Skip to main content

TAR DNA-Binding Protein 43 as a Potential Biomarker for Huntington’s Disease

  • Chapter
  • First Online:
Biomarkers for Huntington's Disease

Abstract

TAR DNA-binding protein of 43 kDa (TDP-43) is a ubiquitously expressed ribonucleoprotein that participates in gene expression regulation. Since the discovery of aggregated TDP-43 as a pathological hallmark in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis (ALS) in 2006, this protein has been predominantly linked to neurodegenerative diseases. The pathophysiological role of aggregated TDP-43 in these diseases is not completely understood; however, it is believed that both toxic gain-of-function and loss-of-function mechanisms are involved. TDP-43 has also been identified as a secondary pathology in other neurological disorders, including Polyglutamine (PolyQ) Diseases and specifically, Huntington’s disease (HD). TDP-43 has been observed to colocalize with mutant Huntingtin inclusions in HD, but only a few studies have explored the molecular interactions between them. However, several case reports of individuals with the HTT mutation and ALS-like syndrome suggest potential interactions and involvement of TDP-43 in the pathophysiology and phenotype of some individuals with HD. Investigations into other PolyQ diseases, such as Spinocerebellar Ataxias, have provided additional evidence supporting the interaction between PolyQ regions in other genes and TDP-43. Research examining TDP-43 as a biomarker for HD is limited and further investigations are needed to elucidate the implications of TDP-43 in HD and its potential utility as a biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALS:

Amyotrophic Lateral Sclerosis

ATXN1:

Ataxin 1

ATXN2:

Ataxin 2

bvFTLD:

behavioral variant-Frontotemporal Lobar Dementia

CFTR:

Cystic Fibrosis Transmembrane Conductance Regulator

CSF:

Cerebrospinal fluid

DN:

Dystrophic Neurites

FTLD:

Frontotemporal Lobar Dementia

FUS:

Fused in Sarcoma protein

GFNI:

Granulofilamentous neuronal inclusions

GOF:

toxic Gain-of-function

HD:

Huntington’s Disease

HIV-1:

Human Immunodeficiency Virus type 1

Htt:

Huntingtin protein

IBMPFD-ALS:

Inclusion Body Myopathy, Paget’s Disease, and FTLD-ALS

LATE:

Limbic-predominant age-related TDP-43 encephalopathy

LOF:

Loss-of-function

mHtt:

mutant Huntingtin protein

MRI:

Magnetic Resonance Imaging

mRNA:

messenger RNA

NCI:

Neural Cytoplasmatic Inclusions

nfPPA:

non-fluent Primary Progressive Aphasia

NII:

Neural Intranuclear Inclusions.

OIWM:

Oligodendorglial Inclusions in White Matter

PGRN:

Progranulin

PolyQ:

Polyglutamine

pTDP-43:

phosphorylated TDP-43

SCA:

Spinocerebellar Ataxia

SIMOA:

Single MOlecule Array

svPPA:

semantic-variant Primary Progressive Aphasia

TDP-43:

TAR DNA-binding protein of 43 kDa

References

  • Alami, N. H., Smith, R. B., Carrasco, M. A., Williams, L. A., Winborn, C. S., Han, S. S. W., et al. (2014). Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron, 81(3), 536–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold, E. S., Ling, S. C., Huelga, S. C., Lagier-Tourenne, C., Polymenidou, M., Ditsworth, D., et al. (2013a). ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proceedings of the National Academy of Sciences of the United States of America, 110(8), E736–E745.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold, S. J., Dugger, B. N., & Beach, T. G. (2013b). TDP-43 deposition in prospectively followed, cognitively normal elderly individuals: Correlation with argyrophilic grains but not other concomitant pathologies. Acta Neuropathologica, 126(1), 51–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballatore, C., Lee, V. M. Y., & Trojanowski, J. Q. (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nature Reviews. Neuroscience, 8(9), 663–672.

    Article  CAS  PubMed  Google Scholar 

  • Banfi, S., Servadio, A., Chung, M. Y., Kwiatkowski, T. J., McCall, A. E., Duvick, L. A., et al. (1994). Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nature Genetics, 7(4), 513–520.

    Article  CAS  PubMed  Google Scholar 

  • Barabási, A. L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews. Genetics, 12(1), 56–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barmada, S. J., Skibinski, G., Korb, E., Rao, E. J., Wu, J. Y., & Finkbeiner, S. (2010). Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. The Journal of Neuroscience, 30(2), 639–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates, G. P., Dorsey, R., Gusella, J. F., Hayden, M. R., Kay, C., Leavitt, B. R., et al. (2015). Huntington disease. Nature Reviews Disease Primers, 1(1), 15005.

    Article  PubMed  Google Scholar 

  • Bäumer, D., East, S. Z., Tseu, B., Zeman, A., Hilton, D., Talbot, K., et al. (2014). FTLD-ALS of TDP-43 type and SCA2 in a family with a full ataxin-2 polyglutamine expansion. Acta Neuropathologica, 128(4), 597–604.

    Article  PubMed  Google Scholar 

  • Bunting, E. L., Hamilton, J., & Tabrizi, S. J. (2022). Polyglutamine diseases. Current Opinion in Neurobiology, 72, 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Buratti, E., & Baralle, F. E. (2001). Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. The Journal of Biological Chemistry, 276(39), 36337–36343.

    Article  CAS  PubMed  Google Scholar 

  • Buratti, E., & Baralle, F. E. (2009). The molecular links between TDP-43 dysfunction and neurodegeneration. Advances in Genetics, 66, 1–34.

    Article  CAS  PubMed  Google Scholar 

  • Chen-Plotkin, A. S., Lee, V. M. Y., & Trojanowski, J. Q. (2010). TAR DNA-binding protein 43 in neurodegenerative disease. Nature Reviews Neurology, 6(4), 211–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clippinger, A. K., D’Alton, S., Lin, W. L., Gendron, T. F., Howard, J., Borchelt, D. R., et al. (2013). Robust cytoplasmic accumulation of phosphorylated TDP-43 in transgenic models of tauopathy. Acta Neuropathologica, 126(1), 39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti, E., Sala, G., Diamanti, S., Casati, M., Lunetta, C., Gerardi, F., et al. (2021). Serum naturally occurring anti-TDP-43 auto-antibodies are increased in amyotrophic lateral sclerosis. Scientific Reports, 11, 1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coudert, L., Nonaka, T., Bernard, E., Hasegawa, M., Schaeffer, L., & Leblanc, P. (2019). Phosphorylated and aggregated TDP-43 with seeding properties are induced upon mutant Huntingtin (mHtt) polyglutamine expression in human cellular models. Cellular and Molecular Life Sciences, 76(13), 2615–2632.

    Article  CAS  PubMed  Google Scholar 

  • Culver, B. P., DeClercq, J., Dolgalev, I., Yu, M. S., Ma, B., Heguy, A., et al. (2016). Huntington’s Disease Protein Huntingtin Associates with its own mRNA. Journal of Huntington’s Disease, 5(1), 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daoud, H., Belzil, V., Martins, S., Sabbagh, M., Provencher, P., Lacomblez, L., et al. (2011). Association of long ATXN2 CAG repeat sizes with increased risk of amyotrophic lateral sclerosis. Archives of Neurology, 68(6), 739–742.

    Article  PubMed  Google Scholar 

  • Dewan, R., Chia, R., Ding, J., Hickman, R. A., Stein, T. D., Abramzon, Y., et al. (2021). Pathogenic Huntingtin repeat expansions in patients with frontotemporal dementia and amyotrophic lateral sclerosis. Neuron, 109(3), 448–460.e4.

    Article  CAS  PubMed  Google Scholar 

  • Elden, A. C., Kim, H. J., Hart, M. P., Chen-Plotkin, A. S., Johnson, B. S., Fang, X., et al. (2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature, 466(7310), 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feneberg, E., Steinacker, P., Lehnert, S., Schneider, A., Walther, P., Thal, D. R., et al. (2014). Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 15(5–6), 351–356.

    Article  CAS  PubMed  Google Scholar 

  • Foulds, P., McAuley, E., Gibbons, L., Davidson, Y., Pickering-Brown, S. M., Neary, D., et al. (2008). TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathologica, 116(2), 141–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foulds, P. G., Davidson, Y., Mishra, M., Hobson, D. J., Humphreys, K. M., Taylor, M., et al. (2009). Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathologica, 118(5), 647–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentealba, R. A., Udan, M., Bell, S., Wegorzewska, I., Shao, J., Diamond, M. I., et al. (2010). Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43. The Journal of Biological Chemistry, 285(34), 26304–26314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, J., Wang, L., Huntley, M. L., Perry, G., & Wang, X. (2018). Pathomechanisms of TDP-43 in neurodegeneration. Journal of Neurochemistry. https://doi.org/10.1111/jnc.14327

  • Gerbich, T. M., & Gladfelter, A. S. (2021). Moving beyond disease to function: Physiological roles for polyglutamine-rich sequences in cell decisions. Current Opinion in Cell Biology, 69, 120–126.

    Article  CAS  PubMed  Google Scholar 

  • Hart, M. P., Brettschneider, J., Lee, V. M. Y., Trojanowski, J. Q., & Gitler, A. D. (2012). Distinct TDP-43 pathology in ALS patients with ataxin 2 intermediate-length polyQ expansions. Acta Neuropathologica, 124(2), 221–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanai, K., Kuwabara, S., Sawai, S., Nakata, M., Misawa, S., Isose, S., et al. (2008). Genetically confirmed Huntington’s disease masquerading as motor neuron disease. Movement Disorders, 23(5), 748–751.

    Article  PubMed  Google Scholar 

  • Lee, E. B., Lee, V. M. Y., & Trojanowski, J. Q. (2012). Gains or losses: Molecular mechanisms of TDP43-mediated neurodegeneration. Nature Reviews Neuroscience, 13(1), 38–50.

    Article  CAS  Google Scholar 

  • Lee, E. B., Porta, S., Baer, G. M., Xu, Y., Suh, E., Kwong, L. K., et al. (2017). Expansion of the classification of FTLD-TDP: Distinct pathology associated with rapidly progressive frontotemporal degeneration. Acta Neuropathologica, 134(1), 65–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. M., Huang, Y., Orth, M., Gillis, T., Siciliano, J., Hong, E., et al. (2022). Genetic modifiers of Huntington disease differentially influence motor and cognitive domains. American Journal of Human Genetics, 109(5), 885–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magrané, J., Cortez, C., Gan, W. B., & Manfredi, G. (2014). Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Human Molecular Genetics, 23(6), 1413–1424.

    Article  PubMed  Google Scholar 

  • Marte, L., Boronat, S., Barrios, R., Barcons-Simon, A., Bolognesi, B., Cabrera, M., et al. (2022). Expression of Huntingtin and TDP-43 derivatives in fission yeast can cause both beneficial and toxic effects. International Journal of Molecular Sciences, 23(7), 3950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Horta, S., Perez-Perez, J., van Duijn, E., Fernandez-Bobadilla, R., Carceller, M., Pagonabarraga, J., et al. (2016). Neuropsychiatric symptoms are very common in premanifest and early stage Huntington’s disease. Parkinsonism & Related Disorders, 25, 58–64.

    Article  Google Scholar 

  • Martinez-Horta, S., Sampedro, F., Horta-Barba, A., Perez-Perez, J., Pagonabarraga, J., Gomez-Anson, B., et al. (2020). Structural brain correlates of dementia in Huntington’s disease. Neuroimage Clinical, 28, 102415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson, P. T., Dickson, D. W., Trojanowski, J. Q., Jack, C. R., Boyle, P. A., Arfanakis, K., et al. (2019). Limbic-predominant age-related TDP-43 encephalopathy (LATE): Consensus working group report. Brain, 142(6), 1503–1527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann, M., Sampathu, D. M., Kwong, L. K., Truax, A. C., Micsenyi, M. C., Chou, T. T., et al. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796), 130–133.

    Article  CAS  PubMed  Google Scholar 

  • Nishihira, Y., Tan, C. F., Onodera, O., Toyoshima, Y., Yamada, M., Morita, T., et al. (2008). Sporadic amyotrophic lateral sclerosis: Two pathological patterns shown by analysis of distribution of TDP-43-immunoreactive neuronal and glial cytoplasmic inclusions. Acta Neuropathologica, 116(2), 169–182.

    Article  CAS  PubMed  Google Scholar 

  • Niss, F., Piñero-Paez, L., Zaidi, W., Hallberg, E., & Ström, A. L. (2022). Key modulators of the stress granule response TIA1, TDP-43, and G3BP1 are altered by polyglutamine-expanded ATXN7. Molecular Neurobiology, 59(8), 5236–5251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou, S. H., Wu, F., Harrich, D., García-Martínez, L. F., & Gaynor, R. B. (1995). Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. Journal of Virology, 69(6), 3584–3596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, Y., Li, S., Chen, S., Sun, X., Yang, F., Wang, H., et al. (2021). TDP-43 and phosphorylated TDP-43 levels in paired plasma and CSF samples in amyotrophic lateral sclerosis. Frontiers in Neurology, 14(12), 663637.

    Article  Google Scholar 

  • Ross, C. A., & Tabrizi, S. J. (2011). Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurology, 10(1), 83–98.

    Article  CAS  PubMed  Google Scholar 

  • Sadeghian, H., O’Suilleabhain, P. E., Battiste, J., Elliott, J. L., & Trivedi, J. R. (2011). Huntington chorea presenting with motor neuron disease. Archives of Neurology, 68(5), 650–652.

    Article  PubMed  Google Scholar 

  • Sampedro, F., Martínez-Horta, S., Pérez-Pérez, J., Pérez-González, R., Horta-Barba, A., Campolongo, A., et al. Plasma TDP-43 reflects cortical neurodegeneration and correlates with neuropsychiatric symptoms in Huntington’s disease. Clinical Neuroradiology [Internet]. 2022 Mar 3 [cited 2022 Dec 10]; Available from: https://link.springer.com/10.1007/s00062-022-01150-5

  • Saudou, F., & Humbert, S. (2016). The biology of Huntingtin. Neuron, 89(5), 910–926.

    Article  CAS  PubMed  Google Scholar 

  • Schwab, C., Arai, T., Hasegawa, M., Yu, S., & McGeer, P. L. (2008). Colocalization of transactivation-responsive DNA-binding protein 43 and Huntingtin in inclusions of Huntington disease. Journal of Neuropathology and Experimental Neurology, 67(12), 1159–1165.

    Article  PubMed  Google Scholar 

  • Seidel, K., den Dunnen, W. F. A., Schultz, C., Paulson, H., Frank, S., de Vos, R. A., et al. (2010). Axonal inclusions in spinocerebellar ataxia type 3. Acta Neuropathologica, 120(4), 449–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., et al. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science, 319(5870), 1668–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St-Amour, I., Turgeon, A., Goupil, C., Planel, E., & Hébert, S. S. (2018). Co-occurrence of mixed proteinopathies in late-stage Huntington’s disease. Acta Neuropathologica, 135(2), 249–265.

    Article  CAS  PubMed  Google Scholar 

  • Steinacker, P., Barschke, P., & Otto, M. (2019). Biomarkers for diseases with TDP-43 pathology. Molecular and Cellular Neurosciences, 97, 43–59.

    Article  CAS  PubMed  Google Scholar 

  • Sturchio, A., Duker, A. P., Muñoz-Sanjuan, I., & Espay, A. J. Subtyping monogenic disorders: Huntington disease. In: Handbook of clinical neurology [Internet]. Elsevier; 2023 [cited 2023 Mar 12]. pp. 171–184. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323855556000035

  • Tada, M., Coon, E. A., Osmand, A. P., Kirby, P. A., Martin, W., Wieler, M., et al. (2012). Coexistence of Huntington’s disease and amyotrophic lateral sclerosis: A clinicopathologic study. Acta Neuropathologica, 124(5), 749–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, C. F., Yamada, M., Toyoshima, Y., Yokoseki, A., Miki, Y., Hoshi, Y., et al. (2009). Selective occurrence of TDP-43-immunoreactive inclusions in the lower motor neurons in Machado-Joseph disease. Acta Neuropathologica, 118(4), 553–560.

    Article  PubMed  Google Scholar 

  • Tauffenberger, A., Chitramuthu, B. P., Bateman, A., Bennett, H. P. J., & Parker, J. A. (2013). Reduction of polyglutamine toxicity by TDP-43, FUS and progranulin in Huntington’s disease models. Human Molecular Genetics, 22(4), 782–794.

    Article  CAS  PubMed  Google Scholar 

  • Tazelaar, G. H. P., Boeynaems, S., De Decker, M., van Vugt, J. J. F. A., Kool, L., Goedee, H. S., et al. (2020). ATXN1 repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Communications, 2(2), fcaa064.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toyoshima, Y., & Takahashi, H. (2014). TDP-43 pathology in polyglutamine diseases: With reference to amyotrphic lateral sclerosis: TDP-43 and polyQ. Neuropathology, 34(1), 77–82.

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima, Y., Tanaka, H., Shimohata, M., Kimura, K., Morita, T., Kakita, A., et al. (2011). Spinocerebellar ataxia type 2 (SCA2) is associated with TDP-43 pathology. Acta Neuropathologica, 122(3), 375–378.

    Article  PubMed  Google Scholar 

  • Tziortzouda, P., Van Den Bosch, L., & Hirth, F. (2021). Triad of TDP43 control in neurodegeneration: Autoregulation, localization and aggregation. Nature Reviews Neuroscience, 22(4), 197–208.

    Article  CAS  PubMed  Google Scholar 

  • van Dellen, A., & Hannan, A. J. (2004). Genetic and environmental factors in the pathogenesis of Huntington’s disease. Neurogenetics, 5(1), 9–17.

    Article  PubMed  Google Scholar 

  • Vuono, R., Winder-Rhodes, S., de Silva, R., Cisbani, G., Drouin-Ouellet, J., REGISTRY Investigators of the European Huntington’s Disease Network, et al. (2015). The role of tau in the pathological process and clinical expression of Huntington’s disease. Brain, 138(Pt 7), 1907–1918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, F. O. (2007). Huntington’s disease. Lancet, 369(9557), 218–228.

    Article  CAS  PubMed  Google Scholar 

  • Wexler, N. S., Lorimer, J., Porter, J., Gomez, F., Moskowitz, C., Shackell, E., et al. (2004). Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3498–3503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y. J., Xu, Y. F., Cook, C., Gendron, T. F., Roettges, P., Link, C. D., et al. (2009). Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7607–7612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Kulisevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodríguez-Antigüedad, J., Pérez-Pérez, J., Kulisevsky, J. (2023). TAR DNA-Binding Protein 43 as a Potential Biomarker for Huntington’s Disease. In: Thomas, E.A., Parkin, G.M. (eds) Biomarkers for Huntington's Disease. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-32815-2_14

Download citation

Publish with us

Policies and ethics