
Chapter 7 
Random Number Generator 

Thomas Lugrin 

7.1 Introduction 

Most modern encryption and authentication methods rely on the generation of ran-
dom numbers [1], such as for key generation, initial vectors, or nonces. Therefore, 
a reliable source of entropy is fundamental in making encryption and authentication 
methods secure—weak sources of randomness can compromise otherwise secure 
encryption and authentication schemes. 

7.2 Analysis 

7.2.1 Definition 

A Random Number Generator (RNG) is cryptographically secure if the sequences 
of numbers that it generates are unpredictable (Section 3.3.1 of [2]). RNGs are 
typically grouped in two categories: Pseudo-Random Number Generators (PRNG) 
and True Random Number Generators (TRNG). 

PRNGs depend on a seed value, from which a seemingly erratic albeit determin-
istic sequence is produced; it is a quick and debug-friendly version of RNGs often 
used in statistical applications. They are not suitable for cryptographic applications 
in isolation. However, they may be used when correctly combined (seeded) with a 
reliable entropy source. 
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TRNGs rely on physical phenomena, e.g., radioactive decay, thermal noise, 
small-scale hardware activity, or particular hardware based on quantum physics 
(abbreviated QRNG; see for example, Chapter 2 of [3]). As it is hard to balance 
physical processes such that the probability of 0’s and 1’s is exactly ½, the output of 
TRNGs must be adequately post-processed. Secure mixing functions such as hash 
functions or symmetric encryption schemes may produce unbiased output [4]. These 
mixing functions also remove serial dependence between bits. An excellent example 
of such an implementation is the Linux kernel RNG /dev/urandom [5]. 

Quantum RNGs are often presented as the only means to protect infrastructure 
against future powerful quantum computers. However, this is misleading, as any 
reliable source of randomness remains unpredictable against any adversary with 
arbitrary computing power. 

7.2.2 Trends 

Small-size, low-cost QRNGs have already been integrated into off-the-shelf devices 
such as smartphones, computers, and hardware security modules. 

7.3 Consequences for Switzerland 

People, businesses, and authorities in Switzerland should continue using and 
promoting research on secure random hardware number generators. This will ensure 
that they can benefit from the newest technological advances when they become 
available. 

7.3.1 Implementation Possibilities: Make or Buy 

Using secure RNGs that cannot be manipulated or tampered with and whose output 
is not predictable is fundamental as a basis for encryption methods. Applications 
involving particularly sensitive data can combine the output from two or more 
independent sources of randomness for improved security. PRNGs, which produce 
deterministic outcomes, must not be used in cryptography in isolation and must at 
least blend in TRNG’s randomness. 

Open-source solutions such as the Linux kernel RNG /dev/urandom are 
considered reliable [6]. Hardware products dedicated to producing randomness from 
reliable and reputable producers can be used as a complement after appropriate 
verification and approval. 

Several companies are operating in the TRNG market, e.g., developing QRNG 
chips that can be integrated into hardware. A few companies selling QRNG chips
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Table 7.1 Different companies active in the QRNG field 

or systems are listed in Table 7.1. These QRNG chips do not offer stronger 
guarantees than other TRNGs; they are just another means of potentially generating 
cryptographically secure randomness. 

7.3.2 Variation and Recommendation 

RNGs should be appropriately isolated and integrity protected to prevent tampering 
or access to internal states that could leak information about the random sequence. 
Combining the output of several RNGs (e.g., using XOR) can mitigate the potential 
weaknesses of individual RNGs. 

The US National Institute of Standards and Technology (NIST) published a 
range of hypothesis tests [7] that can provide evidence of potentially complex 
dependence patterns. Its German equivalent (Bundesamt für Sicherheit in der 
Informationstechnik, BSI) also suggests a suite of tests [8]. These tests do not 
provide proof of randomness; they can, at best, reject the null hypothesis that a 
specific dependence pattern occurs in a sequence at a given confidence level. The 
longer the test sequence, the more confidence can be placed in the test results. 
A good understanding of the inner workings of a TRNG is key to assuring the 
unpredictability of its output. 

7.4 Conclusion 

A reliable source of randomness is critical to ensuring the security of most modern 
encryption and authentication systems. Unfortunately, pseudo-random number
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generators are not suited in such a context, except if suitably combined with a 
reliable entropy source. 

Proving that a source of bits is truly random is impossible on finite sequences, 
but statistical test suites exist that provide evidence against non-randomness. Good 
physical sources of entropy must be chained with robust post-processing techniques 
to remove biases and serial dependencies. 

Standard tools like /dev/urandom on Linux systems provide a good source 
of random numbers based on multiple hardware-based entropy sources. Additional 
security can be achieved by combining independent RNGs, typically based on 
physical processes of different types, e.g., quantum physics. 
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