
Chapter 7 
Random Number Generator 

Thomas Lugrin 

7.1 Introduction 

Most modern encryption and authentication methods rely on the generation of ran-
dom numbers [1], such as for key generation, initial vectors, or nonces. Therefore, 
a reliable source of entropy is fundamental in making encryption and authentication 
methods secure—weak sources of randomness can compromise otherwise secure 
encryption and authentication schemes. 

7.2 Analysis 

7.2.1 Definition 

A Random Number Generator (RNG) is cryptographically secure if the sequences 
of numbers that it generates are unpredictable (Section 3.3.1 of [2]). RNGs are 
typically grouped in two categories: Pseudo-Random Number Generators (PRNG) 
and True Random Number Generators (TRNG). 

PRNGs depend on a seed value, from which a seemingly erratic albeit determin-
istic sequence is produced; it is a quick and debug-friendly version of RNGs often 
used in statistical applications. They are not suitable for cryptographic applications 
in isolation. However, they may be used when correctly combined (seeded) with a 
reliable entropy source. 

T. Lugrin (�) 
Federal Administration, Bern, Switzerland 
e-mail: thomas.lugrin@vtg.admin.ch 

© The Author(s) 2023 
V. Mulder et al. (eds.), Trends in Data Protection and Encryption Technologies, 
https://doi.org/10.1007/978-3-031-33386-6_7

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33386-6protect T1	extunderscore 7&domain=pdf

 885 56845 a 885 56845
a
 
mailto:thomas.lugrin@vtg.admin.ch
mailto:thomas.lugrin@vtg.admin.ch
mailto:thomas.lugrin@vtg.admin.ch
mailto:thomas.lugrin@vtg.admin.ch
https://doi.org/10.1007/978-3-031-33386-6_7
https://doi.org/10.1007/978-3-031-33386-6_7
https://doi.org/10.1007/978-3-031-33386-6_7
https://doi.org/10.1007/978-3-031-33386-6_7
https://doi.org/10.1007/978-3-031-33386-6_7
https://doi.org/10.1007/978-3-031-33386-6_7
https://doi.org/10.1007/978-3-031-33386-6_7
https://doi.org/10.1007/978-3-031-33386-6_7
https://doi.org/10.1007/978-3-031-33386-6_7
https://doi.org/10.1007/978-3-031-33386-6_7
https://doi.org/10.1007/978-3-031-33386-6_7


32 T. Lugrin

TRNGs rely on physical phenomena, e.g., radioactive decay, thermal noise, 
small-scale hardware activity, or particular hardware based on quantum physics 
(abbreviated QRNG; see for example, Chapter 2 of [3]). As it is hard to balance 
physical processes such that the probability of 0’s and 1’s is exactly ½, the output of 
TRNGs must be adequately post-processed. Secure mixing functions such as hash 
functions or symmetric encryption schemes may produce unbiased output [4]. These 
mixing functions also remove serial dependence between bits. An excellent example 
of such an implementation is the Linux kernel RNG /dev/urandom [5]. 

Quantum RNGs are often presented as the only means to protect infrastructure 
against future powerful quantum computers. However, this is misleading, as any 
reliable source of randomness remains unpredictable against any adversary with 
arbitrary computing power. 

7.2.2 Trends 

Small-size, low-cost QRNGs have already been integrated into off-the-shelf devices 
such as smartphones, computers, and hardware security modules. 

7.3 Consequences for Switzerland 

People, businesses, and authorities in Switzerland should continue using and 
promoting research on secure random hardware number generators. This will ensure 
that they can benefit from the newest technological advances when they become 
available. 

7.3.1 Implementation Possibilities: Make or Buy 

Using secure RNGs that cannot be manipulated or tampered with and whose output 
is not predictable is fundamental as a basis for encryption methods. Applications 
involving particularly sensitive data can combine the output from two or more 
independent sources of randomness for improved security. PRNGs, which produce 
deterministic outcomes, must not be used in cryptography in isolation and must at 
least blend in TRNG’s randomness. 

Open-source solutions such as the Linux kernel RNG /dev/urandom are 
considered reliable [6]. Hardware products dedicated to producing randomness from 
reliable and reputable producers can be used as a complement after appropriate 
verification and approval. 

Several companies are operating in the TRNG market, e.g., developing QRNG 
chips that can be integrated into hardware. A few companies selling QRNG chips



7 Random Number Generator 33

Table 7.1 Different companies active in the QRNG field 

or systems are listed in Table 7.1. These QRNG chips do not offer stronger 
guarantees than other TRNGs; they are just another means of potentially generating 
cryptographically secure randomness. 

7.3.2 Variation and Recommendation 

RNGs should be appropriately isolated and integrity protected to prevent tampering 
or access to internal states that could leak information about the random sequence. 
Combining the output of several RNGs (e.g., using XOR) can mitigate the potential 
weaknesses of individual RNGs. 

The US National Institute of Standards and Technology (NIST) published a 
range of hypothesis tests [7] that can provide evidence of potentially complex 
dependence patterns. Its German equivalent (Bundesamt für Sicherheit in der 
Informationstechnik, BSI) also suggests a suite of tests [8]. These tests do not 
provide proof of randomness; they can, at best, reject the null hypothesis that a 
specific dependence pattern occurs in a sequence at a given confidence level. The 
longer the test sequence, the more confidence can be placed in the test results. 
A good understanding of the inner workings of a TRNG is key to assuring the 
unpredictability of its output. 

7.4 Conclusion 

A reliable source of randomness is critical to ensuring the security of most modern 
encryption and authentication systems. Unfortunately, pseudo-random number



34 T. Lugrin

generators are not suited in such a context, except if suitably combined with a 
reliable entropy source. 

Proving that a source of bits is truly random is impossible on finite sequences, 
but statistical test suites exist that provide evidence against non-randomness. Good 
physical sources of entropy must be chained with robust post-processing techniques 
to remove biases and serial dependencies. 

Standard tools like /dev/urandom on Linux systems provide a good source 
of random numbers based on multiple hardware-based entropy sources. Additional 
security can be achieved by combining independent RNGs, typically based on 
physical processes of different types, e.g., quantum physics. 

References 

1. Kinga Marton, Alin Suciu, and Iosif Ignat. Randomness in Digital Cryptography: A Survey. 
Romanian Journal of Information Science and Technology, 13:219–240, 2010. 

2. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC Press, Boca 
Raton, 3rd edition, 2021. 

3. David Johnston. Random Number Generators—Principles and Practices: A Guide for Engi-
neeers and Programmers. Walter de Gruyter GmbH, Berlin/Boston, 2018. 

4. Steve Crocker, Donald E. Eastlake 3rd, and Jeffrey I. Schiller. Randomness Recommendations 
for Security. Request for Comments RFC 1750, Internet Engineering Task Force, December 
1994. 

5. random(4) - Linux manual page. https://man7.org/linux/man-pages/man4/random.4.html, 
August 2022. 

6. Stephan Müller. Documentation and Analysis of the Linux Random Number Generator. 
Technical report, Bundesamt für Sicherheit in der Informationstechnik, April 2020. 

7. Andrew Rukhin, Juan Soto, James Nechvatal, Elaine Barker, Stefan Leigh, Mark Levenson, 
David Banks, Alan Heckert, and James Dray. A Statistical Test Suite for Random and 
Pseudorandom Number Generators for Cryptographic Applications. Technical report, National 
Institute of Standards and Technology, April 2010. 

8. Wolfgang Killmann and Werner Schindler. A proposal for: Functionality classes for random 
number generators. Technical report, Bundesamt für Sicherheit in der Informationstechnik, 
September 2011. 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

https://man7.org/linux/man-pages/man4/random.4.html
https://man7.org/linux/man-pages/man4/random.4.html
https://man7.org/linux/man-pages/man4/random.4.html
https://man7.org/linux/man-pages/man4/random.4.html
https://man7.org/linux/man-pages/man4/random.4.html
https://man7.org/linux/man-pages/man4/random.4.html
https://man7.org/linux/man-pages/man4/random.4.html
https://man7.org/linux/man-pages/man4/random.4.html
https://man7.org/linux/man-pages/man4/random.4.html
https://man7.org/linux/man-pages/man4/random.4.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	7 Random Number Generator
	7.1 Introduction
	7.2 Analysis
	7.2.1 Definition
	7.2.2 Trends

	7.3 Consequences for Switzerland
	7.3.1 Implementation Possibilities: Make or Buy
	7.3.2 Variation and Recommendation

	7.4 Conclusion
	References


