Skip to main content

Analysis on the Balance of Health Care Resource Allocation Based on Improved Machine Learning

  • Conference paper
  • First Online:
IoT and Big Data Technologies for Health Care (IoTCare 2022)

Included in the following conference series:

  • 124 Accesses

Abstract

Health resource planning is an important means for the government to adjust resource allocation and achieve fair and efficient development of health. Its core is the balanced allocation of health resources. In order to solve the problem of low accuracy of health resource demand prediction, an analysis method of health resource allocation equilibrium based on improved machine learning was designed. Using the two-step mobile search method, combined with the Gaussian distance attenuation function and the search threshold set according to the classification of medical facilities, the spatial accessibility of weekday medical services is calculated. Based on the improved machine learning, the demand for health resources is predicted, and the change of resource characteristics and relevant policy variables leads to the change of health resource demand. According to the prediction results of the demand for health care resources, a supply-demand coordination model is constructed to measure the degree of coupling and coordination and the level of hierarchy. Lorentz curve was used to quantify the accessibility distribution of medical resources, Gini coefficient and global Moran index were calculated, and the equilibrium of health resource allocation was analyzed. The results show that this method can accurately predict the demand for health resources, and get the analysis results of allocation balance, which is conducive to the overall integration of medical resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, X.-w, Zhu, W.: Equity evaluation of health resource allocation in Traditional Chinese Medicine hospitals in Henan. Mod. Preventive Med. 48(17), 3157–3161 (2021)

    Google Scholar 

  2. Jiang, Y.-c., Yang, Y.-q., Wang, Z.-z.: Equilibrium of resource allocation in local health standardization in China: a cross-sectional survey among provincial level CDCs. Chinese J. Public Health 38(6), 730–733 (2022)

    Google Scholar 

  3. Rodrigues, T.F., Nogueira, K., Chiarello, A.G.: Noninvasive low-cost method to identify armadillos’ burrows: a machine learning approach. Wildl. Soc. Bull. 45(3), 396–401 (2021)

    Google Scholar 

  4. Dang, A.T., Tsujimura, M., Ha, N.T., et al.: Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam. Ecol. Ind. 127(1), 107–120 (2021)

    Google Scholar 

  5. Hou, J., Zhang, G.-y.: Dynamic scheduling simulation of massive fragment resources based on cloud computing. Comput. Simulation 37(1), 360–364 (2020)

    Google Scholar 

  6. Tian, H., Zhu, J., He, X., et al.: Using machine learning algorithms to estimate stand volume growth of Larix and Quercus forests based on national-scale Forest Inventory data in China. Forest Ecosystems 9(3), 396–406 (2022)

    Google Scholar 

  7. Huang, W., Tian, K.: Current status and equity of regional health care resource allocation in Jiangsu Province. China Med. Administration Sci. 12(2), 23–27 (2022)

    Google Scholar 

  8. Jain, D.K., Kalyanapusrinivas, A., Srinivasu, S., et al.: Machine learning based monitoring system with IoT using wearable sensors and Pre-convoluted Fast Recurrent Neural Networks (P-FRNN). IEEE Sens. J. 21(22), 25517–25524 (2021)

    Google Scholar 

  9. Zhou, T.: Analysis of the characteristics of spatial and hierarchical differentiation and its driving mechanism of urban and rural medical resources in Chongqing. Chin. Health Service Manag. 39(4), 275–279,300 (2022)

    Google Scholar 

  10. Wang, H., Luo, L., Yu, C.: Research on the planning completion rate and disequilibrium of health resource allocation in Guangxi in 2015–2019. Chinese Hospitals 25(11), 20–23 (2021)

    Google Scholar 

  11. Penido, E.K., Paixa, R.C.F.D., Costa, L.C.B., et al.: Predicting the compressive strength of steelmaking slag concrete with machine learning - Considerations on developing a mix design tool. Constr. Build. Mater. 341(25), 1–10 (2022)

    Google Scholar 

  12. Huang, M.C., Xu, H.Y., Yu, H.: Fast prediction of methane adsorption in shale nanopores using kinetic theory and machine learning algorithm. Chem. Eng. J. 446(3), 1–12 (2022)

    Google Scholar 

Download references

Funding

Xiamen Institute of Technology 2021 School-level Young and Middle-aged Scientific Research Fund Project: Binhai Nuclear Power Plant Disaster-Causing Organisms—Detection and Identification of Haitigua, Project No. 6

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Li, H. (2023). Analysis on the Balance of Health Care Resource Allocation Based on Improved Machine Learning. In: Wang, S. (eds) IoT and Big Data Technologies for Health Care. IoTCare 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 501. Springer, Cham. https://doi.org/10.1007/978-3-031-33545-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33545-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33544-0

  • Online ISBN: 978-3-031-33545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics