Rr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] , (5.23)

Route green:

Rg = [A, B,C, D, E, F,G, H, I, J] . (5.24)

2. Each route is going through 10 points, which can be perceived as the virtual
supermarkets and assembly stations.

3. Each virtual transportation task is realized in the following way:

Step 0: set i = 1;
Step 1: write the i-th name of the transportation point on a paper sheet (e.g.,
A);
Step 2: perform virtual transportation by waiting a suitable period of time;
Step 3: set i = i + 1. If i > 10, then STOP, else go to Step 1.

4. The ideal transportation times for the first and second route are tr = 11
60 (min)

and tg = 13
60 (min).

5. Using the approach presented in Sect. 5.1, implement two rules for acknowledg-
ing the transportation tasks (cf. Fig. 5.1).

6. Implement the KPI counting the number of transportation tasks nr realized
through Rr .

7. Implement the KPI counting the number of transportation tasks ng realized
through Rg;

8. Implement the KPI calculating the performance of the transportation system
within a processing period, which is expressed by

184 5 Mastering System Monitoring and Control

J = 1

tp

(
nr tr + ngtg

)
, (5.25)

where tp is the processing period. (Hint: Use Interval[] command with
transforming its value from milliseconds to minutes);

9. Implement theKPI calculating the availability of the transportation systemwithin
a processing period:

A = tr
tp

, (5.26)

where tr stands for the run time, i.e., the duration sum for which the KIS.BOX
Button 2 operational LED is not black.

10. Use arbitrary KPI charts to present the obtained results of (5.25) .
11. By using the KIS.BOX digital twin, i.e., by setting the color of the KIS.BOX

Button 1 operational LED, repeat cyclically the following route assignment:

Rg, Rg, Rr , Rr , Rr , Rg, Rr , Rg, Rg (5.27)

and realize each transportation task according to Step 3.
12. What can you say about the obtained values of (5.25) and (5.26)?

5.2 Manual quality control
Exercise requirements: The exercise requires access to one KIS.BOX.

1. Implement the manual quality control system presented in Sect. 5.2.
2. Use the Datapoint chart to visualize the system’s behaviour.
3. Implement the KPI calculating the number of items which pass the quality con-

trol.
4. Implement theKPI calculating the number of itemswhich fail the quality control.
5. Implement the KPI determining the total number of tested items.
6. Using the KPI Pie Chart, visualize the relation between the fail/pass items.
7. Perform a virtual quality control action by writing consecutive natural numbers

on a sheet of paper. If a number can be divided by 10, then press KIS.BOX
Button 2 (fail), else press KIS.BOX Button 2 (passed).

8. Determine the ratio between the number of rejected and all items p̄.
9. Using (5.8)–(5.9), calculate the lower and upper control limits of the p chart.

5.3 Virtual production system with quality control
Exercise requirements: The exercise requires access to one KIS.LIGHT.

1. Using Rule engine, implement a state-space model (cf. Sect. 2.10) which
will cyclically change the KIS.LIGHT operational LED color according to
Table5.13.

2. Using the KIS.LIGHT digital twin (cf. Sect. 2.6), initialize its operational LED
color to be equivalent to the run state (green color).

5.5 Training Exercises 185

Table 5.13 Run and downtime states of the virtual production system

State Color Color No. State period (min)

Run Green 3 50

Equipment breakdown Red 5 10

Setup and adjustment Blue 0 5

Minor breakdown Yellow 7 2

Planned break Magenta 4 1

3. Using the Datapoint Chart, visualize the performance of the system.
4. Using Rule engine, implement a rule mechanism which during the run state

(green color) will, every minute, change KIS.LIGHT digital output 1 according
to the false–true–false sequence.

5. Using the Datapoint Chart, visualize KIS.LIGHT digital output 1.
6. Using Rule engine, implement a rule mechanism which during the run state

(green color) will, every minute, change KIS.LIGHT digital output 1 according
to the false–true–false sequence;

7. Using the Datapoint Chart, visualize KIS.LIGHT digital output 1.
8. Using Rule engine, implement a rule mechanism which during the run state

(green color) will, every 45min, change KIS.LIGHT digital output 2 according
to the false–true–false sequence.

9. Using the Datapoint Chart, visualize KIS.LIGHT digital output 2.
10. let us imagine that each false–true–false sequence on KIS.LIGHT digital input

1 corresponds to a good item while the same sequence on KIS.LIGHT digital
input 2 signifies a failed one.What can you say about FPY?What is the expected
value of FPY?

5.4 Overall equipment efficiency of the virtual production system
Exercise requirements: The exercise requires access to one KIS.LIGHT and com-
pletion of Exc. 5.3.

1. Implement the p chart for the quality control system;
2. Select the production system available time tA, and use Table5.13 to calculate

the overall planned break time tB within tA.
3. Calculate the planned production time tP .
4. Select a uniform processing period for all KPIs, e.g., one hour, implemented in

this exercise.
5. Implement KPIs calculating the sum of durations corresponding to all individual

states given in Table5.13.
6. Visualize the KPI results obtained in the preceding point using the KPI Pie Chart

with the SUM aggregation method.
7. Implement KPIs calculating the occurrence number of individual downtime

states, i.e., equipment breakdown, setup and adjustment, minor breakdowns.

186 5 Mastering System Monitoring and Control

8. Visualize the KPI results obtained in the preceding point using the KPI Single
Period Chart with the SUM aggregation method.

9. Implement theKPI calculating the availability of the system (5.15), and visualize
the obtained results using the KPI Pie Chart with the SUM aggregation method.

10. Implement two KPIs calculating the number of defective nd and defect-free ng
items.

11. Visualize the KPI results obtained in the preceding point using the KPI Pie Chart
with the SUM aggregation method.

12. Implement the KPI calculating the total number of manufacture items nP and
visualize the obtained results using KPI Aggregated Chart with the SUM aggre-
gation method.

13. Analyse the results obtained in the preceding step and determine an ideal (almost
impossible to achieve) manufacturing time of a single time ti .

14. Implement two KPIs calculating an ideal manufacturing time of nP items and
the actual run time tR .

15. Visualize the KPI results obtained in the preceding point using the KPI Pie Chart
with the SUM aggregation method.

16. Implement the KPI calculating the overall equipment efficiency (5.18) and visu-
alize the obtained results using the KPI Single Period Chart.

5.6 Concluding Remarks

The main objective of this chapter was to utilize the methods and tools described in
the preceding parts for designing a practical set of process monitoring and control
schemes. All of them are relatively easy to implement and enable intuitive control of
the monitored system. The chapter opened with a transportation system that operates
on a set of routes. First, it was shown how to communicate the desired transportation
actions between KIS.MANAGER and transporter operators. The second objective
was to develop suitable measures for assessing the performance of the transportation
system. For that purpose, the concept of an ideal rout time was introduced, which
forms the basis for the performance cost function. Thus, with appropriate control of
the transportation system, one can optimize this function. Additionally, the proposed
function is very easy to interpret as its value for the optimal control is equal to 1,
which can be perceived as 100% performance. The proposed approach also allows
determining the availability of the transportation system, which can be used as an
additional measure for performance improvements. The second process which was
introduced in this chapter pertains to a quality control system, which can be either
manual or automatic. Irrespective of the selected method, it was shown how to deter-
mine a set of suitable statistical measures along with the p chart. Such a quality
control system is capable of making binary quality decisions about the product being
controlled. Thus, to overcome this restriction, a demerit quality control system was
introduced. It allows indicating various defect classes, and hence, instead of control-
ling the rejecting rate, it is proposed to monitor the so-called demerit number. For

References 187

that purpose, the demerit chart was developed, which provides effective measures
for controlling the quality of manufactured products. The last process monitoring
strategy aimed at calculating and visualizing overall equipment efficiency, which
is widely perceived as a key measurement tool for assessing both productivity and
efficiency. In particular, it was shown how to efficiently observe availability, perfor-
mance, and quality of a given manufacturing equipment. Finally, the chapter was
summarized with a set of training exercises, which can be considered the master
level test concerning KIS.ME-oriented skills.

References

1. L.A. Jones, W.H. Woodall, M.D. Conerly, Exact properties of demerit control charts. J. Qual.
Tech. 31(2), 207–216 (1999)

2. D.C. Montgomery, Introduction to Statistical Quality Control (Wiley, London, 2020)
3. R.C. Hansen, Overall Equipment Effectiveness: A Powerful Production/Maintenance Tool for

Increased Profits (Industrial Press Inc., New York, 2001)
4. D.H. Stamatis, The OEE Primer: Understanding Overall Equipment Effectiveness, Reliability,

and Maintainability (CRC Press, Boca Raton, 2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 6
Towards Advanced Applications

6.1 Modelling Users and Their Interactions

Unlike automated assembly systems, human operated manufacturing and assembly
ones encounter various unappealing effects associated with human behaviour uncer-
tainty. The objective of this section is to provide two examples pertaining tomodeling
human users and their interactions [1] with the fuzzy logic approach [2–4]. The fuzzy
logic paradigm seems to be a natural modelling tool for such a task as its origins stem
from human inference behaviour. Indeed, fuzzy logic has been used for modelling
human reliability in the process industry [5–7] as well as human error analysis [8].
There are also works utilising fuzzy logic for human factor modelling in preventive
maintenance actions [9] and estimating a context-specific human error rate [10].

6.1.1 Assembly Process

Let us proceed to the first case, i.e., modelling human behaviour in the assembly
process with fuzzy logic. For that purpose a pair of KIS.Devices is employed, i.e.,
KIS.BOX and KIS.LIGHT. For the purpose of illustration, let us consider a sample
manual assembly process, which involves two phases [11] (see Fig. 6.1):

1. battery cell mounting,
2. cell-controller linking.

A general overview of the manual assembly station with the KIS.ME infrastructure
is presented in Fig. 6.2. Let us recall that KIS.LIGHT possesses two digital inputs,
which can be connected with two photoelectric sensors (see Sect. 3.1 for an illustra-
tive example). Let us imagine that there are to transportation means, e.g., conveyor
belts, which provide battery cells and cell controllers. Table6.1 presents all possible
situations related to this. Using KIS.MANAGER Rule engine (cf. Sect. 2.10), one
can implement rules governing such behaviour of the KIS.LIGHT operational LED

© The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2_6

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33623-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-33623-2_6

190 6 Towards Advanced Applications

Fig. 6.1 Manual battery assembly

Fig. 6.2 General overview of the manual assembly station with the KIS.ME infrastructure

depending on its digital inputs. As a result, if its color is red, then there are no compo-
nents. If one of them is available, then the color is green. Finally, if both of them are
available, then the color is blue and it alarms the worker that the assembly process
can be started. Thus, a necessary condition for mounting the battery is that all compo-
nents be available. Let us proceed to describe all possible working states, which are
listed in Table6.2. Similarly as in the KIS.LIGHT case, the transition between States
1–5 can be realized using Rule engine.Moreover, as a transition trigger, one can use a
KIS.BOX Button 1 pressing action. This action ends the deployment of KIS.Devices
to the above assembly station. Note that the structure presented in Fig. 6.2 is very
general, and hence it can be tailored to a wide range of assembly tasks. Having the
KIS.Device infrastructure, it is possible to monitor the performance of the human
operated assembly system using visualization, SPC and OEE strategies, described in

6.1 Modelling Users and Their Interactions 191

Table 6.1 KIS.LIGHT states

KL operational LED color KL digital input 1 KL digital input 2

Red 0 0

Green 1 0

Green 0 1

Blue 1 1

Table 6.2 KIS.BOX states

State KB Button 1
operational LED

KB Button 2
operational LED

Action

1 Blue Blue Can start

2 Red Blue Cell mounting

3 Green Blue Cell mounting
completed

4 Green Red Cell-controller linking

5 Green Green Mounting completed

Chaps. 4–5. This is, however, beyond the scope of this section. Indeed, the problem
is to obtain a time-driven model of assembly operations, which will include informa-
tion about human experience and performance related with the working time within
the shift.

For that purpose, let us recall that the time evolution of all states can be easily
measured within KIS.MANAGER using the Data trend chart widget (cf. Sect. 2.7),
which allows real-time analysis of operator performance. The historical data can
easily be saved to a CSV file, and hence it can be further processed in external
software. Thus, the objective is to model human behaviour taking into account the
following issues:

• varying human experience and performance,
• a variety of batteries to be mounted.

Thus, the crucial problem is to model the realization times of States 2 and 4 in
Table6.2. For that purpose, two general models are introduced:

cm = fm(nc,Cc,mp, ex , ts), (6.1)

cl = fl(nc, ex , ts), (6.2)

where

• cm is the cell mounting time;
• cl signifies the controller linking time;
• f·(·) is the model structure;
• ex represents the experience of an operator, e.g., in the range between 0 and 10;

192 6 Towards Advanced Applications

Table 6.3 Fuzzy premise variables

Variable Description Intervals

ex Advanced 6–10

Intermediate 3–7

Beginner 0–4

ts Long 5–8

Medium 3–6

Short 0–4

• ts is the working time within the shift, e.g., from 0 to 8h;
• nc stands for the number of cells to be mounted inside the battery pack;
• mp is the mass of the battery pack.

Having all necessary ingredients, it is possible to provide the structure of (6.1)–
(6.2). For that purpose, it is proposed to use the Takagi–Sugeno (TS) fuzzy logic
approach [12, 13]. TS models are widely used for various modelling tasks (see [13]
and the references therein). Their attractiveness is especially important in the case
considered since there are two linguistic variables, presented in Table 6.3. They can
be directly obtained, and hence they can form the so-called premise variables [13] for
the TS counterparts of (6.1)–(6.2). According to the aboveKIS.Device infrastructure,
each worker is associated with KIS.BOX, and hence its experience ex can be directly
obtained. As can be observed in Table6.3, fuzzy logic allows smooth transitions
between the groups. Indeed, with a degree of membership [13], a worker can be in
one group. Similarly, the worker can be in a different groupwith another membership
degree. The same feature pertains to the working time within the shift.

Under these preliminaries, the TS model of (6.1) is as follows:

IF ts ∈ Ts, j and ex ∈ Ex,i , THEN

cm = pi, j1,mnc + pi, j2,mmp + pi, j3,mCc, i, j = 1, . . . , 3, (6.3)

where p·· are the model parameters which have to be determined while Ex, j and
Ts,i are fuzzy sets associated with Table 6.3. Each set can be shaped with three
membership functions, which can be, e.g., of the Gaussian form:

Gi (ex ,mx,i , sx,i) = 1
√
2πsx,i

e
− (ex−mx,i)

2

2sx,i , i = 1, . . . , 3, (6.4)

G j (ts,ms, j , ss, j) = 1
√
2πss, j

e
− (ts−ms, j)

2

2ss, j , j = 1, . . . , 3, (6.5)

where mx , ms are the centres of Gaussian functions while sx and ss define their
dispersion. Having the membership functions, let us define the normalized rule firing
strength:

6.1 Modelling Users and Their Interactions 193

μi, j = Gi (ex ,mx,i , sx,i)G j (ts,ms, j , ss, j)

Gt
, i, j = 1, . . . , 3, (6.6)

where

Gt =
3∑

i=1

3∑

j=1

Gi (ex ,mx,i , sx,i)G j (ts,ms, j , ss, j). (6.7)

Finally, the model (6.3) can be transformed into

cm =
3∑

i=1

3∑

j=1

μi, j

(
pi, j1,mnc + pi, j2,mmp + pi, j3,mCc

)
. (6.8)

As a result, the TS model can be expressed in the following form:

cm =
3∑

i=1

3∑

j=1

μi, j r
T
m pi, jm , (6.9)

where rm = [nc,mp,Cc]T and pi, jm = [pi, j1,m, pi, j2,m, pi, j3,m]T are the regressor and
parameter vectors, respectively. The final step boils down transforming (6.9) to the
regressor form:

cm = r Tm pm, (6.10)

where

• rm = [μ1,1r Tm , μ1,2r Tm , . . . , μ2,2r Tm]T ,
• pm = [(p1,1m)T , (p1,2m)T , . . . , (p3,3m)T]T .
Using a similar line of reasoning, the TS model (6.2) can be derived:

cl = r Tl pl, (6.11)

where

• rl = [μ1,1r Tl , μ1,2r
1,2
l)T , . . . , μ3,3r Tl]T ,

• pl = [(p1,1l)T , (p1,2l)T , . . . , (p3,3l)T]T .
with rl = nc.

One important feature related to the models (6.10)–(6.11) is that they are lin-
ear with respect to pm and pl . This appealing feature makes it possible to use the
celebrated least-square algorithm [12, 13] for estimating these parameters.

The objective of the remaining part of this section is to provide a concise outline
of the general algorithm for designing (6.10)–(6.11):

194 6 Towards Advanced Applications

KIS.BOX assignment: assign workers with different experience (see Table6.3) to
different KIS.BOXes.
Production plan: determine a strategy for gathering representative and possibly
large data sets concerningworkerswith different experience that operate according
to the battery production plan.
Data gathering: perform the data gathering procedure:

• obtain the data from the Data trend chart;
• synchronize the obtained data with the production plan;
• based on the KIS.BOX assignment, extend the data set with worker experience.

Model design: use the recursive least square algorithm to determine (6.10)–(6.11).

•> Highlights

The model (6.10)–(6.11) may have several prospective applications. Having a man-
ufacturing plan corresponding to the required number of batteries as well as group
of workers performing within the shifts, one can use (6.10)–(6.11) to

1. schedule production and estimate its feasibility;
2. schedule the work of individual workers, i.e., the frequency of delivering compo-

nents;
3. make the production process transparent, and hence increase various KPIs, e.g.,

OEE;
4. use it as a digital twin of the worker, which can be employed for their training

and continuous skill improvements.

6.2 Transportation Process

The objective of this section is to present an approach for modelling forklift oper-
ator performance within a warehouse, which has been recently developed by the
authors [1, 14]. The proposed framework is designed for a fleet of cooperating fork-
lifts working within a high storage warehouse. A sample part of such a system is
presented in Figs. 6.3–6.4. As can be observed, KIS.Devices are used as commu-
nication tools. Thus, each forklift is equipped with KIS.BOX while KIS.LIGHTs
are installed on each transfer station. The transfer station is defined as a place for
storing an item (product, materials, etc.), which has been delivered to it via different
transportation means, e.g., automated guided vehicles [15, 16].

Let us start with stating that an item associated with the k-th transportation event
is identified by

L(k) = {s(k), t (k), d(k),m(k), q(k)}, (6.12)

6.2 Transportation Process 195

Fig. 6.3 Sample part of the warehouse shopfloor (top view)

Fig. 6.4 Sample part of the warehouse shopfloor (side view)

where

• s(k) stands for the storage place identifier in a warehouse;
• t (k) is the transfer station identification number;
• d(k) is the distance (in meters) between the places t (k) and s(k);
• m(k) signifies the item mass (in kg);
• q(k) denotes the item volume (in m3).

The objective of the remaining part of this chapter is to provide a concise procedure
for designing a forklift driver performance model using KIS.ME. Let P denote the
set of all require transportation events, which is defined as follows:

P = {L(0),L(1), . . . ,L(nE)}, (6.13)

where nE signifies the number of transportation events.

196 6 Towards Advanced Applications

•> Realization constraints

For the sake of simplicity, the following is assumed:

• The transfer stations are situated close to the entrance of each aisle (see Fig. 6.3).
• Each forklift is operating in a single aisle.
• An item designated to a given aisle can be delivered to its direct or closest neigh-
boring transfer stations (see the illustrative example given in Fig. 6.3).

• Each KIS.LIGHT operational LED illuminates in a different color, and hence it
uniquely identifies the transfer station, i.e., the transfer station identifier t (k) is
equal to the numerical value of its color (see Table 2.2).

• KIS.LIGHT digital inputs uniquely define the designated aisle of an item (see
Table6.4), which can be in front of it or on the left or right hand side. It is assumed
that the states of digital inputs are set by the transportation means which delivers
an item to the transportation station. Note also that if an item is collected by a
forklift, then the digital inputs are set to the “None” state (see Table6.4), which
signifies the fact that the transfer station is empty.

• it is assumed that there exists a transportation system which cooperates with
KIS.ME and delivers items to the appropriate transfer stations;

• the availability of a forklift is signified by the facts that of the both KIS.BOX
Button 1 and 2 the operational LED colors are black, i.e., they do not illuminate.

• The item can be released at a transfer station iff it is empty.

Thus, transportation from the transfer stations to the storage places is realized as
follows:

Step 0: Set k = 1;
Step 1: The k-th item is delivered to t (k), which is identified by L(k).
Step 2: Using the t (k) transfer station’s KIS.LIGHT operational LED color (numer-

ical value t (k)) and digital inputs states (Table6.4), KIS.MANGER deter-
mines the designated aisle, i.e., a forklift and its associated KIS.BOX.

Step 3: If of the both KIS.BOX Button 1 and Button 2 the operational LED colors
are black, then their color is changed to the one with the numerical value
equal to t (k) (blue in Fig. 6.3).

Step 4: The forklift operator presses KIS.BOX Button 1 and its operational LED
starts lighting in red. The operator starts the L(k) transportation event by
collecting the k-th item and going to the storage place s(k).

Table 6.4 Aisle assignment to the transfer station

Aisle KIS.LIGHT digital input 1 KIS.LIGHT digital input 2

In front 1 1

Left hand side 1 0

Right hand side 0 1

None 0 0

6.2 Transportation Process 197

Step 5: The forklift operator arrives at s(k), pushes KIS.BOX Button 1 again and
then its operational LED changes its color to black.

Step 6: The forklift operator presses KIS.BOX Button 2 and its operational LED
starts lighting in red. The operator releases the item at s(k) and moves to the
beginning of the aisle.

Step 7: The operator arrives at the beginning of the aisle, presses KIS.BOX Button
2 and its operation LED changes its color to black.

Step 8: If k < nE , then set k = k + 1, else STOP.

Note that if the condition of Step 3 is not satisfied, then KIS.MANGER Rule engine
waits until it is feasible. Moreover, the black and red colors are used for the task iden-
tification purpose, and hence they cannot be used for the identification of the transfer
stations. Finally, the objective of this data acquisition is to collect measurements
associated with

• Steps 4–5: the duration f (k)m in which the operational LED color of the i-th
forklift KIS.BOX Button 1 is red;

• Steps 6–7: the duration b(k)m in which the operational LED color of the i-th
forklift KIS.BOX Button 2 is red.

As in the previous section, the data concerning the performance of the above system
can be gathered using the Data trend chart. These data include a timestamp which
clearly identifies the working time within the shift. Subsequently, the obtained data
can be merged with the detailed description of all items (6.13) as well as operator
experience, which is associated with the KIS.BOX being used. As a result, k =
0, . . . , nE Datapoints are obtained, which can be used for designing a model of the
forklift operator’s performance:

L f (k) = {t (k), s(k), d(k),m(k), q(k), f (k)m, b(k)m, ex (k), ts(k)}, (6.14)

where ex (k) and ts(k) are respectively experience and working time within the shift
of the forklift operator transporting the k-th item.

Similarly as in the preceding section, two TSmodels will be developed. The fuzzy
model is divided into two sub-models:

f = f f (d,m, q, ex , ts), (6.15)

b = fb(d,m, q, ex , ts). (6.16)

Finally, f f (·) and fb(·) signify a given model structure used for calculating either
f (k) or b(k) for the k-th item. Owing to safety purposes, the maximum velocity limit
can be imposed, e.g., at the level of v f = 5 km/h = 1.39m/s:

f ≥ 1

v f
d, (6.17)

198 6 Towards Advanced Applications

which is implied by the fact that distance = time × veloci ty. The same constraint
is imposed on b, i.e., f ≥ 1

v f
d. It is also evident that the mass m and volume q of an

item have a direct impact on f .
Similarly as in the preceding section, two fuzzy premise variables are introduced,

which are detailed in Table6.3. Under these preliminaries, the TS model of (6.15) is

IF ts ∈ Ts, j and ex ∈ Ex,i , THEN

f = pi, j1, f d + pi, j2, f m + pi, j3, f q, i, j = 1, . . . , 3, (6.18)

while (6.16) obeys

IF ts ∈ Ts, j and ex ∈ Ex,i , THEN

b = pi, j1,bd + pi, j2,bm + pi, j3,bq, i, j = 1, . . . , 3, (6.19)

where p·· are the model parameters which have to be determined while Ex, j and
Ts,i are fuzzy sets associated with Table6.3. Using the rule firing strength (6.6), the
models (6.18)–(6.19) can be written as follows:

f =
3∑

i=1

3∑

j=1

μi, j

(
pi, j1, f d + pi, j2, f m + pi, j3, f q

)
, (6.20)

b =
3∑

i=1

3∑

j=1

μi, j

(
pi, j1,bd + pi, j2,bm + pi, j3,bq

)
. (6.21)

The final set boils down to transforming (6.20)–(6.21) to the regressor form:

f = r Tf p f , (6.22)

where

• r f = [μ1,1r Tf , μ1,2r Tf , . . . , μ2,2r Tf]T ,
• p f = [(p1,1f)T , (p1,2f)T , . . . , (p3,3m)T]T ,
and r f = [d,m, q]T . The model (6.21) can be formulated in a similar way:

b = r Tf pb, (6.23)

where

• r f = [μ1,1r Tf , μ1,2r Tf , . . . , μ2,2r Tf]T ,
• pb = [(p1,1b)T , (p1,2b)T , . . . , (p3,3b)T]T .
The objective of the remaining part of this section is to provide a concise outline of
the general algorithm for designing (6.22)–(6.23):

6.3 Integrating Workers Within a Semi-automatic Assembly System 199

KIS.BOX assignment: Assign forklifts operators with different experience (see
Table6.3) to different KIS.BOXes.
Transportation plan: Obtain the transportation plan (6.13) consisting of nE trans-
portation events.
Data gathering: Perform the data gathering procedure according to the above 8-step
strategy:

• obtain the data from the Data trend chart;
• synchronize the obtained data with the transportation plan;
• basedon theKIS.BOXassignment, extend the data setwith the forklift operator’s
experience.

Model design: Use the recursive least square algorithm to determine (6.22)–(6.23).

•> Highlights

The model (6.22)–(6.23) may have several crucial applications. Having a transporta-
tion plan (6.13), one can use (6.22)–(6.23) to

1. schedule transportation of items to the transfer stations and estimate its feasibility;
2. schedule the work of individual forklift operators, which will minimize a possible

bottle neck effect at the transfer stations;
3. make the transportation process transparent, and hence increase various KPIs like

the ones proposed in Sect. 5.1;
4. use it as a digital twin of the forklift operators, which can be employed for their

training and permanent skill improvement.

6.3 Integrating Workers Within a Semi-automatic
Assembly System

A sample general semi-automatic assembly scheme is presented in Fig. 6.2. Indeed,
it may be surrounded by conveyor belts or other transportation means that provide
suitable components for the assembly process. Let us begin with recalling the fact
that the worker can start mounting the next battery iff the previous one is completed.
Let as also recall (see Sect. 6.1.1) that the completion time is the sum of

1. battery cell mounting time cm ;
2. cell-controller linking time cl .

Let us define the following variables (cf. Table6.2 and Fig. 6.2):

• x(k): start time of mounting the k-th battery,
• um(k): cell delivery time for the k-th battery,
• uc(k): controller delivery time for the k-th battery.

200 6 Towards Advanced Applications

This nomenclature allows formulating a simple formal description pertaining to the
evolution of the start time of mounting consecutive batteries:

x(k + 1) = max (x(k) + cm(k) + cl(k), um(k + 1), uc(k + 1)) , (6.24)

where cm(k), cl(k) are respectively cm and cl for the k-th battery. This means that the
maximum of the times included in (6.24), i.e., in max(·), determines the start time
of mounting the k + 1st battery.

Checking manufacturing feasibility

Without any loss of generality, let us assume that the starting assembly time is
x(0) = 0, which may correspond to 8.00 h. Moreover, let the battery cells and the
controller be available at that time, i.e., uc(0) = 0 and ul(0) = 0.

There is a set of 10 different batteries to be mounted. Having the worker experi-
ence, as well as required parameters of the batteries described along with (6.1)–(6.2)
and the performance model (6.10)–(6.11), one can calculate the expected battery
mounting times cm(k) + cl(k), which are given in Table6.5. The cells and the con-
troller are delivered to the assembly station every 19 and 20min, respectively. The
problem is to check if there is a chance to mount all 10 batteries in 200min. For that
purpose, one can use (6.24). As an example let us employ it for calculating x(1), i.e.,
the start time of mounting battery number 1 (Table 6.6):

x(1) = max(x(0) + cm(0) + cl(0), uc(1), ul(1)) = max(23, 19, 20) = 23. (6.25)

As a result, the mounting start time for the last battery is x(9) = 184 while
its expected assembly time is 20min, and hence all batteries will be completed in
204min.

Table 6.5 Expected battery
mounting times

k-th Battery cm(k) + cl (k)

0 23

1 19

3 16

4 20

5 15

6 27

7 12

8 20

9 24

6.3 Integrating Workers Within a Semi-automatic Assembly System 201

Table 6.6 Expected battery mounting times

k-th Battery cm(k) + cl(k) x(k) uc(k) ul (k)

0 23 0 0 0

1 19 23 19 20

2 16 42 38 40

3 20 60 57 60

4 15 80 76 80

5 27 100 95 100

6 12 127 114 120

7 20 140 133 140

8 24 160 152 160

9 20 184 171 180

•> Towards flexible manufacturing

A direct calculation of the total battery assembly time,

Ttotal =
9∑

k=0

(cm(k) + cl(k)) = 196 [min], (6.26)

clearly indicates that it is possible to perform the above task in 200min.This, however,
requires a different strategy for calculating component delivery times um(k) and
uc(k). Indeed, there are different types of batteries with different expected assembly
times (cf. Table6.5). Thus, because the employed delivery rate is constant, it prevents
attaining optimal assembly performance.

To settle this important issue, it is proposed to extend the scheme presented in
Fig. 6.2 with an external device and scheduling software. As a result, the scheme
shown in Fig. 6.5 is obtained. The purpose of the external software is to calculate
optimal component delivery times um(k) and uc(k), which will make it possible
to have the components just on time. The software should also take into account
inevitable delays which can be caused by the worker. Additionally, such delays
should be compensated for as much as possible. For further details the reader is
referred to the authors’ publications concerning such developments [11, 16, 17].
Indeed, using the fault-tolerance concept, these approaches can alsominimize various
unappealing phenomena like, e.g., delays. Additionally, the control process involves
a cost function, which can take into account a wide range of economic aspects [14].

As can be seen in Fig. 6.5, the hardware is communicated with KIS.BOX through
its digital outputs, which provide information about the current assembly status.
Finally, the scheduling sequence is employed to control the item delivery process.

202 6 Towards Advanced Applications

Fig. 6.5 General overview of the manual assembly station with the KIS.ME infrastructure as well
as external hardware and software

6.4 Scheduling Transportation Actions

In Chap. 3 and Sect. 5.1, a set of logistic and transportation solutions were proposed
along with measures that can be used for assessing their performance. However,
in all cases the decisions concerning the required transportation actions were made
either by the transporter operator or the KIS.MANAGER operator. In this section, the
warehouse transportation system proposed in Sect. 6.2 is extended with a scheduling
framework, which makes it possible to deliver the items (cf. Fig. 6.3) just on time.
Similarly as in Sect. 6.3, let us introduce the following variables concerning the i-th
forklift:

• xi (k): the start time of collecting the k-th item from the T (k) transfer station,
• u(k): the delivery time of the k-th item to the T (k) transfer station,
• vi (k): a decision variable associating the k-th item with the i-th forklift.

The decision variable may have two states:

vi (k) = 1: the k-th item is transported by the i-th forklift,
vi (k) = 0: the k-th item is not transported by the i-th forklift.

6.4 Scheduling Transportation Actions 203

Fig. 6.6 General overview
of the transportation system
with the KIS.ME
infrastructure as well as the
external hardware and
software

A scheme of the proposed general transportation framework is presented in Fig. 6.6.
From theKIS.MANAGERviewpoint, the proposed schemeextends the onediscussed
in Sect. 6.2 by introducing rules of the following form: If a forklift performed trans-
portation of the k-th item, then the false–true–false sequence is sent to KIS.LIGHT
digital output 1 associated with the T (k) transfer station. This slight modification
allows gathering measurements pertaining to the transportation time of the k-th item.
Indeed, this process starts from the “None” state (see Table6.4) of the KIS.LIGHT
associated with the T (k) transfer station and ends with the false–true–false sequence
on its digital output 1.

Under the above preliminaries, the time-driven model of the i-th forklift is given
by

xi (k + 1) = max
(
xi (k) + fd,i (x) + bd,i (k), u(k + 1)vi (k + 1)

)
, (6.27)

204 6 Towards Advanced Applications

where

fd,i (k) = fi (k)vi (k), (6.28)

bd,i (k) = bi (k)vi (k), (6.29)

while f (k) and b(k) can be calculated using the model (6.22)–(6.23) developed in
Sect. 6.2. This means that, depending on the decision vi (k), the variables fd,i (k) and
bd,i (k) can be equal to either 0 or fi (k) and bi (k), respectively.

Two forklifts example

Let us consider two forklifts and one transfer station located in front of the aisle
corresponding to the second forklift. Figure6.3 shows the second forklift and the
transfer station with the KIS.LIGHT operational LED lighting in magenta. The first
forklift operates in front of the transfer station with the KIS.LIGHT operational
LED lighting in yellow. Let us imagine that the item is delivered to the transfer
station (magenta) and it has to be transported by the first forklift. This means that
the corresponding KIS.LIGHT digital input is set to the “Left hand side” state (cf.
Table6.4). Based on such information, the external software should set the decision
variables in the following way: v1(0) = 1 and v2(0) = 0, which clearly indicates
that the first forklift has to perform transportation of the 0th item. Let us also assume
that x1(0) = 0 and x2(0) = 0, which may correspond to 8.00, i.e., the beginning of
the shift. Moreover, let f1(0) = 3 and b1(0) = 2 minutes. Thus, Eqs. (6.27)–(6.29)
imply that

x1(1) = max(0 + 3 + 2, u(1)v1(k)) = max(5, u(1)v1(1)), (6.30)

x2(1) = max(0, u(1)v2(1)) = u(1)v2(1). (6.31)

From the above results, it is evident that, if the subsequent, i.e., k = 1, item should be
transported by the first forklift (v1(1) = 1 and v2(1) = 0), then u(1) ≤ 5 guarantees
just-on-time performance. Contrarily, if the subsequent, i.e., k = 1, item should be
transported by the first forklift (v1(1) = 0 and v2(1) = 1), then u(1) = 0 guarantees
just-on-time performance.

The above preliminary results formed the basis for formulating the scheduling
strategies proposed by the authors [1, 11, 14, 15, 17], which can be efficiently used
for various kinds of problems. The crucial element of these strategies is the cost
function:

J =
nE−1∑

k=0

u(k), (6.32)

6.4 Scheduling Transportation Actions 205

which has to be maximized for all nE transportation events (6.13) taking into
account (6.27) and the related constraints [1, 11, 14, 15, 17]. The process of maxi-
mizing (6.32) can be interpreted as finding the just-on-time item delivery times u(k)
for the forklift transportation system.

6.4.1 Health-aware and Fault-Tolerant Transportation
Scheduling

The scheduling software presented in Fig. 6.6 can be extended with additional ele-
ments, which can settle the following problems:

• The proposed transportation system is a time-driven one, i.e., all modelled and
optimized variables represent certain operation times. From the classical system
control viewpoint [12, 18], the fault is defined as an unpermitted deviation of at
least one characterised property of the system compared to its nominal value. Thus,
delays within transportation system can be interpreted as faults [11, 14–17]. This
justifies the need for implementing fault-tolerance in the transportation system.

• The application of indoor-operating forklifts makes it necessary to use various
kinds of batteries or accumulators. Thus, while scheduling the work of forklifts
one has to take into account a compulsory recharging process as well as the state
of charge (SOC) and the state of health (SOH) of the batteries.

Before settling the above issues, it is necessary to provide a list of crucial constraints
which influence the performance of the transportation system [14]:

Transfer constraint: For the same transfer station, it is possible to deliver a new
item iff the previous one has been removed. Thus, for all l and k,

IF l > k and T (k) = T (l) THEN u(k) ≤ u(l) + t (j), j < nE , (6.33)

where t (j) > 0 is a unknown time between delivering the k-th and l-th items to
the T (k) = T (l) transfer station.
Scheduling constraint: This constraint simply states that all nE starting times of
transportation events should be bounded:

u(k) ≤ uE , (6.34)

where uE > 0 ismaximum scheduled time for starting all nE transportation events.
Energy constraint: It is assumed that each forklift is equippedwith the batteryman-
agement system (BMS), which provides information about the maximum opera-
tional time of the i-th forklift τi (k) for the k-th transportation system.

Let us start with analysing potential faulty situations, whichwill have direct influence
on the feasibility of constraints. The delay in taking the k-th item will cause t (j) to
be extended, i.e., the delivery of the subsequent l-th item will be delayed. Thus, with

206 6 Towards Advanced Applications

appropriately large t (j) > 0, the constraint (6.33) is always feasible. Contrarily, a
faulty situationmay cause (6.34) to be infeasible. Thus, fault-tolerance canbe attained
by introducing a relaxation variable ū ≥ 0, which should be as small as possible.
Additionally, if the faulty situation makes the measured transportation times larger
than the nominal values, then they should replace them in the model (6.27) of the i-th
forklift, which suffers from the delay. Thus, to achieve fault-tolerance, theminimized
cost function should be given as follows:

J = −p1

nE−1∑

k=0

u(k) + p2ū, (6.35)

where p1 ≥ 0 and p2 ≥ 0, p1 + p2 = 1 are weighting parameters, which can be used
for attaining a balance between fault-tolerance and performance.

Let us proceed to health-aware analysis. For simplicity, it is assumed that each
forklift is operating in a single aisle. However, more flexibility can be attained by
removing this constraint. Thus, one can imagine that the tasks with shorter (smaller
fi (k) + bi (k)) and less energy-demanding transportation tasks are realized by fork-
liftswith smaller τi (k). This can be formally expressed by the following cost function:

JH = −
nE−1∑

k=0

nF∑

i=1

(τi (k) − bi (k) − ci (k)), (6.36)

where nF is the number of forklifts. Finally, the minimized cost function takes the
form

J = −p1

nE−1∑

k=0

u(k) + p2ū + p3 JH , (6.37)

where p3 ≥ 0, p1 + p2 + p3 = 1.

•> Economy oriented cost function

The cost function (6.37) is very general and can be extended with additional com-
ponents corresponding to the operational cost of the transportation system. This is
especially important in the case of a fleet consisting of different forklifts. Thus, each
forklift may involve different operational costs.

6.5 Training Exercise: Work Scheduling 207

6.5 Training Exercise: Work Scheduling

6.1 Scheduling tasks of three workers
Exercise requirements: The exercise requires access to one KIS.LIGHT, three
KIS.BOXes and a photoelectric senor with an M12 8 pin interface (see Sect. 3.1).

1. There are three workers that can perform the same kind of tasks using the com-
ponent sets provided by the conveyor belt (see Fig. 6.7).

2. The conveyor belt transfers a component set to the beginning of the working area
and then stops.

3. Use the photoelectric sensor to detect the arrival of the component set and feed
this information to KIS.LIGHT digital input 1.

4. Each worker operates according to the states presented in Table6.7.
5. Each worker has its own individual KIS.BOX. Implement the state-space model

(6.7) for each KIS.BOX (see Sect. 2.10). As a trigger use an action associated
with pressing KIS.BOX Button.

6. Eachworker can be either present or absent at theworkplace. Implement the state-
space model (Table 6.8) for each KIS.BOX. As a trigger use an action associated
with pressing KIS.BOX Button 2.

7. Depending on the KIS.LIGH digital outputs’ state (see Table6.9), the conveyor
belt can move a component set to one of the three workplaces.

8. using Rule engine Implement the system logic in such a way that new component
sets are delivered to the workers being present and in an idle state.

Fig. 6.7 Scheduling tasks of three workers

Table 6.7 Worker’s
KIS.BOX Button 1
operational LED states

State KIS.BOX Button 1
operational LED color

Idle Green

Mounting Red

Packing Yellow

208 6 Towards Advanced Applications

Table 6.8 Worker’s KIS.BOX Button 2 operational LED states

State KIS.BOX Button 1 operational LED color

Present Green

Absent Red

Table 6.9 KIS.LIGHT transportation actions

Worker KL digital output 1 KL digital output 2

1 0 1

2 1 0

3 1 1

6.6 Concluding Remarks

The main objective of this chapter was to provide a selected list of motivating exam-
ples pertaining to potential applications ofKIS.ME.Although the presented instances
concern a dedicated application study, they can be relatively easily adapted to dif-
ferent applications frequently encountered in various industries. In particular, it was
shown how to model human operator performance both in assembly and transporta-
tion tasks. The resultingmodel is particularly important for various kinds of planning
and scheduling. Indeed, such models make it possible to obtain transparency and
predictability of the controlled and monitored system. Additionally, as most indoor
transportation means employ various kinds of accumulators, it is profitable to take
into account their health. Thus, it was shown how to include such information in
the scheduling procedure. As a result, the overall accumulator health of the trans-
porter fleet can be balanced. Another important aspect is that the human operated
system may suffer from various kinds of delays. Thus, it was shown how to attain
fault-tolerance which can prevent such a kind of unappealing situations. Finally, the
chapter ended with advanced training exercises, which pertain to work scheduling
of three workers operating a conveyor belt.

References

1. M. Witczak, B. Lipiec, M. Mrugalski, L. Seybold, Z. Banaszak. Fuzzy modelling and robust
fault-tolerant scheduling of cooperating forklifts, in 2020 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE) (IEEE, Glasgow, 2020), pp. 1–10

2. L.A. Zadeh, Fuzzy logic. Computer 21(4), 83–93 (1988)
3. G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic (Prentice Hall, New Jersey, 1995), vol. 4
4. P. Hájek, Metamathematics of Fuzzy Logic (Springer Science & Business Media, Berlin,

2013)
5. Z. Nivolianitou, M. Konstantinidou, A fuzzy modeling application for human reliability anal-

ysis in the process industry, in Human Factors and Reliability Engineering for Safety and
Security in Critical Infrastructures (Springer, Berlin, 2018), pp.109–154

References 209

6. M. Konstandinidou, Z. Nivolianitou, Ch. Kiranoudis, N. Markatos, A fuzzy modeling appli-
cation of CREAM methodology for human reliability analysis. Reliab. Eng. Syst. Saf. 91(6),
706–716 (2006)

7. Q. Zhou, Y.D. Wong, H.S. Loh, K.F. Yuen, A fuzzy and bayesian network CREAM model
for human reliability analysis-the case of tanker shipping. Saf. Sci. 105(6), 149–157 (2018)

8. R. Sujatha, V. Sharmila, P. Hema, M. Amruth Varshinee, A. Prasnath. Some aspects of human
error analysis using fuzzy relations. Int. J. Pure Appl. Math. 117(21), 311–325 (2017)

9. M.A. Segura, S. Hennequin, B. Finel, Human factor modelled by fuzzy logic in preventive
maintenance actions. Int. J. Operat. Res. 27(1–2), 316–340 (2016)

10. G. Suprakash, K. Pramod, Y.R. Gunda, A fuzzy causal relationalmapping and rough set-based
model for context-specific human error rate estimation. Int. J. Occup. Saf. Ergon. 27(1), 63–78
(2021)

11. L. Seybold,M.Witczak, P.Majdzik, R. Stetter, Towards robust predictive fault-tolerant control
for a battery assembly system. Int. J. Appl. Math. Comput. Sci. 25(4), 849–862 (2015)

12. M. Witczak, Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems:
Analytical and Soft Computing approaches (Springer International Publishing, Heidelberg,
Germany, 2014)

13. O. Nelles, Nonlinear System Identification: From Classical Approaches to Neural Networks,
Fuzzy Models, and Gaussian Processes (Springer Nature, Berlin, 2020)

14. M. Witczak, Lo. Seybold, G. Bocewicz, M. Mrugalski, A. Gola, Z. Banaszak. A fuzzy logic
approach to remaining useful life control and scheduling of cooperating forklifts, in 2021
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (IEEE, Luxemburg, 2021),
pp. 1–8

15. M. Witczak, P. Majdzik, R. Stetter, B. Lipiec, A fault-tolerant control strategy for multiple
automated guided vehicles. J. Manuf. Syst. 55(4), 56–68 (2020)

16. P. Majdzik, M. Witczak, B. Lipiec, Z. Banaszak. Integrated fault-tolerant control of assembly
and automated guided vehicle-based transportation layers. Int. J. Comput. Integr.Manuf. 1–18
(2021)

17. P. Majdzik, A. Akielaszek-Witczak, L. Seybold, R. Stetter, B. Mrugalska, A fault-tolerant
approach to the control of a battery assembly system. Control Eng. Pract. 55(10), 139–148
(2016)

18. M. Witczak,Modelling and Estimation Strategies for Fault Diagnosis of Non-linear Systems
(Springer, Berlin, 2007)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 7
KIS.API: Towards External
Communication

7.1 Introduction to KIS.API

KIS.API is defined as a particular instance of REST API [1–3], which is designed
for the purpose of unified and convenient communication with KIS.Devices and the
associated environment operating within KIS.MANAGER.

The crucial components of KIS.API are the resources, which can be defined in
a very broad sense. In fact, anything having a name can be perceived as a resource,
e.g., a user, a workspace, an asset, etc. The crucial information associated with a
resource pertains to the service being realized, i.e., the transfer of data as well as the
associated actions. A general structure of the resource is given in Table7.1 [1].

Let us start with the . As an example, one can consider a KIS.Device, which can
characterized by, e.g.,

• an ID,
• a name,
• a URN,
• associated asset group (workspace) IDs,

while its possible representation can be given in an intuitive JSON [1] form:

{

"id": 10102,

"urn": "urn:rafi:sbox:9c65f93cbed6",

"name": "KIS.BOX 9C65F93CBED6",

"assetGroupIDs": [

9757,

9758

]

}

© The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2_7

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33623-2_7&domain=pdf
https://doi.org/10.1007/978-3-031-33623-2_7

212 7 KIS.API: Towards External Communication

Table 7.1 A typical structure of a resource

Property Description

Representation The way and structure of the data representation, e.g., JSON, XML

Identifier A URL that refers to a specific resource at any time

Metadata The content type, modification time, etc

Control data Any data identifying the status of a resource, e.g., last modification date

Table 7.2 KIS.API actions HTTP verb Action

GET Access a resource in a read-only way

POST Send a new resource

PUT Update a resource

DELETE Delete a resource

Table 7.3 KIS.API response Status code Description

200 Successful response

204 No content returned

400 Bad request structure

404 Unsuccessful response

Now let us proceed to the resource identifier, which provides a unique way to identify
the resource at any time instance. In other words, it should provide a full and unique
path to the resource. Since the REST structure is based on HTTP, a sample path can
look as follows:

https://api.kisme.com/kisapi/v1/assets/assetUrn,

which uniquely identifies a given KIS.Device using its URN. Having a resource
identifier, one can proceed to realize some actions with it. A general set of verbs,
which defines specific actions, is given in Table7.2. Finally, an important standard
that is inherited by REST from HTTP pertains to the status code. The most com-
mon status codes are given in Table7.3. Under the above preliminary information,
one can proceed to the registration and authorization of a new KIS.API user using
KIS.MANGER.

7.1.1 User Registration and Authorization

The primary objective of this part is to define a new KIS.API user along with an
appropriate credentials. The process starts with selecting the Main menu → Portal

7.1 Introduction to KIS.API 213

Fig. 7.1 Defining KIS.API credentials

admin and then pressing the KIS.API icon . Subsequently, a new KIS.API user
can be created with . The process is fully automatic and the only information
required is to provide a user description, i.e., a name. A sample KIS.API credentials
generation process is presented in Fig. 7.1. As a sample, a KIS.API access control
triplex is obtained, which can be summarized as follows:

• the client ID,
• the API key,
• the baseUrl.

Note that baseUrl is simply the base resource identifier detailed in the preceding
section, i.e.,

https://api.kisme.com/kisapi/v1/

The objective of the subsequent sections is to provide a concise introduction to
KIS.API. Thus, to simplify this process, the Postman (https://www.postman.com/)
application is employed. It is a dedicated platform for building and using APIs. In
other words, Postman can be perceived as an HTTP client for testing web services,
which makes it easy to test APIs by providing a simple interface for issuing API
requests and viewing responses. The Postman registration and configuration process
is very intuitive, and hence it is omitted. The subsequent step is to proceed to the
KIS.API documentation (https://docs.kisme.com) and then select Run are Postman
button. As a result, KIS.API collection is loaded into the Postman workspace. The
final step is to provide the above definedKIS.API credentials using . This process is
illustrated in Fig. 7.2. As of that moment, all KIS.API commands can be accessed and
tested using the intuitive Postman graphical user interface. This process boils down to
selecting an appropriate option and then sending a desired request to KIS.API. Thus,
the objective is to provide a concise review of all available KIS.API functionalities.

https://www.postman.com/
https://docs.kisme.com

214 7 KIS.API: Towards External Communication

Fig. 7.2 Postman configuration with KIS.API credentials

7.2 Essential Functionalities

The objective of this section is to provide essential KIS.API functionalities. This
starts from access to assets being simply KIS.Devices, users and asset groups up to
the related Datapoints. Finally, a set of recipes concerning an access to calculated
Datapoints and KPIs is provided.

7.2.1 Obtaining Information About Asset Groups, Assets
and Users

As introduced in Chap. 2, KIS.Devices constitute the core KIS.ME components.
Thus, knowing all of them, along with their membership to particular asset groups
(see Chap. 2), is of paramount importance. Table7.4 presents the list of all available
KIS.API requests concerning assets along with the designated actions. As can be
observed, most requests require additional path variables:

• assetUrn: directly printed on an asset (KIS.Device) and can be retrieved through
request no. 1 from Table7.4 or through KIS.MANAGER;

• assetgroupId: can be retrieved through the request no. 1 in Table7.5.

The response pertaining to the request detailed in Table7.4may contain the following
parameters:

ID: the asset identifier,
URN: the asset URN,
name: the name of the asset,
isOnline: the asset isOnline Datapoint value,
hardware: information about the asset hardware,
software: information about the asset software,
certificate: information about the asset certificate,
network: information about the asset network,
firmwareUpdate: information about the asset firmware updates,

7.2 Essential Functionalities 215

Table 7.4 List of possible requests associated with an asset

No. Verb Path Action

1 GET baseUrl/assets Obtain a list of all assets

2 GET baseUrl/assets/assetUrn Obtain the asset device information

3 PUT baseUrl/assets/assetUrn Update the name of the asset

4 PUT baseUrl/assets/assetUrn/assetgroupId/
assetgroups

Add the asset to an asset group

5 DEL baseUrl/assets/assetUrn/assetgroupId/
assetgroups

Remove the asset from an asset group

Table 7.5 List of possible requests associated with an asset group

No. Verb Path Action

1 GET baseUrl/assetgroups Obtain a list of all asset groups

2 GET baseUrl/assetgroups/assetgroupId Obtain the asset group information

3 PUT baseUrl/assetgroups/assetgroupId Update the asset group information

assetGroupIDs: an array containing numerical values of the asset groups associated
with the asset.

Note thatmost of the above features canbedirectly accessed throughKIS.MANAGER
by selecting Main menu → Assets and then choosing a desired asset. Subsequently,

the information about the asset can be retrieved by pressing (see Fig. 2.16).
Having all the above information, let us proceed to two simple examples of using

the discussed requests.

Obtaining a list of assets

This example concerns a response to the request no. 1 listed in Table7.4. As a result,
the following JSON structure can be obtained:

]

{

"id": 10102,

"urn": "urn:rafi:sbox:9c65f93cbed6",

"name": "KIS.BOX 9C65F93CBED6",

"assetGroupIDs": [

9757,

9758

]

},

{

"id": 10153,

216 7 KIS.API: Towards External Communication

"urn": "urn:rafi:sbox:9c65f93cbeb8",

"name": "KIS.BOX 9C65F93CBEB8",

"assetGroupIDs": [

9757,

9758

]

}

]

As can be observed, the response contains information about two KIS.BOXes, which
are assigned to two asset groups (9757 and 9758).

Removing an asset from the asset group

This example concerns a response to the request no. 5 listed in Table7.4. Let us
consider the first asset (KIS.BOX) given in the preceding example. Its URN is
urn:rafi:sbox:9c65f93cbed6, and it is assigned to two asset groups 9757
and 9758. The objective is to remove it from the asset group 9757, and hence the
assetgroupId parameter should be set to 9757. As a result, the following JSON struc-
ture can be obtained:

{

"message": "The operation is in conflict with the

relationship constraint ’assetsMustBeMemberOfInventory’",

"code": 409

}

which simply means that it is impossible to remove an asset from the list of all
available assets (see Table 2.5 for a comprehensive explanation). Thus, let us change
the assetgroupId parameter to 9758 (the second available asset group). As a result,
the following JSON structure is obtained:

{

"id": 10102,

"urn": "urn:rafi:sbox:9c65f93cbed6",

"name": "KIS.BOX 9C65F93CBED6",

"assetGroupIDs": [

9757

],

"isOnline": false,

"hardware": {

},

"software": {

7.2 Essential Functionalities 217

},

"certificate": {

},

"network": {

},

"firmwareUpdate": {

}

}

As can be observed, the assignment of this asset to the asset group 9758was removed.

Let us proceed to the asset groups for which the available request list is given
in Table7.5. As can be observed, most requests require an additional parameter
assetgroupId, which can be retrieved through the request no. 1 in Table7.5. The
response pertaining to the request detailed in Table7.5 may contain the following
parameters:

ID: the asset group identifier,
assetIDs: an array containing numerical values of asset IDs associated with the
asset group,
name: the name of the asset,
isOnline: the asset isOnline Datapoint value,
description: a detailed description of the asset group,
name: the name of the asset group.

Let us proceed to two simple examples explaining the application of the above
requests.

Obtaining a list of asset groups

This example concerns a response to the request no. 1 listed in Table7.5. As a result,
the following JSON structure can be obtained:

[

{

"id": 9757,

"name": "My Devices",

"assetIds": [

10102,

10153

]

},

{

"id": 9758,

218 7 KIS.API: Towards External Communication

"name": "Workspace 1",

"assetIds": [

10153

]

}

]

As can be observed, the response contains information about two asset groups and
the assets associated with them (IDs: 10102, 10153).

Updating the asset group description

This example concerns a response to the request no. 3 listed in Table7.5. Let us
provide a new description of Workspace 1 (ID 9758) in the JSON form:

{

"name": "Workspace 1",

"description": "Main Workspace"

}

In the case of the Postman application, to provide such a description one should go
to the Body tab of the request and enter the above JSON structure. As a result, the
following JSON structure can be obtained:

{

"id": 9758,

"name": "Workspace 1",

"assetIds": [

10153

],

"description": "Main Workspace"

}

Having access to assets and the associated asset groups, let us proceed to the
user management functionalities, which are listed in Table7.6. As can be observed
in Table7.6, requests no. 2 and 3 require an additional path parameter called
accountNumber. Note that in KIS.MANAGER the user is identified by its name
and email. Thus, at least one of these parameters should be known while realizing
the request no. 1 in Table7.6. Thus, the obtained response can be used to obtain the
associated accountNumber.

7.2 Essential Functionalities 219

Table 7.6 List of possible requests associated with users

No. Verb Path Action

1 GET baseUrl/users Obtain a list of all users

2 GET baseUrl/users/accountNumber Obtain user information

3 DEL baseUrl/users/accountNumber Delete a user

Displaying all users and their accountNumber

This example pertains to realisation of the request no. 1 in Table7.6. As a result, the
following JSON structure can be obtained:

[

{

"name": "Jack Cactus",

"email": "j.cactus@controlintech.pl",

"accountNumber": "3d5997bb-f6ee-4681-8adf-0ce7366e2964"

},

{

"name": "Hans Wurst",

"email": "h.wurst@controlintech.pl",

"accountNumber": "4f4009c2-1a7b-4531-b780-702a19cd62a1"

}

]

The structure contains information about two users and their associated
accountNumber.

Deleting a user

The JSON structure obtained in the preceding example contains information about
two users. The objective of the current example is to delete the user identified:

"accountNumber": "3d5997bb-f6ee-4681-8adf-0ce7366e2964"

For that purpose, the above number has to be provided as a path parameter in the
Postman application.Note that, after sending a request toKIS.API, no JSONstructure
is received (cf. code 204 in Table7.3).

220 7 KIS.API: Towards External Communication

Table 7.7 List of possible requests associated with Datapoints

No. Verb Path Action

1 GET BaseUrl/assets/assetUrn/
datapointDefinitions

Obtain a list of Datapoints

2 GET BaseUrl/assets/assetUrn/
datapointDefinitions/datapointValues

Obtain Datapoint values

7.2.2 Accessing Data Through Datapoints

The objective of this point is to provide a way of accessing the data associated with
Datapoints. For a comprehensive description of Datapoints, the reader is referred
to Sect. 2.7 and Appendix. B. The possible requests associated with Datapoints are
provided in Table7.7. It should be also noted that the above requests require the
following path parameters:

• assetUrn: directly printed on an asset (KIS.Device), can be retrieved through the
request no. 1 from Table7.4 or through KIS.MANAGER;

• datapointDefinition: the Datapoint name, e.g., button1Pressed.

Additionally, request no. 2 in Table7.7 can be executed with the following query
parameters:

• from: an ISO timestamp indicating a lower bound of the required time range;
• to: an ISO timestamp indicating an upper bound of the required time range;
• limit: a maximum number of required Datapoint values.

Note that it is not compulsory to use all of the above-listed query parameters simul-
taneously. For example, the limit parameter can be employed as a standalone
one.

Obtaining a list of Datapoints

The example is concerned with the request no. 1 in Table7.7. As a result of using
it, a full list of Datapoints along with their types is returned. A sample form of such
a couple is given as follows:

{

"name": "button2Pressed",

"datatype": "BOOLEAN"

}

7.2 Essential Functionalities 221

Obtaining five recent Datapoint values

For the purpose of this example, a set of two rules is implemented (see Sect. 2.9 for
more details), i.e.,

1. If the KB Button1 operational LED color is black, then the KB Button 1 opera-
tional LED color is red.

2. If the KB Button 1 operational LED color is red, then the KB operational LED
color is black.

Thus, the purpose of the above rules is to switch the KB Button1 operational LED
color from red to black (no illumination) and vice versa. This means that the result-
ing effect should be the KB Button 1 operational LED blinking in red. However,
to achieve such an effect, the KB Button 1 operational LED color should be initi-
ated using its digital twin (see Sect. 2.6) by setting the above color to either black
or red. Subsequently, the path parameters should be defined, i.e., assetUrn and
datapointDefinition. The latter one is set to button1ColorKpi. Finally,
the query parameter limit is set to five. As a result, a JSON structure is obtained
containing the five recent values of the indicated Datapoint:

[

{

"timestamp": "2022-08-30T11:50:07.478Z",

"value": "2"

},

{

"timestamp": "2022-08-30T11:50:06.478Z",

"value": "5"

},

{

"timestamp": "2022-08-30T11:50:05.524Z",

"value": "2"

},

{

"timestamp": "2022-08-30T11:50:04.712Z",

"value": "5"

},

{

"timestamp": "2022-08-30T11:50:03.649Z",

"value": "2"

}

]

The recorded Datapoint values simply indicate that the KB Button 1 operational
LED changes its color from red (5) to black (2) and vice versa. As can be observed,

222 7 KIS.API: Towards External Communication

the switching process takes more or less one second. However, this time is data
transfer-dependent, and hence its is not uniform.

Obtaining five recent Datapoint values from a given time frame

The objective of this example is to focus on the reader attention to ISO data-time
format, which is given, e.g., by

2022-08-30T14:02:07.478Z

Its construction is obvious: however, it contains characters which are not permitted
in a URL construction, i.e. ‘.’, which should be simply replaced by its equivalent
equal to ‘%3A’, yielding

2022-08-30T14%3A02%3A07.478Z

Thus, by setting the from query parameter according to the above form one can
obtain:

[

{

"timestamp": "2022-08-30T14:02:32.304Z",

"value": "5"

},

{

"timestamp": "2022-08-30T14:02:31.304Z",

"value": "2"

},

{

"timestamp": "2022-08-30T14:02:30.336Z",

"value": "5"

},

{

"timestamp": "2022-08-30T14:02:29.507Z",

"value": "2"

},

{

"timestamp": "2022-08-30T14:02:28.475Z",

"value": "5"

}

]

7.2 Essential Functionalities 223

7.2.3 KPIs and Calculated Datapoints

This section constitutes a continuation of the preceding one. Indeed, CDPs and KPIs
(see Sect. 4.1.2 and Appendices A and B) employ Datapoints as a basis for forming
desired answers pertaining to the system state and performance. The CDP requests
are similar to those for Datapoints (see Table7.7), and they are presented in Table7.8.
It should be also noted that the above requests require the following path parameters:

• assetUrn: directly printed on an asset (KIS.Device), can be retrieved through the
request no. 1 from Table7.4 or through KIS.MANAGER;

• calaculatedDatapointDefinition: CDP name, e.g., kg2lb.

Additionally, the request no. 2 in Table7.8 can be executed with the following query
parameters:

• from: an ISO timestamp indicating a lower bound of the required time range;
• to: an ISO timestamp indicated an upper bound of the required time range;
• limit: a maximum number of required CDP values.

Now, let us proceed to KPI requests available through KIS.API. They are given in
Table7.9, and it is not surprising that they are similar to those presented in Table7.8.
Additionally, they path parameters are given by

• assetUrn: directly printed on an asset (KIS.Device), can be retrieved through
request no. 1 from Table7.4 or through KIS.MANAGER;

• kpiDefinition: the CDP name, e.g., kg2lb.

Unlike Datapoints and CDP, the KPI request no. 2 (see Table7.9) has to be executed
with the following query parameters:

• from: an ISO timestamp indicating a lower bound of the required time range;
• to: an ISO timestamp indicate an upper bound of the required time range.

Table 7.8 List of possible requests associated with CDPs

No. Verb Path Action

1 GET baseUrl/assets/assetUrn/
calculatedDatapointDefinitions

Obtain a list of CDPs

2 GET baseUrl/assets/assetUrn/

calculatedDatapointDefinition/
calculatedDatapointValues

Obtain CDP values

Table 7.9 List of possible requests associated with KPIs

No. Verb Path Action

1 GET baseUrl/assets/assetUrn/kpiDefinitions Obtain a list of KPIs

2 GET baseUrl/assets/assetUrn/kpiDefinition/
kpiValues

Obtain KPI values

224 7 KIS.API: Towards External Communication

Accessing the list of KPIs

Let us continue with the example presented in Sect. 7.2.2 pertaining to a KIS.BOX
associated with two rules. These two rules perform cyclically one after the other.
The first one change the KIS.BOX Button 1 operational LED color from black to
red while the second one realizes an opposite situation. It is assumed that no KPIs
are defined for this KIS.BOX (see Sect. 4.1.2 for a detailed tutorial on KPIs). Thus,
let us define the KPI counting the entire time period for which the above mentioned
color is red. For that purpose, the following KPI is implemented:

y = Round[Sum[If[x == 5, Duration[x], 0]]/1000];

where x stands for the button1ColorKpiDuration Datapoint while the num-
ber five signifies the red color (see Table 2.2). Finally, let us assume that this KPI
is named KBButton1red while its processing period is set to 15min. Having the
above KPI, let us proceed to performing the request no. 1 in Table7.9. As a result,
the following JSON structure is obtained:

[

{

"name": "KBButton1Red"

}

]

Accessing KPI values

Let us continue with the above example. Now, the task is to obtain KBButton1red
(path parameter kpiDefinition) values within the time period defined by the
parameters ‘from’ and ‘to’ given by

2022-08-31T08:02:50.046Z

2022-08-31T12:22:50.046Z

which, as discussed in Sect. 7.2.2, are formatted according to

2022-08-31T08%3A02%3A50.046Z

2022-08-31T12%3A22%3A50.046Z

7.2 Essential Functionalities 225

As a result, the following JSON structure is obtained:

{

"to": "2022-08-31T12:22:50.046Z",

"from": "2022-08-31T08:02:50.046Z",

"values": [

447,

443,

448,

447,

451,

451,

448,

451,

450,

453,

447,

454

]

}

It can be easily observed that there are 12 values corresponding to 15-minute pro-
cessing periods. It is also straightforward to observe that 15min are equivalent to
900s. Thus, it is evident that all the above-presented values should oscillate around
450s, which is actually the case.

Accessing data from CDPs

The last task of this point concerns obtaining an information about predefined
CDPs as well as finding their values. For that purpose, it is assumed that no CDPs
are defined. Moreover, the preceding example is continued. Thus, a new CDP is
defined according to the approach presented in Sect. 4.1.1 with x equivalent to
button1ColorKpiDuration Datapoints. The developed CDP aims at bound-
ing the minimum numerical value of x to 3, which represents the green color (see
Sect. 2.6). As a result, the following simple implementation is obtained:

z=If[x<3,3,x];

while CDP itself is named KBmaxcolorCDP. Let us start with the request no. 1
in Table7.8, which pertains to obtaining a list of all available CDPs. As a result of
using it, the following JSON structure is arrived at:

226 7 KIS.API: Towards External Communication

[

{

"name": "KBmaxcolorCDP",

"datatype": "DOUBLE"

}

]

which contains the existing CDP names as well as their data types. Having the CDP
name, let us proceed to obtaining its values. In fact this process is identical to the
one presented in Sect. 7.2.2. According to the adjustment performed in the preceding
examples, x can have the values representing either the red or the black color, i.e.,
x = 5 or x = 2 (cf. Table 2.2). The request No. 2 in Table7.8 is executed with the
query parameter limit only, which is equal to 10. As a result, the following JSON
structure is obtained, which provides the desired results:

[

{

"timestamp": "2022-09-02T10:45:22.804Z",

"value": "5"

},

{

"timestamp": "2022-09-02T10:45:22.335Z",

"value": "3"

},

{

"timestamp": "2022-09-02T10:45:21.554Z",

"value": "5"

},

{

"timestamp": "2022-09-02T10:45:20.929Z",

"value": "3"

},

{

"timestamp": "2022-09-02T10:45:20.054Z",

"value": "5"

}

]

7.2 Essential Functionalities 227

Table 7.10 List of possible requests associated with rules

No. Verb Path Action

1 GET baseUrl/rules Obtain a list of rules

2 GET baseUrl/rules/ruleId/assetgroupId Obtain a rule info

7.2.4 Accessing Information About Rules

Rules (cf. Sect. 2.9) constitute the last component which can be accessed through
KIS.API. The currently possible requests are provided in Table7.10.

Additionally, the request no. 2 in Table7.10 should be executed with the following
path parameters:

• ruleId: the rule identification number which can be retrieved through the request
no. 1 from Table7.10.

• assetgroupId: asset group identification.

The parameters that can be accessed through the process of executing these requests
are

• name: the name of the rule provided in KIS.MANGER Rule engine;
• enabledAPI: a logical property stating if it is possible to trigger the rule from an
external application using KIS.API.

Obtaining information about rules

The objective of this example is to show how to access information about rules. Let
us start with the request no. 1 in Table7.10, which does not require any path or query
parameters while its execution results in the following JSON structure:

[

{

"name": "rblack2red",

"assetGroupId": 9758,

"id": "b92080c3-55aa-410e-a417-9efe90637515",

"enabledAPI": false

},

{

"name": "rred2black",

"assetGroupId": 9758,

"id": "62124944-a606-4b80-b906-94d6d5ae8d38",

"enabledAPI": false

}

]

228 7 KIS.API: Towards External Communication

Contrarily, having assetGroupId and id signifying the rule, one can obtain the
name of the rule and the logical property enabledAPI. Indeed, by using them as
the path parameters and then executing the request no. 2 in Table7.10, one can arrive
at the following JSON structure:

{

"name": "rblack2red",

"assetGroupId": 9758,

"id": "b92080c3-55aa-410e-a417-9efe90637515",

"enabledAPI": false

}

7.2.5 Triggering Rules from External Applications

The objective of this section is to introduce a very important feature of KIS.API,
which makes it possible to trigger a rule from an external application. However,
as mentioned in Sect. 7.2.4, such an operation is possible for the rules having the
enabledAPI property set to the logical truth. For example, the rule considered at
the end of Sect. 7.2.4 should have the following JSON structure:

{

"name": "rblack2red",

"assetGroupId": 9758,

"id": "b92080c3-55aa-410e-a417-9efe90637515",

"enabledAPI": true

}

Note that the modification of the enabledAPI property is possible through
KIS.MANGER only. For that purpose, one should use the Main menu → Asset
groups and then select an appropriate asset group. Subsequently, by going to Rule
engine and selecting the desired rule, one can see the property editor called API inte-
gration, which is presented in Fig. 7.3. As can be observed, there is another property,
which is calledWebsocket-Action. However, it will be discussed in Sect. 7.5. Finally,
the rule triggering request is described in Table7.11.

Table 7.11 a requests associated with a rule trigger

No. Verb Path Action

1 POST baseUrl/rules/RuleId/assetgroupId/Trigger trigger a rule

7.3 KIS.API in Practice 229

Fig. 7.3 Setting
enabledAPIproperty

7.3 KIS.API in Practice

The purpose of Sect. 7.2 was to introduce to the reader the essential functionali-
ties concerning KIS.API. All of them were carefully described while their practical
usagewas explainedwith the Postman (https://www.postman.com/) application. The
objective of this section is to provide practical guidelines concerning KIS.API appli-
cation using some popular software. Indeed, the software selection being used in
this section is not accidental. The first candidate is employed widely both in the
industry for presenting various kinds of data in tabular order. The second one is
commonly used for research, analysis, development and deployment of new practi-
cal concepts based on data gathered from a given system. Thus, these two popular
software instances are

• Microsoft Excel (https://www.microsoft.com),
• MathWorks Matlab (https://www.mathworks.com/).

Both of them have several different and freely-available counterparts, which can
provide similar functionalities. Thus, the objective of the subsequent point is to
provide a short practical tutorial on feeding MS Excel and Matlab with KIS.ME
data. Although the current section is restricted to MS Excel and Matlab, the reader
possessing the knowledge about the KIS.ME essential functionalities can integrate it
with more advanced and dedicated software. An enterprise resource planning system
can be a good example of such software (see, e.g., SAP and its API functionalities
at https://api.sap.com/).

7.3.1 Feeding MS Excel with KIS.ME Data

Starting with MS Excel 2013 it is possible access any REST API using the so-called
power query. Thus, the entire recipe for accessing data from KIS.API boils down the
following steps:

1. Select and push the from Web power query icon.
2. Provide the URL associated with the desired request.

https://www.postman.com/
https://www.microsoft.com
https://www.mathworks.com/
https://api.sap.com/

230 7 KIS.API: Towards External Communication

Fig. 7.4 Result of a KIS.API request in MS Excel

Fig. 7.5 Result of a KIS.API request presented as a table

3. Use advanced options to provide appropriate headers, i.e., X-CLIENT-ID and
X-API-KEY (see Fig. 7.1).

4. Perform the desired data request.

Obtaining a list of all rules

The objective of this example is to obtain a list of all rules present inKIS.MANAGER
Rule engine. According to Sect. 7.2.4, a URL should be defined as follows:

baseUrl/rules

while the required headers may have the following structure:

X-API-KEY 2b84bd4de38b4e92bb7bb283364477e1

X-CLIENT-ID 708ce7cc-fd57-416d-991f-f68704385c22

Finally, the desired data request is performed and the obtained result is given in
Fig. 7.4. As can be observed, there are three records, which simply correspond
to three different rules. To make the obtained result more transparent, the option
Convert to Table can be used used, which after suitable expansion yields the
view presented in Fig. 7.5.

7.3 KIS.API in Practice 231

Fig. 7.6 Result of a
KIS.API request in Matlab

7.3.2 Feeding Matlab with KIS.ME Data

The objective of this section is to show how to realise the KIS.API GET request with
MATLAB. The entire process boils down to the following steps:

1. Provide the URL associated with the desired request.
2. Define the weboptions structure HeaderFields containing the returned

content type, X-CLIENT-ID and X-API-KEY.
3. Define optional query parameters.
4. Execute webread to obtain data associated with the desired request:

data=webread(URL,web_options,query_parameters)

Accessing Datapoint values

The primary objective of this example is to obtain twenty recent values of the
button1ColorKpi Datapoint of KIS.BOX defined by a given URN. For that
purpose the example introduced in Sect. 7.2 is utilized. Let us start with defining
an appropriate URL according to Sect. 7.2.2 (Table7.7), which can be realized as
follows:

baseUrl=’https://api.kisme.com/kisapi/v1’;

assetUrn=’urn:rafi:sbox:9c65f93cbed6’;

DPdef=’button1ColorKpi’;

finalUrl=strcat(baseUrl,’assets/’,assetUrn,+’/’,DPdef,

’/datapointValues’);

232 7 KIS.API: Towards External Communication

Subsequently, the weboptions structure with HeaderFields is defined:

opt=weboptions;

content={’Content-Type’ ’application/json’};

client={’X-CLIENT-ID’ ’708ce7cc-fd57-416d-991f-f68704385c22’};

key={’X-API-KEY’ ’2b84bd4de38b4e92bb7bb283364477e1’};

opt.HeaderFields=[content;client;key];

Finally, webread can be executed:

data=webread(finalUrl,opt,’limit’,’20’);

However, the current example, apart from retrieving data, extracts the values and
occurrence times of the KIS.API data. Moreover, such a request is repeated every
second and the obtained results are suitably visualized. Such a time-driven loop is
repeated until a user presses any key. The code realizing all the above mentioned
operations is given as follows:

clc; clear; close all;

baseUrl=’https://api.kisme.com/kisapi/v1’;

assetUrn=’urn:rafi:sbox:9c65f93cbed6’;

DPdef=’button1ColorKpi’;

finalUrl=strcat(baseUrl,’assets/’,assetUrn,+’/’,DPdef,

’/datapointValues’);

opt=weboptions;

content={’Content-Type’ ’application/json’};

client=

{’X-CLIENT-ID’ ’708ce7cc-fd57-416d-991f-f68704385c22’};

key={’X-API-KEY’ ’2b84bd4de38b4e92bb7bb283364477e1’};

opt.HeaderFields=[content;client;key];

h = figure(1);

while isempty(get(h,’CurrentCharacter’));

data=webread(finalUrl,opt,’limit’,’20’);

values=[cellfun(@str2num,{data.value})];

ind=find(values>7);

values(ind)=[];

times=datetime({data.timestamp},’InputFormat’,

’uuuu-MM-dd’’T’’HH:mm:ss.SSSZ’,’TimeZone’,’UTC’);

times(ind)=[];

stairs(times,values,’LineWidth’,2);

xlabel(’Time’);

ylabel(DPdef);

ylim([0 8]);

pause(1);

end;

7.4 Triggering Rules from MATLAB 233

The obtained results are given in Fig. 7.6. As can be observed, the value of
button1ColorKpi Datapoints is switched between black (2) and red (5) col-
ors.

Remark 7.1 The example presented in this point corresponds to the so-called polling
procedure in which KIS.API requests are repeated every single second. This process
is, of course, inefficient as it is executed irrespective of the fact of having newKIS.API
data. Indeed, even if there is no new data, the request is still executed. To settle this
unappealing phenomenon, KIS.ME provides the so-called websockets, which are
discussed in Sect. 7.5.

7.4 Triggering Rules from MATLAB

The objective of this section is to show how to realize a KIS.API POST request with
Matlab. For that purpose, an example with triggering the rule is engaged. Generally,
the entire process boils down to the following steps:

1. Provide the URL associated with the desired request.
2. Define the weboptions structure HeaderFields containing the returned

content type, X-CLIENT-ID and X-API-KEY.
3. Define optional request parameters.
4. Execute webread to obtain the data associated with the desired request:

data=webwrite(URL,web_options,request_parameters)

Triggering a rule from MATLAB

The objective of this example is to showhow to triggerKIS.ME rule fromMATLAB.
For that purpose, let us define a new rule. This rule has no triggers or conditions
defined in KIS.MANGER. It aims at switching the KIS.BOX Button 2 operational
LED color to yellow. Thus, there is only one action which performs the above task.
Subsequently, API Integration (see Fig. 7.3) is used to set theenabledAPI property
by activating the API-Trigger active option. The remaining information required to
formulate the rule triggering request reduces to collecting

Rule ID: 13fcb514-9fe7-44a9-9802-3d972b0fee8a,
Asset group ID: 9758.

234 7 KIS.API: Towards External Communication

Having the above information, it is possible to formulate the triggering request
according to Table7.11. Finally, the resulting code is given as follows:

clc; clear; close all;

baseUrl=’https://api.kisme.com/kisapi/v1’;

ruleID=’13fcb514-9fe7-44a9-9802-3d972b0fee8a’;

assetgroupId=’9758’;

addpath=’rules/’;

finalUrl=strcat(baseUrl,addpath,ruleID,+’/’,assetgroupId,

’/trigger’);

opt=weboptions;

content={’Content-Type’ ’application/json’};

client=

{’X-CLIENT-ID’ ’708ce7cc-fd57-416d-991f-f68704385c22’};

key={’X-API-KEY’ ’2b84bd4de38b4e92bb7bb283364477e1’};

opt.HeaderFields=[content;client;key];

data=webwrite(finalUrl,opt);

7.5 Websockets

In spite of an incontestable appeal of the communication strategies presented in the
preceding part of this chapter, they frequently suffer from the lack of efficiency. This
is particularly the case when there is a need for observing the changes in system
behaviour expressed in the evolution of Datapoints associated with KIS.Devices.
Indeed, such a problemwas already discussed in Sect. 7.3.2. The example considered
in the preceding section concerned the so-called polling procedure, inwhichKIS.API
requests are repeated every single second. This process is, of course, inefficient as it
is executed irrespective of the fact of having new KIS.API data. Indeed, even if there
is no new data, the request is still executed. To settle this unappealing phenomenon,
KIS.ME provides the so-called websockets, which are discussed in this section.

7.5.1 Brief Introduction to Websockets

Websocket [4] can be defined as a communication protocol, which permits bidirec-
tional communication between the client and the web server. In a most common case,
if a browser visits a web page, then an HTTP request is sent to the associated server.
Subsequently, the web server replies by sending the response to the web browser.
A similar strategy was realized in the preceding part of this chapter while using a
different kind of applications, i.e., POSTMAN, MS Excel and Matlab. Thus, as was

7.5 Websockets 235

shown in Sect. 7.3.2, if the application wants to receive recently released data, then
it must constantly, e.g., every second, send a request to the server. This corresponds
to the situation in which the user constantly refreshes the page within the browser.
This is also the reason why HTTP is a half duplex, which denotes the fact that the
traffic flows in a single direction at a time:

• the client releases a request to the server (one direction);
• the server replies to the request (one direction).

Therefore, it is an obvious fact that it is not an elegant solution, widely called polling.
It is defined as a regularly timed synchronous call inwhich the client releases a request
to the server to check if there is any new data available. Such requests are realized
using regular time intervals, and the client receives a response irrespective of the
availability of the new data. Thus, if there is no new data, then the server replies with
a negative response and the connection closes. Hence, polling can be efficient when
an exact time interval concerning the release of the new data is known. Unfortunately,
as has already been mentioned, KIS.ME is used to model a discrete event system in
which the occurrence time of events is not equally distributed over a time horizon.
Another communication strategy is called long polling. In this case, the client sends
request to the server and opens a connection within some time period. If the server
has no new data, then it holds the request and connection open until it has a new data
for the client (or a predefined timeout is reached). An alternative communication
strategy is called streaming. In this case, the client sends a request to the sever,
which maintains an open response that is continually updated. The connection can
be open permanently or until a predefined timeout is reached. Note that the server
never indicates the completion of the HTTP response, and hence the connection is
open continuously.

In order to eliminate the above issues, the concept of websocket was introduced.
The websocket is by nature a bidirectional full duplex and single-socket connection.
While using it, a single HTTP request is required to open a websocket connection.
An appealing property of websocket is that it reuses the same connection in both
ways, i.e., client–server and server–client. Owing to the fact that the server can send
messages as they are available, the overall latency is reduced. Contrarily to polling,
websocket communication is based on a single request, i.e., it is not necessary to
wait for another request (along with headers, request parameters, etc.). A concise
summary of using the websocket can be formulated as follows:

• it makes real-time communication much more efficient;
• it enables a simpler Web-based communication between the client and server;
• it is a network protocol that enables developing other standard protocols on top of
it;

• it overcomes the drawbacks of HTTP with respect to real-time communication.

Similarly to HTTP and HTTPS, the websocket defines two URI schemes, namely,
ws and wss, which correspond to standard and encrypted communication between
the client and the server. The wss (Websocket Secure) URI scheme corresponds to
the websocket connection over transport layer security (TLS). Note that TLS is also

236 7 KIS.API: Towards External Communication

known as SSL (Secure Socket Layer). Thus, the same security mechanism is used as
the one employed for HTTPS. This means that while constructing websockets one
should use a URL of either the ws:// or wss:// form.

7.5.2 Obtaining a KIS.ME URI and Identifiers

The objective of this point is to show how to retrieve aURI and an identifier necessary
to construct a websocket. The first step on the way towards the above objective is to
select the data of interest, which can be the following:

• Datapoints: one canobtain real-timedata corresponding toDatapoints or calculated
Datapoints (see Sects. 2.5 and 4.1.1) of an asset;

• KPIs: one can obtain data corresponding to KPIs (see Sects. 2.5 and 4.1.1) of
an asset, which are calculated every 15min assuming that the new underlying
Datapoint values are available;

• Rules: one can obtain data associated with the triggered rules.

Thus, the required preliminary data is associated with the property subscribeTo,
which may have the following values:

• datapoint,
• kpi,
• rule.

Subsequently, Datapoints and KPIs require a single or a list of assetIds (see
Sect. 7.2) while rules require assetGroupIds. Finally, all these properties form
a JSON data structure, which may look as follows:

{

"assetIds": [

37,

66

],

"assetGroupIds": [

43,

6

],

"subscribeTo": "datapoint"

}

Having the above data along with KIS.API credentials (see Sect.7.1.1), one can
perform a POST request according to Table7.12. As a result, the following JSON
structure can be obtained:

7.5 Websockets 237

Table 7.12 Requests of subscribing/unsubscribing to a websocket

No. Verb Path Action

1 POST baseUrl/websockets Subscribe to websocket

1 DEL baseUrl/websockets Unsubscribe from a websocket

{

"subscriptionUris": [

"wss:///pubsub.api.kisme.com/

6d574a1f-4c37-4ab4-9fa6-86fb74a66375"

],

"subscriptionId": "6d574a1f-4c37-4ab4-9fa6-86fb74a66375"

}

Analogously, the DEL request will unsubscribe from the websocket.

7.5.3 Brief Introduction to STOMP

Messaging [4] stands for an architecture associated with sending asynchronous mes-
sages between independent components. Such an appealing property makes it pos-
sible to develop relatively loosely coupled systems. The crucial components of mes-
saging are the message broker and the client. In particular, the former can perform
such actions:

• accepting connections of the clients,
• sending messages to the clients,
• distributing messages among the clients.

Note that the broker can also handle such operations as authorization, message
encryption, etc. Thus, if clients are connected to the broker, then they can send
messages to the broker as well as receive message distributed by the broker. Such
a strategy is called publish/subscribe. Therefore, if a message broker publishes a
number of messages, then the client can subscribe to either all or a subset of these
messages. STOMP (simple text-oriented messaging protocol) is a good represen-
tative example of such a publish/subscribe protocol. Its layering relation with the
websocket as well as with other protocols is detailed in Fig. 7.7. STOMP was also
employed for the communication purposes within KIS.ME. Indeed, the websocket
fits very well to a standard messaging architecture, in which there could be a large
volume of potential messages distributed at high rates from the broker to the client. A
good example is a client subscribing toDatapoints of an asset (see Sect. 7.5.2). Due to
the relatively large number of Datapoints as well as their possible high rate of change,

238 7 KIS.API: Towards External Communication

Fig. 7.7 STOMP over a
websocket

Your Applications

HTTP

TCP (or TLS/TCP)

STOMP

WebSocket

receiving messages in real-time as well as with low latency is extremely important
for the final performance of the entire application. STOMP is a very simple proto-
col, which resembles HTTP in its appearance. Each frame consists of a command,
headers, etc. STOMP messages can represent any text or binary data. For further
information about STOMP, the reader is referred to the STOMP protocol specifica-
tion [5]. Additionally, STOMP [5] provides the so-called heart-beating mechanism,
which can optionally be employed to verify the healthiness of the underlying TCP
connection and to ensure that the remote end is still alive and kicking. Generally,
it is defined by two integer values, separated by a comma. The first one represents
outgoing heart-beats from the sender:

• 0 signifies the fact that it cannot send heart-beats;
• otherwise it is the smallest number of milliseconds between heart-beats that it can
guarantee.

The second one represents incoming heart-beats, i.e., what sender would like to
obtain:

• 0—stands for the fact that it does not want to receive heart-beats;
• otherwise it is the desired number of milliseconds between heart-beats that it can
guarantee.

Note that enabling heart-beating is possible by adding a suitable heart-beating header
during the beginning of the STOMP session, i.e., to CONNECT [5].

7.5.4 Sample Websocket Implementations

The objective of this section is to provide guidelines for practical implementation
of KIS.ME-based websockets. In particular, the NODE.js [1] environment, which
employs a widely employed JavaScript (JS) programming language is used. This
section is composed of two examples, which aim at

7.5 Websockets 239

1. reading KIS.ME data using STOMP over websocket,
2. enhancing the above example with a local Web server employed for publishing

KIS.ME data.

Moreover, it is assumed that the reader has essential knowledge regarding NODE.js.

Reading KIS.ME data using STOMP over a websocket

Let us start with providing suitable credentials and parameters, which will be located
in the .env file:

SERVER_URL="https://api.kisme.com/kisapi/v1/websockets"

API_KEY="2b84bd4de38b4e92bb7bb283364477e1"

CLIENT_ID="708ce7cc-fd57-416d-991f-f68704385c22"

ASSET_ID="10102"

ASSET_GROUP_ID="9758"

For the purpose of further implementations, the following modules are required:

dotenv: loads environment variables from the .env file into process.env
structure;
websocket: implements the websocket protocol;
webstomp-client: provides a STOMP client for Web browsers and NODE.js
through websockets;
axios: is a promise-based HTTP client for the Web browser and NODE.js.

Note that the application of the abovemodules is not compulsory and there are several
counterparts which can be employed instead. Moreover, their documentation can be
easily found at https://www.npmjs.com. After such a preliminary step, it is possible
to define suitable request headers and options, which are given as follows:

const options = {

method: "POST",

url: process.env.SERVER_URL,

headers: {

"X-API-KEY": process.env.API_KEY,

"X-CLIENT-ID": process.env.CLIENT_ID,

"Content-Type": "application/json",},

data: JSON.stringify({

assetIds: [parseInt(process.env.ASSET_ID)],

assetGroupIds: [parseInt(process.env.ASSET_GROUP_ID)],

subscribeTo: "datapoint",

}),

};

while the underlying POST request concerns subscription to a websocket (see
Sect. 7.5.2). Thus, the objective is to obtain (cf. subscribeTo) the values of

https://www.npmjs.com

240 7 KIS.API: Towards External Communication

Datapoints and calculated Datapoints of KIS.Devices associated with assetIds
and assetGroupIds. Note that the last property is not compulsory for obtain-
ing Datapoint values. Subsequently, let us assume that both incoming and outgoing
heart-beating is set to 1000 ms. Having all the above ingredients, the final code is
developed, which is mostly included in the getSubscriptionId function:

require("dotenv").config();

const WebSocket = require("websocket").w3cwebsocket,

webstomp = require("webstomp-client");

const axios = require("axios");

const heartbeat = 1000;

const getSubscriptionId = () => {

const options = {

method: "POST",

url: process.env.SERVER_URL,

headers: {

"X-API-KEY": process.env.API_KEY,

"X-CLIENT-ID": process.env.CLIENT_ID,

"Content-Type": "application/json",},

data: JSON.stringify({

assetIds: [parseInt(process.env.ASSET_ID)],

assetGroupIds: [parseInt(process.env.ASSET_GROUP_ID)],

subscribeTo: "datapoint",

}),

};

axios(options)

.then(function (response) {

const subscriptionId=response.data.subscriptionId;

const Server=

response.data.subscriptionUris[0].replace("///","//");

const socket = new WebSocket(Server, null);

const stomp = webstomp.over(socket, {

heartbeat: {incoming: heartbeat, outgoing: heartbeat},

protocols: [’v12.stomp’],

});

stomp.connect(

{host: Server},

function () {

stomp.subscribe(‘/topic/${subscriptionId}‘,

function (message) {

const data = JSON.parse(message.body);

console.log("Message data",data.info);

});

},

);

7.5 Websockets 241

})

.catch(function (error) {

console.log(error);

})

.finally(function () {

// always executed

});

};

getSubscriptionId();

The example considered is a continuation of the ones exploited in this chapter for
which theKIS.BOX (assetIds=10102) Button 1 operational LED color switches
between red and black. The aboveKIS.BOXhas also associated calculated Datapoint
and KPI. After running the above code, one can observe that message.body
contains the JSON structure, which may look as follows:

{"jsontype":"centersightEvent",

"type":"datapointValuesReceived",

"nodeId":10102,"timestamp":"2022-10-06T10:47:47.833Z",

"info":{"key":"button1Color","value":"#000000",

"timestamp":"2022-10-06T10:47:47.833Z"}}

The above JSON structure is self-explained and it can be easily observed that it
contains the info property, which covers another JSON structure involving

key: the name of the (calculated) Datapoint,
value: the value of the (calculated) Datapoint,
timestamp: the timestamp associated with the value of the (calculated) Datapoint,

and hence, this structure is directly displayed in the console. Note that the above
code can be easily adapted to the remaining possible settings of subscribeTo,
i.e., kpi and rule. However, such an implementation is left out to be featured an
exercise listed in the last section of this chapter.

•> Getting information about the rules

Contrarily, to KPIs and Datapoints, rules are directly associated with asset groups.
Indeed, there are designed within each asset group. This implies the necessity of a
reduced subscription data:

242 7 KIS.API: Towards External Communication

{

assetGroupIds: [parseInt(process.env.ASSET_GROUP_ID)],

subscribeTo: "rule",

}

while assetIds is excluded.

Publishing KIS.ME data with a local Web server

The objective of this example is to extend the proceeding one in such a way as to
provide the following functionalities:

• feeding the selected Datapoint data to another bi-directional third party API,
• a frontend displaying the selected Datapoint data obtained from the above API.

Let us start with selecting an API. Since the purpose of the example is to collect
the data in the form of a JSON structure containing three properties (key, value and
timestamp) the list of possible candidates is rather long. Thus, due to relative usage
simplicity, the Pusher API was selected (https://pusher.com/). As was the case with
KIS.API, the first step is to register with Pusher and then collect the list of credentials
(App keys). A sample list of Pusher credentials is given as follows:

app_id = "1482901"

key = "8e17772867a31d055131"

secret = "b2632afdbd8419d40bf1"

cluster = "eu"

Thus, let us extend the .env file with the above data, which yields

SERVER_URL="https://api.kisme.com/kisapi/v1"

API_KEY="2b84bd4de38b4e92bb7bb283364477e1"

CLIENT_ID="708ce7cc-fd57-416d-991f-f68704385c22"

ASSET_ID="10102"

ASSET_GROUP_ID="9758"

app_id = "1482901"

key = "8e17772867a31d055131"

secret = "b2632afdbd8419d40bf1"

cluster = "eu"

Having the above information, let us simply extend the code from the previous
example with a list of commands creating a Pusher instance:

https://pusher.com/

7.5 Websockets 243

const Pusher = require("pusher");

const pusher = new Pusher({

appId: "1482901",

key: process.env.key,

secret: process.env.secret,

cluster: process.env.cluster,

});

Now let us assume that the Datapoint of interest is called button1ColorKpi
Duration (see Appendix. B for its description). Thus, the transfer of Datapoint
values to the Pusher API reduces to the following:

if (data.info.key=="button1ColorKpiDuration")

pusher.trigger("b1ColorKpiDuration", "b1ColorKpiDuration",

{

value: JSON.stringify(data.info),

});

where b1ColorKpiDuration signifies both the so-called channel and event (see
https://www.npmjs.com/package/pusher for a detailed explanation). The preparation
of the backend concludes with including the code for the local Web server. For that
purpose the express module is used, which can be simply characterized as a
lightweight NODE.js Web server. The entire code reduces to adding the following
lines:

const express = require("express");

const app = express();

app.use(express.static(__dirname + ’/public’));

app.listen(3000, () => {

console.log("Server running on: http://localhost:3000/");

});

which are responsible for creating an express Web server that will run on port
3000 and will communicate with server static files located in the public direc-
tory. Finally, the entire backend code can be implemented as follows:

require("dotenv").config();

const WebSocket = require("websocket").w3cwebsocket,

webstomp = require("webstomp-client");

const axios = require("axios");

const Pusher = require("pusher");

const pusher = new Pusher({

appId: "1482901",

key: process.env.key,

secret: process.env.secret,

https://www.npmjs.com/package/pusher

244 7 KIS.API: Towards External Communication

cluster: process.env.cluster,

});

const heartbeat = 1000;

const getSubscriptionId = () => {

const options = {

method: "POST",

url: process.env.SERVER_URL,

headers: {

"X-API-KEY": process.env.API_KEY,

"X-CLIENT-ID": process.env.CLIENT_ID,

"Content-Type": "application/json",},

data: JSON.stringify({

assetIds: [parseInt(process.env.ASSET_ID)],

assetGroupIds: [parseInt(process.env.ASSET_GROUP_ID)],

subscribeTo: "datapoint",

}),

};

axios(options)

.then(function (response) {

const subscriptionId=response.data.subscriptionId;

const Server=

response.data.subscriptionUris[0].replace("///","//");

const socket = new WebSocket(Server, null);

const stomp = webstomp.over(socket, {

heartbeat: {incoming: heartbeat, outgoing: heartbeat},

protocols: [’v12.stomp’],

});

stomp.connect(

{host: Server},

function () {

stomp.subscribe(‘/topic/${subscriptionId}‘,

function (message) {

const data = JSON.parse(message.body);

if (data.info.key=="button1ColorKpiDuration")

pusher.trigger("b1ColorKpiDuration",

"b1ColorKpiDuration",

{

value: JSON.stringify(data.info),

});

});

},

);

})

.catch(function (error) {

console.log(error);

7.5 Websockets 245

})

.finally(function () {

// always executed

});

};

getSubscriptionId();

const express = require("express");

const app = express();

app.use(express.static(__dirname + ’/public’));

app.listen(3000, () => {

console.log("Server running on: http://localhost:3000/");

});

Let us proceed to the frontend development by creating thepublic directory and the
index.html file inside it. The presentation of Datapoint values will be reduced to
showing its consecutive values in the form of a plot. For that purpose the well known
plotly is employed. Thus, the entire frontend reduces to the following code:

<!DOCTYPE html>

<html>

<head>

<meta http-equiv="content-type" content="text/html;

charset=UTF-8" />

<script src="https://cdn.plot.ly/plotly-latest.min.js">

</script>

<script src="https://js.pusher.com/7.2.0/pusher.min.js">

</script>

</head>

<body>

<div id="chart"></div>

<script>

Pusher.logToConsole = true;

var my_plot = {

y: [],

mode: ’lines+markers’,

name: ’hv’,

line: {shape: ’hv’},

type: ’scatter’,

};

Plotly.newPlot(’chart’, [my_plot]);

const pusher = new Pusher(

"8e17772867a31d055131", // Replace with your ’key’

{ cluster: "eu", }

);

const channel = pusher.subscribe("b1ColorKpiDuration");

246 7 KIS.API: Towards External Communication

Fig. 7.8 Plotting datapoint
values with a local Web
server

var cnt=0;

var width_graph_window=23;

channel.bind("b1ColorKpiDuration", (data) => {

const obj=JSON.parse(data.value);

Plotly.extendTraces(’chart’, {y:[[obj.value]]}, [0]);

cnt++;

if(cnt > width_graph_window)

Plotly.relayout(’chart’, {

xaxis:

{ range: [cnt-width_graph_window, cnt] }

});

});

</script>

</body>

</html>

The main part of the code starts with creating an empty plot located in the chart
section of the HTML document (newPlot). Subsequently, a new Pusher instance
is created with the above-defined credentials named key and cluster. This enables
forming a new channel b1ColorKpiDuration. Finally, the channel.bind
command is responsible for receiving cyclically arriving Datapoint values. It also
invokes the extendTrace command, which updates the existing plot with the new
data. Note that the plot is restricted to presenting 23 most up to date values, which
requires appropriate scaling realized with the relayout command. The graphical
result obtained after running the entire application, i.e. the one presented in the
browser, is given in Fig. 7.8.

7.6 Training Exercises 247

7.6 Training Exercises

7.1 Obtaining a list of assets

1. Obtain a JSON structure containing all KIS.Devices which are at your disposal.
2. Find all assets which are on-line.

7.2 Obtaining a list of asset groups

1. Obtain a JSON structure containing all asset groups.
2. Modify the name and description of a selected asset group.

7.3 Obtaining a list of users

1. Obtain a JSON structure containing all users and determine their account
Number.

2. Obtain a user and determine the above JSON structure once again.
3. Delete the added user.

7.4 Obtaining a list of Datapoints and CDPs

1. Select a KIS.Device and determine its URN.
2. Obtain a JSON structure containing a list of all Datapoints.
3. Determine a list of CDPs.

7.5 Obtaining values of Datapoints and CDPs

1. Choose a KIS.Device and write a set of rules transferring automatically and
cyclically its selected operational LED within a state-space: red, yellow, green.

2. Obtain a JSON structure containing a list of 10 recent values of Datapoints cor-
responding to the numerical values of the operational LED’s colors.

3. Prepare CDP converting the numerical values of the operational LED’s colors in
such a way so that red corresponds to 0, yellow is signified by 1, while green
yields 2.

4. Obtain a JSON structure containing a list of 10 recent values of the above CDP.

7.6 Obtaining values of KPIs

1. Continue Exercise 7.5 by implementing KPIs calculating mean times of each
state, i.e., red, yellow and green.

2. Obtain a JSON structure containing all KPIs.
3. Obtain a JSON structure containing a list of 10 recent values of the above KPIs.

7.7 Obtaining information about rules

1. Continue Exercise 7.5 and display the information about rules used for color state
transitions.

2. Import the information about the rules to MS Excel or any compatible software.

248 7 KIS.API: Towards External Communication

7.8 Triggering rules from an external application

1. Select a KIS.LIGHT.
2. Prepare two rules with API-Trigger active (see Fig. 7.3):

• GoRed: with an action setting the KIS.LIGHT operational LED color to red;
• GoGreen: with an action setting the KIS.LIGHT operational LED color to red;

3. Develop a Matlab (you can also use OCTAVE or Pyton) program, which will
trigger these rules every second one after the other.

7.9 Websocket implementation

1. Continue Exercise 7.5 and develop websocket-based application according to the
scheme presented in Sect. 7.5.4.

2. Use the above-developed software to get information about the triggered rules
and KPI calculation. Hint: use the subscribeTo property.

7.10 Websocket implementation

1. Continue Exercise 7.9 and extend it according to Sect. 7.5.4 in order to get a local
web server employed for presenting selected Datapoint values.

2. On the frontend side (index.html) implement a functionality calculating the
total accumulated time of the red color state, i.e., the overal time in which the
operational LED color is red.

7.7 Concluding Remarks

The aim of this section was to provide an overview of KIS.API functionalities. It was
demonstrated that the software provides an effective way for communicating with
external applications. In particular, the chapter started with KIS.API user registration
and goes through KIS.API essential functionalities. These functionalities are strictly
linked with the content of the preceding chapter. Indeed, it is shown how to prepare
request for accessing the information about assets, asset groups, users, Datapoints,
CDPs, KPIs as well as the rules. The crucial functionality, which makes KIS.API a
fully bidirectional framework is the ability of triggering the rules from external appli-
cations. In particular, it was shown how to trigger such rules from Matlab, which is
one of themost popular development tools inmodern engineering. The last part of the
chapterwas devoted to the development of efficientwebsocket-based communication
framework, which utilizes STOMP messaging architecture. Indeed, the websocket
is an excellent for providing an efficient asynchronous bidirectional communication.
It was also demonstrated how to prepare a local Web server for publishing Data-
point values. This crucially example clearly shows that with KIS.API there is an
infinite spectrum of possible external extensions of KIS.ME. Finally, the chapter is
summarized with a set of training exercises, which verify KIS.API-oriented skills.

References 249

References

1. F. Doglio. Pro REST API Development with Node.js (Apress, Berkeley, 2015)
2. A. Tamboli, Build Your Own IoT Platform (Springer, Berlin, 2019)
3. S. Patni, Pro RESTful APIs (Springer, Berlin, 2017)
4. V. Wang, F. Salim, P. Moskovits, The Definitive Guide to HTML5 WebSocket, vol. 1 (Springer,

New York, 2013)
5. Stomp. http://stomp.github.io/stomp-specification-1.2.html#Heart-beating. Accessed: 10 June

2022

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://stomp.github.io/stomp-specification-1.2.html#Heart-beating
http://creativecommons.org/licenses/by/4.0/

Appendix A
KIS.ME Commands and Their Sample
Applications

The objective of this appendix is to provide a comprehensive overview of theKIS.ME
commands, which can be utilized while implementing KPIs and CDPs. They are
divided into five groups, and their application range is given in TableA.1. This
clearly means that Aggregations and Intervals can be used while implementing KPIs
only. The list of numeric commands contains essential operations like Plus, Time,
Power, Round and Abs, which are very basic, and hence their description is omit-
ted. Similarly, the comparison commands do not require special explanations, either.

A.1 Aggregations

See Table A.2.

y = Count[x] (A.1)

Table A.1 KIS.ME commands and their application scope

Group name KPI CDPs

Aggregations YES NO

Intervals YES NO

Numeric YES YES

Comparison YES YES

Miscellaneous YES YES

© The Editor(s) (if applicable) and The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2

251

https://doi.org/10.1007/978-3-031-33623-2

252 Appendix A: KIS.ME Commands and Their Sample Applications

Table A.2 Count: input and output arguments

Argument Type Description

x Double/long/Boolean Processed variable

y Double/long Number of entries

Table A.3 Count: KPI parameters

Parameter Value

Definition name GetCount

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints led1ColorKpi as variable x

Illustrative example: The worker assembles products on a workstation. The fact of a
well-assembled product is signalized with a blink of a green light of the KIS.LIGHT
operational LED. Contrarily, the fact of an inappropriately assembled product is
signalized with the KIS.LIGHT operational LED flashing in red. Note that the idle
state color of the KIS.LIGHT operational LED is black. The objective is to calculate
the percentage number of well-assembled products within a selected processing
period. Hint: See numerical values of the red and green colors in Table 2.2.
Solution:

Step 1. Define a new KPI and its parameters according to TableA.3:
Step 2. Output calculation:

xg=If[x==3,1,0];

yg=Count[Filter[xg>0]];

xr=If[x==5,1,0];

yr=Count[Filter[xr>0]];

total=yg+yr;

y=yg*100/total;

See Table A.4.

y = FallingEdge[x, n], y = FallingEdge[x] (A.2)

Appendix A: KIS.ME Commands and Their Sample Applications 253

Table A.4 FallingEdge: input and output arguments

Argument Type Description

x Double/long/Boolean Processed variable

n Double/long Threshold value for x of either
Double/Long type only

It is the value that needs to be
crossed to detect the falling
edge, e.g., for n = 3, the
falling edge will be detected iff
x falls below 3

y Double/long Number of falling edges

Table A.5 FallingEdge: KPI parameters

Parameter Value

Definition name GetFallingEdge

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints led1ColorKpi as variable x

Illustrative example: Let us consider a worker performing tasks on a single worksta-
tion. If a product assembly is accomplished, then theworker pressesKIS.BOXButton
1. TheKIS.BOXButton 1 operational LED is normally illuminating in green (numer-
ical value 3), but there is a rule which, after pressing KIS.BOX Button 1, changes
this color into black (numerical value 0), and then again to green. The objective is to
calculate the number of assembled products within a selected processing period.
Solution:

Step 1. Define a new KPI and its parameters according to TableA.5:
Step 2. Output calculation:

y=FallingEdge[x,3];

See Table A.6.

y = Max[x1, . . . , xn] (A.3)

254 Appendix A: KIS.ME Commands and Their Sample Applications

Table A.6 Max: input and output arguments

Argument Type Description

x1, . . . , xn Double/long n Variables or constants

y Double/long Maximum of all xi ,
i = 1, . . . , n

Table A.7 Max: KPI parameters

Parameter Value

Definition name GetMax

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints button1ColorKpiDuration as variable
x

Illustrative example: Let us consider an assembly station with one worker, which is
associated with KIS.BOX Button 1. Let us assume that there are suitable rules, and
hence, if the worker is in an idle state, then the KIS.BOX Button 1 operational LED
is black (it is not lighting, the black color numerical value is equal to 2). Calculate
the range (in minutes) of idle state periods, i.e., the difference between the maximum
and minimum idle state cycles, within a selected processing period.
Solution:

Step 1. Define a new KPI and its parameters according to TableA.7:
Step 2. Output calculation:

idle=If[x==2,Duration[x],0]/60000;

z=Filter[idle>0];

y=Max[z,z]-Min[z,z];

Appendix A: KIS.ME Commands and Their Sample Applications 255

Table A.8 Mean: Input and output arguments

Argument Type Description

x Double/long Processed variable

y Double/long Mean value of the processed variable

Table A.9 Mean: KPI parameters

Parameter Value

Definition name Get Mean

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints led1ColorKpiDuration as variable x

See Table A.8.

y = Mean[x] (A.4)

Illustrative example: Let us imagine that the KIS.LIGHT operational LED color is
used for indicating the state of a worker. In particular, the magenta color (numerical
value equal to 4) signifies the fact that the worker is performing some tasks while the
black one expresses an idle state. The objective is to calculate an average working
time (in minutes) within a selected processing period.
Solution:

Step 1. Define a new KPI and its parameters according to TableA.9:
Step 2. Output calculation:

working=If[x==4,Duration[x],0]/60000;

y=Mean[Filter[working>0]];

See Table A.10.

y = Min[x, . . . , xn] (A.5)

256 Appendix A: KIS.ME Commands and Their Sample Applications

Table A.10 Min: Input and output arguments

Argument Type Description

x1, . . . , xn Double/long n Variables or constants

y Double/long minimum of all xi , i = 1, . . . , n

Table A.11 Min: KPI parameters

Parameter Value

Definition name GetMin

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints Button1ColorKpiDuration as variable x

Illustrative example: Let us consider an assembly station with one worker, which is
associated with KIS.BOX Button 1. Let us assume that there are suitable rules, and
hence, if the worker is in an idle state, then the KIS.BOX Button 1 operational LED
is black (it is not lighting, the black color numerical value is equal to 2). Calculate
the minimum (in minutes) idle state period within a selected processing cycle.
Solution:

Step 1. Define a new KPI and its parameters according to TableA.11:
Step 2. Output calculation:

idle=if[x==2,Duration[x],0];

z=Filter[idle>0];

y=Min[z,z]

See Table A.12.

y = Percentile[x, n] (A.6)

Illustrative example: Let us imagine that the KIS.LIGHT operational LED color is
used for indicating the state of a worker. In particular, the magenta color (numerical
value equal to 4) signifies the fact that the worker is performing some tasks while

Appendix A: KIS.ME Commands and Their Sample Applications 257

Table A.12 Percentile: Input and output arguments

Argument Type Description

x Double/long Processed variable

n Double/long Number indicating the n-th
percentile

y Double/long n-th Percentile of the
processed variable

Table A.13 Percentile: KPI parameters

Parameter Value

Definition name Get percentile

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints led1ColorKpiDuration as variable x

the black one expresses an idle state. The objective is to calculate a median working
time (in minutes) within a selected processing period. Hint: The median value is the
50th percentile.
Solution:

Step 1. Define a new KPI and its parameters according to TableA.13:
Step 2. Output calculation:

working=If[x==4,Duration[x],0]/60000;

y=Percentile[Filter[working>0],50];

See Table A.14.

y = RisingEdge[x, n] or y = RisingEdge[x] (A.7)

Illustrative example: A set of parts is supplied to a single workstation by a conveyor
belt. Such a situation is indicated be feeding KIS.LIGHT digital input 1 with a false–
true–false sequence. The objective is to calculate the number of sets of parts supplied
within a selected processing period.

258 Appendix A: KIS.ME Commands and Their Sample Applications

Table A.14 RisingEdge: Input and output arguments

Argument Type Description

x Double/long or Boolean Numerical or Boolean variable

n Double/long Threshold value for x of either double/long type only

It is the value that needs to be crossed to detect

the rising edge, e.g. for n = 3, the rising edge will be
detected iff x exceeds 3

y Double/long Number of rising edges

Table A.15 RisingEdge: KPI paramters

Parameter Value

Definition name GetRisingEdge

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints input1Status as variable x

Table A.16 Stdev: Input and output arguments

Argument Type Description

x Double/long Processed variable

y Double/long Standard deviation of the
processed variable

Solution:

Step 1. Define a new KPI and its parameters according to TableA.15.
Step 2. Output calculation:

y=RisingEdge[x];

See Table A.16.

y = Stdev[x] (A.8)

Appendix A: KIS.ME Commands and Their Sample Applications 259

Table A.17 Stdev: KPI parameters

Parameter Value

Definition name Get Stdev

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints led1ColorKpiDuration as variable x

Table A.18 Sum: Input and output arguments

Argument Type Description

x Double/long Processed variable

y Double/long Sum of x entries

Illustrative example: Let us imagine that the KIS.LIGHT operational LED color is
used for indicating the state of a worker. In particular, the magenta color (numerical
value equal to 4) signifies the fact that the worker is performing some tasks while the
black one expresses an idle state. The objective is to calculate a standard deviation
of the working time (in minutes) within a selected processing period.
Solution:

Step 1. Define a new KPI and its parameters according to TableA.17:
Step 2. Output calculation:

working=If[x==4,Duration[x],0]/60000;

y=Stdev[Filter[working>0]];

See Table A.18.

y = Sum[x] (A.9)

Illustrative example: Let us imagine that KIS.LIGHT operational LED color is used
for indicating the state of a worker. In particular, the magenta color (numerical value
equal to 4) signifies the fact that the worker is performing some tasks while the black
one expresses an idle state. The objective is to calculate the total working time (in
minutes) within a selected processing period.

260 Appendix A: KIS.ME Commands and Their Sample Applications

Table A.19 Sum: KPI parameters

Parameter Value

Definition name GetSum

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input Datapoints led1ColorKpiDuration as variable x

Solution:

Step 1: Define a new KPI and its parameters according to TableA.19
Step 2: Output calculation

y=Sum[If[x==4,Duration[x],0]]/60000;

A.2 Intervals

See Table A.20.

y = End[x], y = Start[x] (A.10)

Illustrative example: A worker performs assembly tasks, which are associated with
the following KIS.LIGHT operational LED colors:

• Green: battery cell mounting,
• Red: battery controller mounting,
• Black: an idle state of the worker.

Table A.20 Start/End: Input and output arguments

Argument Type Description

x Double/long Processed variable

y Double/long Start/end timestamp of all
variable states

Appendix A: KIS.ME Commands and Their Sample Applications 261

Table A.21 Count: KPI paramters

Parameter Value

Definition name GetEndStart

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints led1ColorKpiDuration as variable x

Table A.22 Duration: input and output arguments

Argument Type Description

x Double/long Processed variable

y Double/long Durations of individual
variable states

Calculate the total mounting time (in minutes) within a selected processing period.
Solution:

Step 1. Define a new KPI and its parameters according to TableA.21:
Step 2. Output calculation:

dx=If[x==3||x==5,End[x]-Start[x],0];

y=Sum[dx]/60000;

See Table A.22.

y = Duration[x] (A.11)

Illustrative example:Aworker performs assembly tasks associatedwith the following
KIS.LIGHT operational LED colors:

• Green: a battery cell mounting,
• Red: a battery controller mounting,
• Black: an idle state of the worker.

Calculate the ratio between the total cell and controller mounting times within a
selected processing period.

262 Appendix A: KIS.ME Commands and Their Sample Applications

Table A.23 Duration: KPI parameters

Parameter Value

Definition name GetDuration

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints led1ColorKpiDuration as variable x

Table A.24 Interval: Output arguments

Argument Type Description

y Double/long/Boolean KPI processing period

Solution:

Step 1. Define a new KPI and its parameters according to TableA.23:
Step 2. Output calculation:

dg=Sum[If[x==3,Duration[x],0]];

dr=Sum[If[x==5,Duration[x],0]];

y=dg/dr;

See Table A.24.

y = Interval[] (A.12)

Illustrative example: Let us imagine that the KIS.LIGHT operational LED color is
used for indicating the state of a worker. In particular, the magenta color (numerical
value equal to 4) signifies the fact that the worker is performing some tasks while
the black one expresses an idle state. The objective is to find the percentage of the
working state within a selected processing period.
Solution:

Step 1. Define a new KPI and its parameters according to TableA.25:
Step 2. Output calculation:

y=Sum[If[x==4,Duration[x],0]]/Interval[]*100;

Appendix A: KIS.ME Commands and Their Sample Applications 263

Table A.25 Interval: KPI paramters

Parameter Value

Definition name GetInterval

Published as KPI

Processing period Select a desried one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints led1ColorKpiDuration as variable x

A.3 Numeric

The list of numeric commands contains essential operations like Plus, Time,
Power, Round and Abs, which are very basic, and hence their description is omit-
ted.

See Table A.26.

y = Mod[x, n] (A.13)

Illustrative example: Let us imagine that the tasks realized by two machines are indi-
cated via the KIS.LIGHT operational LED that illuminates in task-oriented colors.
In particular, the colors with even numeric values (cf. Table 2.2) are associated with
the tasks of the first machine. Contrarily, the jobs realized by the second machine
are identified by the colors with odd numeric values. The objective is to calculate
the ratio between the total number of tasks realized by the machines. Hint: Filter all
values, which are numeric values indicated in Table 2.2.
Solution:

Step 1. Define a new KPI and its parameters according to TableA.27:
Step 2. Output calculation:

Table A.26 Mod: Input and output arguments

Argument Type Description

x Double/long Processed variable

n Double/long Divider

y Double/long Division reminder y = x − n
⌊
x
n

⌋

, where �·� signifies the floor function

264 Appendix A: KIS.ME Commands and Their Sample Applications

Table A.27 Mod: KPI parameters

Parameter Value

Definition name GetMod

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input Datapoints led1ColorKpi as variable x

Table A.28 Bit: Input and output arguments

Argument Type Description

x Double/long Processed variable

n Double/long Bit position

y Double/long n-th Bit of x

dx=Filter[x<8];

even=Sum[If[Mod[x,2]==0,1,0]];

odd=Sum[If[Mod[x,2]==1,1,0]];

y=even/odd;

A.4 Miscellaneous

See Table A.28.

y = Bit[x, n] (A.14)

Illustrative example: The colors of the KIS.LIGHT operational LED are associated
with the tasks realized by two groups of workers. The third bit of the numerical color
values associated with the first group is equal to 1. Contrarily, the same bit is equal to
0 for the second group of the color numerical values. The objective is to implement a
CDP which will return 1 for the tasks associated with the first group and 0 otherwise.
Solution:

Step 1. Define a new CDP and its parameters according to TableA.29:
Step 2. Output calculation:

Appendix A: KIS.ME Commands and Their Sample Applications 265

Table A.29 Bit: CDP parameters

Parameter Value

Definition name Get Bit

Published as Calculated Datapoint

Input Datapoints led1ColorKpi as variable x

Table A.30 Counter: CDP parameters

Parameter Value

Definition name Get Bit

Published as Calculated Datapoint

Input Datapoints led1ColorKpiDuration as variable x

xf=Filter[x<8];

y=Bit[xf,3];

y = Counter[x, b] (A.15)

Argument Type Description
x Long/double Possibly varying value (xc, xp signify x at c > p time instances)
bc Long/double Possibly time-varying bias
y Long/double If xc ≥ xp then y = (xc − xp), else y = bc + (xc − xp)

Illustrative example: The objective is to calculate the difference between consecutive
numerical values of the KIS.LIGHT operational LED colors (Table A.30.).
Solution:

Step 1. Define a new CDP according to TableA.30:
Step 2. Output calculation:

y=Counter[x,0];

266 Appendix A: KIS.ME Commands and Their Sample Applications

Table A.31 If: Input and output arguments

Argument Type Description

x Boolean Processed decision variable

a Double/long Input variable

b Double/long Input variable

y Double/long If x is true, then y = a, else
y = b

Table A.32 If: CDP parameters

Parameter Value

Definition name Get If

Published as Calculated datapoint

Input datapoints button1ColorKpi as variable x

Input datapoints button2ColorKpi as variable y

See Table A.31.

y = If[x, a, b] (A.16)

Illustrative example: The colors of the KIS.BOX Button operational LEDs are asso-
ciated with the tasks realized by two group of workers. Implement a CDP calculating
the currentminimumof the numerical values associatedwith these operational LEDs.
Solution:

Step 1. Define a new CDP and its parameters according to TableA.32:
Step 2. Output calculation:

z=If[x<y,x,y];

See Table A.33.

y = Filter[c] (A.17)

Appendix A: KIS.ME Commands and Their Sample Applications 267

Table A.33 If: Input and output arguments

Argument Type Description

c Boolean Logical condition acting on
variable x , e.g., x > 0

y Double/long Values of x satisfying c

Table A.34 Filter: KPI parameters

Parameter Value

Definition name GetFilter

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints led1ColorKpiDuration as variable x

Illustrative example: The colors of the KIS.LIGHT operational LED indicate the
tasks realized by an assembly station. Calculate the total time of tasks associated
with the red color which are longer than two minutes. Perform calculation within a
desired processing period.
Solution:

Step 1. Define a new KPI and its parameters according to TableA.34:
Step 2. Output calculation:

d=If[x==5,Duration[x],0];

y=Sum[Filter[d>2*60000]];

Appendix B
KIS.ME Datapoints and Their Sample
Applications

button1ColorKPIDuration (B.1)

Description: A long type Datapoint associated with the KIS.BOX Button 1 oper-
ational LED. It contains information about the evolution of the color states of the
button as well as their durations. A similar Datapoint is associated with the KIS.BOX
Button 2 operational LED and is called button2ColorKPIDuration.

Illustrative examples:

KPI: There are two tasks associated with two colors of the KIS.BOX Button 1
operational LED, i.e., blue (numerical value 0) and green (numerical value 3). The
objective is to obtain the durations of states corresponding to these colors and find
the maximum one (in minutes) within a selected processing period.
CDP: There are two workers associated with KIS.BOX Buttons 1 and 2. Their
idle state is signified by the green color of the respective operational LED. The
objective is to implement an indicator routine, which will return 1 when both
workers are in the idle state and 0 otherwise.

KPI solution:

Step 1. Define a new KPI and its parameters according to TableB.1:
Step 2. Output definition:

blue = If[x==0,Duration[x],0];

green = If[x==3,Duration[x],0];

y = Round[Max[blue,green]/60000];

© The Editor(s) (if applicable) and The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2

269

https://doi.org/10.1007/978-3-031-33623-2

270 Appendix B: KIS.ME Datapoints and Their Sample Applications

Table B.1 Maximum duration KPI parameters

Parameter Value

Definition name MaxTime

Published as KPI

Processing period Select a desired on

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints button1ColorKPIDuration as variable
x

Table B.2 Idle state CPD parameters

Parameter Value

Definition name IdleTime

Published as Calculated Datapoint

Input datapoints button1ColorKPIDuration as variable
x1 textttbutton2ColorKPIDuration as variable
x2

CDP solution:

Step 1. Define a new CDP and its parameters according to TableB.2
Step 2. Output definition:

idle=If[x1==3 && x2==3,1,0]

button1ColorKPI (B.2)

Description: A long type Datapoint associated with the KIS.BOX Button 1 oper-
ational LED. It contains information about the evolution of the color states of the
button. A similar Datapoint is associated with the KIS.BOX Button 2 operational
LED and is called button2ColorKPI.

Illustrative example:

CDP: It is possible that during the transient between the color states the value of
button1ColorKPI may be outside the admissible color range (cf. Table 2.2).
The objective is to implement a routine eliminating such values.

Appendix B: KIS.ME Datapoints and Their Sample Applications 271

Table B.3 Admissible colors CDP parameters

Parameter Value

Definition name Filtration

Published as Calculated datapoint

Input datapoints button1ColorKpi as variable x

Table B.4 Minimum task number KPI parameters

Parameter Value

Definition name MinTasks

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input calculated datapoint Filtration as variable x

KPI: Use the results provided by the above CDP to calculate the number of real-
ized tasks, which are associated with two colors of the KIS.BOX operational LED.
These are blue (numerical value 0) and green (numerical value 3). Finally, deter-
mine the minimum number of tasks realized by these two groups within a desired
processing period.

CDP solution:

Step 1. Define a new CDP and its parameters according to TableB.3:
Step 2. Output definition:

res=Filter[x<=7];

KPI solution:

Step 1. Define a new KPI and its parameters according to TableB.4:
Step 2. Output KPI definition

:

blue=Sum[If[x == 0, 1, 0]];

green=Sum[If[x == 3, 1, 0]];

y = Min[blue,green];

272 Appendix B: KIS.ME Datapoints and Their Sample Applications

Table B.5 Minimum number of tasks KPI parameters

Parameter Value

Definition name MinPressed

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input Datapoints button1Pressed as x1

button2Pressed as x2

button1Pressed (B.3)

Description: A Boolean type Datapoint associated with KIS.BOX Button 1. It con-
tains information about the states related to pressing this button, which are equivalent
to the logical truth. A similar Datapoint is associated with KIS.BOX Button 2 and is
called button2Pressed.

Illustrative example: There are two workers which are associated with KIS.BOX
Buttons 1 and 2. Each of them presses the respective button after realizing a given
task. The objective is to implement a routine calculating the minimum number of
tasks realized by either worker within a selected processing period.
Solution:

Step 1. Define a new KPI and its parameters according to TableB.5:
Step 2. Output definition:

Total=Min[Sum[If[x1,1,0]],Sum[If[x2,1,0]]];

isOnline (B.4)

Description:ABoolean typeDatapoint associatedwith aKIS.Device,which contains
information about its online states, i.e., connection toWiFi, alongwith their durations.

Appendix B: KIS.ME Datapoints and Their Sample Applications 273

Table B.6 Total online duration KPI parameters

Parameter Value

Definition name OnlineTime

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoint isOnline as variable x

Illustrative example: Calculate the total duration (in minutes) of online states of
KIS.Device within a desired processing period.
Solution:

Step 1. Define a new KPI and its parameters according to TableB.6:
Step 2. Output KPI definition:

y = Round[Sum[If[x, Duration[x], 0]]/60000];

led1ColorKPIDuration (B.5)

Description: A long type Datapoint associated with the KIS.LIGHT operational
LED. It contains information about the evolution of the color states of this LED as
well as their durations.

Illustrative example: A machine performs an assembly process, which is signified
by the blue color (numerical value 0) of the KIS.LIGHT operational LED. If the
assembly is completed, then the color is changed into red (numerical value 5). The
objective is to calculate a median duration (in minutes) of realizing the tasks indi-
cated by the blue color within a selected processing period. Hint.: The median value
corresponds to the 50th percentile.
Solution:

Step 1. Define the new KPI and its parameters according to TableB.7:
Step 2. Output KPI definition:

colorBlue=If[x==0,Duration[x],0]/60000;

y=Percentile[Filter[colorBlue>0],50];

274 Appendix B: KIS.ME Datapoints and Their Sample Applications

Table B.7 Median duration KPI parameters

Parameter Value

Definition name Percentile

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints led1ColorKpiDuration as variable x

Table B.8 Even and odd tasks KPI parameters

Parameter Value

Definition name Ratio

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input datapoints led1ColorKpi as variable x

ledColorKPI (B.6)

Description: A long type Datapoint associated with the KIS.LIGHT operational
LED. It contains information about the evolution of the color states of this LED.

Illustrative example: The KIS.LIGHT operational LED indicates tasks realized by
two workers. In particular, the colors with even numerical values are assigned to the
tasks realized by the first worker while those with odd ones are associated with the
second one. The objective is to calculate the ration between the total number of tasks
realized within a selected processing period.

Solution:

Step 1. Define a new KPI and its parameters according to TableB.8,
Step 2. Output definition:

x=Filter[x1<=7];

even=Sum[If[Mod[x,2]==0,1,0]];

odd=Sum[If[Mod[x,2]==1,1,0]];

y=even/odd;

Appendix B: KIS.ME Datapoints and Their Sample Applications 275

Table B.9 FPY KPI parameters

Parameter Value

Definition name PassedFailed

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input Datapoints input1Status as variable x1
input2Status as variable x2

input1Status (B.7)

Description:ABoolean typeDatapoint,which corresponds to the state ofKIS.Device
digital input 1. A similar Datapoint is defined for the second digital input and is called
input2Status.
Illustrative example: Let us imagine a quality control process. If a product passes the
quality control test, then KIS.Device digital input 1 is fed with the sequence false–
true–false. Contrarily, if the product fails this test, then KIS.Device digital input 1 is
fed with such a sequence. The objective is to calculate FPY (cf. (4.3)) related to the
quality control process within a selected processing period

Solution:

Step 1. Define the new parameters according to TableB.9:
Step 2. Output KPI definition:

NumberPassed = RisingEdge[x1];

NumberFailed = RisingEdge[x2];

Total = NumberPassed + NumberFailed;

FPY = If[Total>0,Round[NumberPassed/Total*100],0];

output1Status (B.8)

Description:ABoolean typeDatapoint,which corresponds to the state ofKIS.Device
digital output 1. A similar Datapoint is defined for the second digital output and is
called output2Status.

276 Appendix B: KIS.ME Datapoints and Their Sample Applications

Table B.10 Total mounting task number KPI parameters

Parameter Value

Definition name SumComponents

Published as KPI

Processing period Select a desired one

Processing start Select a desired one

Starting hour Select a desired one

Input Datapoints output1Status as variable x1
output2Status as variable x2

Illustrative example: A worker performs two tasks, i.e., the controller and frame
mounting ones. If the first one is completed, then KIS.Device digital output 1 is
fed with the false–true–false sequence. Similarly, if the second task is completed,
then KIS.Device digital output 2 is fed with the same sequence. The objective is to
calculate the total number of realized tasks within a selected processing period.

KPI Solution:

Step 1. Define new KPI parameters according to TableB.10:
Step 2. Output KPI definition:

Frames = FallingEdge[x1];

Controllers = FallingEdge[x2];

y=Frames+Controllers;

Appendix C
Glossary

System A part of the universe, that can be affected and/or
monitored by KIS.ME.

KIS.MANAGER TheKIS.MEweb platform used to affect and/or mon-
itor the system.

KIS.BOX A communication twin push-button box.
KIS.LIGHT A communication signal lamp.
KIS.Device SomeKIS.MEhardware, e.g.,KIS.BOX,KIS.LIGHT,

etc.
KIS.API A particular instance of RESTAPI, which is designed

for the purpose of a unified and convenient communi-
cation with KIS.Devices and the associated environ-
ment operating within KIS.MANAGER.

Asset A physical part of the system, which is exemplified
by KIS.Devices.

Asset group A set of assets.
Floorplan A graphical representation of the workshop.
Datapoint A read only variable, which corresponds to a pos-

sibly time-varying property of a KIS.Device. It can
be also defined as an exchanged value between the
KIS.Device and KIS.MANAGER.

Dashboard An overview page for an asset and/or asset groups.
Digital twin A KIS.MANAGER-based virtual counterpart of a

KIS.DEVICE, which is connected to the real one
through a dedicated WiFi.

Onboarding The process of linking KIS.Devices with KIS.
MANAGER.

Process Everything what is needed for transforming an input
into an output for a customer.

Processing period A predefined period of time, which can be either 15,
30 or 60min.

© The Editor(s) (if applicable) and The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2

277

https://doi.org/10.1007/978-3-031-33623-2

278 Appendix C

Calculated Datapoints FLEX language-based scripts enabling instant pro-
cessing of Datapoints.

Key performance indicators FLEX language-based scripts enabling the process-
ing ofDatapoints over a predefinedprocessing period.

Rule engine AKIS.MANAGER functionality whichmakes it pos-
sible to implement functional IF-THEN rules govern-
ing interactions between assets.

State A set of variables which can be used to describe any
past and future system behaviour.

User A human entity with granted access to KIS.
MANAGER.

User group A set of users with a predefined KIS.MANAGER
rights level.

Websocket A communication protocol, which permits bidirec-
tional communication between the client and the web
server.

Widget An interface component which makes it possible to
perform a desired action.

Workspace A selected part of the systemwhich inherits its desired
set of assets (asset group).

Index

A

Access control, 79
external hardware/software, 82
general, 79
identification command, 82
individual, 79
reset command, 82

Adding a new user, 28
Adding asset groups, 26
Adding dashboard, 39
Admin, 26
Admin and workspaces, 30
Admin user, 24, 72
Aggregation, 118
Agriculture and environmental applications,

6
Assembly line stations, 96
Asset, 277

assigning to a group, 34
binary state, 41
certificate, 39
changing name, 34
device information, 37
digital input, 41
digital output, 41
firmware update, 39
group relationship graph, 37
hardware, 39
info, 34
management, 33
network, 39
software, 39
time drive, 41, 42, 52

Asset group, 25, 277
adding, 26

time drive, 52
Assigning user rights, 28
Assigning users to a group, 32
Associativity of conjunction:, 62
Associativity of disjunction, 62
Automated guided vehicle, 194

B

BaseUrl, 213
Bit, 264
Button1ColorKPI, 270
Button1ColorKPIDuration, 269
Button1Pressed, 272
Button2ColorKPIDuration, 269
Button2Pressed, 272

C

Calculate Datapoints (CDP), 278
sharing, 131

Changing WLAN, 25
Chart

x̄ , 150
Datapoint, 45

Commutativity of conjunction, 62
Commutativity of disjunction, 62
Container

capacity, 99
Contraposition law, 62
Count, 252
Counter, 265

© The Editor(s) (if applicable) and The Author(s) 2023
M. Witczak et al., Modern IoT Onboarding Platforms for Advanced Applications,
Studies in Systems, Decision and Control 476,
https://doi.org/10.1007/978-3-031-33623-2

279

https://doi.org/10.1007/978-3-031-33623-2

280 Index

D

Dashboard, 277
Datapoint, 11, 24, 44, 45, 277
Datapoint chart, 45

analyzing data, 48
multiple plots, 45
storing data, 48

Datapoint chart widget, 39
Data sheet widget, 39
Decision table, 61
Defect per unit

significance, 173
Demerit

number, 171
Demerit system, 171
De Morgan’s law, 62
Digital twin, 277

design, 41
Digital twin widget, 39, 41
Discrete event system, 235
Distribution

location, 132
shape, 132
variability, 132

Distributivity of conjunction, 62
Distributivity of disjunction, 62
Double negation, 62
Duration, 261

E

End, 260

F

FallingEdge, 253
Fault, 205
Fault-tolerance, 201, 205
Filter, 267
First Pass Yield (FPY), 127
FLEX

language, 117
Floorplan, 23, 277

SVG, 50
Floorplan widget, 49

headline, 52
Full duplex, 235

G

General Purpose Input Output (GPIO), 23
Group relationship graph, 37

H

Histogram, 146
bin calculation, 147
grouping, 147

Hospitality and leisure industry, 7
Human–Machine Interface (HMI), 21

I

Idempotency of conjunction, 62
Idempotency of disjunction, 62
If, 266
IF-THEN rules, 23
Industrial applications, 4
Info widget, 39
Initial state, 28
Input1Status, 275
Input2Status, 275
Installer, 26
Interval, 262
Inventory asset group, 26
isOnline, 272

J

Just-in-time strategy, 96

K

Kanban, 98
number, 98

KeyPerformance Indicator (KPI), 11, 24, 41,
50, 125, 278

sharing, 131
KIS.API, 211, 277

actions, 212
asset group requests, 215
asset requests, 215
calculated Datapoints, 223
credentials, 213

Index 281

Datapoints, 220
enabledAPI, 229
Excel, 229
identifier, 212
KPIs, 223
Matlab, 231
path variables, 214
registration and authorization, 212
representation, 211
resources, 211
rules, 227
rule trigger, 228
status code, 212
subscription, 237
user requests, 219

KIS.BOX, 277
KIS.Device, 277
KIS.LIGHT, 277
KIS.MANAGER, 277
KIS.ME demo, 25
KPI aggregated chart widget, 41, 135
KPI pie chart widget, 41, 136
KPI single period chart widget, 41, 136
KPI single value column widget, 41, 135
KPI single value widget, 41

L

Led1ColorKPIDuration, 273
LedColorKPI, 274
Linguistic objects, 54
Long polling, 235
Lower Control Limit (LCL), 149

M

M12 8-pin, 23
Material shortages, 98
MATLAB

rule triggering, 233
Matlab

Datapoints, 231
webread, 232

Max, 254
Mean, 255

assembly durations, 135
Median, 132, 133
Message Queuing Telemetry Transport

(MQTT), 24

Messaging, 237
Milk run logistics, 95
Min, 256
Mod, 263
MS Excel

power query, 229
My devices, 26

N

Negation, 61
Notification templates, 55

variables, 55

O

Observer, 26
Onboarding, 24, 277

onboarding.zip, 24
procedure, 24

Operator, 26
Output1Status, 275
Output2Status, 275
Overall Equipment Effectiveness (OEE), 11,

177

P

Parts
containers, 97

Percentile, 133, 257
Process, 132, 277

in control, 133
out of control, 133

Processing period, 117, 224, 277
Pusher, 242

R

Range, 133
Rights and permissions, 28
RisingEdge, 258
Rule

action, 54
antecedent, 54

282 Index

automatic simplification, 64
consequents, 54
inconsistency, 65
reduction principle, 66
redundancy, 65

Rule base
completeness, 67

Rule-based system, 54
Rule engine, 12, 23, 54, 278

actions, 55
conditions, 55
device action, 55
inference, 55
initial condition, 57
rule interactions, 58
triggers, 55

S

Safety stocks, 98
Secure authentication, 24
Security, 24
Simple Text-Oriented Messaging Protocol

(STOMP), 237
heart-beating, 238

Standard deviation, 133
assembly durations, 135

State, 278
State-space model, 58
Statistical control state, 145
Status LED, 21
Stdev, 258
Streaming, 235
Sum, 259
Supermarket, 96
Supermarket points, 96
SVG, 50
System, 277

rule-based, 54
state, 58
state-space, 58
state-space model, 58

T

Tautology, 61

Traffic lights, 59
Transfer constraint, 205
Trigger

logistic objects, 55
optional settings, 55

Truth tables, 62

U

Unique Resource Name, 19
Upper Control Limit (UCL), 149
User, 278
User group, 24, 25, 278

membership, 26
User group permissions, 32

V

Variance, 133
Variation

common cause, 133
special cause, 133

W

Warehouse management system, 89
Websocket, 234, 278
Widget, 39, 278

floorplan, 49
WiFi

parameters, 24
WiFi fingerprint, 7
Workspace, 25, 278

Z

Zone, 105
floorplan, 105
identification, 107

	Preface
	Contents
	Acronyms
	1 Introduction
	1.1 IoT Overview
	1.1.1 Logistics and Transportation
	1.1.2 Industrial Applications
	1.1.3 Agriculture and Environmental Applications
	1.1.4 Hospitality and Leisure Industry Applications
	1.1.5 Healthcare

	1.2 Where Does KIS.ME Go?
	1.3 Contents of the Book
	References

	2 Onboarding and Preliminary Functionality Training
	2.1 Preliminaries, Registration and Onboarding
	2.2 Hierarchical Structure: From Assets and Users to Workspaces
	2.3 Rights and Permissions
	2.3.1 User Management
	2.3.2 User Groups and Workspace Management

	2.4 Asset Management
	2.5 Dashboards and Widgets
	2.6 Digital Twin Design
	2.7 Datapoints: Plotting and Storing Data
	2.8 Let Us Go to Workspaces: An Introductory Example with the Floorplan Widget
	2.9 Let Us Rule: Managing Rules Within a Workspace
	2.10 State-Space Modelling
	2.11 Mastering Rule Management: Completeness and Consistency
	2.11.1 Transforming Conditions
	2.11.2 Decision Tables

	2.12 Case Study: Trend Plotting and Performance Analysis
	2.13 Training Exercises
	2.14 Concluding Remarks
	References

	3 Towards Logistic Applications
	3.1 Access Control
	3.1.1 Managing a Small Warehouse

	3.2 Two Points–One Transporter
	3.3 Multiple Points–One Transporter
	3.4 Multiple Points–Multiple Transporters
	3.5 Visualizing the Performance of Logistic Applications
	3.6 Training Exercises
	3.7 Concluding Remarks
	References

	4 Implementing and Using Essential Statistical Process Control
	4.1 Data Processing Definitions
	4.1.1 Calculated Datapoints
	4.1.2 Key Performance Indicators

	4.2 Statistical Measures: Location and Variability
	4.3 Understanding process performance with widgets …
	4.3.1 Single Value Column Chart
	4.3.2 Single Period and Pie Charts
	4.3.3 Aggregated Chart

	4.4 Control Charts: Comparison and Analysis
	4.4.1 Histograms
	4.4.2 Control Charts with Limits

	4.5 Practical Example Revisited
	4.6 Training Exercises
	4.7 Concluding Remarks
	References

	5 Mastering System Monitoring and Control
	5.1 Defining the Performance Cost Function and Its Control
	5.2 Monitoring the Product Rejection Rate
	5.3 Demerit System Control
	5.4 Overall Equipment Effectiveness
	5.5 Training Exercises
	5.6 Concluding Remarks
	References

	6 Towards Advanced Applications
	6.1 Modelling Users and Their Interactions
	6.1.1 Assembly Process

	6.2 Transportation Process
	6.3 Integrating Workers Within a Semi-automatic Assembly System
	6.4 Scheduling Transportation Actions
	6.4.1 Health-aware and Fault-Tolerant Transportation Scheduling

	6.5 Training Exercise: Work Scheduling
	6.6 Concluding Remarks
	References

	7 KIS.API: Towards External Communication
	7.1 Introduction to KIS.API
	7.1.1 User Registration and Authorization

	7.2 Essential Functionalities
	7.2.1 Obtaining Information About Asset Groups, Assets and Users
	7.2.2 Accessing Data Through Datapoints
	7.2.3 KPIs and Calculated Datapoints
	7.2.4 Accessing Information About Rules
	7.2.5 Triggering Rules from External Applications

	7.3 KIS.API in Practice
	7.3.1 Feeding MS Excel with KIS.ME Data
	7.3.2 Feeding Matlab with KIS.ME Data

	7.4 Triggering Rules from MATLAB
	7.5 Websockets
	7.5.1 Brief Introduction to Websockets
	7.5.2 Obtaining a KIS.ME URI and Identifiers
	7.5.3 Brief Introduction to STOMP
	7.5.4 Sample Websocket Implementations

	7.6 Training Exercises
	7.7 Concluding Remarks
	References

	Appendix A KIS.ME Commands and Their Sample Applications
	A.1 Aggregations
	A.2 Intervals
	A.3 Numeric
	A.4 Miscellaneous
	Appendix B KIS.ME Datapoints and Their Sample Applications
	Appendix C Glossary
	Index

