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Abstract. Financial portfolio managers typically face multi-period
optimization tasks such as short-selling or investing at least a partic-
ular portion of the portfolio in a specific industry sector. A common
approach to tackle these problems is to use constrained Markov decision
process (CMDP) methods, which may suffer from sample inefficiency,
hyperparameter tuning, and lack of guarantees for constraint violations.
In this paper, we propose Action Space Decomposition Based Optimiza-
tion (ADBO) for optimizing a more straightforward surrogate task that
allows actions to be mapped back to the original task. We examine our
method on two real-world data portfolio construction tasks. The results
show that our new approach consistently outperforms state-of-the-art
benchmark approaches for general CMDPs.

Keywords: Reinforcement Learning · Constrained Action Space ·
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1 Introduction

Constrained portfolio optimization is an important problem in finance. A typical
example is a portfolio that must have at least 40% of the total portfolio value
invested in environmentally friendly companies at each time step of the invest-
ment horizon or a portfolio that is not permitted to invest more than 20% in
a particular industry sector. Another example of an action constraint task is a
130-30 strategy, in which the portfolio manager bets on group A of (potentially)
overperforming stocks against group B of (potentially) underperforming stocks.
This strategy is carried out by short-selling stocks worth 30% of the investment
budget from Group B and leveraging the investment into stocks worth 130% of
the investment budget from Group A.

The action space for these tasks can be considered as a continuous distribu-
tion of weights for a given set of assets. Therefore, reinforcement learning (RL)
with policy gradient [16] is well-suited for this task. Because the invested capital
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totals 100%, the codomain of the policy function is typically assumed to be a
standard simplex. Existing solutions model the policy using a softmax output
layer [1] or based on the Dirichlet distribution [20]. However, the constraints
mentioned above cause a change in the shape of the policy’s codomain, making
the standard solutions no longer directly applicable.

A way to optimize policies for tasks with constrained action spaces is by using
approaches for CMDPs with constraints on the action spaces. However, state-of-
the-art general approaches for CMDPs often have drawbacks such as expensive
training loops, sample inefficiency, or only guarantees for asymptotical constraint
compliance [2,4,10,19,21].

In this paper, we propose ADBO, a dedicated approach for dealing with the
two important types of investment tasks mentioned previously: (a) investment
tasks that invest at least or at most a certain percentage of a portfolio in a specific
group of assets, and (b) short-selling tasks. ADBO can overcome the aforemen-
tioned shortcomings of general policy optimization methods for CMDPs. This
is achieved by decomposing the non-standard-simplex action space into a sur-
rogate action space. Solutions found in the surrogate action space can then be
mapped back into the original constrained action space. In contrast to the non-
standard-simplex action space, the surrogate action space is designed to be easily
represented in the policy function approximator, allowing us to model the prob-
lem as a standard Markov decision process (MDP). Due to the lack of penalties
and reward shaping, finding an optimal policy for an MDP is less complex than
finding an optimal policy for a CMDP with constrained actions. Furthermore,
ADBO ensures that the actions adhere to the constraints both during and after
training.

In the experimental section, we demonstrate that the ADBO approach can
handle two types of investment tasks using real-world financial data. The first
task focuses on investing each time step at least a certain percentage of the port-
folio in companies considered to be environmentally sustainable. The second task
allows the agent to short-sell selected stocks, i.e., allowing for negative portfo-
lio weights. Our proposed approach outperforms the state-of-the-art benchmark
approaches for handling CMDPs on various criteria in both tasks.

2 Related Work

CMDPs were introduced by [3] to model constrained sequential decision tasks.
constrained Reinforcement Learning (CRL) approaches for finding optimal poli-
cies for CMDPs have a wide range of applications, including finance [7,20],
autonomous electric vehicle routing [14], network traffic [9], and robotics [2,8].
A Trust Region-based approach was introduced by [2] to find optimal poli-
cies for CMDPs that may still exhibit constraint violation due to approximation
errors. Another approach proposed by [6] is based on prior knowledge and
involves a one-time pretraining to predict simple one-step dynamics of the envi-
ronment. Lagrangian-based approaches are another option for dealing with
CMDPs. These approaches convert the original constraint optimization problem
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into an unconstrained optimization problem by applying a Lagrangian relaxation
to the constraints. Lagrangian-based approaches can be classified into two types:
The first type is Primal-Dual algorithms, in which the Lagrange multipliers
for a saddle point problem are chosen dynamically [5,19]. The second type of
Lagrangian-based approach employs manually selected Lagrange multipli-
ers, which remain static, as shown in [13,17]. Instead of a saddle point problem,
as in the first type, using a static Lagrange multiplier transforms the prob-
lem into a maximization problem, which is more stable and computationally
less expensive to solve. Some approaches carefully select Lagrange multipliers
to model preferences in a trade-off problem rather than as a means to enforce
constraints in an optimization problem. This is commonly seen in risk-return
trade-off settings, such as in [7,17,20].

The factorization of high-dimensional action spaces in RL, i.e., split-
ting action spaces into smaller sub-action spaces as a Cartesian product, is an
active area of research that has resulted in improved scalability and training
performance. In their work, [11] introduce the Sequential DQN approach, which
trains the agent for a sequence of n 1-dimensional actions rather than training
the agent for n-dimensional actions of the original action space, effectively fac-
torizing the original action space. The approach by [18] introduces an action
branching architecture, which models the policies for the sub-action spaces in
parallel. Our approach, like theirs, uses a Cartesian product of sub-action spaces.
However, the sub-action spaces in our new approach ADBO are the outcome of
a decomposition based on the Minkowski sum, resulting in a surrogate action
space rather than a factorization of the original action space.

3 Problem Setting

We consider an agent that needs to allocate wealth across N different assets
over T time steps. The allowed actions of the agent are defined by the investor’s
investment task and are contained in the constrained action space A. The
investment task type T1 requires the investor to invest at least cT1 of the port-
folio into assets from group VT1. In practice, these group definitions are often
linked to individual risk profiles, industry sectors, or features such as being
an environmentally friendly investment. The action space for investment task
type T1 is then defined as

AT1 =

{
a ∈ R

N :
N−1∑
i=0

ai = 1 ,
∑

i∈VT1

ai ≥ cT1 , ai ≥ 0, cT1 > 0

}

and represents an N -dimensional convex polytope. Task type T1 also includes
cases that require investing at most cT1 into assets in VT1 because this case
is equivalent to investing at least (1 − cT1) into the remaining assets ai for
i ∈ I \ VT1.

The investment task type T2 represents investors who believe that a group
of assets VT2 will underperform relatively compared to the rest of the invest-
ment universe I. The investor pays a borrowing fee to short-sell assets in group
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VT2 worth |cT2| of his total portfolio value and then uses the freed-up cash to
invest 1 + |cT2| into assets of the other investment universe. The action space
for investment task type T2 is defined as

AT2 =

⎧
⎨

⎩
a ∈ R

N :

N−1∑

i=0

ai = 1,
∑

j∈VT2

aj = cT2, aj ≤ 0, ak ≥ 0 ∀k ∈ I \ VT2, cT2 < 0

⎫
⎬

⎭

and represents an N -dimensional convex polytope as well.
The observation space is defined as O = W ×V ×U where W ⊆ R

+ is the
current absolute wealth level, V ⊆ R

N is the current relative portfolio weight
of each of the N assets, and U ⊆ R

N represents all the observed single asset
returns from the previous time step.

The economic return of each asset is individually modeled for each time step
by the random vector Θ = [Θ0, . . . , ΘN−1] ∈ U . The portfolio return is then a
random variable with an expected value denoted as IE [ΘPF ] = aᵀIE [Θ] with the
portfolio weights a ∈ A. There are two potential sources of cost to consider for
the agent: First, the transaction costs caused by changes in the portfolio weights
at in time step t by the agent defined as tct = (|at − vt|)ᵀ

c, where vt ∈ V
and vector c = [c0, .., cN−1] represents the asset-specific transaction costs caused
by trading a specific asset. Second, borrowing fees in case the agent is allowed
to short-sell assets. These costs occur every period as long as assets are short-
sold, i.e., assigned to a negative portfolio weight. The borrowing fees are defined
as bft = (1ai<0 ◦ at)ᵀb where 1ai<0 is an indicator vector signaling for each
individual asset ai if the current portfolio weight is negative, ◦ is an operator for
element-wise vector multiplication, and the vector b = [b0, .., bN−1] represents
asset-specific borrowing fees per time step.

The reward for the agent is a combination of transaction costs tc, borrowing
fees bf , and a realization ϑPF of the random variable of the portfolio’s economic
return ΘPF , i.e., r = ϑPF −tc−bf . The agent’s goal is to maximize the expected
cumulative reward, which we will refer to as total economic payoff.

4 Solution as CMDP

A CMDP is an extension of an MDP and is defined as a tuple (S,A, R, P, γ, C)
where S is the set of states, A is the set of actions, R is the immediate reward
function, which maps transition tuples to their respective expected reward, i.e.,
R : S × A × S → R. P denotes the transition probability function, whereas
P (st+1|st, at) gives the probability of transitioning to state st+1 ∈ S given state
st ∈ S and action at ∈ A. The parameter γ ∈ [0, 1) represents a discount factor.
C = {C0, . . . , Cm} is a set of immediate constraint functions Ci : S ×A×S → R

for i ∈ {0, . . . , m} that map transition tuples to the respective cost. We let
rt+1 := R(st, at, st+1) and define the return for a trajectory τ as the observed
discounted cumulative rewards. The objective function J is then defined as the
expected return for a given policy π, i.e., J(π) := IEτ∼P (τ |π)

[∑T−1
t=0 γtrt+1

]
.
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The expected cumulative discounted immediate cost for constraint i under
policy π is defined as JCi

(π) := IEτ∼P (τ |π)
[∑T−1

t=0 γtCi(st, at, st+1)
]
. We also

define constant trajectory constraint limits d0, . . . , dm. The optimization prob-
lem for the CMDP is then defined as:

maximize
π

J(π) = IE
τ∼P (τ |π)

(G) = IE
τ∼P (τ |π)

[
T−1∑
t=0

γtrt+1

]

s.t. JCi
(π) ≤ di ∀i

In the following, we will show how to formulate the tasks defined in Sect. 3
as a CMDP. In Sect. 3, we defined the observation space O, the constrained
action space Ai, and the reward R. The transition function P and the state
space S are unknown. However, we assume that we can sample transitions from
an environment. Therefore, we can employ reinforcement learning based on a
learned state representation function to learn effective policies. To address the
action constraints of tasks T1 and T2, we define the following cost function for
each respective task i ∈ {1, 2}: CTi

(st, at, st+1) = 1at �∈ATi
· ζ where constant ζ >

0 indicates the non-zero cost of a constraint violation. The respective constraint
for each task is then defined as JCTi

(π) ≤ 0.

5 Action Space Decomposition Based Optimization

We define a surrogate MDP (S, Ã, R, P, γ) and ensure that there exists a surjec-
tive function f : Ã → A that allows reaching any a ∈ A from at least one ã ∈ Ã.
For a formal description of our method, we first introduce the Minkowski sum:

Definition 1. Given two sets A and B of vectors in n-dimensional Euclidean
space, the Minkowski sum of A and B is generated by adding each vector in
A to each vector in B, i.e., the set A + B = {a + b|a ∈ A, b ∈ B} in which we
refer to A and B as Minkowski summands.

In our setting, the Minkowski sum describes how multiple decomposed action sets
can be combined to reconstruct the original constraint action set. The masked
scaled standard simplex (MSSS) describes a part of the original constrained
action which can be described as a simplex:

Definition 2. Let mask M ⊆ {0, . . . , N − 1}. MSSS is defined as:

MSSSM,c =

⎧⎨
⎩y ∈ R

N :
∑
j∈M

yj = c, yi = 0 ∀i ∈ I \ M

⎫⎬
⎭

with either (c ≥ 0 ∧ yi ≥ 0 ∀i ∈ M) or (c < 0 ∧ yi ≤ 0 ∀i ∈ M).

The surrogate action space is modeled as the Cartesian product of indepen-
dent sub-action spaces Ã = Ã1×Ã2. The sub-action spaces Ãi with i ∈ {1, 2} are
required to have the two properties: (a) being a decomposition of A in such a way



378 D. Winkel et al.

that the Minkowski sum (see Definition 1) of all the sub-action spaces Ãi is A,
i.e., A = Ã1+Ã2, and (b) being an MSSS as defined in Definition 2. Property (a)
guarantees the existence of function f that can be defined as f(ã) = ã1 + ã2 = a
with ã = [ã1, ã2] ∈ Ã ⊂ R

2N and ãi ∈ MSSSi ⊂ R
N for i ∈ {1, 2}, i.e., a

summation of vectors in a subspace of R
N . Property (b) allows utilizing well-

established RL methods for handling standard simplex action spaces with only
minor modifications by adding a scaling and masking logic in order to model
single MSSS action spaces.

The following two theorems show that constrained action spaces as defined in
Sect. 3 can be decomposed into two MSSS that satisfy both of the requirements
mentioned above. Theorem 1 describes the decomposition for task T1:

Theorem 1. Any convex polytope P �= ∅ defined as∑
i∈I

xi = 1, xi ≥ 0 ∀i ∈ I,
∑
i∈V1

xi ≥ c1

with c1 > 0, I = {0, . . . , N − 1} and V1 ⊆ I can be decomposed into two MSSSs:

MSSSS1,z1 , i.e. ∀y1 ∈ MSSSS1,z1 :
∑
S1

yi,1 = z1 with S1 = V1 and z1 = c1

MSSSS2,z2 , i.e. ∀y2 ∈ MSSSS2,z2 :
∑
S2

yi,2 = z2 with S2 = I and z2 = 1 − c1

so that the Minkowski sum of the MSSSs equals the original polytope P .

Correspondingly, the following theorem formulates the decomposition of the
action space in task T2:

Theorem 2. Any convex polytope P �= ∅ defined as∑
i∈I

xi = 1,
∑
i∈V1

xi = c1, xi ≥ c1 ∀i ∈ V1, xi ≤ 0 ∀i ∈ V1, xi ≥ 0 ∀i ∈ I\V1

with c1 < 0, I = {0, . . . , N − 1} and V1 ⊆ I can be decomposed into two MSSSs:

MSSSS1,z1 , i.e. ∀y1 ∈ MSSSS1,z1 :
∑

S1

yi,1 = z1 with S1 = V1 and z1 = c1

MSSSS2,z2 , i.e. ∀y2 ∈ MSSSS2,z2 :
∑

S2

yi,2 = z2 with S2 = I\V1 and z2 = 1 − c1

so that the Minkowski sum of the MSSSs equals the original polytope P .

Theorem 1 and 2 can be proven by showing that the two sets of closed half-
spaces, one describing the polytope P and the other describing the Minkowski
sum of the two MSSSs, are equal resulting in the equality of the two polytopes.

ADBO is based on the PPO algorithm [15]. The agent’s policy network is
designed in such a way that the action representation is distributed across multi-
ple independent segments, i.e., one head for each MSSS. A shared state encoder,
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on the other hand, provides a learned state representation to both heads. For
the state encoder we use a neural network of four fully connected layers of size
1024, 512, 256, and 64 with ReLU activation functions followed by GTrXL ele-
ment allowing to handle tasks requiring memory. The GTrXL element is based
on [12]. The element is composed of a single transformer unit with a single
encoder layer as well as a single decoder layer with four attention heads and an
embedding size of 64. While the sub-actions in ADBO are stochastically inde-
pendent, the parameters of the two distributions from which the sub-actions
are drawn are partially coordinated, i.e., parts of the actions rely on the same
shared latent state representation. To further ensure coordination between the
sub-actions, the different sub-actions are all evaluated using a joint reward. This
means that if a joint action performs poorly, all independent segments receive a
poor reward signal, regardless of individual sub-action performance.

We use a Dirichlet distribution to model each MSSS in the architecture
of the policy function approximator. The expected value of a random vector
X = [X0, . . . , XN−1] following a Dirichlet distribution with a parameter vec-

tor of α = [α0, . . . , αN−1] is defined as IE[Xi] = αi ·
(

N−1∑
n=0

αn

)−1

with αi >

0 for i ∈ {0, . . . , N − 1}. By adjusting the parameter vector of a Dirichlet dis-
tribution and applying a linear scaling transformation, we can create a random
variable with the set of all possible realizations equaling MSSSM,c. The set
M contains index values which we map to an N -dimensional indicator vector
1M , with the vector’s elements set to one if their respective index occurs in M
and zero otherwise. The parameter vector passed to the Dirichlet distribution
is calculated as α1M

= max(α ◦ 1M , ε), where α is the initial parameter vec-
tor before applying the masking and ε > 0 is an arbitrary small number. The
operator ◦ represents element-wise multiplication for vectors. In the final step,
a linear scaling transformation is applied, i.e., Y = c · X with X ∼ Dir(α1M

).
ADBO requires the uses of two MSSSs, i.e., MSSSM1,c1 and MSSSM2,c2 .

It should be noted that the gradient of the policy during training is based on
a policy interacting with the surrogate action space π̃(·|s) rather than a policy
interacting with the original constrained action space π(·|s). We only use f
to convert ã into a representation a that can interact with the environment.
Various inputs ã for f may sum to the same output value a, resulting in f being
a many-to-one function. For some ã ∈ Ã, this results in P(ã|s) �= P(a|s) with
a = f(ã). However, we argue that finding one possible representation for an
action a belonging to an optimal policy for the original problem is sufficient
from an optimization standpoint.

6 Experiments

The environment is based on [20], and uses the same real-world financial data
from the Nasdaq-100 index that was fetched and processed using the qlib pack-
age.1 The investment universe of the environment consists of 13 assets, one of
1 https://github.com/microsoft/qlib/tree/main.

https://github.com/microsoft/qlib/tree/main
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which is cash. The remaining 12 assets are chosen at random from a list of 35
stocks that remain after filtering the Nasdaq-100 data set for companies that
have been part of the index since January 1, 2010 and have no missing data.
The original Nasdaq-100 data set is supplemented with the Environmental Score
Metric (ESM) assigned by financial data provider LSEG.2 The score rates a com-
pany’s environmental sustainability based on various evaluation categories, such
as carbon emissions, willingness to innovate in this field, and transparency in
reporting relevant information. The score ranges from 0 to 100, representing the
percentiles of a ranking system.

We compare ADBO to three other state-of-the-art approaches for optimiz-
ing policies in CMDPs. RCPO is proposed by [19] and belongs to the class of
Lagrangian-based approaches. The interior-point policy optimization approach
IPO is introduced by [10]. P3O is proposed by [21] and uses a first-order opti-
mization over an unconstrained objective with a penalty term equal to the origi-
nal constraint objective. All benchmark approaches are implemented in the RLlib
framework3 based on their papers and publically available.4

Two experimental settings are examined: the SUSTA setting is based on
task type T1. The investor must invest at least 40% of his capital in the top 20%
of environmentally sustainable companies, i.e., companies with an ESM score
of 80 or higher. A score of 80 or higher “indicates excellent relative [...] perfor-
mance and a high degree of transparency in reporting material” by a company.5

The SHORT setting is based on task type T2. It employs a 130-30 strat-
egy, a popular long/short equity strategy among investors to invest 130% of
the available capital in stocks they believe will outperform and short-sell stocks
worth 30% of the available capital they believe will underperform. In the exper-
iments, we choose the companies Automatic Data Processing Inc., Paccar Inc.,
and Amgen Inc. to be sold short based on being the worst performers in 2020,
the final year before the start of the backtesting period.

Ashort is not a subset of the standard simplex because negative weights are
permitted. As a result, the RCPO, IPO, and P3O approaches must be modified
to be applicable to SHORT setting. The agent performed very poorly in initial
tests using R

N as a base action space and applying constraints accordingly and
was unable to learn meaningful policies. Instead, using a standard simplex as
the base action space and applying action scaling produced better results. For
action scaling, the agent uses the output of a Dirichlet distribution as an encoded
action ã = [ã0, . . . , ãN−1] that is then transformed, i.e., scaled into the final
action a = [a0, . . . , aN−1]: the cumulative weights of the stocks sold short and
the cumulative weights of the stocks bought long are added up in their absolute
values, resulting in a scaling factor αtotal = |αlong| + |αshort|. Then, for all
elements i of the encoded action ai = ãi ·αtotal that are bought, a positive scaling
factor is applied, and for all elements j of the encoded action aj = ãj · (−αtotal)

2 https://www.lseg.com/.
3 https://docs.ray.io/en/master/rllib/index.html.
4 https://github.com/DavWinkel/RL ADBO.
5 https://www.refinitiv.com/en/sustainable-finance/esg-scores.

https://www.lseg.com/
https://docs.ray.io/en/master/rllib/index.html
https://github.com/DavWinkel/RL_ADBO
https://www.refinitiv.com/en/sustainable-finance/esg-scores
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Fig. 1. Performance during training for all four approaches in the SUSTA setting and
the SHORT setting regarding Total economic payoff and % of steps in violation.

that are sold short, a negative scaling factor is applied. It should be noted that
actions generated as described above are no longer guaranteed to sum up to
1.0. Because IPO is a logarithmic barrier function-based approach that does not
apply to equality constraints, we must additionally soften equality constraints of
the form x = c to inequality constraints that allow values in a α-neighborhood
of x, i.e., x ≤ c + α and x ≥ c + α.

To evaluate the four approaches, we will report performance during and after
training for both the SUSTA setting and the SHORT setting. The total economic
payoff defined in Sect. 3 is used to measure economic performance. The results of
the SUSTA setting will be discussed first. The training in the SUSTA setting lasts
500 iterations and consists of approximately 2.1 million training steps. Figure 1a
shows that ADBO and P3O perform best during training by steadily improv-
ing their total economic payoff. RCPO also shows improvements, although at
a much slower rate. Table 1 shows the evaluation of economic performance fol-
lowing training completion in two setups: in the (A) environment setup 1000
trajectories are sampled from the same environment used for the training. ADBO
generates the highest total economic payoff in the SUSTA setting, followed by
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P3O, RCPO, and IPO. In the (B) backtesting setup a single trajectory,
namely the real-world Nasdaq-100 trajectory in 2021, is used for evaluation.
In the backtesting year 2021, the overall yearly performance of the Nasdaq-
100 index was above average, returning 27.5%, indicating that the individual
stocks that comprise the index were also performing well. As a result, the four
approaches generated high returns in the (B) backtesting setup, with ADBO
performing best, followed by P3O. In the SHORT setting, the training time had
to be increased significantly. This increase was required because IPO, RCPO,
and P3O failed to generate constraint-compliant actions satisfactorily. However,
due to insufficient training progress, which will be discussed in detail later in
this section, the training was eventually stopped after 3500 iterations, consisting
of approximately 14.7 million training steps. Figure 1b depicts the evolution of
the total economic payoff during training. After roughly 1 million training steps,
the performance of ADBO converges to a level that it then maintains for the
remainder of the training. P3O improves its performance over 3 million training
steps until it reaches a stable level. IPO improves its performance during the first
million training steps and then stabilizes, whereas RCPO does not show signif-
icant improvements in total economic payoff during training. Table 1 shows the
performance evaluation in the SHORT setting after the training is completed.
In the (A) environment setup, ADBO performs best, with an average total eco-
nomic payoff of 42.72%, followed by P3O with 35.12%. ADBO outperforms its
benchmark approaches by a wide margin in the (B) backtesting setup, achieving
a total economic payoff of 102.05%.

The experiments show that violations of the action constraints occurred dur-
ing the training of IPO, RCPO, and P3O in the SUSTA setting. Figure 1c shows
that this is especially true at the beginning of the training phase, while the num-
ber of time steps with actions in violation decreases almost to zero later on. After
completion of the training in the (A) environment setup, RCPO is the only app-
roach generating actions in violations, as shown in Table 1. However, violations
occur only on a small number of time steps, i.e., nine out of 12’000 time steps.
All approaches are free of constraint violations in the (B) backtesting setup. For
the SHORT setting, the majority of actions generated by the approaches IPO,
RCPO, and P3O violated the constraints during training. However, as train-
ing time progresses, the number of actions in constraint violation decreases for
RCPO and P3O. As a result, the training time was increased sevenfold when
compared to SUSTA setting. Nevertheless, the training was eventually halted
due to insufficient speed in reducing constraint violations. Figure 1d shows the
best-performing variants of the agents after extensive tuning of their hyperpa-
rameters. Table 1 displays the evaluation results after the training in the SHORT
setting was completed. In the SHORT setting, IPO, RCPO, and P3O fail to gen-
erate results free of constraint violations for both the (A) environment and (B)
backtesting setups. ADBO, on the other hand, guarantees by design actions free
of violations during and after training.
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Table 1. Evaluation after training is completed. (A) environment setup has a total
of 12’000 time steps (1000 trajectories), (B) backtesting setup has a single trajectory
with 12 time steps.

SUSTA setting SHORT setting

Total econ.
payoff (12
months)

Total violations Total econ.
payoff (12
months)

Total violations

(A) environment

RCPO 0.2238 0 0.2418 8656

IPO 0.2013 0 0.2721 11943

P3O 0.2561 9 0.3512 10865

ADBO (Ours) 0.2603 0 0.4272 0

(B) backtesting

RCPO 0.4640 0 0.5285 9

IPO 0.3499 0 0.6262 12

P3O 0.5475 0 0.7654 11

ADBO (Ours) 0.5758 0 1.0205 0

7 Conclusion

In this paper, we train agents to manage investment portfolios over multiple
periods, given two types of tasks that are commonly encountered in practice.
Task type T1 constrains the allocation of a particular group of assets, e.g.,
assets belonging to a specific industry sector. Task type T2 requires the investor
to short-sell one group of assets while increasing the investment in another. We
propose ADBO, which finds a performant policy for a surrogate MDP rather than
for the more complex CMDP. The surrogate MDP is based on an action space
decomposition of the original action space. We show that ADBO outperforms
general CMDP approaches for both task types in experimental settings. For
future work, we will examine extensions of action space decomposition based on
the Minkowski sums to a broader group of convex polytopes.
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source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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