Skip to main content

Pathways in Human Arrhythmias: Impact of Post-translational Modifications

  • Chapter
  • First Online:
Heart Rate and Rhythm

Abstract

The cardiac proteome has a vast number of gene products that are post-translationally modified (PTM). PTMs are essential for the regulation of normal excitation–contraction coupling. However, dysfunction in PTM may also result in aberrant cardiac excitability and potentially arrhythmia. In this chapter, we review post-translational modifications in the context of normal heart excitation–contraction coupling and in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stevens TL, Wallace MJ, El Refaey M, Roberts JD, Koenig SN, Mohler PJ. Arrhythmogenic cardiomyopathy: molecular insights for improved therapeutic design. J Cardiovasc Dev Dis. 2020;7(2):21.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Xiao B, Zhong G, Obayashi M, Yang D, Chen K, Walsh MP, et al. Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon β-adrenergic stimulation in normal and failing hearts. Biochem J. 2006;396(1):7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wehrens XHT, Lehnart SE, Reiken S, Vest JA, Wronska A, Marks AR. Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci U S A. 2006;103(3):511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grandi E, Bers DM. Models of the ventricular action potential in health and disease. In: Zipes DP, Jalife J, Stevenson WG, editors. Cardiac electrophysiology: from cell to bedside. 6th ed. Philadelphia, PA: Elsevier; 2014. p. 319–30.

    Chapter  Google Scholar 

  5. Solaro RJ, Moir AJG, Perry SV. Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature. 1976;262(5569):615–7.

    Article  CAS  PubMed  Google Scholar 

  6. Koss KL, Kranias EG. Phospholamban: a prominent regulator of myocardial contractility. Circ Res. 1996;79:1059–63.

    Article  CAS  PubMed  Google Scholar 

  7. Pogoda K, Kameritsch P, Retamal MA, Vega JL. Regulation of gap junction channels and hemichannels by phosphorylation and redox changes: A revision. BMC Cell Biol. 2016;17(Suppl 1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Raifman TK, Kumar P, Haase H, Klussmann E, Dascal N, Weiss S. Protein kinase C enhances plasma membrane expression of cardiac L-type calcium channel, CaV1.2. Channels. 2017;11(6):604–15.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singh A, Redden JM, Kapiloff MS, Dodge-Kafka KL. The large isoforms of A-kinase anchoring protein 18 mediate the phosphorylation of inhibitor-1 by protein kinase A and the inhibition of protein phosphatase 1 activity. Mol Pharmacol. 2011;79(3):533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sahin B, Shu H, Fernandez J, El-Armouche A, Molkentin JD, Nairn AC, et al. Phosphorylation of protein phosphatase inhibitor-1 by protein kinase C. J Biol Chem. 2006;281(34):24322–35.

    Article  CAS  PubMed  Google Scholar 

  11. Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting protein kinase activity in the heart: the multiple roles of protein phosphatases. Front Pharmacol. 2015;6:270.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wypijewski KJ, Howie J, Reilly L, Tulloch LB, Aughton KL, McLatchie LM, et al. A separate pool of cardiac phospholemman that does not regulate or associate with the sodium pump: Multimers of phospholemman in ventricular muscle. J Biol Chem. 2013;288(19):13808–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Silverman BDZ, Fuller W, Eaton P, Deng J, Moorman JR, Cheung JY, et al. Serine 68 phosphorylation of phospholemman: acute isoform-specific activation of cardiac Na/K ATPase. Cardiovasc Res. 2005;65(1):93–103.

    Article  CAS  PubMed  Google Scholar 

  14. Wehrens XH, Lehnart SE, Reiken SR, Marks AR. Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res. 2004;94(6):e61–70.

    Article  CAS  PubMed  Google Scholar 

  15. Howard T, Greer-Short A, Satroplus T, Patel N, Nassal D, Mohler PJ, et al. CaMKII-dependent late Na+ current increases electrical dispersion and arrhythmia in ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2018;315(4):H794–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lindemann JP, Watanabe AM. Phosphorylation of phospholamban in intact myocardium. Role of Ca2+−calmodulin-dependent mechanisms. J Biol Chem. 1985;260(7):4516–25.

    Article  CAS  PubMed  Google Scholar 

  17. Saffitz JE, Laing JG, Yamada KA. Connexin expression and turnover: implications for cardiac excitability. Circ Res. 2000;86:723–8.

    Article  CAS  PubMed  Google Scholar 

  18. Verheyen EM, Gottardi CJ. Regulation of Wnt/β-catenin signaling by protein kinases. Dev Dynam. 2010;239:34–44.

    Article  CAS  Google Scholar 

  19. Pyun JH, Kim HJ, Jeong MH, Ahn BY, Vuong TA, Lee DI, et al. Cardiac specific PRMT1 ablation causes heart failure through CaMKII dysregulation. Nat Commun. 2018;9(1):5107.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Albrecht LV, Zhang L, Shabanowitz J, Purevjav E, Towbin JA, Hunt DF, et al. GSK3- and PRMT-1-dependent modifications of desmoplakin control desmoplakin-cytoskeleton dynamics. J Cell Biol. 2015;208(5):597–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beltran-Alvarez P, Pagans S, Brugada R. The cardiac sodium channel is post-translationally modified by arginine methylation. J Proteome Res. 2011;10(8):3712–9.

    Article  CAS  PubMed  Google Scholar 

  22. Beltran-Alvarez P, Espejo A, Schmauder R, Beltran C, Mrowka R, Linke T, et al. Protein arginine methyl transferases-3 and -5 increase cell surface expression of cardiac sodium channel. FEBS Lett. 2013;587(19):3159–65.

    Article  CAS  PubMed  Google Scholar 

  23. Beltran-Alvarez P, Feixas F, Osuna S, Díaz-Hernández R, Brugada R, Pagans S. Interplay between R513 methylation and S516 phosphorylation of the cardiac voltage-gated sodium channel. Amino Acids. 2015;47(2):429–34.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010;327(5968):1000–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell. 2006;23(4):607–18.

    Article  CAS  PubMed  Google Scholar 

  26. Ahn BH, Kim HS, Song S, In HL, Liu J, Vassilopoulos A, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci U S A. 2008;105(38):14447–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finley LWS, Haas W, Desquiret-Dumas V, Wallace DC, Procaccio V, Gygi SP, et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS One. 2011;6(8):e23295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jespersen T, Membrez M, Nicolas CS, Pitard B, Staub O, Olesen SP, et al. The KCNQ1 potassium channel is down-regulated by ubiquitylating enzymes of the Nedd4/Nedd4-like family. Cardiovasc Res. 2007;74(1):64–74.

    Article  CAS  PubMed  Google Scholar 

  29. Van Bemmelen MX, Rougier JS, Gavillet B, Apothéloz F, Daidié D, Tateyama M, et al. Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ Res. 2004;95(3):284–91.

    Article  PubMed  Google Scholar 

  30. Hu Y, Bai X, Zhang C, Chakrabarti S, Tang B, Xiong H, et al. Ubiquitination-activating enzymes UBE1 and UBA6 regulate ubiquitination and expression of cardiac sodium channel Nav1.5. Biochem J. 2020;477(9):1683–700.

    Article  CAS  PubMed  Google Scholar 

  31. Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, et al. The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nature Neurosci. 2011;14(2):173–82.

    Article  CAS  PubMed  Google Scholar 

  32. Kubbutat MHG, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature. 1997;387(6630):299–303.

    Article  CAS  PubMed  Google Scholar 

  33. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature. 2007;446(7134):444–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kho C, Lee A, Jeong D, Oh JG, Chaanine AH, Kizana E, et al. SUMO1-dependent modulation of SERCA2a in heart failure. Nature. 2011;477(7366):601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rajan S, Plant LD, Rabin ML, Butler MH, Goldstein SAN. Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell. 2005;121(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  36. Benson MD, Li QJ, Kieckhafer K, Dudek D, Whorton MR, Sunahara RK, et al. SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proc Natl Acad Sci U S A. 2007;104(6):1805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qi Y, Wang J, Bomben VC, Li DP, Chen SR, Sun H, et al. Hyper-SUMOylation of the Kv7 Potassium channel diminishes the M-current leading to seizures and sudden death. Neuron. 2014;83(5):1159–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park HJ, Min SH, Won YJ, Lee JH. Asn-linked glycosylation contributes to surface expression and voltage-dependent gating of Cav1.2 Ca2+ channel. J Microbiol Biotechnol. 2015;25(8):1371–9.

    Article  CAS  PubMed  Google Scholar 

  39. Tétreault MP, Bourdin B, Briot J, Segura E, Lesage S, Fiset C, et al. Identification of glycosylation sites essential for surface expression of the CaVα2δ1 subunit and modulation of the cardiac CaV1.2 channel activity. J Biol Chem. 2016;291(9):4826–43.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harrison OJ, Brasch J, Lasso G, Katsamba PS, Ahlsen G, Honig B, et al. Structural basis of adhesive binding by desmocollins and desmogleins. Proc Natl Acad Sci U S A. 2016;113(26):7160–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ubersax JA, Ferrell JE. Mechanisms of specificity in protein phosphorylation. Nature Rev Mol Cell Biol. 2007;8:530–41.

    Article  CAS  Google Scholar 

  42. Makwana MV, Muimo R, Jackson RFW. Advances in development of new tools for the study of phosphohistidine. Lab Investig [Internet]. 2018;98(3):291–303. https://doi.org/10.1038/labinvest.2017.126.

    Article  CAS  PubMed  Google Scholar 

  43. Ahern BM, Satin J. The L-type calcium channel current modulation mechanism: the plot thickens and fogs. J Clin Invest. 2019;129(2):496–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang L, Katchman A, Kushner J, Kushnir A, Zakharov SI, Chen BX, et al. Cardiac CaV1.2 channels require β subunits for β-adrenergic–mediated modulation but not trafficking. J Clin Invest. 2019;129(2):647–58.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ali A, Hoeflich KP, Woodgett JR. Glycogen synthase kinase-3: properties, functions, and regulation. Chem Rev. 2001;101(8):2527–40.

    Article  CAS  PubMed  Google Scholar 

  46. Cole A, Frame S, Cohen P. Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem J. 2004;377(1):249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sugden PH, Fuller SJ, Weiss SC, Clerk A. Glycogen synthase kinase 3 (GSK3) in the heart: a point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. Br J Pharmacol. 2008;153(Suppl 1):S137–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR, Mills GB. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A. 2000;97(22):11960–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002;108(6):837–47.

    Article  CAS  PubMed  Google Scholar 

  50. Piven OO, Winata CL. The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling. Exp Biol Med. 2017;242:1735–45.

    Article  CAS  Google Scholar 

  51. Hulsurkar M, Quick AP, Wehrens XHT. STAT3: a link between CaMKII–βIV-spectrin and maladaptive remodeling? J Clin Invest. 2018;128(12):5251–66.

    Article  Google Scholar 

  52. Bhasin N, Cunha SR, Mudannayake M, Gigena MS, Rogers TB, Mohler PJ. Molecular basis for PP2A regulatory subunit B56α targeting in cardiomyocytes. Am J Physiol - Heart Circ Physiol. 2007;293(1):H109–19.

    Article  CAS  PubMed  Google Scholar 

  53. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A. 2004;101(33):12130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Godsel LM, Hsieh SN, Amargo EV, Bass AE, Pascoe-McGillicuddy LT, Huen AC, et al. Desmoplakin assembly dynamics in four dimensions: multiple phases differentially regulated by intermediate filaments and actin. J Cell Biol. 2005;171(6):1045–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kottke MD, Delva E, Kowalczyk AP. The desmosome: cell science lessons from human diseases. J Cell Sci. 2006;119(5):797–806.

    Article  CAS  PubMed  Google Scholar 

  56. Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. Biochim Biophys Acta - Prot Proteom. 2016;1864:1372–401.

    Article  CAS  Google Scholar 

  57. Maack C, O’Rourke B. Excitation-contraction coupling and mitochondrial energetics. Bas Res Cardiol. 2007;102:369–92.

    Article  CAS  Google Scholar 

  58. Parodi-Rullán RM, Chapa-Dubocq XR, Javadov S. Acetylation of mitochondrial proteins in the heart: the role of SIRT3. Front Physiol. 2018;9:1094.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ezeani M. Aberrant cardiac metabolism leads to cardiac arrhythmia. Front Biosci (Schol Ed). 2020;12:200–21.

    Article  PubMed  Google Scholar 

  60. Koentges C, Pfeil K, Schnick T, Wiese S, Dahlbock R, Cimolai MC, et al. SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol. 2015;110(4):1–20.

    Article  Google Scholar 

  61. Dittenhafer-Reed KE, Richards AL, Fan J, Smallegan MJ, Fotuhi Siahpirani A, Kemmerer ZA, et al. SIRT3 mediates multi-tissue coupling for metabolic fuel switching. Cell Metab. 2015;21(4):637–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu YT, Lee HC, Liao CC, Wei YH. Regulation of mitochondrial F(o)F(1)ATPase activity by Sirt3-catalyzed deacetylation and its deficiency in human cells harboring 4977bp deletion of mitochondrial DNA. Biochim Biophys Acta Mol basis Dis. 2013;1832(1):216–27.

    Article  CAS  Google Scholar 

  63. Vassilopoulos A, Pennington JD, Andresson T, Rees DM, Bosley AD, Fearnley IM, et al. SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient-and exercise-induced stress. Antioxidants Redox Signal. 2014;21(4):551–64.

    Article  CAS  Google Scholar 

  64. Kocaturk NM, Gozuacik D. Crosstalk between mammalian autophagy and the ubiquitin-proteasome system. Front Cell Dev Biol. 2018;6:128.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature. 2012;482(7384):186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Loh KWZ, Liang MC, Soong TW, Hu Z. Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins. Pflugers Arch Eur J Physiol. 2020;472:653–67.

    Article  CAS  Google Scholar 

  67. Pagan J, Seto T, Pagano M, Cittadini A. Role of the ubiquitin proteasome system in the heart. Circ Res. 2013;112:1046–58.

    Article  CAS  PubMed  Google Scholar 

  68. Chatterjee A, Mir SA, Dutta D, Mitra A, Pathak K, Sarkar S. Analysis of p53 and NF-κB signaling in modulating the cardiomyocyte fate during hypertrophy. J Cell Physiol. 2011;226(10):2543–54.

    Article  CAS  PubMed  Google Scholar 

  69. Tsipis A, Athanassiadou AM, Athanassiadou P, Kavantzas N, Agrogiannis G, Patsouris E. Apoptosis-related factors p53, bcl-2 and the defects of force transmission in dilated cardiomyopathy. Pathol Res Pract. 2010;206(9):625–30.

    Article  CAS  PubMed  Google Scholar 

  70. Tang B, Hu Y, Wang Z, Cheng C, Wang P, Liang L, et al. UBC9 regulates cardiac sodium channel Nav1.5 ubiquitination, degradation and sodium current density. J Mol Cell Cardiol. 2019;129:79–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Aebi M. N-linked protein glycosylation in the ER. Biochim Biophys Acta, Mol Cell Res. 2013;1833:2430–7.

    Article  CAS  PubMed  Google Scholar 

  72. Brodehl A, Stanasiuk C, Anselmetti D, Gummert J, Milting H. Incorporation of desmocollin-2 into the plasma membrane requires N-glycosylation at multiple sites. FEBS Open Bio. 2019;9(5):996–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dobrev D, Wehrens XHT. Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryanodine receptor phosphorylation in cardiac disease. Circ Res. 2014;114(8):1311–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sag CM, Wadsack DP, Khabbazzadeh S, Abesser M, Grefe C, Neumann K, et al. Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circ Heart Fail. 2009;2(6):664–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fischer TH, Herting J, Tirilomis T, Renner A, Neef S, Toischer K, et al. Ca2+/calmodulin-dependent protein kinase II and protein kinase A differentially regulate sarcoplasmic reticulum Ca2+ leak in human cardiac pathology. Circulation. 2013;128(9):970–81.

    Article  CAS  PubMed  Google Scholar 

  76. Zhu W, Wang C, Hu J, Wan R, Yu J, Xie J, et al. Ankyrin-B Q1283H variant linked to arrhythmias via loss of local protein phosphatase 2A activity causes ryanodine receptor hyperphosphorylation. Circulation. 2018;138(23):2682–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Garcia-Gras E, Lombardi R, Giocondo MJ, Willerson JT, Schneider MD, Khoury DS, et al. Suppression of canonical Wnt/β-catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. J Clin Invest. 2006;116(7):2012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roberts JD, Murphy NP, Hamilton RM, Lubbers ER, James CA, Kline CF, et al. Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy. J Clin Invest. 2019;129(8):3171–84.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Aggarwal S, Banerjee SK, Talukdar NC, Yadav AK. Post-translational modification crosstalk and hotspots in Sirtuin interactors implicated in cardiovascular diseases. Front Genet. 2020;11:356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Horton JL, Martin OJ, Lai L, Riley NM, Richards AL, Vega RB, et al. Mitochondrial protein hyperacetylation in the failing heart. JCI Insight. 2016;2(1):e84897.

    PubMed  Google Scholar 

  81. Davidson MT, Grimsrud PA, Lai L, Draper JA, Fisher-Wellman KH, Narowski TM, et al. Extreme acetylation of the cardiac mitochondrial proteome does not promote heart failure. Circ Res. 2020;127(8):1094–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yuan Y, Zhao J, Yan S, Wang D, Zhang S, Yun F, et al. Autophagy: a potential novel mechanistic contributor to atrial fibrillation. Int J Cardiol. 2014;172(2):492–4.

    Article  PubMed  Google Scholar 

  83. Yuan Y, Zhao J, Gong Y, Wang D, Wang X, Yun F, et al. Autophagy exacerbates electrical remodeling in atrial fibrillation by ubiquitin-dependent degradation of L-type calcium channel. Cell Death Dis. 2018;9(9):873.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Goonasekera SA, Hammer K, Auger-Messier M, Bodi I, Chen X, Zhang H, et al. Decreased cardiac L-type Ca 2+channel activity induces hypertrophy and heart failure in mice. J Clin Invest. 2012;122(1):280–90.

    Article  CAS  PubMed  Google Scholar 

  85. Hu Z, Wang JW, Yu D, Soon JL, De Kleijn DPV, Foo R, et al. Aberrant splicing promotes proteasomal degradation of L-type Ca v 1.2 calcium channels by competitive binding for CaV β subunits in cardiac hypertrophy. Sci Rep. 2016;6:35247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Erickson JR, Pereira L, Wang L, Han G, Ferguson A, Dao K, et al. Diabetic hyperglycaemia activates CaMKII and arrhythmias by O-linked glycosylation. Nature. 2013;502(7471):372–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Leney AC, El Atmioui D, Wu W, Ovaa H, Heck AJR. Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Proc Natl Acad Sci U S A. 2017;114(35):E7255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zeidman R, Jackson CS, Magee AI. Protein acyl thioesterases (review). Mol Membr Biol. 2009;26:32–41.

    Article  CAS  PubMed  Google Scholar 

  89. Pei Z, Xiao Y, Meng J, Hudmon A, Cummins TR. Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation. Nat Commun. 2016;7:12035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants HL135754, HL134824, HL139348 and American Heart Association grant 20YVNR35490079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Mohler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Argall, A.D., Koenig, S.N., Mohler, P.J. (2023). Pathways in Human Arrhythmias: Impact of Post-translational Modifications. In: Tripathi, O.N., Quinn, T.A., Ravens, U. (eds) Heart Rate and Rhythm. Springer, Cham. https://doi.org/10.1007/978-3-031-33588-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33588-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33587-7

  • Online ISBN: 978-3-031-33588-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics